CLASSIFYING SINGULARITIES UP TO ANALYTIC EXTENSIONS OF
SCALARS

HANS SCHOUTENS

ABSTRACT. The singularity space consists of all gerfis, z), with X a Noetherian
scheme and a point, where we identify two such germs if they become the same after an
analytic extension of scalars. This is a Polish space for the metric given by the order to
which infinitesimal neighborhoods agree after base change. In other words, the classifica-
tion of singularities up to analytic extensions of scalars is a smooth problem in the sense
of descriptive set-theory.

1. INTRODUCTION

Roughly speaking, a classification problem consists of a class of objects together with an
equivalence relation telling us which objects to identify; a solution to this problem is then
an ‘effective’ or ‘concrete’ description of the quotient, preferably by a ‘system of complete
invariants’. What constitutes a reasonably concrete or effective solution to a classification
problem, however, might depend on one’s purposes or even one’s taste. Descriptive set-
theory proposes smoothness to be the decisive indication that a classification is explicit
and/or concrete (see for instan¢# for a discussion). More precisely, recall thaPalish
space is a complete metric space containing a countable dense subset. Considering a Polish
space to be concrete is justified by the fact that its underlying Borel structure is in essence
equal to the standard Borel spdeWith this in mind, an equivalence relation on a Polish
space is calledmoothif its quotient space is (Borel) isomorphic to a Polish space.

In this paper, we concern ourselves witfoaal classification problem from algebraic
geometry: to describe all germs of points on arbitrary Noetherian schemes. Associating to
a point its local ring, the problem reduces to the study of the categoswf all Noetherian
local rings. However, as part of this problem, we would have to classify already all fields,
and even for countable fields][or fields of finite transcendence degréé]these are non-
smooth problems. Hence to circumvent this arithmetical obstruction, we will allow for
‘extensions of scalars’-to be made more precise below-, resulting in the identification of
any two fields of the same characteristic. Even after this modification, the local classifica-
tion problem is probably still not smooth. We introduce one further identification, inspired
in part by Grothendieck’s suggestion to substitute the etale topos for the (classical) Zariski
topos. A down-to-earth interpretation of this point of view is that two local rings can be
considered identical if they have a common etale extension, or more generally, if they have
the same completion. In summary, we say that two Noetherian local ringsraitar if
they can be made isomorphic by analytic extension of scalarshat is to say, by the
process of extending scalars and taking completion. To also make sense of this in mixed
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characteristic, we subsume these types of extensions under the larger class consisting of all
unramified, faithfully flat extensions. We will show thsitilar points (meaning that their
corresponding local rings are similar) have the same type of singularity (see Thedjem
As a spinoff of this investigation, we obtain a flatness criterion generalizing a result of
Kollar (Theoremt.14).

Our assertion that classifying points up to similarity is smooth is established by effec-
tively putting a metric on the space of similarity clasbig, called thedeformation metric
We will prove that the induced topology is complete, and that the collection of similarity
classes of Artinian local rings with a finitely generated residue field is a countable dense
subset. This shows thatoe is a Polish space and hence classification up to similarity is
a smooth problem. The deformation metricée is induced by a metric ohloe and in
terms of (germs of) points, it measures to which order the infinitesimal neighborhoods of
two points agree. So far, all concepts are algebraic-geometric in nature, but the existence of
limits relies on a tool from model-theory, to wit, the ultraproduct construction. Of course,
the ultraproduct of Noetherian local rings is in general no longer Noetherian. However, if
we have a Cauchy sequence of Noetherian local rings, thensiyearated ultraproduct
obtained by killing all infinitesimals in the ultraproduct, yields a complete Noetherian local
ring, which, up to similarity, is the limit of the sequence.

In a future paper, we will investigate more properties of the deformation metric and we
content ourselves here with quoting, without proof, two examples which should convince
the reader of the naturality of the metric.

e The mapHilb: Noe — Z[[t]] associating to a Noetherian local ring its Hilbert
series, is continuous when we viggi(¢]] in its ¢t-adic topology.

e Among thed-dimensional Noetherian local rings, the collection of all Coh-
en-Macaulay local rings is closed, or put differently, any sufficiently small
deformation of a non-Cohen-Macaulay local ring preserving the dimension is
again non-Cohen-Macaulay. Note that we have to fix the dimension as this is
only an upper-semicontinuous invariant.

2. DEFORMATION METRIC

In this paper, dcalring (R, m) means a (commutative) rin with a unique maximal
idealm. As a rule, we will identify two local rings when they are isomorphic. Except
for a sporadic occurrence of an ultraproduct, all local rings will moreover be Noetherian.
Let Noe denote the category whose objects are (isomorphism classes of) Noetherian local
rings, and whose morphisms are local ring homomorphisms. NoteNiwats a proper
class, that is to sayjot a set. However, if§4, we will define a quotient oNoe which is a
set.

2.1. Deformation metric. Let (R, m) be a Noetherian local ring. Theth infinitesimal
deformationof R is by definition the (Artinian) residue ring/m™ and will be denoted
R/™. Recall that therg-adic) completionﬁ of R is the inverse limit of all-th infinitesi-

mal deformations oR?, and thatR/" = ﬁ/”. We define a semi-metric droe, called the
deformation metricas follows. Given two Noetherian local ringsands, letd(R, S) be

the infimum of the numberg—" for which R/™ = S/™. In words, the distance between
two local rings is at mos2~" if their n-th infinitesimal deformations agree. One easily
verifies that this distance function satisfies all the axioms of a metric, except that two dis-
tinct elements can be at distance zero, so dat) is only a semi-metric. By definition

of completion,d(R, S) = 0 if and only if R = S, so thatd(-, -) induces a metric on the
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full subcategory of all complete Noetherian local ringsecomp. Since a semi-metric is
a metric if and only if the induced topology is Hausdorff, we daflecomp the Haus-
dorfficationof Noe. The distance function satisfies thktrametric (or, non-archimedean
triangle inequalityd(R,T) < max{d(R,S),d(S,T)}, for all R, S andT in Noe. As a
result the topology induced by the semi-metric, calledd@iBrmation topologyis totally
disconnected.

By convention, the zero-th infinitesimal deformation of a ring is zero (since we think of
m® as the unit ideal). It follows that the distance between any two local rings is at most
one. Immediately from the definitions we also get:

2.2.Lemma. If d(R, S) < 1, thenR and.S have the same residue fielddifR, S) < 1/2,
thenR and.S have the same embedding dimension.

In particular, embedding dimension is a continuous map framto the discrete space
Z. This is no longer true for dimension: for instanBe:= k[[X]] andR,, := R/X"R
lie at distance2~", yet their dimensions are not the same. One can show, however, that
dimension is upper-semicontinuous.

By an (open)all B in Noe with centerR andradius0 < ¢ < 1, we mean the collection
of all S in Noe such thatl(R, S) < J. Since the metric is non-archimedean, any member
of a ball is its center and every ball is both open and closed in the deformation topology,
that is to say, is @lopen Because the distance function only takes discrete values (the
powers ofl/2), any two radii which lie between two consecutive powers £f yield the
same ball. Therefore, with thedius of a ball B, we mean twice the largest distance
between two members @,; this is always a power of /2. (We need to take twice the
distance since we used a strict inequality in the definition of a ball.)

A unit ball is a ballB with radius1 and hence consists of all local rings with the same
residue field. We call this common residue field tesidue fieldof B. This gives a one-
one correspondence between unit balls and fields. More generally, to evely,baé
associate an Artinian local rinBg, called theresidue ringof B, given as the unique local
ring such thatk/™ = Rg, for all R € B, where2-"*1 is the radius oB. Note thatRp
is a center oB and, moreover, the radius B is determined byRg: it is equal to2—"+!
wheren is the nilpotency index oRg. In conclusion, there is a one-one correspondence
between ball8 and Artinian local rings.

2.3. Cohen’s structure theorems. Cohen'’s structure theorems for Noetherian local rings
will play an essential role in this paper, so we quickly review the relevant properties; a good
reference for all this isl0, §29]. For each field: of prime characteristip, there exists a
uniquely defined complete discrete valuation ringf characteristic zero whose residue
field is k and whose maximal ideal j8/; we callV thecompletep-ring overk. Let R be a
Noetherian local ring with residue fiekd We say thaf? hasequal characteristiéf R andk

have the same characteristic; in the remaining case, we sa tregmixed characteristic
AssumeR is moreover complete and I&f be a finite tuple of indeterminates. Cohen’s
structure theorems now claim, among other things, the following:

e if R has equal characteristic, then it is a homomorphic imadé[&f]];
e if R has mixed characteristic, then itis a homomorphic imagé[pX ], where
V' is the complete-ring overk.

2.4.Proposition. Every ball is a set.

Proof. It suffices to prove this for a unit balB. The result will follow if we can show
that there is a cardinal numbarso that every member @& has cardinality at most. Let
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k be the residue field dB and letR € B. Since the cardinality of a Noetherian local
ring is at most the cardinality of its completion, we may assume fhist complete. By
Cohen'’s structure theoremg, is a homomorphic image df [[X]], where X is a finite
tuple of indeterminates and is equal tok in the equal characteristic case, and equal to
the completey-ring overk in the mixed characteristic case. It is clear that in either case,
the cardinality ofV[[X]] is bounded in terms of the cardinality &f whence so is its
homomorphic imagé. O

Note that each baB is infinite: if Rg is its residue ring, then the latter is of the form
S/1, where(S,n) is a power series rin§y’[[X]] as in§2.3. If n is the nilpotency index of
Rgp, thenS/J € B for any idealJ C S such that/ + n™ = I.

3. LIMITS AND ULTRAPRODUCTS

Let (M, d) be a semi-metric space and assuiris non-archimedean. To include the
deformation metric in our treatment, we allow fbf to be merely a class. Aequence
in M is simply a mapN — M; often we viewr as the collection of alt(w) for w € N.

We call r a Cauchy sequenc (M, d), if for eache > 0, there existsV, such that
d(r(w),r(w + 1)) < ¢ forallw > N. We say that two Cauchy sequenaeands are
equivalentdenoted: ~ s, if for eache > 0, there existsV, such thati(r(w),s(w)) < ¢,
forallw > N. LetCau(M, d), or simply,Cau(2), denote the set of all Cauchy sequences

in M. We makeCau(M) into a semi-metric space by defining thistancebetween two
Cauchy sequencesands, denotedi(r, s), as the lim-sup of the distancéér(w), s(w)).
Whence two Cauchy sequences are equivalent if and only if their distance is zero. Thereisa
natural isometn// — Cau(M) sendingr to the constant sequengaiven ask(w) := x;

we will identify the element: with its constant sequence @au(M).

A limit of a sequence is an element € M such that ~ z. Itis easy to see that if
has a limit, then it must be Cauchy. We dall, d) completdf every Cauchy sequence has
a unique limit. This implies in particular thdtis a metric. The&eompletiorof (M, d) is the
metric spacel/w\ := Cau(M)/ ~ with its induced metric described above; it is a complete
metric space containindy/ as a dense subspace.

For the remainder of this section, we workhiee with its deformation metric (in fact,
we may even restrict our study to the Hausdorfficatt@ecomp). We will see that in order
to understandNoe, we need a notion from model-theory: the ultraproduct construction
(some references for ultraproducts &k [, §9.5] or the brief review in]2, §2]) .

Ultraproducts. LetR be a sequence Koe, that is to say, a collection of Noetherian local
rings (R,,, m,,), for w € N. Leti be a non-principal ultrafilter oil. Theultraproduct

of the R,, with respect td/, denotedR,, is defined as a certain homomorphic image
of the product of theR,,. It is again a local ring, with maximal ideal;,; given as the
ultraproduct of them,,. In general, howeveRR;, will no longer be Noetherian. If almost
all R, have embedding dimension at mastthen so doeR;,. Call an element € Ry,
aninfinitesimalif it is contained in each power ofi;,. The set of all infinitesimals is an
ideal inR;, and the residue ring obtained by modding out this ideal is calledgparated
ultraproductof the R, and is denoted® ;. If almost all R, have embedding dimension
at mostn, then so doeR ;). Moreover, by the saturatedness property of ultraproducts, the
separated ultraproduct is a complete local ring, whence Noetheriarbpyeorem 29.4]
(for more details seelfl, Lemma 10.1]). In particular, R is a Cauchy sequence, then by
Lemma2.2, almost of all its members have the same residue field, callectidue field
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of R, and the same embedding dimension, so g}, is a complete Noetherian local
ring.

Henceforth, we will only consider separated ultraproducts of Noetherian local rings
of bounded embedding dimension, so that we tacitly assume that they are complete and
Noetherian. Moreover, the particular choice of ultrafilttewill no longer matter, and we
will denote the respective ultraproduct and separated ultraproduRt sifnply by R,
and R(oo).l In caseR is a constant sequence, given by a Noetherian local Kinthen
we also writeR., and R for the (separated) ultraproduct and call it the (separated)
ultrapowerof R. By Los’ Theorem, ultrapowers commute with base change, that is to say
(R/I)s = R /IR ; the same is true for separated ultrapowerslsy Corollary 5.3]:

3.1.Lemma. If R is a Noetherian local ring and an ideal in R, then(R/I)) =
Rioo) /[T R(oc)-

3.2. Proposition. If R and S are Cauchy sequences Ioe, thend(R (), S(x)) =
d(R,S). In particular, R ~ S if and only ifRo.) = S().

Proof. The last assertion is immediate by the first. Supptid®, S) < 27". This means
that for someN and allw > N, we haveR,, /" = S, /", whereR,, and S, are the
components oR andS respectively. By Lemma&.1, then-th infinitesimal deformations

R (/" andS /™ are isomorphic, showing that(R,..),S(-)) < 27". In conclu-
sion, we showed (R (), S(~)) < d(R,S). To prove the converse, we may assume that
d(R,S) = 27" for somen > 0. Since2~™ is an isolated value, there is some(namely
the one corresponding to.= 2-"~1), such that

(1) d(Rwa Sw) = 2—11’

for allw > N. Towards a contradiction, SUpPo$ER (), S()) < 27". Hence
Rw/n—H ~ Sw/n—H

for almost allw, contradicting {). O

In particular, the separated ultraproduct ofrath approximations of a Noetherian local
ring R is equal to the separated ultrapoweryfand in fact, to the separated ultrapower of
any Noetherian local ring having the same completio®as

4. SCALAR EXTENSIONS

Proposition3.2is a step in the direction of finding limits iNoe. However, the residue
field of a separated ultraproduB.y of a Cauchy sequend is the ultrapower of the
residue field ofR, by Lemma3.1, and hence there is no chance tRat, is a limit of R
in Noe. In this section, we will find a way to control this change of base field phenomenon.
This will allow us in the next section to define the similarity relation, which will then solve
our limit problem.

Let (R, m) be a Noetherian local with residue fietdand let! be a field extension of
k. With ascalar extension af? over/ we mean a locak-algebra(S, n) with residue field
I such thatR — S is faithfully flat, n = mS and R — S induces the embeddirig C [
on the residue fields. Acalar extensiomf a local ringR is then a scalar extension &f
over some field extension of its residue field. The conditionithatm.S is also expressed

Thereis really no reason to restrict only to ultraproducts on a countable index set, although it is the only type
we will use in this paper. However, for the separated ultraproduct to be Noetherian and complete, we do have
to impose that the ultrafilter is countably incomplete, which automatically holds on countable index sets and can
always be arranged on arbitrary index sets.
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by saying that? — S hastrivial closed fiberor that it isunramified By [5, 077y 10.3.1],
for any Noetherian local ring? and any extensiohof its residue field, at least one scalar
extension ofR over! exists; we will reprove this in Corollarg.4 below.

4.1. Proposition. Given a commutative triangle of local homomorphisms between Noe-
therian local rings

(R, m)

(S,m) g (Tp)
If any two are scalar extensions, then so is the third.

Proof. It is clear that the composition of two scalar extensions is again scalar. Assume
g andh are scalar extensions. Thehnis faithfully flat andmT = p = nT. Sincey is
faithfully flat, we getmS = m7' NS = nT'N S = n, showing thatf is also a scalar
extension. Finally, assumgandh are scalar extensions. Let

() ...R?» 5 R" “R—-R/m—0
be a free resolution aR/m. SinceS is flat overR, tensoring yields a free resolution
(4) .82 8§ S/mS — 0.

By assumptiors/mS is the residue field of S. Therefore, we can calculafr; (T',1) as
the homology of the complex

(5) L T2 ST T — T/mT — 0

obtained from 4) by tensoring ovelS with 7". However, ) can also be obtained by
tensoring 8) over R with T'. SinceT is flat over R, the sequenceb) is exact, whence
Tor} (T,1) = 0. By the local flatness criterior] is flat overS. Sincen = mS and
p = mT, we getp = nT’, showing that alsg is a scalar extension. O

Three important examples of scalar extensions are given by the following proposition.

4.2.Proposition. Let R be a Noetherian local ring.

(4.2.1) The natural mapk — R is a scalar extension.

(4.2.2) Any etale map is a scalar extension.

(4.2.3) The natural map — R is a scalar extension, wher .. is a separated
ultrapower ofR.

Proof. The first two assertions are well-known, so remains to show the lastm L
the maximal ideal off?. It is easy to show thah R, is the maximal ideal of? ).
So remains to prove that — R is flat. SinceR ) is complete, we get a natural

homomorphisr’rﬁ — R and it suffices to show that this is flat. Hence, without loss of
generality, we may assume th@tis complete. In particular? is a homomorphic image

of a regular local ring and if we prove the corresponding result for this regular local ring,
then we get the desired result by Lemfa. Therefore, we may moreover assume tRat

is regular. SincenR (. is the maximal ideal of?.) and sinceR . is also regular by

[14, Theorems 4.2 and 10.6], of the same dimensioR ahe flatness oft — R () then
follows from [10, Theorem 23.1].
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In fact, (4.2.2 has the following converse: ® — S is essentially of finite type induc-
ing a finite separable extension on the residue fields, then S is a scalar extension if
and only if it is etale. In this sense, scalar extensions are generalizations of etale maps.
This shows already that classification up to scalar extension is a reasonable and interesting
problem. To gather further support for this claim, we will now explore how closely related
scalar extensions are to isomorphisms. An important observation in that direction, one we
will use several times below, is that a scalar extension of complete Noetherian local rings
inducing an isomorphism on their residue fields is itself an isomorphism{se€&€heorem
8.4]. Hence it is of interest to generate scalar extensiors S with S complete. We will
see that there exists a canonical choice over any field.

4.3. Completions along a residual extensionLet (R, m) be a Noetherian local ring with
residue field: and letl be a field extension df. Thecompletion ofR along! is the (unique)
local R-algebraR;” solving the following universal problem: given an arbitrary Noetherian
local R-algebraS with residue field, if S is complete, then there exists a unique lagal
algebra homomorphisiR;” — S. Whenk = [, we recover the usual completion Bf that

is to say,R; = R. Here and elsewhere, we say that thereusiguehomomorphism with
certain properties, when we actually mean that there exists a unigue homomougphiem
isomorphismthis is consistent with our practice of identifying two local rings when they
are isomorphic.

To prove the existence of a completion aldngve have to treat the equal and mixed
characteristic cases separately. Firstly, assirhas equal characteristic (this case is also
discussed inf, (6 3)]). By Cohen'’s structure theorems, there exists an embeédmgl%

Let R be them(R ®y, [)-adic completion of? @y, 1. To see that this is a completion along

[, let S be a Noetherian locdk-algebra with residue fielHand assumé& is complete. By

the universal property of ordinary completions, we get a unique homomordl?]isms.
Since S is complete, we can find an embeddihg- S which agrees on the subfield

of [ with the compositiork — R — 8. By the universal property of tensor products,
the two mapsﬁ — S andl — S combine to a unique locak-algebra homomorphism
R®yl— S, and using once more the universal property of completion, this then yields a
uniqueR-algebra homomorphismR;” — S.

In the mixed characteristic case, coefficient fields no longer exist and we now proceed
as follows. LetV be the (unique) complete-ring with residue fieldk, wherep is the
characteristic of (see§2.3). We first define the completion 6f alongl, that is to say,
V;™, as the unique completering with residue field. That the latter satisfies the universal
property of a completion alorigs proven in L0, Theorem 29.2]. To defing;, letS be any
Noetherian locaR-algebra with residue fieldextendingk and assumé' is complete. As
before, we have a unique locRlalgebra homomorphisrﬁ’, — S. By Cohen’s structure
theorems, there exists a commutative diagram of local homomorphisms

v -V

(6)

=)
Y
n
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By the universal property of tensor products, we get a uniftedgebra homomorphism
R®y V" — S. DefineR; now as then(R ®y V;")-adic completion o ®y V;7, so that
we get a unique locak-algebra homomorphismR;” — S, as required. |

4.4.Corollary. For every Noetherian local ring? and every extension fieldf its residue
field, R;", the completion of? along !/, exists and is unique. For every idehin R, the
completion ofR/I alongl is equal toR;/IR;.

Moreover, the natural ma® — R;”is a scalar extension over

Proof. Existence was proven above; uniqueness then follows formally from being a solu-
tion to a universal problem. To prove the second assertion, asfjthe~ S is a local
homomorphism withS a complete Noetherian local ring with residue fiéldThe com-
positionR — R/I — S yields by definition a unique locak-algebra homomorphism

R — S. SincelS = 0, the latter homomorphism factors througfi/IR;". As for the

last assertion, in the equal characteristic case, the base cﬁ’an@e@ ®rlofk Clis
faithfully flat. Since completion is exact, each map in

RHEHE@;JHRT

is faithfully flat, whence so is their composition. In the mixed characteristic d§Ses
torsion-free whence flat ovéf. Hence by the same argument as in the equal characteristic
case, the composite map

R—R—Rey V. — R
is faithfully flat. By our second assertioR;/mR;" is the completion o?/m = k along!
in either characteristic. In other wordB;”/mR;” = [ and hence in particulam R;” is the
maximal ideal ofR?;". This proves thal? — R;"is a scalar extension. O

4.5.Proposition. Let R — S be a scalar extension oveérlf S is complete, they = R;".

Proof. By the universal property, we have a lodadalgebra homomorphisi®;” — S. It
follows from [10, Theorem 8.4] thaR;” — S is surjective. Sinc&k — R, andR — S are
scalar extensions by Corollady4 and by assumption respectively;” — S is faithfully
flat by Propositiont.1, whence injective. d

4.6. Corollary (Lifting of scalar extensions)Let R — S be a scalar extension with
complete. IfR is the homomorphic image of a Noetherian local ridgthen there exists a
scalar extensiomd — B whose base change s — S, thatisto sayS = B®4 R.

Proof. We leave it to the reader to verify that, after taking completions, we may assume that
alsoA andR are complete. By Cohen’s structure theorerhand R are the homomorphic
images ofi’[[X]] modulo some idealg C I respectively, wher&  is either their common
residue field or otherwise a completaing with that residue field and wher€ is a finite

tuple of indeterminates. Moreove$, = R; by Propositiord.5, where! is the residue

field of S. In particular,S = V;[[X]]/IV;"[[X]]. Hence puttingB := V,[[X]]/JV,[[X]]

yields a scalar extensiof — B with A/TA = R — B/IB = S, as required. O

The following result is a sharpening of ], Theorem 2.4].

4.7.Corollary. Let R be a Noetherian local ring with residue field If k., is the ultra-
power ofk, thenk;’ is equal to the ultrapoweR ).

Proof. By Lemmaa3.1, the residue field of? ) is k. SinceR — R is a scalar
extension by4.2.3, and sinceR .. is complete k() = R, by Proposition.5. [
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4.8.Corollary. Let R — S be a finite local homomorphism inducing a trivial extension
on the residue fields. For every extensiaf this common residue fiel§;” = R ®g S.

Proof. The base change — R, ®g S is faithfully flat. Letm andn be the maximal ideals
of R andS respectively. Since

(B ©r S)/n(Ry ®r S) = (R /mR)) Qp/m (S/n) 1@ k=1

the idealn(R; ®r S) is a maximal ideal. Since the base chaitje— R, ®r S is finite
with trivial residue field extension and sinég” is complete whence HenseliaR; ®r S
is a complete local ring. Hence we showed that> R, ®@r S is a scalar extension and
since the latter ring is complete with residue field equal, tit is isomorphic toS;” by
Propositiord.5. O

4.9.Corollary. Letk C [ be an extension of fields and Bf, and B; be the unique unit
balls in Noe with residue fieldk and( respectively. The map sending a ringl), to its
completion alond is an isometnyB;, — B;.

Proof. TakeR, S € By,. Clearly, the completion®;” and.S;” along! belong both tdB;.
Supposel(R, S) < 277", that is to say, thein-th infinitesimal deformation& /™ andS/™
are isomorphic. By Corollarg.4, the completions oR /" andS/™ alongl are respectively
R;/™ andS;/™, and therefore are isomorphic, showing thak;", 5;) < 27". O

4.10.Corollary. SupposeR is an excellent local ring. 1R — S is a scalar extension
inducing a separable extension on the residue fields, fhen S is a regular homomor-
phism.

Proof. By [10, Theorem 28.10], the scalar extensiBn— S is formally smooth, since it
is unramified and the residue field extension is separable. The assertion now follows from
aresult by Ande in [1] (see also [0, p. 260]). O

In fact, with aid of Propositiod.5, Corollary4.6 and Cohen’s structure theorems, one
reduces to proving that[[X]] — V;[[X]] is regular, wherd/ is either a field or a com-
pletep-ring and wheré is a separable extension of the residue field ofThis approach
circumvents the use of Anéis deep result.

4.11. Definition. A Noetherian local ringR is calledanalytically irreducibleif Risa
domain; it is callecabsolutely analytically irreduciblef R, is a domain, wheré9 is
the algebraic closure of the residue field®fand it is called ainiversally irreducibleif
any scalar extension d? is a domain.

4.12.Corollary. If R is an excellent normal local domain with perfect residue field, then
R is universally irreducible.

Proof. Let .S be a scalar extension &f. By Corollary4.10, the mapR — S is regular and
henceS is again normal by10, Theorem 32.2], whence a domain. O

4.13.Proposition. If R is absolutely analytically irreducible, then it is universally irre-
ducible.

Proof. Since we will make no essential use of this result, we only give a sketch of a proof.
We may reduce to the case thiats a complete Noetherian local domain with algebraically
closed residue field. We need to show thak;” is a domain, wheré is an arbitrary
extension field of. By Cohen’s structure theorems, there exists a finite exterfsion
V[[X]] € R, whereV is eitherk or the completep-ring over k& and X is a tuple of



10 HANS SCHOUTENS

indeterminates. Writ®® = S[Y]/p for some finite tuple of indeterminatés so thatp is
in particular a prime ideal. Since the fraction field%f = V,[[X]] is a regular extension
of the fraction field ofS = V[[X]], the same argument as in the proof &f[emma 5.21]
then shows thaiS;[Y] is a prime ideal. Hence we are done, sitdte= S, [Y]/pS; Y]
by Corollary4.8. O

We are ready to formulate a flatness criterion generalizZingfieorem 8.

4.14.Theorem. Let R — S be a local homomorphism of Noetherian local rings. Assume
R is universally irreducible, e.g., an excellent normal local domain with perfect residue
field, or a complete local domain with algebraically closed residue fiel® > S is un-
ramified anddim(R) = dim(.S), thenR — S is faithfully flat, whence a scalar extension.

Proof. Recall that(R,m) — (S,n) being unramified means that= mS. It suffices

to prove the assertion under the additional assumption that Rathd S are complete.
Indeed, ifR — S is arbitrary, then? — S satisfies again the hypotheses of the theorem
and therefore by assumption is faithfully flat. By an easy descent arguRentS is then
also faithfully flat.

So assum&r and S are complete and létbe the residue field of. By assumption,
R is a domain, of the same dimension/asBy the universal property of the completion
along!, we get a localR-algebra homomorphisnk,” — S. By [10, Theorem 8.4], this
homomorphism is surjective. It is also injective, sif€égandS have the same dimension
andR; is a domain. Henc®; = S, so thatR — S is a scalar extension. O

We end this section with a convergence criterion in terms of scalar extensions.

4.15.Theorem. LetR be a Cauchy sequencelifve and letS be a Noetherian local ring
with the same residue fieldas R. The Cauchy sequen&® converges tc if and only if
the separated ultraprodu® . is a scalar extension d.

In fact, let! be any extension field of the ultrapowey, of k. If R;” denotes the sequence
of rings obtained by taking the completions aldngf all members oR, thenR; is a
Cauchy sequence converging(B...));-

Proof. By Proposition3.2, if S'is the limit of R, thenS ) = R (.. SinceS — S

is a scalar extension byt2.3, we proved the direction implication. For the converse,
assumeS — R is a scalar extension. By Corollad:7, we have an isomorphism
S(o0) S - SinceR ) is complete with residue fielk., it is also isomorphic t&;

by Propositiord.5. It follows then from Propositio.2 thatd(R, S) = 0, that is to say,
thatS is a limit of R..

To prove the last assertion, Iét, be the rings inR and fix somen. SinceR is
Cauchy, there exists),, so that forw > w,, all R,,/™ are isomorphic, say t@'. By
Lemma3.l, the n-th infinitesimal deformatiorR.)/" is isomorphic to the separated
ultrapowerT’; the latter is isomorphic td@,” by Corollary4.7; and this in turn is iso-

morphic to((Rw);x )/”, for all w > w, by Corollary4.4. In summary, we showed that
d((Rw)_ »R(ee)) < 277, forallw > w,,. Inview of Corollary4.4, taking completions
along! yieldsd((Ry);, (R(y);) < 277, for all w > w,,. Since this holds for alh, the
assertion follows. O



CLASSIFYING SINGULARITIES UP TO ANALYTIC EXTENSIONS OF SCALARS 11

5. SMILARITY SPACE

We now introduce an equivalence relation loe which, although coarser than the
isomorphism relation, preserves most local singularity properties (see for instance The-
orem5.1 below). Namely, we say that two Noetherian local rifg@nd .S are similar,
denotedR =~ S, if they admit a common scalar extension. [Zébe this common scalar
extension. Its completion is again a scalar extension and by Proposifidhis therefore
isomorphic to bothz;” andS;", wherel is the residue field df". In other words, we showed
thatR ~ Sif and only if R;” = S;” for some sufficiently large common extensioof their
respective residue fields. It follows easily from this thais an equivalence relation. The
collection of all local rings similar to a given Noetherian local riRgs called thesimi-
larity classof R and is denotedR]. Immediately from the results in.p, §23] and [L3,
Proposition 9.3] (where the notion ofsengularity defects introduced), we get:

5.1. Theorem. If two Noetherian local rings are similar, then they have the same dimen-
sion, depth and Hilbert series, and one is regular (respectively, Cohen-Macaulay, Goren-
stein, complete intersection) if and only if the other is. More generally, any two similar
local rings have the same singularity defects.

Using Corollary4.1Q other properties, such as being reduced or normal, are also in-
variant under the similarity relation, provided the rings are excellent with perfect residue
field. Note that being a domain is not preserved under the similarity relation, necessitating
definitions4.11

5.2. Proposition. Any two separated ultrapowers of a Noetherian local ring, or more
generally, any two Noetherian local rings which are elementary equivalent, are similar.

More generally, leR := (R,), andS := (S, )., be sequences of Noetherian local
rings of embedding dimension at mast If almost eachR,, is similar to S, then the
respective separated ultraprodud®y .y andS ) are also similar.

Proof. Suppos&? andsS are elementary equivalent Noetherian local rings. By the Keisler-
Shelah theorem (se&,[Theorem 9.5.7]), some ultrapower &f and S are isomorphic,
whence so are their corresponding separated ultrapowers (strictly speaking, the underlying
index set will in general no longer be countable, so that we have to make some minor
modifications alluded to in footnotd) details are left to the reader). By Propositib.,

these are scalar extensionsidfnd S respectively, proving the first assertion.

To prove the second assertion, we may without loss of generality assume that all rings
are complete. By our discussion above, we may further reduce to the casg,that
(Rw)fw , for some field extensiob, of the residue field oR?,,. SinceR,, is a homomor-
phic image of al-dimensional regular local ring by Cohen’s structure theorems, and since
the property we seek to prove is preserved under homomorphic images by Lerhma
and Corollary4.4, we may moreover assume by Corollary that eachR,, is regular, of
dimensiond. By Theoremb5.1, almost eacths,, is regular, also of dimensiof. By [14,
Theorems 4.2 and 10.6], the separated ultraprodBgts) and S are therefore also
d-dimensional regular local rings. Sin&..) — S is unramified by Lemma.1, it is
faithfully flat by [10, Theorem 23.1], whence a scalar extension, as we wanted to sfiow.

We denote the collection of all similarity classes of Noetherian local ringdday By
(4.2.1), the similarity relation restricted tdoecomp has the same quotiehibe. Although
Noe was only a class, we do no longer have this complication for its quotient:

5.3.Proposition. The quotienNoe is a set.
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Proof. Let [R] be a similarity class of Noetherian local rings andidte the residue field
of R. SinceR ~ R, we may assume thdt is complete, whence by Cohen’s structure the-
orems, the homomorphic image $f.= V[[X]] with V either equal td: or to the complete
p-ring overk, and with X a finite tuple of indeterminates. Suppabke= (f1,..., fs)S.
We may choose a subrinig, of V' of size at most the continuum so that it contains all
coefficients of thef; and so thal is again a field or a completering. Let.Sy := V5 [[X]]
andly = (fi1,..., fs)So, so thatS = (Sp);. . Hence by base chande= S/I is a scalar
extension ofSy /I, so thatSy/Iy =~ R. In conclusion, we showed that every similarity
class contains a ring of size at most the continuum, and therifierés a set. (]

5.4. Similarity metric. We want to extend the metric dioe to a metric on the similarity
spaceNoe, in such a way that the natural m&jwe — Noe preserves the distance. For
two similarity classes$R] and[S], let d([R], [S]) be equal to the infimum of all(R’, S")
with R’ ~ R andS’ =~ S. Alternatively, recall that for a (semi-)metric spad¥, d), the
distance between two subclasgéandV is defined to be the infimum of all(z, y) with

x € U andy € V; henced([R],[S]) is just the distance betweéR] and [S] viewed as
subclasses dfloe.

5.5.Lemma. For all Noetherian local ringsR and.S and alln € N, we havel([R], [S]) <
27" ifand only if R/" ~ S/™.

Proof. ChooseR’ ~ R and S’ =~ S so thatd([R],[S]) = d(R/,S’). Without loss of
generality, we may assum& and S’ to be complete. LeRR/", R'/™, S/™ and S"/™
be then-th infinitesimal deformations oR, R, S and S’ respectively. Ifd(R’,S’) <
27", thenR’'/™ = S’/™ and henceR/™ ~ S/™. Conversely, assumg/™ ~ S/™ and
let T be a common scalar extension Bf™ andS/™. Let! be the residue field of .
By Corollary 4.4, the n-th infinitesimal deformations oR;” and S;” are equal tdl'. In
other wordsd(R;, S;) < 27". Sinced([R], [S]) is defined as an infimundl([R], [S]) <
27", O

5.6.Corollary. The quotientNoe endowed with the distance functidris an ultrametric
space.

Proof. The ultrametric triangle inequality follows immediately from Lemi& and the
fact that~ is an equivalence relation. To show that it is a metric sup@dge], [S]) = 0.
By Lemmab.5, the n-th infinitesimal deformations?/” and.S/™ of R and S are simi-
lar, for alln. Hence there exists a common scalar extengipof R/™ andS/™. We may
inductively choosé’, ;; to have aresidue field containing the residue fiel@,pby Corol-
lary 4.9, since scalar extensions can only make the distance smallefr.beghe union of
all these residue fields. By Corollaty4, the n-th infinitesimal deformations oR;” and
S, are equal td7;,);". Since this holds for alh, we showed thad(R;", S;) = 0 whence
R = 57 and hencéR| = [5]. O

It follows from Theorem4.15that given a Cauchy sequenBein Noe, the sequence
R, has a limit, wheré: is the ultrapower of the residue field &. Since the cor-
responding members & andR;;_ are similar, we showed that every Cauchy sequence
becomes convergent after replacing each of its components by an appropriately chosen
similar ring. Therefore, the next result should not come as a surprise:

5.7.Theorem. The ultrametric spac&loe is complete.



CLASSIFYING SINGULARITIES UP TO ANALYTIC EXTENSIONS OF SCALARS 13

Proof. We will define an isometry: Noe — Noe as follows. We start with defining a map
¢: Cau(Noe) — Noe. LetR := ([R.]). be a Cauchy sequencelite and letR ) be
the separated ultraproduct of tRg, (this is a complete Noetherian local ring since almost
all R,, have the same embedding dimension). Defifie) := [R(s)]. By Propositiorb.2,

the mape is well-defined, that is to say, does not depend on the choice of representatives
R.,. Supposé := ([S.,]). is a second Cauchy sequence which is equivaleRt &md let
S() be the separated ultraproduct of thg. For a fixedn, we havel([R,,], [S.]) < 27"

for all sufficiently largew. By Lemmab5.5, then-th infinitesimal deformations aR,, and

S, are therefore similar, for all sufficiently large By Propositiorb.2, then so are the-th
infinitesimal deformations dR () andS ., S0 thad([R ()], [S(sc)]) < 27" by another
application of Lemm&.5. Since this holds for alt, we showed thaR ()] = [S()]- BY
definition of completiong¢ therefore factors through a map

¢: Noe — Noe.
We leave it to the reader to check thapreserves the metric. Note thatestricted to
Noe is the identity, since a separated ultrapower is a scalar extension by Prop&sition
Hencec must be surjective. To prove injectivity, assuRRendS are Cauchy sequences in

Noe whose respective separated ultraprodiRis,) andS .. are similar. Let be a large
enough field extension so that

(Roo))i = (S(o0))i -
By Theorem4.15 the (component-wise) completidR;” along! converges tqR());
and likewiseS;” converges tqS.);. Therefore,R;” andS;, as they converge to the

same limit, are equivalent, which proves thas injective. O

5.8. Theorem. The ultrametric spacéloe is a Polish space. In particular, the similarity
relation is smooth.

Proof. In view of Theoremb5.7, it remains to show thatioe contains a countable dense
subset. We already observed that there is a one-one correspondence between balls and
Artinian local rings inNoe, so that the Artinian local rings form a dense subseNoé

whence ofNoe. Let R be an Artinian local ring with residue fiefd By Cohen’s structure
theorems,R is of the formV'[[X]]/I, whereV is eitherk or the complete-ring overk,

and whereX is a tuple of indeterminates. Singdis Artinian, it is in fact finitely generated

over V. Hence, by an argument similar to the one in the proof of Propositignthere

exists a finitely generated subfigtd C k& and an Artinian local ring?, with residue field

ko, such thatRy ~ R. Since there are only countably many finitely generated fields, the
collection of all theseR,, is again countable. (]

5.9.Remark.Instead of working with the categoiyoe in the above, we can do exactly the
same thing with the categoioe of all Noetherian locaF -algebras, fotZ a Noetherian
ring, so that the morphisms are now given by loZahlgebra homomorphisms.
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