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ABSTRACT. Let R be a (mixed characteristic) Artinian local ring of lengthl and letX be
ann-tuple of variables. This paper provides bounds over the ringR[X] on the degrees of
the output of several algebraic constructions in terms ofl, n and the degrees of the input.
For instance, ifI is an ideal inR[X] generated by polynomialsgi of degree at mostd and
if f is a polynomial of degree at mostd belonging toI, thenf = q1f1 + · · · + qsfs, with
qi of degree bounded in terms ofd, l andn only. Similarly, the module of syzygies ofI is
generated by tuples all of whose entries have degree bounded in terms ofd, l andn only.

1. INTRODUCTION

In [23], van den Dries proves the following faithful flatness result about certain ultra-
products (for an alternative proof, see the Appendix below; for an introduction in ultra-
products, see [7, §9.5] or [19, §2]).

1.1. Theorem ([12, Theorem 1.8]). Let Kw be a collection of fields with ultraproduct
K and letX = (X1, . . . , Xn) be a tuple of variables. Then the canonical embedding
K[X] → A∞ is faithfully flat, whereA∞ is the ultraproduct of theKw[X].

Using this, Schmidt and van den Dries deduce in [12] (see also [11]) several uniform
bounds in polynomial rings over fields; similar bounds will be discussed in Section3. This
was further studied in [15, 16] generalizing this to bounds on various algebraic invari-
ants and to arbitrary affine algebras over a field. A typical application of faithful flatness
is uniform ideal membershipin the sense that, for everyd, we can find an upper bound
d′, so that if a polynomialf0 over some field lies in the ideal generated by polynomials
f1, . . . , fs, with all thefi of degree at mostd, then this is witnessed by a linear combination
f0 = q1f1 + · · ·+ qsfs with qi polynomials of degree at mostd′.

A natural question is to ask for similar bounds when the ground ring is no longer a
field. In this generality (even if the base ring isZ or a discrete valuation ring) simply
bounding the degrees will no longer suffice. For instance, overZ, where the uniform ideal
membership problem is calledDedekind’s problem, one also needs to bound the absolute
value of the coefficients (see for instance [4]; more bounds can be found in [2], some of
which reprove results in this paper by different means). Nonetheless, there is still another
class of rings where bounding the degrees suffices: the class of Artinian local rings of a
fixed (or bounded) length. Of course, an equicharacteristic Artinian local ringR is just a
finite dimensional algebra over a fieldF and its length is an upperbound on the degrees
of the hi needed to writeR = F [X]/(h1, . . . , hs)F [X]. Therefore, this case is already
covered by Theorem1.1. However, the mixed characteristic case does not seem to have
been treated so far, and this is the aim of the present paper. Our main result therefore is the
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following (recall that asyzygyof an ideal(f1, . . . , fs)A, or more correctly, of a generating
tuple(f1, . . . , fs), is by definition a tuple(a1, . . . , as) such thata1f1 + · · ·+ asfs = 0).

Main Theorem. For each triple(d, l, n) of positive integers, we can find a positive integer
e := e(d, l, n) with the following property. LetR be an Artinian local ring of length at most
l. LetX = (X1, . . . , Xn) be ann-tuple of variables and letf0, . . . , fs be polynomials in
R[X] of degree at mostd. If f0 lies in the idealI generated byf1, . . . , fs, then there exist
qi ∈ R[X] of degree at moste such thatf0 = q1f1 + · · ·+ qsfs.

Moreover, the module of syzygies ofI can be generated by tuples all of whose entries
have degree at moste.

Note that the numbers of generatorsfi is bounded in terms of the other data(d, l, n)
(see Lemma2.1). As in [12] the Main Theorem follows immediately from the following
result by a non-standard argument.

1.2.Theorem. Fix some pair of positive integers(l, n) and an infinite index set equipped
with a non-principal ultrafilter. For each indexw, let Rw be an Artinian local ring of
length at mostl and letR be the ultraproduct of theseRw. Let A∞ be the ultraproduct
of the Rw[X], whereX is a fixedn-tuple of variables. There is a natural embedding
R[X] ⊆ A∞ and this embedding is faithfully flat.

Note that by [13], the ultraproductR is in fact again an Artinian local ring of length
at mostl. For the reader’s convenience, let me explain how the first assertion in the Main
Theorem is a direct consequence of Theorem1.2(the second assertion is proved in a similar
way; the reader can consult [12] for more details). Suppose the statement in the Main
Theorem is false, so that there is no bound for some triple(d, l,m). Therefore, we can find
for everyw an Artinian local ringRw of length at mostl and polynomialsf0w, . . . , fsw

in Rw[X] of degree at mostd with X ann-tuple of variables, such that there is a linear
combination

(1) f0w = q1wf1w + · · ·+ qswfsw,

but in any such linear combination (1), at least oneqiw has degreew or higher. Note that
we can take the same numbers in each counterexample by Lemma2.1below. LetR and
A∞ denote the ultraproduct of theRw and theRw[X] respectively. Since eachfiw has
degree at mostd, the ultraproductfi of the fiw lies already in the subringR[X] (this is
because taking ultraproducts commutes with bounded sums). SetI := (f1, . . . , fs)R[X]
(note thatIA∞ is then the ultraproduct of the ideals generated by thefiw). Let qi∞ be
the ultraproduct of theqiw. This time, we can only say thatqi∞ ∈ A∞. Therefore, by
Łos’ Theorem, (1) yields thatf0 ∈ IA∞. However, sinceR[X] → A∞ is faithfully flat
by Theorem1.2, we getf0 ∈ IA∞ ∩R[X] = I. Say,

f0 = g1f1 + · · ·+ gsfs,

for somegi ∈ R[X]. SupposeD is the maximum of the degrees of thegi. We can choose
polynomialsgiw ∈ Rw[X] of degree at mostD whose ultraproduct isgi. By Łos’ Theorem
once more, we get

f0w = g1wf1w + · · ·+ gswfsw,

for almost allw, contradicting our assumption for thosew bigger thanD. �
An immediate consequence of the Main Theorem is the following result on congru-

ences. Note that this is an extension of [3, Proposition 4.14] to higher dimensions.
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1.3.Theorem. For each quadruple(d, e, n, c) of positive integers, we can find a positive
integerN := N(d, e, n, c) with the following property. Let(R,m) be a Noetherian local
ring of embedding dimension at moste. LetX = (X1, . . . , Xn) be ann-tuple of variables
and letp be a prime ideal inR[X] containingm. Letf0, . . . , fs be polynomials inR[X]
of degree at mostd. If f0 ∈ (f1, . . . , fs,m

c)R[X]p, then there existqi ∈ R[X] of degree
at mostN with q0 /∈ p, such that

q0f0 ≡ q1f1 + · · ·+ qsfs mod mcR[X].

In fact, if f0 lies already in(f1, . . . , fs,m
c)R[X], then we may takeq0 = 1.

Proof. Note thatR/mc has length bounded in terms ofe and c, since by definition of
embedding dimension,m is generated by at moste elements. By assumption, we can find
a tuplea = (a0, . . . , as) with entries inR[X] anda0 /∈ p, which is a solution of the
congruence

(2) Y0f0 ≡ Y1f1 + · · ·+ Ysfs mod mcR[X].

Hence, by the second part of the Main Theorem, we can find tuplesb1, . . . ,bt of polyno-
mials of degree at mostN ′, for someN ′ only depending on(d, e, n, c), satisfying (2) and
such thata lies in theR[X]-module spanned by them. In particular, sincea0 does not lie
in p, at least one of these tuples has first entry not inp, and hence satisfies the requirements
of the first assertion.

For the last assertion, use the first part of the Main Theorem instead. �

This has the following immediate corollary for discrete valuation rings; for an applica-
tion, see [17].

1.4.Corollary. For each triple(d, n, c) of positive integers, we can find a positive integer
M := M(d, n, c) with the following property. Let(R, π) be a discrete valuation ring. Let
X = (X1, . . . , Xn) be ann-tuple of variables, letp be a prime ideal ofR[X] containing
π and letf1, . . . , fs be polynomials inR[X] of degree at mostd. If a ∈ R lies in the ideal
generated byf1, . . . , fs (respectively, this holds only locally atp) anda has valuation at
mostc, then there existqi ∈ R[X] of degree at mostM such that

a(1 + πq0) = q1f1 + · · ·+ qsfs,

(respectively, there existqi ∈ R[X] of degree at mostM with q0 /∈ p, such thataq0 =
q1f1 + · · ·+ qsfs).

Proof. By assumption, we can writea = πlu, for somel ≤ c and some unitu in R. Put
M ′ := N(d, 1, n, l + 1), whereN is the bound from Theorem1.3. It follows that we can
find polynomialsq, gi ∈ R[X] of degree at mostM ′ with q /∈ p in the local case andq = 1
in the global case, such that

aq = g1f1 + · · ·+ gsfs + hπl+1,

for someh ∈ R[X]. In other words,aq(1−u−1πh) is equal to the sumg1f1 + · · ·+ gsfs.
However, comparing coefficients shows in the global case (q = 1), that h has degree
at mostM ′ + d, and in the local case, thatq(1 − u−1πh) has degree at mostM ′ + d.
Therefore,M := M ′ + d gives the required bound in either case. �

After proving the remaining statements in the next section and some further bounds in
Section3, I return to the question what happens when we work over non-Artinian rings.
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However, I do not know that, if we allow in Theorem1.2 the local ringsRw to be non-
Artinian, but still impose certain bounds on the embedding dimension, whether the corre-
sponding embeddingA → A∞ is still flat. As already explained, it is most certainlynot
faithfully flat.

2. FAITHFUL FLATNESS

2.1. Lemma. For each triple(d, l, n) of positive integers, we can find a positive integer
s := s(d, l, n) with the following property. LetR be an Artinian local ring of length
at mostl. Let X = (X1, . . . , Xn) be ann-tuple of variables and leta be an ideal in
R[X] generated by polynomials of degree at mostd. Thena is already generated bys
polynomials of degree at mostd.

Proof. We first make the following observation. Ifam is a sequence of elements inR
generating an ideala in R andm > l, then alreadyl among theai generatea.

Put A := R[X]. Let f = (f1, . . . , fm) be a tuple of polynomialsfi of degree at
mostd and letI be the ideal inA they generate. Let us writeM(f) for the collection
of all monomialsµ in the variablesX of degree at mostd which appear with a non-zero
coefficient in somefi and letδ(f) be the number of these monomials. I claim thatI can
be generated by at mostlδ(f) polynomials of degree at mostd. From this the statement
follows easily. To prove the claim, we induct onδ := δ(f). If δ = 0, then allfi = 0 and
the assertion is clear. So letδ > 0 and pick someµ ∈ M(f). Let ai be the coefficient
of µ in fi. By our first observation, we may renumber thefi in such way that allai

belong to(a1, . . . , al)R. Therefore, subtracting the appropriateR-linear combination of
the f1, . . . , fl from each remainingfi, we get a newm-tuple of the form(f1, . . . , fl,g)
generatingI, such thatM(g) = M(f) − {µ}. In particular, sinceδ(g) = δ − 1, our
induction hypothesis yields that the ideal generated byg can be generated byl(δ − 1)
polynomials of degree at mostd. This establishes the claim and hence the lemma. �

The proof of the Lemma can easily be extended to the case whereR is a local ring
in which every ideal is generated by at mostl elements, for some fixedl. This applies
for instance, ifR is a discrete valuation ring. Nonetheless, the Main Theorem is false for
R = Z or R = Zp (see [3, Section 4.7]). In particular, ifRp is equal to eitherZ orZp and
if R∞ denotes their ultraproduct, then the canonical homomorphism

(3) R∞[X] → A∞

is not faithfully flat, whereA∞ is the ultraproduct of theRp[X]. In fact, inspecting the
proof that Theorem1.2 implies the Main Theorem, the above embedding cannot even be
cyclically pure, that is to say, for some idealI of R∞[X] we haveI  IA∞ ∩ R∞[X].
Moreover, by Lemma2.1, this happens already for some finitely generated idealI.

2.2.Corollary. Fix somel, d ∈ N and letX be a finite tuple of variables. LetRw be Noe-
therian rings with the property that each of their ideals is generated by at mostl elements.
LetR∞ andA∞ denote the ultraproduct of theRw and theRw[X] respectively. LetIw be
ideals inRw[X] generated by polynomials of degree at mostd.

Then there exists a finitely generated idealI in R∞[X], such thatIA∞ is equal to the
ultraproduct of theIw.

Proof. By Lemma2.1and the remark following it, there is somes, such that eachIw is of
the form(f1w, . . . , fsw)Rw, with all fiw of degree at mostd. Write eachfiw as a finite
sum

∑
ν ai,ν,wXν , whereXν runs over all monomials of total degree at mostd and with

eachai,ν,w ∈ Rw. Let ai,ν be the ultraproduct of theai,ν,w and putfi :=
∑

ν ai,νXν .
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Hence eachfi lies in R∞[X] and one checks easily that when viewed as an element in
A∞, it is the ultraproduct of thefiw. Let I := (f1, . . . , fs)R∞[X]. Using Łos’ Theorem,
one now readily verifies thatIA∞ is the ultraproduct of theIw. �

Proof of Theorem1.2. Let (Rw,mw) andA∞ be as in the statement of the Theorem. By
[13], the ultraproduct(R,m) is again an Artinian local ring of length at mostl. Let us put
A := R[X]. We need to show thatA → A∞ is flat and that every proper idealI of A
remains proper inA∞. To prove the last assertion, observe that any maximal idealM of A
contains the nilpotent idealm. By Theorem1.1, the base changeA/mA → A∞/mA∞ is
faithfully flat, so that in particularMA∞ 6= A∞.

To prove flatness, we will induct on the lengthl of R. Note that almost allRw then also
have lengthl. If l = 1, then almost allRw are fields and the assertion is just Theorem1.1.
For generall > 1, it suffices, by the Local Flatness Criterion [9, Theorem 22.3], to find
a proper ideala in R such thatA/aA → A∞/aA∞ is flat andaA ⊗A A∞ ∼= aA∞.
Let η be a non-zero element in the socle ofR, that is to say, so thatηm = 0, and put
a := ηR. Choose elementsηw in Rw so that their ultraproduct isη. It follows that
almost allηw are non-zero elements in the socle ofRw. In particular,R/ηR and almost
all Rw/ηwRw have lengthl − 1. SinceR/ηR is the ultraproduct of theRw/ηwRw, our
induction hypothesis yields that the canonical map from(R/ηR)[X] to the ultraproduct
of the (Rw/ηwRw)[X] is faithfully flat. However, the above homomorphism is simply
the base changeA/ηA → A∞/ηA∞. So remains to show thatηA ⊗A A∞ ∼= ηA∞.
ClearlyηA ∼= A/mA. Therefore, we will have shown the required isomorphism if we can
show thatAnnA∞(η) = mA∞. One inclusion is obvious, so leta∞ ∈ A∞ be an element
annihilatingη. Chooseaw ∈ Rw[X] with ultraproduct equal toa∞. By Łos’ Theorem,
almost allηwaw = 0. SinceAnnRw

(ηw) = mw, almost eachaw lies in mwRw[X]. This
in turn shows thata∞ ∈ mA∞, as required. �

3. FURTHER BOUNDS

Throughout this section,X will always denote a tuple of variables andn will always
denote the length of this tuple.

3.1.Corollary. For each triple(d, l, n) of positive integers, we can find a positive integer
α := α(d, l, n) with the following property. Let(R,m) be an Artinian local ring of length
at mostl. Let I be an ideal inR[X] generated by polynomials of degree at mostd. Letp
be a minimal prime ofI. If we setS := (R[X]/I)p, thenS has length at mostα.

Proof. We will show the existence of such a boundα(d, l, n) by induction onl. If l = 1,
so thatR is a field, then the existence of the uniform boundα(d, 1, n) follows from [15,
Theorem 2.4]. Forl > 1, let η be a non-zero element in the socle ofR. That is to say,
AnnR(η) = m. HenceAnnS(ηS) containsmS. Let us write`(N) to denote the length of
a moduleN . SinceηS ∼= S/ AnnS(ηS), we get

`(ηS) ≤ `(S/mS) ≤ α(d, 1, n).

On the other hand, from the exact sequence

0 → ηS → S → S/ηS → 0

we get`(S) = `(ηS) + `(S/ηS). SinceR/ηR has lengthl − 1, our induction hypoth-
esis yields that̀ (S/ηS) is at mostα(d, l − 1, n). Therefore, the boundα(d, l, n) :=
α(d, 1, n) + α(d, l − 1, n) satisfies the requirements of the statement. �

In fact, the above argument shows that we can usel · α(d, 1, n) as a bound.
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3.2.Corollary. For each triple(d, l, n) of positive integers, we can find a positive integer
β := β(d, l, n) with the following property. LetR be an Artinian local ring of length at
mostl. If I, J are ideals generated by polynomials inR[X] of degree at mostd, then the
intersectionI ∩ J and the colon ideal(I : J) are both generated by polynomials of degree
at mostβ.

Proof. Suppose the assertion is false for some triple(d, l, n) and for one of these opera-
tions. Hence there are Artinian local rings(Rw,mw) of length at mostl, and idealsIw, Jw

generated by polynomials inRw[X] of degree at mostd, such thatIw ∩ Jw (respectively,
(Iw : Jw)) cannot be generated by polynomials of degree at mostw. LetR andA∞ denote
the ultraproduct ofRw andRw[X] respectively and putA := R[X]. Taking generators of
theIw andJw of degree at mostd and taking the ultraproducts of these generators yield
idealsI, J in A such thatIA∞ = I∞ andJA∞ = J∞ are the respective ultraproducts of
theIw andJw. By Łos’ Theorem, the ultraproduct of the idealsIw∩Jw and(Iw : Jw) are
the respective idealsI∞ ∩J∞ and(I∞ : J∞). By Theorem1.2, the canonical embedding
A → A∞ is faithfully flat, so that by [9, Theorem 7.4], we get

(4)
I∞ ∩ J∞ = IA∞ ∩ JA∞ = (I ∩ J)A∞

(I∞ : J∞) = (IA∞ : JA∞) = (I : J)A∞.

Let h be the maximum degree of a set of generators ofI ∩ J or (I : J). By the
above equality of ideals together with Łos’ Theorem, almost allIw ∩ Jw or (Iw : Jw) are
generated by polynomials of degree at mosth, contradicting our assumption. �

3.3.Theorem. For each triple(d, l, n) of positive integers, we can find a positive integer
γ := γ(d, l, n) with the following properties. LetR be an Artinian local ring of length at
mostl. LetI be an ideal inR[X] generated by polynomials of degree at mostd.

(3.3.1) If fg /∈ I, for all f, g /∈ I of degree at mostγ, thenI is a prime ideal.
(3.3.2) If p is an associated prime ideal ofI, thenp is generated by polynomials of

degree at mostγ.
(3.3.3) The number of associated primes ofI is at mostγ.

Proof. Suppose that either one of these assertions is false for some triple(d, l, n). There-
fore, we can find for eachw an Artinian local ring(Rw,mw) of length at mostl and an
ideal Iw = (f1w, . . . , fsw)Rw[X], wherefiw have degree at mostd and whereX is an
n-tuple of variables, such that in case (3.3.1), the idealIw is not prime butab /∈ Iw for all
a, b /∈ Iw of degree at mostw; in case (3.3.2), there is an associated primepw of Iw which
cannot be generated by polynomials of degree at mostw; and in case (3.3.3), the idealIw

has at leastw different associated primes.
Let (R,m), A∞ andfi denote the respective ultraproducts of the(Rw,mw), theRw[X]

and thefiw. It follows, as before, thatR is an Artinian local ring of length at mostl and
that allfi lie already in the subringA := R[X]. Note that the ultraproduct of theIw is
equal toIA∞, whereI := (f1, . . . , fs)A. By Theorem1.2, the homomorphismA → A∞
is faithfully flat. Let us first prove the following property of the homomorphismA → A∞.

(3.3.4) I is a prime ideal if and only ifIA∞ is.

Indeed, the if part is obvious sinceI = IA∞ ∩ A by faithful flatness. So assume
that I is prime. Sincem is nilpotent,m ⊆ I. HenceA/I andA∞/IA∞ are in factk-
algebras, wherek := R/m is the residue field ofR. SinceA/I is a domain over the field
k, the results in [12] yield thatA∞/IA∞ is a domain, thus proving the assertion (see for
instance [19, Corollary 4.4]).
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Let us now return to the proof of the theorem. In case (3.3.1), Łos’ Theorem yields that
I∞ is not a prime ideal, whence neither isI by (3.3.4). So there are somea, b /∈ I, such
thatab ∈ I. Leth be the maximum of their degrees and chooseaw, bw ∈ Rw[X] of degree
at mosth such that their ultraproducts area andb respectively. By Łos’ Theorem, almost
all aw, bw /∈ Iw butawbw ∈ Iw, contradicting our assumption.

For the remaining cases, consider a prime filtration ofA/I. To be more precise, choose
prime idealsqi and an increasing chain of idealsI = I1 ⊆ I2 ⊆ · · · ⊆ It with the last
idealIt = qt also prime, such that all

0 → A/qi → A/Ii → A/Ii+1 → 0

are exact, fori = 1, . . . , t − 1. In other words,qi = (Ii : ai) andIi+1 = Ii + aiA, for
someai ∈ A. Moreover, all associated primes ofI are among theqi (see for instance [6,
Proposition 3.7] and the discussion following it). Each idealqiA∞ is prime, by (3.3.4),
and equal to(IiA∞ : ai), by (4). Moreover, we have short exact sequences

0 → A∞/qiA∞ → A∞/IiA∞ → A∞/Ii+1A∞ → 0.

Hence, for the same reason as before, all the associated primes ofIA∞ are among the
qiA∞. In summary, we showed that any associated prime ofIA∞ is an extensionqA∞ of
an associated primeq of I.

Assume now that we are in case (3.3.2). Sincepw is an associated prime ofIw, we
can findaw such thatpw = (Iw : aw). By Łos’ Theorem, the ultraproductp∞ of thepw

is equal to(I∞ : a∞), wherea∞ is the ultraproduct of theaw, showing thatp∞ is an
associated prime ofI∞ = IA∞. By what we just said, there is an associated primep of
I, such thatp∞ = pA∞. Let h be the maximum of the degrees of a set of generators of
p. Using Łos’ Theorem once more, we conclude that almost allpw are generated by poly-
nomials of degree at mosth, thus contradicting our assumption. If we are in case (3.3.3),
then the above argument would yield infinitely many different associated primes ofI∞,
contradicting our earlier observation that there are at mostt. �

3.4.Corollary. For each triple(d, l, n) of positive integers, we can find a positive integer
δ := δ(d, l, n) with the following properties. LetR be an Artinian local ring of length at
mostl. LetI be an ideal inR[X] generated by polynomials of degree at mostd. If a is the
radical of I, thena is generated by polynomials of degree at mostδ andaδ ⊆ I.

Proof. Observe thata is the intersection of the minimal primes ofI. By Theorem3.3,
there are at mostγ different minimal primes, each generated by polynomials of degree at
mostγ, for γ only depending on the triple(d, l, n). Therefore, the existence of a uniform
bound on the degrees of the generators ofa follows from Corollary3.2.

Let p1, . . . , pt be all the minimal primes ofI, so that in particular,t ≤ γ. By Corol-
lary 3.1, there is a boundα only depending on the triple(d, l, n), such that(R[X]/I)pi

has
length at mostα, for i = 1, . . . , t. Hence, for somesi /∈ pi, we have

(5) sip
α
i ⊆ I.

Multiplying si with a suitable element not inpi, we may assume thatsi is contained in
theα-th power of each associated prime ofI other thanpi. It follows that the sums :=
s1 + · · · + st does not belong to any associated prime ofI, that is to say, thats is not a
zero-divisor onR[X]/I. On the other hand, by (5), we get

s(p1 ∩ · · · ∩ pt)α ⊆ I.

Sincea = p1 ∩ · · · ∩ pt and sinces is not a zero-divisor moduloI, we getaα ⊆ I, as
required. �
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As in [15], one can also study bounds for finitely generated modules. Note that over
a Noetherian ringA, any finitely generatedA-moduleM can be realized as the cokernel
of a matrix. We can now show that in caseA = R[X] with R Artinian, many algebraic
constructions performed on the category of finitely generatedA-modules can be bounded
in terms of the degrees of the entries of the matrices defining the modules. The reader is
invited to carry out this program, following the lines of [15]. Let me only prove one such
result, since it will be used in [17]; at the same time, we put ourselves in a more general
context, where the base ring is no longer a polynomial ring over an Artinian local ringR,
but any finitely generatedR-algebra. The previous results can easily be extended to this
setup as well, using a similar argument as in the proof below.

3.5.Theorem. For each triple(d, l, n) of positive integers, we can find a positive integer
ε := ε(d, l, n) with the following properties. LetR be an Artinian local ring of length at
mostl andX a tuple of variables of lengthn. LetA be of the formR[X]/(g1, . . . , gs)R[X],
with eachgi of degree at mostd, and letM be a finitely generatedA-module realized as
the cokernel of a matrix(aij) of size at mostd, with eachaij (the image of) a polynomial
of degree at mostd.

If a is the annihilator ofM , then there existfi ∈ R[X] of degree at mostd, such that
a = (f1, . . . , fs)A.

Proof. SupposeA := (aij) has dimensions(a× b), where by assumptiona, b ≤ d, so that
A : Ab → Aa andM ∼= Aa/ ImA. Therefore, an elementθ ∈ R[X] lies ina if and only if

(6) θAa ⊆ ImA.

All we need to do is to write this as a system of equations overR[X], in which all coeffi-
cients have bounded degree. Namely, (6) holds, if for eachi andk, the system of equations

(7)
∑

j

aijξjk = θδδδi,k +
∑

j

gjχijk

in the unknownsξjk andχijk, is solvable inR[X], whereδδδi,k is Kronecker’s delta, that is
to say, equal to one ifi = k and zero otherwise. Viewing (7) as a homogeneous system of
equations in the unknownsξjk, θ andχijk the second assertion in the Main Theorem gives
a boundd′ on the degrees of a complete set of solutions

(ξ(l)
jk , θ(l), χ

(l)
ijk) for l = 1, . . . , t

Hence we can takeε = d′, since by our previous argument,a is generated by theθ(l). �

4. CYCLIC PURITY ABOVE THE INFINITESIMALS

In the general case, we have the following vanishing ofTors.

4.1.Proposition. For some fixedh, e ∈ N, let (Rw,mw) beh-dimensional local Cohen-
Macaulay rings of multiplicity at moste. Let (R∞,m∞) and A∞ denote the respective
ultraproducts ofRw and Rw[X], whereX is a fixedn-tuple of variables and letA :=
R∞[X]. For eachA-moduleN annihilated by some power ofm∞, we have

TorA
i (A∞, N) = 0

for all i ≥ 1.

Proof. From the argument in [14, Theorem 3.1], it follows that there exists anR∞-regular
sequence(x1, . . . , xh) of lengthh generating anm∞-primary ideal. Note that(x1, . . . , xh)
is then alsoA-regular, sinceR∞ → A is flat. Choosexiw ∈ Rw with ultraproduct equal
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to xi. By Łos’ Theorem, almost all sequences(x1w, . . . , xhw) areRw-regular. Hence,
almost all of these sequences are alsoRw[X]-regular and therefore by Łos’ Theorem
again,(x1, . . . , xh) is A∞-regular. By [9, Theorem 16.1], all this remains true upon re-
placing (x1, . . . , xh) by (xm

1 , . . . , xm
h ), for any m ≥ 1. Choosem big enough so that

n := (xm
1 , . . . , xm

h )R∞ annihilatesN . It follows that

(8) TorA
i (A∞, N) ∼= TorA/nA

i (A∞/nA∞, N).

On the other hand, by the Main Theorem,A/nA → A∞/nA∞ is faithfully flat, so that the
required vanishing follows from (8). �

Recall that a homomorphismA → B is calledcyclically pure, if IB ∩ A = I, for
every idealI of A. Faithfully flat homomorphisms are clearly cyclically pure. Inspecting
the proof that Theorem1.2 implies the Main Theorem, it is clear that instead of faithful
flatness, cyclical purity would have sufficed. In [21, Theorem 2.2], the following criterion
of cyclical purity is proven in the Noetherian case; the general case uses the same argument,
which I have repeated here for the reader’s convenience.

4.2. Theorem. Let (A, p) be a local ring with residue fieldk and letB be an arbitrary
A-algebra. IfTorA

1 (B, k) = 0 andpB 6= B, thenI = IB ∩A, for all idealsI of A which
are closed in thep-adic topology (this includes allp-primary ideals). In particular, ifA is
Noetherian, thenA → B is cyclically pure.

Proof. Assume first thatI is a p-primary ideal. SinceTorA
1 (B, k) vanishes, so does

TorA/I
1 (B/IB, k) (see for instance [21, Lemma 2.1]). SinceA/I is Artinian, the Local

Flatness Criterion (see for instance [9, Theorem 22.3]) yields thatA/I → B/IB is flat.
SincepB 6= B, the latter homomorphism is even faithfully flat and whence in particular,
IB ∩A = I.

For I arbitrary, observe thatI is closed in the adic topology if and only if it is an
intersection ofp-primary ideals. By our previous argument, each of thesep-primary ideals
is contracted fromB, and therefore, so is their intersectionI. As any ideal in a Noetherian
local ring is closed by Krull’s Intersection Theorem, the last assertion is also clear.�

The ideal of infinitesimalsof a (not necessarily Noetherian) local ring(A, p) is by defi-
nition the intersection of all powerspn. For our last result, we will use some results from
[17, 18] on dimension theory for ultraproducts of Noetherian local rings (this will be stud-
ied in far greater detail in [22]). We will tacitly assume that the underlying ultrafilter is
countably incomplete (this can always be arranged).

4.3.Theorem. For some fixedh, e ∈ N, let (Rw,mw) beh-dimensional local Cohen-Mac-
aulay rings of multiplicity at moste and let(R∞,m∞) be their ultraproduct. Let$ be the
ideal of infinitesimals ofR∞. Let A∞ be the ultraproduct of theRw[X], whereX is a
fixedn-tuple of variables and letA := R∞[X]. Then the localization of the base change
A/$A → A∞/$A∞ at any maximal ideal ofA containingm∞ is cyclically pure.

Proof. Let us first show that̃R := R∞/$R∞ is a Noetherian local ring (in fact Cohen-
Macaulay of multiplicity at moste). By [1], the mw are generated by at mosth + e − 1
elements, whence so arem∞ andm∞R̃ by Łos’ Theorem. Without proof, we state thatR̃ is
complete (this is where we need the assumption that the ultrafilter is countably incomplete),
and therefore Noetherian by [9, Theorem 29.4] (for details see [10, Theorem 2.4] for the
case of an ultrapower, and [22, Lemma 5.1] for the general case).

Hence alsoA/$A ∼= R̃[X] is Noetherian. Let(S, n) denote the localization ofA/$A
at a maximal idealn of A containingm∞. LetS∞ := A∞⊗AS. We need to show thatS →
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S∞ is cyclically pure. SinceA/m∞A → A∞/m∞A∞ is faithfully flat by Theorem1.1,
it is clear thatnS∞ 6= S∞. Let k be the residue field ofS. In view of Theorem4.2, it
remains to show thatTorS

1 (S∞, k) = 0. However, this is clear by Proposition4.1. �

APPENDIX A. A N ALTERNATIVE PROOF OFTHEOREM 1.1

Because of the central role played by Theorem1.1 in these results, we will provide an
alternative, self-contained proof. We need a lemma ([5, Lemma 4.8]), the easy proof of
which we will repeat here.

A.1. Lemma. Let R be a Noetherian local ring and letM be a big Cohen-Macaulay
module overR. If any permutation of anM -regular sequence is againM -regular, thenM
is a balanced big Cohen-Macaulay module.

Proof. We induct on the dimensiond of R, where there is nothing to show ifd = 0.
So assumed > 0. By assumption, there exists a system of parameters(x1, . . . , xd)
of R which is anM -regular sequence. Let(y1, . . . , yd) be an arbitrary system of pa-
rameters. By prime avoidance, we can findz ∈ R, such that(x1, . . . , xd−1, z) and
(y1, . . . , yd−1, z) are both systems of parameters. Since a power ofxn is a multiple of
z modulo(x1, . . . , xd−1), the sequence(x1, . . . , xd−1, z) is M -regular as well. Therefore,
the permuted sequence(z, x1, . . . , xd−1) is alsoM -regular. In particular,(x1, . . . , xd−1)
is M/zM -regular, showing thatM/zM is a big Cohen-Macaulay overR/zR. Moreover,
the property that a permutation of anM -regular sequence is againM -regular passes to the
quotientM/zM . Our induction hypothesis therefore shows that(y1, . . . , yd−1), being a
system of parameters inR/zR, is M/zM -regular. Hence(z, y1, . . . , yd−1) is M -regular
and therefore so is(y1, . . . , yd−1, z). As some power ofz is a multiple ofyd modulo
(y1, . . . , yd−1), the elementyd is M/(y1, . . . , yd−1)M -regular, showing that(y1, . . . , yd)
is M -regular, as required. �

Proof of Theorem1.1. LetFw be an algebraic closure ofKw and letF be the ultraproduct
of theFw. (AlthoughF is algebraically closed, it is in general larger than the algebraic
closure ofK). If we showed that the natural map fromF [X] to the ultraproduct of the
Fw[X] is faithfully flat, then so isK[X] → A∞ by faithfully flat descent. Therefore, we
may assume from the start that eachKw is algebraically closed, and hence so isK.

Let A := K[X] andAw := Kw[X]. By the Nullstellensatz, any maximal idealM of A
is of the form(X1−a1, . . . , Xn−an)A with ai ∈ K. Chooseaiw ∈ Kw with ultraproduct
equal toai and letMw be the maximal ideal(X1 − a1w, . . . , Xn − anw)Aw. It follows
thatMA∞ is the ultraproduct of theMw, whence in particular a proper ideal. So remains
to show thatA → A∞ is flat. Since this is a local property, we may localize at a maximal
idealM, which after a translation, we may take to be(X1, . . . , Xn)A. It is easy to see that
(X1, . . . , Xn) is A∞-regular (since it isAw-regular). In particular,(A∞)MA∞ is a big
Cohen-Macaulay module overAM. Any permutation of an(A∞)MA∞ -regular sequence is
again(A∞)MA∞ -regular, since this is true in each Noetherian local ring(Aw)(X1,...,Xn)Aw

by [9, Theorem 16.3]. Hence,(A∞)MA∞ is a balanced big Cohen-MacaulayAM-module
by LemmaA.1. However, a balanced big Cohen-Macaulay module over a regular local ring
is automatically flat, by [20, Theorem 3.5] (see also the proof of [8, Theorem 9.1]). �
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