ASYMPTOTIC HOMOLOGICAL CONJECTURES IN MIXED
CHARACTERISTIC

HANS SCHOUTENS

ABSTRACT. In this paper, various Homological Conjectures are studied for local rings
which are locally finitely generated over a discrete valuation Viraf mixed characteristic.
Typically, we can only conclude that a particular Conjecture holds for such a ring provided
the residual characteristic &f is sufficiently large in terms of the complexity of the data,
where the complexity is primarily given in terms of the degrees of the polynomialsiover
that define the data, but possibly also by some additional invariants such as (homological)
multiplicity. Thus asymptotic versions of the Improved New Intersection Theorem, the
Monomial Conjecture, the Direct Summand Conjecture, the Hochster-Roberts Theorem
and the Vanishing of Maps of Tors Conjecture are given.

That the results only hold asymptotically, is due to the fact that non-standard arguments
are used, relying on the Ax-Kochen-Ershov Principle, to infer their validity from their
positive characteristic counterparts. A key role in this transfer is played by the Hochster-
Huneke canonical construction of big Cohen-Macaulay algebras in positive characteristic
via absolute integral closures.

1. INTRODUCTION

In the last three decades, all the so-called Homological Conjectures have been set-
tled completely for Noetherian local rings containing a field by work of Peskine-Szpiro,
Hochster-Roberts, Hochster, Evans-Griffith, et. al. (some of the main paperslafié,[

, 22, 28]). More recently, Hochster-Huneke have given more simplified proofs of most
of these results by means of their tight closure theory, including their canonical construc-
tion of big Cohen-Macaulay algebras in positive characteristic (5&e2], 21, 24]; for
further discussion and proofs, seg §9] or [49]).

In sharp contrast is the development in mixed characteristic, where only sporadic results
(oftenin low dimensions) are known, apart from the break-throGghty Roberts, settling
the New Intersection Theorem for all Noetherian local rings, and the recent wafk [
of Heitmann in dimension three. Some attempts have been made by Hochster, either by
finding a suitable substitute for tight closure in mixed characteristil; pr by constructing
big Cohen-Macaulay modules in mixed characteristi§.[ These approaches have yet to
bear fruit and the best result to date in this direction is the existence of big Cohen-Mac-
aulay algebras in dimension threed], which in turn relies on the positive solution of the
Direct Summand Conjecture in dimension three by Heitméssh [

In this paper, we will follow the big Cohen-Macaulay algebra approach, but instead
of trying to work with rings of Witt vectors, we will use the Ax-Kochen-Ershov Prin-
ciple [4, 9, 10], linking complete discrete valuation rings in mixed characteristic with
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complete discrete valuation rings in positive characteristic via an equicharacteristic zero
(non-discrete) valuation ring (see Theor@m below). This intermediate valuation ring

is obtained by a construction which originates from logic, but is quite algebraic in nature,
to wit, the ultraproduct construction. Roughly speaking, this construction associates to
an infinite collection of ring«”,, their ultraproductC',,, which should be thought of as a
kind of “limit” or “average” (realized as a certain homomorphic image of the product). An
ultraproduct inherits many of the algebraic properties of its components. The correct for-
mulation of this transfer principle is Los’ Theorem, which makes precise when a property
carries over (namely, when it is first order definable in some suitable language). Properties
that carry over are those of beimgdomain, a field, a valuation ring, local, Henseljan
among the properties that do not carry oveNigetherianity so that almost no ultraprod-

uct is Noetherian (except an ultraproduct of fields or of Artinian rings of bounded length).

This powerful tool is used ind2, 33, 35, 44], to obtain uniform bounds in polynomial
rings over fields; in §5, 36, 37, 40], to transfer properties from positive to zero charac-
teristic; and in B, 39, 41, 42, 47], to give an alternative treatment of tight closure theory

in equicharacteristic zero. The key fact in the first set of papers is a certain flatness result
about ultraproducts (see Theor@ below for a precise formulation), and in the two last
sets, the so-calledefschetz Principle for algebraically closed fielflee ultraproduct of

the algebraic closures of theelement fieldsr,, is isomorphic taC).

The Ax-Kochen-Ershov Principle is a kind béfschetz Principle for Henselian valued
fields and its most concrete form states that the ultraproduct &alt]], with ¢ a single
indeterminate, is isomorphic to the ultraproduct of all ringgpeddic integerszZ,. We
will identify both ultraproducts and denote the resulting ringy It follows that O is
an equicharacteristic zero Henselian valuation ring with principal maximal ideal, whose
separated quotient (=the reduction modulo the intersection of all powers of the maximal
ideal) is an equicharacteristic zero excellent complete discrete valuation ring.

Z-affine algebras. To explain the underlying idea in this paper, we introduce some nota-
tion. Let(Z,p) be a (not necessarily Noetherian) local ring ZAaffinealgebraC is any
Z-algebra of the fornC' = Z[X]/I whereX is a finite tuple of indeterminates atda
finitely generated ideal iZ[X]. A local Z-affine algebras any localizationR = C, of

a Z-affine algebraC with respect to a prime ideah of C' lying abovep. In particular,

the natural homomorphisfi — R is local. We denote the category of all localaffine
algebras byAff( 7).

The objective is to transfer algebraic properties (such as the homological Conjectures)
from the positive characteristic categorfd§(F,[[¢]]) to the mixed characteristic categories
Aff(Z,). This will be achieved through the intermediate equicharacteristic zero category
Aff(O). As this latter category consists mainly of non-Noetherian rings, we will have to
find analogues in this setting of many familiar notions from commutative algebra, such as
dimension, depth, Cohen-Macaulayness or regularity§$eand6).

The following example is paradigmatic: &t be a finite tuple of indeterminates and let
£3(A) be the ultraproduct of alF,[[t]][X], and £0*(A), the ultraproduct of alZ,[X].

Note that both rings contaifd, and in fact, contaiD[X]. The key algebraic fact, which
is equivalent to a result on effective bounds by Aschenbrenfpr i§ that both inclusions
O[X] C £3Y(A) andD[X] C £0%(A) are flat. Suppose we have in ed€fi[t]][X] a
polynomial f,,, and letf., be their ultraproduct. A priori, we can only say that, €
£3I(A). However, if all f,, have X -degreed, for somed independent fronp, then f
itself is a polynomial ovep of degreed (since an ultraproduct commutes with finite sums
by tos’ Theorem). Hence, ag., lies in O[X], we can also view it as an element in
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£MX(A). Therefore, there are ponnomiaf@ € Z,|X] whose ultraproduct is equal to

fso- The choice of thg;p is not unique, but any two choices will be equal for almost all

p, by £os’ Theorem. In conclusion, to a collection of polynomials defined over the various
F,[[t]], of uniformly bounded degree, we can associate, albeit not uniquely, a collection of
polynomials defined over the variofg (of uniformly bounded degree), and of course, this
also works the other way. Instead of doing this for just one polynomial in each component,
we can now do this for a finite tuple of polynomials of fixed length. If at the same time, we
can maintain certain algebraic relations among them (characterizing one of the properties
we seek to transfer), we will have achieved our goal.

Unfortunately, it is the nature of an ultraproduct that it only captures the “average”
property of its components. In the present context, this means that the desired property does
not necessarily hold in alZ,[X], but only in almost all. In conclusion, we cannot hope
for a full solution of the Homological Conjectures by this method, but onlpgsymptotic
solution. In view of the above, the following definition is now natural.

Complexity. Let C be aZ-affine algebra, say, of the fordl = Z[X]/I, with X a finite
tuple of indeterminates anda finitely generated ideal, and |Bt= C,,, be a localZ-affine
algebra (so thgt C m). We say thatC hasZ-complexityat moste, if | X| < cand[ is
generated by polynomials of degree at mgsie say thatR hasZ-complexityat mostc,
if, moreover, alsan is generated by polynomials of degree at mogin element- € C'is
said to haveZ-complexityat moste, if C' hasZ-complexity at most andr is the image of
a polynomial inZ[X] of degree at most. An element- € R hasZ-complexityat moste,

if R hasZ-complexity at most and ifr is (the image of) a quotierf?/Q of polynomials
of degree at most with @ ¢ m. We say that a tuple or a matrix hascomplexityat
moste, if each of its entries ha&-complexity at most and the number of entries is also
bounded by. Note that in aZ-affine algebra, the sum of two elementsicomplexity
at mostce, has agairZ-complexity at most, whereas in docal Z-affine algebra, the sum
hasZ-complexity at mosgc.

An ideal J in C or R hasZ-complexityat moste, if it is generated by a tuple of -
complexity at most. A Z-algebra homomorphis@@ — C”’ or a localZ-algebra homo-
morphismR — R’ is said to haveZ-complexityat mostc, if C andC’ (respectively,R
andR’) are (local)Z-affine algebras of -complexity at most and the homomorphism is
given by sending each indeterminate to an element o -complexity at most.

Asymptotic properties. Let P be a property of Noetherian local rings (possibly involving
some additional data). We will use the phrasdolds asymptotically in mixed character-
istic, to express that for eachwe can find a bound, such that ifi” is a complete discrete
valuation ring of mixed characteristic aidd a local V-affine algebra ol -complexity at
mostc (and a similar bound on the additional data), then properholds forC, provided
the characteristic of the residue field Wfis at least:’. Sometimes, we have to control
some additional invariants in terms of the boundin this paper, we will prove that in this
sense, many Homological Conjectures hold asymptotically in mixed characteristic.

A final note. Its asymptotic nature is the main impediment of the present method to carry
out Hochster’'s program of obtaining tight closure and big Cohen-Macaulay algebras in
mixed characteristic. For instance, despite the fact that we are able to define an analogue
of a balanced big Cohen-Macaulay algebra fpaffine domains, this object cannot be
realized as an ultraproduct @,-algebras, so that there is no candidate so far for a big
Cohen-Macaulay in mixed characteristic. Although I will not pursue this line of thought in
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this paper, one could also define some non-standard closure operation on ideaifiire
algebras, but again, such an operation will only partially descend to any component.

Notation. A tuplex over a ringZ is always understood to be finite. Its length is denoted
by |x| and the ideal it generates is denoted. When we say thgt”, p) is local, we mean
thatp is its (unique) maximal ideal, but we do not imply thahas to be Noetherian.

For a survey of the results and methods in this paper,&8elp the forthcoming {.5]
some of the present asymptotic versions will be generalized through a further investigation
of the algebraic properties of ultraproducts using the notions introdudgé and6.

2. ULTRAPRODUCTS

In this preliminary section, | state some generalities about ultraproducts and then briefly
review the situation in equicharacteristic zero and the Ax-Kochen-Ershov Principle. The
next section lays out the essential tools for conducting the transfer discussed in the in-
troduction, to wit, approximations, restricted ultraproducts and non-standard hulls, whose
properties are then studiedjg5 and6. The subsequent sections contain proofs of various
asymptotic results, using these tools.

Whenever we have an infinite index $&t we will equip it with some (unnamed) count-
ably incomplete non-principal ultrafilter; ultraproducts will always be taken with respect
to this ultrafilter and we will write

ulim O,, orsimply O

w— 00

for the ultraproduct of object®,, (this will apply to rings, ideals and elements alike). A
first introduction to ultraproducts, including tos’ Theorem, sufficient to understand the
present paper, can be found &9[ §2]; for a more detailed treatment, se€l]. tos’ Theo-

rem states essentially that if a fixed algebraic relation holds among finitely many elements
fiw, -, [sw In €ach ringC,,, then the same relation holds among their ultraproducts
1o, -+ -, [soo In the ultraproducC,,, and conversely, if such a relation holdsdh,,,

then it holds in almost all’,,. Herealmost allmeans “for alkw in a subset of the index set
which belongs to the ultrafilter” (the idea is that sets belonging to the ultrafiltdasye
whereas the remaining sets araall).

An immediate, but important application of £os’ Theorem is that the ultraproduct of al-
gebraically closed fields of different prime characteristics is an (uncountable) algebraically
closed field of characteristic zero, and any sufficiently large algebraically closed field of
characteristic zero, including, can be realized thusThis simple observation, in combi-
nation with work of van den Dries on non-standard polynomials (see below), was exploited
in [39] to define an alternative version of tight closure foaffine algebras, calledon-
standard tight closurewhich was then further generalized to arbitrary Noetherian local
rings containing the rationals iG], The ensuing notions of F-regularity and F-rationality
have been proven to be more versatile, |42, 47] than those defined by Hochster-Huneke
in [21].

Let me briefly recall the results ir8g, 49 on non-standard polynomials mentioned
above. LetK ,, be fields (of arbitrary characteristic) with ultraproduct, (which is again
a field by Los’ Theorem). Lef be a fixed finite tuple of indeterminates and det=
K [X]andA, := K,[X]. Let A, be the ultraproduct of thel,,. As in the example

170 be more precise, any algebraically closed field of characteristic zero whose cardinality is of te form
for some infinite cardinal\, is an ultraproduct of algebraically closed fields of prime characteristic; under the
generalized continuum hypothesis this meewsryuncountable algebraically closed field of characteristic zero.
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discussed in the introduction, we have a canonical embeddidgmdide A.. In fact, the
following easy observation, valid over arbitrary rings, describes completely the elements
in A that lie in A (the proof is straightforward and left to the reader).

2.1.Lemma. Let X be a finite tuple of indeterminates. L&t, be rings and leC' ., be
their ultraproduct. Iff,, is a polynomial inC',,[ X ] of degree at most, for eachw and for
somec independent fronw, then their ultraproduct imilim,,_,, C,,[X] belongs already
to the subringC' - [ X, and conversely, every elemeni(f,[X] is obtained in this way.

This result also motivates the notion @dmplexityfrom the introduction. Returning to
the Schmidt-van den Dries results, the following two properties of the embeddingl .,

do not only imply the uniform bounds from3§, 35], but also play an important theoretical

role in the development of non-standard tidht clostresp)].
2.2. Theorem (Schmidt-van den Dries)The embeddingl C A, is faithfully flat and
every prime ideal irA extends to a prime ideal iAd ..

To carry out the present program, we have to replace the base figJdsy complete
discrete valuation ring®,,. Unfortunately, we now have to face the following complica-
tions. Firstly, the ultraproduad of the O, is no longer Noetherian, and so in particular
the correspondingl := O[X] is non-Noetherian. Moreover, the embeddiagC A,
where A, is now the ultraproduct of thd,, := ©,,[X], although flat (see Theoreth2
below), is no longer faithfully flat (this is related to Dedekind’s problem; sgeil{[46] for
details). Furthermore, not every prime ideal extends to a prime ideal. However, by working
locally, we can circumvent all the latter complications (see Thegterand Remarkt.5).

To obtain the desired transfer, we will reali2an two different ways, as an ultraproduct
of complete discrete valuation rings in positive characteristic and as an ultraproduct of
complete discrete valuation rings in mixed characteristic, and then pass from one set to
the other viaD, as explained in the introduction (for more details, §&® below). This
is the celebrated Ax-Kochen-Ershov Principfe §, 1], and | will discuss this now. For
eachw, Ieth“X be a complete discrete valuation ring of mixed characteristic with residue
field x,, of characteristip. To eacmg“x, we associate a corresponding equicharacteristic
complete discrete valuation ring with the same residue field, by letting

(1) O = £y [[1]]
wheret is a single indeterminate.

2.3.Theorem (Ax-Kochen-Ershov) The ultraproduct of thed?4is isomorphic (as a local
ring) with the ultraproduct of theDg“X.

2.4.Remark. As stated, we need to assume the continuum hypothesis. Otherwise, by the
Keisler-Shelah Theoren?p, Theorem 9.5.7], one might need to take further ultrapowers,
that is to say, over a larger index set. In order to not complicate the exposition, | will
nonetheless make the set-theoretic assumption, so that our index set can always be taken to
be the set of prime numbers. The reader can convince himself that all proofs in this paper
can be adjusted so that they hold without any set-theoretic assumption.

To conclude this section, | state a variant of Prime Avoidance which also works in
mixed characteristic (note that for non-prime ideals one normally has to assume that the
ring contains a field, see for instancz Lemma 3.3]).

2.5.Proposition. Let Z be a local ring with infinite residue field. LetC' be an arbitrary
Z-algebra and letV be a finitely generated-submodule of’. If a4, ..., a; are ideals in
C not containingl?, then there existg € W not contained in any of the;.
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Proof. We induct on the number of ideals to be avoided, where the case- 1 holds
by assumption. Hence assume- 1. By induction, we can find elemenis € W, for

i = 1,2, which lie outside any; for j # <. If eitherg, ¢ a, or g, ¢ a, we are done, so
assumey; € a;. Therefore, every element of the fogn+ zg, with z a unitinZ does not
lie in a; nor inas. Sincex is infinite, we can find — 1 unitszy, 2, ..., 2:—1 in Z whose
residues ins are all distinct. | claim that at least one of the+ z;g- lies outside alk;,
so that we found our desired elementin Indeed, if not, then eachy + z;g- lies in one
of thet — 2 idealsas, ..., a;, by our previous remark. By the Pigeon Hole Principle, for
some;j and somé€ # k, we have thay; + z,g2 andg; + z¢- lie both ina;. Hence so
does their differencéz;, — z;)g>. However,z;, — z; is a unit inZ, by choice of the;, so
thatg, € a;, contradiction. O

2.6. Corollary (Controlled Ideal Avoidance)Let Z be a local ring with infinite residue
field and letC be a (local)Z-affine algebra. Iff anday, ..., a; are ideals inC with I not
contained in any;, then! contains an element outside every More precisely, it is an
upper bound for the&Z-complexity off, then there exists an elemeht I of Z-complexity
at mostc?, not contained in any;.

Proof. Let (z1,...,,) be a tuple ofZ-complexity at most generatingl and letiV be
the Z-submodule of” generated byz,, ..., x,). In particular,J/ is not contained in any
a;, SO that we may apply Propositich5 to obtain an elemenf € W, outside eaclu;.
Write f = z121 + ... zpx, With 2; € Z. After putting on a common denominator, we see
that f hasZ-complexity at mostn < c? (in caseC is not local, theZ-complexity of f is

in fact at most). O

Itis clear from the proof of Propositich 5that in both results, we only need the residue
field to have a larger cardinality than the number of ideals to be avoided.

3. APPROXIMATIONS, RESTRICTED ULTRAPRODUCTS AND NONSTANDARD HULLS

In this section, some general results on ultraproducts of finitely generated algebras over
discrete valuation rings will be derived. We start with introducing some general termi-
nology, over arbitrary Noetherian local rings, but once we start proving some non-trivial
properties in the next sections, we will specialize to the case that the base rings are discrete
valuation rings. For some results in the general case, we reféiitd, 46).

For eachw, we fix a Noetherian local ringp,,, and let© be its ultraproduct. If the,,
are the maximal ideals of the,,, then their ultraprodudi is the maximal ideal oD. We
will write Jo for the ideal ofinfinitesimalsof O, that is to say, the intersection of all the
powersp® (note that in generdly # (0) and therefores) is in particular non-Noetherian).

By saturatedness of ultraproducts, is quasi-complete in itg-adic topology in the
sense that any Cauchy sequence has a (non-unique) limit. Hence the complelios of
/3o (see also Lemma3below). Moreover, we will assume that &ll,, have embedding
dimension at most. Hence so daD and®9/Js. Since a complete local ring with finitely
generated maximal ideal is Noetheriafi{[ Theorem 29.4]), we showed thé/J, is a
Noetherian complete local ring. For more details in the case of interest to us, where each
9., is a discrete valuation ring or a field, s&g.[

We furthermore fix throughout a tuple of indeterminafés= (Xy,...,X,,), and we
setd := O[X]and4,, := O,[X].

3.1.Definition. Thenon-standard)-hull of A is by definition the ultraproduct of thé,,
and is denoted (A).
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This terminology is a little misleading, becaugg (A) does not only depend ah but
also on the choice ad,, whose ultraproduct i9. In fact, we will exploit this dependence
when applying the Ax-Kochen-Ershov principle, in which case we have to declare more
precisely which non-standafd-hull is meant. Nonetheless, whenef®zand9O,, are clear
from the context, we will denote the non-standarehull of A simply by £(A).

By tos’ Theorem, we have an inclusiad C £(A). Let us continue to writeX; for
the ultraproduct int(A) of the constant sequencé; € A,,. By Los’ Theorem, theX;
are algebraically independent ou@r In other words A is a subring of¢ (A4). In the next
section, we will prove the key algebraic property of the extenslog £(A) when the
base ringsD,, are discrete valuation rings, to wit, its flatness. We start with extending
the notions of non-standard hull and approximation fréi¥j,[to arbitrary localD-affine
algebras (recall that cal O-affine algebrais a localization of a finitely presented-
algebra at a prime ideal containipy

9-approximations and non-standard O-hulls. An D-approximationof a polynomial

f € Ais a sequence of polynomiafs, € A,, such that their ultraproduct is equal fo
viewed as an element i8(A). Note that according to Lemnial, we can always find
such anD-approximation. Moreover, any tw-approximations are equal for almost all
w, by Los’ Theorem. Similarly, asD-approximationof a finitely generated idedl := f A
with f a finite tuple, is a sequence of idedls := f,, A,,, wheref , is anO-approximation
of f (meaning that each entry iy, is an©D-approximation of the corresponding entry in
f). Los’ Theorem gives once more that any t#eapproximations are almost all equal.
Moreover, if I, is someD-approximation off then

(2) Bhglo I,=1£(A).

Assume now tha€’ is anO-affine algebra, say’ = A/I with I a finitely generated
ideal. We define aD-approximationof C' to be the sequence of finitely generatag -
algebrasC,, := A, /I, wherel,, is someD-approximation ofl. We define thenon-
standardO-hull of C' to be the ultraproduct of th€',, and denote £y (C) or simply
£(C). Itis not hard to show that (C) is uniquely defined up t@’-algebra isomorphism
(for more details see3[] or [44]). From (2), it follows that£(C) = £(A)/IL£(A). In
particular, there is a canonical homomorphi€m- £(C') obtained from the base change
A— £(A).

When is not finitely generated]£(A) might not be realizable as an ultraproduct of
ideals, and consequently, hassdeapproximation. Although one can find special cases of
infinitely generated ideals admitting-approximations, we will never have to do this in
the present paper. Similarly, we only defideapproximations fo-affine algebras.

Although A — £(A) is injective, this is not necessarily the case or— £(C), if
the O,, are not fields. For instance, ¥ is the set of prime numbers), := Z, for each
p € Wandl = (1 — nX,v)A wherer := ulim, ., p and~ := ulim,_,~, p?, then
I # (1) but/£(A) = (1). However, when the®,, are discrete valuation rings, we will see
shortly, that this phenomenon disappears if we localize at prime ideals contpiriext
we define a process which is converse to takingpproximations.

Restricted Ultraproducts. Fix somec. For eachw, let I, be an ideal in4,, of O,,-
complexity at most. In other words, we can writé,, = f,,A,,, for some tuplef,, of
9,,-complexity at most. Let f be the ultraproduct of these tuples. By Lemta, the
tuplef is already defined oved. We calll := f A therestricted ultraproducbf the I,,. It
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follows that thel ,, are anD-approximation off and that/.£(A) is the ultraproduct of the
1.
with C,, := A, /I, andC := A/I, we callC therestricted ultraproducbof the C',.
The C,, are anD-approximation ofC' and their ultraproduct (C) is the non-standard
O-hull of C. We can now extend the previous definition to the imag€ jnof an element
cy € A, (respectively, to the extensiah,C,, of a finitely generated ideal,, C A,,) of
9,,-complexity at most and define similarly theirestricted ultraproduct € C and.JC
as the image i’ of the respective restricted ultraproduct of theand theJ,,.

Functoriality. We have a commutative diagram

¥
C ~ D

®)

£(0) £(D)

£(p)
whereC' — D is an9-algebra homomorphism of finite type betwe@raffine algebras
and£(C) — £(D) isits base change ove&r(A). Alternatively, we may view this diagram
coming from a sequence @f,,-algebras homomorphisnis,, — D,, of O.,-complexity
at moste, for somec independent fromw, in which case” — D and£(C) — £(D) are
the respective restricted ultraproduct and ultraproduct of these homomorphisms.

3.2.Lemma. Any prime idealn of A containingp is finitely generated and its extension
mg(A) is again prime.

Proof. SinceA/pA = k[X] is Noetherian, where is the residue field oD, the ideal
m(A/pA) is finitely generated. Therefore sors since by assumptiop is finitely gen-
erated. Moreover? (A)/p£L(A) is the ultraproduct of the,,[X], so that by Theorer.2,
the extensiom(£(A)/pL(A)) is prime, whence so is£(A). O

In particular, ifm,, is anO-approximation ofmn, then almost alin,, are prime ideals.
Therefore, the following notions are well-defined (with the convention that weBut
equal to zero whenever is not a prime ideal of the rin@). Let R be a localD-affine
algebra, say, of the form@',,, with C' an©-affine algebra aneh a prime ideal containing.

3.3. Definition. We call £(C) ¢ () the non-standardD-hull of R and denote ity (R)
or simply £(R). Moreover, ifC',, andm,, areO-approximations of” andm respectively,
then the collectiorR,, := (Cy)m,, iS anO-approximationof R.

One easily checks that the ultraproduct of theapproximationsk,, is precisely the
non-standareD-hull £(R).

4. FLATNESS OF NONSTANDARD £-HULLS

In this section, we specialize the notions from the previous result to the situation where
eachO,, is a discrete valuation ring. We fix throughout the following notation. For each
w, let O,, be a discrete valuation ring with uniformizing parametgrand with residue
field x,,. Let O, = andx be their respective ultraproducts, so thal is the maximal ideal
of O andk its residue field. We call any ring of this form aiftra-DVR. The intersection
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of all #9 is called theideal of infinitesimal®f O and is denoted. Using [34], one
sees thaD /79 is an Artinian local Gorensteir-algebra of lengthn.

Fix a finite tuple of indeterminateX and letA := O[X]. As before, we denote the
non-standard>-hull of A by £(A); recall that it is given as the ultraproduct of the
approximationsd,, := 9,,[X].

4.1. Proposition. For I an ideal in A, the residue ringd/I is Noetherian if and only if
Jo C I. In particular, every maximal ideal od containsJy and is of the forniip A + J
with J a finitely generated ideal.

Proof. LetC := A/I for some ideal of A. If C'is Noetherian, then the intersection of all
7« C'is zero by Krull's Intersection Theorem. Hengg C I. Conversely, ifio C I, then
sinceA/Jo A = (9/J)[X] is Noetherian, so i€’. The last assertion is now clear. [

In spite of Lemm&.2, there are even maximal ideals4{necessarily not containing
which do not extend to a proper idealf{ A). For instance withX a single indeterminate
andW = N, the idealJp A + (1 — 7X)A is maximal (with residue field the field of
fractions ofD /J), butTo £(A) + (1 — 7X)£(A) is the unitideal. Indeed, let,, be the
ultraproduct of the

fw =1~ (mX)")/(1 = 7 X).

Since(1—m,, X) f = 1 modulo(m,,)* Ay, We getby tos’ Theorem thét—7X)fo. = 1
moduloJo £(A). Therefore, we cannot hope fdr— £(A) to be faithfully flat. Nonethe-

less, using for instance a result of Aschenbrenner on bounds of syzygies, we do have this
property for local affine algebras. This result will prove to be crucial in what follows.

4.2.Theorem. The canonical homomorphisih— £(A) is flat. In particular, the canon-
ical homomorphism of a locab-affine algebra to its non-standatd-hull is faithfully flat,
whence in particular injective.

Proof. The last assertion is clear from the first, since the homomorpliism £(R) is
obtained as a base changedf- £(A) followed by a suitable localization, for any local
9-affine algebrak. | will provide two different proofs for the first assertion

For the first proof, we use a result of Aschenbrenggir order to verify the equational
criterion for flatness, that is to say, given a linear equafios 0, with L a linear form
over A, and given a solutioffi, over £(A4), we need to show that there exist solutions
b; in A such thaff, is an£(A)-linear combination of thé,;. ChooseL,, andf,, with
respective ultraproducté andf.. In particular, almost alL,, have,,-complexity at
mostc, for somec independent fromw. By Los’ Theoremf,, is a solution of the linear
equationl,, = 0, for almost allw. Therefore, by ¥, Corollary 4.27], there is a bound,
only depending om, such thaf,, is anA,,-linear combination of solutionls; ,,, . .., bs.
of O,,-complexity at most. Note thats can be chosen independent framas well by {4,
Lemma 1]. In particular, the ultraproduot of theb;,, lies in A by Lemma2.1 By tos’
Theorem, each; is a solution ofL = 0in £(A), whence in4, andf ., is an£(A)-linear
combination of thé;, proving flatness.

If we want to avoid the use of Aschenbrenner’s result, we can reason as follows. By
Theorem2.2, both extensionsi/7A — £(A)/7L(A) andA ® Q@ — £(A4) ® Q are
faithfully flat, whereQ is the field of fractions oD. Let M be anA-module. Sincer is
A-regular, the standard spectral sequence

Tor;/™ (£(A)/mL(A), Tor] (M, A/mA)) = Torp,,

(£(A)/mL(A), M)
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degenerates into short exact sequences

Tor T (£(A) /7 L(A), (0 13y 7)) — Tor (£(A)/7L(A), M) —
Tor/ ™ (£(A)/nL(A), M /7 M),

foralli > 2. Fori = 2, sinceA/rA — £(A)/7£(A) is flat, the middle module
Torg (£(A)/mL(A), M) vanishes. Applying this to the short exact sequence

0— £(4) 5 £(A) — £(A)/mL(A) — 0
we get a short exact sequence
(4)  0=Tors (L(A)/mL(A), M) — Tori (£(A), M) Tori' (£(A), M).
On the other hand, flatness 4f® @Q — £(A) ® Q yields
(5) Tor (£(A4), M) ® Q = Tor{®?(£(4) ® Q, M ® Q) = 0.

In order to prove thatl — £(A) is flat, it suffices by 27, Theorem 7.8] to show that
Tori' (£(A), A/I) vanishes, for every finitely generated iddabf A. Towards a contra-
diction, suppose thaFori' (£(A), A/I) contains a non-zero element By (5), we have
ar = 0, for some non-zera € O. As observed in{1, Proposition 3], every polynomial
ring over a valuation ring is coherent, so that in particul#s finitely presented (namely,
sincel is torsion-free oveD, it is O-flat, and therefore finitely presented [ Theorem
3.4.6]). Hence we have some exact sequence

A2 P24 PN AJT — 0.
ThereforeTor;' (£(A), A/I) is calculated as the homology of the complex
£(A)2 2 g(A)m 2L (A).

Supposer is the image of a tuple € £(A)* with ¢;(x) = 0. Hencex does not belong
to 2 (L£(A)?2) butax does. Choose,,, a,, andy;,, with respective ultraprodust, a and
;. By Los’ Theorem, almost att,, lie in the kernel ofp;,, but not in the image op,.,,
yeta,, x,, lies in the image of,,,. Choosen,, € N maximal such thay.,, := (7)™ Xy
does not lie in the image @f,,,. Since almost alt,, are non-zero, this maximum exists
for almost allw. Therefore, ify is the ultraproduct of thg,,, theny;(y) = 0 andy
does not lie inpy(L£(A)*2), but 7y lies in po(L£(A)%*). Therefore, the image of in
Tor{*(£(A), A/I) is a non-zero element annihilated bycontradicting 4). O

4.3.Remark.In [46], | exhibit a general connection between the flatness of an ultraproduct
over certain canonical subrings and the existence of bounds on syzygies. In particular,
using these ideas, the second argument in the above proof of flathess reproves the result in
[2]. In fact, the role played here by coherence is not accidental either; see[[46] for

more details.

4.4. Theorem. Let R be a localO-affine algebra with non-standa®-hull £(R) and
D-approximationR,,.
e Almost allR,, are flat overD,, if and only if R is torsion-free over) if and
only if r is R-regular.
e Almost allR,, are domains if and only iR is.
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Proof. Suppose first that almost ait,, are flat overD,,, which amounts in this case, to
almost allR,,, being torsion-free oved,,. By Los’ Theorem £(R) is torsion-free oveD,
and sincek C £(R), so isR. Conversely, assumeis R-regular. By faithful flatnessy is
£(R)-regular, whence almost afl,, are R,,-regular by tos’ Theorem. Since the,, are
discrete valuation rings, this means that almosfall — R,, are flat.

If almost all R, are domains, then so B(R) by tos’ Theorem, and hence so %
since it embeds i (R). Conversely, assumg is a domain. Ifr = 0in R, theng(R) is
a domain by Lemm&.2, whence so are almost all,, by £os’ Theorem. So assumeis
non-zero inR, whenceR-regular. By what we just proved is then torsion-free oved.
Let @ be the field of fractions ad. Write R in the formS/p, whereS is some localization
of A at a prime ideal containing andyp is a finitely generated prime ideal . Since
S/p is torsion-free oveD, the extensiom(S ®o Q) is again prime and its contraction in
Sis p. By Theorem2.2, since we are now over a field(£(S) ®o Q) is a prime ideal,
whereg£(.9) is the non-standar®-hull of S (note thatC(S) ® @ is then the non-standard
hull of S ®o @ in the sense of9]). Moreover, sinceS/p is torsion-free over, so is
£(5)/p£(S) by the first assertion. This in turn means that

pL(S) = p(£(5) ®o Q) N £(5),

showing thatp £(.5) is prime. It follows then from Los’ Theorem that almost g} are
prime, wherep,, is anD-approximation op, and hence almost alt,, are domains. O

4.5.Remark.The last assertion is equivalent with saying that any prime ide&lestends
to a prime ideal in€(R). Indeed, lety be a prime ideal iR with OD-approximationy,,.
By the above result (applied t8/q and its©-approximationR,, /q.,), we get that almost
all gq,, are prime, whence so is their ultraprodggt(R), by tos’ Theorem.

5. GEOMETRIC DIMENSION

In this and the next section, we will study the local algebra of the catelyiifp). Al-
though part of the theory can be developed for arbitrary base fings even for arbitrary
local rings of finite embedding dimension (s€&]), we will only deal with the case that
9 is a local domain of embedding dimension one. Recall tha¢thieedding dimensiof
a local ring(Z, p) is by definition the minimal number of generatorspofand itsideal of
infinitesimalsT 7 is the intersection of all powegg’. Of course, ifZ is moreover Noether-
ian, then its ideal of infinitesimals is zero. In general, we gall= Z/J, the separated
guotientof Z.

For the duration of the next two sections, {2tdenote a local domain of embedding
dimension one, with generator of the maximal ideaWith ideal of infinitesimalsio and
with residue field:. We will work in the categonAff(©O) of local O-affine algebras, that is
to say, the category of algebras of the foRm= (A/I).,, where as beford := O[X] for
some finite tuple of indeterminatés, wherel is a finitely generated ideal iA and where
m is a prime ideal containing andI. Nonetheless, some results can be stated even for
local algebras which are locally finitely generated averthat is, without the assumption
that I is finitely generated. We calR a torsion-free-algebra if it is torsion-free over
9 (that is to say, ifar = 0 for somer € R and some non-zere € 9, thenr = 0).
Recall from Theorem .4 that a locakD-affine algebrakR is torsion-free if and only ifr is
R-regular.

5.1.Lemma. The separated quotien?/Jo of O is a discrete valuation ring with uni-
formizing parameterr.
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Proof. For each element € O outsideJy, there is a smallest € N for which a ¢
71O, Hencea = un® with w a unit inO. It is now straightforward to check that the
assignment — e induces a discrete valuation @y Jo. O

Note that we do not even neel to be domain, having positive depth (that is to say,
assuming that© is not an associated prime Of, see [/, Proposition 9.1.4]) would suffice,
for thenr is necessarilyD-regular. However, we do not need this amount of generality as
in all our applications) will be an ultra-DVR, that is to say, an ultraproduct of discrete
valuation ringsO,,. If we are in this situation, then as before, we it := ©,,[X] and
we let£(A) be their ultraproduct. Moreover, fd = (A/I),, as above, we le€(R) :=
(£(A)/I1£(A))me(a) be its non-standar®d-hull and we letR,, = (Ay/lw)m, be an
9-approximation ofR, whererl,, andm,, areD-approximations of andm respectively.
Note thatm is finitely generated, as it contains by definition

5.2.Lemma. Let(R, m) be a local ring which is locally finitely generated ov@r If [ is
a proper ideal inR containing some power™, then the intersection of all” forn € N
is equal toJp R. In particular, Jp = Jo R and the separated quotient &f is equal to
R := R/Jo R whence is Noetherian.

Proof. Supposer™ € I C m. LetJ be the intersection of all” for n € N. Sincer™ € I,
we getthalp R C J. SinceR is locally finitely generated over the discrete valuation ring
D/35 (see Lemmd. 1), it is Noetherian. Applying Krull’s Intersection Theorem (see for
instance 77, Theorem 8.10]), we get thatk = (0), and hence thaf = Jo R. The last
assertion follows by letting := m. O

5.3.Lemma. Let© be an ultra-DVR. A locabD-affine algebra(R, m) has the samen-
adic completion as its separated quotient, and this is also isomorptg¢ ) /T ¢ r). In
particular, the completion is Noetherian.

Proof. Let R := R/Jr be the separated quotient. For everyve have
R/m" = R/m"R = £(R)/m"£(R),

where the second isomorphism follows from the fact that length is a first order invariant
(see for instance3]). HenceR, R and£(R) have the same completid?t Noetherianity

now follows from Lemmeb.2 By saturatedness of ultraproducts (with respect to a count-
ably incomplete non-principal ultrafilter}(R) is quasi-complete in the sense that every
Cauchy sequence has a (non-unique) limit. Therefore, its separated qudtient ¢ )

is complete, whence equal & For a more detailed proof, se€j Lemma 5.2]. ]

Our first goal is to introduce a good notion of dimension. Below,dmsensionof a
ring will always mean itKrull dimension Recall that it is always finite for Noetherian
local rings.

5.4. Theorem. For a local ring (R, m) which is locally finitely generated oveD, the
following numbers are all equal:

the least possible lengthof a tuple inR generating somer-primary ideal;
the dimensionl of the completiorﬁ;

the dimensionl of the separated quotietit := R/Jo R;

the degreed of the Hilbert-Samuel polynomiak gz, wherexr is the unique
polynomial with rational coefficients for whickg(n) equals the length of
R/m"*! for all large n.
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If 7 is R-regular, thenR /7 R has dimensiomd — 1.
If, moreover, is an ultra-DVR andR a torsion-free localD-affine algebra withO-
approximationR,,, then almost allR,, have dimensiod.

Proof. By Lemmas5.2 and5.3, the separated quotiefit is Noetherian, with completion
equal toR. Henced = d. Moreover, XR = Xp» SO that by the Hilbert-Samuel theory,
d=d.

Let x be a tuple of lengthl such that its image iR is a system of parameters &f
Hence, for some:, we have tham™ C xR + Jo R. In particular, sinc&pR C 7" R,
we can findr € xR andr € R, such thatt™ = = + ra"*!1. Therefores” € xR, since
1—rmisaunit. Sincgly C 7”90, we getthatn™ C xR, showing thak R is anm-primary
ideal and hence that < d. On the other hand, i is a tuple of lengthl such thaty R is
m-primary, theny R is anmR-primary ideal, and hencé < d. This concludes the proof
of the first assertion.

Assume thatr is moreoverR-regular. | claim thatr is R-regular. Indeed, suppose
77 = 0, for somei € R. Take a pre-image € R, so thatrr € JoR C n"R, for
everyn. Sincer is R-regular, we get that € 7"~ IR, for all n. Therefore; € JoR
by Lemma5.2, whencer = 0 in R, as we needed to show. Singeis R-regular and
R/mR = R/7R, the dimension oR/7Risd — 1.

Suppose finally thaD is moreover an ultra-DVR. We already observed tRat/ 7., R
is an approximation oR/7 R in the sense of{d]. In particular, by B9, Theorem 4.5],
almost allR,, /7., R,, have dimensiord — 1. Sincer is L£(R)-regular by flatness, whence
T 1S Ry, -regular by Los’ Theorem, we get th&t, has dimensiod, for almost alkw. [

5.5. Geometric dimension. The common value given by the theorem is calleddbe-
metric dimensiorf R. We call a tuplex in R generig if it generates am-primary ideal
and has length equal to the geometric dimensioR.dfote that if(x1, ..., z4) is a generic
sequence, theR/(z1, . .., x.) R has geometric dimensiah— e.

5.6. Corollary. In a local ring (R, m) which is locally finitely generated oved, every
m-primary ideal contains a generic sequence.

Proof. Let R := R/JoR and letd be the geometric dimension @t. Letn be anm-
primary ideal ofR. SincenR is mR-primary andR is Noetherian, we can find a tupje
with entries im so that its image itk is a system of parameters. In particufahas length
d by Theoremb.4. LetS := R/yR andS := S/JQS By Theorem5.4, the geometnc
dimension ofS is equal to the dimension of, whence is zero sinc§ = R/yR. In
particular,y R is m-primary. Sincey has length equal to the geometric dimensiorRpit
is therefore a generic sequence. O

In fact the above proof shows that there is a one-one correspondence between generic
sequences ik and systems of parameters RYJo R. In general, the last assertion in
Theorem5.4 s false whenR is not torsion-free. For instance, I& := O /a9 with a a
non-zero infinitesimal, so that ea¢h, = 9,,/a,9, has dimension zero, but/Jp is
the (one-dimensional) discrete valuation ringJ .

In the following definition, letD be an ultra-DVR and leR be a locakd-affine algebra
of geometric dimensiod, with O-approximationk,,. Note that theRr,, have almost all
dimension at most. Indeed, ify has lengthd and generates am-primary ideal, then
almost ally,, arem,,-primary by tos’ Theorem, foy,, an-approximation ofy.
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5.7.Definition. We say thatR is isodimensionaif almost all R,, have dimension equal to
the geometric dimension at.

Theoremb5.4 shows that every torsion-free locataffine algebra is isodimensional. In
particular, over an ultra-DVR, the restricted ultraprodicdf domainsR,, of uniformly
boundedd,,-complexity is isodimensional, sindy R) is then a domain by tos’ Theorem,
whence so ik as it embeds ir£ (R). The next result shows that generic sequences in an
isodimensional ring are the analog of systems of parameters.

5.8.Corollary. Let® be an ultra-DVR and? an isodimensional locaD-affine algebra
with D-approximationR,,. Letx be a tuple inR with O-approximationx,, .

If x is generic, therx,, is a system of parameters &f,, for almost allw. Conversely,
if (m)¢ € x4 Ry, fOr somee and almost alkw, thenx is generic.

Proof. Letm be the maximal ideal ok, with O-approximatiorm,,. Letd be the geometric
dimension ofR, so that almost alR,, have dimensiomn. Suppose first that is generic,
so that|x| = d andxR is m-primary. Sincex£(R) is thenm&(R)-primary, x,, R, IS
m,,-primary by tos’ Theorem, showing that, is a system of parameters for almost all
w.

Conversely, suppose, is a system of parameters Bf,, generating an ideal containing
(mw)¢. By tos’ Theorem and faithful flatness¢ € xR. Applying [44, Corollary 4] to
the Artinian base rin@., /(7. )¢, we can find a bound’, only depending om, such that
(My)¢ C Xy R, for almost alkw. Hencem® £(R) € x£(R), so that by faithful flatness,
xR is m-primary. This shows that is generic. |

The additional requirement in the converse is necessary: indeed, for arbifyasy0,
the elementr,, )" is a parameter i), and hasD,,-complexity zero, but ifz,, is un-
bounded, its ultraproduct is an infinitesimal whence not generic. To characterize isodimen-
sional rings, we use the following notion introduced ][

5.9.Definition (Parameter degreeYhe parameter degreef a Noetherian local ring’ is
by definition the smallest possible length of a residue fihxC', wherex runs over all
systems of parameters 6f

In general, the parameter degree is larger than the multiplicity, with equality precisely
whenC'is Cohen-Macaulay, provided the residue field is infinite (8¢eTheorem 17.11]).
The homological degree @ is an upper bound for its parameter degree (¢€eCorol-
lary 4.6]). A priori, being isodimensional is a property of theapproximations of?, of
for that matter, of its non-standagd-hull. However, the last equivalent condition in the
next result shows that it is in fact an intrinsic property.

5.10. Proposition. Let O be an ultra-DVR and leR? be a localO-affine algebra with
D-approximationR,,. The following are equivalent:

(5.10.1) R is isodimensional;

(5.10.2) there exists & € N, such that for almost ally, we can find a system of param-
etersx,, of R,, of O,,-complexity at most, generating an ideal containing
()

(5.10.3) there exists am € N, such that almost alR,, have parameter degree at most
e,

(5.10.4) for every generic sequencefhof the form(r, y), the contracted ideat RNO
is zero.



ASYMPTOTIC HOMOLOGICAL CONJECTURES IN MIXED CHARACTERISTIC 15

Proof. Letm be the maximal ideal aR, with O-approximationm,,. Letd be the geometric
dimension ofR and letd’ be the dimension of almost alt,,. Suppose first that = d’.
Let x be any generic sequencefhwith O-approximationx,,. By £os’ Theorem, almost
all x,, generate am,,-primary ideal. Since their length is equal to the dimensio®gf
they are almost all systems of parameter&gf Choose: large enough so that® € xR.
Enlargingc if necessary, we may moreover assume by Ler@riidhat almost alk,, have
9.,-complexity at most. By Los’ Theorem(m,, )¢ € Xwa, so that 6.10.9 holds.

Assume next that and thex,, are as in$.10.9. LetR,, := R, /(m,)°R,. We can
apply (4, Corollary 2] overD.,, /(. )¢90, to them,, R, prlmary idealk,, R.,, to conclude
that there is somée, depending only on, such thaRw/wa has length at most. Since
the latter residue ring is judt,, /x., R,, by assumption, the parameter degredigfis at
mostc’, and hencef.10.3 holds.

To show that%.10.3 implies 6.10.1), assume that almost dll,, have parameter degree
at moste. Lety,, be a system of parameters®f, such that?,, /y., R., has length at most
e, foralmost alkw. It follows that(m,, )€ is contained iry,, R,,. Lety, be the ultraproduct
of they,,. By tos’ Theoremmes(R) CyoL(R )whencene}? - yooﬁ by Lemma5.3,
showmg tha'yooR is mR- prlmary Sincey ., has length at most’ (some entries might be
zero mR) the dimension of? is at mostd’. Since we already remarked th#t< d, we
get from Theoremt.4thatd’ = d.

So remains to show tha$(10.9 is equivalent to the other conditions. Assume first that
it holds but thatR is not isodimensional. Since we have inequalities 1 < d' < d, this
means that!’ = d — 1. Moreover,R/mR must have geometric dimension also equal to
d — 1, for if not, its geometric dimension would ki whence almost alk,,, /7., R,, would
have dimensionl by [39, Theorem 4.5], which is impossible. Since there is a uniform
boundc on the®,,-complexity of eachk,,, we can choose, using Corolla?y6, a system
of parametery, of R,, of O,,-complexity at most?. In particular, some power af,, lies
iny., R,. Leta € O be the ultraproduct of these powersylis the ultraproduct of thg,,,
theny is already defined oveR by Lemma2.1 By tos’ Theoremga € y£(R), whence
by faithful flatnessg is a non-zero element ipnR N 9. Therefore, to reach the desired
contradiction with $.10.9, we only need to show thdtr,y) is generic. As we already
establishedR,, /7., R,, has dimensiod — 1, so thaty,, is also a system of parameters in
that ring. Thereforey is a system of parameters R/ R by [39, Theorem 4.5]. This in
turn implies tha{x, y) generates am-primary ideal inR. Since this tuple has length it
is therefore generic, as we wanted to show.

Finally, assumeR is isodimensional, and suppo§e,y) is generic. Letz € yR N O
and chooseD-approximationss,, andy,, of a andy respectively. By tos’ Theorem,
ay € ywRy. However, ifa is non-zero, them,, is, up to a unit, a power of,,, which
contradicts the assertion in Corollaby8 that (7., y.,) IS a system of parameters. So
a = 0, as we needed to show. O

5.11.Corollary. For eachc, there exists a bounBD(c) with the following property. Let
V be a discrete valuation ring and It be a localV -affine algebra ofi’-complexity at
moste. If C is torsion-free ovel/, then the parameter degree @fis at mostPD(c).

Proof. If the statement is false for somgethen we can find for each a discrete valuation
ring ., and a torsion-free locab.,-affine algebrak,, of O.,-complexity at most, whose
parameter degree is at leastLet R be the restricted ultraproduct of tifg, and letS(R)
be their ultraproduct. Since, is R,,-regular,r is £(R)-regular, whenc&-regular. Hence
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R is isodimensional by Theoret4. Therefore, there is a bound on the parameter degree
of almost allR,, by Propositiorb.10, contradicting our assumption. O

Our next goal is to introduce a notion similar to height. Ldte an arbitrary ideal of.

5.12. Definition (Geometric height) We call thegeometric heighof I the maximum of
all h such that there exists a generic sequence whosé fastries belong td.

For Noetherian rings, we cannot expect a good relationship between the height of an
ideal and the dimension of its residue ring, unless the ring is a catenary domain; the fol-
lowing is the analogue over ultra-DVR'’s.

5.13. Theorem. Let O be an ultra-DVR and lefz be a localD-affine domain withD-
approximationR,,. LetI be a finitely generated ideal iR with D-approximation/ ,,.

If R/I is isodimensional, then the geometric heighf a6 equal to the geometric di-
mension ofR minus the geometric dimension Bf I, and this is also equal to the height
of almost allf,,,.

Proof. Let d be the geometric dimension & ande the geometric dimension a®/I.

Since a domain is isodimensional, almostfall have dimensiod by Theorenb.4, and by
assumption, almost ak,, /I, have dimensiomr. Let h be the geometric height df Let

z be a generic sequencetwith its first 4 entries in, and letz,, be ano-approximation
of z. By Corollary5.8, almost allz,, are a system of parametersi,. Since by tos’
Theorem the firsk entries ofz,, liein I,,, we getthai?,, /., has dimension at mogt-h.

In other words) < d — e. Since almost alR,, are catenary domains, almost &}l have
heightd — e.

So remains to show that— e < h. By Lemmab5.2, the separated quotient &/ is
equal toR/IR. Therefore, by the remark following CorollaBy6, we can find a generic
sequencézxy,...,x4) in R such that (the image of}4, ..., z.) is a generic sequence in
R/I. By definition of generic sequencé,:= R/(x1,...,z.)R has geometric dimension
d — e. If x;, is anO-approximation ofr;, then almost eack,, := (14, -, Zew) IS A
system of parameters i,, /I, by Corollary5.8. Sincex,, is therefore part of a system of
parameters iR,,, almost eacltt,, := R,,/x, R, has dimension — e by [27, Theorem
14.1]. By choice of ther;, the ideall + (z1,...,z.)R is m-primary and hencdsS is
mS-primary. Therefore, by Corollary.6, we can find a tuplg of lengthd — e in I, so
that its image irS' is a generic sequence. It follows that, . . ., z.) R+ y R is m-primary.
Since(y, z1, ..., z.) has lengthi, it is a generic sequence, showing that e < h. O

6. PSEUDO SINGULARITIES

In this section, we maintain the notation introduced in the previous section. Our goal
is to extend several singularity notions of Noetherian local rings to the category of local
-affine algebras.

Grade and depth. Let B be an arbitrary ring and := (1, . .., z,,) B afinitely generated
ideal. Thegradeof I, denotedsrade(I), is by definition equal tav — h, whereh is the
largest value for which thei-th Koszul homologyH; (z1, . . ., z,,) is non-zero. For a local
ring R of finite embedding dimension, we definedtspthas the grade of its maximal ideal.
If B is moreover Noetherian, then we can define the grade afernatively as the
minimal i for which Ext%; (B/I, B) is non-zero (for all this see for instancg §9.1]). An
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arbitrary local ring has positive depth if and only if its maximal ideal is not an associated
prime. Grade, and hence deptieforms wellin the sense that the

grade(I(B/xB)) = grade(I) — |x]

for every B-regular sequencein I. For a locally finitely generate®-algebra( R, m), its
depth never exceeds its geometric dimension. Indeed, by definition, the grade of a finitely
generated ideal never exceeds its minimal number of generators, arnd Bsoposition
9.1.3], the depth of? is equal to the grade of any of its-primary ideals. It follows that
the depth ofR is at most its geometric dimension.

In general, the grade of a finitely generated ideal might be positive without it contain-
ing a B-regular element. However, the next lemma shows that this is not the case for
ultraproducts of Noetherian local rings.

6.1.Lemma. LetC, be the ultraproduct of Noetherian local rings,, and let/, be a
finitely generated ideal af’., obtained as the ultraproduct of ideals, C C,.

If I, has graden, then there exists &',-regular sequence of lengthwith all of its
entries in/ ... Moreover, any permutation of@..-regular sequence is agaifl . -regular.

Proof. By [7, Proposition 9.1.3], there exists a finite tuple of indeterminateand a
C[Y]-regular sequencé,, of lengthn, with all of its entries inl,C[Y]. Choose
tuplesf,, in C,[Y] so that their ultraproduct if.,. By tos’ Theorem(f,, is C,[Y]-
regular and has all of its entries I, C,, [Y], for almost allw. This shows thaf,,C,,[Y]

has grade at least SinceC,, — C,,[Y] is faithfully flat, I,, has grade at least by [7,
Proposition 9.1.2]. Hence, sin€g, is Noetherian, we can find@,,-regular sequence,,

of lengthn with all of its entries inl,,. By tos’ Theorem, the ultraprodust,, of thex,,

is C'w-regular and has all of its entries Ii..

The last assertion follows from tos’ Theorem and the fact that in a Noetherian local

ring, any permutation of a regular sequence is again reguar Theorem 16.3]). O

Recall that a Noetherian local ring for which its dimension and its depth (respectively,
its dimension and its embedding dimension) coincide is Cohen-Macaulay (respectively,
regular). We will shortly see that upon replacing dimension by geometric dimension, we
get equally well behaved notions. Let us therefore make the following definitiong, &or
local D-affine algebra.

6.2. Definition. We say thatR is pseudo-Cohen-Macaulaif its geometric dimension is
equal to its depth, anpseudo-regularif its geometric dimension is equal to its embedding
dimension.

6.3. Theorem. Let © be an ultra-DVR and letf? be an isodimensional locaD-affine
algebra withO-approximationR,,. In order for R to be pseudo-Cohen-Macaulay it is
necessary and sufficient that almost &l], are Cohen-Macaulay.

Proof. Let d be the geometric dimension &f and its depth. Suppose first thdt= J.
SinceR — £(R) is faithfully flat, £(R) has depthy as well by [/, Proposition 9.1.2].
By Lemma6.1, there exists art(R)-regular sequence,, of lengthd. If x,, is anO-
approximation ok, then almost eack,, is R,,-regular by £os’ Theorem. Since almost
all R,, have dimensior by isodimensionality, almost all are Cohen-Macaulay.
Conversely, assume almost &, are Cohen-Macaulay. It follows by reversing the
above argument that(R) has depthl and hence, so ha?, by faithful flatness. d

Since every system of parameters is a regular sequence in a local Cohen-Macaulay ring,
we expect a similar behavior for generic sequences, and this indeed holds.
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6.4. Theorem. Let © be an ultra-DVR and lef? be an isodimensional locaD-affine
algebra. IfR is pseudo-Cohen-Macaulay, then any generic sequengeaégular.

Proof. Letx be a generic sequence wifhapproximatiorx,,. Almost eaclx,, is a system

of parameters inR,,, by Corollary5.8. Since almost allR,, are Cohen-Macaulay by
Theoremb6.3, almost eack,, is R,,-regular. Hencex is £(R)-regular, by tos’ Theorem,
whenceR-regular, by faithful flatness. d

6.5.Theorem. Let® be an ultra-DVR. An isodimensional loc@taffine algebrak with
-approximationR,, is pseudo-regular if and only if almost &li,, are regular local rings.

Proof. Let m be the maximal ideal oR, with O-approximationm,,. Let £(R) be the
non-standarcD-hull of R. Let e be the embedding dimension & andd its geometric
dimension. Suppose th&tis pseudo-regular, that is to say, that d. Hencem = xR for
somed-tuple x, necessarily generic. Sinee(R) = x£(R), tos’ Theorem yields that
m,, = X, R, wherex,, is anO-approximation ofk. Since almost alR,, have dimension
d, almost all are regular local rings.

Conversely, suppose almost &ll, are regular. Since th®,,-complexity of almost
all R, is at mostc, for somec, we can find a regular system of parametegsof O,,-
complexity at most (as part of a minimal system of generatorawqf). By Lemma2.1,
their ultraproductx belongs toR, and is a generic sequence by Corollar$. By tos’
Theorem and faithful flatnesg,R = m whencee < d. Since geometric dimension never
exceeds embedding dimensien; d andR is pseudo-regular. |

The following is now immediate from the previous result and Theofein

6.6.Corollary. Let® be an ultra-DVR. IiR is a pseudo-regular locaD-affine algebra,
then R is a domain if and only if it is isodimensional. Moreover, if this is the case, then
every localization oR? with respect to a prime ideal containingis again pseudo-regular.

In fact, the restricted ultraproduét of regular localD,,-affine algebrask,, of uni-
formly boundedD,,-complexity is pseudo-regular and isodimensional. Indeed, we already
observed that theR is isodimensional, and therefore by Theorér pseudo-regular. For
a homological characterization of pseudo-regularity, see Cordllarfybelow.

6.7.Example. If R denotes the localization ad[X,Y]/(X? + Y? + 7) at the maximal
ideal generated by, Y andw, thenR is pseudo-regular (namely andY generate the
maximal ideal, se = 2, and sinceR/7 R has dimension ong, = 2 as well). Note though
thatR /xR is not regular.

6.8. Corollary. Let © be an ultra-DVR and leR? be an isodimensional locaD-affine
algebra. IfR is pseudo-regular, then it is pseudo-Cohen-Macaulay.

Proof. Let R,, be anD-approximation ofR. By Theorem6.5, almost allR,, are regu-
lar whence Cohen-Macaulay. This in turn implies tiats pseudo-Cohen-Macaulay by
Theorem6.3. O

Without the isodimensionality assumption, the result is false. For instance bieta
non-zero element in the ideal of infinitesimals®fand putR := O /a9O. It follows thatR
has geometric dimension one, whence is pseudo-regular, but its depth is zero.
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6.9. Transfer. Let me now elaborate on why the results in this section are instances of
transfer between positive and mixed characteristic. Suppb&®a second ultra-DVR,
realized as the ultraproduct of discrete valuation rifigsand suppos® = O. Note that
this doesiotimply thatO,, and9,, are almost all pair-wise isomorphic. In fact, in the next
sections, one set of discrete valuation rings will be of mixed characteristic and the other set
of prime characteristic. LeR be a localO-affine algebra. Sinc& is then also locaD-
affine, its admits a non-standagtthull andO-approximations with respect to this second
set of discrete valuation rings; let us denote thentgy ) andR,, respectively. Suppose
0,, and9,, have pair-wise isomorphic residue fields (as will be the case below). Since
the R,, /7, Ry, @re an approximation of the-algebraR /7R (in the sense of]) and,
mutatis mutandis, so are th®, /7., R.,, wherer,, is a uniformizing parameter ab,,, we
get from [29, 3.2.3] that almost alR,, /7., R,, are isomorphic td?,, /7, R.,. Therefore, if
we assume that there is no torsion, tiép and R,, have the same dimension, and one set
consists of almost all Cohen-Macaulay local rings if and only if the other set does (note that
this argument does not yet use the abpseudamotions). However, this argument breaks
down in the presence of torsion, or, when we want to transfer the regularity property. This
can be overcome by using the notions defined in this section, provided we have a uniform
upper bound on the parameter degree.

Suppose, for somé e € N, that almost allR,, have dimensiod and parameter degree
at moste. Note that in view of Corollarp.11this last condition is automatically satisfied if
almost allr,, are torsion-free oved,; and that it is implied by the assumption that almost
all R,, have uniformly bounded homological multiplicity (se[ Corollary 4.6]). Apply-
ing Propositiorb.10twice gives first thai? is isodimensional, with geometric dimension
d, and then that almost alt,, have dimensiod and uniformly bounded parameter degree.
Now, Theorems$.3and6.5tell us that almost alk,,, are respectively Cohen-Macaulay or
regular, if and only if almost alR,, are.

7. BIG COHEN-MACAULAY ALGEBRAS

In [3, 41], ultraproducts of absolute integral closures in characteristi@re used to
define big Cohen-Macaulay algebras in equicharacteristic zero. This same process can
be used in the current mixed characteristic setting. Recall that for an arbitrary domain
B, we define itsabsolute integral closuras the integral closure d8 in some algebraic
closure of its field of fractions and denotéit™. This is uniquely defined up tB-algebra
isomorphism.

For each prime numbex, IetD;,"‘X be a mixed characteristic complete discrete valuation
ring with uniformizing parameter, and residue field:, of characteristigp, and letO, =
andx be their respective ultraproducts. B* := «,[[t]], for ¢ a single indeterminate. By
Theorem2.3, the Ax-Kochen-Ershov Theoren), is isomorphic to the ultraproduct of the
0% As before,Jy denotes the ideal of infinitesimals 8f. PutA := 9O[X], for a fixed
tuple of indeterminatex’, and let€Z(A) and £5*(A) be its respective equicharacteristic
and mixed characteristic non-standaréhull, that is to say, the ultraproduct of respectively
the A7 := D7 X] and theAg“X = DQ‘X [X].

Throughout,R will be a localD-affine domain withR;" and £3\(R) respectively an
equicharacteristi®)-approximation and the equicharacteristic non-standatull of R
(so thatCZY(R) is the ultraproduct of thé&?}?). By Theorenw.4, almost all ;" are local
domains.

7.1.Definition. DefineB(R) as the ultraproduct of thgz,")*.
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Since (R is well-defined up toR;*algebra isomorphism, we have thatR) is
well-defined up toR-algebra isomorphism. Moreover, this construction is weakly func-
torial in the following sense. LeR — S be an®-algebra homomorphism between
local O-affine domains. This induce®;-algebra homomorphismg;® — S5? of the
corresponding equicharacterisficapproximations. These in turn yield homomorphisms
(RPNt — (S37) between the absolute integral closures. Taking ultraproducts, we get an
0-algebra homomorphisi(R) — B(.S) and a commutative diagram

R ~ S

(6)

B(R) - B(S).

7.2.Theorem. If R is a local O-affine domain, then any generic sequenc®iis 5(R)-
regular.

Proof. Let £3)(R) andR;” be respectively, the equicharacteristic non-stangatuill and
an equicharacteristiD-approximation ofR?. Letx be a generic sequence, ancx{gtbe an
O-approximation ofk. By Corollary5.8, almost eaclx,, is a system of parameters Rj,
whence ig R;%)*-regular by [9). By Los’ Theoremx is B(R)-regular. O

8. IMPROVED NEW INTERSECTIONTHEOREM

The remaining sections will establish various asymptotic versions in mixed character-
istic of the Homological Conjectures listed in the abstract. We start with discussing Inter-
section Theorems. By3[]], we now know that the New Intersection Theorem holds for all
Noetherian local rings. However, this is not yet known for the Improved New Intersection
Theorem. We need some terminology and notation (all taken fr)m [

Let C be an arbitrary Noetherian local ring agd C* — C? a linear map between
finite freeC-modules. We will always think op as an(a x b)-matrix overC. Forr > 0,
recall that ther-th Fitting ideal of o, denotedI,.(y), is the ideal inC' generated by all
(r x r) minors ofyp; if r exceeds the size of the matrix, we gufy) := (0).

By afinite free complexverC we mean a complex

(F) R O e e o ]

We call s thelengthof the complex, and for eachwe define

S

ry = Z(—l)j_ia]—.

j=t
We will refer tor; as theexpected ranlof ;. We will call the residue ring’/I,., (¢;) the
i-th Fitting ring of F, and we will denote itR; (F,).
Thei-th homologyof F, is by definition the quotient module
H;i(F,) := Ker(p;i)/ Im(pit1).

We call F, acyclic if all H;(F,) = 0 for: > 0. In that caseF, yields afinite free
resolutionof Hy(F,).
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In caseC' is a Z-affine algebra withZ a local ring, we say thak, hasZ-complexity
at moste, if its length s is at moste, if all a; < ¢, and if every entry of each; hasZ-
complexity at most. Below we will say that an elementin a homology moduldd; (F,)
hasZ-complexityat moste, if itis the image of a tuple ifer(y;) of Z-complexity at most
¢ (for more details, segl1 below).

8.1.Theorem (Asymptotic Improved New Intersection Theorenkpr eache, there exists
a boundINIT(¢) with the following property. Let” be a mixed characteristic discrete
valuation ring and letC, m) be a localV-affine domain. LeF, be a finite free complex
overC. Assumef,(F,) has a minimal generator, such thatC'r has finite length and
assume that simultaneously bounds tHé-complexity ofC, r and F,, the parameter
degree of each Fitting ring; (F, ), and the length o€’ 7.

If ®;(F,) has dimension at mosim C — ¢, fori = 1,. .., s, then the dimension df
is at most the length of the complé¥, provided the characteristic of the residue field of
9 is bigger thanNIT(c).

Proof. If #C' = 0, thenC contains the residue field &f and in that case the Theorem is
known (see for instance’ [ Theorem 9.4.1] or1[1, 16]). So we may moreover assume that

C is flat overV. By faithful flat descent, we may replaée andC by V and a suitable
localization of V @y C respectively, wherd’ is the completion of”. In other words,

we only need to prove the result for a torsion-free local domain over a complete discrete
valuation ring of mixed characteristic. Suppose this last assertion is false for@ne

that there exists an infinite sét of prime numbers and for eaghe U a counterexample
consisting of the following data:

e amixed characteristic complete discrete valuationfﬁrw with uniformizing
parameterr,, whose residue field has characterigtic

e alocalO"™-affine domaink"™ of O -complexity at most;

e afinite free complex

(F;;\lix 0 — (R;\:iX)as Ps,p (RgliX)aS_l Ps—1,p
$2,p (RgliX)al $1,p (Rgli)()ao_}o

of lengths and opomix-compIexity at most, such that the-th Fitting ring
R;(Fpe) has dimension at mogt— i and parameter degree at mest

e aminimal generator,, of Hy(F7,") of OF'™-complexity at most, generating
a module of length at most

but such thats is strictly less than the dimension (ﬁ‘;“x. Choose some non-principal
ultrafilter on the set of prime numbers which contains In particular, we have a coun-
terexample with the above properties for almospalVithout loss of generality, we may
assume that the dimension of eaRE?‘X and that the ranks of ead’rj;“,‘X are independent
from p, since there are only finitely many possibilities, and hence precisely one such pos-
sibility almost always holds. In particular, the expected ranks do not depend on

Let O andr be the respective ultraproduct of thé"™ and ther,,. Let R and£3*(R)
be the respective restricted ultraproduct and ultraproduct oﬂ'fmé. It follows from
Theorem?.4, thatR is a localO-affine domain, and from Theorem?, thatR — £35%(R)
is faithfully flat. Letd be the geometric dimension @, so that almost aIJR;,@niX have
dimensiond by Theorem5.4. Let ¢; be the ultraproduct of the; ,. It follows from
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Lemma2.1that eachp; is already defined oveR. Hence by tos’ Theorem

(F) 0— R Ly Rrer 22, P2 e PLLRa0

is a finite free complex. Led denote its zero-th homology and fix some By tos’
Theorem,l,, (¢;.p) is anO-approximation off,., (¢;). By the uniform boundedness of the
parameter degree®,; (F,) is isodimensional by Propositiah10. If d; is the geometric
dimension ofR;(F,), thend — d; is equal to the height of almost dl}, (¢;.,) and to the
geometric height of ., (¢;), by Theorenb.13 In particular, by assumption,< d — d;,
and therefore, by definition of geometric height, we can find a generic sequemnte?
whose first entries belong td,., (¢;).

Let B := B(R). Sincex; is B-regular by Theoreri.2, the grade of ., (¢;) B is at least
1. Since this holds for all, the Buchsbaum-Eisenbud-Northcott Acyclicity Theorem ([
Theorem 9.1.6]) proves thd#f, ®z B is acyclic. SinceB has depth at leagt, it follows
from [7, Theorem 9.1.2] that the zero-th homologyAif ® B, that is to sayM ®r B,
has depth at least— s.

Let 7 be the ultraproduct of the,. Note that eachr, is by assumption the image of
a tuple in(Rg“X)“0 of Dg“x—complexity at most, so thatr is already defined oveR by
Lemma2.1 By tos’ Theorem; is a minimal generator of

Ho(Fy ® £0%(R)) = M @ £2%(R),

and by 4, Proposition 1.1] or45, Proposition 9.1], the length dlg‘X(R)T is at most

c. By faithful flathess; € M — mM, wherem is the maximal ideal o, and R7 has
length at most. In particular, the image of ® 1 in M/mM ® B/mB is non-zero, and
thereforer ® 1 itself is a non-zero element 8ff ® B. Sincem® annihilatesr ® 1, we get
that M ® B has depth zero. Together with the conclusion from the previous paragraph, we
get thatd < s, contradiction. O

This type of argument ex absurdum, to obtain uniform bounds via ultraproducts, is very
common and will be used constantly in the sequel. We will shorten the argument by saying
from the start that by way of contradiction, we may assume that for spthere exist for
almost eachy a counterexample with such and such properties.

9. MONOMIAL AND DIRECT SUMMAND CONJECTURES

We keep notation as in the previous section, so that in particdlavill denote the
ultraproduct of mixed characteristic complete discrete valuation @{Q‘é. In order to
formulate a non-standard version of the Monomial Conjecture, we need some terminology.
LetN,, be the ultrapower oRN. LetC,, be rings,X := (X3, ..., X,) indeterminates and
A the ultraproduct of th€”,,[X]. Although eaciC,,[X] is N-graded, it is not true that
A is Ny -graded, since we might have infinite sums of monomiald ip. Nonetheless,
for eachv,, € (N,)?, the elemenf(”~= is well-defined, namely, if . is the ultraproduct
of elements/,, € N, then

XVeo 1= IlulliHO}) XVr,
In particular, if B, is an arbitrary ultraproduct of ring8,, and ifx is ad-tuple in B,
thenx”= is a well-defined element db ..

By aconeH in a semi-groud” (e.g.,I' = N¢ orI' = N% ), we mean a subsé{ of
I"such thatr + I' C H, for everyrv € H, wherev + I' stands for the collection of all
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v+ v with v € I'. A coneH is finitely generatedif there existv4,...,v, € H, called
generatorof the cone, such that

H:Uu,-+r.

If H is a cone inN?, we let.J;; be the monomial ideal i[Y] generated by alt’” with
v € H, whereY is ad-tuple of indeterminates. Iff is generated by.,...,v,, then
Jyr is generated by, ..., X¥=. Conversely, ifJ is a monomial ideal irZ[Y], then the
collection of allv for which Y € J, is a cone inN?. SinceZ[Y] is Noetherian, every
cone inN is finitely generated. This is no longer true for a con&if.

Let B be an arbitrary ring. We will use the following well-known fact about regular
sequences. Ik is a B-regular sequence (in fact, it suffices thats quasi-regular)H a
cone inN? andv ¢ H, thenx” does not lie in the ideal (x) generated by alk’ with
fecH.

9.1. Corollary. Let R be a local9D-affine domain with equicharacteristic non-standard
O-hull £Z(R). Letx be a generic sequence i let H be a cone ifNZ, and lety € NZ.
If v ¢ H,then

@) x" ¢ (x| p e H)LS(R).

Proof. Suppose?) is false for some choice of cor¢ of N¢, and some/, ¢ H. In other
words, we can find; o, in SSDQ(R) and tuples; in H, such that

(8) x"° :flooxyl+"'+fsooxys~

SinceR — B(R) factors throughe3}(R), we can view ) as a relation if3(R), and we
want to show that that is impossible. LEfY be an equicharacteristid-approximation
of R, so thatB(R) is the ultraproduct of théR;Y)*. Choose tuples;, € N, elements
fip € (BT and tuplesx, in Ry whose respective ultraproducts ae f; ., andx. By

tos’ Theorem, we get that

(9) XZOP — flplep + -+ fspxgsp

in (RN, for aimost allp. £os’ Theorem also yields tha,, does not lie in the cone &
generated by ,, . .., vy, for aimost allp. Howeverx is B(R)-regular by Theorend.2,
whence, almost ak,, are (R;")*-regular by £os’ Theorem. By our above discussion on
regular sequences))(cannot hold for thosg. O

9.2. Theorem (Asymptotic Monomial Conjecture .I)For eache, there exists a bound
MC(c) with the following property. LeY” be a tuple of indeterminates antda monomial
ideal inZ[Y']. LetV be a mixed characteristic discrete valuation ring anddébe a local
V-affine domain. Ley be a system of parametersdhand letJ (y)C denote the ideal i@
obtained fromJ by the substitutioy” — y. Assume/V[Y], C andy haveV-complexity
at mostc andn¢ € yC.

If Y is a monomial of degree at mashot belonging toJ, theny” ¢ J(y)C, provided
the characteristic of the residue field Bfis bigger thanMC(c).

Proof. Note that since” hasV-complexity at most, its dimensiornd is at mostc. By
faithful flat descent, we may reduce to the case thas complete. Suppose the result is
false for some, so that we can find for almost each prime numyer
e amixed characteristic complete discrete valuationmglff with uniformizing
parameterr,, whose residue field has characterigtic
e alocalOf*-affine domaink™ of OM*-complexity at most,
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e multi-indicesvy,, . . ., v, such thaty;,| < c anduy, is not in the cone gen-
erated by the remaining tuples,
e a system of parametess, of O}'*-complexity at most generating an ideal
containing(m,)°,
such that
(10) yLor € (yhir, .. yhr )R

Note that the possible numbeof tuplesy;, is bounded in terms of and hence can be
taken to be independent pf Let O be the ultraproduct of th@g“X and letR and 5% (R)
be the respective restricted ultraproduct and ultraproduct oRg‘ié SinceR is then a
domain, it is isodimensional. Let andy; be the respective ultraproductsyf andv; .
In particular,|v;| < ¢, so thaty; € N%. Let H be the cone ilN? generated by, ..., v;.
By tos’ Theorem,vy ¢ H. The sequencg is defined overR, by Lemma2.1, and is
generic inR, by Corollary5.8. By an application of £os’ Theorem td.() together with
Theoremd.2, we get

vy e (y™,...,y")R.
However, this contradicts Corollag;1for the coneH . O

9.3.Remark.In [38, Theorem 1.1], this result was stated erroneously without imposing a
bound on the degrees of the monomials. | can only prove this more general result in the
special case given by Corollagy5 below.

Using some results from4[], we can remove the restriction aif to be a domain.
Namely, by the usual argument, we reduce to the domain case by killing a minimalgprime
of C' of maximal dimension (that is to say, so thigin C = dim C'/p). However, in order
to apply the theorem to the domair/p, we must be guaranteed that liscomplexity
is at mostc’, for somec’ only depending or. Such a bound does indeed exist By,
Theorems 9.2 and 9.12].

9.4.Theorem (Asymptotic Direct Summand Conjecturejor eache, we can find a bound
DS(c) with the following property. Le¥” be a mixed characteristic discrete valuation ring
and letC — D be a finite, injective local’-algebra homomorphism df-complexity at
mostc.

If C'is regular, thenC' is a direct summand d (as aC-module), provided the charac-
teristic of the residue field df is bigger than the bounBS(c).

Proof. If 7C' = 0, we are in the equicharacteristic case and the result is well-known. So we
may assume that C C. We leave it to the reader to make the reduction to the cas&that
is complete and is torsion-free ovel’. Towards a contradiction, suppose for sanand
almost eaclp, we have a mixed characteristic complete discrete valuation@g‘ig with
residue field of characteristjg, and a finite, injective IocaDg“X—aIgebra homomorphism
R — SMix of OMx-complexity at most, such thatRT™ is regular but not a direct
summand of5M™.

By the transfer described 5.9, these data in mixed characteristic yield corresponding
data in equal characteristic. In particular, we have for almost gaah equicharacteristic
p complete discrete valuation ring;”, and a finite, injective locaD;-algebra homomor-
phism R3? — Sp% of O5%-complexity at most;, such thatR;? is regular. Although, we
did not discuss transfer of homomorphisms and their properties, it is not hard to see, using
faithfully flat descent, that almost ;" is a direct summand of;". However, this is in
violation of the Direct Summand theorem in equicharacteristic. O
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9.5. Corollary (Asymptotic Monomial Conjecture Il)For eache, we can find a bound
MC’(c) with the following property. LeV be a mixed characteristic discrete valuation
ring, let D be a localV-affine algebra and lefx1, ..., z4) be a system of parameters in
D.

If there exists a finite, injective loc&l-algebra homomorphisii C D of V-complexity
at moste, such that ther; belong toC' and generate its maximal ideal, thén; - - - x4)*
does not belong téz} ", ..., 25t D, for all t > 0, provided the residue field df is
bigger thanMC'(c) .

Proof. We may takeMC’(c) equal to the boun®S(c) from Theoren®.4. Indeed, since
D has dimensior, so doeg”, showing that' is regular. Hencé€' is a direct summand of
D by Theoren®.4, so that we are done by,[Lemma 9.2.2]. O

Note that the bounds provided by Theor@rf for the problem at hand depend a priori
also on the exponerit so that the corollary gives a stronger result. Interestingly, by Co-
hen’s Structure Theorem, any system of parameters in a completeliegffine domain
arises as the image of a regular system of parameters under a finite extension. However,
since we are forced to work with non-compldteaffine algebras, it is not clear yet to
which extent the above theorem applies.

10. PURE SUBRINGS OF REGULAR RINGS

We keep notation as in the previous section, so that in particdlavill denote the
ultraproduct of mixed characteristic complete discrete valuation m;g& Our goalis to
show an asymptotic version of the Hochster-Roberts TheoremZjn Recall that a ring
homomorphisnC' — D is calledcyclically pureif every ideall in C is extended fronD,
thatisto say, iff = IDNC.

10.1.Theorem. If Ris a pseudo-regular isodimensional locataffine algebra, the® —
B(R) is faithfully flat.

Proof. Let L be a linear form in a finite number of indeterminatéswith coefficients in
R and letb be a solution inB := B(R) of L = 0. Let Ry, L;" andby? be equichar-
acteristicO-approximations of?, L andb respectively. By tos’ Theorenh;’ is a so-
lution in (R;)T of the linear equatiorl.;” = 0. By [2, Corollary 4.27], we can find
tuplesa;p’, ..., asp  over Ry generating the module of solutions bf? = 0, all of O3

complexity at most;, for somec independent fromp ands. Letay,...,a, be the re-
spective ultraproducts, which are then defined dvdry Lemma2.1. By tos’ Theorem,
L(a;) = 0, for eachi. On the other hand, almost ai;’ are regular, by Theorer.5.

Therefore Ry} — (RpN T is flat by [24, Theorem 9.1]. Hence we can writ€” as a linear
combination ove( R;)* of thea,,. By Los’ Theorempb is a B-linear combination of
the solutions;, showing thatR — B is flat whence faithfully flat. O

10.2. Proposition. Let R — S be an injective homomorphism of local isodimensional
O-affine algebras. 1R/7R — S/xS is cyclically pure andS is a pseudo-regular local
ring, thenR is pseudo-Cohen-Macaulay.

Proof. SincesS is a domain by Corollarg.6, so isR. If 7R = 0, we are in an equichar-
acteristic Noetherian situation and the statement becomes the Hochster-Roberts Theorem
[22]. Therefore, we may assumeis R-regular, so that we can choose a generic sequence

x := (x1,...,24) in Rwith 2y = n. For eachn < d, letI, := (x1,...,z,)R. Sup-
poserz, 1 € I,, for somer € R. By Theorem?.2 the sequence is a B(R)-regular.
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Therefore,r € I,,B(R). Since the homomorphislR — S induces a homomorphism
B(R) — B(S), we getr € I,,B(S). By Theoreml10.1, we havel,,B(S) N S = I,,S,
so thatr € I,,S. Using finally thatR/7rR — S/xS is cyclically pure andr € I,,, we
getr € I,. This shows thak is R-regular, so thaf? has depth at least and hence is
pseudo-Cohen-Macaulay. O

10.3.Theorem (Asymptotic Hochster-Roberts Theorenijor eache, we can find a bound
HR(c) with the following property. Let” be a mixed characteristic discrete valuation ring
and letC — D be a localV-algebra homomorphism &f-complexity at most.

If C — D is cyclically pure andD is regular, thenC' is Cohen-Macaulay, provided the
characteristic of the residue field &f is at leastHR(c).

Proof. As before, we may reduce to the case thais complete and that” C C. Sup-
pose this assertion is then false for someso that we can find for almost each prime
numberp, a mixed characteristic complete discrete valuation mg@* with residue field
of characteristip and a cyclically pureD"™-algebra homomorphism®"™ — ST of
OMX-complexity at most, such thats™ is regular butk™ is not Cohen-Macaulay. Let
R — S and£B*(R) — £1%(S) be respectively the restricted ultraproduct and the ultra-
product of theRp”“X — Spm‘X. Theorem6.3implies thatR is not pseudo-Cohen-Macaulay,
and Theoren®.5, thatS is pseudo-regular. | claim th@ /7R — S/=S is cyclically pure.
Assuming this claim, we get from Propositidd.2 that R is pseudo-Cohen-Macaulay,
contradiction.

To prove the claim, lef be an arbitrary ideal ik containingr. Letr € 1SN R, so that
we need to show that € I. Note thatl is finitely generated, aB/= R is Noetherian. Let
I™* andr"™ be mixed characteristid-approximations iz of I andr respectively. By
tos’ Theorem, almost af™™ lie in I™*SMx N RM*, whence inf"™ by cyclical purity. By
tos’ Theoremy € I1£M%(R), so that- € I by faithful flatness, as we needed to provél

11. ASYMPTOTIC VANISHING FOR MAPS OFTOR

11.1. Proposition. If R — S is an integral extension of locaD-affine domains, then
B(R) = B(S).

Proof. Since any integral extension is a direct limit of finite extensions, we may assume
thatR — S isfinite. Choose an equicharacterisfieapproximationk;® — Splof R — S.

By Theorem¥.4and tos’ Theorem, almost alt;? and S;* are domains and the extension
Ry — Splis finite. Therefore(RyH)t = (SpH)T, so that in the ultraproduct, we get
B(R) = B(S). 0

11.2.Theorem. Let R — S — T be local O-algebra homomorphisms between local
9-affine domains. Assume th&tand 7" are pseudo-regular and tha — S is integral
and injective. For evenyz-moduleM, the induced magor!*(S, M) — Torl (T, M) is
zero, for alli > 1.

Proof. SinceR — S is integral, we have tha@t(R) = B(S) by Propositionl1.1 There-
fore, Tor?*(B(S), M) = 0, for all i > 1, by Theorem10.1 By weak functoriality, we
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have, for each > 1, a commutative diagram

Torl(S, M) >~ Tor (T, M)

(11)

0 = Tor’*(B(S), M) ~ Tor®(B(T), M).

In particular, the composite map in this diagram is zero, so that the statement follows
once we have shown that the last vertical map is injective. However, this is clear, since
T — B(T) is faithfully flat by Theorenl0.1 O

To make use of this theorem, we need to incorporate modules in our present setup. |
will not provide full details, since many results are completely analogous to the case where
we work over a field, and this has been treated in detaib’ifh [Of course, we do not have
the full equivalent of Theorer®.2to our disposal, but for most purposes, the flatness result
in Theorem4.2 suffices.

Let C' be an arbitrary Noetherian local ring ad a finitely generated module over
C. We say that a finite free compldX, is afinite free resolution of\/ up to leveln, if
Hy(F,) = M and allH;(F,) =0, for j = 1,...,n. Hence, ifn is strictly larger than the
length of F,, then this just means thég, is a finite free resolution af/ (compare with the
terminology introduced in the beginning ¢8).

Suppose moreover that is a Noetherian local ring an@ is a local Z-affine algebra.

We say that\/ hasZ-complexityat moste, if C' hasZ-complexity at most and if M can
be realized as the cokernel of a matrixfcomplexity at most (meaning that its size is
at mostc and all its entries hav&-complexity at most,).

11.3.Proposition. For each pair(c,n), there exist boundRES(c,n) andHOM(c¢) with
the following property. LeV be a mixed characteristic discrete valuation ring anddét
be a localV-affine algebra of/-complexity at most.

¢ Any finitely generated’-module ofi’-complexity at most, admits a (minimal)
finite free resolution up to level of V-complexity at mosRES(c, n).

¢ Any finite free complex over of V-complexity at most, has homology mod-
ules ofV-complexity at mostiOM(c).

Proof. The first assertion follows by induction from the already quotgdiorollary 4.27]

on bounds of syzygies (compare with the proof@#,[Theorem 4.3]). It is also clear that

we may take this resolution to be minimal (=every tuple in one of the kernels has its entries
in the maximal ideal), if we choose to do so. The second assertion is derived from the
flatness of the non-standaf@hull in exactly the same manner as the corresponding result
for fields was obtained in3, Lemma 4.2 and Theorem 4.3]. O

Recall that thaveak global dimensioof a ring C' is by definition the supremum (pos-
sibly infinite) of the weak homological dimensions (=flat dimensions) ofathodules,
that is to say, the supremum of allfor which Torg(', -) is not identically zero.

11.4.Corollary. A pseudo-regular locaD-affine domain has finite weak global dimen-
sion.
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Proof. Let R be a pseudo-regular locdl-affine domain. Given an arbitrari-module
M, we have to show thal/ has finite flat dimension, that is to say, admits a finite flat
resolution. Assume first that/ is finitely presented. Hence we can realixe as the
cokernel of some matrik. Let £(R) be the non-standard-hull of R and letR,, andT,,
be D-approximations of? andI" respectively. LetM,, be the cokernel of',,. Letd be
the geometric dimension d®. By Proposition11.3 we can find a finite free resolution
Fue Up to leveld of each)M ,, of O,,-complexity at most, for somec depending only on
I', whence independent from. Since almost eacR,, is regular by Theoreri.5and has
dimensiond by Theorenb.4, almost each/ ., has projective dimension at mastso that
we can even assume thay,, is a finite free resolution ol ,,. Let F, be the restricted
ultraproduct of theF,,, (that is to say, the finite free complex ov@given by the restricted
ultraproduct of the matrices if,,). By Los’ TheoremF, @z £(R) is a free resolution of
M ®r £(R), and therefore by faithful flat descetf, is a free resolution of/, proving
that M has projective dimension at mast

Assume now thai\/ is arbitrary. By what we just proved, we have for every finitely
generated ided! of R thatTorY, ; (M, R/I) vanishes. Hence, il is ad-th syzygy ofM,
thenTorﬁ(H, R/I) = 0. Since this holds for every finitely generated idealfwe get
from [27, Theorem 7.7] that{ is flat overR. HenceM has finite flat dimension (at most
d). O

By [26], any flat R-module has projective dimension less than the finitistic global di-
mension ofR (the supremum of all projective dimensions of modules of finite projective
dimension). Therefore, if, moreover, the finitistic global dimensio®a$ finite, then so
is its global dimension. For a Noetherian local ring, its global dimension is finite if and
only if its residue field has finite projective dimension (if and only if it is regular). The
following is the pseudo analogue of this.

11.5.Corollary. A local D-affine domain is pseudo-regular if and only if it is a coherent
regular ring in the sense ¢f], if and only if its residue field has finite projective dimension.

Proof. In [6] or [12, §5], a local ringR is called acoherent regular ringif every finitely
generated ideal aR has finite projective dimension. R is a pseudo-regular local-affine
domain, then this property was established in the course of the proof of Corbllaty
Conversely, supposR is a localO-affine domain in which every finitely generated ideal
has finite projective dimension. In particular, its residue fieladmits a finite projective
resolution, say of length. Let R,, andk,, be O-approximations ofR andk respectively.
Since thek,, have uniformly boundesD,,-complexity, Propositiori1.3allows us to take

a minimal finite free resolutioi’,, of k., up to leveln, with the property that each,,,
has9,,-complexity at most, for somec independent fromw. Let F, be the restricted
ultraproduct of these resolutions. By tos’ Theorem and faithfully flat desdénts a
minimal finite free resolution of up to leveln. SinceF, is minimal and sincé has by
assumption projective dimensianit follows that the final morphism (that is to say, the left
most arrow) inFy, is injective. By Los’ Theorem, so are almost all final morphismgjs,
showing that almost alt,, have finite projective dimension. By Serre’s characterization of
regular local rings, we conclude that almost &l}, are regular. Theorerf.5then yields
that R is pseudo-regular, as we wanted to show. |

Closer inspection of the above argument shows that the residue field of a pseudo-regular
local D-affine domaink has projective dimension equal to the geometric dimensidg. of
In particular, the weak global dimension Bfis equal to its geometric dimension.
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11.6.Theorem (Asymptotic Vanishing for Maps of Tors)or eachc, we can find a bound
VT(c) with the following property. Let” be a mixed characteristic discrete valuation ring,
letC — D — FE be localV-algebra homomorphisms of locl-affine domains and let
M be a finitely generate®-module, all ofl”-complexity at most.

If C and E are regular andC — D is finite and injective, then the natural map
Tor¢ (D, M) — Tor$ (E, M) is zero, for alln > 1, provided the characteristic of the
residue field ol is at leastVT(c).

Proof. Note thatC' has dimension at mostand thereforélorS (-, -) vanishes identically

for all n > ¢ and the assertion trivially holds for these valuesioff 7C' = 0, we are in

the equicharacteristic case, for which the result is knowt, (Theorem 9.7]). Hence we
may assume that all rings are torsion-free dveMoreover, without loss of generality, we
may assume thdt is complete. Suppose even in this restricted setting, there is no such
bound forc and somd < n < ¢. Hence, for almost each prime numpemwe can find a
counterexample consisting of the following data:

e a mixed characteristic complete discrete valuation mj;gx of residual char-
acteristicp;
e local RI"™-algebra homomorphisnigl™ — ST — TM of OMX-complexity
at mostc between torsion-free local domains, wi#]"™ and7;"™ regular and
RY™ — ST finite and injective;
e afinitely generated;™-module M ™ of O7™-complexity at most;
such that

Torp? (S™%, M) — Tory® (T, M)
iS non-zero.

Let O be the ultraproduct of the)?‘X and letM be the restricted ultraproduct of the
M ;,“‘X (that is to say,M is the cokernel of the restricted ultraproduct of matrices whose
cokernel isM™™). LetR — S — T and£5*(R) — £3*(S) — £1%(T') be the respec-
tive restricted ultraproduct and mixed characteristic ultraproduct of the homomorphisms
R — gmix —, Tmix It follows from Corollary6.6 and Theoremg.4 and6.5, that R,

S andT are localD-affine domains with? and7" pseudo-regular. By tos’ Theorem, us-
ing that theR™ — SM* have bounded™-complexity, £5%(R) — £1%(S) is finite,
whence so if? — S by faithful flat descent. By Theorefiri.2 the natural homomorphism
Tor (S, M) — Tor®(T, M) is therefore zero.

By Proposition11.3 we can find a finite free resolutioRy* of M/ up to leveln,
of Dg“x complexity at most/, for somec’ only depending or (note thatn < ¢). By
definition of Tor, we have isomorphisms

Tor, ™ (STX, M) & H,(FI¥ @ o ST%)

Tor, (TIX, M) 2 H,, (FIX & gric TTX)
In particular, by Propositioil.3 both modules have)?‘x-complexity at most”, for
somec” only depending onr’, whence only orc. Let Hg and Hr be their respective
restricted ultraproduct, so that by tos’ Theorem and our assumptibns;> Hr is non-
zero. LetF, be the restricted ultraproduct of tt}ép”l"‘. By Los’ Theorem and faithful
flatness,Hg and Hy are isomorphic tod,,(F, ®g S) and H, (F. ®r T) respectively.
Since F, is a finite free resolution of\/ up to leveln by another application of Los’
Theorem and faithful flatness, these two modules are also isomorphig fqS, A7) and
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Torf’(T, M) respectively. Hence the natural map between these two modules is non-zero,
contradiction. O
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