ABSOLUTE BOUNDS ON THE NUMBER OF GENERATORS OF
COHEN-MACAULAY IDEALS OF HEIGHT TWO

HANS SCHOUTENS

ABSTRACT. For a Noetherian local domaif), there exists an upper boud- (A) on the
minimal number of generators of any height two ide&dr which A/ais Cohen-Macaulay
of typer. If A contains an infinite field, then we may tak& (A) := (7 + 1)enom(A),
whereenom(A) is the homological multiplicity ofA.

1. INTRODUCTION

In this paper, we are interested in finding upper boundg gfu), the minimal number
of generators of a height two Cohen-Macaulay ideal a Noetherian local ring! (here
a is said to beCohen-Macaulayif A/a is Cohen-Macaulay). The upper bounds that one
finds in the literature often depend on invariants of the residue4jfg or are only valid if
A is Cohen-Macaulay; see for instance [1, 5, 6, 7, 11, 12, 14, 15, 17, 19]. The goal of this
paper is to remove the Cohen-Macaulay assumptiod and to provide absolute bounds,
that is to say, bounds which only depend 4n Here are some previously known cases
of absolute bounds. In [12], Noether Normalization is used to show that any prime ideal
in a two-dimensional affine algebré (that is to say, a two-dimensional finitely generated
algebra over a field) is generated by at md§td) elements, wheré&V(A) only depends
on the algebra. In [8], Gottlieb shows that an idedbr which A/a has depth at least
dim A — 1 is generated by at mogtelements, where is the parameter degree df(see
below).

In this paper, we generalize Gottlieb’s results to height two Cohen-Macaulay ideals. To
state precise results, we need a definition. (etm) be ad-dimensional Noetherian local
ring. We call A non-degeneratéd A has the same characteristic as any of its irreducible
components of maximal dimension, that is to s&yr(A) = char(A/p), for every primep
of A such thatlim(A/p) = d. Note that this condition is void ifi is equicharacteristic. In
mixed characteristic, it means th&fp A has dimensiod — 1, wherep is the characteristic
of A/m. In particular, any Noetherian local domain is non-degenerate. Itis easy to see that
the class of non-degenerate local rings is closed under completion. We say that dn ideal
is non-degenerateaf A/ is non-degenerate. Am-primary ideall is non-degenerate if,
and only if,I containgp := char(A/m) if, and only if, A/T is equicharacteristic.

A parameter ideall in A is an ideal generated by a (full) system of parameters. The
minimal length ofA /I wherel runs over all parameter ideals will be called remameter
degreeof A; if we only let I run over all non-degenerate parameter ideals, the resulting
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minimum is called thequi-parameter degreef A. The motivation for introducing these
notions comes from the following structure theorem due to Cohen.

Theorem 1.1 (Cohen Structure TheoremA complete Noetherian local ring is non-
degenerate if, and only if, there exists a finite extenslan A with S a complete regular
local ring. In fact, given any non-degenerate parameter ideaf A, we may choos§ in
such way that A = I, wheren is the maximal ideal of.

Proof. For the direct implication in the first statement, see [9, Theorem 29.4 and Remark]
or [2, IX. Théoeme 3]. For the converse, we only have to treat the casedthas mixed
characteristic. Letl be the dimension off andp the characteristic of its residue field. If
S C Ais finite with S regular, thenS/pS has dimensiod — 1, and hence so doe$/pA
by base change.

The last statement is clear from the proof given in [9] whémas equal character-
istic. So assumel has characteristic zero and its residue field has characteristty
assumptionpA has height one and is containedlin Hence we may choose < I so
that! = (z1,...,24)A and(p, xo, ..., xq) is a system of parameters ify whered is the
dimension of4. LetV C A be a coefficient ring of, that is to say, a complete unramified
discrete valuation ring with the same residue fielddasBy the proof in [9], the subring
So := V|[[za,...,z4]] C Ais regular andA is finitely generated as afl,-module. Let
S := Sp[x1] C A. By the proof of [9, Theorem 29.8], the extensién C S is Eisenstein,
and hence by the same theorefns regular. Since the maximal ideabf S is generated
by p and all thez;, we getn A = I, as required. O

Note that the non-degenerate parameter ideals ame precisely the ideals of the form
nA with n the maximal ideal of a complete regular subring over whicis finite. We can
now state the main result of this paper (Theorem 2.1, Corollaries 2.2, 3.9 and 3.10 and the
discussion ir§3).

Theorem 1.2. Let A be a Noetherian local ring and let > 1. Assume tha# is non-
degenerate (e.g4 is a domain). Ifa is a height two ideal ofd such that4/a is Cohen-
Macaulay of typer, thena is generated by at most + 1)e elements, wherecan be taken
to be the equi-parameter degree Af Alternatively, we may taketo be the parameter
degree of4, in caseA is equicharacteristic, or the homological multiplicity df in case
A is equicharacteristic with infinite residue field, or the (usual) multiplicitydofin case
A is Cohen-Macaulay.

In particular, the minimal number of generators of a height two Gorenstein ideal is at
most2e.

The case whenl is Cohen-Macaulay is well-known ([11, Chapter V, Theorem 3.2 and
Corollary 3.3]) and is just added for comparison. Our bounds also improve the ones given
in [18, Example 9.5.1]. For the proof of Theorem 1.2, we borrow a technique from [12],
except that we replace their use of Noether Normalization by the Cohen Structure Theorem.
We even get some estimates without assumingdligt Cohen-Macaulay ideal:

Theorem 1.3. In a two-dimensional Noetherian local domadnof equi-parameter degree
p, every ideakl is generated by at moét + 1) elements, where is the type ofd/a.

Using the Forster-Swan Theorem, we obtain estimates in the global case as well: if
is d-dimensional Noetherian domain which is generated as a module by at glestents
over some regular subring, then any height two Cohen-Macaulaydd#all can be gen-
erated by at mosfr + 1)e + d — 2 elements, where is the maximum of the types of
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An/aAy, for m running over all maximal ideals oft (with a possible exception when

7 = ¢ = 1). In the last section, bounds for affine algebras are shown to be uniform, in the
sense that the bounds only depend on the degree of the polynomials representing the affine
algebra as a homomorphic image of a polynomial ring (see Theorem 5.1). Here are two
special cases that follow from this analysis.

Theorem 1.4. LetY — X be a finite dominant map of degree> 1 between affine-
dimensional schemes. X has no singularities, then every codimension two Gorenstein
subschem&’ of Y is the (ideal-theoretic) intersection of at m@st+ d — 2 hypersurfaces.

Theorem 1.5. Let C be a (reduced) Gorenstein curve in affirespace over an infinite
field. If C lies on a quadratic hypersurface, themn is either a set-theoretic complete
intersection, or otherwise, the (ideal-theoretic) intersection of exactly five hypersurfaces.

AcknowledgementThis paper arose in part through several useful and stimulating conver-
sations | had with W. Vasconcelos. | also want to thank the anonymous referee for pointing
out an error in Proposition 4.3 and for drawing my attention to the work of Gottlieb.

2. HEIGHT TwO GORENSTEINIDEALS

Theorem 2.1. For a non-degenerate Noetherian local riay there is an upper bound on
the number of generators of an arbitrary height two ide&br which A/a is Gorenstein.

Proof. Since neither height nor minimal number of generators is affected by taking a faith-
fully flat extension, we may assume théis moreover complete (note that the completion

of a non-degenerate ring is again non-degenerate). By Theorem 1.1, there exists a regular
local subringS C A, such that4 is module finite overS. In particular, there exists a
surjective linear map

Q) 0: SN - A

It will suffice to bound the number of generatorsaofiewed as ars-module. To this end,
let H := ¢—1(a). In particular, we have an exact sequence

2 0—H—SY - A/a—0.

Using for instance [3, Exercise 1.2.26] or [9, Exercise 16.7], we getdliatis a Cohen-
MacaulayS-module of dimensionl — 2, whered is the dimension ofd. Therefore, by
the Auslander-Buchsbaum Theoredy,a has projective dimensiahas anS-module, and
henceH has projective dimension one. Let

©) 0—sPd.99 oH 0

be a minimal freeS-resolution of H, so thatH is minimally generated by elements.
Taking the §-)dual of sequence (3), we get an exact sequence

(4) s .57 . BxtL(H,S) — 0,

where f* is thetransposeof f, that is to say, ifA is a matrix definingf, then the matrix
transpose ol givesf*. In particular, since we took (3) to be minimal,has all its entries
in the maximal ideal ofS. Therefore, the same is true fg*, so that by Nakayama’s
Lemma,Ext(H, S) is minimally generated by elements.

Applying [3, Theorem 3.3.7.(b)] to the finite local homomorphism— A/a, we get
that

Ext%(A/a, S) =wa/a,
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wherew, /, is the canonical module of /a. However, sinced/a is Gorenstein, we have
thatw, /o = A/a. On the other hand, taking the dual of the exact sequence (2) shows that
Extk(H,S) = Ext%(A/a, S). In summary, we obtain an isomorphism

Extg(H,S) = Afa.

Since thisS-module is minimally generated kyyelements, we get from (2) that< N.
Putting (2) and (3) together yields an exact sequence

0— SP — 89— SN

from which it follows thaty < p + N. Thereforeg < 2N, showing that, and hence a
fortiori a = ¢(H) A, can be generated by at m@s¥ elements. O

Corollary 2.2. For a non-degenerate Noetherian local rinrggand an arbitraryr > 1,
there is an upper bound on the number of generators of an arbitrary height twoddsal
A for which A/a is Cohen-Macaulay of type.

Proof. Analyzing the proof of Theorem 2.1, we see that the only place were we used that
A/ais Gorenstein, is to establish the isomorphisgy, = A/a. If A/ais merely Cohen-
Macaulay of typer, then the canonical module, ., is generated as af/a-module byr
elements ([3, Proposition 3.3.11]). Therefore, there is an epimorphista)” — w4 /q.

If Ais generated as attmodule byN elements, then this implies thay /, is generated

by at mostr N elements as af-module. Hence from (2) and (4) we get that< 7NV
(notation as in that proof), so thaty(a) < ¢ <p+ N < (7 +1)N. O

3. NOETHERNORMALIZATION DEGREE

We mentioned in the introduction that it is well-known that one can take Theo-
rem 1.2 equal to the multiplicity ofl, when A is Cohen-Macaulay. We now will investi-
gate several generalizations of multiplicity which can play the roleinfTheorem 1.2 in
absence of the Cohen-Macaulay assumption.

Definition 3.1. We call theNoether Normalization degresf a Noetherian ringi the least
possible value ofis(A), whereS runs over all regular subrings of (this includes the
case that there is no such regular subring over whidh finite, in which case we set its
Noether Normalization degree equaltg).

By the classical Noether Normalization Theorem, any finitely generated algebra over
a field has finite Noether Normalization degree. By Theorem 1.1, a complete Noetherian
local ring has finite Noether Normalization degree if, and only if, it is non-degenerate.

For the remainder of this sectiofi4, m) denotes a Noetherian local ring, with multi-
plicity e, parameter degreg equi-parameter degrgeand Noether Normalization degree
s. Clearlyp < p, with equality whenA is equicharacteristic, for then any system of pa-
rameters is non-degenerate. That this inequality can be strict is witnessed by the following
example.

Example 3.2. Let 4 := R/(X?® — p?)R with R := Z,[[X]] andZ, the ring of p-adic
integers. Here the only non-degenerate parameter idgdl showing thap = 3, whereas
A/X A has length two (in facb = 2 by the next lemma, ad is Cohen-Macaulay with
e = 2). Note that in this examplgA is not a reduction of the maximal ideal df

Lemma 3.3. We have an inequality < p. If A/m is infinite, there = p if, and only if, A
is Cohen-Macaulay.
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Proof. Let I be a parameter ideal such th&fI has lengthp. By [3, Corollary 4.6.11]
(=positivity of the first partial Euler characteristic), the multiplicity bfs at mostp and
by [9, Formula 14.4] this multiplicity is at least showing that < p.

To prove the last statement, suppese p, so thatd/I has lengtle, for some parameter
ideal I. Sincel has multiplicity at least, we get from [9, Theorem 14.10] thatmust
have multiplicity e, so thatA is Cohen-Macaulay by [9, Theorem 17.11]. Conversely,
assumeA is Cohen-Macaulay with infinite residue field. By [9, Theorem 14.14], there
exists a reductiod of m which is a parameter ideal of. Sincel is a reduction ofn, its
multiplicity is e. By [9, Theorem 17.11], the length &f/I is e, showing thap <e. O

Note that we only used the assumption that the residue field f infinite for the
converse in the last statement. That this assumption is necessary is clear from the next
example.

Example 3.4. The local ringR/(X2Y + XY?)R with R := F,[[X, Y]] andF, the two-
element field, is Cohen-Macaulay of multipliciky= 3, but parameter degree= 4, since
no element of degree one is a parameter.

Proposition 3.5. We have an inequality < s, with equality ifs is finite andA is complete.

Proof. We may assume < oco. Hence there exists a regular local subrifgn) C A
such thatA is generated ovef by s elements. By Nakayama's Lemma,is equal to
the vector space dimension df/n A over the residue field of. In particular,A/nA has
length at mosk. On the other hand, this length is bigger than or equal ®incenA is a
non-degenerate parameter idealdofln conclusion, we showed that< s.

For the opposite inequality, Idt be a non-degenerate parameter ideallisuch that
A/I has lengthp. By Theorem 1.1, there exists a regular local subfifigh) C A over
which A is finitely generated, such that= nA. By Nakayama’'s lemmays(A) = p,
showing thats < p. O

Observe that in generalj has the same (equi-)parameter degree as its complﬁtion
since anwﬁ-primary ideal is extended from. In particular, we showed that for a non-
degenerate Noetherian local ring, its equi-parameter degree is equal to the Noether Nor-
malization degree of its completion. We next relate these invariants to the homological
degree introduced by Vasconcelos in [$3] or [18, §9.5].

Proposition 3.6. Letenom be the homological multiplicity oft and assumel is complete.
If Ais equicharacteristic with infinite residue field, ther< enom.

Proof. In [17, Definition 3.23], the homological multiplicity,om of A is defined to be the
homological degree ofl viewed as amM-module. By [9, Theorem 14.14], there exists a
parameter ideal in A whose image in the graded ring dfis generated by elements of
degree one. By Theorem 1.1, we can find a regular local subfing) C (A, m) so that
the extension is finite andA = I. Such an extension can be used to calcutatg by
[17, Remark 3.11]. It follows thathm is also the homological degree dfviewed as an
S-module. By [17, Proposition 4.1], we then get tlgém is a bound on the number of
generators ofl as anS-module, whence a fortiori, on the Noether Normalization degree
of A. O

From [9, Theorem 23.1] and the above results, we get immediately.

Corollary 3.7. Let A be a complete local Cohen-Macaulay ring of multiplicitylf A is
equicharacteristic and has an infinite residue field, then there is a regular subringA
such that4 is a freeS-module of ranle.
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Since homological multiplicity agrees with multiplicity whehis Cohen-Macaulay, the
assumption on the residue field is necessary in the previous proposition and its corollary
by Example 3.4, as is the equicharacteristic assumption by Example 3.2. Siand
its completion have the same homological multiplicity by [17, Theorem 3.22], we get the
following inequalities:

Corollary 3.8. Lets be the Noether Normalization degree of the completioA.df A is
equicharacteristic with infinite residue field, then< p = p = 5 < epom, With equality
everywhere if, and only ifA is Cohen-Macaulay.

We now turn to the bounds proven in the previous section. Inspecting the proofs we get
the following explicit upper bounds.

Corollary 3.9. Let A be a non-degenerate Noetherian local ring and jebe its equi-
parameter degree. lfis a height two ideal o for which A/a is Cohen-Macaulay of type
7, thena can be generated by at mgst+ 1)p elements.

Combining this with Corollary 3.8, we get:

Corollary 3.10. In an equicharacteristic Noetherian local ring with an infinite residue
field and homological multiplicitynom, any height two ideat for which A/a is Gorenstein
(respectively, Cohen-Macaulay of typg can be generated by at maztn.m, elements
(respectively(T + 1)enom €lements).

Remark3.11 If A is ad-dimensional non-degenerate Noetherian local ringeaad ideal

in A such thatd/a has depth at leagt — 1, thenp(a) is at most the equi-parameter de-
gree of A. This was originally proved by Gottlieb in [8], who actually proves a stronger
result without the non-degenerate assumption, and with parameter degree instead of equi-
parameter degree. To prove the above assertion, we may astusneomplete. Since

the equi-parameter degrgeof A is equal to its Noether Normalization degree by Propo-
sition 3.5, we get an epimorphism (1) with regular andNV = p. By the Auslander-
Buchsbaum Theorem, th&module A/a has projective dimension one, so that!(a) is

free, of rank at mos.

In fact, we can incorporate these ideas in the proof of Corollary 2.2, to obtain the fol-
lowing estimate:

Proposition 3.12. Let (A4, m) be ad-dimensional non-degenerate Noetherian local ring
and leta be a height one ideal which is almost Cohen-Macaulay (meaningAliathas
dimensiond — 1 and depthd — 2). If p is the equi-parameter degree dfand \, the type

of the local cohomology/¢~2(A/a) of A/a, thena is generated by at mos$t\, + 1)p
elements.

Proof. As before, we may takd complete. In the proof of Corollary 2.2, we only used that
A := A/ais Cohen-Macaulay twice. Firstly, it was used to deduce ¢hat(a) (notation

as in proof) has projective dimensi@n But this follows in the present situation from the
Auslander-Buchsbaum theorem and our assumptionAtrats depthl — 2. Secondly, we
used the type ofl to estimate the number of generatarsf Extfg([l, S). By Grothendieck
duality, this module is isomorphic to the Matlis-)dual of H¢=%(A), wheren is the
maximal ideal of the regular subring C A. An application of [3, Proposition 3.2.12]
then yields tha# is equal to the type off¢2(A) = HI-2(A). O

In the terminology of [3, Remark 3.5.10], Grothendieck duality yields thats the
minimal number of generators of the canonical modkilg/, of A/a.
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Corollary 3.13. Let A be a two-dimensional non-degenerate Noetherian local ring and
let p be its equi-parameter degree. Every ideah A of positive height is generated by at
most(r + 1)p elements, where is the type ofd/a.

Proof. If a has height two, then it is-primary, once in particular Cohen-Macaulay, and
we can use Corollary 3.9. So assurhe= A/a has dimension one. If its depth is also one,
thena is a Cohen-Macaulay ideal and we are done by Remark 3.11 (or Gottlieb’s result).
So assume its depth is zero. We need to show Xhats defined in Proposition 3.12, is
equal to the type of A. SinceH? (A) is equal taAnn (m™ A) for some sufficiently large,

its socle is equal tdnn (mA), that is to say, equal to the socle4f By [3, Lemma 1.2.19],

the dimension of the socle of a depth zero module is its type, showing thatr. d

In particular, we proved Theorem 1.3 from the introduction.

4. THE GLOBAL CASE

To make the reduction to the local case, we use the Forster-Swan Theorem (see for
instance [9, Theorem 5.7]).

Theorem 4.1(Forster-Swan Theorem).et A be a Noetherian ring and et be a finitely
generated4-module. For each prime idealof A, define

f(p, M) == pa, (M) + dim(A/p).

If fis the maximum of alf (p, M) for p running over all prime ideals in the support of
M, thenM can be generated by at moelements.

Corollary 4.2. Let A be ad-dimensional Noetherian ring andan ideal ofA. Let f be a
bound on the number of generators of eachy,,, wherem runs over all maximal ideals of
A. Thena can be generated by at mastx{d + 1, f + dim A/a} elements.

Proof. Let p be an arbitrary prime ideal of. If a is not contained irp, thenaAd, = A,
is generated by a single element, so tfigi,a) = 1 + dimA/p < d+ 1. If a C p,
thendim A/p < dim A/a. Choose a maximal ideal of A, containingp. SinceaA4, is a
localization ofa A, it is generated by at mogtelements. The assertion now follows from
the Forster-Swan Theorem. O

We also need to study the behavior of Noether Normalization degrees under localization
and completion.

Proposition 4.3. Let A be a Noetherian domain with Noether Normalization degteeor
every prime ideap of A, the Noether Normalization degree of the completiignof A4, is
at mosts.

Proof. Let S be a regular subring oft such thatus(A) = s and letq := p N S. By base
change, the fiber ringl,/qA, has dimension at mostover the residue fiel#(q). Since
Ip is a direct summand of theadic completionAAcl of A, by [9, Theorem 8.15], we get
that

dlmk(q)(Ap/qu) S dimk(q)(Aq/qu) = dimk(q)(Aq/qu) S S.
In particular,;l\p is generated as afji-module by at most elements, by [9, Theorem 8.4].
SinceS, is regular, whence also its completion, we will have shown ﬁ\phas Noether
Normalization degree at mosprovided the natural homomorphissiy — A4, is injective.
At this point, we will need the assumption thatis a domain. By [9, Theorem 9.4], the
going-down theorem holds for the inclusi6hC A. Henceg andp have the same height
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by [9, Theorem 15.1]. Therefore, sin§§ — ;1\,, is finite homomorphism between rings
of the same dimension witf;, a domain, it must be injective. O

The following counterexample to the Proposition without the domain condition was
pointed out to me by a referee of an earlier version of this paper.

Example 4.4. Let A := R/(XY™, XZ)R with R := K[[X,Y, Z]] andK a field, and let
p := (Y, Z) A. One checks that is generated by two elements over= K[[X — Z, Y]],
but thatA, is an Artinian ring of lengtm + 1. In this example has height zero but its
contraction taS is Y'S whence has height one.

Remarkd.5. The theorem also holds if instead of assuming thé& a domain, we require
that it is bi-equidimensional (meaning that all minimal primes have the same dimension
and all maximal ideals have the same height). Indeed, $ith A as above, we only need

to show thatp andq := p N S have the same height, for every prime idpalf A. Letd

be the dimension oft andh the height ofp. SinceS C A is finite, S also has dimension

d. Together with [9, Exercise 9.8], this gives the inequalities ht(p) < ht(q) < d. To
prove that the first inequality is an equality, we do downward inductioth,omhere the
casel = h trivially holds. Hence suppoge< d, so that by assumptiop,is not a maximal
ideal. SinceS is universally catenary ([3, Theorem 2.1.12]), solisas it is finite oversS.
SinceA is in particular equidimensional, any maximal chain of prime ideals between two
prime idealsy; C po in A has lengttht(p2) — ht(py). It follows that there exists a prime
idealp’ of heighth + 1 containingp. By our induction hypothesig, := p’ N S has height

h+ 1 as well. SinceA is finite overS, there are no inclusion relations among prime ideals
in A lying over the same prime ifi. It follows thatq & g’ so that the former has height at
mosth, as we wanted to show. O

Let us define thglobal typeof a moduleM over a Noetherian ringl, as the maximal
type of any localizatior,,, of M at a maximal ideai of A.

Theorem 4.6. Let A be ad-dimensional Noetherian ring of finite Noether Normalization
degrees. Assume thatl is either a domain or bi-equidimensional. dfis a height two
ideal of A for which A/a is Cohen-Macaulay of global type thena can be generated by
at most(r + 1)s + d — 2 elements (except when= 7 = 1, in which case possibly + 1
generators are needed).

Proof. Let a be a height two Cohen-Macaulay ideal .4f By Corollary 4.2, if we find

a boundf on the number of generators ofi,, in each localization with respect to a
maximal idealm, thena itself can be generated hfy+ dim A/a elements. The statement
therefore follows from Corollary 3.9, Proposition 4.3 and Remark 4.5, since we may take
f = (1 + 1)s. One just needs to observe that the given bound is atdeastl only in the
indicated case = 7 = 1 itis equal to it. O

The case = 7 = 1 means thatl is regular and: is a Gorenstein ideal, whence locally a
complete intersection. I is a polynomial ring over some subring, then the EE-Conjecture
proven in [10], states that we may drop the contributiorf @f, a) for all minimal primes
p of A in the bound in the Forster-Swan Theorem, yielding therefore in this case the upper
boundd.

The theorem together with Theorem 1.3 yields immediately:

Corollary 4.7. Let A be a two-dimensional Noetherian domain of finite Noether Normal-
ization degrees and leta be an arbitrary ideal ofA. If A/a has global typer, thena can
be generated by at mogt + 1)s + 1 elements.
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Proof of Theorem 1.4.1f S and A denote the affine algebras &f andY respectively,
then our assumptions imply thatC A is finite with S regular. By definition, the degree
e of Y — X is the maximal number of points in a closed fiber. In other wotds,the
maximum of the dimensions

e(m) 1= dimg/m (Am/mAn),

wherem runs over all maximal ideals f. By Nakayama’'s Lemma(m) = pug, (Am)
and this is also equal to the minimal number of generators,adver S,,,, for any maximal
idealn of A lying overm. Therefore, ifa C A is the ideal defining the subscheg then
aA, is generated by at mo8t elements by Corollary 3.9. The stated bound now follows
from Corollary 4.2. O

5. THE AFFINE CASE

Affine rings, that is to say, finitely generated algebras over a field, have the property that
their Noether Normalization degree is finite. In fact, we have the following sharper result.

Theorem 5.1. For each pair(d, n), there exists a bounB(d, n) with the following prop-
erty. If A is an affine ring of the fornk [ X]/(f1, . . ., fs) K[X] with K a field, X a set ofd
variables andf; polynomials of degree at most then the Noether Normalization degree
of A is at mostE(d, n).

In particular, if a is a height two ideal ofi for which A/a is Cohen-Macaulay of global
typer, thena can be generated by at mdst+ 1)E(d, n) + d elements.

Proof. To prove the first statement, one just needs to observe that Noether Normalization
can be carried out algorithmically from thfe. The key idea is to make a change of vari-
ables so that one of thg becomes monic in some variable. Af is infinite, this can be

done by a linear change of variables; in the general case, we can still control the degree of
this new equation (see [18A.5] for details). Assume therefore that g}l have degree at
mostr’ and thatf; is monic inX; of degreen’, wheren’ only depends od andn. Hence
K[X]/f1K[X]is generated by, X7, ... ,X{L/_l overK[X,...,X,|. Let

L= (fie.. f)K[X] N K[Xa, ... X,

and putd; := K[Xo,...,X4]/11. It follows that4; C A is a finite extension, generated
by at mostn’ elements. By [13, Theorem 2.6], the iddalis generated by polynomials
of degree at most”, wheren” depends only om’, whence only onl andn. Therefore,
by an inductive argumentd; admits a Noether NormalizatioRi[Y'] C A; generated by
at mostn’”’ elements, where'”” depends only om”, whence only onl andn. From the
compositionK[Y] C A; C A we see thatd is generated as A [Y]-module by at most
n'’n/’ elements, a number only dependingdandn.

To prove the second statement, it suffices to show, in view of Corollary 4.2 thats
generated by at mos$t + 1)E(d,n) elements, for each maximal idealof A (note that
A has dimension at mod). To this end, we may first make a faithfully flat base change,
and hence assume that is algebraically closed. After a linear change of variables, we

may assume furthermore that= (X;,..., X,4)A. The above argument then shows that
A, has Noether Normalization degree at mgst, n) and hence the claim follows from
Corollary 3.9. 0

Using [8] or Remark 3.11, we can give a similar estimate in the height one case:

Corollary 5.2. A height one Cohen-Macaulay ideal can be generated by atB&i{dst) +
d elements.
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The above bound holds even uniformly in families in the following sense.

Corollary 5.3. Lets: W — V be map of finite type between schemes of finite type over
some field. There exists a bouBM(s), such that for each: € V' and each codimension
two Cohen-Macaulay subschenieof s~1(x) of global typer, the ideal ofF is gener-
ated by at mostr + 1)CM(s) elements. I has codimension one, then at m@3¥l(s)
generators suffice.

Proof. Taking a finite affine covering, we may reduce to the caselthat: Spec A and
W =: Spec B are affine, so that corresponds to & -algebra homomorphisd — B.
Choosef; € K[X] such thatd = K[X]/(f,..., ft)K[X], andg; € K[X,Y] such that
B = A[Y]/(g1,---,9:)A[Y], for some tuples of variableX andY. Letd be the total
number of variables and letbe the maximal degree of thi and they;. If p denotes the
prime ideal ofA corresponding to the point € V, then the coordinate ring of the fiber
s~ (x) is B ®4 k(p), wherek(p) := A,/pA, is the residue field of. It follows that
B ®a k(p) = k(p)[X]/(91,---,9:)k(p)[X]. By Theorem 5.1, the ideal d8 ®4 k(p)
defining F' is generated by at most + 1)E(d, n) 4+ d elements, wherE(d, n) is as in that
Theorem. The height one case follows by a similar argument using Corollary 5.2

Corollary 5.4. For each pair(d, n), there exists a bound(d, n) with the following prop-
erty. LetA be an affine ring of the fornk' [ X]/(f1,. .., fs)K[X] with K a field, X a set
of d variables andf; polynomials of degree at most Leta be a Cohen-Macaulay ideal
of A of heighth and letr be the global type ofi/a. If a contains a height — 2 ideal
I:=(q1,...,9:)A, with theg; of degree at most, thena can be generated by at most
(1 + 1)N(d, n) elements. If has height: — 1, then at mosN(d, n) generators suffice.

In particular, every height three idealof A which contains the image of a polynomial of
degree at most not belonging to any minimal prime dfand for whichA/a is Gorenstein,
can be generated by at maxti(d, n) elements.

Proof. The second statement is a special case of the first, with3 andr = 1. Let A4,
a and/ be as in the first statement. Counting monomials of degree atimaste easily
sees that there is a bouhly(d, n) on the number of generators bfonly depending or
andn. Let B := A/I, so thatB is also a homomorphic image of a polynomial ringdin
variables by an ideal generated by polynomials of degree atimdy Theorem 5.1, the
height two Cohen-Macaulay ideaB is generated by at mogt + 1)E(d, n) + d elements.
Thereforega is generated by at moét + 1)E(d, n) + d + N'(d, n) elements. O

Proof of Theorem 1.5. Let S := K[Xy,...,X4] and leta C S be the one-dimensional
radical ideal defining”. By assumption, there is a degree two polynonfiat a. As in

the proof of Theorem 5.1, we see thatf S has Noether Normalization degreeThere-
fore, a(S/fS) is locally generated by at mogtelements by Theorem 4.6, and hence

is locally generated by at moStelements. By [4], a grade three Gorenstein ideal in a
local ring is generated by an odd number of elements, sqifwet,, ) is either3 or 5 for
every maximal ideaim of S, and the latter case occurs except whes locally a com-
plete intersection. Sincé is regular and is radical,a.S, is generated bg elements for
every one-dimensional primg containinga. Hence for suctly, its contribution in the
Forster-Swan Theorem j&p; a) = 4. Thereforeu(a) = 5, if a is not locally a complete
intersection. On the other handgifs locally a complete intersection, thgfa) < 4 by the
EE-conjecture proven in [10]. By work of Ferrand, Boraii and Mohan Kumar, every
locally complete intersection curve in affine space is a set-theoretic complete intersection
(see for instance [16, Corollary 1.21]). O
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Theorem 5.5. LetW be a codimension three Gorenstein subvariety in affispace over
an infinite field. Ifi” lies on a degree hypersurface, then its ideal:= (W) is generated
by at moske + d — 2 elements. If, moreovel/’ has at most isolated singularities, then
is generated by at mosiax{2e + 1, d} elements.

Proof. As before,Oy has Noether Normalization degree at mgstthereH is the degree

e hypersurface containind’. ThereforeaOy is generated by at mose + d — 3 elements

by Theorem 4.6, whenaerequires at most one more generator (to wit, the defining equa-
tion of H). Suppose now thdl” has at most isolated singularities. At a non-closed point
of W, the ideala is locally generated by at mo8telements, since it is a complete inter-
section at such a point. We already observed that at closed padts requires at most

2e local generators, wheneerequires at moste + 1 local generators. The EE-conjecture
([10]) then yields an upper bound ofax{2e + 1, d} global generators far. O
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