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Abstract

There is an algorithm which computes the minimal number of generators of the
ideal of a reduced curve C in affine n-space over an algebraically closed field K,
provided C is not a local complete intersection.

The existence of such an algorithm follows from the fact that given d ∈ N, there
exists d′ ∈ N, such that if a is a height n−1 radical ideal in K[X1, . . . ,Xn], generated
by polynomials of degree at most d, then a admits a set of generators of minimal
cardinality, with each generator having degree at most d′, except possibly when
K[X1, . . . ,Xn]/a is an (unmixed) local complete intersection.
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1 Introduction

Determining the minimal number of generators of an ideal a in a Noetherian
ring A can be a hard problem if the ring is not local; in contrast, if A is local,
then Nakayama’s Lemma reduces the problem to determining the vector space
dimension of a⊗k over the residue field k. Even if A is finitely generated over a
field K, the existence of an effective procedure to calculate the minimal number
of generators is far from obvious. For instance, Schmidt in [4, Remark 1.10]
shows that for A the coordinate ring of an elliptic curve over an algebraically
closed field K, there is some d ∈ N and a collection of principal ideals a1, a2, . . .
in A, such that each an is generated by the image of two polynomials fn, gn

of degree at most d, but no polynomial of degree at most n generates an.
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As far as I know, there is no example in a polynomial ring over a field K
with the properties of Schmidt’s example. Put differently, present knowledge
does not exclude the existence of a bound d′ depending only on d and n,
such that any ideal a in K[X1, . . . , Xn] generated by polynomials of degree d
admits a generating set of minimal cardinality of degree at most d′ (in this
form, the problem was originally posed by van den Dries in [11]). In this
paper, I will treat the case of a reduced curve C over an algebraically closed
field, that is to say, the case where the defining ideal of C is a height n − 1
radical ideal a. More precisely, I will prove the existence of an algorithm which
computes the minimal number of generators of a radical ideal a of height n−1
in the polynomial ring A = K[X1, . . . , Xn] over an algebraically closed field
K, provided that a is not locally generated by n − 1 elements. Note that in
any case, by Krull’s Principal Ideal Theorem, a is locally generated by at
least n− 1 elements. If locally the number of generators of a is equal to n− 1
(which is for instance the case if a defines a smooth curve), then we say that
a defines an unmixed locally complete intersection. In that case, the minimal
number of generators of a is either n − 1 (the complete intersection case) or
n, but the algorithm that I will describe here cannot discern which.

Uniform bounds. The main result of this paper is the following uniformity
result.

Theorem 1 There exists a integer valued computable function D(d, n), de-
fined on pairs of positive integers (d, n), with the following property. Let K be
an algebraically closed field and let A = K[X] for some n-tuple of variables
X. If a height n − 1 ideal a in A is generated by polynomials of degree at
most d and if A/a is generically but not locally a complete intersection, then
there exists a generating set of a of minimal cardinality, with each generator
of degree at most D(d, n).

For the remainder of this introduction, let A denote the polynomial ring K[X]
with K an algebraically closed field and X an n-tuple of variables. Let a =
(f1, . . . , fs)A be an ideal of A with each fi of degree at most d. We will obtain
a slightly more general result than stated in Theorem 1. Namely, we will prove
Theorem 1 under the following assumptions on a:

(i) a has height n − 1;
(ii) the unmixed part of a is generically a complete intersection, that is to

say, A/a is a complete intersection locally at each minimal prime which
is not a maximal ideal;

(iii) a is not an unmixed local complete intersection, that is to say, locally at
some maximal ideal, a requires at least n generators.
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In other words, A/a is one-dimensional, µ(aAp) equals n − 1, for all height
n− 1 prime ideals p containing a, and µ(aAm) is at least n, for some maximal
ideal m (see for instance [3, Theorem 21.2]; recall that a local ring R is called
a complete intersection, if its completion is a homomorphic image of a regular
local ring modulo a regular sequence). Clearly, any radical ideal is generically
a complete intersection whence satisfies Condition (ii). The key observation is
now that Conditions (i)–(iii) imply that the minimal number of generators of
a is equal to the minimal number of generators locally at some maximal ideal
of A. This follows from the EE-Conjecture proven by Mohan-Kumar; see
Lemma 9. Theorem 1 then follows by a compactness argument.

The algorithm. In the course of the proof of Theorem 1 we will show
the following result on the first order definability of the minimal number of
generators.

Corollary 2 Let U = (U1, . . . , Um) and X = (X1, . . . , Xn) be variables and
let I = (F1, . . . , Fs)Z[U, X] be an ideal in Z[U, X]. For each t ∈ N, there exists
a constructible set Zt ⊂ Am

Z
with the following property. For each algebraically

closed field K, the set of K-rational points of Zt consists precisely of those
tuples c ∈ Km for which the ideal I(c) := (F1(c, X), . . . , Fs(c, X))K[X] satis-
fies Conditions (i)–(iii) and is minimally generated by t elements. Moreover,
there is an effective way to determine the equations of Zt from the given ideal
I.

This means, with the terminology of [8–10], that for ideals satisfying Condi-
tions (i)–(iii), the property of having a prescribed minimal number of gen-
erators is definable in families (note that in the older papers [6,7], the term
asymptotically definable was used instead of definable in families). This also
shows the algorithmic nature of determining the minimal number of generators
of a given ideal satisfying Conditions (i)–(iii): simply write a as a fiber I(c) of
some ideal I in Z[U, X], calculate the constructible sets Zt and determine to
which Zt the tuple c belongs.

Why complete intersections are problematic. It might come as a sur-
prise that the local complete intersection case eludes our methods. This, how-
ever, ties in with the equally different problem of checking whether a module
is free, as I will explain now. Firstly, due to the homological nature of being
projective, we can check algorithmically whether a finitely generated module
M (presented as a cokernel of some matrix) over an affine ring A is projective;
in fact, being projective is definable in families. On the other hand, as an
example in [4] shows, the property of being free is in general not definable in
families–it is definable in families though over a polynomial ring over a field,
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since then being free is the same as being projective by the Suslin-Quillen

Theorem.

Suppose now that A is a polynomial ring and that I is an unmixed height n−1
ideal in A which is locally a complete intersection. By a result of Mohan-

Kumar (see Corollary 7 below), I is either generated by n − 1 elements
(whence a complete intersection) or by n elements. The issue is how to de-
termine whether I is a complete intersection. The fact that I is a complete
intersection precisely when the conormal bundle I/I2 (or, if n = 3, the canon-
ical module Ext2

A(A/I, A)) is free as an A/I-module, is of no use, since A/I
is in general not a polynomial ring. In view of the previous observations, the
following problem therefore may be hard.

Problem 3 Is there for each pair of positive integers d and n, a bound d′, such
that if the ideal I of a reduced complete intersection curve in An

K is generated
by polynomials of degree at most d, then there are polynomials f1, . . . , fn−1 of
degree at most d′ generating I?

2 Local-Global Principles

Throughout this paper X = (X1, . . . , Xn) will always denote an n-tuple of
variables and K an algebraically closed field.

Definition 4 We will denote the minimal number of generators of an ideal a

in a (not necessarily local) Noetherian A by µA(a), or simply, by µ(a). For a
prime ideal p of A, we set

FSp(a) := dim(A/p) + µAp
(aAp).

The main local-global principle for the number of generators is undoubtedly
the Forster-Swan Theorem. For our purposes, we need also a sharper
version due to Mohan-Kumar, which has come to be known as the EE-
Conjecture; I will state both results only for ideals. Note that for the first
estimate, we do need to take into account minimal primes, but no so for the
second.

Theorem 5 (Forster-Swan Theorem; [1]) Let a be an ideal in a Noethe-
rian ring A. If D is the maximum of all FSp(a) for p running over all prime
ideals of A, then µA(a) ≤ D.

Theorem 6 (EE-Conjecture; [2]) Let a be an ideal in A = K[X], where K
is a field and X a finite tuple of variables. If D is the maximum of all FSp(a)
for p running over all non-zero prime ideals of A, then µA(a) ≤ D.
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Corollary 7 Let a be a height n − 1 ideal of K[X]. If a is locally a complete
intersection, then µ(a) is either n − 1 or n. In fact, if a is not unmixed, then
µ(a) = n.

PROOF. Put A = K[X]. Recall that a not unmixed means in the present
situation that some maximal ideal m is a minimal prime of a. Since aAm has
therefore height n, our assumption implies that it is minimally generated by n
elements. Therefore, the second statement follows from the first, since in any
case µ(aAm) ≤ µ(a).

To prove the first statement, note that n−1 ≤ µ(a) by Krull’s Principal Ideal
Theorem. For every prime ideal p of A, our assumption implies that µ(aAp)
is either at most the height of p or one (according to whether p contains a or
not). Therefore, FSp(a) ≤ n, for all non-zero prime ideals p. The conclusion
now follows from Theorem 6. 2

Apart from these local-global principles, we will also make use of the following
easy observation on faithfully flat descent.

Lemma 8 Let R → S be a faithfully flat homomorphism between local rings.
For any ideal a of R, we have that µR(a) = µS(aS).

PROOF. Let x1, . . . , xn generate a minimally. By Nakayama’s Lemma we
can renumber in such way that x1, . . . , xm generate aS minimally. In other
words, if I = (x1, . . . , xm)R, then aS = IS. Therefore, by faithful flatness
a = aS ∩ R = IS ∩ R = I, showing that m = n. 2

3 Degree bounds on generating sets of minimal cardinality

Lemma 9 (Key Lemma) If a is an ideal of K[X] satisfying Conditions (i)–
(iii) form the Introduction, then there is a maximal ideal m such that µ(a) =
µ(aK[X]m).

PROOF. Put A = K[X] (for this result, it is not necessary that K be al-
gebraically closed). By Krull’s Principal Ideal Theorem, we always have that
n − 1 ≤ µ(a). Let v be the maximum of all µ(aAm), where m runs over
all maximal ideals of A. By Condition (iii), we must have n ≤ v. If p is
a non-zero prime ideal of A not containing a, then µAp

(aAp) = 1 whence
FSp(a) = dim A/p + 1 ≤ n. If p is a height n − 1 prime ideal containing a,
then µ(aAp) = n − 1 by Condition (ii), and hence FSp(a) = n. In conclusion,

5



since n ≤ v, the maximum of all FSp(a) is equal to v. By the EE-Conjecture
(Theorem 6), we have that a is generated by at most v elements. Since clearly
v ≤ µ(a), we get that v = µ(a), as required. 2

Proof of Theorem 1. Fix a pair of natural numbers (d, n). I claim that
Conditions (i)–(iii) are first order definable in the following sense (in the ter-
minology of [9,10], we would say that these conditions are definable in fam-
ilies ; in the older papers [6,7], the term asymptotically definable was used).
Namely, there exists a constructible subset A(d,n) in some affine space over
Z (or, equivalently, a first order formula α(d,n) without parameters), with the
following property. Let K be an algebraically closed field and set A = K[X].
Let a be an ideal in A generated by polynomials f1, . . . , fs of degree at most d.
Let ca be the tuple in K of all coefficients of the fi in a once and for all fixed
order. Note that since the vector space of all polynomials in n variables of
degree at most d over a field is finite dimensional, we can choose the number
of these generators s = s(d, n) independent from a. We refer to ca as a code
of a. First order definability then amounts to the assertion that ca is a K-
rational point of A(d,n) (or, equivalently, α(d,n)(ca) holds in K) if, and only if,
Conditions (i)–(iii) hold for the ideal a. The existence of such a constructible
set follows from the uniformity results in [6, Proposition 5.1 and Theorem 5.3]
(see also [5,7]). Note that by the Nullstellensatz, any maximal ideal in A is of
the form (X1 − a1, . . . , Xn − an)A for some tuple (a1, . . . , an) in K. This fact
is needed in order to express Condition (iii) and is one of the reasons why we
can currently only prove Theorem 1 for algebraically closed fields. It is also
needed, in conjunction with Nakayama’s Lemma, to construct for each t ∈ N,
a Z-constructible set B

(d,n)
t (that is to say, a first order formula β

(d,n)
t without

parameters) with the property that ca is a K-rational point of B
(d,n)
t if, and

only if, t is the maximum of all µ(aAm), where m runs over all maximal ideals

of A. Finally, let C
(d,n)
t,e be a Z-constructible set (that is to say, a first order

formula γ
(d,n)
t,e without parameters) with the property that ca is a K-rational

point of Ct,e if, and only if, a is generated by t polynomials of degree at most
e (the existence of such a constructible set follows from the uniform bounds
on linear equations proven in [5]).

Lemma 9 now asserts that whenever a code ca of an ideal a belongs to
A(d,n) ∩ B

(d,n)
t , then µ(a) = t. From this, the Corollary in the introduction

is immediate. Moreover, below I will argue that there is an effective method
to obtain the equations of these constructible sets, so that we do get an effec-
tive algorithm (albeit hopelessly inefficient) to calculate the minimal number
of generators. Let me first though finish the proof of Theorem 1. Since a gen-
erating set of minimal cardinality has some finite degree, we get that

A(d,n)
∩ B

(d,n)
t ⊂

⋃

e≥0

C
(d,n)
t,e
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(as constructible sets). Therefore, compactness (which amounts in the logic
setup to first order compactness) shows that for each triple (d, n, t), there is
some e(d, n, t) such that

A(d,n) ∩ B
(d,n)
t ⊂ C

(d,n)
t,e(d,n,t). (1)

Let D(d, n) be the maximum of all e(d, n, t), for 0 ≤ t ≤ s(d, n). I claim that
D(d, n) has the properties proclaimed in Theorem 1. Indeed, let a be an ideal
generated by polynomials of degree at most d satisfying Conditions (i)–(iii)

and let ca be a code of a. Choose t such that ca belongs to B
(d,n)
t . Clearly,

t ≤ s(d, n) and by the argument above, t = µ(a). Therefore, by (1), we have
that a admits t generators of degree at most e(d, n, t) ≤ D(d, n), as claimed.

To prove the computability of the function D, and hence the effective nature
of the constructible sets, we use some arguments from logic. Namely, let Φd,n,e

be the sentence

∧

t≤s(d,n)

(∀x)[α(d,n)(x) ∧ β
(d,n)
t (x) → γ

(d,n)
t,e (x)].

Since Φd,n,D(d,n) is true in any algebraically closed field, it is provable from
the theory of algebraically closed fields by the Gödel Completeness Theorem.
Since the theory of algebraically closed fields is recursive, we can list all its
first order theorems effectively (using for instance a theorem generator). For
each pair (d, n), let D̄(d, n) be the first e such that a theorem of the form
Φd,n,e appears in this list (so that in particular D̄(d, n) ≤ D(d, n)). It follows
that D̄ is a computable function. 2

4 A generalization to affine schemes

In this section, I will discuss how the above method can be used in case the
polynomial ring is replaced by one of its homomorphic images.

Theorem 10 For each d, there is a (computable) bound d′ with the following
property. Let K be an algebraically closed field, X a tuple of at most d variables
and I ⊂ J ideals in K[X] generated by polynomials of degree at most d. Put
A := K[X]/I and a := JA. Suppose A has (Krull) dimension n and a is a
radical ideal of height n− 1 satisfying the following two additional conditions.

(i) Each minimal prime ideal of a lies in the regular locus of A.
(ii) For each maximal ideal m of A, we have that µ(aAm) ≥ n + 1.

If t = µA(a), then there exist f1, . . . , ft ∈ K[X] of degree at most d′, such that
a = (f1, . . . , ft)A.
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PROOF. With some minor modifications, the same proof as for Theorem 1
applies. In fact, by the same arguments, it suffices to show that µ(a) is equal
to the maximum v of all µ(aAm), where m runs over all maximal ideals of A.
By (ii), we have n + 1 ≤ v. To prove that v = µA(a), we calculate again the
various FSp(a), for p a prime ideal of A. If p does not contain a, we have that
FSp(a) = dim A/p + 1 ≤ n + 1; a less optimal bound than in the polynomial
case since we can no longer ignore the contribution of the minimal primes of
A. If p is a height n−1 minimal prime of a, then aAp = pAp, since a is radical.
Since Ap is regular by (i), we get that aAp is generated by n − 1 elements
so that FSp(a) = n < v. By the Forster-Swan Theorem (Theorem 5), it
follows that µ(a) ≤ v so that necessarily v = µ(a), as required. 2
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