BOUNDS IN POLYNOMIAL RINGS OVER ARTINIAN LOCAL RINGS

HANS SCHOUTENS

ABSTRACT. Let R be a (mixed characteristic) Artinian local ring of lengthnd letX be
ann-tuple of variables. This paper provides bounds over the Rii] on the degrees of
the output of several algebraic constructions in termk afand the degrees of the input.
For instance, i is an ideal inR[X] generated by polynomials of degree at most and

if fis a polynomial of degree at maogbelonging tol, thenf = g1 f1 + - - - + gs fs, with

q; of degree bounded in terms @f! andn only. Similarly, the module of syzygies dfis
generated by tuples all of whose entries have degree bounded in tednisaofdrn. only.

1. INTRODUCTION

In [23], van den Dries proves the following faithful flatness result about certain ultra-
products (for an alternative proof, see the Appendix below; for an introduction in ultra-
products, seef} §9.5] or [19, §2]).

1.1. Theorem ([12, Theorem 1.8]) Let K,, be a collection of fields with ultraproduct
K and letX = (Xy,...,X,) be a tuple of variables. Then the canonical embedding
K[X] — A is faithfully flat, whered , is the ultraproduct of thd(,, [ X].

Using this, Schmidt and van den Dries deducelif] [[see also [1]) several uniform
bounds in polynomial rings over fields; similar bounds will be discussed in Setibhis
was further studied in1[5, 16] generalizing this to bounds on various algebraic invari-
ants and to arbitrary affine algebras over a field. A typical application of faithful flatness
is uniform ideal membershim the sense that, for every we can find an upper bound
d’, so that if a polynomialf, over some field lies in the ideal generated by polynomials
f1,-.., [s, with all the f; of degree at most, then this is witnessed by a linear combination
fo=aqf1+ -+ qsfs with ¢; polynomials of degree at most.

A natural question is to ask for similar bounds when the ground ring is no longer a
field. In this generality (even if the base ringZsor a discrete valuation ring) simply
bounding the degrees will no longer suffice. For instance, Byarhere the uniform ideal
membership problem is callddedekinds problem, one also needs to bound the absolute
value of the coefficients (see for instancg; [more bounds can be found iR][ some of
which reprove results in this paper by different means). Nonetheless, there is still another
class of rings where bounding the degrees suffices: the class of Artinian local rings of a
fixed (or bounded) length. Of course, an equicharacteristic Artinian localRirggjust a
finite dimensional algebra over a field and its length is an upperbound on the degrees
of the h; needed to writeR = F[X]/(hy,...,hs)F[X]. Therefore, this case is already
covered by Theorem.1l. However, the mixed characteristic case does not seem to have
been treated so far, and this is the aim of the present paper. Our main result therefore is the
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following (recall that asyzygyof an ideal(f1, . .., fs)A, or more correctly, of a generating
tuple(f1,..., fs), is by definition a tupléay, . . ., as) such thatu; f; + - - - + as fs = 0).

Main Theorem. For each triple(d, I, n) of positive integers, we can find a positive integer
e := e(d, I, n) with the following property. LeR be an Artinian local ring of length at most
l. LetX = (X4,...,X,) be ann-tuple of variables and lef, ..., f; be polynomials in
R[X] of degree at most. If f lies in the ideall generated byf1, ..., fs, then there exist
q; € R[X] of degree at mostsuch thatfo = q1 f1 + -+ + ¢s fs-

Moreover, the module of syzygiesio€an be generated by tuples all of whose entries
have degree at most

Note that the numbeyt of generators; is bounded in terms of the other dgi& [, n)
(see Lemma.1). As in [1Z] the Main Theorem follows immediately from the following
result by a non-standard argument.

1.2. Theorem. Fix some pair of positive intege($, n) and an infinite index set equipped
with a non-principal ultrafilter. For each indew, let R,, be an Artinian local ring of
length at most and letR be the ultraproduct of thesg&,,. Let A, be the ultraproduct
of the R,,[X], where X is a fixedn-tuple of variables. There is a natural embedding
R[X] C A and this embedding is faithfully flat.

Note that by [L3], the ultraproductR is in fact again an Artinian local ring of length
at mostl. For the reader’s convenience, let me explain how the first assertion in the Main
Theorem is a direct consequence of Theofiefthe second assertion is proved in a similar
way; the reader can consultd] for more details). Suppose the statement in the Main
Theorem is false, so that there is no bound for some t(iplg m). Therefore, we can find
for everyw an Artinian local ringR,, of length at most and polynomialsfq., - . -, fsw
in R, [X] of degree at mosi with X ann-tuple of variables, such that there is a linear
combination

(1) wa = q1'wf1w +-+ q(ewfswa

but in any such linear combinatiof)( at least one;,, has degreev or higher. Note that
we can take the same numbein each counterexample by Lemrfid below. LetR and
A denote the ultraproduct of the,, and theR,,[X] respectively. Since each,, has
degree at mosi, the ultraproductf; of the f;,, lies already in the subrin@[X] (this is
because taking ultraproducts commutes with bounded sums). Set f1, ..., fs) R[X]
(note thatl A, is then the ultraproduct of the ideals generated byfthe. Let g;, be
the ultraproduct of the;,,. This time, we can only say that.,, € A.,. Therefore, by
tos’ Theorem, {) yields thatf, € I A,,. However, sinceR[X] — A is faithfully flat
by Theoreml.2, we getfy € A, N R[X] = I. Say,

fO :glf1+"'+gsfsa

for someg; € R[X]. SupposeD is the maximum of the degrees of the We can choose
polynomialsy;,, € R,,[X] of degree at mosb whose ultraproduct ig;. By Los’ Theorem
once more, we get

wa = gl'wflw +-+ gswfswa

for almost allw, contradicting our assumption for thogebigger thanD. O
An immediate consequence of the Main Theorem is the following result on congru-
ences. Note that this is an extension &ffProposition 4.14] to higher dimensions.
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1.3.Theorem. For each quadrupléd, e, n, ¢) of positive integers, we can find a positive
integer N := N(d, e, n, ¢) with the following property. LetR, m) be a Noetherian local
ring of embedding dimension at mestLet X = (X;,..., X,,) be ann-tuple of variables
and letp be a prime ideal inR[X| containingm. Let fo, ..., fs be polynomials inR[X]

of degree at most. If fy € (f1,..., fs, m®)R[X],, then there exisy; € R[X] of degree
at mostN with ¢o ¢ p, such that

qofo=qfi+ - +qsfs mod m°R[X].
In fact, if fo lies already in(f1, ..., fs, m)R[X], then we may take, = 1.

Proof. Note thatR/m¢ has length bounded in terms efand ¢, since by definition of
embedding dimensiom; is generated by at mostelements. By assumption, we can find

a tuplea = (aqo,...,as) with entries inR[X] anday ¢ p, which is a solution of the
congruence
(2) Y()f() = Ylfl + 4 Y;fs mod mcR[X]

Hence, by the second part of the Main Theorem, we can find tlgles . , b, of polyno-
mials of degree at mosY’, for someN’ only depending otid, e, n, c), satisfying @) and
such that lies in the R[X]-module spanned by them. In particular, simgedoes not lie
in p, at least one of these tuples has first entry ngt ind hence satisfies the requirements
of the first assertion.

For the last assertion, use the first part of the Main Theorem instead. O

This has the following immediate corollary for discrete valuation rings; for an applica-
tion, see 17].

1.4.Corollary. For each triple(d, n, ¢) of positive integers, we can find a positive integer
M := M (d,n, c) with the following property. LetR, ) be a discrete valuation ring. Let

X = (Xy,...,X,) be ann-tuple of variables, lep be a prime ideal of2[ X] containing
mandletfy, ..., fs be polynomials ilR[ X] of degree at most. If a € R lies in the ideal
generated byf1, ..., fs (respectively, this holds only locally g} and a has valuation at

moste, then there exist; € R[X] of degree at most/ such that

a(1+7TQO) =<hf1 +"'+Qstv

(respectively, there exigt € R[X] of degree at mosd/ with ¢o ¢ p, such thatagy =
qlfl + - +Qst)'

Proof. By assumption, we can wriie = 7'u, for somel < ¢ and some unit; in R. Put
M’ := N(d,1,n,1+ 1), whereN is the bound from Theorerh.3. It follows that we can
find polynomialsy, g; € R[X] of degree at mos¥/’ with ¢ ¢ p in the local case angd= 1
in the global case, such that

ag=gifi+ -+ gsfs + ha'th,

for someh € R[X]. In other wordsaq(1 —u~'7h) is equal to the sumy f1 + - - - + gs f-
However, comparing coefficients shows in the global case-(1), that» has degree
at mostM’ + d, and in the local case, thatl — v~ !7h) has degree at most/’ + d.
Therefore, M := M’ + d gives the required bound in either case. O

After proving the remaining statements in the next section and some further bounds in
Section3, | return to the question what happens when we work over non-Artinian rings.
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However, | do not know that, if we allow in Theorein2 the local ringsR,, to be non-
Artinian, but still impose certain bounds on the embedding dimension, whether the corre-
sponding embedding — A is still flat. As already explained, it is most certaimgt
faithfully flat.

2. FAITHFUL FLATNESS

2.1.Lemma. For each triple(d,,n) of positive integers, we can find a positive integer
s = s(d,l,n) with the following property. LeR be an Artinian local ring of length
at mostl. LetX = (Xi,...,X,) be ann-tuple of variables and let be an ideal in
R[X] generated by polynomials of degree at méstThena is already generated by
polynomials of degree at mogt

Proof. We first make the following observation. df,, is a sequence of elements i
generating an ideal in R andm > [, then already among the:; generater.

Put A := R[X]. Letf = (fi1,...,fm) be a tuple of polynomialg; of degree at
mostd and let] be the ideal in4 they generate. Let us writd1(f) for the collection
of all monomialsy in the variablesX of degree at mosi which appear with a non-zero
coefficient in somef; and leté(f) be the number of these monomials. | claim thatan
be generated by at moki(f) polynomials of degree at mogt From this the statement
follows easily. To prove the claim, we induct én= §(f). If 6 = 0, then allf; = 0 and
the assertion is clear. So lét> 0 and pick some: € M(f). Leta; be the coefficient
of p in f;. By our first observation, we may renumber tfiein such way that alk,
belong to(a4, ..., a;)R. Therefore, subtracting the appropridtdinear combination of
the f1,..., f; from each remaining;, we get a newn-tuple of the form(fi,..., fi,g)
generating/, such thatM(g) = M(f) — {u}. In particular, sincef(g) = ¢ — 1, our
induction hypothesis yields that the ideal generategtpan be generated biys — 1)
polynomials of degree at mogt This establishes the claim and hence the lemma. O

The proof of the Lemma can easily be extended to the case whésea local ring
in which every ideal is generated by at méstlements, for some fixed This applies
for instance, ifR is a discrete valuation ring. Nonetheless, the Main Theorem is false for
R =7Zor R =17, (see p, Section 4.7]). In particular, iR, is equal to eitheZ or Z, and
if R denotes their ultraproduct, then the canonical homomorphism

®) Roo[X] — Ao

is not faithfully flat, whereA is the ultraproduct of thé?,[X]. In fact, inspecting the
proof that Theoreni.2 implies the Main Theorem, the above embedding cannot even be
cyclically pure that is to say, for some idedlof R.,[X] we havel ¢ IA,, N Ry [X].
Moreover, by Lemma.1, this happens already for some finitely generated ideal

2.2.Corollary. Fix somel,d € N and letX be a finite tuple of variables. Lét,, be Noe-
therian rings with the property that each of their ideals is generated by at hedsiments.
Let R, and A, denote the ultraproduct of the,, and theR,,[X] respectively. Lef,, be
ideals inR,,[X] generated by polynomials of degree at mast

Then there exists a finitely generated idéah R..[X], such that/ A, is equal to the
ultraproduct of thel .

Proof. By Lemma2.1and the remark following it, there is somgsuch that each,, is of
the form (f1w, - - -, fsw)Rw, With all f;,, of degree at mosi. Write eachf;,, as a finite
sumy_ a; . .,X", whereX” runs over all monomials of total degree at méstnd with
eacha; , . € Ry. Leta;, be the ultraproduct of the; , ., and putf; :== > a;,X".
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Hence eacly; lies in R.,[X] and one checks easily that when viewed as an element in
A, itis the ultraproduct of th¢;,,. LetI := (f1,..., fs)Roo[X]. Using Los’ Theorem,
one now readily verifies that4. is the ultraproduct of thé,,. O

Proof of Theorem1.2. Let (R,,,m,) andA., be as in the statement of the Theorem. By
[13], the ultraproduct R, m) is again an Artinian local ring of length at mdstLet us put

A := R[X]. We need to show thal — A is flat and that every proper idealof A
remains proper im,. To prove the last assertion, observe that any maximal itieaf A
contains the nilpotent ideat. By Theoreml.1, the base changé/mA — A, /mA. is
faithfully flat, so that in particula® A, # A.

To prove flatness, we will induct on the lendtbf R. Note that almost alR,, then also
have length. If [ = 1, then almost alR,, are fields and the assertion is just Theoreth
For general > 1, it suffices, by the Local Flatness Criteriof [Theorem 22.3], to find
a proper ideah in R such thatd/aA — A, /aA is flat andad ®4 Ao & aAw.
Let » be a non-zero element in the socle Bf that is to say, so thajm = 0, and put
a := nR. Choose elements, in R, so that their ultraproduct ig. It follows that
almost alln,, are non-zero elements in the socleff. In particular,R/nR and almost
all R, /nw R, have length — 1. SinceR/nR is the ultraproduct of th&,, /n,, R.,, our
induction hypothesis yields that the canonical map fidijnR)[X] to the ultraproduct
of the (R, /1w Ryw)[X] is faithfully flat. However, the above homomorphism is simply
the base changd/nA — A, /nAs. SO remains to show thatd ® 4 Ase = nAs.
ClearlynA = A/mA. Therefore, we will have shown the required isomorphism if we can
show thatAnn 4__ () = mA.. One inclusion is obvious, so let, € A, be an element
annihilatingn. Chooseu,, € R,,[X] with ultraproduct equal ta.,. By tos’ Theorem,
almost alln,,a,, = 0. SinceAnng_ (1,) = m,, almost eacl,, lies inm,, R, [X]. This
in turn shows that,,, € mA., as required. O

3. FURTHER BOUNDS

Throughout this sectionX will always denote a tuple of variables andwill always
denote the length of this tuple.

3.1.Corollary. For each triple(d, , n) of positive integers, we can find a positive integer
a := «(d, l,n) with the following property. LetR, m) be an Artinian local ring of length
at mostl. Let! be an ideal inR[X] generated by polynomials of degree at mastetp

be a minimal prime of. If we setS := (R[X]/I),, thenS has length at most.

Proof. We will show the existence of such a bounf, [, n) by induction onl. If [ = 1,
so thatR is a field, then the existence of the uniform bound, 1, n) follows from [15,
Theorem 2.4]. Fof > 1, letn be a non-zero element in the socle®f That is to say,
Anng(n) = m. HenceAnng(nS) containsmsS. Let us write/(V) to denote the length of
amoduleN. SincenS = S/ Anng(nS), we get
t(nS) < £(S/mS) < a(d,1,n).
On the other hand, from the exact sequence
0—-nS—S—-5/n15—-0

we getl(S) = ¢(nS) + ¢(S/nS). SinceR/nR has length — 1, our induction hypoth-
esis yields that(S/nS) is at mosta(d,! — 1,n). Therefore, the bound.(d,l,n) :=
a(d,1,n) + a(d,l — 1, n) satisfies the requirements of the statement. O

In fact, the above argument shows that we canlus€d, 1,n) as a bound.
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3.2.Corollary. For each triple(d,, n) of positive integers, we can find a positive integer
B := B(d,l,n) with the following property. LeR be an Artinian local ring of length at
mostl. If I, J are ideals generated by polynomials itjX] of degree at most, then the
intersection/ N J and the colon idea(! : .J) are both generated by polynomials of degree
at mosts.

Proof. Suppose the assertion is false for some tr{pld, n) and for one of these opera-
tions. Hence there are Artinian local rin@g8,,, m,, ) of length at most, and ideald ,,, J,
generated by polynomials iR,,[X] of degree at most, such that’,, N J,, (respectively,
(I, : J)) cannot be generated by polynomials of degree at moket R and A, denote

the ultraproduct of?,, and R,,[X] respectively and pufl := R[X]. Taking generators of
thel,, andJ,, of degree at mosi and taking the ultraproducts of these generators yield
ideals!, J in Asuchthatf A, = I, andJA., = J, are the respective ultraproducts of
thel,, andJ,,. By Los’ Theorem, the ultraproduct of the idedlsnJ,, and(1,, : J,,) are

the respective idealt,, N J and(I, : J ). By Theoreml.2, the canonical embedding
A — A is faithfully flat, so that by §, Theorem 7.4], we get

TooNJoo = TAse N JAse = (INJ)Ax

4) (Ino: Joo) = (TAse : JAS) = (I : J)A.

Let i be the maximum degree of a set of generatord of J or (I : J). By the
above equality of ideals together with £os’ Theorem, almost alh .J,, or (I, : J,,) are
generated by polynomials of degree at mastontradicting our assumption. |

3.3.Theorem. For each triple(d, I, n) of positive integers, we can find a positive integer
v := ~(d, l,n) with the following properties. LeR be an Artinian local ring of length at
mostl. Let] be an ideal inR[X | generated by polynomials of degree at mast

(3.3.1)If fg ¢ I,forall f,g ¢ I of degree at most, then[ is a prime ideal.

(3.3.2) If p is an associated prime ideal df thenp is generated by polynomials of
degree at most.

(3.3.3) The number of associated primes/dé at mosty.

Proof. Suppose that either one of these assertions is false for some(tfjpl@). There-
fore, we can find for eachy an Artinian local ring(R,,, m,,) of length at most and an
ideal I, = (f1w,-- -, fsw)Rw[X], Wheref;,, have degree at mogtand whereX is an
n-tuple of variables, such that in cas:3.1), the ideall, is not prime buub ¢ I, for all

a,b ¢ I, of degree at mosb; in case 8.3.2, there is an associated primpg of I, which

cannot be generated by polynomials of degree at moaind in case3.3.3, the ideall,,

has at leasty different associated primes.

Let (R, m), A andf; denote the respective ultraproducts of (&, , m,, ), the R,,[X]
and thef;,,. It follows, as before, thaR is an Artinian local ring of length at mostand
that all f; lie already in the subringl := R[X]. Note that the ultraproduct of thg, is
equal tol A, wherel := (f1,..., fs)A. By Theoreml.2, the homomorphisml — A,
is faithfully flat. Let us first prove the following property of the homomorphidm- A .

(3.3.4) I'is a prime ideal if and only if A is.

Indeed, the if part is obvious sinde = A, N A by faithful flatness. So assume
that I is prime. Sincem is nilpotent,m C I. HenceA/I and A../I A are in factk-
algebras, wheré := R/m is the residue field oR. SinceA/I is a domain over the field
k, the results in17] yield that A, /I A, is a domain, thus proving the assertion (see for
instance {9, Corollary 4.4]).
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Let us now return to the proof of the theorem. In cas&.(l), Los’ Theorem yields that
I is not a prime ideal, whence neitherlidy (3.3.4. So there are some b ¢ I, such
thatab € I. Leth be the maximum of their degrees and choeseb,, € R,,[X] of degree
at mosth such that their ultraproducts asieandb respectively. By tos’ Theorem, almost
all ay,, b, ¢ I, buta,b, € I, contradicting our assumption.

For the remaining cases, consider a prime filtratiod ¢f. To be more precise, choose
prime idealsq; and an increasing chain of idedls= I; C I, C --- C I, with the last
ideal I, = g; also prime, such that all

0— A/g; = A/l; —» A/Lix1 — 0

are exact, foi = 1,...,¢t — 1. In other wordsg; = (I; : a;) andl,;1 = I; + a; A, for
somea; € A. Moreover, all associated primes bfire among theg; (see for instances]
Proposition 3.7] and the discussion following it). Each idgal is prime, by 8.3.9,
and equal td1; A : a;), by (4). Moreover, we have short exact sequences

0— Aoo/quoo — Aoo/Iono — Aoo/Ii+1Aoo — 0.

Hence, for the same reason as before, all the associated prinies,ofare among the
4:As- In sSummary, we showed that any associated primeAgf, is an extension A, of
an associated primgof I.

Assume now that we are in case3.9. Sincep,, is an associated prime df,, we
can finda,, such that,, = (I, : a,). By Los’ Theorem, the ultraproduet,, of thep,,
is equal to(I : ax), Wherea is the ultraproduct of the,,, showing that, is an
associated prime of,, = I A.,. By what we just said, there is an associated pnnuoé
I, such thap, = pA... Leth be the maximum of the degrees of a set of generators of
p. Using Los’ Theorem once more, we conclude that almost,akire generated by poly-
nomials of degree at most thus contradicting our assumption. If we are in c&s8.03,
then the above argument would yield infinitely many different associated primgg ,of
contradicting our earlier observation that there are at most O

3.4.Corollary. For each triple(d, [, n) of positive integers, we can find a positive integer
d := 6(d,l,n) with the following properties. LeR be an Artinian local ring of length at
mostl. Let] be an ideal inR[X] generated by polynomials of degree at madif a is the
radical of I, thena is generated by polynomials of degree at mbahda® C I.

Proof. Observe that: is the intersection of the minimal primes 6f By Theorem3.3
there are at mosgy different minimal primes, each generated by polynomials of degree at
most~y, for v only depending on the tripléi, [, n). Therefore, the existence of a uniform
bound on the degrees of the generators fafllows from Corollary3.2.

Letpy,...,p: be all the minimal primes of, so that in particularf < ~. By Corol-
lary 3.1, there is a bound only depending on the triplgi, /, n), such tha{ R[X]/I),, has
length at mosty, fori = 1,...,t. Hence, for some; ¢ p;, we have

(®) sip; 1.

Multiplying s; with a suitable element not im;, we may assume that is contained in
the a-th power of each associated primelobther thanp;. It follows that the suns :=

s1 + - -- + s; does not belong to any associated primd ofhat is to say, that is not a
zero-divisor onR[X]/1. On the other hand, byp), we get

s(prN---Npy)* C I

Sincea = p; N --- N py and sinces is not a zero-divisor moduld, we geta® C I, as
required. O
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As in [15], one can also study bounds for finitely generated modules. Note that over
a Noetherian ring4, any finitely generatedi-module M can be realized as the cokernel
of a matrix. We can now show that in cade= R[X]| with R Artinian, many algebraic
constructions performed on the category of finitely generatedodules can be bounded
in terms of the degrees of the entries of the matrices defining the modules. The reader is
invited to carry out this program, following the lines dfj. Let me only prove one such
result, since it will be used inl[/]; at the same time, we put ourselves in a more general
context, where the base ring is no longer a polynomial ring over an Artinian locaRing
but any finitely generate®-algebra. The previous results can easily be extended to this
setup as well, using a similar argument as in the proof below.

3.5.Theorem. For each triple(d, [, n) of positive integers, we can find a positive integer
e := e(d, [, n) with the following properties. LeR be an Artinian local ring of length at
mostl and X atuple of variables of length. LetA be of the formR[X]/ (g1, .., 9s) R[X],
with eachg; of degree at most, and letM be a finitely generatedi-module realized as
the cokernel of a matrixa;;) of size at mos#, with eacha;; (the image of) a polynomial
of degree at most.

If a is the annihilator ofM, then there exisf; € R[X] of degree at mosf, such that

a:(fla-ﬂafs)A'

Proof. Suppose\ := (a;;) has dimensioné& x b), where by assumptiom, b < d, so that
A: A® — A%andM = A%/Im A. Therefore, an elemefite R[X] lies ina if and only if

(6) 9A° C ImA.

All we need to do is to write this as a system of equations &/éf], in which all coeffi-
cients have bounded degree. Namedyholds, if for each andk, the system of equations

(7 Z a;j&r = 00,1 + Z 9i Xijk
J J

in the unknowng;;; andx;;«, is solvable inR[X], whered; ;, is Kronecker's delta, that is
to say, equal to one if = k and zero otherwise. Viewing) as a homogeneous system of
equations in the unknowrs;, 6 andy;;x the second assertion in the Main Theorem gives
a boundd’ on the degrees of a complete set of solutions

(5;2,9“%@;@ fori=1,...,t
Hence we can take= d’, since by our previous argumentis generated by the). [

4. CYCLIC PURITY ABOVE THE INFINITESIMALS
In the general case, we have the following vanishingars.

4.1.Proposition. For some fixedi, e € N, let (R,,, m,,) be h-dimensional local Cohen-
Macaulay rings of multiplicity at most. Let (R, ms) and A, denote the respective
ultraproducts ofR,, and R,,[X], whereX is a fixedn-tuple of variables and letl :=
R [X]. For eachA-moduleN annihilated by some power of.,, we have

Tor (Ase, N) =0
forall z > 1.

Proof. From the argument inlf4, Theorem 3.1], it follows that there exists &3,-regular
sequencézy, . . ., x,) of lengthh generating am.-primary ideal. Note thatzy, ..., x5)
is then alsoA-regular, sincek,, — A is flat. Chooser;,, € R,, with ultraproduct equal
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to z;. By tos’ Theorem, almost all sequences, ,, ..., znw) are R,-regular. Hence,
almost all of these sequences are algg[X]-regular and therefore by tos’ Theorem
again,(z1,...,zp) is Ax-regular. By P, Theorem 16.1], all this remains true upon re-
placing (z1,...,z) by (z7*,...,2}"), for anym > 1. Choosem big enough so that
n:= (z7",...,z}") Reo annihilatesy. It follows that

®) Tor? (Ao, N) = Tor!/™ (Ase /nAug, N).
On the other hand, by the Main TheoreAynA — A, /nA is faithfully flat, so that the
required vanishing follows fronsj. O

Recall that a homomorphistA — B is calledcyclically pure if IBN A = I, for
every ideall of A. Faithfully flat homomorphisms are clearly cyclically pure. Inspecting
the proof that Theorer.2 implies the Main Theorem, it is clear that instead of faithful
flatness, cyclical purity would have sufficed. inl] Theorem 2.2], the following criterion
of cyclical purity is proven in the Noetherian case; the general case uses the same argument,
which | have repeated here for the reader’s convenience.

4.2. Theorem. Let (4, p) be a local ring with residue fiel& and let B be an arbitrary
A-algebra. IfTor{!(B, k) = 0 andpB # B, thenl = IB N A, for all idealsI of A which
are closed in the-adic topology (this includes afi-primary ideals). In particular, ifA is
Noetherian, them — B is cyclically pure.
Proof. Assume first thatl is a p-primary ideal. SinceTor{' (B, k) vanishes, so does
Torf/I(B/IB, k) (see for instance?[l, Lemma 2.1]). Sinced/I is Artinian, the Local
Flatness Criterion (see for instance Theorem 22.3]) yields that/I — B/IB is flat.
SincepB # B, the latter homomorphism is even faithfully flat and whence in particular,
IBNA=1

For I arbitrary, observe that is closed in the adic topology if and only if it is an
intersection op-primary ideals. By our previous argument, each of thepemary ideals
is contracted fronB, and therefore, so is their intersectibnAs any ideal in a Noetherian
local ring is closed by Krull's Intersection Theorem, the last assertion is also cleaf.]

Theideal of infinitesimal®f a (not necessarily Noetherian) local rig, p) is by defi-
nition the intersection of all powegsg®. For our last result, we will use some results from
[17, 18] on dimension theory for ultraproducts of Noetherian local rings (this will be stud-
ied in far greater detail inZ7]). We will tacitly assume that the underlying ultrafilter is
countably incomplete (this can always be arranged).

4.3.Theorem. For some fixed, ¢ € N, let(R,,, m,,) beh-dimensional local Cohen-Mac-
aulay rings of multiplicity at most and let(R.., m) be their ultraproduct. Leto be the
ideal of infinitesimals ofR,. Let A, be the ultraproduct of the?,,[X], whereX is a
fixedn-tuple of variables and lefl := R.[X]. Then the localization of the base change
A/wA — Ax /A at any maximal ideal oft containingm., is cyclically pure.

Proof. Let us first show thaf? := R /wR is a Noetherian local ring (in fact Cohen-
Macaulay of multiplicity at mose). By [1], the m,, are generated by at most+ e — 1
elements, whence so ate, andm., R by os’ Theorem. Without proof, we state this
complete (this is where we need the assumption that the ultrafilter is countably incomplete),
and therefore Noetherian by,[Theorem 29.4] (for details se&(, Theorem 2.4] for the
case of an ultrapower, andZ, Lemma 5.1] for the general case).

Hence alsod /@A = R[X] is Noetherian. LetS, n) denote the localization ol /A
ata maximal ideal of A containingm... LetS., := A,.®4S5. We need to show th&t —
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S Is cyclically pure. Sinced/m A — Ay /mo, Ay is faithfully flat by Theoreml.1,
it is clear thatnS,, # S.. Letk be the residue field of. In view of Theorend.2, it
remains to show thaFor? (S, k) = 0. However, this is clear by Propositighl. O

APPENDIXA. AN ALTERNATIVE PROOF OFTHEOREM 1.1

Because of the central role played by Theoremin these results, we will provide an
alternative, self-contained proof. We need a lemnia l(mma 4.8]), the easy proof of
which we will repeat here.

A.l. Lemma. Let R be a Noetherian local ring and let/ be a big Cohen-Macaulay
module overR. If any permutation of aid/-regular sequence is agail/ -regular, thenM
is a balanced big Cohen-Macaulay module.

Proof. We induct on the dimensiod of R, where there is nothing to show if = 0.
So assumel > 0. By assumption, there exists a system of paramdteys. ..,z )
of R which is anM-regular sequence. Lé&y,...,yq4) be an arbitrary system of pa-
rameters. By prime avoidance, we can finde R, such that(zi,...,z4-1,2) and
(v1,-..,Y4—1,%) are both systems of parameters. Since a power,0s a multiple of
zmodulo(zy,...,z4-1), the sequencery, . .., xq_1, 2) is M-regular as well. Therefore,
the permuted sequen¢e, z1, ..., z4—1) is alsoM-regular. In particular(zy,...,z4—1)

is M /zM-regular, showing that//z M is a big Cohen-Macaulay ovét/zR. Moreover,
the property that a permutation of afi-regular sequence is agalid-regular passes to the
quotientM /zM. Our induction hypothesis therefore shows that ..., y4—1), being a
system of parameters iR/zR, is M /zM-regular. Hencéz, y,...,yq—1) IS M-regular
and therefore so i$y1,...,y4—1,2). As some power of is a multiple ofy; modulo
(y1,---,Yd4—1), the elemeny, is M/(y1, - . ., ya—1)M-regular, showing thaly, . .., yaq)

is M-regular, as required. O

Proof of Theorem1.1 LetF',, be an algebraic closure &f,, and letF’ be the ultraproduct
of the F,,. (Although F is algebraically closed, it is in general larger than the algebraic
closure ofK). If we showed that the natural map froR{X] to the ultraproduct of the
F,,[X] is faithfully flat, then so isSK[X] — A by faithfully flat descent. Therefore, we
may assume from the start that edcl is algebraically closed, and hence sdsis

Let A := K[X]andA4,, := K,,[X]. By the Nullstellensatz, any maximal idedi of A
isof the form(X; —ay, ..., X, —a,)Awith a; € K. Choose;,, € K,, with ultraproduct
equal toa; and let?t,, be the maximal idealX; — a1, .., X5 — Gnaw)Aw. It follows
that9t A is the ultraproduct of thé,,, whence in particular a proper ideal. So remains
to show thatd — A is flat. Since this is a local property, we may localize at a maximal
ideal9t, which after a translation, we may take to(¢,, . . ., X,,) A. Itis easy to see that
(X1,...,Xn) is Ax-regular (since it is4,,-regular). In particular(A.)ma_, iS a big
Cohen-Macaulay module ovélsy. Any permutation of atid. )om 4 -regular sequence is
again(A. ) a._-regular, since this is true in each Noetherian local (iAg ) x, ... x,.) 4.,
by [9, Theorem 16.3]. HencéA.. )on . is a balanced big Cohen-Macauldyy,-module
by LemmaA.1. However, a balanced big Cohen-Macaulay module over a regular local ring
is automatically flat, by40, Theorem 3.5] (see also the proof 6f Theorem 9.1]). O
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