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Abstract. We introduce a measure of complexity for affine algebras and their
finitely generated modules, in terms of the degrees of the polynomials used in their
description. We then study how various cohomological operations and numerical in-
variants are uniformly bounded with respect to these complexities. We apply this
to give first order characterisations of certain algebraic-geometric properties. This
enables us to apply the Lefschetz Principle to transfer properties between various
characteristics. As an application, we obtain the following version of the Zariski-
Lipman Conjecture in positive characteristic: let R be the local ring of a point P on a
hypersurface over an algebraically closed field K such that the module of K-invariant
derivatives on R is free, then P is a non-singular point, provided the characteristic
is larger than some bound only depending on the degree of the hypersurface.

1. Introduction

1.1. Transfer Principles. Often a remarkable dichotomy in algebraic-geometric
results between zero and positive characteristic can be observed both in their state-
ments and their proofs. Thus it appears that problems involving singularities are
harder to prove in positive characteristic than in zero characteristic (e.g., resolution
of singularities), or are even false in positive characteristic (Zariski-Lipman Con-
jecture, see below). In contrast, homological questions tend to be easier to prove in
positive characteristic in view of the presence of the Frobenius morphism; here the
Bass Conjecture (see below) is a good example. However, in some cases the validity
of a result in one case of the characteristic can be inferred from its validity in the
other case. The most naive way to do this is by reduction: for a simple example take
the Diophantine equation X2+Y 2 = 3Z2; it has no solutions in positive integers for
it has no solutions modulo 3. A much more sophisticated transfer principle is the
Lefschetz Principle as formulated by Weil. Unfortunately, the latter principle is
metamathematical in nature.1 We propose to use in this paper a first order version
of this principle, which we will continue to call the Lefschetz Principle, for sake of
simplicity. Most succinctly stated, it is the following isomorphism of fields

(1) C ∼=
∏

U

F
alg
p ,

where Falg
p is the algebraic closure of the p-element field Fp (p prime) and U is a

non-principal ultrafilter on the set of primes.

Key words and phrases. Cohomology, Betti numbers, Zariski-Lipman Conjecture, Bass Con-
jecture, Lefschetz Principle.

1Perhaps the best attempts to formulate this principle in a formal, model-theoretic language
are [Ek] and [BE] ; for a more general version than (1) below, see [FJ, Theorem 8.3] .
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Before explaining the bearing of this isomorphism, let us first indicate some of
the results in this paper obtained through an application of the Lefschetz Principle.
In Section 5 we will show that the validity of both the Bass Conjecture and the
New Intersection Theorem for affine local rings over an algebraically closed field
of characteristic zero can be derived from its validity in case the characteristic is
positive. In the original proofs, a similar transfer is shown, albeit by ad hoc means.
However, we do reach some new conclusions in Section 6, where we show some low
degree version of the Zariski-Lipman Conjecture in positive characteristic. More
precisely, we show that if the local ring R of a point x on a scheme X of finite
type over an algebraically closed field K of characteristic p, admits a free module
of K-derivations DerK(R), then X is normal at the point x, provided the polyno-
mials defining X and the prime ideal of x have small degree with respect to the
characteristic p. Moreover, if X is a hypersurface, then under the same assump-
tions, x is a non-singular point on X . Note that both results are false without any
restriction on the degree. We derive these results using the Lefschetz Principle in
conjunction with known cases ( [Lip] and [SS] ) of the Zariski-Lipman Conjecture
in characteristic zero. One could also prove, using the Lefschetz Principle in the
same way, a low degree version of Embedded Resolution of Singularities, as already
observed by Eklof in [Ek 2] . However, it is important to note that, whereas
the latter property can also be derived from a direct investigation of the proof in
characteristic zero (for instance, using Bierstone and Milman’s explicit proof
[BM] ), this is no longer true for the former properties. Indeed, the proofs to both
the New Intersection Theorem and the Bass Conjecture use an application of the
Frobenius functor and whence are not available in characteristic zero and something
like Hochster’s Finiteness Theorem (see [Ho] ) or our method is needed. Like-
wise, the aforesaid results [Lip] and [SS] on the Zariski-Lipman Conjecture, use
both analytic methods in their proof and whence cannot be transferred to positive
characteristic. Therefore, to my knowledge, our (indirect) proof is the only one
available at present.

In the rest of this introduction, we will sketch the technique behind this transfer
principle. A definable set U of Kn, for some n = 0, 1, . . . , is an element of the
smallest Boolean algebra D(K) closed under the following two rules:

(D1) any constructible set V ⊂ Km lies in D(K);
(D2) if U ⊂ Kn+1 lies in D(K) and π : Kn+1 → Kn is the projection on the first

n coordinates, then also π(U) lies in D(K).

Recall that a constructible set is a finite union of locally closed sets F \ Z, with
F and Z zero sets of finitely many polynomials over K. Let R be a subring of K.
If we allow in (D1) only constructible sets in which all equations have coefficients
from R, then we obtain the subclass DR(K) of R-definable subsets. In particular
DK(K) = D(K). If R is the prime subfield of K, then we write D∅(K) for DR(K)
and call its elements ∅-definable (read zero-definable). It follows from Chevalley’s
theorem (or from algebraic quantifier elimination) that D(K) with K algebraically
closed coincides with the collection of all constructible sets of K.

A first order formula (or, simply formula) is a functorial way of assigning to an
algebraically closed field K a ∅-definable subset of K. More precisely, a formula in
the free variables xxx = (x1, . . . , xn), is an expression

ϕ = (∃yyy0)(∀yyy1) . . . (∃yyys−1)(∀yyys)
∨

i<m

∧

j<n

pij(xxx,yyy) = 0 ∧ qij(xxx,yyy) 6= 0



BOUNDS IN COHOMOLOGY 3

with pij and qij polynomials over Z and yyyj (possibly empty) tuples of variables.
Such a formula ϕ defines for an arbitrary fieldK a ∅-definable subset |ϕ|K as follows.
An n-tuple xxx ∈ Kn belongs to |ϕ|K , if and only if, there exists a tuple yyy0 over K,
such that for all tuples yyy1 over K, . . . , such that there exists a tuple yyys−1 over
K, such that for all tuples yyys over K, we have for some i < m and all j < n that
pij(xxx,yyy0, . . . , yyys) = 0 and qij(xxx,yyy0, . . . , yyys) 6= 0. The reader easily checks that |ϕ|K
belongs to D∅(K). Note that it is not true in general that if K ⊂ L is an extension
of fields then |ϕ|K maps into |ϕ|L under the inclusion Kn ⊂ Ln. However, if K
and L are algebraically closed, then this is true, again by quantifier elimination. In
other words, a formula ϕ can be viewed as a functor from the full subcategory of
algebraically closed fields to the category of sets.

We will sometimes make use of the following version of the Compactness Theorem
for first order logic.

1.2. First Order Compactness. Let ϕi be a sequence of first order formulae in
n free variables. If for every field K, we have that

|ϕ0|K =
⋃

i≥1

|ϕi|K

(as subsets of Kn), then there is some i0, such that, for each field K, we have that

|ϕ0|K =

i0
⋃

i=1

|ϕi|K .

We say that a formula ϕ in the free variables (x1, . . . , xn) is true in K, if |ϕ|K =
Kn (i.e., every n-tuple over K satisfies the formula ϕ). The Lefschetz Principle (1)
is now equivalent with the following.

1.3. Lefschetz Principle. Let ϕ be a formula. Then ϕ is true in C, if and only if,
it is true in infinitely many Falg

p . Moreover, in this case, there is an N = N(ϕ) ∈ N,
such that ϕ holds in any algebraically closed field of characteristic bigger than N or
equal to zero.2

Note that not any functor which assigns a ∅-definable subset to an algebraically
closed field has this property; the notion of a formula is not a moot one.

1.4. Definability. With this setup, let us now look at an example in which we
want to apply this principle. Let K be an algebraically closed field. With an affine
local ring over K, we mean a local ring (R,m) which is essentially of finite type
over K, i.e., a localisation of a finitely generated K-algebra. The (affine version
of the) Bass conjecture for K states that any affine local ring over K admitting
a finitely generated module of finite injective dimension must be Cohen-Macaulay
(the converse is also true). As such, this does not appear to be a statement which
can be translated into a first order formula. For one thing, we quantify over all
affine local rings of K. Moreover, it is not clear how to encode in a first order way
properties as finite injective dimension and Cohen-Macaulayness .

2If one wishes, the dichotomy mentioned above becomes in the first order case a dichotomy
between all and almost all characteristics.
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To bypass the first problem we will only make statements about certain sub-
classes AffLocd(K) of affine local rings over K (for d = 0, 1, . . . ). We want
of course that the union of all the AffLocd(K) gives the class of all (isomor-
phism classes of) affine local rings AffLoc(K) over K and also that each class
AffLocd(K) can be identified with a ∅-definable subset Ld,K of K, in some affine

space KN(d) where N(d) depends on d. For convenience’s sake, we will also re-
quire that AffLocd(K) ⊂ AffLocd+1(K) and the corresponding ∅-definable sub-
sets also satisfy Ld,K ⊂ Ld+1,K . Here we fix an embedding of Kn in Kn+m via
(x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0) and assume that always N(d) ≤ N(d+ 1) (by
adding zeros if necessary). However, since we want to use the Lefschetz Principle,
we should make the construction functorial in K. In other words, for each d, we
want to construct a formula AffLocd (in the free variables (x1, . . . , xN(d))), such
that |AffLocd|K = Ld,K . Concretely, let AffLocd(K) be the class of all affine local
rings of the form

(2) R =

(

K[X1, . . . , Xn]

(f1, . . . , fs)

)

(g1,...,gt)

where (g1, . . . , gt) is a prime ideal, n, s, t ≤ d and each fi, gj has degree at most d.
Adding zeros if necessary, we even may take n = s = t = d. If the above bounds
hold for R, then we say that its complexity is at most d. Each affine local ring R as
in (2) of complexity at most d is now encoded by giving the tuple aaa of all coefficients
of the fi and the gj, listed in a fixed order. We’ll write this as R = R(aaa). Note
that each polynomial f over K in the variables (X1, . . . , Xd) of degree at most d is
of the form

f =
∑

|ν|≤d

aνX
ν

where aν ∈ K and ν = (ν1, . . . , νd) is a tuple of indices with |ν| = ν1 + · · ·+ νd ≤ d.
Hence the the polynomial f is determined by the tuple (aν). In other words,
when R = R(aaa), then aaa consists of 2d such tuples (determining the fi and the
gj), subject to the condition that the last d tuples determine polynomials which
generate a prime ideal. We will show in (2.3) below that there exists a formula
AffLocd which precisely expresses this fact. Summarizing, we found, for each d, a
formula AffLocd, such that there is a surjective map aaa 7→ R(aaa) from |AffLocd|K
onto AffLocd(K). In fact, if we view AffLocd as a functor from the category of fields
to the category of sets, sending a field K to the collection of affine local K-algebras
AffLocd(K) of complexity at most d, and, if we view AffLocd as a functor as well
as explained above, then we have a surjective natural transformation

(3) AffLocd → AffLocd.

Here we call a natural transformation η : F → G of functors surjective, if for each
object M , we have that η(M) : F (M) → G(M) is surjective.

Remark. A surjective natural transformation is in general the best one can hope
for. The reason for this is that as of now, I do not know whether one can express
by a first order formula in the codes aaa and bbb that R(aaa) ∼= R(bbb). In general, the
isomorphism problem is a subtle matter and we intend to return to this question in
a future paper. Let us just indicate the main problem. Fix some bound d and let
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aaa,bbb be codes for two affine local K-algebras R = R(aaa) and S = R(bbb) of complexity
at most d. For each e, one can write down a formula Isoe expressing that R and S
are isomorphic via an isomorphism φ, so that both φ and its inverse φ−1 are defined
by polynomials of degree at most e (i.e., φ and φ−1 have complexity at most e, in
the terminology of (2.5) below). However, if R ∼= S, both of complexity at most
d, then there is no a priori bound on the least e for which such an isomorphism of
complexity at most e exists. In other words, aaa and bbb define isomorphic affine local
rings, if and only if, (aaa,bbb) belongs to

⋃

e

|Isoe|K .

However, the latter is not in general a definable set (the collection of definable
sets is not closed under countable unions, only under finite unions). It would be,
though, if we could find an a priori bound on e in terms of d. However, the present
techniques are insufficient to obtain such bound, as we have to find solutions to
a quadratic system of equations. Theorem (2.2) below only allows one to deduce
bounds in case the system of equations is linear. What is needed is therefore a
non-linear version of (2.2). As such, this is impossible, but using a more local
notion of complexity, etale complexity, we will show in a future paper how to find
bounds to non-linear systems of equations.

If one were to find a first order formula expressing that R(aaa) ∼= R(bbb), then by a
technique called Elimination of Imaginaries, one could replace in (3) the formula
AffLocd so that the resulting natural transformation is bijective. However, for our
present purposes, such a refinement will not be necessary.

We will write code(R) for the collection of all tuples aaa belonging to |AffLocd|K
for which R(aaa) ∼= R. We call such a tuple aaa ∈ code(R) simply a code for R and it
will not matter which code we pick. The reader should keep in mind that in general
code(R) is not a definable set.

Next we want to encode finitely generated modules. Fix some affine local K-
algebra R. Note that every element of R is of the form f/g, with f and g polyno-
mials over K. Any finitely generated R-module M admits a representation

(4) Rs Γ
−→Rt →M → 0

with Γ an s×t-matrix with entries in R. We will say thatM has complexity3 at most
d, if we can find a representation (4) with s, t ≤ d and each entry of Γ is a quotient
of two polynomials of degree at most d. Let mmm be the tuple of coefficients of all
polynomials involved in describing Γ. We will indicate this by writing M = M(mmm)
and we let code(M) be the collection of all mmm for which M(mmm) ∼= M . The reason
that we can not apply Elimination of Imaginaries here either is because again, we
do not know how to express by aid of a formula that two tuples mmm and nnn yield
isomorphic modules M(mmm) ∼= M(nnn).

Again we should make this construction functorial in the base field K. For this
purpose, we should vary R as well. In other words, we should consider the functor
Mod from the category of algebraically closed fields to sets, which assigns to some
field K the set Mod(K) of all pairs (R,M) with R an affine local K-algebra and

3This notion of complexity should not be confused with a notion from commutative algebra
used to measure the asymptotic behaviour of Betti numbers.
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M a finitely generated R-module. We let Modd(K) be the collection of all pairs
(R,M) with both R and M of complexity at most d. From the above discussion
it then follows that there exists for each d a formula Modd and a surjective natural
transformation

η : Modd → Modd.

We will let code(R,M) be the collection of all pairs (aaa,mmm) for which R(aaa) ∼= R and
M(mmm) ∼= M .

Returning to the example of the Bass Conjecture, we would like to find a formula
CMd, such that for each algebraically closed field K and each tuple aaa in |AffLocd|K ,
we have that aaa belongs to |CMd|K , if and only if, R(aaa) is Cohen-Macaulay. Similarly,
we want a formula FinInjd, such that for each algebraically closed field K and each
tuple (aaa,mmm) in |Modd|K , we have that (aaa,mmm) belongs to |FinInjd|K , if and only if,
the module M(mmm) has finite injective dimension over R(aaa). Assume the existence
of such formulae and let Bassd,e be the formula

(5) FinInje(aaa,mmm) → CMd(aaa),

for d ≤ e (where in FinInje(aaa,mmm), we might have added some zeros to aaa to make
it of the right length; such considerations on the length of a tuple will not be made
explicit, as it will be clear from the context what the appropriate length should be).
We can now express the validity of the Bass Conjecture over some algebraically
closed field K by stating that all Bassd,e are true. Putting (5) together with the
Lefschetz Principle (1.3), we can conclude that if the Bass Conjecture is true over
every (or over infinitely many) Falg

p , then it is true for every algebraically closed
field of characteristic zero. As a matter of fact, Peskine and Szpiro first proved
the Conjecture in positive characteristic and then used an ad hoc technique to lift
it to zero characteristic. The main purpose of this paper is to show how this and
similar liftings can be made via first order definability. In doing so, we will provide
a general framework in which many other problems can be formulated in a similar
first order way and whence become available for an application of the Lefschetz
Principle. The basic tool to obtain formulae such as CMd and FinInjd is first to
give a cohomological characterisation of the properties they seek to encode. To
finish we then will show how various bounds in cohomology, depending merely on
the complexity of the initial data, exist. That such bounds are necessary, follows
from the fact that a (first order) formula should only contain a finite number of
variables, disjunctions and conjunctions. Therefore the apparent infinite numbers
of variables or conjuncts/disjuncts required, can be reduced to finitely many.

1.5. Geometric Point of View. For the reader who does not feel too confident
with model theoretic terminology, we propose the following alternative reading of
this paper. Assume first of all that the field K is algebraically closed; this will
be his only concession to an easier reading for only in that case definable sets (in
the sense of (1.1)) are constructible. In this paper, we study various geometric or
algebraic objects M defined (in the non-technical sense of the word) over K, which
are described by certain (tuples of) parameters a (called codes above). Let us make
more explicit in which way this dependence on parameters is to be understood. Let
L → A be a finitely generated Z-algebra morphism between Z-algebras of finite
type. We think of SpecL as the parameter space for, typically, L will just be a
polynomial ring over Z. Fix an algebraically closed field K. Let U denote the
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collection of (isomorphism classes of) affine coordinate rings of closed fibres π−1(u)
of the map

π : Spec(A⊗Z K) → Spec(L ⊗Z K)

where u runs over all closed points of Spec(L ⊗Z K). In other words, U is the
collection of (isomorphism classes of) quotient rings (A⊗Z K)/m(A⊗Z K), where
m runs over the maximal ideals of L ⊗Z K. Such a collection of finitely generated
K-algebras will be called a bounded family. For each A ∈ U, let codeA be the
collection of all closed points u ∈ Spec(L ⊗Z K), for which A is isomorphic to the
coordinate ring of π−1(u). We call any u in codeA a parameter (or, code) for A.4

It is almost immediate that there exists, for each bounded family U, a bound
DU, such that each K-algebra in U has complexity at most DU (see (2.1) for
definitions). Conversely, the collection of all affine K-algebras of complexity at
most d, is a bounded family. Namely, let L be the polynomial ring Z[ξ], where
ξ = (ξν,i), for i = 1, . . . , N and ν ∈ Nd with |ν| ≤ d, is a collection of variables, and
where A is the ring

Z[ξ,X ]

(
∑

|ν|≤d ξν,1Xν, . . . ,
∑

|ν|≤d ξν,NXν)

where X = (X1, . . . , Xd). Here N =
( 2d
d

)

; see (2.1) for details. As in (2.3) below,

it follows from (2.2) that there exists a constructible set Π in SpecL, such that,
for each algebraically closed field K, the fibre π−1(u) is irreducible, if and only if,
u belongs to Π ×Z K ⊂ Spec(L ⊗Z K).

Similarly, with L and A as before, let M be a finitely generated A-module, with
representation

As G×

−→At → M → 0

where G is a (s × t)-matrix over A. Let A ∈ U and consider the collection of
all modules (M ⊗Z K)/mu(M ⊗Z K), where u runs over all possible parameters
for A and where mu is the maximal ideal in L ⊗Z K corresponding to the closed
point u. Call this collection of A-modules again a bounded family. From the above
exact sequence it follows that this family is obtained as all possible cokernels of
specialisations of the matrix G to closed points u ∈ codeA. Or, alternatively, if
F is the coherent OSpecA-sheaf corresponding to M, then we are looking at the
collection of all restrictions of F ×Z K to closed fibres π−1(u), where u runs over
all parameters of A. Hence in the terminology of (1.3), there is a bound on the
complexity of each member in the family. Again, by choosing G to be a generic
A-matrix, one shows that the collection of all A-modules of complexity at most d
is a bounded family.

By taking products

π × ψ : SpecA× SpecB → SpecL

one could in the same way get a bounded family consisting of pairs, triples, etc., of
K-algebras, modules, etc. In particular, using the constructible set Π of above, one
can construct a constructible set Π′ in SpecL, such that for each closed point u in

4To be entirely precise, one should call u an π-parameter for A.
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Π′ ×Z K, the closed fibre π−1(u) has coordinate ring A and the closed fibre ψ−1(u)
has coordinate ring A/p, with p a prime ideal of A. Let R = Ap, then we call u
a parameter for R and the collection of all these affine local K-algebras forms a
bounded family. Once more does any bounded family of affine local K-algebras have
bounded complexity and, conversely, the collection of all local affine K-algebras of
complexity at most d forms a bounded family. We leave it up to the reader to
perform a similar analysis for the other algebraic-geometric objects M (schemes,
cycles, etc.) appearing in this paper and to give a precise meaning of the notion of
a parameter for M .

Now, let (M1, . . . ,Ms) be an s-tuple of algebraic-geometric objects and let SpecL
be a parameter space for s-tuples of such objects. Whenever in the text we say that

such-and-such property of the objects Mi can be expressed by a

first order formula in their codes ai,

replace this by
there is a constructible set Γ ⊂ SpecL so that property such-and-

such holds for the objectsMi, if and only if, there exists a parameter

for their tuple (M1, . . . ,Ms) in Γ ×Z K.

In other words, if the property is uniformly constructible in the parameter space.

1.6. Acknowledgment. We want to express our thanks to Moshe Jarden for
his many valuable suggestions and remarks; they surely improved the readability
of the present paper.
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2. Complexity and Bounds

2.1. Definition. In the previous section we introduced the notion of complexity
without providing much details. In this and subsequent sections we will introduce
more systematically various complexities and study their properties. We call a
ring A affine, if it is a finitely generated algebra over some field K. In other
words, A is of the form K[X ]/(f1, . . . , fs), with X = (X1, . . . , Xn). We say that
an ideal a = (f1, . . . , fs) of K[X1, . . . , Xn] has degree type at most d, if n ≤ d and
a can be generated by polynomials fi of degree at most d. We will denote this by
deg. type a ≤ d. Note that there is no need to also bound the number s of generators

of the ideal a = (f1, . . . , fs). Indeed, recall that
( k + n− 1

n− 1

)

equals the number

of monomials of degree k in n variables. Therefore, the number of monomials of
degree at most d in n variables is given by

(∗)
d

∑

k=0

( k + n− 1
n− 1

)

=
(n+ d

n

)

.

Now, if deg. type a ≤ d, then we can write a = (f1, . . . , fs) with all fi ∈ K[X ] of
degree at most d in X = (X1, . . . , Xn) with n ≤ d. Take some monomial ordering on
the variables X = (X1, . . . , Xn) and normalize each fi so that its leading term with
respect to this ordering has coefficient one. If two of the fi have the same leading
term, then subtracting one from the other gives a pair of generators with different
leading terms. Therefore, we can arrange for all generators to have different leading
term and hence the maximal number of generators needed to generate a is at most

the number of monomials of degree at most d, that is to say, is at most
( 2d
d

)

, since

n ≤ d.
We say that an affine algebra A has complexity at most d, if A = K[X ]/a with

deg. type a ≤ d. If a is an ideal of A, then we say that a has degree type at most d
and write deg. type a ≤ d if A has complexity at most d and there exists an ideal
A in K[X ] of degree at most d, such that a = AA. In fact, the degree function
on K[X ] induces a degree function on A by calling f ∈ A of degree at most d if
it admits some lifting F ∈ K[X ] of degree at most d. Therefore, we will often say
that an ideal is generated by polynomials of degree at most d, even if the affine ring
we work in is not a polynomial ring. In particular, if deg. type a ≤ d, then A/a has
complexity at most d. We call a ring R an affine local ring, if it is the localisation
of an affine ring A with respect to a prime ideal p. We say that its complexity is
at most d, if deg. type p ≤ d (note that by definition this includes that also A has
complexity at most d).

Caution. The notion of complexity depends on the field K over which we work. For
instance, if K ⊂ L is a finite extension of fields of degree d, then L has complexity
d over K (to wit, L = K[X ]/(f) with f an irreducible polynomial of degree d), but
has complexity 1 over itself (to wit, L = L[X ]/(X)). This ambiguity is resolved over
algebraically closed fields. Nonetheless, even if the base field is not algebraically
closed, we will not make reference to it when discussing complexity; it should be
clear from the context what is meant.
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Since there is a bound N =
( 2d
d

)

on the number of generators for an ideal

a with deg. type a ≤ d, we can describe it by giving a tuple aaa in the base field
K of length N2 listing all coefficients of a generating set for a. We will indicate
this by writing I(aaa) = a and we let code(a) be the collection of all tuples aaa for
which a = I(aaa). Similarly any affine ring A can be described by means of a tuple
aaa over K (of length N2) as A = K[X ]/I(aaa). We will indicate this by writing
A = A(aaa) and we let code(A) be the collection of all aaa for which A(aaa) ∼= A. In the
previous section we claimed that a similar result holds for affine local rings, but for
this we need already some results on bounds in polynomial rings. The following
Theorem is a compilation of several results obtained in [SvdD] . These bounds
will serve as the cornerstone for our own results on bounds in cohomology. Some of
these results were already known for long time, but the authors introduced to the
subject a novel technique: they obtained these bounds via some model theoretic
non-standard arguments. In this paper we will not need this technique, only the
results obtained from it and we refer the reader for further details to loc. cit.

2.2. Theorem [van den Dries-Schmidt]. For each d, there exists a bound
D with the following properties. Let K be a field. Let X = (X1, . . . , Xd) and
Y = (Y1, . . . , Yd) be variables. Let A be an affine K-algebra of complexity at most
d and let a be an ideal of A of degree type at most d.

(i) Let t ∈ N and let fi, fij , for i = 1, . . . , t and j = 1, . . . , d, be polynomials
over K in the variables X of degree at most d. Suppose the linear system
of equations

f1 = f11Y1 + . . . f1dYd

f2 = f21Y1 + . . . f2dYd

...

ft = ft1Y1 + . . . ftdYd

has a solution for the Y -variables over K[X ], then it has already a solution
(q1, . . . , qd) with all qi ∈ K[X ] of degree at most D. Moreover, if all the
fi = 0, then any solution of this (homogeneous) system of equations is a
linear combination with coefficients in K[X ] of solutions of degree at most
D.

(ii) Let
a = g1 ∩ · · · ∩ gs

be a minimal primary decomposition of a. Then s ≤ D and each gi has
degree type at most D. The radical rad a of a and the radicals pi of gi (so
that the pi are the associated primes of a) all have degree type at most D.
Moreover, pD

i is contained in gi and, similarly, (rad a)D lies in a.
(iii) If for each f, g ∈ A of degree at most D, we have that fg ∈ a implies that

f or g belongs to a, then a is a prime ideal.
(iv) If A is moreover a domain and any monic equation

T s + fs−1T
s−1 + · · · + f0 = 0

with s ≤ D and fi ∈ A of degree at most D, has no solutions in the fraction
field of A which are not already in A, then A is normal.
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2.3. Remark. Before we derive some further bounds from these results, let us
pause to show in some detail how we can find a formula AffLocd as proclaimed in
(1.4). Let a be an ideal of degree type at most d and let aaa ∈ code(a). Using (iii)
and (i), we will show how to write down a formula Primed, such that aaa belongs
to |Primed|K , if and only if, a = I(aaa) is a prime ideal; from this the construction
of AffLocd is immediate. To express that a is prime, we have to express by (iii)
that for any two polynomials f and g of degree at most D, we have that fg ∈ a

implies that one of them lies in a. Now, applying (i) to the bound D, we can find
a bound D′, depending only on D and whence only on d, such that fg ∈ a, if and
only if, there exist polynomials qi of degree at most D′ expressing fg as a linear
combination of the generators of a. The same bound can be used to express that
f ∈ a or g ∈ a. We can now finish the construction of the wanted formula Primed,
by observing that the tuple of coefficients of a sum or a product of two polynomials
f and g is easily expressed in terms of the coefficients of f and g. In summary, the
main point is that we only need a finite and fixed number of coefficients to describe
the contents of (iii). This number does depend on d, but on nothing else and so
does our formula only depend on d.

In the above discussion, we actually showed that there are formulae IdMemd in the
code aaa of an affine K-algebra A, in the code iii of an ideal a of A with deg. type a ≤ d
and in the code uuu of a polynomial f over K of degree at most d, such that f ∈ a,
if and only if, (aaa,uuu, iii) belongs to |IdMemd|K . Let us show that this can even be
extended to the case of an affine local ring R. Suppose R is of the form (K[X ]/I)p,
where deg. type I ≤ d and p a prime ideal containing I with deg. type p ≤ d. Let a

be an ideal in K[X ] with deg. type a ≤ d and f a polynomial of degree at most d.
Then f ∈ aR, if there exists some q /∈ p, such that qf ∈ I + a. In other words, if
we have that

(a + I : f) 6⊂ p.

Hence we have translated the ideal membership f ∈ aR in the local ring R into an
ideal containment problem between ideals of bounded degree type in a polynomial
ring, which is first order definable by what we said above.

In the sequel we will not always give the details for writing down a formula, but
content ourselves with merely giving the bounds necessary for doing so and leave
the actual construction of the formula to the diligent reader.

2.4. Theorem. For each d, there exists a bound D with the following properties.
Let K be a field and let A be an affine (local) K-algebra of complexity at most d.
Let a be an ideal of A of degree type at most d and let p be a minimal prime ideal
of a.

(v) The exponent of the Artinian local ring Ap/aAp is at most D, i.e., pD is
zero in Ap/aAp.

(vi) The length ℓ(Ap/aAp) of Ap/aAp is at most D. In particular, if A/a has
finite length, then this length is at most D.

Proof. Note that by [Eis, Corollary 2.19] the ring Ap/aAp is indeed Artinian,
i.e., of finite length. By (ii), there exists a D depending only on d, such that
deg. type p ≤ D. Put g = aAp ∩ A. This is the p-primary component of a, and
hence its degree type is at most D by (ii). Moreover, let f ∈ A be such that f 6= 0
but fn = 0 in Ap/aAp, for some n ∈ N. This means that f /∈ g but fn ∈ g. By
(ii), already fD ∈ g, i.e., fD = 0 in Ap/aAp. This proves (v).
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As p is generated by at most D2 elements, where D2 only depends on d, it follows
that the embedding dimension of Ap/aAp is also bounded by D2. Recall that the
embedding dimension of a Noetherian local ring (R,m), is the minimal number of
generators of m. By Nakayama’s Lemma, the minimal number of generators of
any finite R-module M is equal to the dimension of M/mM over the residue field k
of R, see for instance [Mats, Theorem 2.3] . Hence, in particular, the embedding
dimension of R is equal to the dimension of m/m2. If R is moreover Artinian, then
the length ℓ(R) of R equals the sum of the lengths of all mi/mi+1. Since the length
of mi/mi+1, equals the number of generators of mi, we have an estimate

ℓ(mi/mi+1) ≤
( i+ r − 1

r − 1

)

,

(note that the latter number equals the number of monomials of degree i in the r
generators of m). Moreover, mi/mi+1 = 0, for i bigger than the exponent e of R.
Putting all this together while using (∗), we see that

(6) ℓ(R) ≤
( e+ r

r

)

,

where e is the exponent and r is the embedding dimension of R. Therefore, using
the bounds e ≤ D1 and r ≤ D2, the first part of (vi) follows from the estimate (6)
applied to the Artinian local ring R = Ap/aAp.

If A/a has finite length, use the above together with the equality

ℓA(A/a) =
∑

p∈SpecA

ℓAp
(Ap/aAp),

where the only non-zero contributions come from the minimal primes of a, and
hence only D terms are non-zero by (ii). �

Remark. The converse does not hold in general: to bound the length does not imply
to bound the complexity. An easy counterexample is given by taking K = Fp. Then
every finite field F of characteristic p is a quotient of Fp[X ] of complexity equal to
the degree (F : Fp) but obviously has length one as an Artinian ring. If K is
algebraically closed, this is no longer an obstruction and one can easily show that
any ideal a of K[X ] has degree type at most d, if K[X ]/a has length at most d+ 1.
Indeed, for then there is some tuple aaa = (a1, . . . , ad) in K, such that

(X1 − a1, . . . , Xd − ad)
d+1 ⊂ a,

so that we can choose generators for a of degree at most d.

2.5. Definition. Let K be a field and A and B affine K-algebras. Let φ : A→ B
be a K-algebra morphism. We say that φ has complexity at most d, if A and B
admit representations A = K[X ]/I and B = K[Y ]/J , with deg. type I ≤ d and
deg. type J ≤ d, and, if there exist Fi ∈ K[Y ] of degree at most d, such that the
K-algebra morphism

(7) K[X ] → K[Y ] : Xi 7→ Fi(Y )
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induces the morphism φ. If A and B are affine local K-algebras, then we allow in
(7) that Xi is sent to a fraction Fi/Gi with both Fi and Gi of degree at most d.

Next we will show a uniform version of Elimination Theory. Its short proof uses
the following fact on Gröbner bases. Let X = (X1, . . . , Xs) and Y = (Y1, . . . , Yt) be
variables and let M be a submodule of K[X,Y ]n. Suppose µ1, . . . , µk is a Gröbner
basis of M with respect to an elimination ordering (see [Eis, Proposition 15.29 and
Exercise 15.37] for details). If µ1, . . . , µl are those µi whose entries do not depend
on the Y -variables, then µ1, . . . , µl is a Gröbner basis of M ∩ (K[X ])n.

In fact, many of the bounds in this paper could equally well be obtained from the
theory of Gröbner bases. See for instance [Eis, 15.10] for an alternative approach
to uniformity in commutative algebra via Gröbner bases (see also [Vas] ).

2.6. Theorem. For each d, there exists a bound D with the following property.
Let K be a field and let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be variables. If b

is an ideal in K[X,Y ] of degree type at most d, then b ∩K[X ] has degree type at
most D.

Proof. Let g1, . . . , gs be a Gröbner basis for b (with respect to the lexicographical
order on (X,Y )). As observed in (2.5) above, those gi which do not involve the
variables Y form a generating set of b ∩ K[X ]. It follows from [Eis, 15.9] that
the degree of a Gröbner basis of b is bounded in terms of d = deg. type b. In fact,
Möller and Mora (see [Eis, loc. cit.] ) show that one can take

D = (d2 + 2d+ 2)2
d+1(d+1),

when the lexicographic ordering is used. �

2.7. Theorem. For each d, there exists a bound D with the following property.
Let K be a field and let A and B be affine (local) K-algebras of complexity at most
d. Let φ : A→ B be a K-algebra morphism of complexity at most d. If b is an ideal
of degree type at most d, then b ∩A = φ−1(b) has degree type at most D.

Proof. Let A and B have representations A = K[X ]/I and B = K[Y ]/J , with
deg. type I ≤ d and deg. typeJ ≤ d (we leave the local case to the reader). Let
Fi ∈ K[Y ] be of degree at most d, such that the K-algebra morphism

K[X ] → K[Y ] : Xi 7→ Fi

induces the morphism φ. Suppose b is generated by the images in B of polynomials
Gj ∈ K[Y ] of degree at most d. The image in A of a polynomial f ∈ K[X ] belongs
to b ∩A, if and only if, f belongs to the ideal

J + (G1, . . . , Gs) + (X1 − F1, . . . , Xd − Fd)

in K[X,Y ]. Note that Xi = Fi(Y ) are the equations defining the graph of φ. The
result now follows from (2.6). �



14 HANS SCHOUTENS

3. Complexity of Modules

3.1. Definition. In Section 1 we also introduced the notion of complexity for a
finitely generated module. However, in this section it will be more convenient to
work with a slightly different notion, which we call deg-complexity. In (3.8) below,
we then will show how both notions are connected to each other and that one
can use either one for constructing formulae. Let A be an affine ring (or perhaps
an affine local ring) and let M be a finitely generated A-module. Extending the
definition of the degree type of an ideal, we will say that a submodule M of Ad has
degree type at most d and we write deg. typeM ≤ d, if A has complexity at most
d and M is generated by d-tuples of degree at most d, i.e., by tuples in Ad with
entries of degree at most d. In case A is an affine local ring of complexity at most
d, then we require that each entry is of the form p/q with both p and q of degree
at most d. In the sequel we will only continue to treat the global affine case and
leave the details for the local case to the reader.

Note that we bound simultaneously the length of the tuples and their degrees as
well as the complexity of the base ring. By the same argument as in the ideal case,
there exists a bound D (depending only on d), such that a submodule M of degree
type at most d, can be generated by at most D elements. For an arbitrary finitely
generated A-module M , we say that its deg-complexity is at most d, if there exists
submodules N1 ⊂ N2 ⊂ Ad, both of degree type at most d, such that M ∼= N1/N2.
(Hence implicit is also that A itself has complexity at most d). Clearly also the
minimal number of generators of a module of deg-complexity at most d is bounded
in terms of d. Let M be as above of deg-complexity at most d. We can encode M
by a tuple mmm = (nnn1,nnn2) over K, where nnni is an enumeration of all coefficients of the
generators of Ni ⊂ Ad. We will indicate this by M ∼= M(mmm) and we let code(M)
be the collection of all tuples mmm for which M(mmm) ∼= M . This is consistent with
our notation from Section 1 where N1 was taken to be the whole Ad (and whence
nnn1 just lists the d generators (1, 0, . . . , 0) . . . (0, 0, . . . , 1)). More generally, the set
|Modd|K , which is functorially defined by the formula Modd, consists of tuples (aaa,mmm)
such that M = M(mmm) is a finitely generated module over A = A(aaa) of complexity
at most d. We will write code(A,M) for the collection of all such tuples (aaa,mmm).
Since each finite A-module M is a quotient Ar/N of a free A-module, we see that
each finite A-module has some finite deg-complexity, namely at most the maximum
of deg. typeN and r. Moreover, since the complexity of M was defined to be at
most deg. typeN in (1.4), it follows that the deg-complexity of M is always smaller
than or equal to its complexity.

Caution. Let M be a submodule of Ad, then its degree type is bigger than or equal
to its deg-complexity, since it is the quotient of itself by the zero-module. However,
the opposite inequality does not hold. The easiest example is the ideal fA. Its
degree type is equal to the degree of f , but its deg-complexity is one, since it is
isomorphic with A.

3.2. Lemma. For each d ∈ N, there is a bound D with the following properties.
Let A be an affine (local) ring of complexity at most d. Let M and M ′ be submodules
of Ad of degree type at most d and let a be an ideal of A of degree type at most d.
Then the degree type of the following submodules are all bounded by D.

(vii) aM ;
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(viii) M +M ′;
(ix) (M :A M ′) = { a ∈ A | aM ′ ⊂M };
(x) M ∩M ′.

Proof. For (viii) the bound d suffices and for (vii) the bound 2d. To prove (ix),
let µ1, . . . , µs be a set of generators of M , where each µi = (ai1, . . . , aid) with
aij ∈ A of degree at most d and let µ′

1, . . . , µ
′
s be a set of generators of M ′, where

each µ′
i = (a′i1, . . . , a

′
id) with a′ij ∈ A of degree at most d.5 Then a polynomial

f ∈ A belongs to (M :A M ′), if and only if, there exist rik ∈ A, such that

(8) fa′ij = ri1a1j + · · · + risasj ,

for all i = 1, . . . , s and j = 1, . . . , d. View this as a linear homogeneous system
of equations in the unknowns f and rik with coefficients aij and a′ij . By (i) of
the Schmidt-van den Dries Theorem (2.2), the set of solutions (f, rik) of (8)
is generated by solutions of degree bounded by some D. In particular, there exist
f1, . . . , ft of degree at most D, such that each f as above is a linear combination
of these fi. In other words, we have that (M :A M ′) = (f1, . . . , ft) has degree type
at most D.

To prove (x), a similar argument applies. With notation as before, a d-tuple
ν = (b1, . . . , bd) belongs to M ∩M ′, if and only if, there exist ri, r

′
i ∈ A, such that

bi = r1a1i + · · · + rsasi = r′1a
′
1i + · · · + r′sa

′
si,

for all i = 1, . . . , d. As a homogeneous linear system of equations in the unknowns
bi, ri and r′i, with coefficients aij and a′ij , this has again a generating set of solutions
of degree bounded by D, as above. �

3.3. Corollary. For each d ∈ N, there is a bound D with the following properties.
If M is a finitely generated A-module of deg-complexity at most d, where A is
an affine (local) ring, and a is an ideal of A of degree type at most d, then the
modules M/aM and AnnM (a) = {µ ∈M | µa = 0 } have deg-complexity at most
D. Moreover, AnnA(M) has degree type at most D.

If, moreover, Γ is a (d×d)-matrix over A of degree at most d (i.e., all its entries
have degree at most d), then the deg-complexity of Z and C is at most D, where Z
(respectively, C) is the kernel (respectively, cokernel) of the morphism Γ× induced
by Γ, that is to say, Z and C are given by the exact sequence

0 → Z → Md Γ×

−→ Md → C → 0.

Proof. Let N2 ⊂ N1 ⊂ Ad be submodules of degree type at most d, such that M ∼=
N1/N2. We have that M/aM ∼= N1/(aN1 +N2). By (3.2), we have that aN1 +N2

has degree type at most D, where this bound only depends on d. Therefore, the
deg-complexity of M/aM is at most D.

Similarly, AnnM (a) is isomorphic to the module ((N2 :A aAd)∩N1)/N2 and the
ideal AnnA(M) is equal to (N1 :A N2). Using (3.2) once more, we again conclude

5Note that the number s can be bounded in terms of d only, and hence there is no harm
in taken the same number everywhere. In the sequel, we will frequently do so without further
warning.
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that the deg-complexity of AnnM (a) (respectively, the degree type of AnnA(M)) is
bounded in terms of d. To prove the last statement, use (ii) of (2.2) and the fact

that Z ∼= (Γ×
N1

)
−1

(Nd
2 )/Nd

2 and C ∼= Nd
1 /(ImΓ×

N1
+ Nd

2 ), where Γ×
N1

denotes the
morphism

Nd
1

Γ×

−→ Nd
1 .

�

Remark. Note that if M has deg-complexity at most d, then any associated prime
p of M has uniformly bounded degree type. Indeed, p is then an associated prime
of AnnA(M) and the result follows from (3.3) and (ii) of (2.2).

3.4. Corollary. For each d ∈ N, there is a bound D with the following properties.
Suppose K is a field and A is an affine (local) K-algebra of complexity at most d.
Let M be a finitely generated A-module of deg-complexity at most d. If M has finite
length, then its length ℓA(M) is at most D. More generally, if p is a prime ideal of
A such that Mp has finite length as an Ap-module, then ℓAp

(Mp) ≤ D.

Proof. Let a = AnnA(M) and let r be the minimal number of generators of M .
Note that r is uniformly bounded in terms of d. If M has finite length then its
dimension is zero. Since the dimension of M is by definition the dimension of A/a,
it follows that also A/a has finite length (see [Eis, Corollary 2.17] ). Moreover,
since there is a surjective morphism (A/a)r

։ M , we see that ℓ(M) ≤ rℓ(A/a).
By (3.3) there is some bound D depending only on d, such that deg. type a ≤ D.
By (2.4) it follows that also ℓ(A/a) is uniformly bounded and whence also ℓ(M),
as required.

A similar argument works for the general case. Firstly, observe that if Mp

has finite length as an Ap-module, then p must be a minimal prime ideal of a =
AnnA(M), see for instance [Eis, Corollary 2.18] . Since deg. type a ≤ D, it follows
then from (2.4) that there is also a uniform bound for the length of Ap/aAp. As
above, we have an estimate for the length of Mp as an Ap-module by rℓ(Ap/aAp).
This yields the wanted uniform bound. �

Remark. Again the converse is not true in general, neither in the local nor in the
global affine case, albeit for different reasons. The obstruction in the former case
comes from the fact that the residue field is in general transcendental over K and
in the latter case the obstruction comes from finite field extensions of K. Of course,
by taking K algebraically closed, we overcome the latter obstruction and one can
show that if M is a module of finite length at most d over an affine K-algebra
A of complexity at most d, with K algebraically closed, then its complexity is at
most D, for some bound D depending only on d. However, this assumption is not
sufficient for the local case, as the following example shows. Let R = K(X), X a
single variable, so that according to our definitions, R has complexity at most 1
(over K). Let Sn = K(X)[Y ]/(Y 2 +Xn + 1), which is then a finite R-module of
length 2, whereas its complexity is n. However, if we view Sn as an affine K(X)-
algebra, then its complexity (over the field K(X)) is just 2. One can show in more
generality that if R is an affine local ring (over an arbitrary field) of complexity
at most d and M an R-module of length at most d, then taking complexities with
respect to the residue field k of R (rather than with respect to K), we do have that
M has complexity at most D, for some bound D depending only on d. This follows
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quite easily from the fact that S = R/AnnR(M) has length at most d2 (embed R
in d copies of M via a set of d generators of M) and hence S ∼= K[Z]/I, where I

is an ideal containing (Z1, . . . , Zs)
d2

. One calculates that then M has complexity
at most d3 viewed as an S-module. We then conclude with an application of (3.9)
below.

3.5. Proposition. For each d ∈ N, there is a bound D with the following property.
Suppose A is an affine (local) ring of complexity at most d and M a finitely generated
A-module of deg-complexity at most d. If M has finite length, then its socle SocM
(i.e., the sum of all simple submodules of M), has deg-complexity at most D.

Moreover, for each d, l ∈ N, there exists a formula (Len=l)d with the following
property. Suppose K is a field and A an affine (local) K-algebra of complexity at
most d. Let M be a finitely generated A-module of deg-complexity at most d. Take
aaa ∈ code(A) and mmm ∈ code(M). Then (aaa,mmm) belongs to |(Len=l)d|K , if and only if,
M has length l as an A-module.

Proof. Let K be a field and (aaa,mmm) a tuple belonging to |Modd|K . Put A = A(aaa) and
M = M(mmm). If M has finite length then all prime ideals containing its annihilator
are maximal and there are only finitely many such primes, see [Eis, Corollary
2.17] . Since any simple module is of the form A/m, with m a maximal ideal, one
calculates that

SocM =
∑

AnnA(M)⊂m

AnnM (m).

Recall that AnnM (m) is the set of all µ ∈ M , such that µm = 0. By (ii) of (2.2)
and (3.3), it follows that SocM has deg-complexity at most D, where D is some
bound depending only on d.

We will construct the formulae (Len=l)d by induction on l ∈ N. For l = 0, we
have to express by means of the codemmm = (nnn1,nnn2) of M that M is the zero module.
By assumption, M is of the form N1/N2, for some submodules N2 ⊂ N1 ⊂ Ad of
degree type at most d and we just need to express that N1 = N2, i.e., that the
generators of N1 encoded by nnn1 are all linear combinations of the generators of N2

encoded by nnn2. Another application of (i) of (2.2) finishes then the construction
of (Len=0)d.

For arbitrary l > 0, we will define (Len=l)d as the formula expressing that there
exists a non-zero µ ∈ SocM such that M/Aµ has length l − 1. Here is in some
detail the construction. From the proof of the first part, it follows that there exists
some µ ∈ N1 ⊂ Ad of degree at most D, such that its image in M is a non-zero
element of SocM . Therefore, we must claim that there exists a tuple bbb encoding
a d-tuple of polynomials µ of degree at most D, such that µ viewed as an element
of Ad belongs to N1 but not to N2 and pµ is contained in N2, for some minimal
prime p of M . The latter can be expressed also by a formula, as we know from (ii)
that any minimal prime of M will have degree type at most D. Hence the image
of such a µ in M is indeed a non-zero element of the socle. Finally, assume vvv is the
code for the quotient module M/Aµ (which can easily be derived from the codes
mmm = (nnn1,nnn2) and bbb), then we require that (aaa,vvv) belongs to |(Len=l − 1)d|K . This
finishes the construction of (Len=l)d and it is now immediate by induction that this
formula encodes that M has length l. �
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3.6. Corollary. For each d ∈ N, there exists a formula FinLend with the following
property. Suppose K is a field and A an affine (local) K-algebra of complexity at
most d. Let M be a finitely generated A-module of deg-complexity at most d. Take
aaa ∈ code(A) and mmm ∈ code(M). Then (aaa,mmm) belongs to |FinLend|K , if and only if,
M has finite length as an A-module.

Proof. By (3.4) there is a bound D depending only on d, such that if M has finite
length, then this length is at most D. Hence the formula

∨

i≤D

(Len=i)d

expresses that M has finite length. �

3.7. Proposition. For each d ∈ N, there exists a bound D with the following prop-
erty. If A is an affine (local) ring of complexity at most d and M a finitely generated
A-module of deg-complexity at most d, then M has a syzygy of deg-complexity at
most D, i.e., there exists a short exact sequence

(9) 0 → Z−→As−→M → 0,

with s ≤ D and deg. typeZ ≤ D.

Proof. Let M ∼= N1/N2, with N2 ⊂ N1 ⊂ Ad submodules of degree type at most
d. Let µ1, . . . , µs ∈ Ad be tuples of degree at most d generating N1. Let Γ be the
(s× d)-matrix with rows the µi. Viewing Γ as a morphism

Γ× : As → Ad : α 7→ αΓ

we see that N1 = ImΓ×. Therefore, if Z = (Γ×)−1(N2), then the sequence (9) is
indeed exact, where As → M is the composed morphism As

։ N1 ։ M . Now,
an s-tuple α ∈ As belongs to Z, if and only if, αΓ ∈ N2. Writing this out in a set
of generators of N2 of bounded degree, we obtain once more a homogeneous linear
system of equations with all coefficients of degree at most d. Another application
of (2.2) yields a bound D, such that Z is generated by tuples each of which have
degree at most D. �

3.8. Remark. In the course of the above proof we obtained the following. For
any A-module M of complexity at most d, we can find an (s × s)-matrix Ψ with
entries of degree at most D and s ≤ D, such that the sequence

As Ψ×

−→As →M → 0

is exact.
In other words, if M has deg-complexity at most d, then its complexity, as

defined in (1.4), is at most D. We have already observed that the deg-complexity
is always at most the complexity, so one complexity notion can be bounded in
terms of the other. We will express this by saying that both complexity notions
are mutually bounded. If two complexity notions are mutually bounded then one
can translate bounds for one notion in terms of the other. Therefore, in the sequel,
deg-complexity will only play a minor role and we will from now on look for bounds
in terms of the complexity of a module.
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3.9. Theorem. For each d ∈ N, there exists a bound D with the following property.
Suppose A and B are affine (local) rings of complexity at most d and φ : A → B
a K-algebra morphism of complexity at most d. Let Γ be a (d × d)-matrix over B
with cokernel M , so that we have an exact sequence

Bd Γ×

−→Bd π
−→M → 0.

Suppose that M is also generated over A by the π(ei), where {e1, . . . , ed} is the
standard basis of Bd. Then M has complexity at most D viewed as an A-module.

Proof. Write A = K[X ]/I and B = K[Y ]/J with X = (X1, . . . , Xd) and Y =
(Y1, . . . , Yd), and where deg. type I ≤ D and deg. type J ≤ d. Let C denote the
image of Γ× and let H be the submodule of Ad of all d-tuples α = (a1, . . . , ad) for
which φ(α) = (φ(a1), . . . , φ(ad)) lies in C. We then have an exact sequence

(10) 0 → H−→Ad π
−→M → 0,

where we still have written π for its restriction to Ad. By our assumption the latter
morphism is surjective and it is now easy to verify that (10) is indeed exact. Hence
the statement is proven once we showed that deg. typeH ≤ D, for some bound D
depending only on d. To prove that deg. typeH ≤ D, take a Gröbner basis for H
as explained in (2.5) and use the same argument as in the proof of (2.7); we leave
the details for the reader. �

4. Bounds in Cohomology

A highly recommendable general reference for the material in this Section is
Appendix 3 in [Eis] .

4.1. Definition. Let A be an affine (local) ring. Let F be a functor (covariant or
contravariant) on the category of finitely generated A-modules. We say that F is
bounded, if for each d, there exists a bound D, such that the complexity of F(M)
is at most D, for any finitely generated A-module M of complexity at most d.

We say that the functor F is linear, if it is additive and if for any finitely generated
A-module M and any a ∈ A, we have that multiplication by a on M is send under
F to multiplication by a (or, perhaps by −a) on F(M), i.e., that F(a×) = ±a×.
Let us write γi,M : M →֒ Md (respectively, πi,M : Md

։ M) for the embedding
in (respectively, projection onto) the i-th coordinate. Then any (d × d)-matrix
Γ = (aij) induces a morphism Γ× : Md →Md and we have that

(11) Γ× =
∑

1≤i,j≤d

γi,M ◦ a×ij ◦ πj,M .

Applying F to both sides of (11) and using linearity, we conclude that also F(Γ×) =
Γ× in the covariant case and F(Γ×) = ( trΓ)× in the contravariant case, where trΓ
denotes the transposed of Γ.

Again, what we really want is to make this definition independent of the affine
algebra as well as of the base field. Unfortunately, category theory does not have
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the right formalism for this, so that we will have to make do with the following
vague statement. Suppose that F is a rule which assigns to an arbitrary affine ring
A over some field K in some consistent way a functor (respectively, a bi-functor)
FA on the category of finitely generated A-modules. We call F bounded, if for each
d ∈ N there exists a bound D = D(d), such that for any affine ring A of complexity
at most d and any finitely generated A-module M (respectively, any two finitely
generated A-modules M and N) of complexity at most d, we have that FA(M)
(respectively, FA(M,N)) has complexity at most D. In other words, the FA are
bounded (bi)functors and their bounding functions only depend on the complexity
of A. Of course the vague term here is in a consistent way and we can only say that
all families of functors that will be considered in this paper fall in that class. For
example, the bi-functors ·⊗A · and HomA(·, ·) will be considered consistent families.
Henceforth, we will adopt the following strategy to deal with this vagueness. We
will prove the boundedness of a functor and check that the bounding function D(d)
only depends on the complexity of the base ring. This then allows us to view the
functor as a member of a consistent family. A similar approach will be made when
constructing formulae.

The following lemma is an easy consequence of (2.2), but it is crucial for ob-
taining bounds in cohomology.

4.2. Lemma. For each d ∈ N, there exists a bound D with the following property.
Suppose A is an affine (local) ring of complexity at most d and M a finitely generated
A-module of complexity at most d. Let Γ and ∆ be (d × d)-matrices of degree at
most d. If Γ∆ = 0, then the homology module H = Ker∆×/ ImΓ× of the complex

Md Γ×

−→ Md ∆×

−→ Md

has complexity at most D.

Proof. We will reason on the deg-complexity of M , which also is bounded by d.
So, there exist submodules N2 ⊂ N1 ⊂ Ad of degree type at most d, such that
M ∼= N1/N2. One calculates that H is then isomorphic with the quotient of H1 =
{

v ∈ Nd
1 | v∆ ∈ Nd

2

}

by its submodule H2 = Γ×(Nd
1 ) + Nd

2 . Using (i) of (2.2),
it follows that there exists a bound D on the degree type of both H1 and H2 and
whence on the deg-complexity of H . We then finish off by an application of (3.8).

�

4.3. Theorem. Let A be an affine (local) ring. Let F be a linear functor (covariant
or contravariant) on the category of finitely generated A-modules. Assume that
either F is covariant and right exact or contravariant and left exact and let Si F

denote its right derived functors in the former and its left derived functors in the
latter case. Then each Si F is bounded, for i = 0, 1, . . . (and hence in particular F

itself is bounded).
More precisely, there exist, for each d, i ∈ N, a first order formula i-Deriv[F]d,

only depending on d, i and the code of A, with the following properties. For each
tuplemmm, we can find a tuple vvv, such that (mmm,vvv) belongs to |i-Deriv[F]d|K . Moreover,

for any tuple (mmm,vvv) belonging to |i-Deriv[F]d|K , we have that V ∼= Si F(M), where
M = M(mmm) and V = M(vvv).

Proof. Let us just treat the covariant case; for the contravariant case one only needs
to reverse the arrows. Let M be a finitely generated A-module of complexity at
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most d. So we have an exact sequence

Ad Γ×

−→Ad →M → 0

with Γ of degree at most d. Let M1 be the image of Γ× so that its degree type is
at most d. By (3.7), there exists an exact sequence

0 →M2−→AD1−→M1 → 0

with M2 of complexity at most D1, where D1 only depends on d and on the com-
plexity of A. Repeating this process, we can construct an exact sequence F• given
by

(12) Fi+1

Γ×

i+1

−→Fi

Γ×

i−→ . . .
Γ×

1−→F0 →M → 0

with each Γj a matrix of degree at most Di (depending only on d, i and the
complexity of A), and each Fj a finite free A-module of rank at most Di, for all
j ≤ i. Using linearity, the exact sequence F• transforms into a complex F(F•) where
the morphisms are still given by the matrices Γj . Therefore, by an application of
(4.2), the latter complex has homology of complexity at most D′

i, for some bound
D′

i ≥ Di depending only on d and the complexity of A. The proof of the first

statement follows in view of the identity Hi(F(F•)) = Si F(M).
Moreover, the matrices in the exact sequence (12) have all bounded degree at

most Di. To write down the formula i-Deriv[F]d in the code vvv of some module we
do the following. We proclaim the existence of a free complex F• of length i+ 1 as
in (12) with all matrices Γj , for j ≤ i + 1, of degree at most Di, such that F• is
free and vvv is a code for Hi(F(F•)). �

Remark. If FA is a consistent family of functors, then the formula i-Deriv[FA]d
can be refined to a formula expressing for a tuple (aaa,mmm,vvv) that

M(vvv) ∼= Si FA(aaa)(M(mmm)).

Let us just work this out for the bi-functors ⊗ and Hom.

4.4. Corollary. The bi-functors TorA
i (·, ·) and ExtiA(·, ·) form bounded consistent

families of functors. There are formulae (Tori)d and (Exti)d with the following
properties. Let K be a field. If a tuple (aaa,mmm,nnn,vvv) belongs to |(Tori)d|K (respectively,

to
∣

∣(Exti)d

∣

∣

K
), then M(vvv) is isomorphic with

Tor
A(aaa)
i (M(mmm),M(nnn)) respectively, ExtiA(aaa)(M(mmm),M(nnn)).

Moreover, for each triple (aaa,mmm,nnn) we can find at least one tuple vvv, such that
(aaa,mmm,nnn,vvv) belongs to |(Tori)d|K (respectively, to

∣

∣(Exti)d

∣

∣

K
).

Proof. The proof is similar to the one for (4.3). Let us just treat the case of the
Tor-functor. Let A be an affine (local) ring of complexity at most d and let M
and N be finitely generated A-modules of complexity at most d. Put F = · ⊗A N .
The exact sequence F• of (12) transforms into a complex F(F•). Each module in
this complex is a Cartesian product of N , except for the last one, which is M ⊗N .
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Therefore, there is some bound Di only depending on d, such that the complexity of
the complex F(F•) is at most Di. Hence its homology has also bounded complexity
by (4.2). The formula (Tori)d is now obtained by proclaiming the existence of
matrices Γi making the sequence F• exact. This will involve the codes aaa ∈ code(A),
mmm ∈ code(M) and nnn ∈ code(N) and a bounded number of new variables describing
the coefficients of these matrices. We then can construct the code vvv for the i-th
homology module of F(F•) using some mmm ∈ code(M). We leave the details to the
reader. �

4.5. Theorem. For each d, i ∈ N, there exists a bound Di with the following prop-
erty. Suppose A is an affine (local) ring of complexity at most d. If M and N are
finitely generated A-modules of complexity at most d for which M⊗AN (respectively,
HomA(M,N)) has finite length, then their i-th Betti number βA

i (M,N), defined as

the length of TorA
i (M,N) (respectively, their i-th Bass number µi

A(M,N), defined

as the length of ExtiA(M,N)) is bounded by Di.

More generally, if p is a minimal prime ideal of M⊗AN , then β
Ap

i (Mp, Np) ≤ Di

(respectively, µi
Ap

(Mp, Np) ≤ Di).

Proof. Immediately from (4.4) and (3.4). For the second statement, observe that
deg. type p is also uniformly bounded, by the remark following (3.3). �

4.6. Corollary. For each d, i ∈ N, there exists a bound Di with the following
property. Suppose A is an affine (local) ring of complexity at most d. If M is a
finitely generated A-module of complexity at most d and p a prime ideal of degree

type at most d, then the length β
Ap

i (Mp) of Tor
Ap

i (Mp, k(p)) is at most Di. Here
k(p) denotes the residue field Ap/pAp of p.

Proof. Let H = TorA
i (M,A/p). By (4.4) its complexity is uniformly bounded in

terms of d. However, β
Ap

i (Mp) is just the length of Hp and p is a minimal prime of
H , so that we are done by an application of (3.4). �

In fact, using (3.5) we can write down formulae expressing in the code of the
modules and the base ring (having complexity at most d) that their i-th Betti or
Bass number equals a prescribed value l. See the proof of (5.1) below for some
more details. We finish this section with one more cohomological bound.

4.7. Theorem. For each d ∈ N, there exists a bound D with the following property.
Let A be an affine (local) ring of complexity at most d and M a finitely generated
A-module of complexity at most d. If a is an ideal of degree type at most d, then
the Koszul homology group Hi(a,M) has complexity at most D, for each i.

Proof. Let a = (f1, . . . , fs) with each fi of degree at most d. The n-th term in the
Koszul complex K•(f) of f = (f1, . . . , fs) is given by the morphism d: Kn → Kn−1

defined as

d(ei1...in
) =

n
∑

k=1

(−1)k−1fik
ei1...bık...in

where Kn is the free A-module with basis ei1...in
. In particular, all the matrices in

the Koszul complex K•(f) have degree at most d, since their entries are ±fi. By
(4.2) the homology Hi(a,M) of the complex K•(f)⊗AM has therefore complexity
at most D, for some bound D depending only on d. �
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5. First Order Definable Properties

In this section we will use the bounds obtained in the previous section to show
how various properties can be made first order definable. We first need a result
on the definability of the height and the depth of an ideal. Depth has an easy
cohomological interpretation, but height does not. The next best thing would be
to define height via the Hilbert polynomial. Nonetheless, the following argument is
more elementary, as it only uses Krull’s Principal Ideal Theorem, and so we prefer
to present it here. We will return to the definability of the Hilbert polynomial in a
future paper [Sch 2] .

5.1. Proposition. For each d, h ∈ N, there exists a formula (Height = h)d with
the following property. Let K be a field, let A be an affine (local) K-algebra of
complexity at most d and take aaa ∈ code(A). Let a be an ideal in A of complexity at
most d and take iii ∈ code(a). Then the tuple (aaa, iii) belongs to |(Height = h)d|K , if
and only if, a has height h.

Similarly, there exists a formula (Depth = h)d, so that the tuple (aaa, iii) belongs to
|(Depth = h)d|K , if and only if, a has depth h in A.

Proof. We will construct the formulae (Height = h)d by induction on h. If h = 0,
then we seek to express in a first order way that there exists an associated prime p

of a, such that p is a minimal prime of A. This is indeed equivalent with a having
height zero (note that every associated prime ideal of an ideal I is in particular a
minimal prime ideal of I). By (2.2), there exists a bound D, such that for any
associated prime p of a and for any associated prime g of A, we have that p and
g have degree type at most D. Moreover, by (3.3), we can enlarge D so that the
annihilator ideals AnnA(g) and (a : p) also have degree type at most D. Therefore,
we will claim the existence of a tuple ppp belonging to |PrimeD|K (so that p = I(ppp)
is a prime ideal; see (2.3)), with the properties that a ⊂ p and (a : p) 6= 0, and,
moreover, that for any other tuple qqq belonging to |PrimeD|K , if I(qqq) ⊂ p, then in
fact I(qqq) = p. The latter condition means that p is a minimal prime (of A), whereas
the former means that it is an associated prime of a. It should now be clear how
to write down the formula (Height = 0)d.

For general h > 0, we do the following. Let a = (f1, . . . , fs) where the fi have
degree at most d. Let aj be the ideal generated by f1, . . . , fj , where we put a0 = (0).
Let t be the maximal value of j less than s, for which aj has height strictly smaller
than the height of a. By Krull’s Principal Ideal Theorem the height of at is then
exactly one less than the height of a. Therefore, the formula (Height = h)d is
defined as follows. A tuple (aaa, iii) belongs to |(Height = h)d|K , if and only if, it does
not belong to any of the |(Height = i)d|K , for i < h, and, for some t < s, we have
that at has height h− 1, whereas a(A/at+1) has height zero. Indeed, if this holds,
then clearly the height of a is at least h by the former condition. As a(A/at+1) has
height zero, it follows that a and at+1 have the same height. As at+1 has height at
most the height of at plus one, that is to say, at most (h − 1) + 1 = h, it follows
that a has height at most h. It should also be clear that the above statement can
be translated in a first order formula using induction. Note that deg. type aj ≤ d
and all A/aj have complexity at most d.

For the construction of (Depth = h)d we will use the characterisation [Mats,

Theorem 16.7] that a has depth h, if and only if, all Exti
A(A/a, A) vanish for
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i < h whereas Exth
A(A/a, A) 6= 0. Using (4.4) we can make first order statements

about the modules Exti
A(A/a, A). In particular, using (3.5) we can express their

vanishing in the tuples aaa and iii by first order formulae: simply express that the
length of the module is zero. �

5.2. Corollary. For each d, there exists a bound D with the following property.
Let A be an affine (local) ring of complexity at most d and a an ideal in A of degree
type at most d. Then there exist x1, . . . , xs ∈ a of degree at most D, such that
(x1, . . . , xs) is a maximal A-regular sequence in a (where s equals the depth of a).

Proof. It suffices to show that for fixed d and s, we can find a bound on the degrees
of an A-regular sequence in a, provided that the depth of a is at least s. Fix some
d, s,m ∈ N. Let RSd,s,m be the formula expressing the following two facts in the
codes of A and a and in the codes of s polynomials fi of degree at most m.

• The polynomials f1, . . . , fs lie in the ideal a.
• For each i = 1, . . . , s, if g is a polynomial of degree at most m, such that
fig lies in the ideal Ii−1 generated by f1, . . . , fi−1, then already g ∈ Ii−1.

Using the fact that ideal membership can be expressed in a first order way by (2.3),
it follows that such a first order formula RSd,s,m does indeed exist. Moreover, if
RegSeqd,s,m is the formula expressing in the code of A and a that there exists an

s-tuple (f1, . . . , fs) in a of degree at most m, such that RSd,s,m holds, then a has
depth at least s, if and only if, one of the RegSeqd,s,m holds.

In other words, for fixed s and d and for every field K we have that

|(Depth = s)d|K =
⋃

m<ω

∣

∣RegSeqd,s,m

∣

∣

K
.

By first order compactness (1.2), there exists an m0, such that

(Depth = s)d ↔ RegSeqd,s,m0

is true in any field K. This means precisely that there exists a regular sequence of
length s in a of degree at most this m0, as required. �

5.3. Theorem. For each d ∈ N and each property P of local rings listed below,
there exists a corresponding formula Pd with the following property. Let K be a field
and R an affine local K-algebra of complexity d. Then R has the property P, if and
only if, there is a tuple aaa ∈ code(R) which belongs to |Pd|K . Here P is either one
of the following properties:

(xi) regular;
(xii) complete intersection;

(xiii) Gorenstein;
(xiv) Cohen-Macaulay.

Proof. Let K be an arbitrary field and let R be an affine local K-algebra of com-
plexity at most d. Let aaa ∈ code(R). Let k be the residue field of R, which has then
also complexity at most d.

To prove (xii), use the criterion [BH] that R is a complete intersection, if and
only if,

(13) βR
2 (k) =

(βR
1 (k)
2

)

+ βR
1 (k) − h
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where h is the dimension of R. By (4.6), each quantity in (13) is bounded by some
D depending only on d. Let us show in some detail how to write down the required
formula. Let W be the collection of all triples (b1, b2, h) ∈ N3 with b1, b2, h ≤ D
and such that

b2 =
( b1

2

)

+ b1 − h.

The formula CId has then the following form

∨

(b1,b2,h)∈W

b1 = βR
1 (k) ∧ b2 = βR

2 (k) ∧ h = dimR.

As written down, this is not yet a first order formula, but it can easily be turned
into a genuine one. For the statement h = dimR, this is easily done by (5.1). Just
observe that R = Ap for some affine algebra A and some prime ideal p of height h
with deg. type p ≤ d. Let us show how to express that b1 = βR

1 (k) (see also remark
following (4.6)), the other cases are similarly dealt with. Let ppp ∈ code(k), where
we view k as an R-module, i.e., M(ppp) = k. This tuple is easily derived from aaa and
so we assume that ppp below is given in terms of aaa. Then b1 = βR

1 (k) is encoded by

(∃vvv)[(Tor1)d(aaa,ppp,ppp,vvv) ∧ (Len=b1)D(aaa,vvv)]

where we used the formulae defined in (4.4) and (3.5).

For (xi), observe that by Serre’s criterion R is regular, if and only if, its residue
field k has finite projective dimension. As this projective dimension is then at most
the dimension of R and hence at most d, the regularity of R is equivalent with the
vanishing of TorR

d+1(k, k) (see [Mats, §19] for details). As the latter module has
complexity at most D, for some bound D depending only on d, we can express the
vanishing of TorR

d+1(k, k) by means of a first order formula Regd, using (3.5) and
(4.4) as above.

For (xiii), we use the criterion [Mats, Theorem 18.1.(3)] that R is Goren-

stein, if and only if, Exti
R(k,R) vanishes for some i > h and hence, if and only if,

Extd+1
R (k,R) vanishes, as h ≤ d. For (xiv), we let CMd express that the height of

R = Ap equals its depth and this is easy by means of (5.1). �

5.4. Proposition. Let (R,m) be a Noetherian local ring with residue field k and
let M be a finite R-module. Then M has finite injective dimension, if and only
if, all Extt+1+i

R (k,M) vanish, for i = 0, . . . , h, where t is the depth of R and h its
dimension.

Proof. Assume first that M has finite injective dimension. By [BH, Theorem
3.1.17] its injective dimension is then equal to t and in view of [BH, Proposition

3.1.14] it follows that all Extt+1+i
R (k,M) vanish.

Conversely, applying [BH, Proposition 3.1.13] to Extt+i+1
R (k,M) = 0, we

conclude that Extt+i
R (R/p,M) vanishes, for each prime ideal p of height h− 1 and

each i < h. Successively applying this trick shows that Extt+1
R (R/p,M) = 0, for all

prime ideals p of R and whence by [BH, Corollary 3.1.12] that M has injective
dimension at most t. �



26 HANS SCHOUTENS

5.5. Corollary. For each d, there exists a first order formula FinInjd with the
following property. Let K be a field and R an affine local K-algebra of complexity d.
Let M be a finitely generated R-module of complexity at most d. Let aaa ∈ code(R)
and mmm ∈ code(M). Then (aaa,mmm) belongs to |FinInjd|K , if and only if, M has finite
injective dimension as an R-module.

Proof. By (5.1), both the depth and the dimension of R are expressible by means
of a formula. Now use the criterion (5.4) together with (3.5) and (4.4) in the
same way as they were used in the proof of (5.3). �

5.6. Theorem. The validity of the Bass Conjecture for local rings essentially
of finite type over an algebraically closed field of positive characteristic, implies the
validity of the conjecture for local rings essentially of finite type over an algebraically
closed field of characteristic zero.

Remark. The Bass Conjecture states that if a Noetherian local ring admits a finitely
generated module of finite injective dimension, then it is Cohen-Macaulay. In fact
the converse also holds and its proof is rather easy (see remark below). This con-
jecture is now proven in full generality by Roberts’ New Intersection Theorem,
but was originally proven by Szpiro and Peskine using their New Intersection
Theorem in positive characteristic (see also (5.8) below). The same authors then
derived the zero characteristic case using an ad hoc lifting procedure, which we
have replaced here, at least for the affine case, by the Lefschetz Principle.

Proof. Fix some d, e ∈ N. Let K be an arbitrary field and R an affine local K-
algebra of complexity at most d. Let aaa ∈ code(R). Using (5.5), we can write
down a first order formula FinInjd,e expressing that R admits a finitely generated
module of complexity at most e and of finite injective dimension. Let Bassd,e be
the formula

FinInje(aaa,mmm) → CMd(aaa).

Hence the Bass Conjecture for affine K-algebras simply states that all Bassd,e are
true in K and our claim then follows by the Lefschetz Principle, as explained in
Section 1. �

Remark. A dual version of the Bass Conjecture is the statement that any local
ring admitting a module of finite length and finite projective dimension, is Cohen-
Macaulay (see for instance [Str, Proposition 9.1.10] ). We can construct formulae
Bssd only depending on d, such that this dual version is equivalent with all Bssd

being true. Indeed, if R is Cohen-Macaulay, then a module of finite length and
finite projective dimension can be constructed in the following way: let (x1, . . . , xh)
be a maximal regular sequence in R and let B = R/(x1, . . . , xh). Then B is
zero dimensional and whence has finite length and, as an R-module, its projective
dimension is d. It follows from (5.2) that we can find some D1, only depending
on d, such that R admits a maximal regular sequence (x1, . . . , xh) of degree at
most D1. Hence from (2.4), there exists D, only depending on d, such that B =
R/(x1, . . . , xh) has length at most D. Therefore, we can take for Bssd the formulae

(∃mmm)[FinProjD(aaa,mmm) ∧ FinLenD(aaa,mmm)] → CMd(aaa),

where FinProje is a formula expressing that a module of complexity at most e has
finite projective dimension (see (6.3) below for how to write down such a formula,
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taking into account that projective dimension never exceeds Krull dimension) and
where FinLene is the formula from (3.6) expressing that the module has finite
length.

5.7. Definition. Let A be an affine (local) ring. A complex F• of the form

(F•) 0 → Fs

Γ×

s−→ Fs−1

Γ×

s−1

−→ . . .
Γ×

2−→ F1
Γ×

1−→ F0 → 0

is called a finite free complex of length s, if all Fi are finitely generated free A-
modules. We say that F• has complexity at most d, if A has complexity at most d,
every matrix Γi has degree type (and dimensions) at most d and s ≤ d. Put

ri =

s
∑

i=j

(−1)j−i rankFj ,

called the expected rank of Γ×
i and let Wi(F•) be the ri-th Fitting ideal Wri

(Γ×
i ) of

the matrix Γi (see (6.1) below for the definition of Fitting ideal). The Buchsbaum-
Eisenbud Acyclicity Theorem (see [BH, Theorem 1.4.12] ) states that F• is acyclic,
if and only if, Wi(F•) has depth at least i, for i = 1, . . . , s. Recall that F• is called
acyclic, if

0 → Fs

Γ×

s−→ Fs−1

Γ×

s−1

−→ . . .
Γ×

2−→ F1
Γ×

1−→ F0

is exact, i.e., if F• is a free resolution of the cokernel of Γ×
1 .

In case (R,m) is a Noetherian local ring of positive characteristic p, another
acyclicity theorem is the New Intersection Theorem by Szpiro and Peskine. It
simply states that if the homology groups of F• have finite length and s is strictly
smaller than the dimension of R, then F• is exact. The authors then lift this result
to the case of a local ring containing a field of zero characteristic by means of
Artin Approximation. For the next theorem we assume the validity of the New
Intersection Theorem in positive characteristic and we show how to lift this via
first order definability to zero characteristic, at least in the affine case.

5.8. New Intersection Theorem. Let R be an affine local ring and F• a finite
free complex of length s over R. If s is strictly smaller than the dimension of R
and each homology group of F• has finite length, then F• is exact.

Proof. Let R be an affine local ring of complexity at most d. Let h be its dimension.
Let F• be a finite free complex over R of length s < h and assume that F• has
complexity at most d. It then follows from (4.2) that its homology groups Hi(F•)
all have complexity at most D1, where D1 only depends on d. Moreover, by (3.6),
there exists a first order formula FinLenHd expressing in the code for R and the
complex F• that all Hi(F•) have finite length. Similarly, there exists a first order
formula Exactd, expressing that the complex F• is exact. Let NITd be the formula
expressing that for an affine local ring R of complexity at most d and a finite free
complex F• over R of complexity at most d and of length s strictly smaller than
the dimension h of R, we have that

FinLenHd → Exactd.
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See the proof of (5.3) how to express that s < h by means of a first order formula.
The content of the New Intersection Theorem for affine algebras is then simply that
NITd holds for every d. By the Peskine-Szpiro result in positive characteristic
(see for instance [BH, Theorem 8.2.6] ), the NITd all hold in positive characteristic
and whence in all characteristics by the Lefschetz Principle (see Section 1). �

6. Zariski-Lipman Conjecture

6.1. Definition. LetM be a finitely generated module overA, where A, as always,
denotes an affine (local) ring. Let

An Γ×

−→An →M → 0

be a representation of M . The i-th Fitting ideal Wi(M) is defined to be the ideal
of A generated by the (n − i) × (n − i) subdeterminants of Γ, for i < n. For
i ≥ n, we put Wi(M) = A. These ideals are independent from the particular
representation of the module M ; see [Eis, Section 20.2] for more details. By
expanding determinants along a row one verifies that the Fitting ideals form an
ascending chain

0 ⊂ W0(M) ⊂ W1(M) ⊂ · · · ⊂ Wn−1(M) ⊂ A.

The lower rank r(M) of M is defined as the minimal index such that Wi(M) 6= 0
and the upper rank r(M) as the minimal index for which Wi(M) = A. One checks
that the lower rank equals the minimum of the minimal number of generators of
Mp, where p runs over all prime ideals of A and the upper rank is the maximum of
those same numbers.

In particular, suppose A = K[X ]/I with K a field, X = (X1, . . . , Xn). Let I =
(f1, . . . , fm). Then the module of K-differentials ΩK(A) admits a representation

AmJac(f)×

−→ An → ΩK(A) → 0,

where Jac(f) is the Jacobian matrix of partial derivatives (∂fi/∂Xj). It follows
that the rank of Jac(f) is n− r where r = r(ΩK(A)). The corresponding non-zero
ideal Wr(ΩK(A)) is called the Jacobian ideal of A and will be denoted by JK(A).

Let p be a prime ideal of A. We have that Ap is geometrically regular, or p-
smooth over K, if and only if, JK(A) 6⊂ p (see [Ohm, Remark (a) p. 103] and
[Mats, Theorem 28.7] ).

6.2. Corollary. For each d ∈ N, there exists a bound D with the following prop-
erty. Let K be a field and A an affine (local) K-algebra of complexity at most d.
Let M be a finitely generated A-module of complexity at most d. Then each Fitting
ideal Wi(M) has degree type at most D.

Moreover, the module of differentials ΩK(A) has complexity at most D and the
Jacobian ideal JK(A) has degree type at most D.

Proof. Immediate from the definitions. Note that a Fitting ideal can only be proper
for i ≤ d. �

Remark. Similarly, one can find formulae expressing that a module of complexity
at most d has a prescribed lower or upper rank.
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6.3. Proposition. For each d, q ∈ N, there exists a first order formula (pd = q)d

with the following property. Suppose K is a field and R is an affine local K-algebra
of complexity at most d. Let M be a finitely generated A-module of complexity at
most d. Take aaa ∈ code(R) and mmm ∈ code(M). Then (aaa,mmm) belongs to |(pd = q)d|K ,
if and only if, M has projective dimension q as an R-module.

Proof. Let R and M be as in the statement and let k be the residue field of R. It
follows from (4.4), that the module TorR

q+1(M,k) has complexity at most D, for
some bound depending only on d. Hence if we express that the latter module is
zero (by requiring that its length is zero using (3.5)), then by [Mats, Lemma 1
p. 154] , we have expressed that M has projective dimension at most q. From this
the required formula is easy to construct. �

Remark. By a Theorem of Ferrand and Vasconcelos (see for instance [Ohm,
Theorem 35.3] ), an affine reduced local K-algebra R is a complete intersection,
if and only if, ΩK(R) has projective dimension at most 1. This gives, using by
(6.2) and (6.3), an alternative construction for the first order formula CId of (5.3)
expressing that R is a complete intersection, at least in the reduced case.

6.4. Theorem. There are first order sentences (=formulae without free variables)
ZarLipd, such that ZarLipd holds in an algebraically closed field K, for all d, if
and only if, the Zariski-Lipman Conjecture is true for K.

Therefore, if the Zariski-Lipman Conjecture holds for some algebraically closed
field of characteristic zero, then it holds for any algebraically closed field of charac-
teristic zero.

Proof. The content of the Zariski-Lipman Conjecture is the following. Let R be a
reduced affine localK-algebra, with K an algebraically closed field. The Conjecture
claims that if DerK(R) is free, then R is regular.

Recall that DerK(R) is the module of K-invariant derivations on R, i.e., the
set of K-linear endomorphisms δ on R which satisfy the Leibnitz rule δ(ab) =
aδ(b) + bδ(a). Moreover, we have an isomorphism (see for instance [Mats, page
192] )

DerK(R) = HomR(ΩK(R), R).

Therefore, by (6.2) and (4.4), there is a bound D (only depending on d) on the
complexity of DerK(R). Moreover, by (6.3), there is a first order formula DerFreed

in the code aaa ∈ code(R) expressing that DerK(R) has projective dimension 0, i.e.,
that DerK(R) is free. Using (2.2), one can easily write down a formula Redd

expressing in the code aaa of R that R = R(aaa) is a reduced local ring: namely,
express that the zero ideal is radical. Hence the Zariski-Lipman Conjecture for an
algebraically closed field K states that

|Redd|K ∩ |DerFreed|K ⊂ |Regd|K ,

for all d. In other words, we can take for ZarLipd the sentence

Redd(aaa) ∧ DerFreed(aaa) → Regd(aaa).

The last statement then follows from the Lefschetz Principle. �
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6.5. Corollary. For each d ∈ N, there exists N(d) ∈ N with the following property.
Let K be an algebraically closed field of characteristic at least N(d) and let R be a
reduced affine local K-algebra R of complexity at most d. If the module DerK(R)
of K-derivations is free, then R is normal.

Proof. Lipman shows in [Lip] that if we replace the condition for R to be regular
by the weaker condition that R be normal in the Zariski-Lipman Conjecture, then
this weaker statement holds for any algebraically closed field of zero characteristic.
It follows from (iv) in (2.2), that the condition for R to be normal, can be expressed
by a first order formula Normald in the code aaa of R. Fix some d and let weakZLd

be the formula
Redd(aaa) ∧ DerFreed(aaa) → Normald(aaa).

Hence weakZLd is true in C. Therefore it is true in almost all characteristics by the
Lefschetz Principle (see Section 1), which is precisely what the statement claims.

�

6.6. Corollary. For each d ∈ N, there exists N(d) ∈ N with the following property.
Let K be an algebraically closed field of characteristic at least N(d) and let R be
the local ring of a point P on a reduced hypersurface V over K of degree at most
d. If the module DerK(R) of K-derivations is free, then P is a non-singular point
on V .

Proof. Scheja-Storch show in [SS] that the Zariski-Lipman Conjecture holds
for any local ring R of a (reduced) hypersurface over an algebraically closed field K
of zero characteristic. I.e, R is the localisation of a K-algebra of the form K[X ]/f ,
where f is a single square-free polynomial and X = (X1, . . . , Xd). Let Hypd be a
formula in the code of R expressing this fact and set HyperZLd equal to

Hypd(aaa) ∧ DerFreed(aaa) → Regd(aaa),

As HyperZLd is true in C, it is true in almost all characteristics by the Lefschetz
Principle (see Section 1), which is precisely what the statement claims. �

Remark. In [Lip] , the author shows by some easy examples that the conjecture
in general is false in characteristic p > 0, e.g., take the singular curve defined by
Xp = Y p+1. Since normality is the same as regularity for curves, it follows that
N(d) in (6.5) and (6.6) will never be one.

Nonetheless, this suggests a possible strategy to the original conjecture using
positive characteristic methods. Namely, show that for the degree d small with
respect to the characteristic p, the conjecture holds, i.e., the module DerK(R) of
K-derivations being free implies that R is regular (with R as before of complexity
at most d). Indeed, for then (19), for a fixed d, holds in algebraically closed fields
of sufficiently large characteristic and whence, by the Lefschetz principle, in any
algebraically closed field of characteristic zero.

Keeping d small with respect to p avoids the pathology coming from non-constant
polynomials with zero derivative, but we would still have ’typical’ positive charac-
teristic tools at hand, such as the Frobenius automorphism, to prove the result. On
the other hand, any proof of the Zariski-Lipman Conjecture would yield its validity
in positive characteristic for ’small’ degree, again by an application of the Lefschetz
Principle to (19), so that the above sketched heuristic is perfectly defensible.
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7. Bounds in Intersection Theory

7.1. Definition. In this section we will extend some of the previous results to
coherent sheaves on schemes of finite type over a field. In fact, (7.5) below was
my original motivation for starting the present research. To start, we will have to
define a notion of complexity for schemes of finite type over a field. Firstly, let us
say that a Zariski closed subset V of SpecA has complexity at most d, if A has
complexity at most d and there exists an ideal a of degree type at most d in A, such
that V is the the Zariski closed set defined by a. Note that in view of (ii) of (2.2)
we might as well have defined this by requiring that the radical ideal defining V
has complexity at most d; both notions of complexity are then mutually bounded
(see (3.8)). However, if we are interested in the subscheme structure of V given by
a particular ideal a, then its complexity is defined as the degree type of that ideal.
In summary, if V is a closed subscheme of SpecA defined by an ideal a, then its
complexity cZar as a Zariski closed subset is given as the minimum of deg. type I
where I runs through all ideals with the same radical as a, whereas its complexity
cSch as a subscheme is given by deg. type a. Therefore cZar ≤ cSch, and conversely
cSch is uniformly bounded by cZar, in view of (ii). Similarly, we say that a Zariski
open subset has complexity at most d, if its complement is a Zariski closed subset
of complexity at most d.

We will say that a scheme X of finite type over some field K has complexity at
most d, if the following holds. There exists a finite affine covering X = U1∪· · ·∪Us

with s ≤ d and each Ui = SpecAi with Ai an affine ring of complexity at most d.
Moreover, each Uij = Ui ∩Uj viewed as a Zariski open subset of Ui has complexity
at most d and the patching isomorphisms Uij → Uji have complexity at most d.
The above definition can be extended without any difficulty to schemes which are
essentially (=locally) of finite type over some field. Similarly, we extend the notions
of complexity for closed subschemes and Zariski closed or open sets from affine to
arbitrary schemes of finite type. If X is a scheme of finite type of complexity at
most d, then a coherent OX module F is said to have complexity at most d, if there
exist finitely generated Ai-modules Mi of complexity at most d, such that F(Ui) is
the sheaf associated to the module Mi, for some affine covering X = U1 ∪ · · · ∪ Us

as above with transition functions of complexity at most d. In particular, we say
that a point x of X has complexity at most d, if its local ring has complexity at
most d.

Of course, most of the theorems so far proven in the affine (local) case go through
for arbitrary schemes (essentially) of finite type over some field. So far we have used
the existence of uniform bounds to obtain definability. In the following result on
the openness of certain loci, the argument gets reverted.

7.2. Theorem. For each d, there exists a bound D with the following properties.
Let X be a scheme of finite type over some algebraically closed field K. If X has
complexity at most d, then the locus of all points where X is geometrically regular,
regular, complete intersection, Gorenstein or Cohen-Macaulay is a Zariski open of
complexity at most D.

Proof. For a definition of geometrically regular see (6.1). Now use (6.2) which
says that the complexity of the Jacobian matrix is uniformly bounded; we leave
the details for the reader. For the remaining properties we will use (5.3). Let
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P (X) stand for any of the loci of points where X is regular, complete intersection,
Gorenstein or Cohen-Macaulay. Since the problem is local, we may assume that
X = SpecA is affine, with A an affine K-algebra of complexity at most d.

Let Xmax be the collection of all maximal ideals of A (i.e., closed points of
X), which by the Nullstellensatz can be viewed as a subset of affine K-space Kd.
That is to say, every maximal ideal m is of the form (X1 − x1, . . . , Xd − xd), with
xxx = (x1, . . . , xd) ∈ Kd. Therefore, xxx is the unique code for m and we denote this
by m = mxxx.

By (5.3), we can find a formula P, such that (aaa,xxx) belongs to |P|K , if and only
if, the maximal ideal mxxx belongs to the locus P (X)∩Xmax, where X = SpecA(aaa).
Fix some affine K-algebra A, let X = SpecA and let aaa ∈ code(A). Let PA be
the formula P where the code aaa of A has been fixed. By quantifier elimination
(see Section 1), we know that |P|K is a constructible set and therefore so is |PA|K .
Moreover, from our above discussion, we have that P (X)∩Xmax = |PA|K . Let Σ be
the constructible subset of X given by PA, i.e., let Σ be given by the equations and
inequalities of PA. It is a well known fact (see for instance [Mats, §24] , especially
Exercises 24.2 and 24.3) that P (X) is an open set in all four cases. As P (X) and
Σ are two constructible sets with the same closed points, they are actually equal.
This follows from the fact that an affine algebra is a Jacobson ring, that is to say,
that every radical ideal is the intersection of all the maximal ideals containing it,
see [Mats, Theorem 5.5] . Let D be the maximum of the degrees of all polynomials
occurring in the formula P. It follows that Σ = P (X) has complexity at most D.

�

Remark. It follows also from (5.3) that we can write down formulae expressing
that a point x ∈ X of complexity at most d belongs to one of these loci.

The fact that the above loci are open could also be proved using the present
definability results; we intend to return to the study of these and similar questions
in a future paper [Sch 2] . There we will also show how to extend these results to
arbitrary, not necessarily algebraically closed fields.

7.3. Definition. Let X be a scheme of finite type over some field K. Recall that
Zk(X) denotes the free abelian group on closed reduced irreducible subschemes
(subvarieties, for short) of X of codimension k. An element of Zk(X) is called a
k-cycle on X . The direct sum of these Zk(X) is denoted by Z∗(X) and its elements
are referred to as (algebraic) cycles on X . We say that a cycle α has complexity at
most d, if X itself has complexity at most d and α is of the form

α =

s
∑

i=1

niYi

with s ≤ d and |ni| ≤ d and each Yi a closed subvariety of complexity at most d.
Since the Zariski topology on X is Noetherian, we can write X uniquely as

X1∪· · ·∪Xs, where the Xi are subvarieties of X with Xi 6⊂ Xj . These subvarieties
Xi are called the irreducible components of X . The cycle associated to X is by
definition the cycle

∑

niXi, where ni is the length of OX,ηi
and where ηi is the

generic point of Xi, for i = 1, . . . , s. In particular, if X = SpecA is affine, then Xi

is the closed subset defined by a minimal prime gi of A and ni is the length of the
Artinian local ring Agi

.
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Assume now that X is moreover regular. Let us briefly review some intersection
theory for closed subschemes on a regular scheme of finite type over a field. Let Y1

and Y2 be two closed subschemes of X . Their intersection Y1 ∩ Y2 is by definition
the scheme Y1 ×X Y2, which is a closed subscheme of X . We say that Y1 and Y2

intersect properly, if the codimension of each irreducible component F of Y1 ∩ Y2

equals codimY1 + codimY2. If this is the case, let η be the generic point of such
an irreducible component F . We define, following Serre in [Ser] , the local
intersection number by

i(η;Y1, Y2) =

∞
∑

n=0

(−1)nβOX,η
n (OY1,η,OY2,η),

where the βn are the Betti numbers as defined in (4.5). Note that this sum is
finite. Indeed, since X is regular, every OX -module has finite projective dimension

by [Mats, Theorem 19.2] and therefore β
OX,η
n (OY1,η,OY2,η) = 0 for n strictly

bigger than the dimension of X . The intersection cycle of Y1 and Y2 is then defined
as the element in Z∗(X) given by

(16) Y1 · Y2 =
∑

F

i(ηF ;Y1, Y2)F,

where the sum runs over all irreducible components F of Y1∩Y2 and ηF denotes the
generic point of F . If Y1 and Y2 do not intersect properly, then a more complicated
definition is required, using Chow’s Moving Lemma. (We will not treat this case
here.) Finally, the intersection of two cycles which intersect properly (meaning that
each subvariety in the support of one cycle intersects properly every subvariety in
the support of the other cycle), is defined by extending (16) by linearity.

7.4. Theorem. For each d ∈ N, there exists a bound D with the following property.
Let X be a scheme of finite type over a field K, of complexity at most d. Let Y be
a closed subscheme of X of complexity at most d. Then the cycle δY associated to
Y has complexity at most D.

Proof. By (ii) of (2.2), the number s of generic points of Y and the complexity of
each irreducible component Yi of Y is uniformly bounded and by (2.4), so is each
ni. �

7.5. Theorem. For each d ∈ N, there exists a bound D with the following property.
Let X be a scheme of finite type of complexity at most d. Let α1 and α2 be two
cycles of X of complexity at most d. If α1 and α2 intersect properly, then their
intersection cycle α1 · α2 has complexity at most D.

Proof. Without loss of generality we may reduce to the case that X = SpecA is
affine and that αi = Yi is a closed subscheme. Let a1 and a2 be the ideals of A
defining Y1 and Y2 respectively. Let η be a generic point of Y1∩Y2. To η corresponds
a minimal prime ideal p of a1 + a2. By (ii) of (2.2), the degree type of p is at
most D, where D only depends on d. The local intersection number

i(η;Y1, Y2) =

∞
∑

n=0

(−1)nβAp

n (Ap/a1Ap, Ap/a2Ap)
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is uniformly bounded by (4.5) and the corollary follows. (Note that X can have
dimension at most d, as its complexity is at most d). �

Remark 1. By now the reader will have no problem in writing down a formula in
the codes of three cycles expressing that the last one is the intersection of the two
first ones, provided they intersect properly.

Remark 2. On Z∗(X) several equivalence relations (rational equivalence, numerical
equivalence,...) are defined. Macintyre has assured me that Hrushovski has a
counterexample to the first order definability of rational equivalence. However,
Macintyre himself argues in [Mac] that it would follow from the Standard
Conjectures of Grothendieck that numerical equivalence is first order definable.

7.6. Proposition. For each d, there exists a bound D with the following property.
Let K be an arbitrary field and A and B two affine K-algebras of complexity at
most d. Let ϕ : A → B be a morphism of complexity at most d. Then for every
finitely generated A-module M of complexity at most d, the B-module M ⊗AB has
complexity at most D.

Proof. Choose a (d × d)-matrix Γ with entries of degree at most d, such that the
following sequence is exact

Ad Γ×

−→Ad →M → 0.

Tensoring over B yields an exact sequence

Bd Γ×

B−→Bd →M ⊗A B → 0.

Here ΓB is the image of the matrix Γ in B. As ϕ is given by polynomials of degree
at most d, ΓB has all its entries of degree at most d2. Using (3.3), the statement
now follows readily. �

Let us just give one application of this observation.

7.7. Theorem. For each d, there exists a bound D with the following property.
Let K be an arbitrary field and let f : Y → X be a morphism of complexity at most
d between schemes of finite type over K. Let Z be a closed subscheme of Y of
complexity at most d. For any closed point x ∈ X, the intersection cycle

f−1(x) · Z

has complexity at most D, whenever the intersection is proper.

Proof. Without loss of generality, we may take X = SpecA and Y = SpecB to be
affine. A closed point x of X then corresponds to a maximal ideal m of A. Assume
first that x isK-rational, so thatK is the residue field of x and hence has complexity
at most d, since m is generated by polynomials of degree one. Therefore, by (7.6),
there is a bound D, only depending on d, with the property that the coordinate
ring B/mB of the closed fibre f−1(x) has complexity at most D. For a general
closed point, let L denote its residue field. Let A1 = A ⊗K L and B1 = B ⊗K L.
Let m1 be any maximal ideal of A1 lying above m and x1 ∈ X1 = SpecA1 the
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corresponding closed point. In particular, we have an isomorphism of coordinate
rings

(17) B/mB ∼= B1/m1B1

of the closed fibres of x and x1 respectively. We can now apply the above argument,
since x1 is L-rational. In particular, since D does not depend on the field K, the
complexity of the affine coordinate ring of the fibre f−1(x) is therefore also bounded
by D, in view of (17).

So in either case, the fibre ring has complexity at most D and we now finish with
an application of (7.5). �

Remark. More generally, the same proof shows that for any closed subvariety F of
X of complexity at most d, the complexity of the intersection cycle f−1(F ) · Z is
bounded by D, whenever the intersection is proper.
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