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ABSTRACT. For a Noetherian local domainA, there exists an upper boundNτ (A) on the
minimal number of generators of any height two ideala for whichA/a is Cohen-Macaulay
of typeτ . If A contains an infinite field, then we may takeNτ (A) := (τ + 1)ehom(A),
whereehom(A) is the homological multiplicity ofA.

1. INTRODUCTION

In this paper, we are interested in finding upper bounds onµA(a), the minimal number
of generators of a height two Cohen-Macaulay ideala in a Noetherian local ringA (here
a is said to beCohen-Macaulay, if A/a is Cohen-Macaulay). The upper bounds that one
finds in the literature often depend on invariants of the residue ringA/a, or are only valid if
A is Cohen-Macaulay; see for instance [1, 5, 6, 7, 11, 12, 14, 15, 17, 19]. The goal of this
paper is to remove the Cohen-Macaulay assumption onA and to provide absolute bounds,
that is to say, bounds which only depend onA. Here are some previously known cases
of absolute bounds. In [12], Noether Normalization is used to show that any prime ideal
in a two-dimensional affine algebraA (that is to say, a two-dimensional finitely generated
algebra over a field) is generated by at mostN(A) elements, whereN(A) only depends
on the algebra. In [8], Gottlieb shows that an ideala for which A/a has depth at least
dim A − 1 is generated by at mostρ elements, whereρ is the parameter degree ofA (see
below).

In this paper, we generalize Gottlieb’s results to height two Cohen-Macaulay ideals. To
state precise results, we need a definition. Let(A,m) be ad-dimensional Noetherian local
ring. We callA non-degenerateif A has the same characteristic as any of its irreducible
components of maximal dimension, that is to say,char(A) = char(A/p), for every primep
of A such thatdim(A/p) = d. Note that this condition is void ifA is equicharacteristic. In
mixed characteristic, it means thatA/pA has dimensiond−1, wherep is the characteristic
of A/m. In particular, any Noetherian local domain is non-degenerate. It is easy to see that
the class of non-degenerate local rings is closed under completion. We say that an idealI
is non-degenerate, if A/I is non-degenerate. Anm-primary idealI is non-degenerate if,
and only if,I containsp := char(A/m) if, and only if,A/I is equicharacteristic.

A parameter idealI in A is an ideal generated by a (full) system of parameters. The
minimal length ofA/I whereI runs over all parameter ideals will be called theparameter
degreeof A; if we only let I run over all non-degenerate parameter ideals, the resulting
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minimum is called theequi-parameter degreeof A. The motivation for introducing these
notions comes from the following structure theorem due to Cohen.

Theorem 1.1(Cohen Structure Theorem). A complete Noetherian local ringA is non-
degenerate if, and only if, there exists a finite extensionS ⊆ A with S a complete regular
local ring. In fact, given any non-degenerate parameter idealI of A, we may chooseS in
such way thatnA = I, wheren is the maximal ideal ofS.

Proof. For the direct implication in the first statement, see [9, Theorem 29.4 and Remark]
or [2, IX. Théor̀eme 3]. For the converse, we only have to treat the case thatA has mixed
characteristic. Letd be the dimension ofA andp the characteristic of its residue field. If
S ⊆ A is finite withS regular, thenS/pS has dimensiond− 1, and hence so doesA/pA
by base change.

The last statement is clear from the proof given in [9] whenA has equal character-
istic. So assumeA has characteristic zero and its residue field has characteristicp. By
assumption,pA has height one and is contained inI. Hence we may choosexi ∈ I so
thatI = (x1, . . . , xd)A and(p, x2, . . . , xd) is a system of parameters inA, whered is the
dimension ofA. LetV ⊆ A be a coefficient ring ofA, that is to say, a complete unramified
discrete valuation ring with the same residue field asA. By the proof in [9], the subring
S0 := V [[x2, . . . , xd]] ⊆ A is regular andA is finitely generated as anS0-module. Let
S := S0[x1] ⊆ A. By the proof of [9, Theorem 29.8], the extensionS0 ⊆ S is Eisenstein,
and hence by the same theorem,S is regular. Since the maximal idealn of S is generated
by p and all thexi, we getnA = I, as required. �

Note that the non-degenerate parameter ideals inA are precisely the ideals of the form
nA with n the maximal ideal of a complete regular subring over whichA is finite. We can
now state the main result of this paper (Theorem 2.1, Corollaries 2.2, 3.9 and 3.10 and the
discussion in§3).

Theorem 1.2. Let A be a Noetherian local ring and letτ ≥ 1. Assume thatA is non-
degenerate (e.g.,A is a domain). Ifa is a height two ideal ofA such thatA/a is Cohen-
Macaulay of typeτ , thena is generated by at most(τ +1)ε elements, whereε can be taken
to be the equi-parameter degree ofA. Alternatively, we may takeε to be the parameter
degree ofA, in caseA is equicharacteristic, or the homological multiplicity ofA, in case
A is equicharacteristic with infinite residue field, or the (usual) multiplicity ofA, in case
A is Cohen-Macaulay.

In particular, the minimal number of generators of a height two Gorenstein ideal is at
most2ε.

The case whenA is Cohen-Macaulay is well-known ([11, Chapter V, Theorem 3.2 and
Corollary 3.3]) and is just added for comparison. Our bounds also improve the ones given
in [18, Example 9.5.1]. For the proof of Theorem 1.2, we borrow a technique from [12],
except that we replace their use of Noether Normalization by the Cohen Structure Theorem.
We even get some estimates without assuming thata is a Cohen-Macaulay ideal:

Theorem 1.3. In a two-dimensional Noetherian local domainA of equi-parameter degree
ρ̄, every ideala is generated by at most(τ + 1)ρ̄ elements, whereτ is the type ofA/a.

Using the Forster-Swan Theorem, we obtain estimates in the global case as well: ifA
is d-dimensional Noetherian domain which is generated as a module by at mostε elements
over some regular subring, then any height two Cohen-Macaulay ideala of A can be gen-
erated by at most(τ + 1)ε + d − 2 elements, whereτ is the maximum of the types of
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Am/aAm, for m running over all maximal ideals ofA (with a possible exception when
τ = ε = 1). In the last section, bounds for affine algebras are shown to be uniform, in the
sense that the bounds only depend on the degree of the polynomials representing the affine
algebra as a homomorphic image of a polynomial ring (see Theorem 5.1). Here are two
special cases that follow from this analysis.

Theorem 1.4. Let Y → X be a finite dominant map of degreeε > 1 between affined-
dimensional schemes. IfX has no singularities, then every codimension two Gorenstein
subschemeW of Y is the (ideal-theoretic) intersection of at most2ε+d−2 hypersurfaces.

Theorem 1.5. Let C be a (reduced) Gorenstein curve in affine4-space over an infinite
field. If C lies on a quadratic hypersurface, thenC is either a set-theoretic complete
intersection, or otherwise, the (ideal-theoretic) intersection of exactly five hypersurfaces.

Acknowledgement.This paper arose in part through several useful and stimulating conver-
sations I had with W. Vasconcelos. I also want to thank the anonymous referee for pointing
out an error in Proposition 4.3 and for drawing my attention to the work of Gottlieb.

2. HEIGHT TWO GORENSTEINIDEALS

Theorem 2.1. For a non-degenerate Noetherian local ringA, there is an upper bound on
the number of generators of an arbitrary height two ideala for whichA/a is Gorenstein.

Proof. Since neither height nor minimal number of generators is affected by taking a faith-
fully flat extension, we may assume thatA is moreover complete (note that the completion
of a non-degenerate ring is again non-degenerate). By Theorem 1.1, there exists a regular
local subringS ⊆ A, such thatA is module finite overS. In particular, there exists a
surjective linear map

(1) ϕ : SN � A.

It will suffice to bound the number of generators ofa viewed as anS-module. To this end,
let H := ϕ−1(a). In particular, we have an exact sequence

(2) 0 → H → SN → A/a → 0.

Using for instance [3, Exercise 1.2.26] or [9, Exercise 16.7], we get thatA/a is a Cohen-
MacaulayS-module of dimensiond − 2, whered is the dimension ofA. Therefore, by
the Auslander-Buchsbaum Theorem,A/a has projective dimension2 as anS-module, and
henceH has projective dimension one. Let

(3) 0 → Sp f−−→ Sq →H → 0

be a minimal freeS-resolution ofH, so thatH is minimally generated byq elements.
Taking the (S-)dual of sequence (3), we get an exact sequence

(4) Sq f∗

−−→Sp → Ext1S(H,S) → 0,

wheref∗ is thetransposeof f , that is to say, ifA is a matrix definingf , then the matrix
transpose ofA givesf∗. In particular, since we took (3) to be minimal,A has all its entries
in the maximal ideal ofS. Therefore, the same is true forf∗, so that by Nakayama’s
Lemma,Ext1S(H,S) is minimally generated byp elements.

Applying [3, Theorem 3.3.7.(b)] to the finite local homomorphismS → A/a, we get
that

Ext2S(A/a, S) = ωA/a,
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whereωA/a is the canonical module ofA/a. However, sinceA/a is Gorenstein, we have
thatωA/a

∼= A/a. On the other hand, taking the dual of the exact sequence (2) shows that
Ext1S(H,S) ∼= Ext2S(A/a, S). In summary, we obtain an isomorphism

Ext1S(H,S) ∼= A/a.

Since thisS-module is minimally generated byp elements, we get from (2) thatp ≤ N .
Putting (2) and (3) together yields an exact sequence

0 → Sp → Sq → SN

from which it follows thatq ≤ p + N . Therefore,q ≤ 2N , showing thatH, and hence a
fortiori a = ϕ(H)A, can be generated by at most2N elements. �

Corollary 2.2. For a non-degenerate Noetherian local ringA and an arbitraryτ ≥ 1,
there is an upper bound on the number of generators of an arbitrary height two ideala of
A for whichA/a is Cohen-Macaulay of typeτ .

Proof. Analyzing the proof of Theorem 2.1, we see that the only place were we used that
A/a is Gorenstein, is to establish the isomorphismωA/a

∼= A/a. If A/a is merely Cohen-
Macaulay of typeτ , then the canonical moduleωA/a is generated as anA/a-module byτ
elements ([3, Proposition 3.3.11]). Therefore, there is an epimorphism(A/a)τ � ωA/a.
If A is generated as anS-module byN elements, then this implies thatωA/a is generated
by at mostτN elements as anS-module. Hence from (2) and (4) we get thatp ≤ τN
(notation as in that proof), so thatµA(a) ≤ q ≤ p + N ≤ (τ + 1)N . �

3. NOETHERNORMALIZATION DEGREE

We mentioned in the introduction that it is well-known that one can takeε in Theo-
rem 1.2 equal to the multiplicity ofA, whenA is Cohen-Macaulay. We now will investi-
gate several generalizations of multiplicity which can play the role ofε in Theorem 1.2 in
absence of the Cohen-Macaulay assumption.

Definition 3.1. We call theNoether Normalization degreeof a Noetherian ringA the least
possible value ofµS(A), whereS runs over all regular subrings ofA (this includes the
case that there is no such regular subring over whichA is finite, in which case we set its
Noether Normalization degree equal to∞).

By the classical Noether Normalization Theorem, any finitely generated algebra over
a field has finite Noether Normalization degree. By Theorem 1.1, a complete Noetherian
local ring has finite Noether Normalization degree if, and only if, it is non-degenerate.

For the remainder of this section,(A,m) denotes a Noetherian local ring, with multi-
plicity e, parameter degreeρ, equi-parameter degreēρ and Noether Normalization degree
s. Clearlyρ ≤ ρ̄, with equality whenA is equicharacteristic, for then any system of pa-
rameters is non-degenerate. That this inequality can be strict is witnessed by the following
example.

Example 3.2. Let A := R/(X3 − p2)R with R := Zp[[X]] andZp the ring ofp-adic
integers. Here the only non-degenerate parameter ideal ispA showing that̄ρ = 3, whereas
A/XA has length two (in factρ = 2 by the next lemma, asA is Cohen-Macaulay with
e = 2). Note that in this examplepA is not a reduction of the maximal ideal ofA.

Lemma 3.3. We have an inequalitye ≤ ρ. If A/m is infinite, thene = ρ if, and only if,A
is Cohen-Macaulay.
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Proof. Let I be a parameter ideal such thatA/I has lengthρ. By [3, Corollary 4.6.11]
(=positivity of the first partial Euler characteristic), the multiplicity ofI is at mostρ and
by [9, Formula 14.4] this multiplicity is at leaste, showing thate ≤ ρ.

To prove the last statement, supposee = ρ, so thatA/I has lengthe, for some parameter
ideal I. SinceI has multiplicity at leaste, we get from [9, Theorem 14.10] thatI must
have multiplicity e, so thatA is Cohen-Macaulay by [9, Theorem 17.11]. Conversely,
assumeA is Cohen-Macaulay with infinite residue field. By [9, Theorem 14.14], there
exists a reductionI of m which is a parameter ideal ofA. SinceI is a reduction ofm, its
multiplicity is e. By [9, Theorem 17.11], the length ofA/I is e, showing thatρ ≤ e. �

Note that we only used the assumption that the residue field ofA is infinite for the
converse in the last statement. That this assumption is necessary is clear from the next
example.

Example 3.4. The local ringR/(X2Y + XY 2)R with R := F2[[X, Y ]] andF2 the two-
element field, is Cohen-Macaulay of multiplicitye = 3, but parameter degreeρ = 4, since
no element of degree one is a parameter.

Proposition 3.5. We have an inequalitȳρ ≤ s, with equality ifs is finite andA is complete.

Proof. We may assumes < ∞. Hence there exists a regular local subring(S, n) ⊆ A
such thatA is generated overS by s elements. By Nakayama’s Lemma,s is equal to
the vector space dimension ofA/nA over the residue field ofS. In particular,A/nA has
length at mosts. On the other hand, this length is bigger than or equal toρ̄, sincenA is a
non-degenerate parameter ideal ofA. In conclusion, we showed thatρ̄ ≤ s.

For the opposite inequality, letI be a non-degenerate parameter ideal inA such that
A/I has length̄ρ. By Theorem 1.1, there exists a regular local subring(S, n) ⊆ A over
which A is finitely generated, such thatI = nA. By Nakayama’s lemma,µS(A) = ρ̄,
showing thats ≤ ρ̄. �

Observe that in general,A has the same (equi-)parameter degree as its completionÂ,
since anymÂ-primary ideal is extended fromA. In particular, we showed that for a non-
degenerate Noetherian local ring, its equi-parameter degree is equal to the Noether Nor-
malization degree of its completion. We next relate these invariants to the homological
degree introduced by Vasconcelos in [17,§3] or [18,§9.5].

Proposition 3.6. Letehom be the homological multiplicity ofA and assumeA is complete.
If A is equicharacteristic with infinite residue field, thens ≤ ehom.

Proof. In [17, Definition 3.23], the homological multiplicityehom of A is defined to be the
homological degree ofA viewed as anA-module. By [9, Theorem 14.14], there exists a
parameter idealI in A whose image in the graded ring ofA is generated by elements of
degree one. By Theorem 1.1, we can find a regular local subring(S, n) ⊆ (A,m) so that
the extension is finite andnA = I. Such an extension can be used to calculateehom by
[17, Remark 3.11]. It follows thatehom is also the homological degree ofA viewed as an
S-module. By [17, Proposition 4.1], we then get thatehom is a bound on the number of
generators ofA as anS-module, whence a fortiori, on the Noether Normalization degrees
of A. �

From [9, Theorem 23.1] and the above results, we get immediately.

Corollary 3.7. Let A be a complete local Cohen-Macaulay ring of multiplicitye. If A is
equicharacteristic and has an infinite residue field, then there is a regular subringS ⊆ A
such thatA is a freeS-module of ranke.
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Since homological multiplicity agrees with multiplicity whenA is Cohen-Macaulay, the
assumption on the residue field is necessary in the previous proposition and its corollary
by Example 3.4, as is the equicharacteristic assumption by Example 3.2. SinceA and
its completion have the same homological multiplicity by [17, Theorem 3.22], we get the
following inequalities:

Corollary 3.8. Let ŝ be the Noether Normalization degree of the completion ofA. If A is
equicharacteristic with infinite residue field, thene ≤ ρ = ρ̄ = ŝ ≤ ehom, with equality
everywhere if, and only if,A is Cohen-Macaulay.

We now turn to the bounds proven in the previous section. Inspecting the proofs we get
the following explicit upper bounds.

Corollary 3.9. Let A be a non-degenerate Noetherian local ring and letρ̄ be its equi-
parameter degree. Ifa is a height two ideal ofA for whichA/a is Cohen-Macaulay of type
τ , thena can be generated by at most(τ + 1)ρ̄ elements.

Combining this with Corollary 3.8, we get:

Corollary 3.10. In an equicharacteristic Noetherian local ringA with an infinite residue
field and homological multiplicityehom, any height two ideala for whichA/a is Gorenstein
(respectively, Cohen-Macaulay of typeτ ), can be generated by at most2ehom elements
(respectively,(τ + 1)ehom elements).

Remark3.11. If A is ad-dimensional non-degenerate Noetherian local ring anda an ideal
in A such thatA/a has depth at leastd − 1, thenµ(a) is at most the equi-parameter de-
gree ofA. This was originally proved by Gottlieb in [8], who actually proves a stronger
result without the non-degenerate assumption, and with parameter degree instead of equi-
parameter degree. To prove the above assertion, we may assumeA is complete. Since
the equi-parameter degreēρ of A is equal to its Noether Normalization degree by Propo-
sition 3.5, we get an epimorphism (1) withS regular andN = ρ̄. By the Auslander-
Buchsbaum Theorem, theS-moduleA/a has projective dimension one, so thatϕ−1(a) is
free, of rank at most̄ρ.

In fact, we can incorporate these ideas in the proof of Corollary 2.2, to obtain the fol-
lowing estimate:

Proposition 3.12. Let (A,m) be ad-dimensional non-degenerate Noetherian local ring
and leta be a height one ideal which is almost Cohen-Macaulay (meaning thatA/a has
dimensiond− 1 and depthd− 2). If ρ̄ is the equi-parameter degree ofA andλa the type
of the local cohomologyHd−2

m (A/a) of A/a, thena is generated by at most(λa + 1)ρ̄
elements.

Proof. As before, we may takeA complete. In the proof of Corollary 2.2, we only used that
Ā := A/a is Cohen-Macaulay twice. Firstly, it was used to deduce thatϕ−1(a) (notation
as in proof) has projective dimension2. But this follows in the present situation from the
Auslander-Buchsbaum theorem and our assumption thatĀ has depthd− 2. Secondly, we
used the type of̄A to estimate the number of generatorsλ of Ext2S(Ā, S). By Grothendieck
duality, this module is isomorphic to the Matlis (S-)dual of Hd−2

n (Ā), wheren is the
maximal ideal of the regular subringS ⊆ A. An application of [3, Proposition 3.2.12]
then yields thatλ is equal to the type ofHd−2

n (Ā) ∼= Hd−2
m (Ā). �

In the terminology of [3, Remark 3.5.10], Grothendieck duality yields thatλa is the
minimal number of generators of the canonical moduleKA/a of A/a.
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Corollary 3.13. Let A be a two-dimensional non-degenerate Noetherian local ring and
let ρ̄ be its equi-parameter degree. Every ideala in A of positive height is generated by at
most(τ + 1)ρ̄ elements, whereτ is the type ofA/a.

Proof. If a has height two, then it ism-primary, once in particular Cohen-Macaulay, and
we can use Corollary 3.9. So assumeĀ := A/a has dimension one. If its depth is also one,
thena is a Cohen-Macaulay ideal and we are done by Remark 3.11 (or Gottlieb’s result).
So assume its depth is zero. We need to show thatλa as defined in Proposition 3.12, is
equal to the typeτ of Ā. SinceH0

m(Ā) is equal toAnn(mnĀ) for some sufficiently largen,
its socle is equal toAnn(mĀ), that is to say, equal to the socle ofĀ. By [3, Lemma 1.2.19],
the dimension of the socle of a depth zero module is its type, showing thatλa = τ . �

In particular, we proved Theorem 1.3 from the introduction.

4. THE GLOBAL CASE

To make the reduction to the local case, we use the Forster-Swan Theorem (see for
instance [9, Theorem 5.7]).

Theorem 4.1(Forster-Swan Theorem). LetA be a Noetherian ring and letM be a finitely
generatedA-module. For each prime idealp of A, define

f(p,M) := µAp(Mp) + dim(A/p).

If f is the maximum of allf(p,M) for p running over all prime ideals in the support of
M , thenM can be generated by at mostf elements.

Corollary 4.2. LetA be ad-dimensional Noetherian ring anda an ideal ofA. Letf be a
bound on the number of generators of eachaAm, wherem runs over all maximal ideals of
A. Thena can be generated by at mostmax{d + 1, f + dim A/a} elements.

Proof. Let p be an arbitrary prime ideal ofA. If a is not contained inp, thenaAp = Ap

is generated by a single element, so thatf(p, a) = 1 + dim A/p ≤ d + 1. If a ⊆ p,
thendim A/p ≤ dim A/a. Choose a maximal idealm of A, containingp. SinceaAp is a
localization ofaAm, it is generated by at mostf elements. The assertion now follows from
the Forster-Swan Theorem. �

We also need to study the behavior of Noether Normalization degrees under localization
and completion.

Proposition 4.3. LetA be a Noetherian domain with Noether Normalization degrees. For
every prime idealp of A, the Noether Normalization degree of the completionÂp of Ap is
at mosts.

Proof. Let S be a regular subring ofA such thatµS(A) = s and letq := p ∩ S. By base
change, the fiber ringAq/qAq has dimension at mosts over the residue fieldk(q). Since
Âp is a direct summand of theq-adic completion̂Aq of Aq by [9, Theorem 8.15], we get
that

dimk(q)(Âp/qÂp) ≤ dimk(q)(Âq/qÂq) = dimk(q)(Aq/qAq) ≤ s.

In particular,Âp is generated as an̂Sq-module by at mosts elements, by [9, Theorem 8.4].
SinceSq is regular, whence also its completion, we will have shown thatÂp has Noether
Normalization degree at mosts provided the natural homomorphism̂Sq → Âp is injective.
At this point, we will need the assumption thatA is a domain. By [9, Theorem 9.4], the
going-down theorem holds for the inclusionS ⊆ A. Hence,q andp have the same height
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by [9, Theorem 15.1]. Therefore, sincêSq → Âp is finite homomorphism between rings
of the same dimension witĥSq a domain, it must be injective. �

The following counterexample to the Proposition without the domain condition was
pointed out to me by a referee of an earlier version of this paper.

Example 4.4. Let A := R/(XY n, XZ)R with R := K[[X, Y, Z]] andK a field, and let
p := (Y,Z)A. One checks thatA is generated by two elements overS := K[[X −Z, Y ]],
but thatAp is an Artinian ring of lengthn + 1. In this examplep has height zero but its
contraction toS is Y S whence has height one.

Remark4.5. The theorem also holds if instead of assuming thatA is a domain, we require
that it is bi-equidimensional (meaning that all minimal primes have the same dimension
and all maximal ideals have the same height). Indeed, withS ⊆ A as above, we only need
to show thatp andq := p ∩ S have the same height, for every prime idealp of A. Let d
be the dimension ofA andh the height ofp. SinceS ⊆ A is finite,S also has dimension
d. Together with [9, Exercise 9.8], this gives the inequalitiesh = ht(p) ≤ ht(q) ≤ d. To
prove that the first inequality is an equality, we do downward induction onh, where the
cased = h trivially holds. Hence supposeh < d, so that by assumption,p is not a maximal
ideal. SinceS is universally catenary ([3, Theorem 2.1.12]), so isA, as it is finite overS.
SinceA is in particular equidimensional, any maximal chain of prime ideals between two
prime idealsp1 ⊆ p2 in A has lengthht(p2)− ht(p1). It follows that there exists a prime
idealp′ of heighth + 1 containingp. By our induction hypothesis,q′ := p′ ∩ S has height
h + 1 as well. SinceA is finite overS, there are no inclusion relations among prime ideals
in A lying over the same prime inS. It follows thatq  q′ so that the former has height at
mosth, as we wanted to show. �

Let us define theglobal typeof a moduleM over a Noetherian ringA, as the maximal
type of any localizationMm of M at a maximal idealm of A.

Theorem 4.6. Let A be ad-dimensional Noetherian ring of finite Noether Normalization
degrees. Assume thatA is either a domain or bi-equidimensional. Ifa is a height two
ideal ofA for whichA/a is Cohen-Macaulay of global typeτ , thena can be generated by
at most(τ + 1)s + d− 2 elements (except whens = τ = 1, in which case possiblyd + 1
generators are needed).

Proof. Let a be a height two Cohen-Macaulay ideal ofA. By Corollary 4.2, if we find
a boundf on the number of generators ofaAm in each localization with respect to a
maximal idealm, thena itself can be generated byf + dim A/a elements. The statement
therefore follows from Corollary 3.9, Proposition 4.3 and Remark 4.5, since we may take
f = (τ + 1)s. One just needs to observe that the given bound is at leastd and only in the
indicated cases = τ = 1 it is equal to it. �

The cases = τ = 1 means thatA is regular anda is a Gorenstein ideal, whence locally a
complete intersection. IfA is a polynomial ring over some subring, then the EE-Conjecture
proven in [10], states that we may drop the contribution off(p, a) for all minimal primes
p of A in the bound in the Forster-Swan Theorem, yielding therefore in this case the upper
boundd.

The theorem together with Theorem 1.3 yields immediately:

Corollary 4.7. LetA be a two-dimensional Noetherian domain of finite Noether Normal-
ization degrees and leta be an arbitrary ideal ofA. If A/a has global typeτ , thena can
be generated by at most(τ + 1)s + 1 elements.



ABSOLUTE BOUNDS ON THE NUMBER OF GENERATORS OF COHEN-MACAULAY IDEALS OF HEIGHT TWO 9

Proof of Theorem 1.4. If S andA denote the affine algebras ofX andY respectively,
then our assumptions imply thatS ⊆ A is finite with S regular. By definition, the degree
ε of Y → X is the maximal number of points in a closed fiber. In other words,ε is the
maximum of the dimensions

ε(m) := dimS/m(Am/mAm),

wherem runs over all maximal ideals ofS. By Nakayama’s Lemmaε(m) = µSm(Am)
and this is also equal to the minimal number of generators ofAn overSm, for any maximal
idealn of A lying overm. Therefore, ifa ⊆ A is the ideal defining the subschemeW , then
aAn is generated by at most2ε elements by Corollary 3.9. The stated bound now follows
from Corollary 4.2. �

5. THE AFFINE CASE

Affine rings, that is to say, finitely generated algebras over a field, have the property that
their Noether Normalization degree is finite. In fact, we have the following sharper result.

Theorem 5.1. For each pair(d, n), there exists a boundE(d, n) with the following prop-
erty. IfA is an affine ring of the formK[X]/(f1, . . . , fs)K[X] with K a field,X a set ofd
variables andfi polynomials of degree at mostn, then the Noether Normalization degree
of A is at mostE(d, n).

In particular, if a is a height two ideal ofA for whichA/a is Cohen-Macaulay of global
typeτ , thena can be generated by at most(τ + 1)E(d, n) + d elements.

Proof. To prove the first statement, one just needs to observe that Noether Normalization
can be carried out algorithmically from thefi. The key idea is to make a change of vari-
ables so that one of thefi becomes monic in some variable. IfK is infinite, this can be
done by a linear change of variables; in the general case, we can still control the degree of
this new equation (see [18,§A.5] for details). Assume therefore that allfi have degree at
mostn′ and thatf1 is monic inX1 of degreen′, wheren′ only depends ond andn. Hence
K[X]/f1K[X] is generated by1, X1, . . . , X

n′−1
1 overK[X2, . . . , Xd]. Let

I1 := (f1, . . . , fs)K[X] ∩K[X2, . . . , Xd]

and putA1 := K[X2, . . . , Xd]/I1. It follows thatA1 ⊆ A is a finite extension, generated
by at mostn′ elements. By [13, Theorem 2.6], the idealI1 is generated by polynomials
of degree at mostn′′, wheren′′ depends only onn′, whence only ond andn. Therefore,
by an inductive argument,A1 admits a Noether NormalizationK[Y ] ⊆ A1 generated by
at mostn′′′ elements, wheren′′′ depends only onn′′, whence only ond andn. From the
compositionK[Y ] ⊆ A1 ⊆ A we see thatA is generated as aK[Y ]-module by at most
n′′′n′′ elements, a number only depending ond andn.

To prove the second statement, it suffices to show, in view of Corollary 4.2, thataAm is
generated by at most(τ + 1)E(d, n) elements, for each maximal idealm of A (note that
A has dimension at mostd). To this end, we may first make a faithfully flat base change,
and hence assume thatK is algebraically closed. After a linear change of variables, we
may assume furthermore thatm = (X1, . . . , Xd)A. The above argument then shows that
Am has Noether Normalization degree at mostE(d, n) and hence the claim follows from
Corollary 3.9. �

Using [8] or Remark 3.11, we can give a similar estimate in the height one case:

Corollary 5.2. A height one Cohen-Macaulay ideal can be generated by at mostE(d, n)+
d elements.
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The above bound holds even uniformly in families in the following sense.

Corollary 5.3. Let s : W → V be map of finite type between schemes of finite type over
some field. There exists a boundCM(s), such that for eachx ∈ V and each codimension
two Cohen-Macaulay subschemeF of s−1(x) of global typeτ , the ideal ofF is gener-
ated by at most(τ + 1)CM(s) elements. IfF has codimension one, then at mostCM(s)
generators suffice.

Proof. Taking a finite affine covering, we may reduce to the case thatV =: Spec A and
W =: Spec B are affine, so thats corresponds to aK-algebra homomorphismA → B.
Choosefi ∈ K[X] such thatA ∼= K[X]/(f1, . . . , ft)K[X], andgi ∈ K[X, Y ] such that
B ∼= A[Y ]/(g1, . . . , gt)A[Y ], for some tuples of variablesX andY . Let d be the total
number of variables and letn be the maximal degree of thefi and thegi. If p denotes the
prime ideal ofA corresponding to the pointx ∈ V , then the coordinate ring of the fiber
s−1(x) is B ⊗A k(p), wherek(p) := Ap/pAp is the residue field ofp. It follows that
B ⊗A k(p) ∼= k(p)[X]/(g1, . . . , gt)k(p)[X]. By Theorem 5.1, the ideal ofB ⊗A k(p)
definingF is generated by at most(τ +1)E(d, n)+d elements, whereE(d, n) is as in that
Theorem. The height one case follows by a similar argument using Corollary 5.2.�

Corollary 5.4. For each pair(d, n), there exists a boundN(d, n) with the following prop-
erty. LetA be an affine ring of the formK[X]/(f1, . . . , fs)K[X] with K a field,X a set
of d variables andfi polynomials of degree at mostn. Leta be a Cohen-Macaulay ideal
of A of heighth and letτ be the global type ofA/a. If a contains a heighth − 2 ideal
I := (g1, . . . , gt)A, with thegi of degree at mostn, thena can be generated by at most
(τ + 1)N(d, n) elements. IfI has heighth− 1, then at mostN(d, n) generators suffice.

In particular, every height three ideala ofA which contains the image of a polynomial of
degree at mostn not belonging to any minimal prime ofA and for whichA/a is Gorenstein,
can be generated by at most2N(d, n) elements.

Proof. The second statement is a special case of the first, withh = 3 andτ = 1. Let A,
a andI be as in the first statement. Counting monomials of degree at mostn, one easily
sees that there is a boundN’(d, n) on the number of generators ofI, only depending ond
andn. Let B := A/I, so thatB is also a homomorphic image of a polynomial ring ind
variables by an ideal generated by polynomials of degree at mostn. By Theorem 5.1, the
height two Cohen-Macaulay idealaB is generated by at most(τ +1)E(d, n)+d elements.
Therefore,a is generated by at most(τ + 1)E(d, n) + d + N’(d, n) elements. �

Proof of Theorem 1.5. Let S := K[X1, . . . , X4] and leta ⊆ S be the one-dimensional
radical ideal definingC. By assumption, there is a degree two polynomialf ∈ a. As in
the proof of Theorem 5.1, we see thatS/fS has Noether Normalization degree2. There-
fore, a(S/fS) is locally generated by at most4 elements by Theorem 4.6, and hencea
is locally generated by at most5 elements. By [4], a grade three Gorenstein ideal in a
local ring is generated by an odd number of elements, so thatµ(aSm) is either3 or 5 for
every maximal idealm of S, and the latter case occurs except whena is locally a com-
plete intersection. SinceS is regular anda is radical,aSp is generated by3 elements for
every one-dimensional primep containinga. Hence for suchp, its contribution in the
Forster-Swan Theorem isf(p; a) = 4. Therefore,µ(a) = 5, if a is not locally a complete
intersection. On the other hand, ifa is locally a complete intersection, thenµ(a) ≤ 4 by the
EE-conjecture proven in [10]. By work of Ferrand, Boratyński and Mohan Kumar, every
locally complete intersection curve in affine space is a set-theoretic complete intersection
(see for instance [16, Corollary 1.21]). �
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Theorem 5.5. LetW be a codimension three Gorenstein subvariety in affined-space over
an infinite field. IfW lies on a degreee hypersurface, then its ideala := I(W ) is generated
by at most2e + d− 2 elements. If, moreover,W has at most isolated singularities, thena
is generated by at mostmax{2e + 1, d} elements.

Proof. As before,OH has Noether Normalization degree at moste, whereH is the degree
e hypersurface containingW . Therefore,aOH is generated by at most2e+d−3 elements
by Theorem 4.6, whencea requires at most one more generator (to wit, the defining equa-
tion of H). Suppose now thatW has at most isolated singularities. At a non-closed point
of W , the ideala is locally generated by at most3 elements, since it is a complete inter-
section at such a point. We already observed that at closed points,aOH requires at most
2e local generators, whencea requires at most2e + 1 local generators. The EE-conjecture
([10]) then yields an upper bound ofmax{2e + 1, d} global generators fora. �
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