
CLASSIFYING SINGULARITIES UP TO ANALYTIC EXTENSIONS OF
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ABSTRACT. The singularity space consists of all germs(X, x), with X a Noetherian
scheme andx a point, where we identify two such germs if they become the same after an
analytic extension of scalars. This is a Polish space for the metric given by the order to
which infinitesimal neighborhoods agree after base change. In other words, the classifica-
tion of singularities up to analytic extensions of scalars is a smooth problem in the sense
of descriptive set-theory.

1. INTRODUCTION

Roughly speaking, a classification problem consists of a class of objects together with an
equivalence relation telling us which objects to identify; a solution to this problem is then
an ‘effective’ or ‘concrete’ description of the quotient, preferably by a ‘system of complete
invariants’. What constitutes a reasonably concrete or effective solution to a classification
problem, however, might depend on one’s purposes or even one’s taste. Descriptive set-
theory proposes smoothness to be the decisive indication that a classification is explicit
and/or concrete (see for instance [6] for a discussion). More precisely, recall that aPolish
space is a complete metric space containing a countable dense subset. Considering a Polish
space to be concrete is justified by the fact that its underlying Borel structure is in essence
equal to the standard Borel spaceR. With this in mind, an equivalence relation on a Polish
space is calledsmoothif its quotient space is (Borel) isomorphic to a Polish space.

In this paper, we concern ourselves with alocal classification problem from algebraic
geometry: to describe all germs of points on arbitrary Noetherian schemes. Associating to
a point its local ring, the problem reduces to the study of the categoryNoe of all Noetherian
local rings. However, as part of this problem, we would have to classify already all fields,
and even for countable fields [4] or fields of finite transcendence degree [15] these are non-
smooth problems. Hence to circumvent this arithmetical obstruction, we will allow for
‘extensions of scalars’–to be made more precise below–, resulting in the identification of
any two fields of the same characteristic. Even after this modification, the local classifica-
tion problem is probably still not smooth. We introduce one further identification, inspired
in part by Grothendieck’s suggestion to substitute the etale topos for the (classical) Zariski
topos. A down-to-earth interpretation of this point of view is that two local rings can be
considered identical if they have a common etale extension, or more generally, if they have
the same completion. In summary, we say that two Noetherian local rings aresimilar if
they can be made isomorphic by ananalytic extension of scalars, that is to say, by the
process of extending scalars and taking completion. To also make sense of this in mixed
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characteristic, we subsume these types of extensions under the larger class consisting of all
unramified, faithfully flat extensions. We will show thatsimilar points (meaning that their
corresponding local rings are similar) have the same type of singularity (see Theorem5.1).
As a spinoff of this investigation, we obtain a flatness criterion generalizing a result of
Koll ár (Theorem4.14).

Our assertion that classifying points up to similarity is smooth is established by effec-
tively putting a metric on the space of similarity classesNõe, called thedeformation metric.
We will prove that the induced topology is complete, and that the collection of similarity
classes of Artinian local rings with a finitely generated residue field is a countable dense
subset. This shows thatNõe is a Polish space and hence classification up to similarity is
a smooth problem. The deformation metric onNõe is induced by a metric onNoe and in
terms of (germs of) points, it measures to which order the infinitesimal neighborhoods of
two points agree. So far, all concepts are algebraic-geometric in nature, but the existence of
limits relies on a tool from model-theory, to wit, the ultraproduct construction. Of course,
the ultraproduct of Noetherian local rings is in general no longer Noetherian. However, if
we have a Cauchy sequence of Noetherian local rings, then theirseparated ultraproduct
obtained by killing all infinitesimals in the ultraproduct, yields a complete Noetherian local
ring, which, up to similarity, is the limit of the sequence.

In a future paper, we will investigate more properties of the deformation metric and we
content ourselves here with quoting, without proof, two examples which should convince
the reader of the naturality of the metric.

• The mapHilb: Noe→ Z[[t]] associating to a Noetherian local ring its Hilbert
series, is continuous when we viewZ[[t]] in its t-adic topology.

• Among thed-dimensional Noetherian local rings, the collection of all Coh-
en-Macaulay local rings is closed, or put differently, any sufficiently small
deformation of a non-Cohen-Macaulay local ring preserving the dimension is
again non-Cohen-Macaulay. Note that we have to fix the dimension as this is
only an upper-semicontinuous invariant.

2. DEFORMATION METRIC

In this paper, alocal ring (R,m) means a (commutative) ringR with a unique maximal
ideal m. As a rule, we will identify two local rings when they are isomorphic. Except
for a sporadic occurrence of an ultraproduct, all local rings will moreover be Noetherian.
LetNoe denote the category whose objects are (isomorphism classes of) Noetherian local
rings, and whose morphisms are local ring homomorphisms. Note thatNoe is a proper
class, that is to say,not a set. However, in§4, we will define a quotient ofNoe which is a
set.

2.1. Deformation metric. Let (R,m) be a Noetherian local ring. Then-th infinitesimal
deformationof R is by definition the (Artinian) residue ringR/mn and will be denoted
R/n. Recall that the (m-adic) completionR̂ of R is the inverse limit of alln-th infinitesi-
mal deformations ofR, and thatR/n ∼= R̂/n. We define a semi-metric onNoe, called the
deformation metric, as follows. Given two Noetherian local ringsR andS, let d(R,S) be
the infimum of the numbers2−n for which R/n ∼= S/n. In words, the distance between
two local rings is at most2−n if their n-th infinitesimal deformations agree. One easily
verifies that this distance function satisfies all the axioms of a metric, except that two dis-
tinct elements can be at distance zero, so thatd(·, ·) is only a semi-metric. By definition
of completion,d(R,S) = 0 if and only if R̂ ∼= Ŝ, so thatd(·, ·) induces a metric on the
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full subcategory of all complete Noetherian local ringsNoecomp. Since a semi-metric is
a metric if and only if the induced topology is Hausdorff, we callNoecomp the Haus-
dorfficationof Noe. The distance function satisfies theultrametric (or, non-archimedean)
triangle inequalityd(R, T ) ≤ max{d(R,S),d(S, T )}, for all R, S andT in Noe. As a
result the topology induced by the semi-metric, called thedeformation topology, is totally
disconnected.

By convention, the zero-th infinitesimal deformation of a ring is zero (since we think of
m0 as the unit ideal). It follows that the distance between any two local rings is at most
one. Immediately from the definitions we also get:

2.2.Lemma. If d(R,S) < 1, thenR andS have the same residue field; ifd(R,S) < 1/2,
thenR andS have the same embedding dimension.

In particular, embedding dimension is a continuous map fromNoe to the discrete space
Z. This is no longer true for dimension: for instanceR := k[[X]] andRn := R/XnR
lie at distance2−n, yet their dimensions are not the same. One can show, however, that
dimension is upper-semicontinuous.

By an (open)ball B inNoewith centerR andradius0 < δ ≤ 1, we mean the collection
of all S in Noe such thatd(R,S) < δ. Since the metric is non-archimedean, any member
of a ball is its center and every ball is both open and closed in the deformation topology,
that is to say, is aclopen. Because the distance function only takes discrete values (the
powers of1/2), any two radii which lie between two consecutive powers of1/2 yield the
same ball. Therefore, with theradius of a ball B, we mean twice the largest distance
between two members ofB; this is always a power of1/2. (We need to take twice the
distance since we used a strict inequality in the definition of a ball.)

A unit ball is a ballB with radius1 and hence consists of all local rings with the same
residue field. We call this common residue field theresidue fieldof B. This gives a one-
one correspondence between unit balls and fields. More generally, to every ballB, we
associate an Artinian local ringRB, called theresidue ringof B, given as the unique local
ring such thatR/n ∼= RB, for all R ∈ B, where2−n+1 is the radius ofB. Note thatRB

is a center ofB and, moreover, the radius ofB is determined byRB: it is equal to2−n+1

wheren is the nilpotency index ofRB. In conclusion, there is a one-one correspondence
between ballsB and Artinian local rings.

2.3. Cohen’s structure theorems.Cohen’s structure theorems for Noetherian local rings
will play an essential role in this paper, so we quickly review the relevant properties; a good
reference for all this is [10, §29]. For each fieldk of prime characteristicp, there exists a
uniquely defined complete discrete valuation ringV of characteristic zero whose residue
field isk and whose maximal ideal ispV ; we callV thecompletep-ring overk. LetR be a
Noetherian local ring with residue fieldk. We say thatR hasequal characteristicif R andk
have the same characteristic; in the remaining case, we say thatR hasmixed characteristic.
AssumeR is moreover complete and letX be a finite tuple of indeterminates. Cohen’s
structure theorems now claim, among other things, the following:

• if R has equal characteristic, then it is a homomorphic image ofk[[X]];
• if R has mixed characteristic, then it is a homomorphic image ofV [[X]], where

V is the completep-ring overk.

2.4.Proposition. Every ball is a set.

Proof. It suffices to prove this for a unit ballB. The result will follow if we can show
that there is a cardinal numberλ so that every member ofB has cardinality at mostλ. Let
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k be the residue field ofB and letR ∈ B. Since the cardinality of a Noetherian local
ring is at most the cardinality of its completion, we may assume thatR is complete. By
Cohen’s structure theorems,R is a homomorphic image ofV [[X]], whereX is a finite
tuple of indeterminates andV is equal tok in the equal characteristic case, and equal to
the completep-ring overk in the mixed characteristic case. It is clear that in either case,
the cardinality ofV [[X]] is bounded in terms of the cardinality ofk, whence so is its
homomorphic imageR. �

Note that each ballB is infinite: if RB is its residue ring, then the latter is of the form
S/I, where(S, n) is a power series ringV [[X]] as in§2.3. If n is the nilpotency index of
RB, thenS/J ∈ B for any idealJ ⊆ S such thatJ + nn = I.

3. LIMITS AND ULTRAPRODUCTS

Let (M,d) be a semi-metric space and assumed is non-archimedean. To include the
deformation metric in our treatment, we allow forM to be merely a class. Asequencer
in M is simply a mapN → M ; often we viewr as the collection of allr(w) for w ∈ N.
We call r a Cauchy sequencein (M,d), if for each ε > 0, there existsN , such that
d(r(w), r(w + 1)) < ε, for all w > N . We say that two Cauchy sequencesr ands are
equivalent, denotedr ∼ s, if for eachε > 0, there existsN , such thatd(r(w), s(w)) < ε,
for all w > N . LetCau(M,d), or simply,Cau(M), denote the set of all Cauchy sequences
in M . We makeCau(M) into a semi-metric space by defining thedistancebetween two
Cauchy sequencesr ands, denotedd(r, s), as the lim-sup of the distancesd(r(w), s(w)).
Whence two Cauchy sequences are equivalent if and only if their distance is zero. There is a
natural isometryM → Cau(M) sendingx to the constant sequencex given asx(w) := x;
we will identify the elementx with its constant sequence inCau(M).

A limit of a sequencer is an elementx ∈ M such thatr ∼ x. It is easy to see that ifr
has a limit, then it must be Cauchy. We call(M,d) completeif every Cauchy sequence has
a unique limit. This implies in particular thatd is a metric. Thecompletionof (M,d) is the
metric spacêM := Cau(M)/ ∼ with its induced metric described above; it is a complete
metric space containingM as a dense subspace.

For the remainder of this section, we work inNoe with its deformation metric (in fact,
we may even restrict our study to the HausdorfficationNoecomp). We will see that in order
to understand̂Noe, we need a notion from model-theory: the ultraproduct construction
(some references for ultraproducts are [3], [8, §9.5] or the brief review in [12, §2]) .

Ultraproducts. LetR be a sequence inNoe, that is to say, a collection of Noetherian local
rings (Rw,mw), for w ∈ N. Let U be a non-principal ultrafilter onN. Theultraproduct
of the Rw with respect toU , denotedRU , is defined as a certain homomorphic image
of the product of theRw. It is again a local ring, with maximal idealmU given as the
ultraproduct of themw. In general, however,RU will no longer be Noetherian. If almost
all Rw have embedding dimension at mostn, then so doesRU . Call an elementr ∈ RU
an infinitesimalif it is contained in each power ofmU . The set of all infinitesimals is an
ideal inRU and the residue ring obtained by modding out this ideal is called theseparated
ultraproductof theRw and is denotedR(U). If almost allRw have embedding dimension
at mostn, then so doesR(U). Moreover, by the saturatedness property of ultraproducts, the
separated ultraproduct is a complete local ring, whence Noetherian by [10, Theorem 29.4]
(for more details see [14, Lemma 10.1]). In particular, ifR is a Cauchy sequence, then by
Lemma2.2, almost of all its members have the same residue field, called theresidue field
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of R, and the same embedding dimension, so thatR(U) is a complete Noetherian local
ring.

Henceforth, we will only consider separated ultraproducts of Noetherian local rings
of bounded embedding dimension, so that we tacitly assume that they are complete and
Noetherian. Moreover, the particular choice of ultrafilterU will no longer matter, and we
will denote the respective ultraproduct and separated ultraproduct ofR simply by R∞
andR(∞).

1 In caseR is a constant sequence, given by a Noetherian local ringR, then
we also writeR∞ andR(∞) for the (separated) ultraproduct and call it the (separated)
ultrapowerof R. By Łos’ Theorem, ultrapowers commute with base change, that is to say
(R/I)∞ ∼= R∞/IR∞; the same is true for separated ultrapowers by [14, Corollary 5.3]:

3.1. Lemma. If R is a Noetherian local ring andI an ideal in R, then (R/I)(∞) =
R(∞)/IR(∞).

3.2. Proposition. If R and S are Cauchy sequences inNoe, then d(R(∞),S(∞)) =
d(R,S). In particular,R ∼ S if and only ifR(∞)

∼= S(∞).

Proof. The last assertion is immediate by the first. Supposed(R,S) ≤ 2−n. This means
that for someN and allw > N , we haveRw/n ∼= Sw/n, whereRw andSw are the
components ofR andS respectively. By Lemma3.1, then-th infinitesimal deformations
R(∞)/

n andS(∞)/
n are isomorphic, showing thatd(R(∞),S(∞)) ≤ 2−n. In conclu-

sion, we showedd(R(∞),S(∞)) ≤ d(R,S). To prove the converse, we may assume that
d(R,S) = 2−n for somen > 0. Since2−n is an isolated value, there is someN (namely
the one corresponding toε := 2−n−1), such that

(1) d(Rw, Sw) = 2−n,

for all w > N . Towards a contradiction, supposed(R(∞),S(∞)) < 2−n. Hence

Rw/n+1 ∼= Sw/n+1

for almost allw, contradicting (1). �

In particular, the separated ultraproduct of alln-th approximations of a Noetherian local
ring R is equal to the separated ultrapower ofR, and in fact, to the separated ultrapower of
any Noetherian local ring having the same completion asR.

4. SCALAR EXTENSIONS

Proposition3.2 is a step in the direction of finding limits inNoe. However, the residue
field of a separated ultraproductR(∞) of a Cauchy sequenceR is the ultrapower of the
residue field ofR, by Lemma3.1, and hence there is no chance thatR(∞) is a limit of R
in Noe. In this section, we will find a way to control this change of base field phenomenon.
This will allow us in the next section to define the similarity relation, which will then solve
our limit problem.

Let (R,m) be a Noetherian local with residue fieldk and letl be a field extension of
k. With ascalar extension ofR overl we mean a localR-algebra(S, n) with residue field
l such thatR → S is faithfully flat, n = mS andR → S induces the embeddingk ⊆ l
on the residue fields. Ascalar extensionof a local ringR is then a scalar extension ofR
over some field extension of its residue field. The condition thatn = mS is also expressed

1There is really no reason to restrict only to ultraproducts on a countable index set, although it is the only type
we will use in this paper. However, for the separated ultraproduct to be Noetherian and complete, we do have
to impose that the ultrafilter is countably incomplete, which automatically holds on countable index sets and can
always be arranged on arbitrary index sets.
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by saying thatR → S hastrivial closed fiberor that it isunramified. By [5, 0III 10.3.1],
for any Noetherian local ringR and any extensionl of its residue field, at least one scalar
extension ofR overl exists; we will reprove this in Corollary4.4below.

4.1. Proposition. Given a commutative triangle of local homomorphisms between Noe-
therian local rings

(2)

�
�

�
�

�
��

A
A
A
A
A
AU-

(R,m)

(S, n) (T, p)g

f h

If any two are scalar extensions, then so is the third.

Proof. It is clear that the composition of two scalar extensions is again scalar. Assume
g andh are scalar extensions. Thenf is faithfully flat andmT = p = nT . Sinceg is
faithfully flat, we getmS = mT ∩ S = nT ∩ S = n, showing thatf is also a scalar
extension. Finally, assumef andh are scalar extensions. Let

(3) . . . Rb2 → Rb1 → R → R/m → 0

be a free resolution ofR/m. SinceS is flat overR, tensoring yields a free resolution

(4) . . . Sb2 → Sb1 → S → S/mS → 0.

By assumptionS/mS is the residue fieldl of S. Therefore, we can calculateTorS
1 (T, l) as

the homology of the complex

(5) . . . T b2 → T b1 → T → T/mT → 0

obtained from (4) by tensoring overS with T . However, (5) can also be obtained by
tensoring (3) over R with T . SinceT is flat overR, the sequence (5) is exact, whence
TorS

1 (T, l) = 0. By the local flatness criterion,T is flat overS. Sincen = mS and
p = mT , we getp = nT , showing that alsog is a scalar extension. �

Three important examples of scalar extensions are given by the following proposition.

4.2.Proposition. LetR be a Noetherian local ring.

(4.2.1) The natural mapR → R̂ is a scalar extension.
(4.2.2) Any etale map is a scalar extension.
(4.2.3) The natural mapR → R(∞) is a scalar extension, whereR(∞) is a separated

ultrapower ofR.

Proof. The first two assertions are well-known, so remains to show the last. Letm be
the maximal ideal ofR. It is easy to show thatmR(∞) is the maximal ideal ofR(∞).
So remains to prove thatR → R(∞) is flat. SinceR(∞) is complete, we get a natural

homomorphismR̂ → R(∞) and it suffices to show that this is flat. Hence, without loss of
generality, we may assume thatR is complete. In particular,R is a homomorphic image
of a regular local ring and if we prove the corresponding result for this regular local ring,
then we get the desired result by Lemma3.1. Therefore, we may moreover assume thatR
is regular. SincemR(∞) is the maximal ideal ofR(∞) and sinceR(∞) is also regular by
[14, Theorems 4.2 and 10.6], of the same dimension asR, the flatness ofR → R(∞) then
follows from [10, Theorem 23.1]. �



CLASSIFYING SINGULARITIES UP TO ANALYTIC EXTENSIONS OF SCALARS 7

In fact, (4.2.2) has the following converse: ifR → S is essentially of finite type induc-
ing a finite separable extension on the residue fields, thenR → S is a scalar extension if
and only if it is etale. In this sense, scalar extensions are generalizations of etale maps.
This shows already that classification up to scalar extension is a reasonable and interesting
problem. To gather further support for this claim, we will now explore how closely related
scalar extensions are to isomorphisms. An important observation in that direction, one we
will use several times below, is that a scalar extension of complete Noetherian local rings
inducing an isomorphism on their residue fields is itself an isomorphism; see [10, Theorem
8.4]. Hence it is of interest to generate scalar extensionsR → S with S complete. We will
see that there exists a canonical choice over any field.

4.3. Completions along a residual extension.Let (R,m) be a Noetherian local ring with
residue fieldk and letl be a field extension ofk. Thecompletion ofR alongl is the (unique)
localR-algebraRl̂ solving the following universal problem: given an arbitrary Noetherian
localR-algebraS with residue fieldl, if S is complete, then there exists a unique localR-
algebra homomorphismRl̂ → S. Whenk = l, we recover the usual completion ofR, that
is to say,Rk̂ := R̂. Here and elsewhere, we say that there is auniquehomomorphism with
certain properties, when we actually mean that there exists a unique homomorphismup to
isomorphism; this is consistent with our practice of identifying two local rings when they
are isomorphic.

To prove the existence of a completion alongl, we have to treat the equal and mixed
characteristic cases separately. Firstly, assumeR has equal characteristic (this case is also
discussed in [7, (6.3)]). By Cohen’s structure theorems, there exists an embeddingk → R̂.
Let Rl̂ be them(R̂⊗k l)-adic completion of̂R⊗k l. To see that this is a completion along
l, let S be a Noetherian localR-algebra with residue fieldl and assumeS is complete. By
the universal property of ordinary completions, we get a unique homomorphismR̂ → S.
SinceS is complete, we can find an embeddingl → S which agrees on the subfieldk
of l with the compositionk → R̂ → S. By the universal property of tensor products,
the two mapsR̂ → S and l → S combine to a unique localR-algebra homomorphism
R̂ ⊗k l → S, and using once more the universal property of completion, this then yields a
uniqueR-algebra homomorphismRl̂ → S.

In the mixed characteristic case, coefficient fields no longer exist and we now proceed
as follows. LetV be the (unique) completep-ring with residue fieldk, wherep is the
characteristic ofk (see§2.3). We first define the completion ofV alongl, that is to say,
V ̂l , as the unique completep-ring with residue fieldl. That the latter satisfies the universal
property of a completion alongl is proven in [10, Theorem 29.2]. To defineRl̂ , letS be any
Noetherian localR-algebra with residue fieldl extendingk and assumeS is complete. As
before, we have a unique localR-algebra homomorphism̂R → S. By Cohen’s structure
theorems, there exists a commutative diagram of local homomorphisms

(6)

?

-

?
-

V ̂lV

S.R̂



8 HANS SCHOUTENS

By the universal property of tensor products, we get a uniqueR-algebra homomorphism
R̂⊗V V ̂l → S. DefineRl̂ now as them(R̂⊗V V ̂l )-adic completion of̂R⊗V V ̂l , so that
we get a unique localR-algebra homomorphismRl̂ → S, as required. �

4.4.Corollary. For every Noetherian local ringR and every extension fieldl of its residue
field, Rl̂ , the completion ofR along l, exists and is unique. For every idealI in R, the
completion ofR/I alongl is equal toRl̂ /IRl̂ .

Moreover, the natural mapR → Rl̂ is a scalar extension overl.

Proof. Existence was proven above; uniqueness then follows formally from being a solu-
tion to a universal problem. To prove the second assertion, assumeR/I → S is a local
homomorphism withS a complete Noetherian local ring with residue fieldl. The com-
positionR → R/I → S yields by definition a unique localR-algebra homomorphism
Rl̂ → S. SinceIS = 0, the latter homomorphism factors throughRl̂ /IRl̂ . As for the
last assertion, in the equal characteristic case, the base changeR̂ → R̂ ⊗k l of k ⊆ l is
faithfully flat. Since completion is exact, each map in

R → R̂ → R̂⊗k l → Rl̂

is faithfully flat, whence so is their composition. In the mixed characteristic case,V ̂l is
torsion-free whence flat overV . Hence by the same argument as in the equal characteristic
case, the composite map

R → R̂ → R̂⊗V V ̂l → Rl̂

is faithfully flat. By our second assertion,Rl̂ /mRl̂ is the completion ofR/m ∼= k alongl
in either characteristic. In other words,Rl̂ /mRl̂

∼= l and hence in particular,mRl̂ is the
maximal ideal ofRl̂ . This proves thatR → Rl̂ is a scalar extension. �

4.5.Proposition. LetR → S be a scalar extension overl. If S is complete, thenS ∼= Rl̂ .

Proof. By the universal property, we have a localR-algebra homomorphismRl̂ → S. It
follows from [10, Theorem 8.4] thatRl̂ → S is surjective. SinceR → Rl̂ andR → S are
scalar extensions by Corollary4.4 and by assumption respectively,Rl̂ → S is faithfully
flat by Proposition4.1, whence injective. �

4.6. Corollary (Lifting of scalar extensions). Let R → S be a scalar extension withS
complete. IfR is the homomorphic image of a Noetherian local ringA, then there exists a
scalar extensionA → B whose base change isR → S, that is to say,S = B ⊗A R.

Proof. We leave it to the reader to verify that, after taking completions, we may assume that
alsoA andR are complete. By Cohen’s structure theorems,A andR are the homomorphic
images ofV [[X]] modulo some idealsJ ⊆ I respectively, whereV is either their common
residue field or otherwise a completep-ring with that residue field and whereX is a finite
tuple of indeterminates. Moreover,S ∼= Rl̂ by Proposition4.5, wherel is the residue
field of S. In particular,S ∼= V ̂l [[X]]/IV ̂l [[X]]. Hence puttingB := V ̂l [[X]]/JV ̂l [[X]]
yields a scalar extensionA → B with A/IA = R → B/IB = S, as required. �

The following result is a sharpening of [11, Theorem 2.4].

4.7.Corollary. Let R be a Noetherian local ring with residue fieldk. If k∞ is the ultra-
power ofk, thenRk̂∞

is equal to the ultrapowerR(∞).

Proof. By Lemma3.1, the residue field ofR(∞) is k∞. SinceR → R(∞) is a scalar
extension by (4.2.3), and sinceR(∞) is complete,R(∞)

∼= Rk̂∞
by Proposition4.5. �
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4.8.Corollary. Let R → S be a finite local homomorphism inducing a trivial extension
on the residue fields. For every extensionl of this common residue field,Sl̂

∼= Rl̂ ⊗R S.

Proof. The base changeS → Rl̂ ⊗R S is faithfully flat. Letm andn be the maximal ideals
of R andS respectively. Since

(Rl̂ ⊗R S)/n(Rl̂ ⊗R S) ∼= (Rl̂ /mRl̂ )⊗R/m (S/n) ∼= l ⊗k k = l

the idealn(Rl̂ ⊗R S) is a maximal ideal. Since the base changeRl̂ → Rl̂ ⊗R S is finite
with trivial residue field extension and sinceRl̂ is complete whence Henselian,Rl̂ ⊗R S
is a complete local ring. Hence we showed thatS → Rl̂ ⊗R S is a scalar extension and
since the latter ring is complete with residue field equal tol, it is isomorphic toSl̂ by
Proposition4.5. �

4.9.Corollary. Let k ⊆ l be an extension of fields and letBk andBl be the unique unit
balls inNoe with residue fieldk and l respectively. The map sending a ring inBk to its
completion alongl is an isometryBk → Bl.

Proof. TakeR,S ∈ Bk. Clearly, the completionsRl̂ andSl̂ alongl belong both toBl.
Supposed(R,S) ≤ 2−n, that is to say, theirn-th infinitesimal deformationsR/n andS/n

are isomorphic. By Corollary4.4, the completions ofR/n andS/n alongl are respectively
Rl̂ /n andSl̂ /n, and therefore are isomorphic, showing thatd(Rl̂ , Sl̂ ) ≤ 2−n. �

4.10.Corollary. SupposeR is an excellent local ring. IfR → S is a scalar extension
inducing a separable extension on the residue fields, thenR → S is a regular homomor-
phism.

Proof. By [10, Theorem 28.10], the scalar extensionR → S is formally smooth, since it
is unramified and the residue field extension is separable. The assertion now follows from
a result by Andŕe in [1] (see also [10, p. 260]). �

In fact, with aid of Proposition4.5, Corollary4.6and Cohen’s structure theorems, one
reduces to proving thatV [[X]] → V ̂l [[X]] is regular, whereV is either a field or a com-
pletep-ring and wherel is a separable extension of the residue field ofV . This approach
circumvents the use of André’s deep result.

4.11. Definition. A Noetherian local ringR is calledanalytically irreducibleif R̂ is a
domain; it is calledabsolutely analytically irreducible, if Rk̂alg is a domain, wherekalg is
the algebraic closure of the residue field ofR; and it is called auniversally irreducibleif
any scalar extension ofR is a domain.

4.12.Corollary. If R is an excellent normal local domain with perfect residue field, then
R is universally irreducible.

Proof. Let S be a scalar extension ofR. By Corollary4.10, the mapR → S is regular and
henceS is again normal by [10, Theorem 32.2], whence a domain. �

4.13.Proposition. If R is absolutely analytically irreducible, then it is universally irre-
ducible.

Proof. Since we will make no essential use of this result, we only give a sketch of a proof.
We may reduce to the case thatR is a complete Noetherian local domain with algebraically
closed residue fieldk. We need to show thatRl̂ is a domain, wherel is an arbitrary
extension field ofk. By Cohen’s structure theorems, there exists a finite extensionS :=
V [[X]] ⊆ R, whereV is eitherk or the completep-ring over k and X is a tuple of
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indeterminates. WriteR = S[Y ]/p for some finite tuple of indeterminatesY , so thatp is
in particular a prime ideal. Since the fraction field ofSl̂ = V ̂l [[X]] is a regular extension
of the fraction field ofS = V [[X]], the same argument as in the proof of [2, Lemma 5.21]
then shows thatpSl̂ [Y ] is a prime ideal. Hence we are done, sinceRl̂ = Sl̂ [Y ]/pSl̂ [Y ]
by Corollary4.8. �

We are ready to formulate a flatness criterion generalizing [9, Theorem 8].

4.14.Theorem. LetR → S be a local homomorphism of Noetherian local rings. Assume
R is universally irreducible, e.g., an excellent normal local domain with perfect residue
field, or a complete local domain with algebraically closed residue field. IfR → S is un-
ramified anddim(R) = dim(S), thenR → S is faithfully flat, whence a scalar extension.

Proof. Recall that(R,m) → (S, n) being unramified means thatn = mS. It suffices
to prove the assertion under the additional assumption that bothR andS are complete.
Indeed, ifR → S is arbitrary, thenR̂ → Ŝ satisfies again the hypotheses of the theorem
and therefore by assumption is faithfully flat. By an easy descent argument,R → S is then
also faithfully flat.

So assumeR andS are complete and letl be the residue field ofS. By assumption,
Rl̂ is a domain, of the same dimension asR. By the universal property of the completion
along l, we get a localR-algebra homomorphismRl̂ → S. By [10, Theorem 8.4], this
homomorphism is surjective. It is also injective, sinceRl̂ andS have the same dimension
andRl̂ is a domain. HenceRl̂

∼= S, so thatR → S is a scalar extension. �

We end this section with a convergence criterion in terms of scalar extensions.

4.15.Theorem. LetR be a Cauchy sequence inNoe and letS be a Noetherian local ring
with the same residue fieldk asR. The Cauchy sequenceR converges toS if and only if
the separated ultraproductR(∞) is a scalar extension ofS.

In fact, letl be any extension field of the ultrapowerk∞ ofk. If Rl̂ denotes the sequence
of rings obtained by taking the completions alongl of all members ofR, thenRl̂ is a
Cauchy sequence converging to(R(∞))l̂ .

Proof. By Proposition3.2, if S is the limit of R, thenS(∞)
∼= R(∞). SinceS → S(∞)

is a scalar extension by (4.2.3), we proved the direction implication. For the converse,
assumeS → R(∞) is a scalar extension. By Corollary4.7, we have an isomorphism
S(∞)

∼= Sk̂∞
. SinceR(∞) is complete with residue fieldk∞, it is also isomorphic toSk̂∞

by Proposition4.5. It follows then from Proposition3.2 thatd(R, S) = 0, that is to say,
thatS is a limit of R.

To prove the last assertion, letRw be the rings inR and fix somen. SinceR is
Cauchy, there existswn so that forw > wn, all Rw/n are isomorphic, say toT . By
Lemma3.1, the n-th infinitesimal deformationR(∞)/

n is isomorphic to the separated
ultrapowerT (∞); the latter is isomorphic toTk̂∞

by Corollary4.7; and this in turn is iso-

morphic to
(
(Rw)k̂∞

)
/n, for all w > wn by Corollary4.4. In summary, we showed that

d((Rw)k̂∞
,R(∞)) ≤ 2−n, for all w > wn. In view of Corollary4.4, taking completions

alongl yieldsd((Rw)l̂ , (R(∞))l̂ ) ≤ 2−n, for all w > wn. Since this holds for alln, the
assertion follows. �
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5. SIMILARITY SPACE

We now introduce an equivalence relation onNoe which, although coarser than the
isomorphism relation, preserves most local singularity properties (see for instance The-
orem5.1 below). Namely, we say that two Noetherian local ringsR andS aresimilar,
denotedR ≈ S, if they admit a common scalar extension. LetT be this common scalar
extension. Its completion is again a scalar extension and by Proposition4.5, it is therefore
isomorphic to bothRl̂ andSl̂ , wherel is the residue field ofT . In other words, we showed
thatR ≈ S if and only if Rl̂

∼= Sl̂ for some sufficiently large common extensionl of their
respective residue fields. It follows easily from this that≈ is an equivalence relation. The
collection of all local rings similar to a given Noetherian local ringR is called thesimi-
larity classof R and is denoted[R]. Immediately from the results in [10, §23] and [13,
Proposition 9.3] (where the notion of asingularity defectis introduced), we get:

5.1.Theorem. If two Noetherian local rings are similar, then they have the same dimen-
sion, depth and Hilbert series, and one is regular (respectively, Cohen-Macaulay, Goren-
stein, complete intersection) if and only if the other is. More generally, any two similar
local rings have the same singularity defects.

Using Corollary4.10, other properties, such as being reduced or normal, are also in-
variant under the similarity relation, provided the rings are excellent with perfect residue
field. Note that being a domain is not preserved under the similarity relation, necessitating
definitions4.11.

5.2. Proposition. Any two separated ultrapowers of a Noetherian local ring, or more
generally, any two Noetherian local rings which are elementary equivalent, are similar.

More generally, letR := (Rw)w andS := (Sw)w be sequences of Noetherian local
rings of embedding dimension at mostd. If almost eachRw is similar to Sw, then the
respective separated ultraproductsR(∞) andS(∞) are also similar.

Proof. SupposeR andS are elementary equivalent Noetherian local rings. By the Keisler-
Shelah theorem (see [8, Theorem 9.5.7]), some ultrapower ofR andS are isomorphic,
whence so are their corresponding separated ultrapowers (strictly speaking, the underlying
index set will in general no longer be countable, so that we have to make some minor
modifications alluded to in footnote (1); details are left to the reader). By Proposition4.2,
these are scalar extensions ofR andS respectively, proving the first assertion.

To prove the second assertion, we may without loss of generality assume that all rings
are complete. By our discussion above, we may further reduce to the case thatSw

∼=
(Rw)l̂w

, for some field extensionlw of the residue field ofRw. SinceRw is a homomor-
phic image of ad-dimensional regular local ring by Cohen’s structure theorems, and since
the property we seek to prove is preserved under homomorphic images by Lemma3.1
and Corollary4.4, we may moreover assume by Corollary4.6 that eachRw is regular, of
dimensiond. By Theorem5.1, almost eachSw is regular, also of dimensiond. By [14,
Theorems 4.2 and 10.6], the separated ultraproductsR(∞) andS(∞) are therefore also
d-dimensional regular local rings. SinceR(∞) → S(∞) is unramified by Lemma3.1, it is
faithfully flat by [10, Theorem 23.1], whence a scalar extension, as we wanted to show.�

We denote the collection of all similarity classes of Noetherian local rings byNõe. By
(4.2.1), the similarity relation restricted toNoecomp has the same quotientNõe. Although
Noe was only a class, we do no longer have this complication for its quotient:

5.3.Proposition. The quotientNõe is a set.
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Proof. Let [R] be a similarity class of Noetherian local rings and letk be the residue field
of R. SinceR ≈ R̂, we may assume thatR is complete, whence by Cohen’s structure the-
orems, the homomorphic image ofS := V [[X]] with V either equal tok or to the complete
p-ring overk, and withX a finite tuple of indeterminates. SupposeI = (f1, . . . , fs)S.
We may choose a subringV0 of V of size at most the continuum so that it contains all
coefficients of thefi and so thatV0 is again a field or a completep-ring. LetS0 := V0[[X]]
andI0 = (f1, . . . , fs)S0, so thatS ∼= (S0)k̂ . Hence by base changeR ∼= S/I is a scalar
extension ofS0/I0, so thatS0/I0 ≈ R. In conclusion, we showed that every similarity
class contains a ring of size at most the continuum, and thereforeNõe is a set. �

5.4. Similarity metric. We want to extend the metric onNoe to a metric on the similarity
spaceNõe, in such a way that the natural mapNoe → Nõe preserves the distance. For
two similarity classes[R] and[S], let d([R], [S]) be equal to the infimum of alld(R′, S′)
with R′ ≈ R andS′ ≈ S. Alternatively, recall that for a (semi-)metric space(M,d), the
distance between two subclassesU andV is defined to be the infimum of alld(x, y) with
x ∈ U andy ∈ V ; henced([R], [S]) is just the distance between[R] and [S] viewed as
subclasses ofNoe.

5.5.Lemma. For all Noetherian local ringsR andS and alln ∈ N, we haved([R], [S]) ≤
2−n if and only ifR/n ≈ S/n.

Proof. ChooseR′ ≈ R andS′ ≈ S so thatd([R], [S]) = d(R′, S′). Without loss of
generality, we may assumeR′ andS′ to be complete. LetR/n, R′/n, S/n andS′/n

be then-th infinitesimal deformations ofR, R′, S andS′ respectively. Ifd(R′, S′) ≤
2−n, thenR′/n ∼= S′/n and henceR/n ≈ S/n. Conversely, assumeR/n ≈ S/n and
let T be a common scalar extension ofR/n andS/n. Let l be the residue field ofT .
By Corollary 4.4, the n-th infinitesimal deformations ofRl̂ andSl̂ are equal toT . In
other words,d(Rl̂ , Sl̂ ) ≤ 2−n. Sinced([R], [S]) is defined as an infimum,d([R], [S]) ≤
2−n. �

5.6.Corollary. The quotientNõe endowed with the distance functiond is an ultrametric
space.

Proof. The ultrametric triangle inequality follows immediately from Lemma5.5 and the
fact that≈ is an equivalence relation. To show that it is a metric supposed([R], [S]) = 0.
By Lemma5.5, then-th infinitesimal deformationsR/n andS/n of R andS are simi-
lar, for all n. Hence there exists a common scalar extensionTn of R/n andS/n. We may
inductively chooseTn+1 to have a residue field containing the residue field ofTn by Corol-
lary 4.9, since scalar extensions can only make the distance smaller. Letl be the union of
all these residue fields. By Corollary4.4, then-th infinitesimal deformations ofRl̂ and
Sl̂ are equal to(Tn)l̂ . Since this holds for alln, we showed thatd(Rl̂ , Sl̂ ) = 0 whence
Rl̂

∼= Sl̂ and hence[R] = [S]. �

It follows from Theorem4.15 that given a Cauchy sequenceR in Noe, the sequence
Rk̂∞

has a limit, wherek∞ is the ultrapower of the residue field ofR. Since the cor-
responding members ofR andRk̂∞

are similar, we showed that every Cauchy sequence
becomes convergent after replacing each of its components by an appropriately chosen
similar ring. Therefore, the next result should not come as a surprise:

5.7.Theorem. The ultrametric spaceNõe is complete.
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Proof. We will define an isometrŷc : N̂õe→ Nõe as follows. We start with defining a map
c : Cau(Nõe) → Nõe. Let R̃ := ([Rw])w be a Cauchy sequence inNõe and letR(∞) be
the separated ultraproduct of theRw (this is a complete Noetherian local ring since almost
all Rw have the same embedding dimension). Definec(R̃) := [R(∞)]. By Proposition5.2,
the mapc is well-defined, that is to say, does not depend on the choice of representatives
Rw. SupposẽS := ([Sw])w is a second Cauchy sequence which is equivalent toR̃ and let
S(∞) be the separated ultraproduct of theSw. For a fixedn, we haved([Rw], [Sw]) ≤ 2−n

for all sufficiently largew. By Lemma5.5, then-th infinitesimal deformations ofRw and
Sw are therefore similar, for all sufficiently largew. By Proposition5.2, then so are then-th
infinitesimal deformations ofR(∞) andS(∞), so thatd([R(∞)], [S(∞)]) ≤ 2−n by another
application of Lemma5.5. Since this holds for alln, we showed that[R(∞)] = [S(∞)]. By
definition of completion,c therefore factors through a map

ĉ : N̂õe→ Nõe.

We leave it to the reader to check thatĉ preserves the metric. Note thatĉ restricted to
Nõe is the identity, since a separated ultrapower is a scalar extension by Proposition5.2.
Hencêc must be surjective. To prove injectivity, assumeR andS are Cauchy sequences in
Noe whose respective separated ultraproductsR(∞) andS(∞) are similar. Letl be a large
enough field extension so that

(R(∞))l̂
∼= (S(∞))l̂ .

By Theorem4.15, the (component-wise) completionRl̂ along l converges to(R(∞))l̂ ,
and likewiseSl̂ converges to(S(∞))l̂ . Therefore,Rl̂ andSl̂ , as they converge to the
same limit, are equivalent, which proves thatĉ is injective. �

5.8.Theorem. The ultrametric spaceNõe is a Polish space. In particular, the similarity
relation is smooth.

Proof. In view of Theorem5.7, it remains to show thatNõe contains a countable dense
subset. We already observed that there is a one-one correspondence between balls and
Artinian local rings inNoe, so that the Artinian local rings form a dense subset ofNoe

whence ofNõe. Let R be an Artinian local ring with residue fieldk. By Cohen’s structure
theorems,R is of the formV [[X]]/I, whereV is eitherk or the completep-ring overk,
and whereX is a tuple of indeterminates. SinceR is Artinian, it is in fact finitely generated
overV . Hence, by an argument similar to the one in the proof of Proposition5.3, there
exists a finitely generated subfieldk0 ⊆ k and an Artinian local ringR0 with residue field
k0, such thatR0 ≈ R. Since there are only countably many finitely generated fields, the
collection of all theseR0 is again countable. �

5.9.Remark.Instead of working with the categoryNoe in the above, we can do exactly the
same thing with the categoryNoeZ of all Noetherian localZ-algebras, forZ a Noetherian
ring, so that the morphisms are now given by localZ-algebra homomorphisms.
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