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Abstract

Let R be an excellent local domain of positive characteristic with residue fieldk and let
R+ be its absolute integral closure. IfTorR

1 (R+, k) vanishes, thenR is weakly F-regular.
If R has at most an isolated singularity or has dimension at most two, thenR is regular.
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1 Introduction

Recall that theabsolute integral closureA+ is defined for an arbitrary domainA
as the integral closure ofA inside an algebraic closure of the field of fractions of
A. A key property of the absolute integral closure was discovered by Hochster and
Huneke (1992): forR an excellent local domain of positive characteristic,R+ is
a balanced big Cohen-Macaulay algebra, that is to say, any system of parameters
on R is anR+-regular sequence. It is well-known that this implies that an excel-
lent local domainR of positive characteristic is regular if, and only if,R → R+ is
flat. Indeed, the direct implication follows sinceR+ is a balanced big Cohen-Mac-
aulay algebra of finite projective dimension (use for instance (Schoutens, 2003b,
Theorem IV.1)) and the converse follows sinceR → R+ andR1/p → R+ are iso-
morphic whence both faithfully flat, implying thatR → R1/p is flat, and therefore,
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by Kunz’s Theorem, thatR is regular (hereR1/p denotes the extension ofR ob-
tained by adding allp-th roots of element ofR; for more details see (Huneke, 1996,
Theorem 9.1 and Exercise 8.8)).

Huneke (1996, Exercise 8.8) points out that it is not known whether the weaker
condition that allBetti numbersof R+ vanish, that is to say, that allTorR

n (R+, k)
vanish forn ≥ 1, already implies thatR is regular. It is not hard to see, using that
R+ is a big Cohen-Macaulay algebra, that this is equivalent with requiring that only
TorR

1 (R+, k) vanishes. The main result of this paper is then the following positive
solution for isolated singularities.

Theorem 1.1 Let (R,m) be an excellent local domain of positive characteristic
with residue fieldk. SupposeR has either an isolated singularity or has dimension
at most two. IfTorR

1 (R+, k) = 0, thenR is regular.

For arbitrary domains, we obtain at least the following.

Theorem 1.2 Let (R,m) be an excellent local domain of positive characteristic
with residue fieldk. If TorR

1 (R+, k) = 0, thenR is weakly F-regular. In particular,
R is normal, Cohen-Macaulay, pseudo-rational and any finite extension ofR is
split (i.e.,R is asplinter).

We have some more precise information on the vanishing of certainTor’s in terms
of the singular locus ofR.

Theorem 1.3 Let (R,m) be an excellent local domain of positive characteristic
and leta be an ideal defining the singular locus ofR (e.g.,a is theJacobianof
R). If TorR

1 (R+, k) = 0, wherek is the residue field ofR, thenTorR
n (R+, M) = 0

for all n ≥ 1 and all finitely generatedR-modulesM for whichM/aM has finite
length.

The key observation in obtaining all these results, is that, in general, the vanishing
of TorR

1 (S, k) implies thatR → S is cyclically pure(or ideal-pure), meaning that
IS ∩ R = I, for all idealsI of R. This is explained in Section 2. To prove The-
orem 1.1, we need a result from (Schoutens, 2003b): if the first Betti number of a
module over an isolated singularity vanishes, then the module has finite projective
dimension. Now, the argument which proofs thatR → R+ is flat whenR is regular,
yields the same conclusion under the weaker assumption thatR+ has finite projec-
tive dimension. This proves also the two-dimensional case, since we know already
thatR is normal.

Balanced big Cohen-Macaulay algebras in characteristic zero exist by the work of
Hochster-Huneke, basically by a lifting procedure due to Hochster. However, the
balanced big Cohen-Macaulay algebras obtained in (Hochster and Huneke, 1992)
are not canonically defined. In (Schoutens, 2003a), I give an alternative but canon-
ical constructionB(R) of a balanced big Cohen-Macaulay algebra for aC-affine
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local domainR using ultraproducts and the absolute integral closure in positive
characteristic. It follows from the present results that ifTorR

1 (B(R), k) = 0, where
k is the residue field ofR, thenR is regular providedR has an isolated singularity
or has dimension at most two (moreover,without these additional assumptions,R
has at most rational singularities). This is the more interesting because it is not clear
whether in general flatness ofR → B(R) implies regularity ofR. For a further gen-
eralization to arbitrary excellent local domains, see the forthcoming Aschenbrenner
and Schoutens (2003).
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2 Vanishing of Betti numbers and cyclic purity

We derive a simple criterion for a local ring homomorphism to be cyclically pure.
We start with an easy lemma, the proof of which is included for sake of complete-
ness.

Lemma 2.1 Let A be a ring,a an ideal inA and M and N two A-modules. If
aN = 0 andTorA

1 (M, N) = 0, thenTor
A/a
1 (M/aM, N) = 0.

PROOF. One can derive this by aid of spectral sequences, but the following argu-
ment is more direct. Put̄A := A/a. SinceN is anĀ-module, we can choose an
exact sequence of̄A-modules

0 → H̄ → F̄ → N → 0

with F̄ a freeĀ-module. Tensoring with thēA-moduleM̄ := M/aM , we get an
exact sequence

0 → TorĀ
1 (M̄,N) → M̄ ⊗Ā H̄ → M̄ ⊗Ā F̄ .

Since the last two modules are equal toM⊗AH̄ andM⊗A F̄ respectively and since
TorA

1 (M, N) = 0, the last morphism in this exact sequence is injective. Therefore,
TorĀ

1 (M̄,N) = 0, as required. 2

Theorem 2.2 Let (R,m) be a Noetherian local ring with residue fieldk and let
S be an arbitraryR-algebra. If TorR

1 (S, k) = 0 and mS 6= S, thenR → S is
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cyclically pure. Moreover, ifn is anm-primary ideal, then

(n :R I)S = (nS :S IS)

for every idealI in R.

PROOF. SinceTorR
1 (S, k) vanishes, so doesTor

R/n
1 (S/nS, k) by Lemma 2.1, for

everym-primary idealn. By the Local Flatness Criterion (see (Matsumura, 1986,
Theorem 22.3)) applied to the Artinian local ringR/n, the base changeR/n →
S/nS is flat, whence faithfully flat, sincemS 6= S. In particular, this base change
is injective, showing thatnS ∩ R = n. Since every ideal is the intersection of
m-primary ideals by Krull’s Intersection Theorem, the assertion follows.

The final assertion follows from the flatness ofR/n → S/nS (use for instance
(Matsumura, 1986, Theorem 7.4)).2

Remark 2.3 Note that with notation from the Theorem, we have that the induced
map of affine schemesSpec S → Spec R is surjective, since thefiber ringsSp/pSp

are non-zero.

The following lemma shows that for a local Cohen-Macaulay ring, the vanishing
of some Betti number of a big Cohen-Macaulay algebra is equivalent with the van-
ishing of all of its Betti numbers.

Lemma 2.4 If (R,m) is a local Cohen-Macaulay ring with residue fieldk and if
S is a big Cohen-MacaulayR-algebra, such thatTorR

j (S, k) = 0 for somej ≥ 1,
thenTorR

n (S, k) = 0, for all n ≥ 1.

PROOF. Let x be a maximalR-regular sequence which is alsoS-regular. Put
I := xR. SinceTorR

j (S, k) vanishes, so doesTor
R/I
j (S/IS, k) by (Matsumura,

1986, Lemma 2, p.140), so thatS/IS has finite flat dimension overR/I by the Lo-
cal Flatness Criterion. However, since the finitistic weak dimension is at most the
dimension of a ring by (Auslander and Buchsbaum, 1958, Theorem 2.4), it follows
thatS/IS is flat overR/I. Therefore,0 = TorR/I

n (S/IS, k) = TorR
n (S, k), for all

n ≥ 1. 2

Therefore, below, we may replace everywhere the condition thatTorR
1 (S, k) = 0

by the weaker condition that someTorR
j (S, k) = 0, provided we also assume that

R is Cohen-Macaulay. In fact, ifj is either1 or 2, we do not need to assume thatR
is Cohen-Macaulay, since this then holds automatically.

4



Proposition 2.5 If (R,m) is a Noetherian local ring with residue fieldk and if
S is a big Cohen-MacaulayR-algebra, such that eitherTorR

1 (S, k) or TorR
2 (S, k)

vanishes, thenR is Cohen-Macaulay.

PROOF. I claim thatIS ∩R = I, for some parameter idealI of R. By a standard
argument, it then follows thatR is Cohen-Macaulay (see for instance the argument
in (Schoutens, 2003a, Theorem 4.2)). Forj = 1, we can use Lemma 2.1 to con-
clude thatTor

R/I
1 (S/IS, k) = 0, so that by the argument above,R/I → S/IS is

faithfully flat. Forj = 2, we reason as follows. Let

0 → M → F → S → 0

be a short exact sequence withF free. It follows thatTorR
1 (M, k) is equal to

TorR
2 (S, k), whence is zero. Therefore, by the same argument as before,M/IM

is flat overR/I. On the other hand, since we may chooseI so that it is generated
by anS-regular sequence, we get thatTorR

1 (S, R/I) = 0 (indeed, the canonical
morphismI ⊗ M → IM is easily seen to be injective). Hence we get an exact
sequence

0 → M/IM → F/IF → S/IS → 0

showing thatS/IS has finite flat dimension, whence is flat, sinceR/I is Ar-
tinian. 2

Is there a counterexample in which someTorR
j (S, k) vanishes for some big Cohen-

Macaulay algebraS and somej > 2, withoutR being Cohen-Macaulay?

3 Proofs

Recall that an excellent local ring of positive characteristic is calledF-rational, if
some ideal generated by a system of parameters is tightly closed, andweakly F-
regular, if every ideal is tightly closed. It is well-known that for excellent local
rings, weakly F-regular implies splinter, and F-rational implies Cohen-Macaulay
and normal ((Huneke, 1996, Theorem 4.2)). By (Smith, 1997, Theorem 3.1), an
F-rational ring is pseudo-rational.

Proof of Theorem 1.2

SupposeR is as in the statement of the theorem, so that in particuarTorR
1 (R+, k)

vanishes. By Theorem 2.2, the embeddingR → R+ is cyclically pure. In order to
show thatR is weakly F-regular, it suffices to show by (Huneke, 1996, Theorem
1.5) that everym-primary ideal is tightly closed. Towards a contradiction, suppose
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thatn is anm-primary ideal which is not tightly closed. Therefore, we can find au
in the tight closure ofn such that(n :R u) = m. By Theorem 2.2, we have

(nR+ :R+ u) = mR+. (1)

By definition, there is ac ∈ R not contained in any minimal prime ofR such that
cuq ∈ n[q], for all powersq = pe (as usual,I [q] denotes the ideal generated by
the q-th powers of elements in an idealI). Since thereforec1/qu ∈ nR+, we get
from (1) thatc1/q ∈ mR+ whencec ∈ mqR+. By cyclical purity,c ∈ mq for all q,
contradiction.

In particular,R is F-rational whence pseudo-rational, normal and Cohen-Macaulay
(in fact,R is Cohen-Macaulay, by Proposition 2.5, and normal, by the cyclic purity
of R → R+). SinceR is normal, it follows from (Hochster, 1977) thatR → R+ is
pure. Let us give a direct argument for showing thatR is a splinter. LetR ⊂ S be
a finite extension. In order to show that this is split, we may factor out a minimal
prime ofS and hence assume thatS is a domain. SoR ⊂ S extends to the pure
mapR → R+ and hence is itself pure. Since a pure map with finitely generated
cokernel is split ((Matsumura, 1986, Theorem 7.14)), we showed that any finite
extension splits. 2

Proof of Theorem 1.1

The vanishing ofTorR
1 (R+, k) implies thatR is Cohen-Macaulay by Theorem 1.2.

SinceR+ is a balanced big Cohen-Macaulay algebra and sinceR has an isolated
singularity, we get from (Schoutens, 2003b, Theorem IV.1) thatR → R+ is flat.
As already observed, this implies thatR is regular. IfR has dimension at most2,
then by Theorem 1.2, it is normal and therefore has an isolated singularity, so that
the previous argument applies.2

Recall that by the argument at the end of the previous section, the vanishing of a
singleTorR

j (R+, k) implies already thatR is regular, if apart from being an isolated
singularity, we also assume thatR is Cohen-Macaulay, whenj ≥ 3. In order to
derive a regularity criterion from Theorem 1.1, we need a lemma on flatness over
Artinian local Gorenstein rings of embedding dimension one.

Lemma 3.1 Let (A, m) be an Artinian local ring of embedding dimension one and
let M be an arbitraryA-module. ThenM is A-flat if, and only if,AnnM(I) = mM ,
whereI denotes the socle ofA, that is to say,I = AnnA(m).

PROOF. By assumptionm = xA, for somex ∈ A. It follows that the socleI
of A is equal toxe−1A, wheree is the smallest integer for whichxe = 0. I claim
that AnnM(xe−i) = xiM , for all i. We will induct oni, where the casei = 1 is
just our assumption. Fori > 1, let µ ∈ M be such thatxe−iµ = 0. Therefore,
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xe−i+1µ = 0, so that by our induction hypothesis,µ ∈ xi−1M , say,µ = xi−1ν.
Since0 = xe−iµ = xe−1ν, we getν ∈ xM whenceµ ∈ xiM , as required.

Flatness now follows by the Local Flatness Criterion (Matsumura, 1986, Theorem
22.3). Indeed, it suffices to show thatA/xA → M/xM is flat andxA⊗M ∼= xM .
The first assertion is immediate sinceA/xA is a field. For the second assertion,
observe thatxA ∼= A/xe−1A and by what we just provedxM ∼= M/ AnnM(x) ∼=
M/xe−1M . It follows thatxA⊗M is isomorphic withxM , as required. 2

Corollary 3.2 Let (R,m) be ad-dimensional excellent local Cohen-Macaulay do-
main of positive characteristic. Suppose that there exists an idealI in R generated
by a regular sequence such thatm/I is a cyclic module. Suppose also thatR has
either an isolated singularity or thatd ≤ 2. If for each finite extension domain
R ⊂ S, we can find a finite extensionS ⊂ T , such that

(IS :S (I :R m)S) ⊂ mT, (2)

thenR is regular.

PROOF. Let (x1, . . . , xi) be the regular sequence generatingI and writem =
I + xR. If i < d then necessaryi = d − 1 andm is generated byd elements, so
R is regular. Hence assumei = d, that is to say,I is m-primary. It follows that
R := R/I is an Artinian local ring with maximal idealxR. Let e be the smallest
integer for whichxe ∈ I. Hence the socle ofR is xe−1R. Let R+ := R+/IR+. I
claim that

AnnR+(xe−1) = xR+.

Assuming the claim, Lemma 3.1 yields thatR+ is R-flat. Therefore, ifk is the
residue field ofR, thenTorR

1 (R+, k) = 0. But (x1, . . . , xd) is bothR-regular and
R+-regular, so thatTorR

1 (R+, k) = 0. Regularity ofR then follows from Theo-
rem 1.1.

To prove the claim, one inclusion is clear, so assume thata ∈ R+ is such that
axe−1 ∈ IR+. Choose a finite extensionR ⊂ S ⊂ R+ containinga and such
that we already have a relationaxe−1 ∈ IS. By assumption, we can find a finite
extensionT of S, such that(IS : xe−1) ⊂ mT . Hencea ∈ mT . SinceT maps to
R+, we geta ∈ mR+, and hencea ∈ xR+, as we wanted to show.2

The condition thatm is cyclic modulo a regular sequence is in this case equivalent
with R being Cohen-Macaulay with regularity defect at most one (recall that the
regularity defectof R is by definition the difference between its embedding dimen-
sion and its Krull dimension). IfR is regular, then (2) is true for anym-primary
idealI of R (use the fact thatR → R+ is flat).
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Proof of Theorem 1.3

Let (R,m) be as in the statement of Theorem 1.3. In particular,R is Cohen-Macau-
lay by Theorem 1.2. LetM be a finitely generatedR-module such thatM/aM has
finite length. LetI be the annihilator ofM . By Nakayama’s Lemma,M/aM having
finite length implies thatI + a is m-primary. We will induct on the dimensione of
M . If e = 0, so thatM has finite length, the vanishing ofTorR

n (R+, M) follows
from Lemma 2.4 and a well-known inductive argument on the length ofM (see for
instance (Schoutens, 2003b, Corollary II.6)). Hence assumee > 0 and letH be
the largest submodule of finite length inM . TheTor long exact sequence obtained
from

0 → H → M → M/H → 0

shows that it suffices to prove the result forM/H instead ofM . Therefore, after
modding outH, me may assume thatM has positive depth. By prime avoidance
and sinceI + a is m-primary, we can find anM -regular elementx ∈ a. The short
exact sequence

0 → M
x−→M →M/xM → 0

gives rise to a long exact sequence

TorR
n+1(R

+, M/xM) → TorR
n (R+, M)

x−→TorR
n (R+, M),

for all n ≥ 1. Since the left most module is zero by induction one, multiplication
with x on TorR

n (R+, M) is injective, for alln ≥ 1. In particular, we have for each
n an embedding

TorR
n (R+, M) ⊂ (TorR

n (R+, M))x = TorRx
n ((R+)x, Mx). (3)

Sincex ∈ a, the localizationRx is regular. Therefore,Rx → (Rx)
+ is flat. An

easy calculation shows that(Rx)
+ = (R+)x (see (Hochster and Huneke, 1992,

Lemma 6.5)). In particular,TorRx
n ((R+)x, Mx) = 0, and henceTorR

n (R+, M) = 0
by (3). 2

If R has dimension three, thenTorR
n (R+, R/p) vanishes for everyn ≥ 1 and every

prime idealp of R not in the singular locus ofR, sinceR is normal by Theorem 1.2
and hencea has height at least two. On the other hand, we have the following
non-vanishing result.

Corollary 3.3 Let (R,m) be an excellent local domain of positive characteristic.
If p is a prime ideal defining an irreducible component of the singular locus ofR,
thenTorR

1 (R+, R/p) is non-zero.

PROOF. AssumeTorR
1 (R+, R/p) vanishes. Hence so doesTor

Rp

1 ((R+)p, k(p)),
wherek(p) is the residue field ofp. Since(R+)p is equal to(Rp)

+ by (Hochster
and Huneke, 1992, Lemma 6.5), and sinceRp has an isolated singularity, it follows
from Theorem 1.1 thatRp is regular, contradicting the choice ofp. 2
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In view of Lemma 2.4 we can generalize this even further: ifR is Cohen-Macaulay,
then eachTorR

n (R+, R/p) is non-zero, forn ≥ 1 and forp defining an irreducible
component of the singular locus ofR.
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