
For a Noetherian local ring R, if R/a is Cohen-Macaulay, then the ideal a can

be generated by at most (e−2)(ν−d−1)+2 elements, where ν is the embedding

dimension of R and where d and e ≥ 3 are the dimension and the multiplicity of

R/a respectively. This bound is in general much sharper than the bounds given

by Sally or Boratyński-Eisenbud-Rees in case a has height bigger than 2.

Moreover, no Cohen-Macaulay assumption on R is required.
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1. INTRODUCTION

The program of bounding (in either direction) the minimal number of
generators µR(a) of an ideal a in a Noetherian ring R is an ambitious
one, and the list of papers on the subject is impressive (below I only will
mention very few). According to one’s taste, either absolute bounds (that
is to say, independent of the ideal), or bounds in terms of other invariants
associated to R and a, are given. Examples of the former can be found for
instance in [4, 9, 10] or in some recent generalizations due to the author
in [11]; see below for a further discussion. In this paper, upper bounds are
given in terms of the embedding dimension of R and the multiplicity of
the residue ring R/a, under the additional assumption that a is a Cohen-
Macaulay ideal (that is to say, such that R/a is Cohen-Macaulay; Sally

has already argued in [9, p. 81] that at least some vestige of the Cohen-
Macaulay hypothesis must remain). The principal result of this paper is
the following (see Theorem 2.3).

Main Theorem. Let R be a Noetherian local ring of embedding dimen-
sion ν. If a is a Cohen-Macaulay ideal of R, such that R/a has dimension d
and multiplicity e ≥ 3, then a can be generated by at most (e−2)(ν−d−1)+2
elements.

In case e ≤ 2, at most ν − d + 1 generators suffice.

Using the Forster-Swan Theorem (Theorem 3.1), similar bounds can
be obtained in the non-local case: at most d more generators than in the
local case are required. As a corollary, we obtain the following result (this
is a special case of the last statement in Theorem 3.4, with A the coordinate
ring of Y , so that ν ≤ n).

Corollary A. Let X be an affine smooth variety. If Y is a subscheme
of affine n-space containing X, then X is the (ideal-theoretic) intersection
of Y and n + 1 hypersurfaces.
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I will now briefly compare these results with others from the literature
and say something about the proof of the Main Theorem. In the remainder
of this introduction, R will denote a Noetherian local ring with maximal
ideal m. Recall that then µ(M) = µR(M) is simply the vector space
dimension of M/mM , by Nakayama’s Lemma. Already interesting is the
case a = m, so that µ(m) is the embedding dimension embdim(R) of R.
In [1], Abhyankar proves the following inequality under the additional
assumption that R is Cohen-Macaulay,

embdim(R) ≤ dim(R) + mult(R) − 1 ([Abh])

where dim(R) is the Krull dimension of R and mult(R) the multiplicity
of R, that is to say, the multiplicity mult(m) of m (on R). This was then
generalized to arbitrary primary ideals a (so that R/a has finite length) by
Sally in [7, 8, 9] to

µ(a) ≤ dim(R) + nildeg(R/a)dim(R)−1 mult(R) − 1 (1)

where nildeg(R/a) denotes the nilpotency degree of R/a, that is to say, the
smallest number t such that mt ⊂ a.

To obtain results for non-primary Cohen-Macaulay ideals, Sally re-
duces to the primary case using superficial elements. In [9, Chapter 5,
Theorem 2.3], she shows the existence of the bound

µ(a) ≤ ht(a) + (mult(R/a))ht(a)−1 mult(R) − 1, ([Sal])

where ht(a) is the height of the ideal a. Unfortunately, the exponent
ht(a) − 1 will often make the bound too large in case ht(a) > 2. More-
over, Abhyankar’s bound ([Abh]) is only attained in special situations.
Since each of Sally’s bounds specializes to Abhyankar’s bound ([Abh])
when we put a = m, her bounds will in general be too crude. Moreover,
they require the Cohen-Macaulay assumption not only on R/a but also on
R, since Abhyankar gives in [1, (5.1)] plenty of examples of non Cohen-
Macaulay Noetherian local rings for which ([Abh]) fails.

Another upper bound can be found in [4, Theorem 5 and Lemma 6] for
R a δ-dimensional local Cohen-Macaulay ring and a a primary ideal,

µ(a) ≤ (δ! length(R/a))1−
1
δ mult(R) + δ − 1. ([BER])

They also point out that this bound is derived essentially from a similar
point of view as in Sally’s work.

In contrast, without any Cohen-Macaulay assumption on the ring R, I
depart from the following bound (see Theorem 2.2), for a a primary ideal,

µ(a) ≤ (length(R/a) − 2)(embdim(R) − 1) + 2,

provided length(R/a) > 2. Moreover, µ(a) ≤ embdim(R) + 1 whenever
length(R/a) is at most 2. The proof is an easy homological argument, using
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the fact that the first Betti number dimk(TorR

1 (R/a, k)) is equal to µ(a),
where k denotes the residue field of R. The bound in the Main Theorem
then follows essentially by the same reduction argument as in the other
quoted papers (albeit in the present paper phrased in terms of sufficiently
general systems of parameters).

Absolute Bounds versus Relative Bounds

There seems to be a substantial difference in the kind of upper bounds
one can expect as the height of the ideal goes up. Height one Cohen-
Macaulay ideals are absolutely bounded by [11, Theorem 2.3])–in case R
is either Cohen-Macaulay ([3]) or contains a field ([11, Corollary 4.2]), the
multiplicity of R serves as an absolute bound. Unfortunately, this phe-
nomenon is not reflected in the bound of the Main Theorem. For height
two Cohen-Macaulay ideals absolute bounds still exist under some addi-
tional Gorenstein assumption (like fixing the type of the residue ring); see
again [11]. The family of Macaulay space curves with unbounded num-
bers of defining equations (see for instance [2]), shows that some additional
control on the singularities is required. In the following crude hierarchy of
local singularities

regular =⇒ complete intersection =⇒ Gorenstein =⇒
Cohen-Macaulay

only the first two admit absolute bounds regardless of the height of the ideal
(for complete intersections use Corollary 3.2).1 Therefore, for arbitrary
height two Cohen-Macaulay ideals, some other invariants of the ideal, or,
preferably, of the residue ring R/a will enter; this is what is meant here with
a relative bound. If R is Cohen-Macaulay with regularity defect ρ (that is
to say, ρ := embdim(R) − dim(R)), then Sally’s bound ([Sal]) gives an
estimate of e ·mult(R)+1 on the number of generators of a height two ideal
a with e := mult(R/a), whereas the Main Theorem gives (e− 2)(ρ + 1)+ 2
(whenever e > 3, otherwise we can take ρ + 1 as an upper bound). In view
of Abhyankar’s inequality ([Abh]), we have that ρ+1 ≤ mult(R), so that
the present bound is always as sharp as Sally’s, and in fact, by [9, p. 81,
Remark (2)], optimal when R is regular (ρ = 0).

The bound in the Main Theorem will in general be much sharper than
Sally’s bound ([Sal]) when the height is at least three, since it remains
linear in the multiplicity of the residue ring. The bound ([BER]), albeit
only valid for primary ideals in Cohen-Macaulay local rings, is sharper
when the length of R/a grows big (for R fixed), as it is more sensitive to
the growth of the minimal number of generators of powers of ideals.

I would like to thank Vasconcelos for his valuable comments and
especially for drawing my attention to the fact that the dimension of the

1I do not know of any natural class of ideals of height three other than the class of

complete intersections, which still admits an absolute bound.
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residue ring should enter the estimate in the Main Theorem in the way it
is now stated.

2. BOUNDS ON COHEN-MACAULAY IDEALS

For the proof of our first estimate, it is more convenient to use the
following alternative description of the minimal number of generators in
case (R, m) is a Noetherain local ring with residue field k. Let I be an
arbitrary ideal of R. Tensoring the exact sequence

0 → I → R → R/I → 0

with k, yields TorR

1 (R/I, k) ∼= I/mI. Therefore, by Nakayama’s Lemma,
the dimension of TorR

1 (R/I, k) (the so-called first Betti number of R/I) is
equal to the minimal number of generators of I.

The following bound is sharp for a = m and therefore seems preferable
to depart from in lieu of Abhyankar’s bound [Abh].

2.1. Lemma. Let (R, m) be a Noetherian local ring. If a is a primary
ideal of R, then

µ(a) ≤ length(R/a) · (embdim(R) − 1) + 1.

Proof. We will induct on the length l of R/a. If l = 1, then a = m,
and the bound follows from the definition of embedding dimension as the
minimal number of generators of the maximal ideal. Therefore, assume
l > 1. Let a ∈ R be such that its image in R/a is a non-zero element of
the socle of R/a. In other words, a(R/a) ∼= k, where k denotes the residue
field of R. Tensoring the exact sequence

0 → a(R/a) → R/a → R/(a + aR) → 0

with k and using the isomorphism a(R/a) ∼= k, the last six terms of the
long exact Tor-sequence are

TorR

1 (k, k) →TorR

1 (R/a, k) → TorR

1 (R/(a + aR), k) →

k → k → k → 0.

Since the penultimate arrow is an isomorphism, we have in fact an exact
sequence

TorR

1 (k, k) → TorR

1 (R/a, k) → TorR

1 (R/(a + aR), k) → k → 0.

Therefore, the dimension of the second vector space is at most the sum of
the dimensions of the first and the third vector space minus one. Using
the correspondence between first Betti numbers and the minimal numbers
of generators, we see that the first vector space has dimension equal to
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ν := embdim(R), whereas the third vector space has dimension equal to
µ(a + aR). Since R/(a + aR) has length l − 1, our induction hypothesis
yields that µ(a + aR) ≤ (l − 1)(ν − 1) + 1. Therefore, a can be generated
by at most (l − 1)(ν − 1) + 1 + ν − 1 = l(ν − 1) + 1 elements.

Making the observation that µ(a) ≤ embdim(R) + 1 whenever R/a has
length at most 3, we obtain the following improvement.

2.2. Theorem. Let (R, m) be a Noetherian local ring. If a is a primary
ideal of R, then

µ(a) ≤ (length(R/a) − 2)(embdim(R) − 1) + 2.

provided length(R/a) > 3. In the remaining case, a can always be generated
by at most embdim(R) + 1 elements.

Proof. Put ν := embdim(R) and l := length(R/a). I claim that it
suffices to prove the last claim. Indeed, suppose we showed that µ(a) ≤ ν+1
whenever l ≤ 3 (note that both estimates agree when l = 3). In the
induction in the proof of Lemma 2.1, we basically showed that µ(a) is
generated by at most ν − 1 more elements than a + aR, where (the image
of) a is a non-zero element of the socle of R/a. Therefore, if we start our
induction hypothesis from l = 3, we obtain that µ(a) ≤ (l−3)(ν−1)+ν+1 =
(l − 2)(ν − 1) + 2.

So remains to prove the last statement. Suppose l = 3 (the case l = 2
is even simpler). Let x1, . . . , xν be a minimal set of generators of m. Since
not all xi belong to a, we may assume that x1 /∈ a. Suppose first that
a+x1R 6= m, so that after renumbering, we may assume that x2 /∈ a+x1R.
It follows that the following chain of ideals is strict and maximal, that is
to say, no ideal can be properly inserted further

a  a + x1R  a + x1R + x2R = m. (2)

In particular, it follows that for each i = 3, . . . , ν, we can find a linear
combination yi of x1 and x2, such that xi + yi ∈ a. Since x1, x2, x3 +
y3, . . . , xν + yν are also a minimal set of generators of m, we may replace
each xi by xi + yi and assume from the start that x3, . . . , xν ∈ a. Since by
Nakayama’s Lemma, they are then necessarily part of a minimal system
of generators of a, we showed that µS(aS) = µR(a) − ν + 2, where S :=
R/(x3, . . . , xν)R. Therefore, it suffices to prove that µS(aS) ≤ 3. However,
embdim(S) = 2 and the image of the chain (2) in S is still strict. In
particular, since aS + x2

1S is contained in aS + x1S, we see that it must
be equal to a. In other words, x2

1 ∈ aS. The same argument shows that
x1x2 ∈ aS,. Moreover, since the chain (2) is also strict if we interchange
x1 and x2, the same argument also shows that x2

2 ∈ aS. In conclusion,
m2S ⊂ aS and since length(S/m2S) = l = 3, this must even be an equality,
showing our claim.
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In the remaining case that x2, . . . , xν all belong already to a, it follows
that µ(a) − ν + 1 = µ(aR/(x2, . . . , xν)R = 1, since R/(x2, . . . , xν)R has
embedding dimension one, so that every ideal is principal.

2.3. Theorem. For R a Noetherian local ring and a a Cohen-Macaulay
ideal in R, we have that

µ(a) ≤ (mult(R/a) − 2)(embdim(R) − dim(R/a) − 1) + 2

provided mult(R/a) > 2. In the remaining case, we have that µ(a) ≤
embdim(R) − dim(R/a) + 1.

Proof. Let ν be the embedding dimension of R. Let d and e be respec-
tively the dimension and the multiplicity of the Cohen-Macaulay local ring
R/a. We seek to show that a can be generated by at most (e−2)(ν−d−1)+2
elements, provided e > 2, and by ν−d+1 elements if e ≤ 2. For simplicity’s
sake, I will only deal with the case e > 2; the (easier) case e ≤ 2 follows
by the same argument by substituting at the right place the appropriate
bound from Theorem 2.2.

We will induct on d. If d = 0, then the bound follows from Lemma 2.1,
since in this case e is equal to the length of R/a. Therefore, assume d >
0. Since R/a is Cohen-Macaulay, we can find an (R/a)-regular element
x. For sake of simplicity, I will assume that the residue field k of R is
infinite (by some base change R → R(T ) we may reduce to this case).
Using [6, Theorem 14.14], any sufficiently general choice of d elements in
mR/a, generates a parameter ideal I of R/a such that I is a reduction of
m. Note that by [6, Theorem 14.13], e is equal to the multiplicity of the
ideal I. Without loss of generality, we may assume that x is one of these
sufficiently general elements generating I and, moreover, that x /∈ m2. It
follows from [6, Theorem 14.11], that e is equal to the multiplicity of the
ideal IR/(a + xR). Let us denote R/xR by R̄, so that R̄ is again Cohen-
Macaulay. Since IR̄/aR̄ is also a reduction of mR̄/aR̄, we conclude by
another application of [6, Theorem 14.13] that R̄/aR̄ also has multiplicity
e. Moreover, R̄/aR̄ has dimension d−1. Since x does not lie in m2, it is part
of a minimal system of generators of m, so that R̄ has embedding dimension
ν − 1. By our induction hypothesis, it follows that aR̄ is generated by at
most (e−2)(ν−1− (d−1)−1)+2 = (e−2)(ν−d−1)+2 elements. Since
x is a non-zero divisor on R/a so that TorR

1 (R̄, R/a) = 0, we get from the
exact sequence

0 → a → R → R/a → 0,

after tensoring with R̄, an exact sequence

0 → a/xa → R̄ → R̄/aR̄ → 0

showing that a/xa can be identified with aR̄. Therefore, a/xa is generated
by at most (e − 2)(ν − d − 1) + 2 elements. Finally, Nakayama’s Lemma
then yields that a itself is generated by at most that many elements.

7



3. THE GLOBAL CASE

Recall the Forster-Swan Theorem proven in [5] (see also [6, Theorem
5.7]).

3.1. Theorem (Forster-Swan). Let A be a Noetherian ring and M
a finitely generated A-module. For each prime ideal p of A, let f(p, M)
denote the sum of dim(A/p) and µAp

(Mp). If N is the maximum of all
f(p, M) for p running over all prime ideals in the support of M , then M
can be generated by at most N elements.

3.2. Corollary. Let A be a δ-dimensional Noetherian ring and a an
ideal of A. Let N be a bound on the number of generators of each aAm,
where m runs over all maximal ideals of A. Then a can be generated by at
most max{δ + 1, N + dim(A/a)} elements.

Proof. Let p be an arbitrary prime ideal of A. If a is not contained
in p, then aAp = Ap is generated by a single element, so that f(p, a) =
dim(A/p) + 1 ≤ δ + 1. If a ⊂ p, then dim(A/p) ≤ dim(A/a). Choose a
maximal ideal m of A, containing p. Since aAp is a localization of aAm,
it is generated by at most N elements. The assertion now follows from
Theorem 3.1.

3.3. Definition. Let A be a Noetherian ring. We call the geometric
embedding dimension of A the maximum of the embedding dimensions
of the Am, where m runs over all prime ideals of A and denote it by
embdim(A). Similarly, we define the geometric multiplicity of A as the
maximum of the multiplicities of each Am, where m runs over all maximal
ideals of A, and we denote it by mult(A).

Of course, the geometric embedding dimension or the geometric multi-
plicity may be infinite, but is always finite for finitely generated algebras
over a field.

3.4. Theorem. Let A be a Noetherian ring. If a is a Cohen-Macaulay
ideal of A, then

µ(a) ≤ (mult(A/a) − 2)(embdim(A) − dim(A/a) − 1) + dim(A/a) + 2,

provided mult(A/a) > 2. In the remaining case, µ(a) ≤ embdim(A) + 1.

Proof. Immediate from Theorem 2.3 and Corollary 3.2. Just observe
that each of these bounds is at least dim(A) + 1.

The following special case (embdim(A) = 3 and dim(A/a) = 1) de-
serves separate mentioning; an affine space curve is a pure 1-dimensional
subscheme of affine 3-space (whence in particular is Cohen-Macaulay).

3.5. Corollary. Any affine space curve C of multiplicity e ≥ 3 re-
quires at most e + 1 defining equations (ideal-theoretically).
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