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ABSTRACT. In this paper, various Homological Conjectures are studied for local rings
which are locally finitely generated over a discrete valuation ringV of mixed characteristic.
Typically, we can only conclude that a particular Conjecture holds for such a ring provided
the residual characteristic ofV is sufficiently large in terms of the complexity of the data,
where the complexity is primarily given in terms of the degrees of the polynomials overV

that define the data, but possibly also by some additional invariants such as (homological)
multiplicity. Thus asymptotic versions of the Improved New Intersection Theorem, the
Monomial Conjecture, the Direct Summand Conjecture, the Hochster-Roberts Theorem
and the Vanishing of Maps of Tors Conjecture are given.

That the results only hold asymptotically, is due to the fact that non-standard arguments
are used, relying on the Ax-Kochen-Ershov Principle, to infer their validity from their
positive characteristic counterparts. A key role in this transfer is played by the Hochster-
Huneke canonical construction of big Cohen-Macaulay algebras in positive characteristic
via absolute integral closures.

1. INTRODUCTION

In the last three decades, all the so-called Homological Conjectures have been set-
tled completely for Noetherian local rings containing a field by work of Peskine-Szpiro,
Hochster-Roberts, Hochster, Evans-Griffith, et. al. (some of the main papers are [11, 15,
16, 22, 28]). More recently, Hochster-Huneke have given more simplified proofs of most
of these results by means of their tight closure theory, including their canonical construc-
tion of big Cohen-Macaulay algebras in positive characteristic (see [19, 20, 21, 24]; for
further discussion and proofs, see [7, §9] or [48]).

In sharp contrast is the development in mixed characteristic, where only sporadic results
(often in low dimensions) are known, apart from the break-through [30] by Roberts, settling
the New Intersection Theorem for all Noetherian local rings, and the recent work [13]
of Heitmann in dimension three. Some attempts have been made by Hochster, either by
finding a suitable substitute for tight closure in mixed characteristic [17], or by constructing
big Cohen-Macaulay modules in mixed characteristic [14]. These approaches have yet to
bear fruit and the best result to date in this direction is the existence of big Cohen-Mac-
aulay algebras in dimension three [18], which in turn relies on the positive solution of the
Direct Summand Conjecture in dimension three by Heitmann [13].

In this paper, we will follow the big Cohen-Macaulay algebra approach, but instead
of trying to work with rings of Witt vectors, we will use the Ax-Kochen-Ershov Prin-
ciple [4, 9, 10], linking complete discrete valuation rings in mixed characteristic with
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complete discrete valuation rings in positive characteristic via an equicharacteristic zero
(non-discrete) valuation ring (see Theorem2.3 below). This intermediate valuation ring
is obtained by a construction which originates from logic, but is quite algebraic in nature,
to wit, the ultraproduct construction. Roughly speaking, this construction associates to
an infinite collection of ringsCw their ultraproductC∞, which should be thought of as a
kind of “limit” or “average” (realized as a certain homomorphic image of the product). An
ultraproduct inherits many of the algebraic properties of its components. The correct for-
mulation of this transfer principle is Łos’ Theorem, which makes precise when a property
carries over (namely, when it is first order definable in some suitable language). Properties
that carry over are those of beinga domain, a field, a valuation ring, local, Henselian;
among the properties that do not carry over isNoetherianity, so that almost no ultraprod-
uct is Noetherian (except an ultraproduct of fields or of Artinian rings of bounded length).
This powerful tool is used in [32, 33, 35, 44], to obtain uniform bounds in polynomial
rings over fields; in [35, 36, 37, 40], to transfer properties from positive to zero charac-
teristic; and in [3, 39, 41, 42, 47], to give an alternative treatment of tight closure theory
in equicharacteristic zero. The key fact in the first set of papers is a certain flatness result
about ultraproducts (see Theorem2.2below for a precise formulation), and in the two last
sets, the so-calledLefschetz Principle for algebraically closed fields(the ultraproduct of
the algebraic closures of thep-element fieldsFp is isomorphic toC).

The Ax-Kochen-Ershov Principle is a kind ofLefschetz Principle for Henselian valued
fields, and its most concrete form states that the ultraproduct of allFp[[t]], with t a single
indeterminate, is isomorphic to the ultraproduct of all rings ofp-adic integersZp. We
will identify both ultraproducts and denote the resulting ring byO. It follows thatO is
an equicharacteristic zero Henselian valuation ring with principal maximal ideal, whose
separated quotient (=the reduction modulo the intersection of all powers of the maximal
ideal) is an equicharacteristic zero excellent complete discrete valuation ring.

Z-affine algebras. To explain the underlying idea in this paper, we introduce some nota-
tion. Let (Z, p) be a (not necessarily Noetherian) local ring. AZ-affinealgebraC is any
Z-algebra of the formC = Z[X]/I whereX is a finite tuple of indeterminates andI a
finitely generated ideal inZ[X]. A local Z-affine algebrais any localizationR = Cm of
a Z-affine algebraC with respect to a prime idealm of C lying abovep. In particular,
the natural homomorphismZ → R is local. We denote the category of all localZ-affine
algebras byAff(Z).

The objective is to transfer algebraic properties (such as the homological Conjectures)
from the positive characteristic categoriesAff(Fp[[t]]) to the mixed characteristic categories
Aff(Zp). This will be achieved through the intermediate equicharacteristic zero category
Aff(O). As this latter category consists mainly of non-Noetherian rings, we will have to
find analogues in this setting of many familiar notions from commutative algebra, such as
dimension, depth, Cohen-Macaulayness or regularity (see§§5 and6).

The following example is paradigmatic: letX be a finite tuple of indeterminates and let
L

eq
O(A) be the ultraproduct of allFp[[t]][X], andLmix

O (A), the ultraproduct of allZp[X].
Note that both rings containO, and in fact, containO[X]. The key algebraic fact, which
is equivalent to a result on effective bounds by Aschenbrenner ([2]), is that both inclusions
O[X] ⊆ L

eq
O(A) andO[X] ⊆ Lmix

O (A) are flat. Suppose we have in eachFp[[t]][X] a
polynomialfp, and letf∞ be their ultraproduct. A priori, we can only say thatf∞ ∈
L

eq
O(A). However, if allfp haveX-degreed, for somed independent fromp, thenf∞

itself is a polynomial overO of degreed (since an ultraproduct commutes with finite sums
by Łos’ Theorem). Hence, asf∞ lies in O[X], we can also view it as an element in
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Lmix
O (A). Therefore, there are polynomials̃fp ∈ Zp[X] whose ultraproduct is equal to

f∞. The choice of thẽfp is not unique, but any two choices will be equal for almost all
p, by Łos’ Theorem. In conclusion, to a collection of polynomials defined over the various
Fp[[t]], of uniformly bounded degree, we can associate, albeit not uniquely, a collection of
polynomials defined over the variousZp (of uniformly bounded degree), and of course, this
also works the other way. Instead of doing this for just one polynomial in each component,
we can now do this for a finite tuple of polynomials of fixed length. If at the same time, we
can maintain certain algebraic relations among them (characterizing one of the properties
we seek to transfer), we will have achieved our goal.

Unfortunately, it is the nature of an ultraproduct that it only captures the “average”
property of its components. In the present context, this means that the desired property does
not necessarily hold in allZp[X], but only in almost all. In conclusion, we cannot hope
for a full solution of the Homological Conjectures by this method, but only anasymptotic
solution. In view of the above, the following definition is now natural.

Complexity. Let C be aZ-affine algebra, say, of the formC = Z[X]/I, with X a finite
tuple of indeterminates andI a finitely generated ideal, and letR = Cm be a localZ-affine
algebra (so thatp ⊆ m). We say thatC hasZ-complexityat mostc, if |X| ≤ c andI is
generated by polynomials of degree at mostc; we say thatR hasZ-complexityat mostc,
if, moreover, alsom is generated by polynomials of degree at mostc. An elementr ∈ C is
said to haveZ-complexityat mostc, if C hasZ-complexity at mostc andr is the image of
a polynomial inZ[X] of degree at mostc. An elementr ∈ R hasZ-complexityat mostc,
if R hasZ-complexity at mostc and if r is (the image of) a quotientP/Q of polynomials
of degree at mostc with Q /∈ m. We say that a tuple or a matrix hasZ-complexityat
mostc, if each of its entries hasZ-complexity at mostc and the number of entries is also
bounded byc. Note that in aZ-affine algebra, the sum of two elements ofZ-complexity
at mostc, has againZ-complexity at mostc, whereas in alocal Z-affine algebra, the sum
hasZ-complexity at most2c.

An ideal J in C or R hasZ-complexityat mostc, if it is generated by a tuple ofZ-
complexity at mostc. A Z-algebra homomorphismC → C ′ or a localZ-algebra homo-
morphismR → R′ is said to haveZ-complexityat mostc, if C andC ′ (respectively,R
andR′) are (local)Z-affine algebras ofZ-complexity at mostc and the homomorphism is
given by sending each indeterminateXi to an element ofZ-complexity at mostc.

Asymptotic properties. LetP be a property of Noetherian local rings (possibly involving
some additional data). We will use the phraseP holds asymptotically in mixed character-
istic, to express that for eachc, we can find a boundc′, such that ifV is a complete discrete
valuation ring of mixed characteristic andC a localV -affine algebra ofV -complexity at
mostc (and a similar bound on the additional data), then propertyP holds forC, provided
the characteristic of the residue field ofV is at leastc′. Sometimes, we have to control
some additional invariants in terms of the boundc. In this paper, we will prove that in this
sense, many Homological Conjectures hold asymptotically in mixed characteristic.

A final note. Its asymptotic nature is the main impediment of the present method to carry
out Hochster’s program of obtaining tight closure and big Cohen-Macaulay algebras in
mixed characteristic. For instance, despite the fact that we are able to define an analogue
of a balanced big Cohen-Macaulay algebra forO-affine domains, this object cannot be
realized as an ultraproduct ofZp-algebras, so that there is no candidate so far for a big
Cohen-Macaulay in mixed characteristic. Although I will not pursue this line of thought in
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this paper, one could also define some non-standard closure operation on ideals inO-affine
algebras, but again, such an operation will only partially descend to any component.

Notation. A tuplex over a ringZ is always understood to be finite. Its length is denoted
by |x| and the ideal it generates is denotedxZ. When we say that(Z, p) is local, we mean
thatp is its (unique) maximal ideal, but we do not imply thatZ has to be Noetherian.

For a survey of the results and methods in this paper, see [38]. In the forthcoming [45]
some of the present asymptotic versions will be generalized through a further investigation
of the algebraic properties of ultraproducts using the notions introduced in§§5 and6.

2. ULTRAPRODUCTS

In this preliminary section, I state some generalities about ultraproducts and then briefly
review the situation in equicharacteristic zero and the Ax-Kochen-Ershov Principle. The
next section lays out the essential tools for conducting the transfer discussed in the in-
troduction, to wit, approximations, restricted ultraproducts and non-standard hulls, whose
properties are then studied in§§5 and6. The subsequent sections contain proofs of various
asymptotic results, using these tools.

Whenever we have an infinite index setW , we will equip it with some (unnamed) count-
ably incomplete non-principal ultrafilter; ultraproducts will always be taken with respect
to this ultrafilter and we will write

ulim
w→∞

Ow or simply O∞

for the ultraproduct of objectsOw (this will apply to rings, ideals and elements alike). A
first introduction to ultraproducts, including Łos’ Theorem, sufficient to understand the
present paper, can be found in [39, §2]; for a more detailed treatment, see [23]. Łos’ Theo-
rem states essentially that if a fixed algebraic relation holds among finitely many elements
f1w, . . . , fsw in each ringCw, then the same relation holds among their ultraproducts
f1∞, . . . , fs∞ in the ultraproductC∞, and conversely, if such a relation holds inC∞,
then it holds in almost allCw. Herealmost allmeans “for allw in a subset of the index set
which belongs to the ultrafilter” (the idea is that sets belonging to the ultrafilter arelarge,
whereas the remaining sets aresmall).

An immediate, but important application of Łos’ Theorem is that the ultraproduct of al-
gebraically closed fields of different prime characteristics is an (uncountable) algebraically
closed field of characteristic zero, and any sufficiently large algebraically closed field of
characteristic zero, includingC, can be realized thus.1 This simple observation, in combi-
nation with work of van den Dries on non-standard polynomials (see below), was exploited
in [39] to define an alternative version of tight closure forC-affine algebras, callednon-
standard tight closure, which was then further generalized to arbitrary Noetherian local
rings containing the rationals in [3]. The ensuing notions of F-regularity and F-rationality
have been proven to be more versatile [41, 42, 47] than those defined by Hochster-Huneke
in [21].

Let me briefly recall the results in [33, 49] on non-standard polynomials mentioned
above. LetKw be fields (of arbitrary characteristic) with ultraproductK∞ (which is again
a field by Łos’ Theorem). LetX be a fixed finite tuple of indeterminates and setA :=
K∞[X] andAw := Kw[X]. Let A∞ be the ultraproduct of theAw. As in the example

1To be more precise, any algebraically closed field of characteristic zero whose cardinality is of the form2λ

for some infinite cardinalλ, is an ultraproduct of algebraically closed fields of prime characteristic; under the
generalized continuum hypothesis this meanseveryuncountable algebraically closed field of characteristic zero.
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discussed in the introduction, we have a canonical embedding ofA insideA∞. In fact, the
following easy observation, valid over arbitrary rings, describes completely the elements
in A∞ that lie inA (the proof is straightforward and left to the reader).

2.1.Lemma. Let X be a finite tuple of indeterminates. LetCw be rings and letC∞ be
their ultraproduct. Iffw is a polynomial inCw[X] of degree at mostc, for eachw and for
somec independent fromw, then their ultraproduct inulimw→∞ Cw[X] belongs already
to the subringC∞[X], and conversely, every element inC∞[X] is obtained in this way.

This result also motivates the notion ofcomplexityfrom the introduction. Returning to
the Schmidt-van den Dries results, the following two properties of the embeddingA ⊆ A∞
do not only imply the uniform bounds from [33, 35], but also play an important theoretical
role in the development of non-standard tight closure [3, 39].

2.2. Theorem (Schmidt-van den Dries). The embeddingA ⊆ A∞ is faithfully flat and
every prime ideal inA extends to a prime ideal inA∞.

To carry out the present program, we have to replace the base fieldsKw by complete
discrete valuation ringsOw. Unfortunately, we now have to face the following complica-
tions. Firstly, the ultraproductO of theOw is no longer Noetherian, and so in particular
the correspondingA := O[X] is non-Noetherian. Moreover, the embeddingA ⊆ A∞,
whereA∞ is now the ultraproduct of theAw := Ow[X], although flat (see Theorem4.2
below), is no longer faithfully flat (this is related to Dedekind’s problem; see [2] or [46] for
details). Furthermore, not every prime ideal extends to a prime ideal. However, by working
locally, we can circumvent all the latter complications (see Theorem4.2and Remark4.5).

To obtain the desired transfer, we will realizeO in two different ways, as an ultraproduct
of complete discrete valuation rings in positive characteristic and as an ultraproduct of
complete discrete valuation rings in mixed characteristic, and then pass from one set to
the other viaO, as explained in the introduction (for more details, see§6.9 below). This
is the celebrated Ax-Kochen-Ershov Principle [4, 9, 10], and I will discuss this now. For
eachw, let Omix

p be a complete discrete valuation ring of mixed characteristic with residue
field κp of characteristicp. To eachOmix

p , we associate a corresponding equicharacteristic
complete discrete valuation ring with the same residue field, by letting

(1) Oeq
p := κp[[t]]

wheret is a single indeterminate.

2.3.Theorem (Ax-Kochen-Ershov). The ultraproduct of theOeq
p is isomorphic (as a local

ring) with the ultraproduct of theOmix
p .

2.4.Remark.As stated, we need to assume the continuum hypothesis. Otherwise, by the
Keisler-Shelah Theorem [23, Theorem 9.5.7], one might need to take further ultrapowers,
that is to say, over a larger index set. In order to not complicate the exposition, I will
nonetheless make the set-theoretic assumption, so that our index set can always be taken to
be the set of prime numbers. The reader can convince himself that all proofs in this paper
can be adjusted so that they hold without any set-theoretic assumption.

To conclude this section, I state a variant of Prime Avoidance which also works in
mixed characteristic (note that for non-prime ideals one normally has to assume that the
ring contains a field, see for instance [8, Lemma 3.3]).

2.5.Proposition. LetZ be a local ring with infinite residue fieldκ. LetC be an arbitrary
Z-algebra and letW be a finitely generatedZ-submodule ofC. If a1, . . . , at are ideals in
C not containingW , then there existsf ∈ W not contained in any of theaj .
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Proof. We induct on the numbert of ideals to be avoided, where the caset = 1 holds
by assumption. Hence assumet > 1. By induction, we can find elementsgi ∈ W , for
i = 1, 2, which lie outside anyaj for j 6= i. If eitherg1 /∈ a1 or g2 /∈ a2 we are done, so
assumegi ∈ ai. Therefore, every element of the formg1 + zg2 with z a unit inZ does not
lie in a1 nor in a2. Sinceκ is infinite, we can findt− 1 unitsz1, z2, . . . , zt−1 in Z whose
residues inκ are all distinct. I claim that at least one of theg1 + zig2 lies outside allaj ,
so that we found our desired element inW . Indeed, if not, then eachg1 + zig2 lies in one
of the t − 2 idealsa3, . . . , at, by our previous remark. By the Pigeon Hole Principle, for
somej and somel 6= k, we have thatg1 + zkg2 andg1 + zlg2 lie both inaj . Hence so
does their difference(zk − zl)g2. However,zk − zl is a unit inZ, by choice of thezi, so
thatg2 ∈ aj , contradiction. �

2.6. Corollary (Controlled Ideal Avoidance). Let Z be a local ring with infinite residue
field and letC be a (local)Z-affine algebra. IfI anda1, . . . , at are ideals inC with I not
contained in anyai, thenI contains an element outside everyai. More precisely, ifc is an
upper bound for theZ-complexity ofI, then there exists an elementf ∈ I of Z-complexity
at mostc2, not contained in anyai.

Proof. Let (x1, . . . , xn) be a tuple ofZ-complexity at mostc generatingI and letW be
theZ-submodule ofC generated by(x1, . . . , xn). In particular,W is not contained in any
ai, so that we may apply Proposition2.5 to obtain an elementf ∈ W , outside eachai.
Write f = z1x1 + . . . znxn with zi ∈ Z. After putting on a common denominator, we see
thatf hasZ-complexity at mostcn ≤ c2 (in caseC is not local, theZ-complexity off is
in fact at mostc). �

It is clear from the proof of Proposition2.5that in both results, we only need the residue
field to have a larger cardinality than the number of ideals to be avoided.

3. APPROXIMATIONS, RESTRICTED ULTRAPRODUCTS AND NON-STANDARD HULLS

In this section, some general results on ultraproducts of finitely generated algebras over
discrete valuation rings will be derived. We start with introducing some general termi-
nology, over arbitrary Noetherian local rings, but once we start proving some non-trivial
properties in the next sections, we will specialize to the case that the base rings are discrete
valuation rings. For some results in the general case, we refer to [44, 45, 46].

For eachw, we fix a Noetherian local ringOw and letO be its ultraproduct. If thepw

are the maximal ideals of theOw, then their ultraproductp is the maximal ideal ofO. We
will write IO for the ideal ofinfinitesimalsof O, that is to say, the intersection of all the
powerspk (note that in generalIO 6= (0) and therefore,O is in particular non-Noetherian).

By saturatedness of ultraproducts,O is quasi-complete in itsp-adic topology in the
sense that any Cauchy sequence has a (non-unique) limit. Hence the completion ofO is
O/IO (see also Lemma5.3below). Moreover, we will assume that allOw have embedding
dimension at mostε. Hence so doO andO/IO. Since a complete local ring with finitely
generated maximal ideal is Noetherian ([27, Theorem 29.4]), we showed thatO/IO is a
Noetherian complete local ring. For more details in the case of interest to us, where each
Ow is a discrete valuation ring or a field, see [5].

We furthermore fix throughout a tuple of indeterminatesX = (X1, . . . , Xn), and we
setA := O[X] andAw := Ow[X].

3.1.Definition. Thenon-standardO-hull of A is by definition the ultraproduct of theAw

and is denotedLO(A).
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This terminology is a little misleading, becauseLO(A) does not only depend onO but
also on the choice ofOw whose ultraproduct isO. In fact, we will exploit this dependence
when applying the Ax-Kochen-Ershov principle, in which case we have to declare more
precisely which non-standardO-hull is meant. Nonetheless, wheneverO andOw are clear
from the context, we will denote the non-standardO-hull of A simply byL(A).

By Łos’ Theorem, we have an inclusionO ⊆ L(A). Let us continue to writeXi for
the ultraproduct inL(A) of the constant sequenceXi ∈ Aw. By Łos’ Theorem, theXi

are algebraically independent overO. In other words,A is a subring ofL(A). In the next
section, we will prove the key algebraic property of the extensionA ⊆ L(A) when the
base ringsOw are discrete valuation rings, to wit, its flatness. We start with extending
the notions of non-standard hull and approximation from [39], to arbitrary localO-affine
algebras (recall that alocal O-affine algebrais a localization of a finitely presentedO-
algebra at a prime ideal containingp).

O-approximations and non-standard O-hulls. An O-approximationof a polynomial
f ∈ A is a sequence of polynomialsfw ∈ Aw, such that their ultraproduct is equal tof ,
viewed as an element inL(A). Note that according to Lemma2.1, we can always find
such anO-approximation. Moreover, any twoO-approximations are equal for almost all
w, by Łos’ Theorem. Similarly, anO-approximationof a finitely generated idealI := fA
with f a finite tuple, is a sequence of idealsIw := fwAw, wherefw is anO-approximation
of f (meaning that each entry infw is anO-approximation of the corresponding entry in
f ). Łos’ Theorem gives once more that any twoO-approximations are almost all equal.
Moreover, ifIw is someO-approximation ofI then

(2) ulim
w→∞

Iw = IL(A).

Assume now thatC is anO-affine algebra, sayC = A/I with I a finitely generated
ideal. We define anO-approximationof C to be the sequence of finitely generatedOw-
algebrasCw := Aw/Iw, whereIw is someO-approximation ofI. We define thenon-
standardO-hull of C to be the ultraproduct of theCw and denote itLO(C) or simply
L(C). It is not hard to show thatL(C) is uniquely defined up toC-algebra isomorphism
(for more details see [39] or [44]). From (2), it follows thatL(C) = L(A)/IL(A). In
particular, there is a canonical homomorphismC → L(C) obtained from the base change
A → L(A).

WhenI is not finitely generated,IL(A) might not be realizable as an ultraproduct of
ideals, and consequently, has noO-approximation. Although one can find special cases of
infinitely generated ideals admittingO-approximations, we will never have to do this in
the present paper. Similarly, we only defineO-approximations forO-affine algebras.

Although A → L(A) is injective, this is not necessarily the case forC → L(C), if
theOw are not fields. For instance, ifW is the set of prime numbers,Op := Zp for each
p ∈ W andI = (1 − πX, γ)A whereπ := ulimp→∞ p andγ := ulimp→∞ pp, then
I 6= (1) butIL(A) = (1). However, when theOw are discrete valuation rings, we will see
shortly, that this phenomenon disappears if we localize at prime ideals containingp. Next
we define a process which is converse to takingO-approximations.

Restricted Ultraproducts. Fix somec. For eachw, let Iw be an ideal inAw of Ow-
complexity at mostc. In other words, we can writeIw = fwAw, for some tuplefw of
Ow-complexity at mostc. Let f be the ultraproduct of these tuples. By Lemma2.1, the
tuplef is already defined overA. We callI := fA therestricted ultraproductof theIw. It
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follows that theIw are anO-approximation ofI and thatIL(A) is the ultraproduct of the
Iw.

With Cw := Aw/Iw andC := A/I, we callC the restricted ultraproductof theCw.
The Cw are anO-approximation ofC and their ultraproductL(C) is the non-standard
O-hull of C. We can now extend the previous definition to the image inCw of an element
cw ∈ Aw (respectively, to the extensionJwCw of a finitely generated idealJw ⊆ Aw) of
Ow-complexity at mostc and define similarly theirrestricted ultraproductc ∈ C andJC
as the image inC of the respective restricted ultraproduct of thecw and theJw.

Functoriality. We have a commutative diagram

(3)

?

-

?
-

DC

L(D)L(C)
L(ϕ)

ϕ

whereC → D is anO-algebra homomorphism of finite type betweenO-affine algebras
andL(C) → L(D) is its base change overL(A). Alternatively, we may view this diagram
coming from a sequence ofOw-algebras homomorphismsCw → Dw of Ow-complexity
at mostc, for somec independent fromw, in which caseC → D andL(C) → L(D) are
the respective restricted ultraproduct and ultraproduct of these homomorphisms.

3.2.Lemma. Any prime idealm of A containingp is finitely generated and its extension
mL(A) is again prime.

Proof. SinceA/pA = κ[X] is Noetherian, whereκ is the residue field ofO, the ideal
m(A/pA) is finitely generated. Therefore so ism, since by assumptionp is finitely gen-
erated. Moreover,L(A)/pL(A) is the ultraproduct of theκw[X], so that by Theorem2.2,
the extensionm(L(A)/pL(A)) is prime, whence so ismL(A). �

In particular, ifmw is anO-approximation ofm, then almost allmw are prime ideals.
Therefore, the following notions are well-defined (with the convention that we putBn

equal to zero whenevern is not a prime ideal of the ringB). Let R be a localO-affine
algebra, say, of the formCm, with C anO-affine algebra andm a prime ideal containingp.

3.3.Definition. We callL(C)mL(C) thenon-standardO-hull of R and denote itLO(R)
or simplyL(R). Moreover, ifCw andmw areO-approximations ofC andm respectively,
then the collectionRw := (Cw)mw

is anO-approximationof R.

One easily checks that the ultraproduct of theO-approximationsRw is precisely the
non-standardO-hull L(R).

4. FLATNESS OF NON-STANDARD O-HULLS

In this section, we specialize the notions from the previous result to the situation where
eachOw is a discrete valuation ring. We fix throughout the following notation. For each
w, let Ow be a discrete valuation ring with uniformizing parameterπw and with residue
field κw. Let O, π andκ be their respective ultraproducts, so thatπO is the maximal ideal
of O andκ its residue field. We call any ring of this form anultra-DVR. The intersection
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of all πmO is called theideal of infinitesimalsof O and is denotedIO. Using [34], one
sees thatO/πmO is an Artinian local Gorensteinκ-algebra of lengthm.

Fix a finite tuple of indeterminatesX and letA := O[X]. As before, we denote the
non-standardO-hull of A by L(A); recall that it is given as the ultraproduct of theO-
approximationsAw := Ow[X].

4.1. Proposition. For I an ideal inA, the residue ringA/I is Noetherian if and only if
IO ⊆ I. In particular, every maximal ideal ofA containsIO and is of the formIOA + J
with J a finitely generated ideal.

Proof. Let C := A/I for some idealI of A. If C is Noetherian, then the intersection of all
πnC is zero by Krull’s Intersection Theorem. HenceIO ⊆ I. Conversely, ifIO ⊆ I, then
sinceA/IOA = (O/IO)[X] is Noetherian, so isC. The last assertion is now clear. �

In spite of Lemma3.2, there are even maximal ideals ofA (necessarily not containingπ)
which do not extend to a proper ideal inL(A). For instance withX a single indeterminate
andW = N, the idealIOA + (1 − πX)A is maximal (with residue field the field of
fractions ofO/IO), butIOL(A) + (1− πX)L(A) is the unit ideal. Indeed, letf∞ be the
ultraproduct of the

fw := (1− (πwX)w)/(1− πwX).

Since(1−πwX)fw ≡ 1 modulo(πw)wAw, we get by Łos’ Theorem that(1−πX)f∞ ≡ 1
moduloIOL(A). Therefore, we cannot hope forA → L(A) to be faithfully flat. Nonethe-
less, using for instance a result of Aschenbrenner on bounds of syzygies, we do have this
property for local affine algebras. This result will prove to be crucial in what follows.

4.2.Theorem. The canonical homomorphismA → L(A) is flat. In particular, the canon-
ical homomorphism of a localO-affine algebra to its non-standardO-hull is faithfully flat,
whence in particular injective.

Proof. The last assertion is clear from the first, since the homomorphismR → L(R) is
obtained as a base change ofA → L(A) followed by a suitable localization, for any local
O-affine algebraR. I will provide two different proofs for the first assertion

For the first proof, we use a result of Aschenbrenner [2] in order to verify the equational
criterion for flatness, that is to say, given a linear equationL = 0, with L a linear form
over A, and given a solutionf∞ over L(A), we need to show that there exist solutions
bi in A such thatf∞ is anL(A)-linear combination of thebi. ChooseLw andfw with
respective ultraproductsL and f∞. In particular, almost allLw haveOw-complexity at
mostc, for somec independent fromw. By Łos’ Theorem,fw is a solution of the linear
equationLw = 0, for almost allw. Therefore, by [2, Corollary 4.27], there is a boundc′,
only depending onc, such thatfw is anAw-linear combination of solutionsb1w, . . . ,bsw

of Ow-complexity at mostc. Note thats can be chosen independent fromw as well by [44,
Lemma 1]. In particular, the ultraproductbi of thebiw lies in A by Lemma2.1. By Łos’
Theorem, eachbi is a solution ofL = 0 in L(A), whence inA, andf∞ is anL(A)-linear
combination of thebi, proving flatness.

If we want to avoid the use of Aschenbrenner’s result, we can reason as follows. By
Theorem2.2, both extensionsA/πA → L(A)/πL(A) andA ⊗ Q → L(A) ⊗ Q are
faithfully flat, whereQ is the field of fractions ofO. Let M be anA-module. Sinceπ is
A-regular, the standard spectral sequence

TorA/πA
p (L(A)/πL(A),TorA

q (M,A/πA)) =⇒ TorA
p+q(L(A)/πL(A),M)
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degenerates into short exact sequences

TorA/πA
i−1 (L(A)/πL(A), (0 :M π)) → TorA

i (L(A)/πL(A),M) →

TorA/πA
i (L(A)/πL(A),M/πM),

for all i ≥ 2. For i = 2, sinceA/πA → L(A)/πL(A) is flat, the middle module
TorA

2 (L(A)/πL(A),M) vanishes. Applying this to the short exact sequence

0 → L(A) π−−→ L(A)→ L(A)/πL(A) → 0

we get a short exact sequence

(4) 0 = TorA
2 (L(A)/πL(A),M) → TorA

1 (L(A),M) π−−→TorA
1 (L(A),M).

On the other hand, flatness ofA⊗Q → L(A)⊗Q yields

(5) TorA
1 (L(A),M)⊗Q = TorA⊗Q

1 (L(A)⊗Q,M ⊗Q) = 0.

In order to prove thatA → L(A) is flat, it suffices by [27, Theorem 7.8] to show that
TorA

1 (L(A), A/I) vanishes, for every finitely generated idealI of A. Towards a contra-
diction, suppose thatTorA

1 (L(A), A/I) contains a non-zero elementτ . By (5), we have
aτ = 0, for some non-zeroa ∈ O. As observed in [31, Proposition 3], every polynomial
ring over a valuation ring is coherent, so that in particularI is finitely presented (namely,
sinceI is torsion-free overO, it is O-flat, and therefore finitely presented by [29, Theorem
3.4.6]). Hence we have some exact sequence

Aa2 ϕ2−−−→Aa1 ϕ1−−−→A → A/I → 0.

ThereforeTorA
1 (L(A), A/I) is calculated as the homology of the complex

L(A)a2 ϕ2−−−→L(A)a1 ϕ1−−−→L(A).

Supposeτ is the image of a tuplex ∈ L(A)a1 with ϕ1(x) = 0. Hencex does not belong
to ϕ2(L(A)a2) butax does. Choosexw, aw andϕiw with respective ultraproductx, a and
ϕi. By Łos’ Theorem, almost allxw lie in the kernel ofϕ1w but not in the image ofϕ2w,
yetawxw lies in the image ofϕ2w. Choosenw ∈ N maximal such thatyw := (πw)nwxw

does not lie in the image ofϕ2w. Since almost allaw are non-zero, this maximum exists
for almost allw. Therefore, ify is the ultraproduct of theyw, thenϕ1(y) = 0 andy
does not lie inϕ2(L(A)a2), but πy lies in ϕ2(L(A)a2). Therefore, the image ofy in
TorA

1 (L(A), A/I) is a non-zero element annihilated byπ, contradicting (4). �

4.3.Remark.In [46], I exhibit a general connection between the flatness of an ultraproduct
over certain canonical subrings and the existence of bounds on syzygies. In particular,
using these ideas, the second argument in the above proof of flatness reproves the result in
[2]. In fact, the role played here by coherence is not accidental either; see [1] or [46] for
more details.

4.4. Theorem. Let R be a localO-affine algebra with non-standardO-hull L(R) and
O-approximationRw.

• Almost allRw are flat overOw if and only ifR is torsion-free overO if and
only if π is R-regular.

• Almost allRw are domains if and only ifR is.
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Proof. Suppose first that almost allRw are flat overOw, which amounts in this case, to
almost allRw being torsion-free overOw. By Łos’ Theorem,L(R) is torsion-free overO,
and sinceR ⊆ L(R), so isR. Conversely, assumeπ is R-regular. By faithful flatness,π is
L(R)-regular, whence almost allπw areRw-regular by Łos’ Theorem. Since theOw are
discrete valuation rings, this means that almost allOw → Rw are flat.

If almost all Rw are domains, then so isL(R) by Łos’ Theorem, and hence so isR,
since it embeds inL(R). Conversely, assumeR is a domain. Ifπ = 0 in R, thenL(R) is
a domain by Lemma3.2, whence so are almost allRw by Łos’ Theorem. So assumeπ is
non-zero inR, whenceR-regular. By what we just proved,R is then torsion-free overO.
Let Q be the field of fractions ofO. WriteR in the formS/p, whereS is some localization
of A at a prime ideal containingπ andp is a finitely generated prime ideal inS. Since
S/p is torsion-free overO, the extensionp(S ⊗O Q) is again prime and its contraction in
S is p. By Theorem2.2, since we are now over a field,p(L(S) ⊗O Q) is a prime ideal,
whereL(S) is the non-standardO-hull of S (note thatL(S)⊗O Q is then the non-standard
hull of S ⊗O Q in the sense of [39]). Moreover, sinceS/p is torsion-free overO, so is
L(S)/pL(S) by the first assertion. This in turn means that

pL(S) = p(L(S)⊗O Q) ∩ L(S),

showing thatpL(S) is prime. It follows then from Łos’ Theorem that almost allpw are
prime, wherepw is anO-approximation ofp, and hence almost allRw are domains. �

4.5.Remark.The last assertion is equivalent with saying that any prime ideal inR extends
to a prime ideal inL(R). Indeed, letq be a prime ideal inR with O-approximationqw.
By the above result (applied toR/q and itsO-approximationRw/qw), we get that almost
all qw are prime, whence so is their ultraproductqL(R), by Łos’ Theorem.

5. GEOMETRIC DIMENSION

In this and the next section, we will study the local algebra of the categoryAff(O). Al-
though part of the theory can be developed for arbitrary base ringsO, or even for arbitrary
local rings of finite embedding dimension (see [45]), we will only deal with the case that
O is a local domain of embedding dimension one. Recall that theembedding dimensionof
a local ring(Z, p) is by definition the minimal number of generators ofp, and itsideal of
infinitesimalsIZ is the intersection of all powerspn. Of course, ifZ is moreover Noether-
ian, then its ideal of infinitesimals is zero. In general, we callZ̃ := Z/IZ theseparated
quotientof Z.

For the duration of the next two sections, letO denote a local domain of embedding
dimension one, with generator of the maximal idealπ, with ideal of infinitesimalsIO and
with residue fieldκ. We will work in the categoryAff(O) of localO-affine algebras, that is
to say, the category of algebras of the formR := (A/I)m, where as beforeA := O[X] for
some finite tuple of indeterminatesX, whereI is a finitely generated ideal inA and where
m is a prime ideal containingπ andI. Nonetheless, some results can be stated even for
local algebras which are locally finitely generated overO, that is, without the assumption
that I is finitely generated. We callR a torsion-freeO-algebra if it is torsion-free over
O (that is to say, ifar = 0 for somer ∈ R and some non-zeroa ∈ O, thenr = 0).
Recall from Theorem4.4 that a localO-affine algebraR is torsion-free if and only ifπ is
R-regular.

5.1. Lemma. The separated quotientO/IO of O is a discrete valuation ring with uni-
formizing parameterπ.
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Proof. For each elementa ∈ O outsideIO, there is a smalleste ∈ N for which a /∈
πe+1O. Hencea = uπe with u a unit inO. It is now straightforward to check that the
assignmenta 7→ e induces a discrete valuation onO/IO. �

Note that we do not even needO to be domain, having positive depth (that is to say,
assuming thatπO is not an associated prime ofO; see [7, Proposition 9.1.4]) would suffice,
for thenπ is necessarilyO-regular. However, we do not need this amount of generality as
in all our applicationsO will be an ultra-DVR, that is to say, an ultraproduct of discrete
valuation ringsOw. If we are in this situation, then as before, we letAw := Ow[X] and
we letL(A) be their ultraproduct. Moreover, forR = (A/I)m as above, we letL(R) :=
(L(A)/IL(A))mL(A) be its non-standardO-hull and we letRw := (Aw/Iw)mw

be an
O-approximation ofR, whereIw andmw areO-approximations ofI andm respectively.
Note thatm is finitely generated, as it contains by definitionπ.

5.2.Lemma. Let (R,m) be a local ring which is locally finitely generated overO. If I is
a proper ideal inR containing some powerπm, then the intersection of allIn for n ∈ N
is equal toIOR. In particular, IR = IOR and the separated quotient ofR is equal to
R̃ := R/IOR whence is Noetherian.

Proof. Supposeπm ∈ I ⊆ m. LetJ be the intersection of allIn for n ∈ N. Sinceπm ∈ I,
we get thatIOR ⊆ J . SinceR̃ is locally finitely generated over the discrete valuation ring
O/IO (see Lemma5.1), it is Noetherian. Applying Krull’s Intersection Theorem (see for
instance [27, Theorem 8.10]), we get thatJR̃ = (0), and hence thatJ = IOR. The last
assertion follows by lettingI := m. �

5.3. Lemma. Let O be an ultra-DVR. A localO-affine algebra(R,m) has the samem-
adic completion as its separated quotient, and this is also isomorphic toL(R)/IL(R). In
particular, the completion is Noetherian.

Proof. Let R̃ := R/IR be the separated quotient. For everyn, we have

R/mn ∼= R̃/mnR̃ ∼= L(R)/mnL(R),

where the second isomorphism follows from the fact that length is a first order invariant
(see for instance [34]). HenceR, R̃ andL(R) have the same completion̂R. Noetherianity
now follows from Lemma5.2. By saturatedness of ultraproducts (with respect to a count-
ably incomplete non-principal ultrafilter),L(R) is quasi-complete in the sense that every
Cauchy sequence has a (non-unique) limit. Therefore, its separated quotientL(R)/IL(R)

is complete, whence equal tôR. For a more detailed proof, see [45, Lemma 5.2]. �

Our first goal is to introduce a good notion of dimension. Below, thedimensionof a
ring will always mean itsKrull dimension. Recall that it is always finite for Noetherian
local rings.

5.4. Theorem. For a local ring (R,m) which is locally finitely generated overO, the
following numbers are all equal:

• the least possible lengthd of a tuple inR generating somem-primary ideal;
• the dimension̂d of the completion̂R;
• the dimensioñd of the separated quotient̃R := R/IOR;
• the degreed of theHilbert-Samuel polynomialχR, whereχR is the unique

polynomial with rational coefficients for whichχR(n) equals the length of
R/mn+1 for all large n.
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If π is R-regular, thenR/πR has dimensiond− 1.
If, moreover,O is an ultra-DVR andR a torsion-free localO-affine algebra withO-

approximationRw, then almost allRw have dimensiond.

Proof. By Lemmas5.2 and5.3, the separated quotient̃R is Noetherian, with completion
equal toR̂. Henced̂ = d̃. Moreover,χR = χ bR, so that by the Hilbert-Samuel theory,

d = d̂.
Let x be a tuple of length̃d such that its image iñR is a system of parameters of̃R.

Hence, for somen, we have thatmn ⊆ xR + IOR. In particular, sinceIOR ⊆ πn+1R,
we can findx ∈ xR andr ∈ R, such thatπn = x + rπn+1. Therefore,πn ∈ xR, since
1−rπ is a unit. SinceIO ⊆ πnO, we get thatmn ⊆ xR, showing thatxR is anm-primary
ideal and hence thatd ≤ d̃. On the other hand, ify is a tuple of lengthd such thatyR is
m-primary, thenyR̃ is anmR̃-primary ideal, and hencẽd ≤ d. This concludes the proof
of the first assertion.

Assume thatπ is moreoverR-regular. I claim thatπ is R̃-regular. Indeed, suppose
πr̃ = 0, for somer̃ ∈ R̃. Take a pre-imager ∈ R, so thatπr ∈ IOR ⊆ πnR, for
everyn. Sinceπ is R-regular, we get thatr ∈ πn−1R, for all n. Therefore,r ∈ IOR
by Lemma5.2, whencer̃ = 0 in R̃, as we needed to show. Sinceπ is R̃-regular and
R̃/πR̃ = R/πR, the dimension ofR/πR is d̃− 1.

Suppose finally thatO is moreover an ultra-DVR. We already observed thatRw/πwRw

is an approximation ofR/πR in the sense of [39]. In particular, by [39, Theorem 4.5],
almost allRw/πwRw have dimensioñd− 1. Sinceπ is L(R)-regular by flatness, whence
πw is Rw-regular by Łos’ Theorem, we get thatRw has dimensioñd, for almost allw. �

5.5. Geometric dimension. The common value given by the theorem is called thegeo-
metric dimensionof R. We call a tuplex in R generic, if it generates anm-primary ideal
and has length equal to the geometric dimension ofR. Note that if(x1, . . . , xd) is a generic
sequence, thenR/(x1, . . . , xe)R has geometric dimensiond− e.

5.6. Corollary. In a local ring (R,m) which is locally finitely generated overO, every
m-primary ideal contains a generic sequence.

Proof. Let R̃ := R/IOR and letd be the geometric dimension ofR. Let n be anm-
primary ideal ofR. SincenR̃ is mR̃-primary andR̃ is Noetherian, we can find a tupley
with entries inn so that its image iñR is a system of parameters. In particular,y has length
d by Theorem5.4. Let S := R/yR andS̃ := S/IOS. By Theorem5.4, the geometric
dimension ofS is equal to the dimension of̃S, whence is zero sincẽS = R̃/yR̃. In
particular,yR is m-primary. Sincey has length equal to the geometric dimension ofR, it
is therefore a generic sequence. �

In fact the above proof shows that there is a one-one correspondence between generic
sequences inR and systems of parameters inR/IOR. In general, the last assertion in
Theorem5.4 is false whenR is not torsion-free. For instance, letR := O/aO with a a
non-zero infinitesimal, so that eachRw = Ow/awOw has dimension zero, butR/IR is
the (one-dimensional) discrete valuation ringO/IO.

In the following definition, letO be an ultra-DVR and letR be a localO-affine algebra
of geometric dimensiond, with O-approximationRw. Note that theRw have almost all
dimension at mostd. Indeed, ify has lengthd and generates anm-primary ideal, then
almost allyw aremw-primary by Łos’ Theorem, foryw anO-approximation ofy.
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5.7.Definition. We say thatR is isodimensionalif almost allRw have dimension equal to
the geometric dimension ofR.

Theorem5.4shows that every torsion-free localO-affine algebra is isodimensional. In
particular, over an ultra-DVR, the restricted ultraproductR of domainsRw of uniformly
boundedOw-complexity is isodimensional, sinceL(R) is then a domain by Łos’ Theorem,
whence so isR as it embeds inL(R). The next result shows that generic sequences in an
isodimensional ring are the analog of systems of parameters.

5.8.Corollary. Let O be an ultra-DVR andR an isodimensional localO-affine algebra
with O-approximationRw. Letx be a tuple inR with O-approximationxw.

If x is generic, thenxw is a system of parameters ofRw, for almost allw. Conversely,
if (πw)c ∈ xwRw, for somec and almost allw, thenx is generic.

Proof. Letm be the maximal ideal ofR, with O-approximationmw. Letd be the geometric
dimension ofR, so that almost allRw have dimensiond. Suppose first thatx is generic,
so that|x| = d andxR is m-primary. SincexL(R) is thenmL(R)-primary, xwRw is
mw-primary by Łos’ Theorem, showing thatxw is a system of parameters for almost all
w.

Conversely, supposexw is a system of parameters ofRw, generating an ideal containing
(πw)c. By Łos’ Theorem and faithful flatness,πc ∈ xR. Applying [44, Corollary 4] to
the Artinian base ringOw/(πw)c, we can find a boundc′, only depending onc, such that
(mw)c′ ⊆ xwRw, for almost allw. Hencemc′L(R) ⊆ xL(R), so that by faithful flatness,
xR is m-primary. This shows thatx is generic. �

The additional requirement in the converse is necessary: indeed, for arbitrarynw > 0,
the element(πw)nw is a parameter inOw and hasOw-complexity zero, but ifnw is un-
bounded, its ultraproduct is an infinitesimal whence not generic. To characterize isodimen-
sional rings, we use the following notion introduced in [43].

5.9.Definition (Parameter degree). Theparameter degreeof a Noetherian local ringC is
by definition the smallest possible length of a residue ringC/xC, wherex runs over all
systems of parameters ofC.

In general, the parameter degree is larger than the multiplicity, with equality precisely
whenC is Cohen-Macaulay, provided the residue field is infinite (see [27, Theorem 17.11]).
The homological degree ofC is an upper bound for its parameter degree (see [43, Corol-
lary 4.6]). A priori, being isodimensional is a property of theO-approximations ofR, of
for that matter, of its non-standardO-hull. However, the last equivalent condition in the
next result shows that it is in fact an intrinsic property.

5.10. Proposition. Let O be an ultra-DVR and letR be a localO-affine algebra with
O-approximationRw. The following are equivalent:

(5.10.1) R is isodimensional;
(5.10.2) there exists ac ∈ N, such that for almost allw, we can find a system of param-

etersxw of Rw of Ow-complexity at mostc, generating an ideal containing
(πw)c;

(5.10.3) there exists ane ∈ N, such that almost allRw have parameter degree at most
e;

(5.10.4) for every generic sequence inR of the form(π,y), the contracted idealyR∩O
is zero.
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Proof. Letm be the maximal ideal ofR, with O-approximationmw. Letd be the geometric
dimension ofR and letd′ be the dimension of almost allRw. Suppose first thatd = d′.
Let x be any generic sequence inR with O-approximationxw. By Łos’ Theorem, almost
all xw generate anmw-primary ideal. Since their length is equal to the dimension ofRw,
they are almost all systems of parameters ofRw. Choosec large enough so thatπc ∈ xR.
Enlargingc if necessary, we may moreover assume by Lemma2.1that almost allxw have
Ow-complexity at mostc. By Łos’ Theorem,(πw)c ∈ xwRw, so that (5.10.2) holds.

Assume next thatc and thexw are as in (5.10.2). Let Rw := Rw/(πw)cRw. We can
apply [44, Corollary 2] overOw/(πw)cOw to themwRw-primary idealxwRw, to conclude
that there is somec′, depending only onc, such thatRw/xwRw has length at mostc′. Since
the latter residue ring is justRw/xwRw by assumption, the parameter degree ofRw is at
mostc′, and hence (5.10.3) holds.

To show that (5.10.3) implies (5.10.1), assume that almost allRw have parameter degree
at moste. Letyw be a system of parameters ofRw such thatRw/ywRw has length at most
e, for almost allw. It follows that(mw)e is contained inywRw. Lety∞ be the ultraproduct
of theyw. By Łos’ Theorem,meL(R) ⊆ y∞L(R) whencemeR̂ ⊆ y∞R̂, by Lemma5.3,
showing thaty∞R̂ is mR̂-primary. Sincey∞ has length at mostd′ (some entries might be
zero inR̂), the dimension of̂R is at mostd′. Since we already remarked thatd′ ≤ d, we
get from Theorem4.4thatd′ = d.

So remains to show that (5.10.4) is equivalent to the other conditions. Assume first that
it holds but thatR is not isodimensional. Since we have inequalitiesd − 1 ≤ d′ ≤ d, this
means thatd′ = d − 1. Moreover,R/πR must have geometric dimension also equal to
d−1, for if not, its geometric dimension would bed, whence almost allRw/πwRw would
have dimensiond by [39, Theorem 4.5], which is impossible. Since there is a uniform
boundc on theOw-complexity of eachRw, we can choose, using Corollary2.6, a system
of parametersyw of Rw of Ow-complexity at mostc2. In particular, some power ofπw lies
in ywRw. Leta ∈ O be the ultraproduct of these powers. Ify is the ultraproduct of theyw,
theny is already defined overR by Lemma2.1. By Łos’ Theorem,a ∈ yL(R), whence
by faithful flatness,a is a non-zero element inyR ∩ O. Therefore, to reach the desired
contradiction with (5.10.4), we only need to show that(π,y) is generic. As we already
established,Rw/πwRw has dimensiond− 1, so thatyw is also a system of parameters in
that ring. Therefore,y is a system of parameters inR/πR by [39, Theorem 4.5]. This in
turn implies that(π,y) generates anm-primary ideal inR. Since this tuple has lengthd, it
is therefore generic, as we wanted to show.

Finally, assumeR is isodimensional, and suppose(π,y) is generic. Leta ∈ yR ∩ O
and chooseO-approximationsaw andyw of a andy respectively. By Łos’ Theorem,
aw ∈ ywRw. However, ifa is non-zero, thenaw is, up to a unit, a power ofπw, which
contradicts the assertion in Corollary5.8 that (πw,yw) is a system of parameters. So
a = 0, as we needed to show. �

5.11.Corollary. For eachc, there exists a boundPD(c) with the following property. Let
V be a discrete valuation ring and letC be a localV -affine algebra ofV -complexity at
mostc. If C is torsion-free overV , then the parameter degree ofC is at mostPD(c).

Proof. If the statement is false for somec, then we can find for eachw a discrete valuation
ring Ow and a torsion-free localOw-affine algebraRw of Ow-complexity at mostc, whose
parameter degree is at leastw. LetR be the restricted ultraproduct of theRw and letL(R)
be their ultraproduct. Sinceπw isRw-regular,π isL(R)-regular, whenceR-regular. Hence
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R is isodimensional by Theorem5.4. Therefore, there is a bound on the parameter degree
of almost allRw by Proposition5.10, contradicting our assumption. �

Our next goal is to introduce a notion similar to height. LetI be an arbitrary ideal ofR.

5.12.Definition (Geometric height). We call thegeometric heightof I the maximum of
all h such that there exists a generic sequence whose firsth entries belong toI.

For Noetherian rings, we cannot expect a good relationship between the height of an
ideal and the dimension of its residue ring, unless the ring is a catenary domain; the fol-
lowing is the analogue over ultra-DVR’s.

5.13.Theorem. Let O be an ultra-DVR and letR be a localO-affine domain withO-
approximationRw. LetI be a finitely generated ideal inR with O-approximationIw.

If R/I is isodimensional, then the geometric height ofI is equal to the geometric di-
mension ofR minus the geometric dimension ofR/I, and this is also equal to the height
of almost allIw.

Proof. Let d be the geometric dimension ofR ande the geometric dimension ofR/I.
Since a domain is isodimensional, almost allRw have dimensiond by Theorem5.4, and by
assumption, almost allRw/Iw have dimensione. Let h be the geometric height ofI. Let
z be a generic sequence inR with its firsth entries inI, and letzw be anO-approximation
of z. By Corollary5.8, almost allzw are a system of parameters inRw. Since by Łos’
Theorem the firsth entries ofzw lie in Iw, we get thatRw/Iw has dimension at mostd−h.
In other words,h ≤ d− e. Since almost allRw are catenary domains, almost allIw have
heightd− e.

So remains to show thatd − e ≤ h. By Lemma5.2, the separated quotient ofR/I is
equal toR̃/IR̃. Therefore, by the remark following Corollary5.6, we can find a generic
sequence(x1, . . . , xd) in R such that (the image of)(x1, . . . , xe) is a generic sequence in
R/I. By definition of generic sequence,S := R/(x1, . . . , xe)R has geometric dimension
d − e. If xiw is anO-approximation ofxi, then almost eachxw := (x1w, . . . , xew) is a
system of parameters inRw/Iw by Corollary5.8. Sincexw is therefore part of a system of
parameters inRw, almost eachSw := Rw/xwRw has dimensiond − e by [27, Theorem
14.1]. By choice of thexi, the idealI + (x1, . . . , xe)R is m-primary and henceIS is
mS-primary. Therefore, by Corollary5.6, we can find a tupley of lengthd − e in I, so
that its image inS is a generic sequence. It follows that(x1, . . . , xe)R+yR is m-primary.
Since(y, x1, . . . , xe) has lengthd, it is a generic sequence, showing thatd− e ≤ h. �

6. PSEUDO SINGULARITIES

In this section, we maintain the notation introduced in the previous section. Our goal
is to extend several singularity notions of Noetherian local rings to the category of local
O-affine algebras.

Grade and depth. Let B be an arbitrary ring andI := (x1, . . . , xn)B a finitely generated
ideal. Thegradeof I, denotedgrade(I), is by definition equal ton − h, whereh is the
largest valuei for which thei-th Koszul homologyHi(x1, . . . , xn) is non-zero. For a local
ringR of finite embedding dimension, we define itsdepthas the grade of its maximal ideal.

If B is moreover Noetherian, then we can define the grade ofI alternatively as the
minimal i for whichExti

B(B/I,B) is non-zero (for all this see for instance [7, §9.1]). An
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arbitrary local ring has positive depth if and only if its maximal ideal is not an associated
prime. Grade, and hence depth,deforms well, in the sense that the

grade(I(B/xB)) = grade(I)− |x|
for everyB-regular sequencex in I. For a locally finitely generatedO-algebra(R,m), its
depth never exceeds its geometric dimension. Indeed, by definition, the grade of a finitely
generated ideal never exceeds its minimal number of generators, and by [7, Proposition
9.1.3], the depth ofR is equal to the grade of any of itsm-primary ideals. It follows that
the depth ofR is at most its geometric dimension.

In general, the grade of a finitely generated ideal might be positive without it contain-
ing a B-regular element. However, the next lemma shows that this is not the case for
ultraproducts of Noetherian local rings.

6.1.Lemma. Let C∞ be the ultraproduct of Noetherian local ringsCw and letI∞ be a
finitely generated ideal ofC∞ obtained as the ultraproduct of idealsIw ⊆ Cw.

If I∞ has graden, then there exists aC∞-regular sequence of lengthn with all of its
entries inI∞. Moreover, any permutation of aC∞-regular sequence is againC∞-regular.

Proof. By [7, Proposition 9.1.3], there exists a finite tuple of indeterminatesY and a
C∞[Y ]-regular sequencef∞ of lengthn, with all of its entries inI∞C∞[Y ]. Choose
tuplesfw in Cw[Y ] so that their ultraproduct isf∞. By Łos’ Theorem,fw is Cw[Y ]-
regular and has all of its entries inIwCw[Y ], for almost allw. This shows thatIwCw[Y ]
has grade at leastn. SinceCw → Cw[Y ] is faithfully flat, Iw has grade at leastn by [7,
Proposition 9.1.2]. Hence, sinceCw is Noetherian, we can find aCw-regular sequencexw

of lengthn with all of its entries inIw. By Łos’ Theorem, the ultraproductx∞ of thexw

is C∞-regular and has all of its entries inI∞.
The last assertion follows from Łos’ Theorem and the fact that in a Noetherian local

ring, any permutation of a regular sequence is again regular ([27, Theorem 16.3]). �

Recall that a Noetherian local ring for which its dimension and its depth (respectively,
its dimension and its embedding dimension) coincide is Cohen-Macaulay (respectively,
regular). We will shortly see that upon replacing dimension by geometric dimension, we
get equally well behaved notions. Let us therefore make the following definitions, forR a
localO-affine algebra.

6.2.Definition. We say thatR is pseudo-Cohen-Macaulay, if its geometric dimension is
equal to its depth, andpseudo-regular, if its geometric dimension is equal to its embedding
dimension.

6.3. Theorem. Let O be an ultra-DVR and letR be an isodimensional localO-affine
algebra withO-approximationRw. In order for R to be pseudo-Cohen-Macaulay it is
necessary and sufficient that almost allRw are Cohen-Macaulay.

Proof. Let d be the geometric dimension ofR andδ its depth. Suppose first thatd = δ.
SinceR → L(R) is faithfully flat, L(R) has depthδ as well by [7, Proposition 9.1.2].
By Lemma6.1, there exists anL(R)-regular sequencex∞ of lengthd. If xw is anO-
approximation ofx∞, then almost eachxw is Rw-regular by Łos’ Theorem. Since almost
all Rw have dimensiond by isodimensionality, almost all are Cohen-Macaulay.

Conversely, assume almost allRw are Cohen-Macaulay. It follows by reversing the
above argument thatL(R) has depthd and hence, so hasR, by faithful flatness. �

Since every system of parameters is a regular sequence in a local Cohen-Macaulay ring,
we expect a similar behavior for generic sequences, and this indeed holds.
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6.4. Theorem. Let O be an ultra-DVR and letR be an isodimensional localO-affine
algebra. IfR is pseudo-Cohen-Macaulay, then any generic sequence isR-regular.

Proof. Letx be a generic sequence withO-approximationxw. Almost eachxw is a system
of parameters inRw, by Corollary 5.8. Since almost allRw are Cohen-Macaulay by
Theorem6.3, almost eachxw is Rw-regular. Hencex is L(R)-regular, by Łos’ Theorem,
whenceR-regular, by faithful flatness. �

6.5.Theorem. Let O be an ultra-DVR. An isodimensional localO-affine algebraR with
O-approximationRw is pseudo-regular if and only if almost allRw are regular local rings.

Proof. Let m be the maximal ideal ofR, with O-approximationmw. Let L(R) be the
non-standardO-hull of R. Let ε be the embedding dimension ofR andd its geometric
dimension. Suppose thatR is pseudo-regular, that is to say, thatε = d. Hencem = xR for
somed-tuplex, necessarily generic. SincemL(R) = xL(R), Łos’ Theorem yields that
mw = xwR, wherexw is anO-approximation ofx. Since almost allRw have dimension
d, almost all are regular local rings.

Conversely, suppose almost allRw are regular. Since theOw-complexity of almost
all Rw is at mostc, for somec, we can find a regular system of parametersxw of Ow-
complexity at mostc (as part of a minimal system of generators ofmw). By Lemma2.1,
their ultraproductx belongs toR, and is a generic sequence by Corollary5.8. By Łos’
Theorem and faithful flatness,xR = m whenceε ≤ d. Since geometric dimension never
exceeds embedding dimension,ε = d andR is pseudo-regular. �

The following is now immediate from the previous result and Theorem4.4.

6.6.Corollary. Let O be an ultra-DVR. IfR is a pseudo-regular localO-affine algebra,
thenR is a domain if and only if it is isodimensional. Moreover, if this is the case, then
every localization ofR with respect to a prime ideal containingπ is again pseudo-regular.

In fact, the restricted ultraproductR of regular localOw-affine algebrasRw of uni-
formly boundedOw-complexity is pseudo-regular and isodimensional. Indeed, we already
observed that thenR is isodimensional, and therefore by Theorem6.5, pseudo-regular. For
a homological characterization of pseudo-regularity, see Corollary11.5below.

6.7.Example. If R denotes the localization ofO[X, Y ]/(X2 + Y 3 + π) at the maximal
ideal generated byX, Y andπ, thenR is pseudo-regular (namelyX andY generate the
maximal ideal, soε = 2, and sinceR/πR has dimension one,d = 2 as well). Note though
thatR/πR is not regular.

6.8. Corollary. Let O be an ultra-DVR and letR be an isodimensional localO-affine
algebra. IfR is pseudo-regular, then it is pseudo-Cohen-Macaulay.

Proof. Let Rw be anO-approximation ofR. By Theorem6.5, almost allRw are regu-
lar whence Cohen-Macaulay. This in turn implies thatR is pseudo-Cohen-Macaulay by
Theorem6.3. �

Without the isodimensionality assumption, the result is false. For instance, leta be a
non-zero element in the ideal of infinitesimals ofO and putR := O/aO. It follows thatR
has geometric dimension one, whence is pseudo-regular, but its depth is zero.
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6.9. Transfer. Let me now elaborate on why the results in this section are instances of
transfer between positive and mixed characteristic. SupposeÕ is a second ultra-DVR,
realized as the ultraproduct of discrete valuation ringsÕw and supposeO ∼= Õ. Note that
this doesnot imply thatOw andÕw are almost all pair-wise isomorphic. In fact, in the next
sections, one set of discrete valuation rings will be of mixed characteristic and the other set
of prime characteristic. LetR be a localO-affine algebra. SinceR is then also local̃O-
affine, its admits a non-standard̃O-hull andÕ-approximations with respect to this second
set of discrete valuation rings; let us denote them byLÕ(R) andR̃w respectively. Suppose
Ow andÕw have pair-wise isomorphic residue fields (as will be the case below). Since
the Rw/πwRw are an approximation of theκ-algebraR/πR (in the sense of [39]) and,
mutatis mutandis, so are thẽRw/π̃wR̃w, whereπ̃w is a uniformizing parameter of̃Ow, we
get from [39, 3.2.3] that almost allRw/πwRw are isomorphic tõRw/π̃wR̃w. Therefore, if
we assume that there is no torsion, thenRw andR̃w have the same dimension, and one set
consists of almost all Cohen-Macaulay local rings if and only if the other set does (note that
this argument does not yet use the abovepseudonotions). However, this argument breaks
down in the presence of torsion, or, when we want to transfer the regularity property. This
can be overcome by using the notions defined in this section, provided we have a uniform
upper bound on the parameter degree.

Suppose, for somed, e ∈ N, that almost allRw have dimensiond and parameter degree
at moste. Note that in view of Corollary5.11this last condition is automatically satisfied if
almost allRw are torsion-free overOw; and that it is implied by the assumption that almost
all Rw have uniformly bounded homological multiplicity (see [43, Corollary 4.6]). Apply-
ing Proposition5.10twice gives first thatR is isodimensional, with geometric dimension
d, and then that almost all̃Rw have dimensiond and uniformly bounded parameter degree.
Now, Theorems6.3and6.5tell us that almost allRw are respectively Cohen-Macaulay or
regular, if and only if almost all̃Rw are.

7. BIG COHEN-MACAULAY ALGEBRAS

In [3, 41], ultraproducts of absolute integral closures in characteristicp were used to
define big Cohen-Macaulay algebras in equicharacteristic zero. This same process can
be used in the current mixed characteristic setting. Recall that for an arbitrary domain
B, we define itsabsolute integral closureas the integral closure ofB in some algebraic
closure of its field of fractions and denote itB+. This is uniquely defined up toB-algebra
isomorphism.

For each prime numberp, letOmix
p be a mixed characteristic complete discrete valuation

ring with uniformizing parameterπp and residue fieldκp of characteristicp, and letO, π
andκ be their respective ultraproducts. PutO

eq
p := κp[[t]], for t a single indeterminate. By

Theorem2.3, the Ax-Kochen-Ershov Theorem,O is isomorphic to the ultraproduct of the
O

eq
p . As before,IO denotes the ideal of infinitesimals ofO. PutA := O[X], for a fixed

tuple of indeterminatesX, and letLeq
O(A) andLmix

O (A) be its respective equicharacteristic
and mixed characteristic non-standardO-hull, that is to say, the ultraproduct of respectively
theAeq

p := O
eq
p [X] and theAmix

p := Omix
p [X].

Throughout,R will be a localO-affine domain withReq
p andL

eq
O(R) respectively an

equicharacteristicO-approximation and the equicharacteristic non-standardO-hull of R
(so thatLeq

O(R) is the ultraproduct of theReq
p ). By Theorem4.4, almost allReq

p are local
domains.

7.1.Definition. DefineB(R) as the ultraproduct of the(Req
p )+.
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Since(Req
p )+ is well-defined up toReq

p -algebra isomorphism, we have thatB(R) is
well-defined up toR-algebra isomorphism. Moreover, this construction is weakly func-
torial in the following sense. LetR → S be anO-algebra homomorphism between
local O-affine domains. This inducesOeq

p -algebra homomorphismsReq
p → Seq

p of the
corresponding equicharacteristicO-approximations. These in turn yield homomorphisms
(Req

p )+ → (Seq
p )+ between the absolute integral closures. Taking ultraproducts, we get an

O-algebra homomorphismB(R) → B(S) and a commutative diagram

(6)

?

-

?
-

SR

B(S).B(R)

7.2.Theorem. If R is a localO-affine domain, then any generic sequence inR is B(R)-
regular.

Proof. Let Leq
O(R) andReq

p be respectively, the equicharacteristic non-standardO-hull and
an equicharacteristicO-approximation ofR. Letx be a generic sequence, and letxp be an
O-approximation ofx. By Corollary5.8, almost eachxp is a system of parameters inReq

p ,
whence is(Req

p )+-regular by [19]. By Łos’ Theorem,x isB(R)-regular. �

8. IMPROVED NEW INTERSECTIONTHEOREM

The remaining sections will establish various asymptotic versions in mixed character-
istic of the Homological Conjectures listed in the abstract. We start with discussing Inter-
section Theorems. By [30], we now know that the New Intersection Theorem holds for all
Noetherian local rings. However, this is not yet known for the Improved New Intersection
Theorem. We need some terminology and notation (all taken from [7]).

Let C be an arbitrary Noetherian local ring andϕ : Ca → Cb a linear map between
finite freeC-modules. We will always think ofϕ as an(a× b)-matrix overC. Forr > 0,
recall that ther-th Fitting ideal of ϕ, denotedIr(ϕ), is the ideal inC generated by all
(r × r) minors ofϕ; if r exceeds the size of the matrix, we putIr(ϕ) := (0).

By afinite free complexoverC we mean a complex

(F•) 0 → Cas
ϕs−−−→Cas−1

ϕs−1−−−−→ . . .
ϕ2−−−→Ca1 ϕ1−−−→Ca0 → 0.

We calls the lengthof the complex, and for eachi, we define

ri :=
s∑

j=i

(−1)j−iaj .

We will refer tori as theexpected rankof ϕi. We will call the residue ringC/Iri(ϕi) the
i-th Fitting ring of F• and we will denote it<i(F•).

Thei-th homologyof F• is by definition the quotient module

Hi(F•) := Ker(ϕi)/ Im(ϕi+1).

We call F• acyclic, if all Hi(F•) = 0 for i > 0. In that case,F• yields afinite free
resolutionof H0(F•).
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In caseC is aZ-affine algebra withZ a local ring, we say thatF• hasZ-complexity
at mostc, if its lengths is at mostc, if all ai ≤ c, and if every entry of eachϕi hasZ-
complexity at mostc. Below we will say that an elementτ in a homology moduleHi(F•)
hasZ-complexityat mostc, if it is the image of a tuple inKer(ϕi) of Z-complexity at most
c (for more details, see§11below).

8.1.Theorem (Asymptotic Improved New Intersection Theorem). For eachc, there exists
a boundINIT(c) with the following property. LetV be a mixed characteristic discrete
valuation ring and let(C,m) be a localV -affine domain. LetF• be a finite free complex
overC. AssumeH0(F•) has a minimal generatorτ , such thatCτ has finite length and
assume thatc simultaneously bounds theV -complexity ofC, τ and F•, the parameter
degree of each Fitting ring<i(F•), and the length ofCτ .

If <i(F•) has dimension at mostdim C − i, for i = 1, . . . , s, then the dimension ofC
is at most the length of the complexF•, provided the characteristic of the residue field of
O is bigger thanINIT(c).

Proof. If πC = 0, thenC contains the residue field ofV and in that case the Theorem is
known (see for instance [7, Theorem 9.4.1] or [11, 16]). So we may moreover assume that
C is flat overV . By faithful flat descent, we may replaceV andC by V̂ and a suitable
localization ofV̂ ⊗V C respectively, wherêV is the completion ofV . In other words,
we only need to prove the result for a torsion-free local domain over a complete discrete
valuation ring of mixed characteristic. Suppose this last assertion is false for somec, so
that there exists an infinite setU of prime numbers and for eachp ∈ U a counterexample
consisting of the following data:

• a mixed characteristic complete discrete valuation ringOmix
p with uniformizing

parameterπp, whose residue field has characteristicp;
• a localOmix

p -affine domainRmix
p of Omix

p -complexity at mostc;
• a finite free complex

(F mix
p• ) 0 → (Rmix

p )as
ϕs,p−−−−→(Rmix

p )as−1
ϕs−1,p−−−−−→ . . .

ϕ2,p−−−−→(Rmix
p )a1

ϕ1,p−−−−→(Rmix
p )a0 → 0

of lengths and ofOmix
p -complexity at mostc, such that thei-th Fitting ring

<i(F mix
p• ) has dimension at mostd− i and parameter degree at mostc;

• a minimal generatorτp of H0(F mix
p• ) of Omix

p -complexity at mostc, generating
a module of length at mostc,

but such thats is strictly less than the dimension ofRmix
p . Choose some non-principal

ultrafilter on the set of prime numbers which containsU . In particular, we have a coun-
terexample with the above properties for almost allp. Without loss of generality, we may
assume that the dimension of eachRmix

p and that the ranks of eachF mix
p• are independent

from p, since there are only finitely many possibilities, and hence precisely one such pos-
sibility almost always holds. In particular, the expected ranks do not depend onp.

Let O andπ be the respective ultraproduct of theOmix
p and theπp. Let R andLmix

O (R)
be the respective restricted ultraproduct and ultraproduct of theRmix

p . It follows from
Theorem4.4, thatR is a localO-affine domain, and from Theorem4.2, thatR → Lmix

O (R)
is faithfully flat. Let d be the geometric dimension ofR, so that almost allRmix

p have
dimensiond by Theorem5.4. Let ϕi be the ultraproduct of theϕi,p. It follows from
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Lemma2.1that eachϕi is already defined overR. Hence by Łos’ Theorem

(F•) 0 → Ras
ϕs−−−→Ras−1

ϕs−1−−−−→ . . .
ϕ2−−−→Ra1 ϕ1−−−→Ra0 → 0

is a finite free complex. LetM denote its zero-th homology and fix somei. By Łos’
Theorem,Iri(ϕi,p) is anO-approximation ofIri(ϕi). By the uniform boundedness of the
parameter degrees,<i(F•) is isodimensional by Proposition5.10. If di is the geometric
dimension of<i(F•), thend − di is equal to the height of almost allIri

(ϕi,p) and to the
geometric height ofIri

(ϕi), by Theorem5.13. In particular, by assumption,i ≤ d − di,
and therefore, by definition of geometric height, we can find a generic sequencexi in R
whose firsti entries belong toIri(ϕi).

Let B := B(R). Sincexi is B-regular by Theorem7.2, the grade ofIri(ϕi)B is at least
i. Since this holds for alli, the Buchsbaum-Eisenbud-Northcott Acyclicity Theorem ([7,
Theorem 9.1.6]) proves thatF• ⊗R B is acyclic. SinceB has depth at leastd, it follows
from [7, Theorem 9.1.2] that the zero-th homology ofF• ⊗R B, that is to say,M ⊗R B,
has depth at leastd− s.

Let τ be the ultraproduct of theτp. Note that eachτp is by assumption the image of
a tuple in(Rmix

p )a0 of Omix
p -complexity at mostc, so thatτ is already defined overR by

Lemma2.1. By Łos’ Theorem,τ is a minimal generator of

H0(F• ⊗ Lmix
O (R)) = M ⊗ Lmix

O (R),

and by [34, Proposition 1.1] or [25, Proposition 9.1], the length ofLmix
O (R)τ is at most

c. By faithful flatness,τ ∈ M − mM , wherem is the maximal ideal ofR, andRτ has
length at mostc. In particular, the image ofτ ⊗ 1 in M/mM ⊗ B/mB is non-zero, and
thereforeτ ⊗ 1 itself is a non-zero element ofM ⊗B. Sincemc annihilatesτ ⊗ 1, we get
thatM ⊗B has depth zero. Together with the conclusion from the previous paragraph, we
get thatd ≤ s, contradiction. �

This type of argument ex absurdum, to obtain uniform bounds via ultraproducts, is very
common and will be used constantly in the sequel. We will shorten the argument by saying
from the start that by way of contradiction, we may assume that for somec, there exist for
almost eachp a counterexample with such and such properties.

9. MONOMIAL AND DIRECT SUMMAND CONJECTURES

We keep notation as in the previous section, so that in particularO will denote the
ultraproduct of mixed characteristic complete discrete valuation ringsOmix

p . In order to
formulate a non-standard version of the Monomial Conjecture, we need some terminology.
Let N∞ be the ultrapower ofN. Let Cw be rings,X := (X1, . . . , Xd) indeterminates and
A∞ the ultraproduct of theCw[X]. Although eachCw[X] is N-graded, it is not true that
A∞ is N∞-graded, since we might have infinite sums of monomials inA∞. Nonetheless,
for eachν∞ ∈ (N∞)d, the elementXν∞ is well-defined, namely, ifν∞ is the ultraproduct
of elementsνw ∈ N, then

Xν∞ := ulim
w→∞

Xνp .

In particular, ifB∞ is an arbitrary ultraproduct of ringsBw and if x is ad-tuple inB∞,
thenxν∞ is a well-defined element ofB∞.

By a coneH in a semi-groupΓ (e.g.,Γ = Nd or Γ = Nd
∞), we mean a subsetH of

Γ such thatν + Γ ⊆ H, for everyν ∈ H, whereν + Γ stands for the collection of all
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ν + γ with γ ∈ Γ. A coneH is finitely generated, if there existν1, . . . , νs ∈ H, called
generatorsof the cone, such that

H =
⋃
i

νi + Γ.

If H is a cone inNd, we letJH be the monomial ideal inZ[Y ] generated by allY ν with
ν ∈ H, whereY is a d-tuple of indeterminates. IfH is generated byν1, . . . , νs, then
JH is generated byXν1 , . . . , Xνs . Conversely, ifJ is a monomial ideal inZ[Y ], then the
collection of allν for which Y ν ∈ J , is a cone inNd. SinceZ[Y ] is Noetherian, every
cone inNd is finitely generated. This is no longer true for a cone inNd

∞.
Let B be an arbitrary ring. We will use the following well-known fact about regular

sequences. Ifx is aB-regular sequence (in fact, it suffices thatx is quasi-regular),H a
cone inNd andν /∈ H, thenxν does not lie in the idealJH(x) generated by allxθ with
θ ∈ H.

9.1. Corollary. Let R be a localO-affine domain with equicharacteristic non-standard
O-hull Leq

O(R). Letx be a generic sequence inR, let H be a cone inNd
∞ and letν ∈ Nd

∞.
If ν /∈ H, then

(7) xν /∈ (xµ | µ ∈ H)Leq
O(R).

Proof. Suppose (7) is false for some choice of coneH of Nd
∞ and someν0 /∈ H. In other

words, we can findfi∞ in L
eq
O(R) and tuplesνi in H, such that

(8) xν0 = f1∞xν1 + · · ·+ fs∞xνs .

SinceR → B(R) factors throughLeq
O(R), we can view (8) as a relation inB(R), and we

want to show that that is impossible. LetReq
p be an equicharacteristicO-approximation

of R, so thatB(R) is the ultraproduct of the(Req
p )+. Choose tuplesνip ∈ N, elements

fip ∈ (Req
p )+ and tuplesxp in Req

p whose respective ultraproducts areνi, fi∞ andx. By
Łos’ Theorem, we get that

(9) xν0p
p = f1pxν1p

p + · · ·+ fspxνsp
p

in (Req
p )+, for almost allp. Łos’ Theorem also yields thatν0p does not lie in the cone ofNd

generated byν1p, . . . , νsp, for almost allp. However,x is B(R)-regular by Theorem7.2,
whence, almost allxp are(Req

p )+-regular by Łos’ Theorem. By our above discussion on
regular sequences, (9) cannot hold for thosep. �

9.2. Theorem (Asymptotic Monomial Conjecture I). For eachc, there exists a bound
MC(c) with the following property. LetY be a tuple of indeterminates andJ a monomial
ideal inZ[Y ]. LetV be a mixed characteristic discrete valuation ring and letC be a local
V -affine domain. Lety be a system of parameters inC and letJ(y)C denote the ideal inC
obtained fromJ by the substitutionY 7→ y. AssumeJV [Y ], C andy haveV -complexity
at mostc andπc ∈ yC.

If Y ν is a monomial of degree at mostc not belonging toJ , thenyν /∈ J(y)C, provided
the characteristic of the residue field ofV is bigger thanMC(c).

Proof. Note that sinceC hasV -complexity at mostc, its dimensiond is at mostc. By
faithful flat descent, we may reduce to the case thatV is complete. Suppose the result is
false for somec, so that we can find for almost each prime numberp,

• a mixed characteristic complete discrete valuation ringOmix
p with uniformizing

parameterπp, whose residue field has characteristicp,
• a localOmix

p -affine domainRmix
p of Omix

p -complexity at mostc,
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• multi-indicesν0p, . . . , νtp such that|νip| ≤ c andν0p is not in the cone gen-
erated by the remaining tuples,

• a system of parametersyp of Omix
p -complexity at mostc generating an ideal

containing(πp)c,

such that

(10) yν0p
p ∈ (yν1p

p , . . . ,yνtp
p )Rmix

p .

Note that the possible numbert of tuplesνip is bounded in terms ofc and hence can be
taken to be independent ofp. Let O be the ultraproduct of theOmix

p and letR andLmix
O (R)

be the respective restricted ultraproduct and ultraproduct of theRmix
p . SinceR is then a

domain, it is isodimensional. Lety andνi be the respective ultraproducts ofyp andνip.
In particular,|νi| ≤ c, so thatνi ∈ Nd. Let H be the cone inNd generated byν1, . . . , νt.
By Łos’ Theorem,ν0 /∈ H. The sequencey is defined overR, by Lemma2.1, and is
generic inR, by Corollary5.8. By an application of Łos’ Theorem to (10) together with
Theorem4.2, we get

yν0 ∈ (yν1 , . . . ,yνt)R.

However, this contradicts Corollary9.1for the coneH. �

9.3.Remark. In [38, Theorem 1.1], this result was stated erroneously without imposing a
bound on the degrees of the monomials. I can only prove this more general result in the
special case given by Corollary9.5below.

Using some results from [46], we can remove the restriction onC to be a domain.
Namely, by the usual argument, we reduce to the domain case by killing a minimal primep
of C of maximal dimension (that is to say, so thatdim C = dim C/p). However, in order
to apply the theorem to the domainC/p, we must be guaranteed that itsV -complexity
is at mostc′, for somec′ only depending onc. Such a bound does indeed exist by [46,
Theorems 9.2 and 9.12].

9.4.Theorem (Asymptotic Direct Summand Conjecture). For eachc, we can find a bound
DS(c) with the following property. LetV be a mixed characteristic discrete valuation ring
and letC → D be a finite, injective localV -algebra homomorphism ofV -complexity at
mostc.

If C is regular, thenC is a direct summand ofD (as aC-module), provided the charac-
teristic of the residue field ofV is bigger than the boundDS(c).

Proof. If πC = 0, we are in the equicharacteristic case and the result is well-known. So we
may assume thatV ⊆ C. We leave it to the reader to make the reduction to the case thatV
is complete andD is torsion-free overV . Towards a contradiction, suppose for somec and
almost eachp, we have a mixed characteristic complete discrete valuation ringOmix

p with
residue field of characteristicp, and a finite, injective localOmix

p -algebra homomorphism
Rmix

p → Smix
p of Omix

p -complexity at mostc, such thatRmix
p is regular but not a direct

summand ofSmix
p .

By the transfer described in§6.9, these data in mixed characteristic yield corresponding
data in equal characteristic. In particular, we have for almost eachp, an equicharacteristic
p complete discrete valuation ringOeq

p , and a finite, injective localOeq
p -algebra homomor-

phismReq
p → Seq

p of O
eq
p -complexity at mostc, such thatReq

p is regular. Although, we
did not discuss transfer of homomorphisms and their properties, it is not hard to see, using
faithfully flat descent, that almost noReq

p is a direct summand ofSeq
p . However, this is in

violation of the Direct Summand theorem in equicharacteristic. �



ASYMPTOTIC HOMOLOGICAL CONJECTURES IN MIXED CHARACTERISTIC 25

9.5. Corollary (Asymptotic Monomial Conjecture II). For eachc, we can find a bound
MC’(c) with the following property. LetV be a mixed characteristic discrete valuation
ring, let D be a localV -affine algebra and let(x1, . . . , xd) be a system of parameters in
D.

If there exists a finite, injective localV -algebra homomorphismC ⊆ D ofV -complexity
at mostc, such that thexi belong toC and generate its maximal ideal, then(x1 · · ·xd)t

does not belong to(xt+1
1 , . . . , xt+1

d )D, for all t ≥ 0, provided the residue field ofV is
bigger thanMC’(c) .

Proof. We may takeMC’(c) equal to the boundDS(c) from Theorem9.4. Indeed, since
D has dimensiond, so doesC, showing thatC is regular. HenceC is a direct summand of
D by Theorem9.4, so that we are done by [7, Lemma 9.2.2]. �

Note that the bounds provided by Theorem9.2 for the problem at hand depend a priori
also on the exponentt, so that the corollary gives a stronger result. Interestingly, by Co-
hen’s Structure Theorem, any system of parameters in a complete localV -affine domain
arises as the image of a regular system of parameters under a finite extension. However,
since we are forced to work with non-completeV -affine algebras, it is not clear yet to
which extent the above theorem applies.

10. PURE SUBRINGS OF REGULAR RINGS

We keep notation as in the previous section, so that in particularO will denote the
ultraproduct of mixed characteristic complete discrete valuation ringsOmix

p . Our goal is to
show an asymptotic version of the Hochster-Roberts Theorem in [22]. Recall that a ring
homomorphismC → D is calledcyclically pureif every idealI in C is extended fromD,
that is to say, ifI = ID ∩ C.

10.1.Theorem. If R is a pseudo-regular isodimensional localO-affine algebra, thenR →
B(R) is faithfully flat.

Proof. Let L be a linear form in a finite number of indeterminatesY with coefficients in
R and letb be a solution inB := B(R) of L = 0. Let Req

p , Leq
p andbeq

p be equichar-
acteristicO-approximations ofR, L andb respectively. By Łos’ Theorem,beq

p is a so-
lution in (Req

p )+ of the linear equationLeq
p = 0. By [2, Corollary 4.27], we can find

tuplesa1
eq
p , . . . ,as

eq
p overReq

p generating the module of solutions ofLeq
p = 0, all of O

eq
p -

complexity at mostc, for somec independent fromp ands. Let a1, . . . ,as be the re-
spective ultraproducts, which are then defined overR by Lemma2.1. By Łos’ Theorem,
L(ai) = 0, for eachi. On the other hand, almost allReq

p are regular, by Theorem6.5.
Therefore,Req

p → (Req
p )+ is flat by [24, Theorem 9.1]. Hence we can writebeq

p as a linear
combination over(Req

p )+ of theai
eq
p . By Łos’ Theorem,b is aB-linear combination of

the solutionsai, showing thatR → B is flat whence faithfully flat. �

10.2.Proposition. Let R → S be an injective homomorphism of local isodimensional
O-affine algebras. IfR/πR → S/πS is cyclically pure andS is a pseudo-regular local
ring, thenR is pseudo-Cohen-Macaulay.

Proof. SinceS is a domain by Corollary6.6, so isR. If πR = 0, we are in an equichar-
acteristic Noetherian situation and the statement becomes the Hochster-Roberts Theorem
[22]. Therefore, we may assumeπ is R-regular, so that we can choose a generic sequence
x := (x1, . . . , xd) in R with x1 = π. For eachn ≤ d, let In := (x1, . . . , xn)R. Sup-
poserxn+1 ∈ In, for somer ∈ R. By Theorem7.2, the sequencex is aB(R)-regular.
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Therefore,r ∈ InB(R). Since the homomorphismR → S induces a homomorphism
B(R) → B(S), we getr ∈ InB(S). By Theorem10.1, we haveInB(S) ∩ S = InS,
so thatr ∈ InS. Using finally thatR/πR → S/πS is cyclically pure andπ ∈ In, we
get r ∈ In. This shows thatx is R-regular, so thatR has depth at leastd and hence is
pseudo-Cohen-Macaulay. �

10.3.Theorem (Asymptotic Hochster-Roberts Theorem). For eachc, we can find a bound
HR(c) with the following property. LetV be a mixed characteristic discrete valuation ring
and letC → D be a localV -algebra homomorphism ofV -complexity at mostc.

If C → D is cyclically pure andD is regular, thenC is Cohen-Macaulay, provided the
characteristic of the residue field ofV is at leastHR(c).

Proof. As before, we may reduce to the case thatV is complete and thatV ⊆ C. Sup-
pose this assertion is then false for somec, so that we can find for almost each prime
numberp, a mixed characteristic complete discrete valuation ringOmix

p with residue field
of characteristicp and a cyclically pureOmix

p -algebra homomorphismRmix
p → Smix

p of
Omix

p -complexity at mostc, such thatSmix
p is regular butRmix

p is not Cohen-Macaulay. Let
R → S andLmix

O (R) → Lmix
O (S) be respectively the restricted ultraproduct and the ultra-

product of theRmix
p → Smix

p . Theorem6.3 implies thatR is not pseudo-Cohen-Macaulay,
and Theorem6.5, thatS is pseudo-regular. I claim thatR/πR → S/πS is cyclically pure.
Assuming this claim, we get from Proposition10.2 that R is pseudo-Cohen-Macaulay,
contradiction.

To prove the claim, letI be an arbitrary ideal inR containingπ. Let r ∈ IS∩R, so that
we need to show thatr ∈ I. Note thatI is finitely generated, asR/πR is Noetherian. Let
Imix

p andrmix
p be mixed characteristicO-approximations inRmix

p of I andr respectively. By
Łos’ Theorem, almost allrmix

p lie in Imix
p Smix

p ∩Rmix
p , whence inImix

p by cyclical purity. By
Łos’ Theorem,r ∈ ILmix

O (R), so thatr ∈ I by faithful flatness, as we needed to prove.�

11. ASYMPTOTIC VANISHING FOR MAPS OFTOR

11.1. Proposition. If R → S is an integral extension of localO-affine domains, then
B(R) = B(S).

Proof. Since any integral extension is a direct limit of finite extensions, we may assume
thatR → S is finite. Choose an equicharacteristicO-approximationReq

p → Seq
p of R → S.

By Theorem4.4and Łos’ Theorem, almost allReq
p andSeq

p are domains and the extension
Req

p → Seq
p is finite. Therefore,(Req

p )+ = (Seq
p )+, so that in the ultraproduct, we get

B(R) = B(S). �

11.2.Theorem. Let R → S → T be localO-algebra homomorphisms between local
O-affine domains. Assume thatR andT are pseudo-regular and thatR → S is integral
and injective. For everyR-moduleM , the induced mapTorR

i (S, M) → TorR
i (T,M) is

zero, for alli ≥ 1.

Proof. SinceR → S is integral, we have thatB(R) = B(S) by Proposition11.1. There-
fore, TorR

i (B(S),M) = 0, for all i ≥ 1, by Theorem10.1. By weak functoriality, we
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have, for eachi ≥ 1, a commutative diagram

(11)

?

-

?
-

TorR
i (T,M)TorR

i (S, M)

TorR
i (B(T ),M).0 = TorR

i (B(S),M)

In particular, the composite map in this diagram is zero, so that the statement follows
once we have shown that the last vertical map is injective. However, this is clear, since
T → B(T ) is faithfully flat by Theorem10.1. �

To make use of this theorem, we need to incorporate modules in our present setup. I
will not provide full details, since many results are completely analogous to the case where
we work over a field, and this has been treated in detail in [35]. Of course, we do not have
the full equivalent of Theorem2.2to our disposal, but for most purposes, the flatness result
in Theorem4.2suffices.

Let C be an arbitrary Noetherian local ring andM a finitely generated module over
C. We say that a finite free complexF• is a finite free resolution ofM up to leveln, if
H0(F•) = M and allHj(F•) = 0, for j = 1, . . . , n. Hence, ifn is strictly larger than the
length ofF•, then this just means thatF• is a finite free resolution ofM (compare with the
terminology introduced in the beginning of§8).

Suppose moreover thatZ is a Noetherian local ring andC is a localZ-affine algebra.
We say thatM hasZ-complexityat mostc, if C hasZ-complexity at mostc and ifM can
be realized as the cokernel of a matrix ofZ-complexity at mostc (meaning that its size is
at mostc and all its entries haveZ-complexity at mostc).

11.3.Proposition. For each pair(c, n), there exist boundsRES(c, n) andHOM(c) with
the following property. LetV be a mixed characteristic discrete valuation ring and letC
be a localV -affine algebra ofV -complexity at mostc.

• Any finitely generatedC-module ofV -complexity at mostc, admits a (minimal)
finite free resolution up to leveln of V -complexity at mostRES(c, n).

• Any finite free complex overC of V -complexity at mostc, has homology mod-
ules ofV -complexity at mostHOM(c).

Proof. The first assertion follows by induction from the already quoted [2, Corollary 4.27]
on bounds of syzygies (compare with the proof of [35, Theorem 4.3]). It is also clear that
we may take this resolution to be minimal (=every tuple in one of the kernels has its entries
in the maximal ideal), if we choose to do so. The second assertion is derived from the
flatness of the non-standardO-hull in exactly the same manner as the corresponding result
for fields was obtained in [35, Lemma 4.2 and Theorem 4.3]. �

Recall that theweak global dimensionof a ringC is by definition the supremum (pos-
sibly infinite) of the weak homological dimensions (=flat dimensions) of allC-modules,
that is to say, the supremum of alln for whichTorC

n (·, ·) is not identically zero.

11.4.Corollary. A pseudo-regular localO-affine domain has finite weak global dimen-
sion.
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Proof. Let R be a pseudo-regular localO-affine domain. Given an arbitraryR-module
M , we have to show thatM has finite flat dimension, that is to say, admits a finite flat
resolution. Assume first thatM is finitely presented. Hence we can realizeM as the
cokernel of some matrixΓ. Let L(R) be the non-standardO-hull of R and letRw andΓw

beO-approximations ofR andΓ respectively. LetMw be the cokernel ofΓw. Let d be
the geometric dimension ofR. By Proposition11.3, we can find a finite free resolution
Fw• up to leveld of eachMw, of Ow-complexity at mostc, for somec depending only on
Γ, whence independent fromw. Since almost eachRw is regular by Theorem6.5and has
dimensiond by Theorem5.4, almost eachMw has projective dimension at mostd, so that
we can even assume thatFw• is a finite free resolution ofMw. Let F• be the restricted
ultraproduct of theFw• (that is to say, the finite free complex overR given by the restricted
ultraproduct of the matrices inFw•). By Łos’ Theorem,F•⊗R L(R) is a free resolution of
M ⊗R L(R), and therefore by faithful flat descent,F• is a free resolution ofM , proving
thatM has projective dimension at mostd.

Assume now thatM is arbitrary. By what we just proved, we have for every finitely
generated idealI of R thatTorR

d+1(M,R/I) vanishes. Hence, ifH is ad-th syzygy ofM ,
thenTorR

1 (H,R/I) = 0. Since this holds for every finitely generated ideal ofR, we get
from [27, Theorem 7.7] thatH is flat overR. HenceM has finite flat dimension (at most
d). �

By [26], any flatR-module has projective dimension less than the finitistic global di-
mension ofR (the supremum of all projective dimensions of modules of finite projective
dimension). Therefore, if, moreover, the finitistic global dimension ofR is finite, then so
is its global dimension. For a Noetherian local ring, its global dimension is finite if and
only if its residue field has finite projective dimension (if and only if it is regular). The
following is the pseudo analogue of this.

11.5.Corollary. A local O-affine domain is pseudo-regular if and only if it is a coherent
regular ring in the sense of[6], if and only if its residue field has finite projective dimension.

Proof. In [6] or [12, §5], a local ringR is called acoherent regular ring, if every finitely
generated ideal ofR has finite projective dimension. IfR is a pseudo-regular localO-affine
domain, then this property was established in the course of the proof of Corollary11.4.
Conversely, supposeR is a localO-affine domain in which every finitely generated ideal
has finite projective dimension. In particular, its residue fieldk admits a finite projective
resolution, say of lengthn. Let Rw andkw beO-approximations ofR andk respectively.
Since thekw have uniformly boundedOw-complexity, Proposition11.3allows us to take
a minimal finite free resolutionFw• of kw up to leveln, with the property that eachFw•
hasOw-complexity at mostc, for somec independent fromw. Let F• be the restricted
ultraproduct of these resolutions. By Łos’ Theorem and faithfully flat descent,F• is a
minimal finite free resolution ofk up to leveln. SinceF• is minimal and sincek has by
assumption projective dimensionn, it follows that the final morphism (that is to say, the left
most arrow) inF• is injective. By Łos’ Theorem, so are almost all final morphisms inFw•,
showing that almost allkw have finite projective dimension. By Serre’s characterization of
regular local rings, we conclude that almost allRw are regular. Theorem6.5 then yields
thatR is pseudo-regular, as we wanted to show. �

Closer inspection of the above argument shows that the residue field of a pseudo-regular
localO-affine domainR has projective dimension equal to the geometric dimension ofR.
In particular, the weak global dimension ofR is equal to its geometric dimension.
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11.6.Theorem (Asymptotic Vanishing for Maps of Tors). For eachc, we can find a bound
VT(c) with the following property. LetV be a mixed characteristic discrete valuation ring,
let C → D → E be localV -algebra homomorphisms of localV -affine domains and let
M be a finitely generatedR-module, all ofV -complexity at mostc.

If C and E are regular andC → D is finite and injective, then the natural map
TorC

n (D,M) → TorC
n (E,M) is zero, for alln ≥ 1, provided the characteristic of the

residue field ofV is at leastVT(c).

Proof. Note thatC has dimension at mostc and thereforeTorC
n (·, ·) vanishes identically

for all n > c and the assertion trivially holds for these values ofn. If πC = 0, we are in
the equicharacteristic case, for which the result is known ([24, Theorem 9.7]). Hence we
may assume that all rings are torsion-free overV . Moreover, without loss of generality, we
may assume thatV is complete. Suppose even in this restricted setting, there is no such
bound forc and some1 ≤ n ≤ c. Hence, for almost each prime numberp, we can find a
counterexample consisting of the following data:

• a mixed characteristic complete discrete valuation ringOmix
p of residual char-

acteristicp;
• localRmix

p -algebra homomorphismsRmix
p → Smix

p → T mix
p of Omix

p -complexity
at mostc between torsion-free local domains, withRmix

p andT mix
p regular and

Rmix
p → Smix

p finite and injective;
• a finitely generatedRmix

p -moduleMmix
p of Omix

p -complexity at mostc;

such that

Tor
Rmix

p
n (Smix

p ,Mmix
p ) → Tor

Rmix
p

n (T mix
p ,Mmix

p )

is non-zero.
Let O be the ultraproduct of theOmix

p and letM be the restricted ultraproduct of the
Mmix

p (that is to say,M is the cokernel of the restricted ultraproduct of matrices whose
cokernel isMmix

p ). Let R → S → T andLmix
O (R) → Lmix

O (S) → Lmix
O (T ) be the respec-

tive restricted ultraproduct and mixed characteristic ultraproduct of the homomorphisms
Rmix

p → Smix
p → T mix

p . It follows from Corollary6.6 and Theorems4.4 and6.5, thatR,
S andT are localO-affine domains withR andT pseudo-regular. By Łos’ Theorem, us-
ing that theRmix

p → Smix
p have boundedOmix

p -complexity,Lmix
O (R) → Lmix

O (S) is finite,
whence so isR → S by faithful flat descent. By Theorem11.2, the natural homomorphism
TorR

n (S, M) → TorR
n (T,M) is therefore zero.

By Proposition11.3, we can find a finite free resolutionF mix
p• of Mmix

p up to leveln,
of Omix

p complexity at mostc′, for somec′ only depending onc (note thatn ≤ c). By
definition of Tor, we have isomorphisms

Tor
Rmix

p
n (Smix

p ,Mmix
p ) ∼= Hn(F mix

p• ⊗Rmix
p

Smix
p )

Tor
Rmix

p
n (T mix

p ,Mmix
p ) ∼= Hn(F mix

p• ⊗Rmix
p

T mix
p )

In particular, by Proposition11.3, both modules haveOmix
p -complexity at mostc′′, for

somec′′ only depending onc′, whence only onc. Let HS andHT be their respective
restricted ultraproduct, so that by Łos’ Theorem and our assumptions,HS → HT is non-
zero. LetF• be the restricted ultraproduct of theF mix

p• . By Łos’ Theorem and faithful
flatness,HS andHT are isomorphic toHn(F• ⊗R S) andHn(F• ⊗R T ) respectively.
SinceF• is a finite free resolution ofM up to leveln by another application of Łos’
Theorem and faithful flatness, these two modules are also isomorphic toTorR

n (S, M) and



30 HANS SCHOUTENS

TorR
n (T,M) respectively. Hence the natural map between these two modules is non-zero,

contradiction. �
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40. , A non-standard proof of the Briançon-Skoda theorem, Proc. Amer. Math. Soc.131(2003), 103–112.

2
41. , Canonical big Cohen-Macaulay algebras and rational singularities, Illinois J. Math.48 (2004),

131–150.2, 4, 19
42. , Log-terminal singularities and vanishing theorems via non-standard tight closure, J. Alg. Geom.14

(2005), 357–390.2, 4
43. , Absolute bounds on the number of generators of Cohen-Macaulay ideals of height at most two,

(2001) preprint on http://home.nyc.rr.com/schoutens, in preparation.14, 19
44. , Bounds in polynomial rings over Artinian local rings, (2003) manuscript, in preparation.2, 6, 7, 9,

14, 15
45. , Dimension theory for local rings of finite embedding dimension, (2004) preprint, in preparation.4,

6, 11, 12
46. , Uniform bounds and embeddings into ultraproducts, (2003) manuscript, in preparation.5, 6, 10, 24
47. , Pure subrings of regular rings are pseudo-rational, Trans. Amer. Math. Soc. (to appear).2, 4
48. J. Strooker,Homological questions in local algebra, LMS Lect. Note Ser., vol. 145, Cambridge University

Press, 1990.1
49. L. van den Dries,Algorithms and bounds for polynomial rings, Logic Colloquium, 1979, pp. 147–157.4

DEPARTMENT OFMATHEMATICS, CITY UNIVERSITY OF NEW YORK, 365 FIFTH AVENUE, NEW YORK,
NY 10016 (USA)

E-mail address: hschoutens@citytech.cuny.edu
URL: http://home.nyc.rr.com/schoutens


	1. Introduction
	Z-affine algebras.
	Complexity.
	Asymptotic properties.
	A final note.
	Notation.

	2. Ultraproducts
	3. Approximations, restricted ultraproducts and non-standard hulls
	O-approximations and non-standard O-hulls.
	Restricted Ultraproducts.
	Functoriality.

	4. Flatness of non-standard O-hulls
	5. Geometric dimension
	5.5. Geometric dimension.

	6. Pseudo singularities
	Grade and depth.
	6.9. Transfer.

	7. Big Cohen-Macaulay algebras
	8. Improved New Intersection Theorem
	9. Monomial and Direct Summand Conjectures
	10. Pure subrings of regular rings
	11. Asymptotic vanishing for maps of Tor
	References

