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Abstract. We show the existence of a first order theory Cmd,e whose Noe-
therian models are precisely the local Cohen-Macaulay rings of dimension d

and multiplicity e. The completion of a model of Cmd,e is again a model and
is moreover Noetherian. If R is an equicharacteristic local Gorenstein ring of
dimension d and multiplicity e with algebraically closed residue field and if the
Artin Approximation Property holds for R, then R is an existentially closed
model in the subclass of all Noetherian models of Cmd,e. In case R is moreover

excellent, Spivakovski proved that the weaker Henselian assumption im-
plies the Artin Approximation. This suggests an alternative, model theoretic

strategy for proving Artin Approximation under the additional assumptions
that R is Gorenstein, equicharacteristic and has algebraically closed residue
field.

1. Artin Approximation

1.0.1. Artin Approximation. Artin Approximation (see 1.1 for a definition) has
proven to be a powerful and versatile tool in algebraic geometry and commutative
algebra. Its connections with model theory have been realised by several people,1

but seemingly in a rather ad hoc way. Our present paper wants to provide a (as
natural as possible) framework in which Artin Approximation can be studied by
model theoretic tools. The key observation to link Artin Approximation with model
theory is the following: a Noetherian local ring R admits the Artin Approximation

property, if and only if, it is existentially closed, as a ring, in its completion R̂.
(With the completion of a local ring we always mean its completion with respect
to the topology given by the maximal ideal). Hence it would be highly desirable
to find a first order theory T with the following two properties, where (R, m) is a
Noetherian local ring.

(I) If R is a model of the theory T , then so is its completion.
(II) If R, moreover, admits Artin Approximation, then it is an existentially closed

model of T .

The theory of rings trivially verifies (I), but in general, complete (sub)theories
will not. Hence (II) asks for narrowing down the models for it to become true
without violating (I). The requirement (II) can never hold as it stands, as an
existentially closed local ring must have an algebraically closed residue field. In

Date: 24.01.99.
1To name few: van den Dries shows in Chapter 12 of [14] how the application of Artin

Approximation by Hochster for the existence of Big Macaulay modules, can be viewed in a
model theoretic way; Robinson proposes an approach to rigid analytic quantifier elimination
through Artin Approximation; the author has used Artin Approximation in the study of etale
complexity in [13]. Yet another instance is explained in Historic Note 1.4 below.
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other words, we will have to impose further restrictions. We would like to do this
in such way that these extra conditions are not only sufficient but also necessary
conditions for the model to be existentially closed. However, we are faced with the
following unfortunate fact: any axiomatisable class of (local) rings will contain non-
Noetherian models, as soon as there is one model with a non-zero divisor. Hence
to stay within the Noetherian realm, we had to confine our attention to Artinian
local rings in [11], to obtain a manageable model theory. Of course for Artinian
local rings Artin Approximation always holds, so nothing further needs to be said
here.

The present paper seeks to generalise the results of the Artinian case to higher di-
mensions, inevitably complicating matters in light of the presence of non-Noetherian
models. Therefore the program as proposed above has to be weakened: we will no
longer insist that Artin Approximation implies existentially closedness in the class
of all models, but only that this is the case in the (non-elementary) subclass of Noe-
therian models. From the results of [11] we also learn a further necessary condition
to existentially closedness, namely the local ring has also to be Gorenstein. One
possible definition for a Noetherian local ring (R, m) to be Gorenstein, is that there
exists a regular sequence (x1, . . . , xd), such that the quotient R̄ = R/(x1, . . . , xd)
is an Artinian local Gorenstein ring. The latter means that R̄ is self-injective, or,
equivalently, that its socle AnnR̄(mR̄) is one-dimensional (over the residue field).
In particular, this implies that R is Cohen-Macaulay of dimension d. In [11] it
was also necessary for maintaining Noetherianity to bound the length of the model.
Therefore, if there is any hope to tackle the general case, we will need to bound
in some way the length of R/(x1, . . . , xd) as well. Of course, choosing a different
R-regular sequence might alter this length, but the key result 2.1 shows that for a
generic d-tuple (x1, . . . , xd) the length of R/(x1, . . . , xd) is constant. This generic
length is in fact the cohomological invariant called the multiplicity of R, derived
from the Hilbert polynomial of (the associated graded ring of) R. This result 2.1,
called here Generic Length Lemma, is probably well-known to algebraists, but as
we couldn’t find a reference for it, we included its proof.

From these observations, it should now be clear that it is necessary to bound both
the dimension and the multiplicity of the local ring. Of course, both invariants are
only well-behaved in the Noetherian case, so we need to find formulae which imply
the required bounds in case the model is Noetherian (but might very well mean
something different in the non-Noetherian case). In summary, we will describe a
theory of local rings of which the Noetherian models are precisely the d-dimensional
Cohen-Macaulay rings of multiplicity e. It is a happy consequence of the proposed
theory that even in the non-Noetherian case, the maximal ideal is finitely generated
(by at most d+e−1 elements). From this it immediately follows that the completion
of any model is Noetherian. Even more, the completion is again a model, so that
(I) is fulfilled. To accomplish the goal we had set in the beginning, we need to
restrict the possible morphisms between models: every model comes with a choice
of a generic d-tuple (a maximal regular sequence), but these choices might not be
compatible under an arbitrary morphism. It turns out that it is quite harmless to
add some constant symbols to the language which interpret the generic d-tuple and
to add a predicate for the ideal they generate. In this expanded language we now
have that also (II) is verified if we add the two extra conditions that the residue field
is algebraically closed and that the ring is also Gorenstein, as shown in Theorem
3.10, at least under the extra assumption that the ring is equicharacteristic. That
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these conditions are also necessary is very likely to be the case, but at present we
do not succeed to prove this for the Gorenstein condition. It seems also reasonable
to expect that the mixed characteristic case should hold. To prove this, one has
probably to use the theory of Witt vectors together with the techniques of §3 in
[11]. In this most general form, this results could be paraphrased as a generic
ring is Gorenstein. Compare this with Bass’s claim [3] that Gorenstein rings are
ubiquitous.

Our ultimate, but perhaps unattainable goal, was to provide an alternative proof
to Artin’s conjecture that any excellent Henselian local ring admits Artin Approx-
imation. Whence the question whether the four conditions

• with algebraically closed residue field
• Gorenstein
• Henselian
• excellent

suffice for a Noetherian local ring to be an existentially closed model of the class
of Noetherian models of the above theory. For then any such ring also admits the
Artin Approximation, settling the conjecture under some additional, but from the
point of Artin Approximation rather harmless, conditions.

1.1. Definition. Let (R, m) be a Noetherian local ring and let R̂ denote its m-adic
completion. We say that the Artin Approximation holds in R, if, for any system
of equations F = (F1, . . . , Fs), with Fi ∈ R[Y ] and Y = (Y1, . . . , YN ) and for any

c ∈ N, whenever there exists a solution ŷ ∈ R̂N , i.e., such that F (ŷ) = 0, then there

exists a solution y ∈ RN , i.e., F (y) = 0, with y ≡ ŷ mod mcR̂.

We claim that the Artin Approximation holds for R, if and only if, R is existen-

tially closed in R̂, i.e., if and only if, R ≺1 R̂. Indeed, suppose first that R ≺1 R̂
and let F , c and ŷ be as above. There exists z ∈ RN , such that ŷ ≡ z mod mc and

hence there exist âi ∈ R̂N , such that

ŷ = z +

t∑

i=1

âixi ,(1)

in R̂N and where (x1, . . . , xt) = mc. Let A = (Aij) be a set of tN new variables
and set â = (â1, . . . , ât), considered as an tN -tuple. Finally, let

Gj(Y, A) = zj − Yj +

t∑

i=1

Aijxi ,(2)

for j = 1, . . . , N , so that G(ŷ, â) = 0. Since R ≺1 R̂, there exist y ∈ Rn and
a ∈ RtN , such that F (y) = 0 and G(y, a) = 0. The latter equations imply that
y ≡ z mod mc and hence y ≡ ŷ mod mc by choice of z, as we needed to show.

Conversely, assume that the Artin Approximation holds for R. We now want to
show that any system of equations F (Y ) = 0 and inequalities G(Y ) 6= 0 over R,

with Fi, Gi ∈ R[Y ], which has a solution ŷ over R̂, has already one over R. Since

all the Gi(ŷ) 6= 0, we can find a c ∈ N such that none of the Gi(ŷ) lie in mcR̂.
By the Artin Approximation property applied to the system F = 0 and to c, there

exists y over R, such that F (y) = 0 and ŷ ≡ y mod mcR̂. The latter equivalence
implies that Gi(y) /∈ mc and hence, in particular, none of the Gi vanish at y.
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1.2. Definition. We say that the strong Artin Approximation holds in R, if given
Fi(Y ) ∈ R[Y ], with Y = (Y1, . . . , YN ) and F = (F1, . . . , Fs), and yk ∈ RN , such
that F (yk) ≡ 0 mod mk, for all k ∈ N, then, for any pair of natural numbers
c and k0, we can find y ∈ RN and k ≥ k0, such that F (y) = 0 and y ≡ yk

mod mc. We say that the solvability property holds in R, if in the above we drop
the congruence condition, i.e., given F (yk) ≡ 0 mod mk for all k, implies that there
exists a solution y ∈ RN .

If the solvability property holds in R, then so does the Artin Approximation.
Indeed, by the argument that having Artin Approximation is equivalent with being
existentially closed in its completion, we can drop the congruence condition in the
definition of Artin Approximation. Now, let F (Y ) be a finite number of polynomials

in Y = (Y1, . . . , YN ) over R having a solution ŷ ∈ R̂N . Let yk ∈ RN , such that

ŷ ≡ yk mod mkR̂, so that F (yk) ≡ mk, for all k. By the solvability property, there
exists a real solution y ∈ RN , as wanted.

1.3. Historic Note. Artin proved in [1] and [2] that the Henselisation of a polyno-
mial ring in d variables over a field or an excellent discrete valuation ring has the
Artin Approximation property.

1.4. Historic Note. In [4] the authors derived from Artin’s result, using ultraprod-
ucts, that the Henselisation of a polynomial ring in d variables over a field κ has
actually the strong Artin Approximation property. Using a compactness argument,
one sees that an equivalent condition for the strong Artin Approximation to hold,
is in the above definition to replace for all n by for some sufficiently big n, i.e.,
for some n ≥ k where k depends on the system of equations and c. They then
showed that one can take a uniform value for such k, only depending on the total
degree of F and the numbers d, N and c, when we take the F (X, Y ) ∈ κ[X, Y ],
i.e., with polynomial coefficients, where X = (X1, . . . , Xd) and Y = (Y1, . . . , YN ).
It should be observed that considering only polynomials is no restriction, since one
can always reduce to this case.

1.5. Historic Note. Artin conjectured that the Artin Approximation holds for an
arbitrary excellent Henselian local ring, and this is now claimed by Spivakovsky.

1.5.1. Informal Logic. With informal logic, we will mean a statement (possibly
over some finite tuple of variables) in a meta-mathematical language, which, in the
appropriate formal language, can be turned into a first order sentence (or formula).
In other words, it is left to the reader, if he or she wants to do so, to verify
or actually write down the exact formula. Of course, wherever there might be
some doubt about the feasibility of this, we will indicate the relevant facts. As an
illustration we give some examples of informal statements and the corresponding
formal versions, which will be used below.

Let R be a ring viewed as a structure in the language of rings (consisting of
symbols for addition, subtraction, multiplication together with constant symbols
for zero and one). An informal statement would be that

R is a local ring.

A formal rendering could be the following sentence

Loc = (∀r, s)[Nu(r) ∧ Nu(s) → Nu(r + s)](3)

where Nu(y) = (∀z)[yz 6= 1] is a formula expressing that
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y is not a unit.

In particular, if R is local, then the statement that

x lies in the maximal ideal of R,

becomes formally that Nu(x) holds. Moreover, we could say that

R is a local ring with algebraically closed residue field.

To turn this into a genuine sentence one needs to add to the sentence Loc a sentence
Rtd, one for each d ≥ 1, expressing that

any polynomial of degree d over R has a root modulo its maximal

ideal.

The formal version is

Rtd = (∀a0, . . . , ad)(∃y)[ad = 0 ∨ Nu(a0 + a1y + · · · + ady
d)] .(4)

As a last example we take the statement

R is an Artinian local ring of length at most l.

To express this formally we might use a sentence LenLessl expressing that

any chain of ideals

(a0) ⊂ (a0, a1) ⊂ · · · ⊂ (a1, . . . , al) ⊂ (a1, . . . , al+1)(5)

of length l + 1 is not proper.

Formally, this is expressed by

(∀a0, . . . , al+1)(∃y0, . . . , yl)[
∨

i<l

ai+1 = a0y0 + · · · + aiyi] .(6)

Apart from these examples, we briefly describe a reduction technique, which
allows us to make statements not only about the ring, but about any of its homo-
morphic images as well. Details can be found in Lemma 0.2 of [11]. Namely, let
P(x) be a formula in the free variables x = (x1, . . . , xm) and let a = (a1, . . . , an) be
another set of variables. Then one can construct a formula Reda P(x), in the free
variables x and a, such that, for any ideal a of R generated by n elements a1, . . . , an

and any x ∈ Rm, we have that

R |= Reda P(x) ⇐⇒ R/a |= P(x) .(7)

Therefore an informal statement

the quotient R/(a1, . . . , an) is an Artinian local ring of length at

least l

can be turned into a formal first order formula

Reda (¬LenLessl−1) .(8)

2. Generic Length

2.1. Lemma (Generic Length Lemma). Let (R, m) be a d-dimensional local Cohen-
Macaulay ring with residue field κ. Let q = (u1, . . . , us) be an m-primary ideal of
R. Let ξ = (ξij), for i = 1, . . . , d and j = 1, . . . , s, be a set of variables and define
linear forms

Li(ξ) =

s∑

j=1

ξijuj ,(9)
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for i = 1, . . . , d. Finally, let R(ξ) be the localisation of R[ξ] at the prime ideal mR[ξ]
and let aξ be the ideal of R(ξ) generated by the Li(ξ), for i = 1, . . . , d. Then the
following holds.

(i) The ideal aξ is mR(ξ)-primary. In fact, aξ is a reduction of qR(ξ). Let l be
the length of R(ξ)/aξ.

(ii) For any (d× s)-tuple a over R, the ring R/aa has length at least l, where aa

is the ideal of R generated by all the Li(a), for i = 1, . . . , d.
(iii) The multiplicity eR(q) of q is equal to l.

Moreover, there exists a dense open subset U of the affine space Ad×s
κ , such that

for all (d×s)-tuples a over R for which ā ∈ U (where ā = (āij) means the reduction
modulo m), we have that

(iv) The ideal aa is a reduction of q (and hence, in particular, {L1(a), . . . , Ld(a)}
is a system of parameters for R).

(v) The quotient R/aa has length l.

2.2. Remark. See 2.6 below for the definition of a reduction of an ideal.

Proof. The theorem is trivial for d = 0, so assume d ≥ 1. We review the proof of
Theorem 14.14 in [9] where (iv) has been proven. In there, one constructs the so
called ideal of null-forms Q of q as the collection of homogeneous forms f ∈ κ[X ],
where X = (X1, . . . , Xs), such that some (or, for that matter, any) lifting F ∈ R[X ]
of f to a homogeneous form of the same degree, say n, satisfies F (u) ∈ qnm. The
reader can check that Q(κ(ξ)[X ]) is the ideal of null-forms of qR(ξ). From this and
the proof in loc. cit., we get the existence of a dense open subset U ⊂ Ad×s

κ , such
that (iv) holds whenever ā ∈ U . Moreover, the analogous statement holds after
replacing κ by κ(ξ) and U by its base change Uξ = U ×κ κ(ξ) viewed as an open of

A
d×s
κ(ξ). Saying that U is dense is then equivalent with saying that ξ ∈ Uξ and hence

in particular, we must have that aξ is mR(ξ)-primary, proving (i).
Let us show (iii). Because R is Cohen-Macaulay, also R(ξ) is. Therefore, from

(i), we know that aξ is a parameter ideal (i.e., an ideal generated by a system of
parameters, or, equivalently, an m-primary ideal generated by d elements). There-
fore, by Theorem 17.11 in [9], we obtain that l = eR(ξ)(aξ). Since aξ is a reduction
of qR(ξ), we have by Theorem 14.13 in [9] that

eR(ξ)(aξ) = eR(ξ)(qR(ξ)) .(10)

On the other hand, one easily calculates that eR(q) = eR(ξ)(qR(ξ)), see for instance
the remark following Theorem 14.14 in [9]. Hence we proved (iii). To prove (v),
take any a such that (iv) holds for aa. Since aa is then generated by a system of
parameters and is a reduction of q, we have, by loc. cit., that

ℓ(R/aa) = eR(aa) = eR(q) = l ,(11)

proving (v).
Remains to prove (ii). There is nothing to prove if ℓ(R/aa) = ∞. Hence assume

that R/aa has finite length, so that {L1(a), . . . , Ld(a)} is a system of parameters
for R. Therefore, by loc. cit., ℓ(R/aa) = eR(aa). Since aa ⊂ q, we have by Formula
14.4 in [9] that eR(aa) ≥ eR(q) = l.



ARTIN APPROXIMATION VIA THE MODEL THEORY OF COHEN-MACAULAY RINGS 7

2.3. Corollary. Let (R, m) be a d-dimensional local Cohen Macaulay ring. Let q

be a m-primary ideal of R. Then

eR(q) = min
a1,...,ad∈q

ℓ(R/(a1, . . . , ad)) .(12)

Proof. Immediate from Lemma 2.1.

2.4. Corollary. Let (R, m) be a d-dimensional local Cohen Macaulay ring. Let q

be an m-primary ideal of R. Then ℓ(R/q) ≤ eR(q).

Proof. (See also Theorem 17.11 in [9]). With notation as in Lemma 2.1, we
have that ℓ(R/q) = ℓ(R(ξ)/qR(ξ)). Since aξ ⊂ qR(ξ), we have ℓ(R(ξ)/qR(ξ)) ≤
ℓ(R(ξ)/aξ) = eR(q), where the last equality follows from Lemma 2.1.

2.5. Corollary. Let (R, m) be a d-dimensional local Cohen Macaulay ring. Fix
some positive numbers s and e. Then there exists a first order formula Multe(x),
in the free variables x = (x1, . . . , xs), such that for each m-primary ideal q =
(u1, . . . , us) generated by s elements, q has multiplicity e, if and only if, Multe(u)
holds in R, where u = (u1, . . . , us).

Proof. Let Mlte(u) be the sentence expressing the following (informal) fact that

for any choice of elements y = (yij) in R, with i = 1, . . . , d and j =
1, . . . , s, the quotient of R by the ideal generated by the Li(u, y) =∑

j yijuj, for i = 1, . . . , d, has length at least e.

In view of Corollary 2.3, we have that Mlte(u) holds in R, if and only if, the ideal
(u1, . . . , us) has multiplicity at least e. The wanted formula Multe(u) therefore says
that Mlte(u) holds , but not Mlte+1(u).

2.6. Definition. The Generic Length Lemma suggests another invariant associ-
ated to a d-dimensional Noetherian local ring (R, m). Recall that an m-primary
ideal q is called a reduction of m, if there exists some r ∈ N, such that

mr+1 = qmr .(13)

Note that if (13) holds for a value r0 then it holds in fact for all r ≥ r0. Let us call
the smallest value of r for which (13) holds the reduction number of q. We set the
reduction number equal to ∞ if q is not a reduction of m.

From Lemma 2.1 it follows that a generic d-tuple in m generates a reduction of
m. The next theorem shows that its reduction number is generically constant.

2.7. Theorem. Let (R, m) be a d-dimensional local Cohen-Macaulay ring with
residue field κ. Let s be the embedding dimension of R, i.e., the minimal number
of generators of m. There exists a number r ∈ N and a dense open subset W of
κd×s, such that for all (d × s)-tuples a over R for which ā ∈ W (where ā = (āij)
means the reduction modulo m), we have that the ideal aa as in Lemma 2.1 is a
reduction of m with reduction number r.

Proof. We keep the notation from Lemma 2.1. In particular, the ideal aξ in R(ξ) is
a reduction of mR(ξ). Let r be its reduction number. From the proof of Theorem
14.14 in [9], it follows that r is the smallest value for which

(X1, . . . , Xs)
r+1κ(ξ)[X ] ⊂ (Q, L1(ξ), . . . , Ld(ξ))κ(ξ)[X ] .(14)
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From the same proof, it follows that for each n, there exists a system of equations
p1n(ξ) = · · · = psn(ξ), such that a point ā ∈ Ad×s

κ does not satisfy this system (i.e.,
some pin(ā) 6= 0), if and only if,

(X1, . . . , Xs)
n ⊂ (Q, L1(ā), . . . , Ld(ā))κ[X ] .(15)

In particular, since r is the smallest value for which (14) holds, we must have that
all pir are identical zero but some pi,r+1 is not. This means that for every ā ∈ Ad×s

κ ,
we have that (15) does not hold for n = r and hence that the reduction number
of aa is at least r. Moreover, if one of the pi,r+1(ā) 6= 0, then aa has reduction
number r. Hence the pi,r+1 define a dense open set on which the reduction number
is constant, as required.

2.8. Definition. Let (R, m) be a local Cohen-Macaulay ring. We define the re-
duction number of R to be the generic value r for a reduction of m as given by
Theorem 2.7. It follows from Theorem 2.7 that it is the reduction number of aξ in
R(ξ).

3. Cohen Macaulay Rings of Fixed Dimension and Multiplicity

3.1. Theorem. For any pair of positive integers d and e, there exists a first order
theory Cmd,e, such that a Noetherian local ring is a model of this theory, if and only
if, it is Cohen-Macaulay of dimension d and multiplicity e.

3.2. Remark. The multiplicity of a local ring is by definition the multiplicity of its
maximal ideal.

Proof. Let us first briefly show how to construct a formula expressing that the
sequence (x1, . . . , xd) is R-regular, where R is some local ring. It is clear how to
express that

the element x1 lies in the maximal ideal and is R-regular.

Hence to express that x = (x1, . . . , xd) is R-regular, we need to express that

(x1, . . . , xd−1) is R-regular and xd is R/(x1, . . . , xd−1)-regular.

This can easily be achieved by induction on the length of a sequence and the re-
duction technique described in (7). The theory Cmd,e is then given by the following
informal axioms; use (3) and (8) to make these axioms formal.

(vi) R is local.
(vii) For each ideal a ⊂ m generated by d elements, the quotient R/a has length

at least e, but no such ideal exists with smaller length.
(viii) R admits a regular sequence of length d.

Indeed, let R be a model of Cmd,e which is moreover Noetherian. First of all, R
is local. Let m be its maximal ideal. From the dimension theory for local rings
(see for instance Theorem 13.4 in [9]) it follows from (vii) that R has dimension
at most d. On the other hand, from (viii) its depth is at least d, showing that
R is Cohen-Macaulay of dimension d, as depth can never exceed dimension. As in
Corollary 2.5, the multiplicity of R is then e. Conversely, any d-dimensional local
Cohen-Macaulay ring of multiplicity e is a model of Cmd,e.

3.3. Remark. Note that any model of Cmd,e is a local ring with maximal ideal
generated by at most d + e − 1 elements. Indeed, there exists a tuple (x1, . . . , xd),
such that R/(x1, . . . , xd) has length e and whence the latter Artinian ring has
embedding dimension at most e − 1. As a consequence we see that any power
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mn admits a minimal set of generators (apply Nakayama’s Lemma to the finite
R-module mn).

3.4. Lemma. Let R be a local ring with finitely generated maximal ideal m and

let a be an arbitrary ideal of R. Let R̂ denote the completion of R. Then R̂ is
Noetherian and we have an isomorphism

(̂R/a) ∼= R̂/aR̂ .(16)

Proof. The first statement is well-known, see for instance Theorem 29.4 in [9].

Hence R̂/aR̂ is also a complete Noetherian local ring and it is now an easy exercise
to prove that it must be the completion of R/a.

3.5. Proposition. Let (R, m) be a model of Cmd,e and let R̂ denote the completion

of R. Then R̂ is a Noetherian model of Cmd,e, i.e., R̂ is a Cohen-Macaulay local
ring of dimension d and multiplicity e.

Proof. By Lemma 3.4, we know already that R̂ is a Noetherian local ring (generated
by at most s ≤ d + e− 1 elements). Let (µ1, . . . , µd) be an R-regular sequence of R

and let g = (µ1, . . . , µd) be the ideal generated by this sequence. Since R/g ∼= R̂/gR̂
by Lemma 3.4, (taking into account that R/g is Artinian whence automatically

complete), we have that ℓ(R̂/gR̂) = e. Assume that we have already shown that

(µ1, . . . , µd) is also R̂-regular, proving that R̂ is a Noetherian complete Cohen-

Macaulay ring of dimension d. Let ê be the multiplicity of R̂, so that by Lemma

2.1, we must have that ê ≤ e, since R̂/gR̂ has length e. Also, by loc. cit., there
exists a dense open subset U ⊂ κd×s, where κ is the residue field of R, such that

for any â ∈ R̂d×s, whenever the residue of â in κd×s lies in U , then R̂/aba has length
exactly ê (notation as in loc. cit., with q = m).

Let us first assume that κ is infinite, so that U is in fact non-empty. Hence there

exists an a ∈ Rd×s, such that its residue belongs to U and therefore R̂/aaR̂ has

length ê. By Lemma 3.4, the latter is isomorphic with the completion ̂(R/aa) of

R/aa. In particular, ̂(R/aa) is Artinian and it is not too hard to verify that then the

canonical map R/aa → ̂(R/aa) must be surjective. We claim that then also R/aa

is Artinian and hence isomorphic to ̂(R/aa). Indeed, from the above mentioned
surjectivity, it follows that there is some t, such that

mt ⊂ aa +
⋂

n

mn .(17)

Let M = aa + mt, so that M = aa + mM . We know that m is finitely generated
and clearly also aa is, so that M is finitely generated. Therefore, by Nakayama’s
Lemma, we conclude that M = aa, i.e., that mt ⊂ aa, proving that R/aa has a
nilpotent and finitely generated maximal ideal whence is Artinian. In summary, we

proved that R̂/aaR̂ ∼= R/a and the latter has length at least e by (ii) of Lemma
2.1, so that ê ≥ e. Therefore ê = e, as we wanted to show.

If κ is finite, then we can replace R by R(Y ), where Y is some variable and show
that, for an arbitrary local ring S, we have that S(Y ) is a model of Cmd,e, if and
only if,

̂(S(Y )) ∼= Ŝ(Y ) .(18)
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Therefore, we will be finished, once we show that (µ1, . . . , µd) is R̂-regular. First

of all, note that R/µ1R is a model of Cmd−1,e. Since ̂(R/µ1R) ∼= R̂/µ1R̂, by Lemma
3.4, we therefore can reduce by an inductive argument to showing that µ = µ1 is

R̂-regular. Let y ∈ R̂, such that µy = 0. Let yn ∈ R, such that y ≡ yn mod mnR̂,

for n = 1, 2, . . . . Hence µyn ∈ mnR̂ ∩ R = mn, since R/mn ∼= R̂/mnR̂, by another
application of Lemma 3.4. Since me ⊂ g, we have that µyen ∈ gn. Since µ is in
particular R-quasi-regular, we must have that yen ∈ gn−1, for n = 1, 2, . . . . But
then

y ∈
⋂

n

mnR̂ = 0 ,(19)

since the yn converge to y.

3.6. Definition. In order to obtain a ∀2-theory with the same Noetherian models
as Cmd,e, we have to take an expansion of the ring language. Recall that an algebraic
characterisation of a ∀2-theory is that the class of its models is σ-persistent, which
means that the union of a chain of models is again a model. Let L be the language
of rings with d extra constant symbols µ1, . . . , µd and one extra unary predicate
IdIdId. The interpretation of the µi in a model of Cmd,e will be an R-regular sequence
(µ1, . . . , µd) with ℓ(R/(µ1, . . . , µd)) = e and IdIdId will define the ideal they generate.
We define the L-theory Cm+

d,e as the theory obtained by adding to Cmd,e two extra
axioms

(ix) (µ1, . . . , µd) is an R-regular sequence and R/(µ1, . . . , µd) has length e
(x) an element x ∈ R satisfies IdIdId, if and only if, it lies in the ideal generated by

(µ1, . . . , µd).

As the reader can see, we have identified the symbols for the constants µi with
their actual interpretation in a model. There will be little chance for confusion,
as we do not intend to equip the same ring with different interpretations of the
constants. If we want to emphasise the ideal generated by the regular sequence, we
will write (R, m, g) for a model of Cm+

d,e where g = (µ1, . . . , µd). The only reason

for adding an extra predicate IdIdId is to ensure that if (R, m, g) is a substructure of
(S, n, h), then g = h ∩ R.

3.7. Theorem. A Noetherian ring is a (reduct of a) model of Cm+
d,e, if and only

if, it is a d-dimensional local Cohen-Macaulay ring of multiplicity e. The theory
Cm+

d,e is a ∀2-theory. Any extension between Noetherian models of Cm+
d,e is local

and strict.

3.8. Remark. A morphism ϕA → B of topological rings is called strict if the canon-
ical isomorphism A/ker(ϕ) ∼= ϕ(A) is a homeomorphism, where the former ring is
provided with the quotient topology and the latter with the topology inherited from
B. Translated to an embedding of local rings (R, m) →֒ (S, n) (taken with their
maximal adic topology) this amounts in saying that the m-adic topology on R coin-
cides with the topology given by the ideals nk∩R. In fact, we will show the stronger
statement that mS is n-primary. A property of strict maps that will be essential to
us is that the completion of a strict monomorphism is again a monomorphism by
Corollary 1.1.9.6 in [5].

Proof. The first claim is easy to check, using Theorem 3.1. Next, let us prove the
last claim in the stronger form that mS is n-primary as explained in Remark 3.8.
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Indeed, firstly, since me ⊂ g and gS = h ⊂ n, we see that R → S is local. Next,
since ne ⊂ h and h = gS ⊂ mS, this is now immediate. To prove the second claim,
we will show that the class of models of Cm+

d,e is σ-persistent. Let (Rj , mj , gj) be

an increasing chain of models of Cm+
d,e and let R be their union. Since Loc is ∀2

(or by direct verification), it follows that R is a local ring with maximal ideal m

equal to the union of the mj. It is clear that IdIdId defines the ideal generated by µ
in R and whence is equal to the union of the gj . Therefore, the Rj/gj form an
ascending chain of Artinian local rings of length e with union equal to R/g. It
follows then from Remark 1.4 in [11] (which states that the class of Artinian local
rings of length at most e is σ-persistent) that the latter has also length e. One
verifies that (µ1, . . . , µd) is R-regular. Hence the only thing remaining to show is
that ℓ(R/(a1, . . . , ad)) ≥ e, for any tuple (a1, . . . , ad) in R.

We claim that for each n, there exists a Jn ∈ N, such that for j ≥ Jn, we have
that

mn
j = mn ∩ Rj .(20)

We prove this by induction on n, the case n = 1 being clear as the maximal ideal
of R is generated by at most d + e − 1 elements, which already belong to Rj for
j ≫ 0. Hence assume (20) proven for n and we want to show its validity for n + 1.
Let y1, . . . , yk be a minimal system of generators for mn, which exist by Remark
3.3, and choose Jn+1 ≥ Jn big enough so that y1, . . . , yk ∈ Rj , for j ≥ Jn+1. Let
s ∈ mn+1 ∩Rj , so that we can write s =

∑
aiyi with ai ∈ m. By induction, s ∈ mn

j

and we can find bi ∈ Rj , such that s =
∑

i biyi. Comparing both representations
of s, we obtain that

k∑

i=1

(ai − bi)yi = 0(21)

in R. By minimality, we therefore have that ai − bi ∈ m, and whence bi ∈ m∩Rj =
mj, as required. This proves our claim. As a consequence we get for each n, that

Rj/mn
j ⊂ Rj+1/mn

j+1 ⊂ · · · ⊂ R/mn ,(22)

for j ≥ Jn. In particular, using Remark 1.4 in [11] again, we obtain that

ℓ(Rj/mn
j ) = ℓ(R/mn) .(23)

Our next goal is to show that (23) holds in a uniform way. More precisely, we will
show that there exists J ∈ N, such that for all j ≥ J and for n ≥ d+e, we have that

(23) holds. Firstly, let R̂j be the completion of Rj , which by Proposition 3.5 is again
a model. Since each extension Rj ⊂ Rj+1 is strict by above, the corresponding

morphism R̂j → R̂j+1 is also injective by Remark 3.8. From Proposition 3.5 it

follows that R̂j is Noetherian. By the Hilbert-Samuel theory, there exists for each
j a polynomial Pj in one variable, of degree less than d, such that for all n ≫ 0,
we have

ℓ(Rj/mn
j ) =

e

d!
nd + Pj(n) ,(24)

taking into account that Rj/mn
j
∼= R̂j/mn

j R̂j . In fact, using Theorem 4.3.5, Corol-

lary 3.6.14 and the remark after 3.6.19 in [6], this holds already for all n > e.
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Therefore, take J ≥ Je+1, . . . , Jd+e, so that for j, k ≥ J , we have by (23) and (24)
that

Pj(e + i) = Pk(e + i) ,(25)

for all i = 1, . . . , d. As two polynomials of degree less than d which agree on d
values must be identical, we conclude the proclaimed uniform version of (23).

For the same reason, the completion R̂ is Noetherian and in fact Cohen-Macaulay

of dimension d, as (µ1, . . . , µd) remains R̂-regular (by an argument similar to the
one in the proof of Proposition 3.5). We compute its multiplicity by means of the
well-known formula

eR(m) = lim
n→∞

d!

nd
ℓ(R/mn) ,(26)

where we used again that R/mn ∼= R̂/mnR̂. The same formula, for (R, m) replaced

by (Rj , mj) equals e, since the R̂j have multiplicity e by Proposition 3.5. Both
quantities are though the same in view of the uniform version of (23). In other

words, we showed that R̂ has multiplicity e. In particular, for any tuple (a1, . . . , ad)

in R, we have that R̂/(a1, . . . , ad)R̂ has length at least e. By Lemma 3.4, this
quotient is isomorphic with the completion of R/(a1, . . . , ad). Either the length
of the latter is infinite and there is nothing to prove, or, it has finite length and
therefore is equal to its own completion, that is to say

R/(a1, . . . , ad) ∼= R̂/(a1, . . . , ad)R̂(27)

has length at least e, as required.

3.9. Remark. The above proof tells us that any model (R, m, g) of Cm+
d,e has a

Hilbert-Samuel polynomial, i.e., that there exists a polynomial χR(Y ) of degree d,
such that for all n > e, we have that

ℓ(R/mn) = χR(n) ,(28)

and, moreover, its leading coefficient is e/d!. In particular, e can be calculated by
the limit in (26). Any chain of models has an eventually constant Hilbert-Samuel
polynomial.

3.10. Theorem. Let (R, m, g) be an equicharacteristic Noetherian model of Cm+
d,e.

Suppose that

(xi) the residue field κ is algebraically closed,
(xii) R is Gorenstein,

(xiii) the Artin Approximation Property holds for R,

then R is an existentially closed model in the class of all Noetherian models of
Cm+

d,e.

Proof. Let (S, n, h) be an extension of R in Cm+
d,e and let ϕ be an ∃1-sentence

(in the language L) with parameters from R, holding true in S. Without loss of
generality, we may assume that S is even complete, using Proposition 3.5. Hence
S contains its own residue field λ, by Cohen’s Structure Theorem. Suppose first
that R is also complete, so that it contains κ. Note that g is m-primary, and hence
R (and S) is even g-adically complete. Since R/g ⊂ S/gS and since both rings
have length e with the former being moreover Gorenstein, we have by Theorem
2.3 in [11] that R/g ⊗κ λ ∼= S/gS. By Cohen’s structure theorem for complete
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Noetherian local rings, we can write R = κ[[Y ]]/I, where I is some ideal in κ[[Y ]].

Let R̃ = λ[[Y ]]/Iλ[[Y ]], so that we proved that R̃/gR̃ ∼= S/gS. Moreover, one

can easily make S into an R̃-algebra, as λ is contained in S and S is complete.
From Theorem 8.4 in [9], we then conclude that also R̃ ∼= S. Using the infinite
dimensional L-variant of Proposition 2.4 in [11], we obtain that ϕ holds in R, as
we wanted to show.

For the general case that R is not complete but has only the Artin Approxima-

tion property, let R̂ denote its completion, which by Proposition 3.5 belongs again
to Cmd,e. The latter embeds in S since we assumed S to be complete and any com-
pletion of a strict monomorphism is again a monomorphism by Corollary 1.1.9.6 in

[5], where we have used Theorem 3.7. As R/g ∼= R̂/gR̂ by Lemma 3.4 and using

Exercise 18.1 in [9], we obtain that R̂ is Gorenstein. By above, R̂ is an existen-
tially closed model of Cmd,e and hence ϕ holds true in it. Let ϕ = (∃~x)χ(~x), with
χ quantifier free. Analysing the structure of the possible quantifier free formulae
in L, we see that we may take χ as a disjunction of a conjunction of formulae of
the form F (x) = 0 or ¬IdIdId(F (x)), where F (X) is some polynomial over R. Hence,
without loss of generality, we assume that χ is of the form

F1(x) = · · · = Fm(x) = 0 ∧ G1(x), . . . , Gn(x) /∈ g .(29)

Let x̂ be a solution of (29) in R̂. By completeness, there exist ri ∈ R\g and ŝij ∈ R̂,
such that

Gi(x̂) = ri +

d∑

j=1

ŝijµj ,(30)

for all i = 1, . . . , n. Let Hi(X, Y ) = Gi(X) + ri +
∑

j Yijµj , so that the system

F = H = 0, where F = (F1, . . . , Fm) and H = (H1, . . . , Hn), has a solution (x̂, ŝ)

over R̂, where ŝ = (ŝij)i,j . By Artin Approximation, we therefore have already a
solution (x, s) over R. This simply means that χ(x) holds in R, as we wanted to
show.

3.11. Remark. In fact, if R satisfies the assumption of the theorem, then R is even
existentially closed in the class of all separated models. Moreover, if S is any model
of Cm+

d,e extending R, then every ∃+-sentence over R which holds in S, already
holds in R.

3.12. Remark. By Spivakovski’s theorem, the Artin Approximation property fol-
lows from the Henselian property, provided R is excellent. If one would succeed
in giving a proof of the above theorem replacing the Artin Approximation by the
Henselian property, one would obtain a new proof of Spivakovski’s result, un-
der the additional assumptions that R is equicharacteristic and Gorenstein, with
algebraically closed residue field.

3.13. Remark. Most likely, the converse also holds, i.e., (xi)–(xiii) hold in any
existentially closed model in the class of Noetherian models of Cm+

d,e. For d = 0, it

follows from [11]. For general d, this is immediate for (xiii) and easy for (xi).
In [11] we were able to drop the equicharacteristic condition in the zero-dimensional

case. Again it is very likely that we can also do this in the present situation. Prob-
ably one needs to use the theory of Witt vectors together with the techniques of
loc. cit.
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In Definition 1.2 we said that a local ring R has the solvability property, if
whenever a polynomial system of equations has a solution modulo every power of
the maximal ideal, then the system has a solution in R. We then observed that the
solvability property implies Artin Approximation. Our last theorem states that the
converse holds in the equicharacteristic case when the residue field is algebraically
closed.

3.14. Theorem. Let (R, m) be an equicharacteristic Noetherian local ring with
algebraically closed residue field. The Artin Approximation holds for R, if and only
if, the solvability property holds.

Proof. We only need show the only if part. Firstly, it suffices to prove the theorem
only for complete rings. Indeed, assuming the theorem proven for complete rings,

let R̂ be the completion of R. Let Fi(Y ) ∈ R[Y ], with i = 1, . . . , m and Y =
(Y1, . . . , YN ) such that there exist, for each k ∈ N, a tuple yk ∈ RN with Fi(yk) ≡ 0

mod mk. By our assumption, we can find a solution ŷ ∈ R̂N , i.e., F (ŷ) = 0. Using
Artin Approximation, it then follows that there exists y ∈ RN , such that F (y) = 0,
as required.

So assume that R is moreover complete. It is easy to check that if the solvability
property holds for a ring R, then it holds for each of its homomorphic images as
well. Therefore, it suffices to prove the solvability property for a regular complete
local ring, in view of Theorem 29.4 in [9]. Hence we may assume that R is moreover
regular, so its multiplicity is 1. Let d be its dimension. Let U be a non-principal
ultrafilter on N and let R∗ denote the ultrapower of R with respect to this ultrafilter.
View R as a model of Cm+

d,1. By  Los’ Theorem, R∗ is also a model of Cm+
d,1. Let S

be the completion of R∗, so that by Proposition 3.5 also S is a model of Cm+
d,1. With

F and yi = (ti,1, . . . , ti,N as above, let t∗j = [(ti,j)i] be the image of the sequence

(ti,j)i in R∗, for j = 1, . . . , N , and let y∗ = (t∗1, . . . , t
∗

N ). By our hypothesis we have
that

Fi(y
∗) ∈

⋂

n

mnR∗(31)

and hence Fi(y
∗) = 0 in S. Since R ⊂ R∗ and R is Noetherian, we have that R ⊂ S.

As R is an existentially closed model of the class of Noetherian models of Cm+
d,e by

Theorem 3.10, we can find y ∈ RN , such that Fi(y) = 0, for all i = 1, . . . , m.

3.15. Remark. One can give a more direct proof in the equicharacteristic case, by
showing that κ[[X ]] ≺1 λ[[X ]], for κ uncountable and algebraically closed together
with the fact that the completion of the ultrapower of κ[[X ]] is isomorphic to
κ∗[[X ]]. However, if we could generalise Theorem 3.10 to the unequal character-
istic case, then the above proof would remain valid. I do not know of any direct
argument, avoiding the extension of Theorem 3.10, in the unequal characteristic
case.
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