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Abstract. In this survey article, we will introduce various measures of com-
plexity for algebraic constructions in polynomial rings over fields and show
how they are often uniformly bounded by the complexity of the starting data.
In problems which have a linear nature, the degree of the polynomials provide
a sufficient notion of complexity. However, in the non-linear case, the more
sophisticated measure of etale complexity is needed.

These bounds lead often to the constructible nature of geometric problems,
where in the non-linear case, one should work in the etale site rather than
in the Zariski site. As another application of the existence of these bounds
we mention the possibility of transferring results from one characteristic to
another by means of the Lefschetz Principle. We will give some examples of
new results as well as some new proofs to old results.
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1. Introduction

Constructive Algebra is mostly seen as the theoretical counterpart of Compu-
tational Algebra: whereas the latter seeks to describe explicit methods and algo-
rithms, the former merely concentrates on the effective nature of many constructions
to be found in algebra. This dichotomy is best understood by an example. In [6],
Hermann showed the following.

Date: 10.10.99.

1



2 HANS SCHOUTENS

1.1. Theorem. Let K be a field and ξ a finite set of variables. If a polynomial f
in K[ξ] of degree d is a linear combination of some other polynomials g1, . . . , gs of
degree d, then one can find polynomials qi ∈ K[ξ] of degree at most d′, such that

f = q1g1 + · · · + qsgs,(1)

where d′ does only depend on d and on the number of variables ξ, and not on the
particular polynomials f and gi.

This effective result belongs to the field of Constructive Algebra. Using Groebner
bases, Buchberger obtained in [2] the same result, but by an explicit description
of an algorithm that calculates the polynomials qi in (1). This lead to a direct
implementation into various algebraic software programs, which was not practically
feasible in the case of Hermann’s explicit proof using elimination theory, in view
of the exponential growth of degrees of polynomials involved in this elimination
process. Not surprisingly, also (model-theoretic) non-standard proofs for this result
have been put forward; we will discuss below the proof of Schmidt and van den

Dries in [10]. Such proofs lack even more practical implementation, but they
provide sometimes extra information. In the particular case of our example, it
comes immediate that the bound d′ is even independent of the field. This is not
hard by the other methods either, but for more complicated examples, this is no
longer that evident.

In this survey paper, we will set ourselves yet another goal. We seek to derive
theoretical results from the existence of certain effective results. In other words,
we want to derive pure results in Algebraic Geometry and Commutative Algebra,
that is to say, results which do not refer to any model theoretic, constructive or
computational concept. An example is perhaps in order.

1.2. Example. Given a scheme of finite type X over an algebraically closed field
K, then there exists for each i a finite constructible partition

X = F
(i)
1 ∪ · · · ∪ F (i)

s(2)

such that on each F
(i)
j , the i-th Betti number (see (3) below) is constant.

Sometimes, our results will only be pure to a certain extent as shown by the next
example.

1.3. Example (Zariski-Lipman Conjecture for Hypersurfaces). For each d, there
is a finite set of exceptional characteristics, such that if K is an algebraically closed
field of characteristic not in the exceptional set, and such that if x is a closed point
on a degree d hypersurface X over K with the property that the module of K-
derivations DerK(OX,x) is free (where OX,x is the local ring of x at X), then x is
a regular point of X .

Note that we prefer to use the term ”scheme” over the more common term
”variety”, for it emphasizes the fact that we look at all points, not just the K-
rational (or, closed) points–therefore including for instance generic points as well.
So will An

B denote the affine space over the ring B, that is to say SpecB[ξ1, . . . , ξn],
whereas Bn simply denotes the collection of all n-tuples with entries from B. For
B = K a field, Kn is precisely the collection of all K-rational points of An

K . More
generally, if X is a scheme, then X(K) will denote the collection of K-rational
points of X .
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Transferring Properties. One of the main tools to derive a pure result such
as 1.3 from effective results is the Lefschetz Principle. It enables one to carry over
results in positive characteristic to similar results in zero characteristic, and vice
versa, at least for problems over algebraically closed fields which are first order
definable. Let us explain this a little more. The model theoretic Lefschetz Principle
states the following.

1.4. Theorem. If σ is a sentence in the language of rings, then σ is true in any
algebraically closed field K of characteristic zero, if and only if, there are infinitely
many primes p and, for each such prime p, an algebraically closed field Kp of that
characteristic, such that σ holds in Kp.

In fact, in the above statement, we may replace the condition infinitely many
primes by all but finitely many primes.

In stead of giving a formal definition of a (first order) sentence (in the language
of rings), let us just give here a geometric interpretation. Let F be a constructible
subset (in the Zariski sense) of affine n-space An

Z
over the integers. A sentence

σ is then a statement (or its negation), of the form F (K) is non-empty, where
K is an algebraically closed field and F (K) is the subset of Kn of all K-rational
points in F (or rather, of the base change of F to K; we will not make this dis-
tinction). This is a constructible subset of Kn for the induced Zariski topology.
Or, by taking some Boolean operations, a sentence could be a statement of the
form the K-rational points of F and G are the same (i.e., F (K) = G(K)), where
G is another constructible subset of An

Z
. If one allows more general fields than

just algebraically closed ones, a more complicated definition is required, by lack
of Quantifier Elimination. The geometric interpretation of Quantifier Elimination,
is Chevalley’s Theorem (the image of a constructible set under a map of finite
type is again constructible), together with the Nullstellensatz (any closed point is
K-rational).

Let us explain by means of Example 1.3 how the Lefschetz Principle ties in with
the existence of uniform bounds, in order to obtain such a pure result. For sake
of exposition, let us assume that X from the example is in fact a hypersurface
of An

K of degree d. Hence X is given as the zero locus of a single polynomial
f =

∑
aiξ

i of degree d. Let N be the number of monomials of degree at most
d in the n variables ξ = (ξ1, . . . , ξn). Hence f is given by listing the N -tuple of
its coefficients a = (ai). Let us denote this by writing X = X(a). We will show

that there exists a constructible subset Fd of A
n+N
Z

, with the property that a K-
rational point (x, a) belongs to Fd(K), if and only if, x is a K-rational point on the
hypersurface X = X(a) and the module of K-derivations of OX,x is free. Similarly,

there exists a constructible subset Gd of A
n+N
Z

, such that (x, a) ∈ Gd(K), if and
only if, x is a regular K-rational point on the hypersurface X = X(a). The main
point here is that Fd and Gd do not depend on X nor on the field K, but only on
the bound d. Let σd be the sentence expressing that for an algebraically closed field
K, the K-rational points of Fd and Gd are the same. In other words, if each σd

holds in some algebraically closed field K, then the conclusion in 1.3 is true for the
field K. Now, it has been proved by Scheja and Storch in [9], that this is true
for K of characteristic zero. Therefore, by an application of the Lefschetz Principle,
we obtain our result. Note that the set of exceptional characteristics depends on d,
as we must apply Theorem 1.4 to each sentence σd separately.
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So, how do we prove the existence of these constructible sets Fd and Gd? The
conditions that the module of derivations of the local ring OX,x is free, or that
OX,x is regular, are algebraic in nature. For instance, for the second condition, one
needs to express the existence of an (n−1)-tuple of elements in OX,x generating its
maximal ideal. Since OX,x is a localization of the coordinate ring K[ξ]/(f), such
a tuple can be taken as a tuple of polynomials in K[ξ]. However, we cannot just
assert in a first order way that an (n − 1)-tuple of polynomials exists; we need to
know what their possible degree is. Remember that a polynomial is encoded as its
tuple of coefficients; the length of this tuple being completely determined by the
degree. Therefore, we also need that the degrees of the entries of this (n− 1)-tuple
are uniformly bounded in terms of d alone.

To summarize, the existence of uniform bounds for some problem from Algebraic
Geometry or Commutative Algebra, entails the definability (i.e., the constructive
nature) of the problem and hence allows one to apply the Lefschetz Principle to it,
in order to transfer results from one characteristic to another. In Section 7, we will
explain how many of these uniform bounds can be derived from Theorem 1.1. The
idea is that many constructions in Algebraic Geometry or Commutative Algebra
are not only algebraic but even linear. Since the obstruction of extending linear
algebra over a field to linear algebra over a ring is measured by the Ext and Tor
cohomology groups, we need to study uniform bounds in that context.

Constructible Sets. Let us now turn to Example 1.2, which is yet another the-
oretical application of the existence of bounds. Here we use the Compactness
Theorem and/or Noetherianity instead of the Lefschetz Principle, to obtain some
further uniformity results. Let us explain the problematic and techniques again by
means of the example. In a similar fashion as in the previous example, one obtains,

for each d and each i and β, a constructible subset F
(i,β)
d of A

n+N
Z

, with the prop-
erty that if K is an algebraically closed field and (x, a) is a K-rational point, then

(x, a) ∈ F
(i,β)
d (K), if and only if, a is a list of coefficients of a tuple of polynomials

in K[ξ] of degree at most d, defining a closed subscheme X = X(a) of An
K , and x

is a K-rational point of X for which the i-th Betti number equals β. With the i-th
Betti number of an (arbitrary) point z ∈ X , we mean the dimension of the i-th Tor
module

β = dimTor
OX,z

i (k(z), k(z))(3)

where k(z) is the residue field of the point z. As we already said, we will denote
the collection of K-rational points of X by X(K). In the terminology of the ge-
ometer, these are precisely the closed points of X , and these then correspond by
the Nullstellensatz to the maximal ideals of the coordinate ring of X . Therefore,
for a fixed i, we get a partition of X(K) in constructible sets

Σ(i,β):=
{
x ∈ X(K) | F

(i,β)
d (x, a) holds in K

}
,(4)

where β runs over all natural numbers. Let us denote by X(i,β) the constructible
subset of X given by the equations and inequalities defining Σ(i,β). We would like
to show that

i. There are only finitely many non-empty strata Σ(i,β).
ii. We get a (finite) partition by constructible sets X(i,β) of the whole scheme X ,

not just of its K-rational points.
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The difference between the topologies of X(K) and X is reflected by the following
proposition. As an immediate consequence of it, we obtain a positive answer to
Question (i), as soon as we have a positive answer to Question (ii).

1.5. Proposition. Let X be a scheme of finite type over a field K and let S be a
partition of X (as a scheme) by constructible sets. Then S is finite.

Moreover, we have the following effective version. For each d, there exists a
bound D, such that if X has degree complexity at most d and each constructible set
F ∈ S has degree complexity at most d, then S has cardinality at most D.

The degree complexity of certain algebraic objects will be defined below in Sec-
tion 2. For now suffices to give the following intuitive version. An algebraic object
has degree complexity at most d, if it can be described algebraically using polynomi-
als of degree at most d in at most d variables. For instance, a closed subscheme of
Ad

K given as the zero locus of polynomials of degree at most d, has degree complexity
at most d.

Proposition 1.5 is certainly false for X(K), for the partition by all singletons
is constructible but not finite. Geometrically, Proposition 1.5 says that a scheme
of finite type is not only compact in the Zariski topology, but even in the con-
structible topology. Model-theoretically, for X = An

K and K algebraically closed,
the content of Proposition 1.5 is that X is the space of n-types, which is a Stone
space. Moreover, the Stone topology coincides with the constructible topology, in
view of Quantifier Elimination. The model theoretic version of Proposition 1.5 is
the compactness of this Stone space:

1.6. Theorem (First Order Compactness). Let ϕi be a sequence of first order for-
mulae in n free variables. If for some (resp. every) algebraically closed field K, we
have that

Kn =
⋃

i≥1

|ϕi|
K

(5)

(as subsets of Kn), then there is some i0, such that,

Kn =

i0⋃

i=1

|ϕi|
K
.(6)

For the general definition of a formula, see page 10 below. With |ϕ|K we mean
all tuples in K which satisfy the formula ϕ. The following corollary is a scheme
theoretic generalization of an observation of van den Dries in [15].

1.7. Corollary. Let X be a scheme (of finite type over an algebraically closed field
K) and let W be a subset of X. Suppose there exist constructible sets Fn and Gn,
such that

∞⋃

n=0

Fn = W =

∞⋂

n=0

Gn.(7)

Then W is constructible.

Let us now turn to Question (ii). To obtain a partition of the non-K-rational
points, we will not work with the type space, but we will use purely algebraic tools.
Of particular importance will be the notion of saturatedness: a subset F ⊂ Kn is
called saturated, if for every point x ∈ F , we can find a K-rational point y in F
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lying in the Zariski closure of x (i.e., y is a specialization of x). Any constructible
set has this property.

We show that, in the notation introduced just before Question (ii), each X(i,β)

is saturated. By a general result, see 11.2, the X(i,β) then necessarily cover the
whole space X . This will be explained more in Section 11, but since there is no
model theory used in this part of our work, we will not provide details. They can
be found in the paper [13].

Non-linear Problems. The problems so far discussed were all linear problems.
However, not every algebraic construction is linear. Let us give a simple example:
in order to express that two schemes of finite type over an algebraically closed field
are isomorphic, we need to give a map together with its inverse. Expressing that
two maps are each others inverse, reduces to expressing that the composition of
two polynomials yields the identity map modulo some other equations (defining
the scheme). This clearly is no longer a linear problem. It is even not immediately
clear that it can be expressed by means of polynomial equations. In fact one needs
polynomial equations with constraints to express this; see below for more details.
In summary, it is not clear whether the following question posed by Eklof in [5]
has an affirmative answer.

1.8. Question. Does there exists for each d a bound d′ with the property that, if
X and Y are two isomorphic schemes of degree complexity at most d over an alge-
braically closed field K, then an isomorphism can already be given using polynomials
of degree at most d′.

A first approach, therefore, would be to try to extend the results of Theorem 1.1
for non-linear equations, i.e., replacing Equation (1) by an equation of the form

∑

ν

gνX
ν = 0(8)

to be solved in the X = (X1, . . . , Xm)-variables by polynomials q1, . . . , qm ∈ K[ξ],.
Here ν runs over a finite set of multi-indices and gν ∈ K[ξ]. However, in Section 9
we will present an example due to Schmidt and van den Dries, showing that
no such uniform bounds can exist. One might though hope that uniform bounds
exist when working in overrings of K[ξ]. Since we want to remain algebraic, the
following ring seems a plausible candidate. Let K[[ξ]]alg be the ring of all formal
power series f which are algebraic over K[ξ], i.e., f ∈ K[[ξ]] satisfying a non-trivial
equation

adf
d + . . . a1f + a0 = 0(9)

with ai ∈ K[ξ] and ad 6= 0. Unfortunately, Equation (9) does not uniquely define the
algebraic power series f , as several power series might be a solution to it. To avoid
this ambiguity in an algebraic characterization of f , we use the following alternative
description. The ring K[[ξ]]alg is the henselization of K[ξ] at the maximal ideal
(ξ1, . . . , ξn). This means that K[[ξ]]alg is the direct limit of all local etale extensions
of K[ξ](ξ1,...,ξn). Without giving the full definition, this means in the simplest case
that in Equation (9) we may furthermore assume that f(0) is a simple root of the
polynomial

ad(0)T d + · · · + a1(0) + a0(0) = 0.(10)
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One verifies that then f can be uniquely recovered from Equation (9) and from
its value f(0) at ξ = 0. The minimal degree d for which this can be achieved is
then called the etale complexity of f . A note of caution: not always does a single
equation with a simple root at ξ = 0 suffice, but in general a system of equations
with invertible Jacobian matrix at ξ = 0 is needed.

The key result on uniform bounds in the non-linear case is then the following
theorem.

1.9. Theorem. For each d, there exists a d′, with the following property. Let
F1(ξ,X), . . . , Fs(ξ,X) be polynomials over a field K of total degree at most d and
suppose that there exists a tuple f = (f1, . . . , fm) over K[[ξ]], such that

F1(ξ, f(ξ)) = · · · = Fs(ξ, f(ξ)) = 0.(11)

Then there already exists such a tuple f over K[[ξ]]alg with each fi of etale com-
plexity at most d′.

Let me briefly comment on its proof. In Section 2, we will explain how Theo-
rem 1.1 follows from non-standard methods and from the algebraic fact that the
extension

K∗[ξ] ⊂ K[ξ]∗(12)

is faithfully flat. Here, at the left, we have the polynomial ring over the ultraproduct
K∗ (with respect to some fixed non-principal ultrafilter) of fields K [ν], and at the
right, we have the ultraproduct of the polynomial rings K [ν][ξ]. Faithful flatness
is tightly connected to solvability of linear equations. In order to deal with a non-
linear situation, we need to replace faithfully flatness by its non-linear counterpart.
This turns out to be Artin Approximation, which says that the extension

K[[ξ]]alg ⊂ K[[ξ]](13)

is existentially closed. This model-theoretic concept translates, in this particular
case, into the algebraic fact that a system of polynomial equations with coefficients
in K[[ξ]]alg which is solvable in K[[ξ]], is already so in K[[ξ]]alg. (In fact, we need
Artin Approximation with constraints, and of the latter, its non-standard version;
for some details see Section 9 below).

Geometrically, the effect of working with etale complexity rather than with de-
gree complexity, amounts to abandoning the Zariski site in favor of the etale site.
Therefore, the original Question 1.8 has to be modified: the notion of isomorphism
has to be taken in the sense of etale topology, not in the sense of Zariski topol-
ogy. This amounts to a much more local (infinitesimal) notion of isomorphism.
However, with this adaptation, we can answer Question 1.8 in the affirmative, see
Theorem 10.3 below.

Complete Intersections. Finally, we want to mention an open problem on uni-
form bounds, which would solve an outstanding open problem on space curves over
the complex numbers, as already observed by van den Dries in [15].

1.10. Question. Does there exist for each d a bound d′ with the following property?
If a is a radical ideal generated by polynomials of degree at most d over some field
K in n ≤ d variables ξ, and if there exist polynomials f1, . . . , fs, with s ≤ d, such
that the radical of the ideal generated by the fi equals a, then we can already find
such polynomials fi of degree at most d′.
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Apply this to a height one prime ideal p with n = 3 and s = 2. This prime
ideal p then defines a (reduced and irreducible) curve in A3

K . The condition on
the radical means that this curve can be realized, set theoretically, as the inter-
section of two surfaces. It is not known whether every curve in A3

C
is, as a set,

the intersection of two surfaces, but it is known over algebraically closed fields of
positive characteristic, by a theorem in [3] of Cowsik and Nori. Therefore, a
positive solution to Question 1.10, would imply the definability of the collection of
all curves of bounded degree complexity which are set-theoretically the intersection
of two surfaces and whence by the Lefschetz Principle (as explained above), one
would obtain that every curve in A3

C
is, as a set, the intersection of two surfaces. In

view of the non-linear nature of the problem (since we have to deal with radicals),
I would propose the following weakening of the conjecture.

1.11. Question. Is every curve singularity formally a set-theoretical complete in-
tersection? In particular, is every curve isomorphic in the etale topology with a
set-theoretical intersection of two surfaces?

The term formally refers here to the completion of the local ring of the singu-
larity.

2. Asymptotically Definable Functors

In this section we give some more rigorous definitions for what we will understand
as first order definability.

2.1. Definition. Fix some field K and let Ω be some set. We seek to encode Ω in
K. This can be done most easily if we assume that K is also algebraically closed.
Moreover, we want this construction also to be functorial in the field. This amounts
in letting Ω be a functor rather than a set. More precisely, let ACF denote the
category of algebraically closed fields and let Ω be a functor from ACF to the
category of sets Set. If Θ is another functor from ACF to Set and η : Ω → Θ a
natural transformation, then we call η injective (respectively, surjective), if ηd(K) is,
for any algebraically closed field K (and in the injective case, we call Ω a subfunctor
of Θ and denote this by Ω ⊂ Θ). We call an ascending chain of subfunctors

Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω(14)

a filtration, if Ω(K) equals the union of the Ωd(K), for any algebraically closed field
K. Let us call Ω together with a filtration (14) asymptotically definable, if for each
d, there exists a constructible set Vd ⊂ A

nd

Z
and a surjective natural transformation

ηd : Vd → Ωd. Here an arbitrary constructible set W ⊂ An
Z

is viewed as a functor
from ACF to Set, by associating to an algebraically closed field K the K-rational
points W (K) of W . Before introducing more terminology, let us pause to give some
examples.

2.2. Example. Let Ω and Θ be asymptotically definable functors. The product
functor Ω × Θ sends an algebraically closed field K to the product Ω(K) × Θ(K).
It is again an asymptotically definable functor.

2.3. Example. Let Ω be the functor assigning to an algebraically closed field K
the polynomial ring K[ξ], where ξ = (ξ1, . . . , ξn) are a fixed set of variables. Let
Ωd(K) be the collection of all polynomials f of degree at most d. Hence there exist
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aν ∈ K, such that

f =
∑

|ν|≤d

aνξ
ν .(15)

Let Vd be the whole affine space A
n(d)
Z

, where n(d) is the number of distinct mono-
mials of degree at most d in the variables ξ and let ηd(K) be the map associating
to an n(d)-tuple a = (aν)ν over K the polynomial (15). It is clear that this yields
an asymptotic definition of Ω. In other words, polynomials f are encoded by their
coefficient tuples a.

2.4. Example. More generally, let Ω be the functor associating to an algebraically
closed field K the collection of all ideals of the polynomial ring K[ξ] and let Ωd(K)
be the subcollection of all ideals a generated by polynomials of degree at most d. We
will simply paraphrase the latter condition by saying that a has degree complexity
at most d. To show that this filtration by degree complexity yields an asymptotic
definition, we simply need to take for Vd again an affine space, this time of dimension
n(d)×n(d), and let ηd be the n(d)-fold product of the map defined in Example 2.3,
composed with the map sending n(d) polynomials to the ideal they generate. In
other words, ideals are now encoded by a bunch of tuples {a1, . . . , an(d)}, where
each tuple ai encodes a generator of the ideal.

2.5. Example. Continuing in this way, we might take for Ω the functor associating
to an algebraically closed fieldK the collection of all finitely generatedK[ξ]-modules
and let Ωd(K) be the subcollection of all finite K[ξ]-modules M which admit a
representation

K[ξ]s
A

×

−−−−→K[ξ]s →M → 0(16)

where s ≤ d and A is an (s × s)-matrix over K[ξ], with all its entries of degree at
most d. This time ηd will be the (d× d)-fold product of Example 2.3, followed by
the map sending d × d polynomials to the cokernel of the matrix given by these
polynomials.

2.6. Definition. From the above examples we see that giving a filtration (15) is
equivalent with giving a notion of complexity on Ω. That is to say, any natural
transformation c : Ω → N (where N is viewed as the constant functor K 7→ N)
yields a filtration Ωd(K) = c(K)−1[0, d] and conversely, every filtration determines
a complexity degree c by declaring c(K)(x) ≤ d, if x ∈ Ωd(K). Therefore encodings
often come to us via some complexity degree.

The filtrations in examples 2.2–2.5 might seem randomly chosen and indeed other
(natural or not) choices can be made. However, what will matter in the sequel is
that once a complexity fixed, it will be important to study in how far the further
structure on the Ωd(K) is compatible with this filtration. In this light, the two
following notions are essential.

Let Θ be a subfunctor of Ω. We say that Θ is an asymptotically definable sub-
functor, if there exist, for each d, a constructible subset Wd of Vd, such that

ηd(K)
(
Wd(K)

)
= Θ(K) ∩ Ωd(K),(17)

for any algebraically closed field K. Let Ω and Θ be functors with a filtration
and let η : Ω → Θ be a natural transformation. We call η bounded, if, for any d,
there exists d′, such that η(K) maps Ωd(K) inside Θd′(K), for any algebraically



10 HANS SCHOUTENS

closed field K. For a trivial example, let Ω be as in Example 2.3, then the functor
assigning to K the collection of all irreducible polynomials is an asymptotically
definable subfunctor and any partial derivative gives a bounded transformation.

In the sequel, we might sometimes ignore the functorial character, and simply say
that the polynomial ring is an asymptotically definable set and the set of irreducible
polynomials is an asymptotically definable subset.

A less trivial example is the following.

2.7. Example. Let Π be the functor which assigns to an algebraically closed field
K the set SpecK[ξ] of all prime ideals of K[ξ]. This is an asymptotically definable
subfunctor of the functor in Example 2.4.

In order to prove this, one needs the following two facts taken from [10].

2.8. Theorem. For each d, there exists d′, with the following properties. Let K
be an arbitrary field and let ξ = (ξ1, . . . , ξn) be a tuple of variables with n ≤ d.

iii. If fi ∈ K[ξ], for i < s, have degree at most d and f0 belongs to the ideal
generated by the fi, then there exist qi ∈ K[ξ] of degree at most d′, such that

f0 = q1f1 + · · · + qsfs.(18)

iv. An ideal p of K[ξ] of degree complexity at most d (in the sense of 2.4), is
prime, provided for any f, g ∈ K[ξ] of degree at most d′ with f, g /∈ p, implies
fg /∈ p.

Formulae. Before we turn to explaining how Theorem 2.8 yields asymptotic defin-
ability of the set (functor) Π of prime ideals defined in Example 2.7, we introduce
some more terminology. The reason we need to introduce formulae, is that the col-
lection of constructible sets over a non-algebraically closed field behaves badly with
respect to projection (due to the absence of Chevalley’s Theorem). For instance,
the parabola in R

2 given by x = y2 projects onto the interval [0,+∞) in the x-axis,
which is clearly not a constructible set.

A constructible set V in Kn, where K is an algebraically closed field, is a finite

union of locally closed subsets Vi, each of which is given by some equations f
(i)
1 =

· · · = f
(i)
s = 0 and an inequality f

(i)
0 6= 0. In other words, for a K-rational point

x ∈ Kn, to lie in V is equivalent with
∨

i

(f
(i)
1 (x) = · · · = f (i)

s (x) = 0 ∧ f
(i)
0 (x) 6= 0).(19)

An expression (19) is an example of a formula. To be more precise, it is a formula

with parameters (namely the coefficients of the f
(i)
j ) from K in the (free) variables

x = (x1, . . . , xn). If the coefficients come from a smaller field K0, then we say that
the formula has parameters from K0. In particular, if K0 is the prime field, or,
equivalently, if the coefficients come from Z, then we express this by saying that
(19) is a formula without parameters. The latter collection of formulae will be of
main interest to us and therefore we adopt the convention that formula will mean
formula without parameters, unless we explicitly mention its parameters.

However, there exist formulae more complex than (19). Namely, we can add
some quantifiers to the formula. So will a formula

(∃y)[
∨

i

(f
(i)
1 (x, y) = · · · = f (i)

s (x, y) = 0 ∧ f
(i)
0 (x, y) 6= 0)](20)
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also be a statement about tuples x. If we interpret (20) over an algebraically closed
field K, then its solution set (i.e., all the tuples x ∈ Kn satisfying the formula),
corresponds to the projection of the locally closed set in Kn+m given by

∨

i

(f(i)1(x, y) = · · · = f(i)s(x, y) = 0 ∧ f(i)0(x, y) 6= 0).(21)

By Chevalley’s Theorem this is again a constructible set and whence given by a
formula as (19), i.e., without quantifiers. However, if K is not algebraically closed
then this is no longer true as the above example over the reals shows. Therefore
formulae as (19) are called quantifier free. A general formula ϕ(x) in the variables
x is then of the form: a quantifier free formula in variables x, y preceded by a bunch
of quantifiers (∃yi) or (∀yi).

Formulae, unfortunately, are no longer functors as schemes are, at least not if we
allow arbitrary morphisms. However, we have still a base change property in the
following sense. Let A be a ring, then we can interpret (19) as a set of equations and
inequalities over A and thus it defines a subset of An. For an arbitrary formula ϕ
in n free variables, we have a map from the category of rings to the category of sets

by assigning to a ring A the solution set |ϕ|A of ϕ in An given by all tuples a ∈ An

satisfying the formula ϕ. This means that whenever we have a quantifier (∃y) or
(∀y) occurring in ϕ, then we interpret this as meaning (∃y ∈ A) and (∀y ∈ A)
respectively (which are just formal renderings of the more informal there exists
some y in A and for all y in A, respectively). Two formulae ϕ and ψ in n free
variables are said to be equivalent over a ring A, if they define the same subset in

An, i.e., if |ϕ|A = |ψ|A. Note that this might depend on the ring: for instance the
formulae ϕ(x) =: (∃y)x = 1 ∧ y2 + 1 = 0 and ψ(x) =: (x = x + 1) both define the
empty set over R but the former defines the singleton {1} over C whereas the latter
still defines the empty set.

The reason why we cannot call a formula a functor, is that it is not compatible
with arbitrary morphisms. For instance, the formula ϕ(x) given as

(∀y)[x+ y2 6= 1](22)

defines the interval 1 < x in R, but defines the empty set over C, so that the

embedding R ⊂ C does not give a map |ϕ|R → |ϕ|C. However, one can make a
formula into a functor by allowing fewer morphisms. One should take the category
of rings with homomorphisms the elementary embeddings. These are precisely the

morphism A → B sending |ϕ|A into |ϕ|B , for all formulae ϕ. Unfortunately, there
tend to be in general very few elementary embeddings. It is a happy fact that any
embedding of algebraically closed fields is elementary. Of course, on the category
ACF any formula is representable by a constructible set as already explained. The
only other elementary embeddings we will encounter here are the diagonal maps
A→ A∗ of a ring into its ultrapower, to be defined below.

A very special instance of a formula is one where there are no free variables.
Such a formula ϕ is called a sentence by the model theorists. According to our

setup, this defines, for a ring A, a subset in A0 = 0. In other words, either |ϕ|A is

empty, in which case we say that ϕ is false or does not hold in A, or |ϕ|A is the
singleton {0}, in which case we say that ϕ is true or holds in A. Sentences will
play a crucial role in transferring properties from one ring to another.
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Proof of the asymptotic definability of Π. Firstly, let us show that the subset of
pairs (f, a) with f ∈ a is an asymptotically definable subset of the product of K[ξ]
with the collection of all ideals of K[ξ]. Here we will suppress any reference to
the field and simply pretend that we work over a fixed field K, the reader should
check that all constructions are indeed functorial. Let f0 ∈ (f1, . . . , fs), where
fi ∈ K[ξ] have degree at most d. Let ai be the n(d)-tuple of coefficients giving fi.
In other words, ηd(ai) = fi, where we took ηd from Example 2.3. The condition
that f0 ∈ (f1, . . . , fs) can now be expressed by the formula

(∃yi)ηd(ao) =

s∑

i=1

ηd′(yi)ηd(ai).(23)

Strictly speaking this is not yet a formula, as the ηd(x) denote polynomials. How-
ever, addition and multiplication of polynomials are easily expressible in terms of
their coefficients and this is how we will interpret Formula (23). This loose way of
writing down formulae is common practice and we will happily adopt this conven-
tion. Even more, we could altogether suppress the coefficient map ηd and simply
restate Formula (23) by

there exist polynomials qi of degree at most d′, such that f0 =
∑

qifi,(24)

and we could then leave it up to the reader to verify that this can indeed be
expressed by a formula. At any rate, as the Formula (23) defines a constructible
subset (in the ai), our claim follows.

To accomplish the task of writing down a formula (and whence giving a con-
structible subset) for expressing that an ideal a of degree complexity at most d is
prime, we simply translate Condition (iv) in a formula

if two polynomials f, g of degree at most d′ do not belong

to p, then neither does their product fg,
(25)

where of course ideal membership and multiplication of polynomials should be
replaced by their respective defining formulae in the tuples defining f , g and p.
�

In the sequel we will often just provide the necessary bounds as in Theorem 2.8
which are essential to write formulae such as (23) and (25), and leave to the diligent
reader the details of the corresponding proof.

3. Ultraproducts

In this section we will describe an algebraic construction which turns out to be
very useful in transferring results from one ring to another ring. Strangely enough
this construction is not well known among algebraists.

3.1. Definition. A filter U on N is a collection of non-empty subsets of N, closed
under intersection and oversets. In other words, U is a filter if, for I, J ⊂ N, we
have that

v. ∅ /∈ U ;
vi. I, J ∈ U then also I ∩ J ∈ U ;

vii. I ⊂ J and I ∈ U , then also J ∈ U .

A filter U is called an ultrafilter, if it is maximal among all filters (with respect to
inclusion). Alternatively, if the converse of (vi) holds, i.e.,
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viii. I ∩ J ∈ U , if and only if, I, J ∈ U .

This is also equivalent with the condition that for every subset I of N, either I or
its complement belongs to U . An ultrafilter is called non-principal, if it does not
contain a singleton. This turns out to be equivalent with U containing all co-finite
subsets.

In the sequel, fix once and for all a non-principal ultrafilter U . With aid of this
ultrafilter, we will construct a new ring A∗ from any sequence of rings A[m], where
m ∈ N, in such a way that the new ring A∗ shares many of the properties which
most of the rings A[m] have in common. We will make this statement more precise
in a minute, but let us first give the construction. A crude way of encoding all rings
A[m] is just by taking their direct product

∏
mA[m]. However, if all A[m] are fields,

then this property is definitely lost by taking their direct product, whereas this is
surely one of the properties which we would very much like to preserve. Therefore
we define an equivalence relation on

∏
A[m] by calling two sequences (a[m])m and

(b[m])m equivalent modulo U , where a[m], b[m] ∈ A[m], if the set of indices on which
they agree belongs to U . Facts such as this, namely that

{
m ∈ N | a[m] = b[m]

}
∈ U(26)

will be loosely expressed by saying that for almost all m, we have that a[m] = b[m].
It follows from (viii) that if two properties each separately hold for almost all
m, then they also hold jointly for almost all m and conversely. This justifies our
informal terminology. We let now A∗ be the collection of equivalence classes [a[m]] of
sequences (a[m])m in

∏
A[m] and call A∗ the ultraproduct of the A[m]. The (point-

wise) addition and multiplication in
∏
A[m] is compatible with this equivalence

relation and whence A∗ is again a ring. In fact, if all (or almost all) rings A[m]

are fields (respectively, domains, local rings) then so is A∗. This follows from the
following theorem on preservation of properties in an ultraproduct, for which the
model theoretic formalism proves once more to be very useful.

3.2. Theorem ( Los). Let ϕ be a sentence and let A[m] be a sequence of rings.
Let A∗ denote their ultraproduct (relative to some non-principal ultrafilter). Then
ϕ holds in A∗, if and only if, ϕ holds in A[m], for almost all m.

The following corollary of  Los’s Theorem will be be extremely important for the
present work. It is generally called the Lefschetz Principle (although some authors
have an even stronger principle in mind when they refer to the Lefschetz Principle).
Of course, it is just Theorem 1.4 reformulated in the language of ultraproducts.

3.3. Theorem (Lefschetz Principle). Let Falg
p denote the algebraic closure of the p

element field Fp. Let U be a non-principal ultrafilter on the set of primes (enumerate
the primes to get an ultrafilter on N). Then the ultraproduct of the Falg

p is isomorphic
to the field of the complex numbers.

Proof. Let F∗ denote the ultraproduct of the Falg
p . By Theorem 3.2 this must be

a field. Moreover, since any prime l is non-zero in almost all Falg
p , it follows that

F∗ must have characteristic zero. It is an easy exercise to express by means of a
sentence Rootd that any polynomial of degree d admits a root. As Rootd holds in
any Falg

p , it must also hold in F∗, again by Theorem 3.2. Therefore F∗ is algebraically
closed. A cardinality argument shows that F∗ has the cardinality of the continuum.
The statement now follows from Steinitz’ Theorem that any two algebraically
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closed fields of the same characteristic and the same uncountable cardinality must
be isomorphic. �

It is an easy exercise to write down the appropriate sentences expressing that a
ring A is a field, a domain or a local ring. For instance for the latter property, one
needs to express that the sum of any two non-units is again a non-unit. Hence the
sentence

Local = (∀x, y)[(∀z)[xz 6= 1 ∧ yz 6= 1] → (∀z)[(x+ y)z 6= 1]],(27)

will do. In particular, the ultraproduct of local rings is again local. More generally,
suppose a[m] is an ideal in A[m], for each m, then the collection of [a[m]] with
a[m] ∈ a[m], for almost all m, is an ideal in A∗ and will denoted by a∗. In fact,
one can take ultraproducts not only of rings, but of any sequence of first order
structures. In particular, a∗ is then nothing else than the ultraproduct of the ideals
a[m]. Using Theorem 3.2, the reader can check that almost all a[m] are prime
(respectively, radical or maximal), if and only if, a∗ is.

A special but non-trivial instance of the construction of an ultraproduct is when
all rings A[m] are the same, say, A[m] = A. The corresponding ultraproduct A∗ is
then called an ultrapower and it is a field, domain, etc., if and only if, A is. There
is an obvious (diagonal) embedding A →֒ A∗ by identifying a ∈ A with the image
of the constant sequence a[m] = a in A∗. This map is never an isomorphism, as
A∗ will be much larger than A. However, it follows from Theorem 3.2 that this
embedding is elementary.

An example is in order to show the limitations of Theorem 3.2. Let K [m] be a
sequence of fields and fix some set of variables ξ = (ξ1, . . . , ξn). Let K [m][ξ] be the
corresponding sequence of polynomial rings and let K[ξ]∗ be their ultraproduct.
There is no way that we can express by means of a sentence that a ring is a
polynomial ring over some field and hence K[ξ]∗ will not be a polynomial ring.
In fact, in general ultraproducts tend to be very complicated, almost always non-
Noetherian and often intractable rings; the field case is a fortunate exception. How
then can they be put to use? For our purposes two descent techniques will be
crucial. The second one will be discussed in Section 9. The first one was observed
by van den Dries (see for instance [15]) and used in [10] to obtain the bounds we
already mentioned. Keeping notation as before, let K∗ be the ultraproduct of the
fields K [m]. Then inside K[ξ]∗ lives K∗ and also the elements ξi. Therefore, even
the polynomial ring (K∗)[ξ] lies inside K[ξ]∗. The crucial algebraic fact proved by
van den Dries about this embedding is the following result.

3.4. Theorem ([15]). Let K [m] be a sequence of fields with ultraproduct K∗. Let
K[ξ]∗ be the ultraproduct of the sequence K [m][ξ], where ξ = (ξ1, . . . , ξn). Then the
extension of rings

K∗[ξ] ⊂ K[ξ]∗(28)

is faithfully flat.

This result, which a priori seems a result on ultraproducts, translates into the
following result on bounds in polynomial rings.

3.5. Theorem. For each d, there exists a bound d′ with the following property.
Let K be a field and let ξ = (ξ1, . . . , ξn) be variables with n ≤ d. Let fi, fij be
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polynomials over K in the variables ξ and let Y = (Y1, . . . , Ys) be an extra set of
variables. If the linear system of equations






f1 = f11Y1 + . . . f1sYs

f2 = f21Y1 + . . . f2sYs

...

ft = ft1Y1 + . . . ftsYs

(29)

has a solution q = (q1, . . . , qs) over K[ξ], then it has already a solution q with all qi
of degree at most d′. Moreover, if all the fi are identically zero, then any solution
of this (homogeneous) system of equations is a linear combination of solutions of
degree at most d′.

4. Modules and Schemes

4.1. Definition. In this section we will study the effective nature of the module
theory over (a quotient of) a polynomial ring. The following terminology will be in
order for the rest of this paper. We fix an algebraically closed field K (of arbitrary
characteristic). An affine (K-)algebra will be a quotient of the polynomial ring
K[ξ], where ξ = (ξ1, . . . , ξn) will be a fixed set of variables.

We say that an affine algebra A has degree complexity at most d, if A can be
written as the quotient of a polynomial ring K[ξ] in at most d variables modulo an
ideal generated by polynomials of degree at most d, i.e.,

A =
K[ξ]

(f1, . . . , fs)
(30)

with fi ∈ K[ξ] of degree at most d (and the number of variables is also at most d).
This notion of complexity gives at once the following.

4.2. Example. The functor which assigns to an algebraically closed field K the
the collection of all affine K-algebras, is asymptotically definable.

An ideal a in A is said to have degree complexity at most d, if A has degree
complexity at most d and for the representation (30) exhibiting this fact, we can
find Fi ∈ K[ξ] of degree at most d, such that a = (F1, . . . , Ft)A. Extending
Example 2.4 we get.

4.3. Example. The functor which assigns to an algebraically closed field K the
the collection of all pairs (A, a), where A is an affine K-algebra and a an ideal in
A, is asymptotically definable.

With an affine local (K-)algebra, we mean a localization of an affine algebra with
respect to a prime ideal. We say that its degree complexity is at most d, if the prime
ideal has degree complexity at most d. From Example (2.7), we obtain.

4.4. Example. The functor which assigns to an algebraically closed field K the
the collection of all affine local K-algebras, is asymptotically definable. In fact, it
is an asymptotically definable subfunctor of the functor from Example 4.3, after
identifying a pair (A, p), where p is a prime ideal, with the localization Ap.
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A K-algebra morphism φ : A→ B of affine K-algebras has degree complexity at
most d, if we can find a representation (30) for A and a similar one

B =
K[ζ1, . . . , ζm]

(g1, . . . , gs)
(31)

forB, such that φ is given by ξi 7→ Hi(ζ) and such that n,m ≤ d and all polynomials
fi, gi and Hi have degree at most d. (In particular A and B have degree complexity
at most d). We obtain:

4.5. Example. The functor which assigns to an algebraically closed field K the
the collection of all triples (A,B, φ), where A and B are affine K-algebras and φ a
K-algebra morphism between them, is asymptotically definable.

We have already discussed finitely generated modules overK[ξ] in Example (2.5).
Without any effort, one can extend this to a finitely generated module M over an
arbitrary affine (local) algebra A as follows. The degree complexity of M is at most
d, if A has degree complexity at most d and M is isomorphic to the cokernel of a
matrix A over A of dimensions at most d and with entries (images of) polynomials
of degree at most d.

4.6. Example. The functor which assigns to an algebraically closed field K the
the collection of all pairs (A,M), where A is an affine K-algebra and M a finitely
generated A-module, is asymptotically definable. Similarly, we could take pairs
(A,M) where this time A is an affine local algebra. We will make no distinction in
notation between these two functors.

Schemes. Below, we want to translate our results in a more geometric setting.
In particular, we will make use of the language of schemes. With a scheme we
will always mean a scheme of finite type over an algebraically closed field. Locally,
such a scheme X looks like an affine scheme SpecA, with A an affine algebra. We
will say that the affine scheme SpecA has degree complexity at most d, if A has
degree complexity at most d. Note that by Example 2.7, each affine scheme is an
asymptotically definable set. If V is a closed subscheme of SpecA, then we say that
its degree complexity is at most d, if the ideal a of A defining V (we denote this by
V = V(a)), has degree complexity at most d. Note that V itself is an affine scheme
SpecA/a and that the two notions of degree complexity, namely as a subscheme
or as an affine scheme, coincide. The underlying set |V | of a closed subscheme is
called a (Zariski) closed subset. One can put different scheme structures on such
a closed subset |V | where V = V(a), corresponding to various ideals b having the
same radical as a. In particular, the induced reduced subscheme structure is given
by taking as defining ideal the radical rad a of a. In [10] it is shown that the degree
complexity of the radical is uniformly bounded in terms of the degree complexity
of the ideal.

We say that a Zariski open U of SpecA has degree complexity at most d, if its
complement, with the induced reduced subscheme structure, is a closed subscheme
of degree complexity at most d. There is a small ambiguity here: if U itself is an
affine scheme, then both notions of degree complexity might not coincide, but at
least one is uniformly bounded in terms of the other. This is an immediate conse-
quence of our observation on the degree complexity of the radical in the previous
paragraph. Such ambiguities might arise at other occasions as well, but as long as
we have mutual uniform boundedness, we do not care. A map f : SpecB → SpecA
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has degree complexity at most d, if the corresponding K-algebra morphism A→ B
has degree complexity at most d.

Now, a general scheme X (remember, always of finite type), is completely de-
termined by giving data (Ui, Uij , fij), where 1 ≤ i 6= j ≤ t, with Ui = SpecAi an
affine scheme, Uij = SpecAij an open affine subscheme of Ui and fij : Uij → Uji

an isomorphism with inverse fji. Namely, X is obtained by gluing together the
affine schemes Ui via their isomorphic open subsets Uij . We say that X has degree
complexity at most d, if t ≤ d and if all affine schemes Ui and Uij , and all maps fij

have degree complexity at most d.
A coherent OX-module F is then determined by giving for each i a finitely

generated Ai-module Mi, such that

Mi ⊗Ai
Aij

∼= Mj ⊗Aj
Aji(32)

where we identify Aij with Aji via the isomorphism induced by fij . If, moreover,
all Mi have degree complexity at most d, then we say that F has degree complexity
at most d. In summary, we get the following examples.

4.7. Example. The functor which assigns to an algebraically closed field K the
collection of all schemes (over K) and the functor which assigns to K the collection
of pairs (X,F) with F a coherent OX -module over the schemeX , are asymptotically
definable functors.

5. Intersection Theory

Recall that an (algebraic) cycle on a scheme X is a formal sum

α =

t∑

i=1

niYi(33)

where ni ∈ Z and Yi are closed reduced irreducible subschemes (subvarieties, for
short) of X . We denote the group of all cycles on X by Z∗(X). We say that α has
degree complexity at most d, if t ≤ d and all |ni| ≤ d and if all subschemes Yi have
degree complexity at most d (whenever Yi belongs to the support of α, i.e., ni 6= 0).

5.1. Example. The functor which assigns to an algebraically closed field K the
collection of all pairs (X,α) with X a scheme and α a cycle on X , is asymptotically
definable.

Since the Zariski topology on X is Noetherian, we can write X uniquely as

X = X1 ∪ · · · ∪Xs,(34)

where the Xi are subvarieties of X with Xi 6⊂ Xj for i 6= j. These subvarieties
Xi are called the irreducible components of X . The cycle associated to X is by
definition the cycle

∑
niXi, where ni is the length of OX,ηi

and where ηi is the
generic point of Xi, for i = 1, . . . , s. In particular, if X = SpecA is affine, then Xi

is the closed subset defined by a minimal prime gi of A and ni is the length of the
Artinian local ring Agi

.
Assume now that X is moreover regular. Let us briefly review some intersection

theory for closed subschemes on a regular scheme of finite type over a field. Let Y1

and Y2 be two closed subschemes of X . Their intersection Y1 ∩ Y2 is by definition
the scheme Y1 ×X Y2, which is a closed subscheme of X . We say that Y1 and Y2

intersect properly, if the codimension of each irreducible component F of Y1 ∩ Y2
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equals codimY1 +codimY2. If this is the case, let η be the generic point of such an
irreducible component F . We define, following Serre in [14], the local intersection
number by

i(η;Y1, Y2) =

∞∑

n=0

(−1)nℓ(TorOX,η

n (OY1,η,OY2,η)),(35)

where ℓ denotes the length of a module (see Definition 7.1 below for more details).
Note that this sum is finite. Indeed, since X is regular, every OX -module has finite
projective dimension by [7, Theorem 19.2] and therefore

TorOX,η

n (OY1,η,OY2,η) = 0(36)

for n strictly bigger than the dimension of X . The intersection cycle of Y1 and Y2

is then defined as the element in Z∗(X) given by

Y1 · Y2 =
∑

F

i(ηF ;Y1, Y2)F,(37)

where the sum runs over all irreducible components F of Y1 ∩ Y2 and ηF denotes
the generic point of F .

If Y1 and Y2 do not intersect properly, then a more complicated definition is
required, using Chow’s Moving Lemma. (We will not treat this case here.) Finally,
the intersection of two cycles which intersect properly (meaning that each subvariety
in the support of one cycle intersects properly every subvariety in the support of
the other cycle), is defined by extending formula (37) by linearity.

In Section 7, we will investigate asymptotically definable subfunctors and boun-
ded natural transformations of the examples of asymptotically definable functors
from the last two sections. For instance, we will show that the intersection product
is asymptotically definable. Namely, the functor Ω which assigns to an algebraically
closed field K, the collection of all triples (X,α, β) with X a scheme and α and
β algebraic cycles on X which intersect properly, is an asymptotically definable
subfunctor of the functor

K 7→ { (X,α, β) | X is a scheme over K and α, β ∈ Z∗(X) } .(38)

Moreover, the intersection product defines a natural transformation from Ω to
the functor from Example 5.1. We will show that this natural transformation
is bounded, i.e., the intersection product has degree complexity uniformly bounded
in terms of the degree complexity of the factors.

6. Asymptotically Definable Structures

One could generalize the above definitions to a more abstract model-theoretic
setting. In this short section, we give a brief outline how this can be done. For the
duration of this section, let T be a theory in some language L. We denote by ModT

the category with objects the models of T and morphisms elementary embeddings.
In particular, if T is the empty theory, then ModL denotes the category of all
L-structures with elementary embeddings as morphisms.

Let K be another language. For simplicity, we will assume that K has only
relation symbols. (The general case can easily be reduced to this). Let Ω be a
functor from ModT to ModK. In other words, Ω(M) is a K-structure, for every
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model M of T . We say that Ω is asymptotically definable if the following holds.
There exists a filtration

Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω(39)

(i.e., Ωd(M) forms a filtration of Ω(M), for every model M of T ), and there exist
L-formulae ϕd and surjective natural transformations

ηd : ϕd → Ωd(40)

with the following property. (Note that an L-formula is a functor on ModT by

sending a model M to its solution set |ϕ|M ). Let R be a unary relation symbol of
the language K. Then there exist L-formulae ψR

d , such that T proves ψR
d → ϕd and

such that

ηd(M)(
∣∣ψR

d

∣∣M ) = |R|M ∩ Ωd(M).(41)

In other words, the relation R is an asymptotically definable subfunctor. For ar-
bitrary s-ary relations, we have the same property, but now we have to take the
s-fold product of the map ηd.

For instance, if L is the language of rings and T is the theory of algebraically
closed fields and K is the empty language, we retrieve our previous definition (a
structure in the empty language is just a set). In fact, if we take for K also the
language of rings, then the functor of Example 2.3 is asymptotically definable in
this new sense, since addition, subtraction and multiplication are clearly definable
operations.

7. Uniform Bounds in Cohomology

7.1. Definition. To show that a certain functor Θ is an asymptotically definable
subfunctor of an asymptotically definable functor Ω, means that we have to find
formulae ψd (or, equivalently, constructible subsets Gd of AN

Z
) such that

ηd(K)(|ψd|
K) = Θ(K) ∩ Ωd(K)(42)

where Ωd(K) denotes all the objects in Ω(K) of complexity at most d and where ηd

is the coding map from a constructible set Fd(K) ⊂ KN (for some N) to Ωd(K),
with Fd a constructible subset of AN

Z
containing Gd.

We wrote out the above in its full gruesome details to convince the reader that a
more flexible and legible notation is in order. Let Ω be an asymptotically definable
functor and keep our notation from above. Let x be an object of Ω(K). Hence
x could stand here for an affine algebra A, or for a pair (X,α), with X a scheme
and α ∈ Z∗(X), etc. If x has degree complexity at most d, i.e., x ∈ Ωd(K), then x
can be written as x = ηd(a), for some tuple a in KN belonging to Fd(K). In other
words, a is a code for x. Let ϕd be the formula which defines Fd, so that ϕd(a)
holds in K. We then simply say that

x satisfies formula ϕd over K(43)

In other words, we will confuse an object with its code. This leaves us with the
ambiguity that several tuples might define the same code, and in fact, very often
the thus defined equivalence relation on codes (a ≡ b, if ηd(a) = ηd(b)) is not

definable. Therefore, a statement of the form (43) should be interpreted as

there is some code a of x which satisfies ϕd over K.(44)
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In this section, we will be mainly concerned with subfunctors of the asymptot-
ically definable functor of Example 4.6. Our first result is on the definable nature
of the length of a module. Recall that an A-module M has finite length l, written
ℓA(M) = l, if M admits a decomposition series

0 = M0 ⊂M1 ⊂ · · · ⊂Ml = M(45)

with each Mi a submodule of M , such that the subsequent quotients Mi+1/Mi are
non-zero simple A-modules, i.e., with no non-trivial submodules.

7.2. Proposition ([12, Proposition 3.5]). For each d, l ∈ N, there exists a formula
(Len =l)d with the following property. Let K be an algebraically closed field. Let
A be an affine (local) K-algebra of degree complexity at most d and M a finitely
generated A-module of degree complexity at most d. Then the pair (A,M) satisfies
the formula (Len =l)d over K, if and only if, M has length l as an A-module.

As an immediate corollary we get that the functor which assigns to an alge-
braically closed field the collection of pairs (A, 0), with A an affine (local) algebra
and 0 the zero A-module, is an asymptotically definable subfunctor of the asymp-
totically definable functor from Example 4.6. To define just a singleton within a
whole class (i.e., the zero module among all finitely generated modules) seems an
utter triviality, but it is not! Keep in mind that there is in general no formula which
expresses that two tuples encode the same object. However, here we do have such a
formula when the tuples encode the zero module. In general, for finitely generated
modules over an affine local ring, it is a highly non-trivial fact that such a formula
exists. This will be discussed in Section 9. Another corollary is:

7.3. Corollary. For each d ∈ N, there exists a formula FinLend with the following
property. Suppose K is an algebraically closed field and A an affine (local) K-
algebra. Let M be a finitely generated A-module of degree complexity at most d.
Then the pair (A,M) satisfies the formula FinLend over K, if and only if, M has
finite length as an A-module.

Proof. Implicit in Proposition 7.2 is the fact that there is a bound d′ depending
only on d, such that if M has finite length, then this length is at most d′. Hence
the formula ∨

i≤d′

(Len =i)d

expresses that M has finite length. �

Using Theorem 3.5, one can shown that basically all module operations are
bounded:

7.4. Proposition. For each d, there exists a bound d′ with the property that if
N,N ′ ⊂ M are finitely generated A-modules of degree complexity at most d, then
so are N +N ′, N ∩N ′ and M/N . Moreover, the ideal (N : N ′) of all a ∈ A such
that aN ′ ⊂ N , has degree complexity at most d.

We refer to [12] for more details. In loc. cit., we use yet another measure of
complexity, called deg-complexity, defined for submodules of a free A-module, as
an intermediate tool to obtain the proposition (see [12, Remark 3.8] where it is
explained how both measures of complexity are mutually bounded).

Our next goal is to develop in a constructive manner some homological algebra.
The following result will prove to be crucial.
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7.5. Theorem. For each d ∈ N, there is a bound d′ with the following properties.
Let A be an affine (local) algebra and M a finitely generated A-module of degree
complexity at most d. Let G be a (d × d)-matrix over A of degree at most d (i.e.,
all its entries have degree at most d), then the degree complexity of Z and C are
at most d′, where Z (respectively, C) is the kernel (respectively, cokernel) of the
morphism G× induced by G, that is to say, Z and C are given by the exact sequence

0 → Z →Md G
×

−−−−→Md → C → 0.(46)

Homological algebra studies derived functors on abelian categories. These func-
tors should not be confused with the asymptotically definable functors previously
introduced. To avoid too much clash of terminology, we will work in a less ab-
stract setting than in the paper [12]. The functorial operations that matter to us,
are taking Hom and tensor products. Let us denote by Ω2 the asymptotically de-
finable functor which assigns to an algebraically closed field K, the set of triples
(A,M,N), where A is an affine (local) K-algebra and M and N are finitely gener-
ated A-modules. Tensor product then yields a natural transformation ⊗ from Ω2 to
the functor of Example 4.6, by sending a triple (A,M,N) to the pair (A,M ⊗AN).
Similarly, we get a natural transformation Hom sending a triple (A,M,N) to the
pair (A,HomA(M,N)).

7.6. Proposition. The natural transformations ⊗ and Hom are bounded.

Note that this means that the degree complexities of M ⊗AN and HomA(M,N)
are uniformly bounded in terms of the degree complexity of M and N . Taking
tensor products with respect to a fixed A-module M is not an exact functor on the
category of all A-modules, but only right exact. Its derived functors are known as
the Tor functors. The derived functors of Hom are called the Ext functors. Our
main result is then:

7.7. Theorem. For each d and i, there exist formulae (Tori)d and (Exti)d, such
that if K is an algebraically closed field and if M , N and T are finitely generated
A-modules of degree complexity at most d over the affine (local) K-algebra A, then
the quadruple (A,M,N, T ) satisfies the formula (Tori)d (respectively, the formula
(Exti)d), if and only if, we have that

T ∼= TorA
i (M,N) (respectively, T ∼= ExtiA(M,N))(47)

Implicit in the existence of these formulae is that the natural transformations
Tor i and Ext i are bounded. The main use of this theorem is in combination with
Proposition 7.2, enabling us to express that a certain i-th Tor or Ext module
vanishes. Before we derive some corollaries, let us first give an indication of the
proof.

One calculates a derived functor such as Tor as follows. Let M and N be
finitely generated A-modules. Choose any projective resolution of M , that is to
say, an exact sequence

Pi+1
A

×

i−−−−→Pi

A
×

i−1

−−−−−→ . . .
A

×

0−−−−→P0 →M → 0(48)

with the Pj finite free A-modules. It follows from Theorem 7.5, that we can uni-
formly bound the ranks of the Pj as well as the degrees of the entries of the matrices
Aj in terms of d and i only.
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Tensoring this sequence with N no longer gives an exact sequence, but merely a
complex

Pi+1 ⊗A N
A

×

i−−−−→Pi ⊗A N
A

×

i−1

−−−−−→ . . .
A

×

0−−−−→P0 ⊗A N →M ⊗A N → 0(49)

which is only exact at M ⊗A N . The homology modules of this complex measure
precisely the extent to which the complex is not exact. In this case, they are denoted
by TorA

i (M,N). In particular, TorA
1 (M,N) is the quotient of the kernel of the

morphism A0 : P1⊗AN → P0 ⊗AN by the image of the morphism A1 : P2⊗AN →
P1⊗AN . By Theorem 7.5 both this kernel and this image have uniformly bounded
degree complexity in terms of the degree complexity of M and N , and hence so
does their quotient, by Proposition 7.4.

From Theorem 7.7 together with Formula (35), the following is now straightfor-
ward.

7.8. Theorem. The intersection of algebraic cycles which intersect properly is a
bounded and asymptotically definable operation.

8. Bounds in Commutative Algebra

In this section, we will give some examples of effective results in Commutative
Algebra. Homological Algebra has proven to be an indispensable tool for ring and
module theorists. Therefore, it should not come as a surprise that our effective
results come from the uniformity of the Tor and Ext cohomology groups discussed
in the previous section. Nonetheless, perhaps the most important invariant is not
homological in nature: the Krull dimension of a ring. Recall that the (Krull)
dimension of an affine K-algebra A is the maximal possible length of a strict chain
of prime ideals in A. If A is a domain, its dimension equals the transcendence degree
of its fraction field overK. The dimension of a finitely generated A-module M is by
definition the dimension of the ring A/AnnA(M). In spite of its non-homological
nature, dimension also behaves uniformly:

8.1. Theorem ([12, Proposition 5.1]). For each d and h, there exists a formula
(dim =h)d, such that a pair (A,M) satisfies the formula over K, where K is an
algebraically closed field, A an affine (local) K-algebra and M a finitely generated
A-module of degree complexity at most d, if and only if, M has dimension h (as an
A-module).

Note that a finitely generated A-module is zero dimensional, if and only if, it
has finite length, so that by Corollary 7.3, the case h = 0 is clear. For the general
case, one uses Krull’s Principal Ideal Theorem.

8.2. Theorem ([12, Theorem 5.3]). The subfunctors of the asymptotically defin-
able functor from Example 4.4 given by assigning to an algebraically closed field the
set of all regular (respectively, Gorenstein, Cohen-Macaulay, or complete intersec-
tion) local affine K-algebras, is asymptotically definable.

Let us just explain this for the regular case. It follows from Serre’s Theorem,
that a local affine K-algebra R is regular, if and only if, its residue field k has finite
projective dimension. The latter condition is equivalent with TorR

i (k, k) = 0, for
some i strictly bigger than the dimension of R. Now, the dimension of R can never
exceed the number of variables in the polynomial ring of which R is the localization
of some quotient. Hence if R has degree complexity at most d, then its dimension is
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at most d. So we may take i = d+ 1 in the criterion and now the rest is easy by an
application of Theorem 7.7 and Proposition 7.2. (Note that the degree complexity
of the residue field k is also at most d by definition).

The other conditions can equally well be translated in to the vanishing of some
Tor or Ext groups derived from R. For some of them, we might need also Theo-
rem 8.1.

A module variant is the following:

8.3. Theorem ([12, Corollary 5.5]). The subfunctor of the asymptotically defin-
able functor from Example 4.6 given by assigning to an algebraically closed field K
the set of all pairs (A,M) with A an affine K-algebra and M a finitely generated
A-module of finite injective dimension, is asymptotically definable.

From these effective results, we can now derive our first pure, albeit not new,
result on the Bass Conjecture. This conjecture, and now theorem, states the fol-
lowing.

8.4. Theorem (Bass Conjecture). If a Noetherian local ring R admits a finitely
generated module of finite injective dimension, then R is Cohen-Macaulay.

In fact the converse also holds and its proof is rather easy. Moreover, this proof
shows that an R-module of finite injective dimension can be found with degree
complexity bounded in terms of the degree complexity of R. This conjecture is now
proven in full generality by Roberts’ New Intersection Theorem, but was originally
proven for a smaller class of local rings by Szpiro and Peskine in [8] using their
New Intersection Theorem in positive characteristic. Their proof uses the action
of Frobenius on local cohomology groups and whence cannot be transferred to the
zero characteristic case. To deal with the latter case, the authors introduced an ad
hoc lifting procedure, which we can replace now, at least for the affine case, by the
Lefschetz Principle. Indeed, our observation above on the converse, together with
Theorem 8.3 and Theorem 8.2, shows that, for each d, there exist formulae CMd

and Injdimd, such that an affine local K-algebra R of degree complexity at most
d satisfies these formulae over an algebraically closed field K, if and only if, R is
Cohen-Macaulay (respectively, admits a finitely generated module of finite injective
dimension). Hence the sentences Bassd, for d = 1, 2, . . . , expressing that CMd and
Injdimd are equivalent formulae, holds in K, if and only if, the Bass Conjecture 8.4
holds for affine local K-algebras of degree complexity at most d. By the result of
Szpiro and Peskine in positive characteristic and the Lefschetz Principle 1.4, we
derive the validity of the conjecture in zero characteristic as well.

Another example, the Zariski-Lipman Conjecture, was already discussed in some
length in Example 1.3.

8.5. Theorem (Zariski-Lipman Conjecture for Hypersurfaces). For each d, there
is a finite set Cd of exceptional characteristics, such that if K is an algebraically
closed field of characteristic not in the exceptional set Cd, and such that if x is
a K-rational point on a degree d hypersurface X over K with the property that
DerK(OX,x) is free, then x is a regular point of X. Here DerK(OX,x) denotes the
module of K-derivations of the local ring OX,x of x at X.

Again this result cannot be obtained in positive characteristic by just simply
mimicking the proof in zero characteristic, as the latter uses transcendental meth-
ods. Since this time we go from zero to positive characteristic, there is a price to
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be paid for going against the stream. Namely, we are only able to say something
about almost all characteristics. Moreover, the exceptional set Cd of characteristics
depends heavily on the degree of the hypersurface. In fact, easy examples show that
the Zariski-Lipman Conjecture is in general false in positive characteristic, but all
these counterexamples are in characteristics of the same order of magnitude as the
degree. We trust the reader will be able to convince himself that the argument
sketched in the introduction is valid. Just note that a finitely generated module
M over a local ring R is free, if and only if, TorR

1 (M,k) = 0, where k is again the
residue field of R. In [12] some further special instances are discussed where one can
transfer the validity of the Zariski-Lipman Conjecture to positive characteristic.

In fact, one possibly could invert the argument. If one were able to show that
the full Zariski-Lipman Conjecture holds for a fixed degree in almost all positive
characteristics, then it would by the Lefschetz Principle also hold in zero char-
acteristic. With the full Zariski-Lipman Conjecture we mean a similar statement
as in Theorem 8.5, where X is now not just a hypersurface, but can have any
codimension.

9. Non-Linear Case: Etale Complexity

In this section we will discuss how to deal with a situation in which the alge-
braic or geometric problem has no longer a linear description. We start with a
counterexample to uniformity.

9.1. Theorem. It is not true that there exists for each d a bound d′ with the
following property. Let K be an algebraically closed field and let ξ = (ξ1, . . . , ξn)
and Y = (Y1, . . . , Ym) be variables. Consider the system of equations






F1(ξ, Y ) = 0

F2(ξ, Y ) = 0
...

Fs(ξ, Y ) = 0.

(50)

over K[ξ], in the unknowns Y , where the total degree of each Fi is at most d and
where n,m ≤ d. If there is a solution f = (f1, . . . , fm) for the Y -variables with
fi(ξ) ∈ K[ξ], then there exists already such a solution of degree at most d′.

Proof. In fact even if we fix the algebraically closed field K from the start, no such
bound d′ exists. The following counterexample is based on an example taken from
the already quoted paper [10]. In it, the authors show that for all t ∈ N, there
exists an a ∈ K different from 0 and 1, such that the coordinate ring

Aa =
K[ξ, ζ]

(ζ2 − ξ(ξ − 1)(ξ − a))
(51)

of the elliptic curve has a non-constant unit, but any non-constant unit has degree
at least t. This observation follows from the fact that an elliptic curve can have
torsion points of arbitrary high order.
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Now, consider the following (quadratic) system of equations

XY = 1 + Z(ζ2 − ξ(ξ − 1)(ξ − a))(52a)

X = P (ξ − C) +Q(ζ −D)(52b)

CC1 = 1(52c)

DD1 = 1(52d)

in the variables (X,Y, Z, P,Q,C,C1, D,D1). We claim that this system has a so-
lution in K[ξ, ζ], if and only if, the ring Aa has a non-constant unit. Indeed, let
(f, g, h, p, q, c, c1, d, d1) be such a solution. Then Equations (52c) and (52d) show
that c and d are units in K[ξ, ζ] and whence belong to K. From Equation (52b)
it then follows that (c, d) is a root of the polynomial f , so that in particular, the
latter is not constant. Finally, Equation (52a) simply expresses that f is a unit
in Aa. We leave it up to the reader to check that conversely, the existence of a
non-constant unit in Aa provides a solution to this system of equations.

Hence if a uniform bound would exist to solve quadratic equations, then there
would be a bound on the solution of minimal degree, contradicting the above. �

As already mentioned in the introduction, to obtain uniformity results, we have
to replace the polynomial ring K[ξ] by the algebraic power series ringK[[ξ]]alg. The
following algebraic description of an algebraic power series, enables us to introduce
a new measure of complexity, turning K[[ξ]]alg into an asymptotically definable set.

9.2. Proposition. For each ω1 ∈ K[[ξ]]alg, we can find a natural numberN , an N -
tuple ω of algebraic power series with first entry ω1 and an N -tuple H of polynomials
over K in the variables ξ and Y = (Y1, . . . , YN ), such that H(ξ, ω(ξ)) = 0 and such
that the Jacobian matrix

Jac(H) =





∂H1/∂Y1 ∂H1/∂Y2 . . . ∂H1/∂YN

∂H2/∂Y1 ∂H2/∂Y2 . . . ∂H2/∂YN

...
...

. . .
...

∂HN/∂Y1 ∂HN/∂Y2 . . . ∂HN/∂YN




(53)

evaluated at ξ = 0 and Y = u, where u = ω(0), is invertible.
Moreover, ω is the unique solution to H(Y ) = 0 which evaluates to u at ξ = 0.

A system Hi as in the proposition is called a Hensel system for ω at u. We say
that ω1 (or, ω) has etale complexity at most d, if we can find an Hensel system of
length N ≤ d and of total degree at most d. (We always assume that the number
of ξ-variables is at most d). This makes K[[ξ]]alg into an asymptotically definable
set and we now have the non-linear counterpart of Theorem 3.5.

9.3. Theorem ([11]). For each d ∈ N, there exists a d′ ∈ N with the following
properties. Let K be a field. Suppose the Fi ∈ K[ξ, Y ] in the system of equa-
tions (50) have total degree at most d and also n,m ≤ d. If F = 0 has a solution
for the Y -variables in K[[ξ]], then it has a solution in K[[ξ]]alg of etale complexity
at most d′.

More generally, if we allow the Fi to be in K[[ξ]]alg[Y ] such that, viewed as
polynomials in the Y -variables, their degree is at most d and each coefficient has
etale complexity at most d, then the conclusion in the above statement remains
valid.
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This theorem should be complemented with the following result, called Strong
Artin Approximation, which gives us an effective way of testing whether an algebraic
or formal power series solution exists.

9.4. Theorem ([1]). For each d ∈ N, there exists d′ ∈ N, such that any sys-
tem of equations (50) has a solution ω in algebraic (or formal) power series with
initial condition ω(0) = u, if and only if, it has a polynomial solution f modulo

(ξ1, . . . , ξn)d′+1 with initial condition f(0) = u.

An algorithm to solve polynomial equations. Combining these two theorems,
we can now describe briefly an algorithm which effectively computes a solution in
K[[ξ]]alg for the system (50). Effectively here has perhaps to be taken with a grain
of salt, because we will assume that one has been able to calculate the bound
d′ in both theorems. Moreover, we will assume that the field arithmetic in an
algebraically closed field K can be effectively carried out. One should bare in mind
that the theory of algebraically closed fields is decidable. Here is the description of
the algorithm.

Firstly, we need to check whether a solution exists at all. According to Theo-
rem 9.4, this amounts in finding polynomials (f1, . . . , fm) of degree at most d′, such
that all terms in Fi(ξ, f(ξ)) up to order d′ vanish. Writing down the fi as general
polynomials in ξ of degree d′ with unknown coefficients and expressing the above
condition, we end up with a polynomial system of equations in these unknown coef-
ficients. The difference with our original problem is now that we have to solve this
system in the field K and not in the polynomial ring. As we mentioned before, we
assume that this can be done in an effective way, and hence we can predict whether
an algebraic power series solution exists or not. We can even include from the start
some initial condition f(0) = u.

So, let’s assume we know that an algebraic power series solution ω exists with
initial condition ω(0) = u. Hence by Theorem 9.3, we must be able to find a Hensel
system H(Y ) = 0 for ω at u of total degree and length N at most d′. Let us
still write ω and Y for the corresponding enlarged N -tuples. By a strengthening of
Proposition 9.2, we may even assume that the Hi generate a prime ideal (necessarily
of heightN by the Jacobian Criterion). The uniqueness part in Proposition 9.2 then
implies that the (model-theoretic) type of the solution ω is completely determined
by this prime ideal, so that in particular, since ω is also a solution of F (Y ) = 0, we
must have an inclusion

(F1, . . . , Fs) ⊂ (H1, . . . , HN).(54)

Now, let us write down the Hi with unknown coefficients. We then express that
the Hi form a Hensel system at u; this yields some polynomial equations in the
unknown coefficients. Using Theorem 3.5, we can also express in the unknown
coefficients that condition (54) is satisfied. Hence a solution in K for this system in
unknown coefficients gives then a complete description of a solution of system (50).

The stronger condition on the Hensel system just mentioned actually translates
geometrically in the fact that the map of affine schemes

h : W = Spec
K[ξ, Y ]

(H1, . . . , HN )
→ A

n
K(55)

is an etale extension. In other words, we found a solution to system (50) which
lives on W .
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Any etale map is open, so that in particular, the image Imh is a Zariski open
of An

K . Moreover, it will follow from our discussion in Section 11 that the degree
complexity of this Zariski open is uniformly bounded in terms of d′ and whence in
terms of d. Note that by construction, the origin lies in Imh. If we would carry
out the just described algorithm at every K-rational point of An

K , not just at the
origin, then we would have constructed an etale covering of An

K , where on each
piece we would have a solution to system (50). We refer to such a solution as a
solution locally in the etale topology. Note that we can take such a covering to be
finite, and, moreover, its cardinality can be taken uniformly bounded in terms of
d, in view of Proposition 1.5.

10. Isomorphism Problems

As we mentioned already in the introduction, and as we explained at the end
of the previous section, an application of Theorem 9.3 will often lead to results
which hold locally in the etale topology. Sometimes etale descent and local/global
principles enable us to obtain results for the Zariski topology as well, as the next
example shows.

10.1. Theorem. For each d, there exists a formula Isod with the following prop-
erty. Let R be an affine local K-algebra with K an algebraically closed field. Let
M1 and M2 be two finitely generated R-modules of degree complexity at most d.
Then the triple (R,M1,M2) satisfies the formula Isod over K, if and only if, M1

and M2 are isomorphic as R-modules.

Proof. Since R is a quotient of a localization of a polynomial ring, we may assume
already without loss of generality that R is a localization of K[ξ] with respect to a

prime ideal p. Let R̂ denote its p-adic completion. By Cohen’s Structure Theorem
for complete regular local rings, we know that

R̂ ∼= K[[ζ]],(56)

where ζ = (ζ1, . . . , ζh) with h the dimension of R. In fact, choosing h generators
g1, . . . , gh for the maximal ideal of R, the isomorphism (56) is given by sending
gi to the variable ζi. Therefore, for the sake of exposition, we may assume that
p is a maximal ideal, which we then, after some translation, may assume to be

(ξ1, . . . , ξn). In particular, we may take R̂ = K[[ξ]].
By definition of degree complexity, we can writeMi as the cokernel of a morphism

Rd → Rd given by a (d×d)-matrix Ai with (polynomial) entries of degree at most d.
Lemma 10.2 below shows that our problem can be translated in terms of (non-linear)
polynomial equations. Therefore, if M1 and M2 are isomorphic, then system (59)
has a solution in R and whence in the overring K[[ξ]]alg. By Theorem 9.3, there
exists already a solution of etale complexity at most d′. Conversely, if a solution in
K[[ξ]]alg of system (59) exists, then again by the Lemma 10.2, we have that

M1 ⊗K[[ξ]]alg ∼= M2 ⊗K[[ξ]]alg.(57)

Hence in particular, we have an isomorphism

M1 ⊗K[[ξ]] ∼= M2 ⊗K[[ξ]].(58)

However, using [4, Exercise 7.5 and Theorem 7.2], it follows that if an isomor-
phism (58) exists, then in fact M1 and M2 are isomorphic as R-modules. From
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these observations, the reader should now be convinced that a formula as claimed
exists. �

10.2. Lemma. Let A be a ring and let A1 and A2 be two (d × d)-matrices with
entries in A. The cokernels of these two matrices are isomorphic, if and only if,
there exist (d× d)-matrices Xi, Ui, Vi, such that

E − X1X2 = U1A1

E − X2X1 = U2A2

A1X1 = V1A2

A2X2 = V2A1,

(59)

where E denotes the (d× d)-identity matrix.

For the next result, mentioned already in the introduction, we are less fortunate:
the etale topology is strictly finer than the Zariski topology. For instance any
two smooth (irreducible and reduced) curves are locally isomorphic for the etale
topology. This is an easy consequence of Cohen’s Structure Theorem together
with Artin Approximation. In the presence of singularities, we obtain the following
definability result. We will say that two schemes X and Y are locally isomorphic
in the etale topology, if there exist surjective etale maps T ։ X and T ։ Y . The
denomination local stems from the fact that we do not assume T to be connected.
Alternatively, X and Y are locally isomorphic in the etale topology, if each K-
rational point on one scheme admits an etale neighborhood which is isomorphic to
an etale neighborhood of a K-rational point on the other scheme.

10.3. Theorem. For each d, there exists a formula Etisod with the following
property. Let X and Y be schemes of degree complexity at most d over an alge-
braically closed field K. Then the pair (X,Y ) satisfies the formula Etisod over K,
if and only if, X and Y are locally isomorphic in the etale topology.

Let us just show how one translates the isomorphism problem into a system of
polynomial equations.

10.4. Lemma. Let A = K[ξ]/(f1, . . . , fs) and B = K[ζ]/(g1, . . . , gs) be two affine
domains of dimension d. Then A ∼= B (as K-algebras), if and only if, the following
system of equations






fi(X) =
∑s

j=1 Cijgj(ζ)

gi(Y ) =
∑s

j=1Dij1fj(ξ)

ξi = Xi +
∑s

j=1Dij2fj(ξ) +Dij3(ζj − Yj)

(60)

for i = 1, . . . , s, has a solution for X in K[ζ] and for the remaining variables Y,C,D
in K[ξ, ζ].

Similarly, if A = K[[ξ]]alg/(f1, . . . , fs) and B = K[[ζ]]alg/(g1, . . . , gs) are d-
dimensional (local) domains and we now allow solutions in K[[ξ, ζ]]alg with the
solution for X still only depending on ζ, then the system (60) has a solution, if and
only if, we have an isomorphism A ∼= B.

The new ingredient here is that some of the solutions are subject to some con-
straints. It is known that Artin Approximation holds for a system of equations
with a single constraint (i.e., a constraint of the form: the first k solutions depend
only on the first l variables). When we use this result instead of the classical Artin
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Approximation in the proof of Theorem 9.3, then we get an effective version with
single constraint, which we then can apply to the system (60). Note that in general,
Artin Approximation fails when we allow multiple constraints.

11. Constructible Invariants

An invariant is often thought of as an integer attached to an algebraic or geo-
metric object, in such way that isomorphic objects get the same number assigned.
The hope then is to find enough invariants, such that whenever two objects have
the same value for each invariant, then they are in fact isomorphic. For instance,
the dimension of a vector space completely determines its isomorphism type, or,
the characteristic and the transcendence degree over the prime field, completely
characterizes an algebraically closed field. In general, complete sets of invariants
are far from known. Moreover, one will need also invariants which take on other
kinds of values, not just integers. Below we’ll see examples where the value is a
certain formal power series over Z. For our purposes, an invariant will be defined
as follows.

11.1. Definition. Let S be a set. We call a map ω an (S-)invariant, if it assigns
to each pair (R,M) a value in S, where R is an affine local ring and M a finitely
generated R-module. If S is just the natural numbers, then we call ω a numerical
invariant.

If X is a scheme and F a coherent OX -module, then we write

ω(x,F):=ω(OX,x,Fx)(61)

for x an arbitrary point of X . This defines a partition on X , by the level sets

ω−1
F (s):= {x ∈ X | ω(x,F) = s }(62)

where s runs over all possible values in S. Here we are a bit sloppy in our usage of
the word partition, namely we call a collection {Xi} of subsets of X a partition, if
they are mutually disjoint and cover the whole set X ; so we do not always require
the Xi to be non-empty. When we then say that a partition is finite, we mean that
all but finitely many Xi are empty.

Our main goal is now to find necessary conditions for this partition to be con-
structible, meaning that each level set is a constructible set. We say that ω is asymp-
totically definable, if for each d and each s ∈ S, we can find a formula (Val =s)d,
such that a triple (X,x,F) satisfies the formula (Val =s)d over an algebraically
closed field K, if and only if, ω(x,F) = s, where F is a coherent module of degree
complexity at most d on the scheme X (over K) and where x is a point of degree
complexity at most d on X . One verifies without too much effort that asymptotic
definability implies that the partition induced by the level sets on X(K) is con-
structible. Our goal is to extend this to the whole space X . Whence the following
definition and proposition.

We say that a subset F of a scheme X is saturated, if for each x ∈ F , we can
find a K-rational point y ∈ F which lies in the Zariski closure of x (i.e., y is a
specialization of x). Note that a constructible set is saturated. Indeed, without
loss of generality, we may assume that X = SpecA is affine and F is locally closed,
given by

f1 = · · · = fs = 0 ∧ f0 6= 0(63)
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with fi ∈ A. Let x ∈ F be an arbitrary point corresponding to the prime ideal p of
A. Hence fi ∈ p, for i = 1, . . . , s and f0 /∈ p. In particular,

B:=
Af0

pAf0

(64)

is not the zero ring and hence contains at least one maximal ideal m. If we still
write m for its preimage in A, then this is again a maximal ideal, containing p but
not containing f0. Since fi ∈ p, for i = 1, . . . , s, we get that the K-rational point y
corresponding to m lies in F and is a specialization of x.

We call ω saturated, if each of its level sets is saturated, for all pairs (X,F).

11.2. Proposition. Let S be a set and ω an S-invariant. If ω is asymptotically
definable and saturated, then it is constructible.

Moreover, in view of Proposition 1.5, ω takes only finitely many different values
on a scheme X for a fixed coherent OX -module F .

So, our next goal is to find necessary conditions for an invariant to be saturated.
The tools we’ll use for this are geometric in nature, so we will only briefly describe
them. The idea is the following. Suppose that X = SpecA is just an affine curve,
i.e., is one dimensional, reduced and irreducible. Let F be a subset of X . There is
only one non-trivial instance for F to be saturated. Namely, if the generic point η
of X belongs to F , then we have to show that F contains also a K-rational point.
Now, if F = X−1

F (s), then we need to show that for some K-rational point x of X ,
we have that

ω(x,F) = ω(η,F).(65)

In other words, if M is the finitely generated A-module corresponding to F , then
we need to find a maximal ideal m, such that

ω(L,M ⊗ L) = ω(Am,Mm)(66)

where L is the fraction field (or function field) of A (note that L = OX,η). If X has
higher dimension, then we could imitate the previous argument, by going up one
dimension at the time. We call this devissage.

11.3. Definition. We say that an S-invariant ω is devissable, if for all affine rings
A, all finitely generated A-modules M and each prime ideal g of A, we can find a
Zariski open U of SpecA containing g, such that for all prime ideals p of height one
higher than g, containing g and lying in U , we have an equality

ω(Ag,Mg) = ω(Ap,Mp).(67)

Note that a constructible invariant is devissable. Indeed, as in (63), we may
assume that X = SpecA is affine, M is the finitely generated A-module associated
to F and s ∈ S, so that F = ω−1

F (s) is given by (a disjunction) of equations (63).

Let g be a prime ideal belonging to ω−1
F (s). Let U be the Zariski open set of all

prime ideals not containing f0, then U satisfies the requirement in Definition 11.3,
since any prime ideal in U and containing g then belongs to ω−1

F (s), so that both
sides of Equation (67) equal s.

11.4. Proposition. Any devissable invariant is saturated.

Strictly speaking, we do not need to find an open set U of ’good’ liftings, but
a single lifting suffices, to go up all the way to a maximal ideal and whence prove
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saturatedness. However, it will always come for free that we can do this generically
and we will be able to derive some stronger results from this assumption. As a rule,
we will always take the open U in Definition 11.3 inside the regular locus of A/g
(which itself is open, since A is excellent). Under this extra assumption on U and
with p as before in U , containing g and of height one higher than g, we get that
Ap/gAp is a discrete valuation ring, that is to say, its maximal ideal is generated by
a single element f (called a uniformizing parameter). With this extra information,
Equality (67) is often easier to verify.

Sometimes we can reduce the situation to the case that g is even a minimal prime
of A (so that Ag has finite length). This can be achieved by using regular sequences
provided we assume that A is moreover Cohen-Macaulay, see [13] for details. Let
us give some examples.

11.5. Definition. We already encountered some Betti numbers as the dimension
of certain Tor modules; Bass numbers are similarly obtained, using Ext modules
in stead. More precisely, let R be an affine local ring with residue field k and let
M be a finitely generated R-module. We define the i-th Betti number of M to be

ωBetti
i (R,M):= dimk TorR

i (k,M).(68)

This makes ωBetti
i into a numerical invariant. It follows from Theorem 7.7 together

with Proposition 7.2, that this is an asymptotically definable invariant. Similarly,
we define the i-th twisted Bass number of M to be

ωBass
i (R,M):=dimk Extq+i

R (k,M),(69)

where q is the depth of M (i.e., the length of a maximal M -regular sequence inside
the maximal ideal of R). The reason why we add the twist by the depth, is that

otherwise, the invariant would not be devissable. In fact, ExtiR(M,k) = 0, for all
i < q. The same argument as for the Betti numbers, shows that the twisted Bass
numbers ωBass

i are asymptotically definable. The zero-th twisted Bass number is
also known as the type of a module (not to be confused with the model-theoretic
notion of type; there is no connection whatsoever). The crucial result is now the
following.

11.6. Theorem. The numerical invariants ωBetti
i and ωBass

i are devissable whence
constructible.

Let us just give some indications why this is so. For M a finitely generated R-
module, we have that ωBetti

0 (R,M) equals the minimal number of generators of M
by Nakayama’s Lemma. This invariant is well-known to be constructible whence
in particular devissable. The result for the higher Betti numbers and the Bass
numbers then follows from this case by taking a finite free resolution.

The two final examples are cases where S is not the natural numbers, but the
ring Z[[T ]] of all formal power series over Z in one variable T .

11.7. Definition. We define the Hilbert series of a finitely generated R-module
over an affine local ring R with maximal ideal m as the formal power series

HM (T ):=
∞∑

n=0

ℓ(
mnM

mn+1M
)T n(70)
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in the variable T . It is a classical result from Commutative Algebra that HM is
rational. More precisely, it is of the form

HM (T ) =
QM (T )

(1 − T )h
(71)

where h is the dimension of M and where QM is a polynomial over Z with QM (1) 6=
0. The degree of QM is bounded by the so-called Castelnuovo-Mumford regularity
of M . One shows that the Castelnuovo-Mumford regularity of M , and hence the
degree of QM , is uniformly bounded in terms of the degree complexity of M .

Our invariant under investigation here will be the Hilbert numerator ωHilbert,
which assigns to the pair (R,M) the polynomial QM (T ).

Now, let γ be an arbitrary polynomial in Z[T ]. We can write down a formula
expressing that QM = γ as follows. Let d be the degree complexity of M and D
the bound on the degree of QM . We may obviously assume that γ has degree at
most D as well. Now, by the results in Section 7, there exists a bound D′, such
that each of the modules mnM/mn+1M has degree complexity at most D′, for all
n ≤ D. In fact, there is a formula which expresses its specific value. Therefore,
by working out the quotient (71), we can express that γ and QM have the same
coefficients up to order D and whence must be equal. This shows that the invariant
ωHilbert is asymptotically definable. More is true:

11.8. Theorem. The invariant ωHilbert is saturated whence constructible.

11.9. Definition. We define the Poincare series of an affine local ring R with
residue field k as the formal power series

ζ(R):=(1 + T )−h

∞∑

n=0

dimk TorR
n (k, k)T n,(72)

where h is the (Krull) dimension of R. Again, the initial factor is put there to
guarantee that the invariant will be devissable. Note that (1 + T ) is invertible in
Z[[T ]]. Also note that this is an invariant only defined on the collection of local rings
(without a module). All what has been said so far about invariants for modules
adopts to this situation without any effort.

It is still not well understood when this power series is rational, but is so for
complete intersections. For regular local rings it is a polynomial by Serre’s Theo-
rem, and one verifies that in fact ζ(R) = 1. However, there exist counterexamples
to its rationality in general. Therefore, let us call a scheme X Poincare rational, if
for each point x ∈ X , we have that ζ(OX,x) is rational.

Due to the existence of schemes which are not Poincare rational, we seem to stand
little chance in proving that ζ is an asymptotically definable invariant; the argument
used in the Hilbert case completely falls apart here. To get some uniformity, let us
define the m-th truncation of ζ to be the power series (72) truncated at degree m,
i.e., restricting n in the summation to run from 0 to m only.

11.10. Theorem. The truncations of the Z[T ]-invariant ζ are asymptotically de-
finable and devissable whence constructible. In particular, the Z[T ]-invariant ζ is
pro-constructible.

Recall that a subset is called pro-constructible, if it is a (possible infinite) inter-
section of constructible subsets. Let us show that even this partial result has some
pure consequences.
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11.11. Corollary. If the Poincare series of each K-rational point on a scheme X
is rational, then X is Poincare rational.

Proof. Let x be an arbitrary point on X and let γ(T ) be its Poincare series, i.e.,
ζ(OX,x) = γ. Let F be the subset of all points on X for which the Poincare series
is γ, i.e., F = ζ−1(γ). By Theorem 11.10, F is pro-constructible. However, as a
constructible set is saturated and as the intersection of any number of saturated sets
is saturated again, we conclude that F is saturated. Since by construction x ∈ F ,
there exists a K-rational point y ∈ F which is a specialization of x. By assumption
the Poincare series of y is rational and since y ∈ F , this series is precisely γ. �
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