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Abstract

Let R be an excellent local domain of positive characteristic with residue fieldd let
R* be its absolute integral closure. Tbri*(R*, k) vanishes, ther® is weakly F-regular.
If R has at most an isolated singularity or has dimension at most two Rhenegular.
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1 Introduction

Recall that theabsolute integral closurel™ is defined for an arbitrary domain

as the integral closure of inside an algebraic closure of the field of fractions of
A. A key property of the absolute integral closure was discovered by Hochster and
Huneke (1992): forR an excellent local domain of positive characterisfic, is
abalanced big Cohen-Macaulay algebihat is to say, any system of parameters
on R is an R -regular sequence. It is well-known that this implies that an excel-
lent local domaink of positive characteristic is regular if, and only i, — R* is

flat. Indeed, the direct implication follows siné&" is a balanced big Cohen-Mac-
aulay algebra of finite projective dimension (use for instance (Schoutens, 2003b,
Theorem IV.1)) and the converse follows singe— R+ andR'/? — R* are iso-
morphic whence both faithfully flat, implying thd& — R'/? is flat, and therefore,
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by Kunz’s Theorem, thaR is regular (hereR'/? denotes the extension & ob-
tained by adding alb-th roots of element oR?; for more details see (Huneke, 1996,
Theorem 9.1 and Exercise 8.8)).

Huneke (1996, Exercise 8.8) points out that it is not known whether the weaker
condition that allBetti numbersof R+ vanish, that is to say, that dllor’(R*, k)
vanish forn > 1, already implies thaR is regular. It is not hard to see, using that
R* is a big Cohen-Macaulay algebra, that this is equivalent with requiring that only
Tor®(R*, k) vanishes. The main result of this paper is then the following positive
solution for isolated singularities.

Theorem 1.1 Let (R, m) be an excellent local domain of positive characteristic
with residue fieldc. Supposer has either an isolated singularity or has dimension
at most two. IfTor’(R*, k) = 0, thenR is regular.

For arbitrary domains, we obtain at least the following.

Theorem 1.2 Let (R, m) be an excellent local domain of positive characteristic
with residue fieldk. If Tor(R*, k) = 0, thenR is weakly F-regular. In particular,

R is normal, Cohen-Macaulay, pseudo-rational and any finite extensian isf
split (i.e., R is asplinte)).

We have some more precise information on the vanishing of ceftais in terms
of the singular locus oR.

Theorem 1.3 Let (R, m) be an excellent local domain of positive characteristic
and leta be an ideal defining the singular locus &f (e.g.,a is the Jacobianof
R). If Torf(R*, k) = 0, wherek is the residue field oR, thenTor’(R*, M) = 0

for all n > 1 and all finitely generated?-modules) for which M /aM has finite
length.

The key observation in obtaining all these results, is that, in general, the vanishing
of Torf*(S, k) implies thatR — S is cyclically pure(or ideal-puré, meaning that

IS N R = I, for all ideals/ of R. This is explained in Section 2. To prove The-
orem 1.1, we need a result from (Schoutens, 2003b): if the first Betti number of a
module over an isolated singularity vanishes, then the module has finite projective
dimension. Now, the argument which proofs tiat-> R* is flat whenR is regular,
yields the same conclusion under the weaker assumptioithags finite projec-

tive dimension. This proves also the two-dimensional case, since we know already
that R is normal.

Balanced big Cohen-Macaulay algebras in characteristic zero exist by the work of
Hochster-Huneke, basically by a lifting procedure due to Hochster. However, the

balanced big Cohen-Macaulay algebras obtained in (Hochster and Huneke, 1992)
are not canonically defined. In (Schoutens, 2003a), | give an alternative but canon-
ical construction3(R) of a balanced big Cohen-Macaulay algebra fdc-affine



local domainR using ultraproducts and the absolute integral closure in positive
characteristic. It follows from the present results thatdf*(B(R), k) = 0, where

k is the residue field oR, thenR is regular provided? has an isolated singularity

or has dimension at most two (moreover,without these additional assumpfions,
has at most rational singularities). This is the more interesting because it is not clear
whether in general flathess 8f — B(R) implies regularity ofR. For a further gen-
eralization to arbitrary excellent local domains, see the forthcoming Aschenbrenner
and Schoutens (2003).
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2 Vanishing of Betti numbers and cyclic purity

We derive a simple criterion for a local ring homomorphism to be cyclically pure.
We start with an easy lemma, the proof of which is included for sake of complete-
ness.

Lemma 2.1 Let A be aring,a an ideal in A and M and N two A-modules. If
aN = 0 andTor{ (M, N) = 0, thenTor;”*(M/aM, N) = 0.

PROOF. One can derive this by aid of spectral sequences, but the following argu-
ment is more direct. Pull := A/a. SinceN is an A-module, we can choose an
exact sequence of-modules

0>H—>F—>N-=0

with I’ a free A-module. Tensoring with thel-module M := M/aM, we get an
exact sequence
O—>Tor‘14(]\7[,N) - M®;H—M®®;F.

Since the last two modules are equaMar 4 H andM ® 4 F' respectively and since
Torf(M, N) = 0, the last morphism in this exact sequence is injective. Therefore,
Tor'(M, N) = 0, as required. O

Theorem 2.2 Let (R, m) be a Noetherian local ring with residue fieldand let
S be an arbitrary R-algebra. If Torf(S,k) = 0 andmS # S, thenR — S'is



cyclically pure. Moreover, ifi is anm-primary ideal, then
(n:gI1)S =S5 195)

for every ideall in R.

PROOF. SinceTorf(S, k) vanishes, so doéErf/"(S/nS, k) by Lemma 2.1, for
everym-primary idealn. By the Local Flatness Criterion (see (Matsumura, 1986,
Theorem 22.3)) applied to the Artinian local ririgyn, the base changB/n —
S/unS is flat, whence faithfully flat, sincenS # S. In particular, this base change
is injective, showing thahS N R = n. Since every ideal is the intersection of
m-primary ideals by Krull's Intersection Theorem, the assertion follows.

The final assertion follows from the flatness Bfn — S/nS (use for instance
(Matsumura, 1986, Theorem 7.4))0

Remark 2.3 Note that with notation from the Theorem, we have that the induced
map of affine schem&pec S — Spec R is surjective, since thiber ringsS,/pS,
are non-zero.

The following lemma shows that for a local Cohen-Macaulay ring, the vanishing
of some Betti number of a big Cohen-Macaulay algebra is equivalent with the van-
ishing of all of its Betti numbers.

Lemma 2.4 If (R, m) is a local Cohen-Macaulay ring with residue fietdand if
S is a big Cohen-Macaulayz-algebra, such thaTorf(S, k) = 0 for somej > 1,

thenTor (S, k) = 0, forall n > 1.

PROOF. Let x be a maximalR-regular sequence which is alstregular. Put

I .= xR. SinceTorf(S, k) vanishes, so doéﬁorf/I(S/IS, k) by (Matsumura,
1986, Lemma 2, p.140), so th&t 7S has finite flat dimension ovet/ I by the Lo-

cal Flatness Criterion. However, since the finitistic weak dimension is at most the
dimension of a ring by (Auslander and Buchsbaum, 1958, Theorem 2.4), it follows
thatS/IS is flat overR/I. Therefore) = Tor™1(S/1S, k) = Tor?(S, k), for all
n>1. 0O

Therefore, below, we may replace everywhere the conditionThet(S, k) = 0
by the weaker condition that sorﬁerf(s, k) = 0, provided we also assume that
R is Cohen-Macaulay. In fact, jfis eitherl or 2, we do not need to assume that
is Cohen-Macaulay, since this then holds automatically.



Proposition 2.5 If (R, m) is a Noetherian local ring with residue field and if
S is a big Cohen-Macaulayz-algebra, such that eitheforf*(S, k) or Tor}(S, k)
vanishes, thei® is Cohen-Macaulay.

PROOF. I claim that/S N R = I, for some parameter idealof R. By a standard
argument, it then follows that is Cohen-Macaulay (see for instance the argument
in (Schoutens, 2003a, Theorem 4.2)). Foe 1, we can use Lemma 2.1 to con-
clude thatTor[’(S/15, k) = 0, so that by the argument abov@/I — S/I5 is
faithfully flat. Forj = 2, we reason as follows. Let

0O0—-M-—-F—-S5—0

be a short exact sequence with free. It follows thatTor®(M, k) is equal to
Tor(S, k), whence is zero. Therefore, by the same argument as beftte)/
is flat overR/I. On the other hand, since we may chods® that it is generated
by an S-regular sequence, we get tHkir’(S, R/I) = 0 (indeed, the canonical
morphism/ @ M — IM is easily seen to be injective). Hence we get an exact
sequence

0— M/IM — F/IF — S/IS — 0

showing thatS/1S has finite flat dimension, whence is flat, sin®¢/ is Ar-
tinian. O

Is there a counterexample in which sofie (S, k) vanishes for some big Cohen-
Macaulay algebr& and some > 2, without R being Cohen-Macaulay?

3 Proofs

Recall that an excellent local ring of positive characteristic is cdiedtional, if

some ideal generated by a system of parameters is tightly closedyeaidy F-
regular, if every ideal is tightly closed. It is well-known that for excellent local
rings, weakly F-regular implies splinter, and F-rational implies Cohen-Macaulay
and normal ((Huneke, 1996, Theorem 4.2)). By (Smith, 1997, Theorem 3.1), an
F-rational ring is pseudo-rational.

Proof of Theorem 1.2

SupposeR is as in the statement of the theorem, so that in partiduaf(R*, k)
vanishes. By Theorem 2.2, the embeddihg~ R™ is cyclically pure. In order to
show thatR is weakly F-regular, it suffices to show by (Huneke, 1996, Theorem
1.5) that everym-primary ideal is tightly closed. Towards a contradiction, suppose



thatn is anm-primary ideal which is not tightly closed. Therefore, we can find a
in the tight closure ofi such tha{n :z u) = m. By Theorem 2.2, we have

(nR" g+ u) =mR". (1)

By definition, there is @ € R not contained in any minimal prime @t such that
cu? € nld, for all powersq = p° (as usual/¢ denotes the ideal generated by
the ¢-th powers of elements in an ide&). Since therefore!/%u € nR*, we get
from (1) thatc'/? € mR* whencec € m?R™. By cyclical purity,c € m¢ for all g,
contradiction.

In particular,R is F-rational whence pseudo-rational, normal and Cohen-Macaulay
(in fact, R is Cohen-Macaulay, by Proposition 2.5, and normal, by the cyclic purity
of R — R™). SinceR is normal, it follows from (Hochster, 1977) th& — R™* is

pure. Let us give a direct argument for showing tRas a splinter. LetkR C S be

a finite extension. In order to show that this is split, we may factor out a minimal
prime of S and hence assume thétis a domain. SA? C S extends to the pure
map R — R' and hence is itself pure. Since a pure map with finitely generated
cokernel is split ((Matsumura, 1986, Theorem 7.14)), we showed that any finite
extension splits. O

Proof of Theorem 1.1

The vanishing offor?(R*, k) implies thatR is Cohen-Macaulay by Theorem 1.2.
Since R is a balanced big Cohen-Macaulay algebra and siéas an isolated
singularity, we get from (Schoutens, 2003b, Theorem IV.1) fhat: R* is flat.

As already observed, this implies thatis regular. If R has dimension at mo&t

then by Theorem 1.2, it is normal and therefore has an isolated singularity, so that
the previous argument applies™

Recall that by the argument at the end of the previous section, the vanishing of a
singIeTorf(Rt k) implies already thar is regular, if apart from being an isolated
singularity, we also assume th&tis Cohen-Macaulay, whej > 3. In order to
derive a regularity criterion from Theorem 1.1, we need a lemma on flatness over
Artinian local Gorenstein rings of embedding dimension one.

Lemma 3.1 Let(A, m) be an Artinian local ring of embedding dimension one and
let M be an arbitraryA-module. Thed/ is A-flatif, and only if, Ann, (/) = mM,
where!l denotes the socle of, that is to say/ = Anny(m).

PROOF. By assumptionm = zA, for somex € A. It follows that the socle
of A is equal toz* ' A, wheree is the smallest integer for whickf = 0. | claim
that Anny, (2¢7%) = 2*M, for all :. We will induct oni, where the casé = 1 is
just our assumption. Far > 1, let u € M be such that:*"‘y = 0. Therefore,



¢~y = 0, so that by our induction hypothesig,c z~'M, say,u = 2 'v.
Since0 = z¢ ' = 2 'v, we getv € M whenceu € xM, as required.

Flatness now follows by the Local Flatness Criterion (Matsumura, 1986, Theorem
22.3). Indeed, it suffices to show thafz A — M/xM is flatandv A @ M = z M.

The first assertion is immediate singg/z A is a field. For the second assertion,
observe that A = A/z*~!' A and by what we just proved)M = M/ Anny(x) =

M /x¢1 M. It follows thatz A @ M is isomorphic withz M, as required. O

Corollary 3.2 Let(R, m) be ad-dimensional excellent local Cohen-Macaulay do-
main of positive characteristic. Suppose that there exists an ideaR generated
by a regular sequence such that' [ is a cyclic module. Suppose also thathas
either an isolated singularity or thai < 2. If for each finite extension domain
R C S, we can find a finite extensighC T, such that

(IS :5 (I :gm)S) CmT, 2

thenR is regular.

PROOF. Let (z4,...,z;) be the regular sequence generatingnd writem =
I + xR.If i < dthen necessary= d — 1 andm is generated byl elements, so
R is regular. Hence assumie= d, that is to say/ is m-primary. It follows that
R := R/I is an Atrtinian local ring with maximal ideafR. Let ¢ be the smallest
integer for whichz¢ € I. Hence the socle aR is 2 'R. Let Rt := R*/IR*. |
claim that

Anngr(2°7") = zRT.
Assuming the claim, Lemma 3.1 yields that" is R-flat. Therefore, ifk is the
residue field ofR, thenTor?(R+, k) = 0. But (1, ..., z4) is both R-regular and
R*-regular, so thaflor(R*, k) = 0. Regularity of R then follows from Theo-
rem1.1.

To prove the claim, one inclusion is clear, so assume d¢hat R* is such that
ax®~! € IRT. Choose a finite extensioR c S C R™ containinge and such
that we already have a relatien*~! € I.S. By assumption, we can find a finite
extensionl” of S, such that(7S : z¢~') C mT. Hencea € mT. SinceT maps to
R*, we geta € mR™T, and hence € zR*, as we wanted to show.O

The condition thatn is cyclic modulo a regular sequence is in this case equivalent
with R being Cohen-Macaulay with regularity defect at most one (recall that the
regularity defecbf R is by definition the difference between its embedding dimen-
sion and its Krull dimension). IR is regular, then (2) is true for any-primary
ideal I of R (use the fact thak — R is flat).



Proof of Theorem 1.3

Let (R, m) be as in the statement of Theorem 1.3. In particutas Cohen-Macau-
lay by Theorem 1.2. Let/ be a finitely generate®-module such that//aM has
finite length. Let/ be the annihilator of/. By Nakayama’s Lemmay//aM having
finite length implies thaf + a is m-primary. We will induct on the dimensiaonof
M. If e = 0, so thatM has finite length, the vanishing @br(R*, M) follows
from Lemma 2.4 and a well-known inductive argument on the lengthf ¢éee for
instance (Schoutens, 2003b, Corollary 11.6)). Hence assume0 and letH be
the largest submodule of finite length . The Tor long exact sequence obtained
from
0—-H—M-—M/H—O0

shows that it suffices to prove the result faf/ H instead ofM. Therefore, after
modding outH, me may assume that has positive depth. By prime avoidance
and sincel + a is m-primary, we can find ai/-regular element € a. The short
exact sequence

0—M-"M-—M/xM — 0

gives rise to a long exact sequence
Torf, | (RT, M/xM) — Torf(R*, M) Torf(R*, M),

for all n > 1. Since the left most module is zero by inductionegmultiplication
with = on Tor?(R*, M) is injective, for alln > 1. In particular, we have for each
n an embedding

Tor®(R*, M) c (Tor®(R*, M)), = Tor™ ((R"),, M,). (3)

Sincex € a, the localizationR, is regular. ThereforeR, — (R,)™ is flat. An
easy calculation shows théf:,)* = (R"). (see (Hochster and Huneke, 1992,
Lemma 6.5)). In particulaflor ((R*),, M,) = 0, and henc&or?(R*, M) = 0

by (3). O

If R has dimension three, thdr’(R*, R/p) vanishes for every > 1 and every
prime idealp of R not in the singular locus ak, sinceR is normal by Theorem 1.2
and hencer has height at least two. On the other hand, we have the following
non-vanishing result.

Corollary 3.3 Let (R, m) be an excellent local domain of positive characteristic.
If p is a prime ideal defining an irreducible component of the singular locus, of
thenTor(R*, R/p) is non-zero.

PROOF. AssumeTor*(R*, R/p) vanishes. Hence so do@sr;” ((R"),, k(p)),
wherek(p) is the residue field of. Since(R"), is equal to(R,)* by (Hochster
and Huneke, 1992, Lemma 6.5), and siitehas an isolated singularity, it follows
from Theorem 1.1 thaR, is regular, contradicting the choiceof O



In view of Lemma 2.4 we can generalize this even furtheR i§ Cohen-Macaulay,
then eachlor’(R*, R/p) is non-zero, fom > 1 and forp defining an irreducible
component of the singular locus &f
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