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Abstract

We construct a computable, computably categorical field of infi-
nite transcendence degree over Q, using the Fermat polynomials and
assorted results from algebraic geometry. We also show that this field
has an intrinsically computable (infinite) transcendence basis.

1 Introduction

In computable model theory, we investigate the extent to which various
model-theoretic constructions can be performed effectively. For instance,
given two structures, model theorists naturally wish to consider isomorphisms
between them. In computable model theory, we break this down into two
problems. First we pose the Isomorphism Problem, in which we ask how diffi-
cult it is to determine in general whether two given structures are isomorphic
to each other at all. If they are indeed isomorphic, then we ask about the
difficulty of actually computing an isomorphism between them. This latter
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question involves the notion of computable categoricity. When asking these
questions, we usually assume that the structures themselves are computable,
meaning that we can compute the functions and relations on them. If they
are in fact isomorphic, then it is reasonable to ask whether there exists a
computable isomorphism between them.

Fields were the first mathematical structures for which the notion of com-
putable categoricity arose. The isomorphism problem for fields is addressed
by Calvert in [2]. Long before that, though, in [8], Frohlich and Shepherdson
had begun to consider the second question, by giving an example of (in their
terminology; see their Corollary 5.51) two isomorphic, explicitly presented
fields with no explicit isomorphism between them. This idea eventually grew
into the following definition.

Definition 1.1. A computable structure A is computably categorical if for
every computable structure B isomorphic to A, there exists a computable
isomorphism from A onto B.

From the point of view of our second question, such a structure is about as
nice as it could be: no matter which two computable copies of A we choose,
there must exist a computable isomorphism between them. (An even nicer
version, called uniform computable categoricity and examined in [4], requires
not only that a computable isomorphism exist, but that we should be able to
figure out a program for computing it, just given the ability to compute the
structures A and B.) If the structure is not computably categorical, we may
ask how strong an oracle is required to compute isomorphisms between two
computable copies; for a consideration of this question for algebraic fields,
for example, see [26].

Much research has been devoted to characterizing the computably cat-
egorical models of various theories, including work by Dzgoev, Goncharov,
Khisamiev, Lempp, McCoy, Miller, Remmel, and Solomon. Some results are
readily stated: we know that a computable linear order is computably cate-
gorical iff it has only finitely many pairs of consecutive elements, for example,
and that a computable Boolean algebra is computably categorical iff it has
finitely many atoms. On the other hand, the known structural characteriza-
tion of computably categorical trees requires a description by recursion on
the heights of finite trees. The question has been studied for a number of
other theories as well, and results along these lines may be found in [9], [10],
[11], [12], [13], [18], [20], [23], [29], and [30].
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However, the original problem of computable categoricity for fields has
defied all attempts at structural characterization. The most obvious conjec-
ture would be that the transcendence degree of a field over its prime subfield
should determine computable categoricity. For algebraically closed fields,
this is indeed the case, as shown by Ershov in [5]: an ACF is computably
categorical iff it has finite transcendence degree over its prime subfield. How-
ever, in the same work, Ershov built a field, algebraic over its prime subfield
but not algebraically closed, which was not computably categorical. In this
paper we refute the converse as well, by constructing a computably categor-
ical field of infinite transcendence degree over the rationals Q. Thus, neither
implication in the original conjecture actually holds.

The counterexample F we build is readily described. It begins with an
infinite, purely transcendental extension Q(x0, x1, . . .) of Q. Then, for each
i, we adjoin an element yi such that (xi, yi) is a solution of the Fermat curve
Dpi

defined by Xpi

i + Y pi

i = 1, for an odd prime pi. Thus each yi is algebraic
over xi, but the infinite set {xi : i ∈ ω} is still algebraically independent.
Fermat’s Last Theorem shows that each Dpi

has only the trivial solutions
(0, 1) and (1, 0) in Q, and the heart of our proof is a demonstration that
there exists a computable sequence p0 < p1 < · · · such that in F , every
nontrivial solution of the equation of Dpi

generates the same subfield, namely
Q(xi, yi). Therefore, mapping xi and yi to any nontrivial solution of Dpi

in a
field F̃ isomorphic to F will define an isomorphism. The algebraic geometry
required is developed in Section 2, and the sequence 〈pi〉 is chosen and the
field presented in Section 3. In Section 4, we use this construction to give
the first example of a computable field possessing an infinite, intrinsically
computable transcendence basis.

We wish to make note here of unpublished work by Kudinov and Lvov.
Working jointly, they addressed the same question, about computable cat-
egoricity for fields of infinite transcendence degree, and made significant
progress on it. Like us, they combined techniques from algebraic geome-
try and computability theory, but their investigations were unfortunately
cut short when Lvov passed away, and it has not been possible to recon-
struct their work. As we understand it, their constructions did not make use
of the Fermat polynomials – which suggests that there are alternative ways
to approach this problem, awaiting discovery (or re-discovery) by an enter-
prising researcher. We salute the efforts of Kudinov and Lvov, and regret
the demise of the latter.

We describe our principal conventions for this paper. A computable field
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is a structure in the signature with addition and multiplication, whose do-
main is an initial segment of ω, and for which those two operations are com-
putable and define a field. This conforms to the usual computable-model-
theoretic definition of a computable structure. An introduction to such fields
for non-logicians is given in [24] and continued in [25]. Classic references
on computable fields include [5], [6],, [7], [8], [19], [22], [28], and [32]. Our
computability-theoretic notation is standard and can be found in [31].

The field Q is known to be computably categorical, and so we will often
just write Q to denote a computable presentation of that field, without con-
cern for the specifics of the presentation. Given a computable field F , its
polynomial ring F [X] may be viewed just as the set F ∗ of finite tuples of
elements of F , with 〈a0, . . . , ad〉 identified with

∑
aiX

i. (For a perfect iden-
tification, ensure that if ad = 0, then d = 0.) Iterating this process yields a
computable presentation of the ring F [X1, . . . , Xn], uniformly in n.

Given a computable field F , we will treat any singly-generated field exten-
sion F (x) as a computable field as well. To compute it, we will need to know
whether x is algebraic over F or not, and if it is, we will need its minimal
polynomial p(X) over F . In the algebraic case, one views elements of F (x)
as F -linear combinations over the set {1, x, x2, . . . , xd−1}, where d = deg p,
with the obvious addition and multiplication (which requires knowledge of
p(X), of course). In the transcendental case, F (x) is just the quotient field
of the domain F [X] given above, and this quotient field is computably pre-
sentable as the Cartesian product F [x]× (F [x]−{0}) modulo a computable
equivalence relation. We can iterate these extensions, even over infinitely
many generators, as long as the minimal polynomial (or lack thereof) for
each generator over the preceding ones is given effectively. Notice that the
base field F is a computable subfield of each extension built this way.

2 Results from algebraic geometry

We now introduce some notation and review some results from algebraic
geometry. Let k be a field of characteristic zero and fix an algebraic closure k̄
of k. A variety V over k is by definition an absolutely irreducible, separated,
reduced scheme of finite type over k. Recall that V is called absolutely
irreducible if the base change V ×k k̄, (or more correctly, the fiber product
V ×Spec k Spec k̄) is irreducible. In fact, V ×k K is then irreducible for any
extension K of k.
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Suppose first that V is affine, that is to say, a closed subscheme of affine
space An

k for some n, or equivalently, a scheme of the form V = SpecA
with A an absolutely irreducible (meaning that A⊗k k̄ is a domain), finitely
generated k-algebra. For any extension field K of k, we define the K-rational
points of V , denoted V (K), as the collection of all P ∈ An

K(K) = Kn such
that P lies on V (more precisely, in scheme-theoretic terms, this means that
the morphism SpecK → An

K induced by P factors through V , yielding a
morphism SpecK → V ; or equivalently, that P is given by a maximal ideal
mP in A such that A/mP

∼= K). We define the coordinate ring k[V ] of V
over k as the residue ring k[x1, . . . , xn]/IV , where xi are variables and IV is
the ideal of all polynomials vanishing on V (that is to say, the collection of all
f ∈ k[x1, . . . , xn] such that f(P ) = 0 for all P ∈ V (k̄)). Hence, in the above
notation, A ∼= k[V ]. Since we assumed V to be irreducible, IV is a prime
ideal and remains so when extended to k̄[x1, . . . , xn]; we call such an ideal
absolutely prime. Conversely, if I is an absolutely prime ideal in k[x1, . . . , xn],
the variety defined by I is the scheme V := Spec(k[x1, . . . , xn]/I); for any
extension k ⊆ K, its K-rational points are precisely those P ∈ Kn such
that f(P ) = 0 for all f ∈ I. This establishes a one-one correspondence
between (affine) subvarieties of An

k and absolutely prime ideals in k[x1, . . . , xn]
(which in turn is in one-one correspondence with the class of all absolutely
irreducible, finitely generated k-algebras).

We define the function field k(V ) of V over k as the field of fractions
of k[V ]. The function field of a variety is a so-called birational invariant,
meaning that it only depends on the birational class of V . In particular, by
resolution of singularities in characteristic zero, we may therefore assume,
when studying the function field, that the variety has no singularities. The
following quantities are all the same and are called the dimension of V :

• the transcendence degree of k(V ) over k;

• the least number of hypersurfaces (=variety defined by a single, abso-
lutely irreducible equation) H1, . . . , Hd such that V (k̄) ∩H1(k̄) ∩ · · · ∩
Hd(k̄) is non-empty and finite;

• the combinatorial dimension of V (k̄) viewed as a topological space via
its Zariski topology;

• the Krull dimension of k[V ].
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A point P on V is called generic over k if the field k(P ) generated by its
coordinates is isomorphic to the function field of V , or equivalently, if the
transcendence degree of k(P ) over k is equal to the dimension of V . Con-
versely, any point P = (p1, . . . , pn) ∈ Kn in some extension field K ⊇ k can
be viewed as the generic point of an affine variety V over k, namely, let mP

be the maximal ideal in K[x1, . . . , xn] generated by the linear polynomials
Xi − pi, let IV be the contraction of this ideal to k[x1, . . . , xn], and let V be
the affine variety with coordinate ring k[V ] := k[x1, . . . , xn]/IV . One verifies
that k(V ) is isomorphic with the field k(P ), that is to say, P is a generic
point of V . If V is not affine, then its function field can still be defined as
the function field k(V0) of any non-empty affine open subset V0 of V . In
particular, when studying the function field, we may take the variety to be
projective as well. On occasion, we will use the following simple observation:

Lemma 2.1. If V is a variety over k, then k is algebraically closed inside
k(V ).

Proof. By assumption V ×k k̄ is irreducible, showing that k(V )⊗k k̄ is equal
to the function field k̄(V ) of V over k̄. Towards a contradiction, assume
k ( l ⊆ k(V ) is a finite extension of degree d > 1. Hence l ⊗k k̄ ∼= k̄d is not
a field, which contradicts that l ⊗k k̄ ⊆ k(V )⊗k k̄.

2.1 Curves

By a curve over k we will mean in these notes a non-singular (also called
smooth), projective one-dimensional variety C over k. Recall that for any
one-dimensional variety X defined over k, there exists a unique curve C to
which X is birationally equivalent, and moreover, if X has no singularities,
then it is isomorphic to an open subset of C. For instance, one can define
a scheme structure on the set CX of discrete valuations of k(X) which are
trivial on k, and then show that CX is a curve birational to X (see for
instance [17, Theorem 7.3.1] or [16, I. Corollary 6.11]); alternatively, we
can take a completion X̄ of X (e.g., the Zariski closure of X viewed as a
subvariety of some projective space over k), and then take its normalization.
A one-dimensional variety over k which is birational to a curve C over k is
sometimes called a model of C. Recall (see for instance [16, IV. Corollary
3.11]) that any curve admits an affine plane model (with at most nodes as
singularities). By Lemma 2.1, a point P on C is generic (over k) if and only
if P /∈ C(k̄).
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The genus of a curve C can be defined as the number 1−HC(0), where
HC is the Hilbert polynomial of C, or equivalently, by Serre duality, as the
vector space dimension over k of the global sections of the canonical sheaf
ωC of C (see for instance [16, §IV.1]). Note that the value of the genus does
not change when making a base change. In case C is a plane curve (that is,
a curve in P2

k), then its genus is calculated as g(C) := (d−1)(d−2)/2, where
d is the degree of the defining equation of C (see for instance [16, I. Exercise
7.2]).

A morphism between curves C → D defined over k is either constant
(that is to say, its image is a single point, necessarily k-rational), or other-
wise surjective. Indeed, take non-empty affine open subsets C0 and D0 of
C and D respectively so that C → D induces a k-algebra homomorphism
k[D0]→ k[C0]. The map C → D is not dominant precisely when this homo-
morphism has a non-zero kernel, which then by necessity has to be a maximal
ideal m of k[D0]. Hence we have inclusions of fields k ⊆ k[D0]/m ⊆ k(C).
By the Nullstellensatz, the former extension is algebraic, whence trivial by
Lemma 2.1, showing that the image of C → D is the k-rational point on
D determined by m. On the other hand, if C → D is dominant, then it
must be surjective: since C and D are projective, C → D is proper whence
in particular has a closed image. Since this image is also dense, it must be
equal to D. Moreover, in the surjective case, we have an inclusion of function
fields k(D) ⊆ k(C), which is necessarily a finite extension, since both k(C)
and k(D) have transcendence degree one over k. It follows that C → D is a
finite morphism of degree d := ((k(C) : k(D)); in particular, all the fibers of
C → D are finite, of cardinality at most d. The following fact will be quite
useful.

Proposition 2.2. Let C be a curve and V any variety, both defined over a
field k. We have a functorial bijection of sets

Mork(C, V ) ∼= V (k(C)),

and under this bijection, the morphism C → V is constant if, and only if,
the associated k(C)-rational point of V is k-rational.

Proof. Let P be a k(C)-rational point on V , which therefore corresponds to a
morphism Spec k(C)→ V . By the valuative criterion for properness (see for
instance [16, I. Proposition 6.8 or II. Theorem 4.7] or [17, Proposition 7.2.3]),
this extends to a morphism C → V . Conversely given a morphism v : C → V ,
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choose affine opens C0 ⊆ C and V0 ⊆ V such that v(C0) ⊆ V0. Hence we
have an induced k-algebra homomorphism k[V0] → k[C0]. Composing this
with the inclusion k[C0] ⊆ k(C0) = k(C) then yields a k(C)-rational point
Spec k(C)→ V .

Functoriality here means that we can view Mork(·, V ) and V (·) as con-
travariant functors, and the above bijection is compatible with these functors
in the following sense. Given a non-constant morphism C → D, composi-
tion yields a map Mork(D, V ) → Mork(C, V ). Moreover, we have an exten-
sion k(D) ⊂ k(C) of function fields, giving rise to an inclusion V (k(D)) ⊂
V (k(C). One now easily checks that we have a commutative diagram

Mork(D, V )

��

∼= // V (k(D))

��
Mork(C, V ) ∼=

// V (k(C))

Moreover, these bijections are also compatible when viewed as (covariant)
functors in their second component, that is to say, given a non-constant
morphism V → W , composition yields Mork(C, V ) → Mork(C,W ), and we
get a natural map V (k(C))→ W (k(C)), making the diagram

Mork(C, V )

��

∼= // V (k(C))

��
Mork(C,W ) ∼=

// W (k(C))

commute as well.

Moreover, if V is actually a curve, then by our above discussion, under
this isomorphism, the morphism C → V is constant if, and only if, the
associated k(C)-rational point of V is in fact k-rational.

Given two curves C and D over k, we say that C covers (or dominates)
D if there exists a non-constant morphism C → D defined over some field
extension K ⊇ k. Note that such a C → D is then automatically finite and
surjective. By Proposition 2.2, therefore, C does not cover D if and only if
MorK(C,D) ∼= D(K) for every K ⊇ k.

Lemma 2.3. Let C and Di be curves over k such that no Di covers C. If
F is the field generated by all the function fields k(Di), then C(F ) = C(k).
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Proof. Let Fi be the subfield of F generated by all k(Dj) with j ≤ i, that
is to say, Fi is defined inductively as Fi−1(Di) (with F0 := k). It suffices to
show by induction on i that C(Fi) = C(k). Suppose P is an Fi-rational point
on C , and we want to show that P is k-rational. Since P ∈ C(Fi−1(Di)), we
get from Proposition 2.2 a morphism Di → C defined over Fi−1. Since Di

does not cover C, this morphism must be constant, showing that P belongs
to C(Fi−1) and by induction, the latter is just C(k).

We will also use the following well-known inequality (see for instance [16,
Corollary 2.4]):

Theorem 2.4 (Hurwitz’s Formula). Let k be an algebraically closed field
of characteristic zero and let C and D be curves of genus g(C) and g(D)
respectively. If C → D is a finite morphism of degree d, then g(C) − 1 ≥
d(g(D)− 1).

Proof. Since the characteristic is zero, the morphism is separable. In this
case we even have an equality

2(g(C)− 1) = 2d(g(D)− 1) + deg(R),

where R is the (effective) ramification divisor of C → D; see for instance
[16, IV. Corollary 2.4].

Proposition 2.5. Let k be a field of characteristic zero and let C be a curve
over k of genus g ≥ 2. Then the function field K := k(C) of C is generated
by the coordinates of any K-rational point P of C which is not k-rational,
that is to say, for any P ∈ C(K) \ C(k), the natural inclusion k(P ) ⊆ K is
an equality.

Proof. Let C0 be a (non-empty) affine open subset of C and let A := k[C0] be
its coordinate ring. For instance, if C0 is a plane curve with affine equation
f = 0, then A = k[x, y]/fk[x, y] and K is the field of fractions of A. We need
to show that if P := (a, b) ∈ K2 \k2 satisfies f(a, b) = 0, then k(P ) := k(a, b)
is equal to K. In any case, since P is not defined over k, it is a generic point
of C by Lemma 2.1. In particular, k(P ) and K are isomorphic over k (for
instance, in the planar example, the k-algebra k[a, b] is easily seen to be k-
isomorphic to A). In particular, by our discussion of Proposition 2.2, the
embedding k(P ) ⊆ K is finite of degree d := (K : k(P )) inducing a finite
morphism C → C. We need to show that d = 1.
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Assume first that k is algebraically closed, so that we can apply Theorem
2.4 to this morphism, giving g − 1 ≥ d(g − 1). Since g ≥ 2, we must have
d = 1, as we wanted to show. For the general case, it follows from the
algebraically closed case that there exists a finite extension l of k such that
l(P ) = l(C). Let π be such that l = k(π), so that in particular l(P ) = k(P, π)
and l(C) = K(π). However, since π is algebraic over k whence over the k-
isomorphic fields k(P ) and K, the degrees (l(P ) : k(P )) and (l(C) : K) are
the same. By transitivity, it follows that (K : k(P )) = 1, as we wanted to
show.

Remark 2.6. The proposition is false in positive characteristic p, precisely
because of the purely inseparable extenstion given by the Frobenius Frobp: if
P is a K-rational point of C, then so is its Frobenius transform Frobp(P ),
which clearly generates a proper subfield.

Remark 2.7. By the argument in the proof, g(C) ≥ g(D) for any cover
C → D over k (not necessarily algebraically closed). Moreover, if the genera
are the same and at least two, then C → D must have degree one, hence is an
isomorphism. In summary, given a cover C → D of curves of genus at least
two, either C ∼= D (and the cover itself is an isomorphism) or g(C) > g(D).

Remark 2.8. Let C be a curve of genus g at least two and let K := k(C)
be its function field. Any non-constant morphism C → C is necessarily an
automorphism by our previous remark. Hence under Proposition 2.2, we
have a one-one correspondence between the K-rational generic points of C
and the automorphisms of C. In particular, C(K) \ C(k) has cardinality at
most 84(g − 1), as this is the maximum number of automorphisms of C (see
for instance [16, IV Exercise 2.5]). In particular, if C has no non-trivial
automorphism (which is the ‘generic’ case for g ≥ 3), then C has a unique
generic point (in any fixed function field).

2.2 General collections of curves

By a general collection of curves over k, we mean a countable set C of curves
over k of genus at least two, such that no two distinct curves in C are isomor-
phic over k̄. The function field k(C) of C is by definition the field generated
by all the function fields of curves in C. More precisely, take a universal field
Ω (that is, an algebraically closed field containing k and of cardinality larger
than any of the fields we use otherwise), and for each C ∈ C, fix a subfield
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kC ⊆ Ω isomorphic to its function field k(C). Then k(C) is the subfield of
Ω generated by all the kC with C ∈ C. Note that the field generated by
the subfields kC1 , . . . , kCi

is isomorphic to the function field of the product
variety C1 × · · · × Ci, for C1, . . . , Ci distinct curves in C. Moreover, k(C) is
the union of the function fields of all such products. In particular, k(C) is
well-defined up to isomorphism.

Proposition 2.9. Let C be a general collection of curves over k and let k(C)
be its function field. Suppose all curves in C have genus at most g and let
D be an arbitrary curve of genus at least g. Then the function field k(D)
embeds in k(C) if and only if D ∈ C.

Proof. Let us write kD for the image of k(D) in k(C). Let C1, C2, . . . be an
enumeration of C, and let ki := k(C1 × · · · × Ci) ⊆ k(C) be as above, so
that in particular k(C) is the union all ki. Since kD is finitely generated, it
lies in some ki. Let i be minimal such. By Proposition 2.5 and minimality
of i, the function field ki−1(D) of D over ki−1 is isomorphic to the field
generated by ki−1 and kD, and hence has transcendence degree one over ki−1

by Lemma 2.1. The extension ki−1(D) → ki = ki−1(Ci) is finite, since both
fields have transcendence degree one over ki−1, and hence by the discussion
of Proposition 2.2, determines a cover Ci → D over ki−1. If Ci 6= D, then
g(Ci) > g(D) ≥ g by Remark 2.7, contradicting the assumption that g(Ci) ≤
g.

We say that a general collection of curves C is non-covering, if there is
no cover relation between any two distinct curves in C. Immediately from
Remark 2.7 we get:

Lemma 2.10. The collection of all curves over k of a fixed genus g ≥ 2 is
non-covering.

Note that the collection in Lemma 2.10 is in one-one correspondence with
the set of k-rational points of the moduli space Mg of all curves of genus g.
Recall that the moduli space has dimension 3(g − 1), for g ≥ 2.

Theorem 2.11. Let C be a non-covering collection of curves over k, and
let k(C) be its function field, as in Proposition 2.9. For any curve C in
C, any embedding of its function field into k(C) has image equal to kC. In
particular, if P is a k(C)-rational point on C which is not k-rational, then P
is kC-rational and the natural inclusion k(P ) ⊆ kC is an equality.
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Proof. Let K be the subfield of k(C) generated by all the function fields
kD with D ∈ C different from C. Since C is non-covering, we can apply
Lemma 2.3 over the subfield kC ⊆ k(C). Since k(C) is generated by K
and kC , Lemma 2.3 shows that P is kC-rational. As P is not k-rational,
Proposition 2.5 then shows that k(P ) = kC , as we wanted to show. To prove
the first assertion, let k(C) → k(C) be an embedding, and let P be the
corresponding generic point of C defined over k(C). In particular, k(P ) is
the image of the above embedding, and we just argued that k(P ) = kC .

Corollary 2.12. Let C be a non-covering collection of curves over k, and
let k(C) be its function field. Then the Galois group G of k(C) over k is
equal to the direct product of the automorphism groups of each curve in C.
In particular, if all curves in C have genus at most g, then G has exponent
at most 84(g − 1).

Proof. Let C be a curve in C with function field kC ⊆ k(C), and let g ∈ G.
Since g(kC) ∼= kC , it must be equal to it by Theorem 2.11. In other words,
the restriction of g to kC belongs to the Galois group HC of kC over k. In
particular, the restriction map induces a split group homomorphism G →
HC . Since k(C) is generated by all the kC with C ∈ C, it follows that G is
isomorphic to the direct product of all HC . Since HC

∼= Autk(C) has order
at most 84(g(C)− 1), the result follows (see Remark 2.8).

3 Construction of a computably categorical

field of infinite transcendence degree

In this section, Q is a (countable) computable field of characteristic zero.
Given a collection C = {C0, C1, . . .} of curves Ci over Q, we say that C admits
effective Mordell-Weil (effective M-W for short) if |Ci(Q)| is computable as a
function of i. Of course, this depends not only on C, but also on the ordering
of the curves in C. Normally we assume a fixed computable listing of these
curves: some computable function g(i) gives the defining equation of each Ci

over Q. We allow the possibility that |Ci(Q)| = ℵ0, but in practice we will
deal with collections C for which all |Ci(Q)| are finite. In this case, with a
computably enumerable ground field Q, for C to admit effective M-W means
that we can computably determine all of the finitely many solutions of each
Ci, since to do so we only need to be able to compute their number and then
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search for them. Note that by Faltings’ positive solution of the Mordell-Weil
conjecture, each curve of genus two has only finitely many solutions over a
number field.

For our construction, we need a non-covering collection of curves over the
ground field Q = Q admitting effective M-W. For instance, we might in light
of Lemma 2.10 ask whether there are infinitely many curves of a fixed genus
for which we can effectively determine their Q-rational points? After all, a
‘generic’ choice will produce a curve without any Q-rational points, a trivial
instance of effective M-W. Although we do not know the answer to this, we
can prove:

Theorem 3.1. There exists a non-covering collection C of curves over Q
admitting effective M-W.

Proof. Our collection will consist of Fermat curves, which is to say, plane
curves DN with affine equation dN(X, Y ) = XN +Y N−1. By Wiles’ positive
solution of Fermat’s Theorem, the set of Fermat curves DN with N ≥ 3
satisfies effective M-W, since the only Q-rational points of such a curve are
(1, 0) and (0, 1) (and the point at infinity (1 : −1 : 0)). Moreover, the genus
of DN is equal to (N − 1)(N − 2)/2. So it remains to find a non-covering
subset. To this end, we will choose inductively a set of prime exponents
p0, p1, . . . as follows. Let p0 = 5, and choose pi+1 to be the least prime bigger
than (4(pi − 1)(pi − 2))2. Now Dpi

does not cover Dpj
for i > j by Lemma

3.2 below, and for i < j by Remark 2.7.

Lemma 3.2. Let C be a curve of genus g ≥ 2 and let Dp be the Fermat
curve of exponent p, as above. If p > 64g2, then there is no cover relation
between C and Dp.

Proof. Since Dp has genus (p − 1)(p − 2)/2 > g, it cannot be covered by C
by Remark 2.7. By the well-known estimate for the Euler’s totient function
ϕ(n) ≥

√
n, we get ϕ(n) > 8g for all n > p. In particular, p and (64g2)! are

relatively prime, so that by the proof of [1, Lemma 9.3], neither can there be
a covering Dp → C.

Fixing the sequence of primes 〈ps〉s≥0 defined in Theorem 3.1, we begin
with the purely transcendental extension Q(x0, x1, . . .), and for each s, adjoin
an element ys satisfying the ps-th Fermat curve dps(xs, ys) = xps

s + yps
s −

1 = 0. We write F0 = Q and Fs+1 = Fs(xs)[ys]/(dps(xs, ys)), so Fs+1 has
transcendence degree 1 over Fs, and we may take each Fs to be computable
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within F , uniformly in s. Clearly F has infinite transcendence degree over
Q.

Theorem 3.3. The computable field F built above is computably categorical
and has infinite transcendence degree.

Proof. Let F̃ be any computable field isomorphic to F , say via a noncom-
putable isomorphism ψ : F → F̃ . We define our computable isomorphism
f on each Fs in turn, starting with the unique embedding of F0 onto the
subfield F̃0 = Q̃ of F̃ . Given f � Fs−1, search for any nonzero elements x̃
and ỹ in F̃ such that dps(x̃, ỹ) = 0 there. We must find them, since F ∼= F̃ ,
and (x̃, ỹ) is then a generic point of Dp over Q. So we define f(xs) = x̃ and
f(ys) = ỹ, then extend this f to the rest of Fs, which is generated over Fs−1

by these elements. By Theorem 2.11, this gives a field embedding of Fs onto
the image ψ(Fs).

One could begin with any prime > 3 as p0, thereby building countably
many non-isomorphic computable, computably categorical fields of infinite
transcendence degree. (Our use of Proposition 2.5 requires that p0 6= 3,
since the curves must all have genus ≥ 2.) And by varying the choice of
the subsequent primes p1, p2, . . ., one could get uncountably many relatively
computably categorical fields of infinite transcendence degree, although of
course only countably many of them would be computably presentable.

Next we adapt Theorem 3.3 to a more general setting.

Theorem 3.4. Let k be any finitely generated field of characteristic 0, and
C any computably enumerable collection of curves over k, all of genus ≥ 2,
such that C is non-covering and admits effective Mordell-Weil over k. (In
particular, C(k) is finite for all C ∈ C.) Then the function field k(C) is
computably categorical.

Saying that C is computably enumerable (or c.e.) means that there is
a computable function g such that for every s, g(s) ∈ k[X, Y ] is a polyno-
mial defining a curve Cs, and C0, C1, . . . is a list of all curves in C without
repetitions. Below we write gs for g(s).

Proof. Let F and F̃ be computable fields isomorphic to k(C). Now the finitely
generated field k is computably enumerable within F , and for a fixed (not
necessarily computable) isomorphism α : F → F̃ , the image k̃ = α(k) will
likewise be c.e. within F̃ . Moreover, the isomorphism f0 = α� k from the
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subfield F0 = k onto F̃0 = k̃ is computable: we need only know the images
under α of the finitely many generators of k.

As in Theorem 3.3, the construction is straightforward. For each s, with
effective Mordell-Weil, we can compute the (finite) number j of distinct so-
lutions of gs in k. Search until we have found all j solutions of gs in k
and one additional solution (xs, ys) of gs in F . Then we search in k̃ for j
distinct solutions to the polynomial g̃s(X, Y ) ∈ k̃[X, Y ] whose coefficients
are the images of those of gs under f0, and in F̃ for one additional solution
(x̃s, ỹs) to g̃s. We must find such a pair (x̃s, ỹs), and we set f(xs) = x̃s and
f(ys) = ỹs. It is then easy to compute f on all of F , since Theorem 2.11
shows F to be generated by {xs, ys : s ∈ ω}. For any z ∈ F , we compute
f(z) just by searching for an n and an h ∈ k(X1, . . . , Xn, Y1, . . . , Yn) with
h(x1, . . . , xn, y1, . . . , yn) = z, since then f(z) = h(x̃1, . . . , x̃n, ỹ1, . . . , ỹn).

To see that this f really is an isomorphism, we appeal to the following
lemma. In Theorem 3.3, the corresponding fact is immediate (and appears
explicitly in the discussion of the proof of Proposition 4.4 below). Now in this
more general situation, we make sure that it is safe to choose an arbitrary
solution (x̃s, ỹs) of g̃s in (F̃ − k̃).

Lemma 3.5. For every s and any pairs (x, y), (x′, y′) ∈ (Fs+1 − Fs)
2 with

gs(x, y) = g(x′, y′) = 0, every automorphism ψ of Fs which fixes k pointwise
extends to a unique automorphism of Fs+1 which maps x to x′ and y to y′.

Proof. By Lemma 2.1, Fs is algebraically closed within Fs(Cs) = Fs+1, so
each of x and x′ must be transcendental over Fs. Therefore ψ extends to
a partial automorphism ψ′ of Fs+1 by mapping x to x′. Next, by absolute
irreducibility, gs(x, Y ) is irreducible in Fs(x)[Y ], and likewise for x′, so

Fs(x, y) ∼= Fs(x)[Y ]/(gs(x, Y )) ∼= Fs(x
′)[Y ]/(gs(x

′, Y )) ∼= Fs(x
′, y′),

with the middle isomorphism being induced by ψ′ on the quotients of the
polynomial rings. (It is important here that ψ′ fixes the coefficients of
gs(X, Y ).) But by Theorem 2.11, x and y together generate Fs+1 over Fs,
as do x′ and y′, which makes it clear both that we have an automorphism of
Fs+1, and that it is unique.

Our claim that the f = ∪sfs constructed above is an isomorphism will
follow from (f−1 ◦ α) being an automorphism of F , where α was the given
isomorphism from F to F̃ . Since f0 = α� k, we know that (f−1

0 ◦ α) is the
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identity on k = F0. For each s, (f−1 ◦ α)�Fs+1 is just the unique extension
of ψ = (f−1 ◦ α)� Fs given by the lemma, with x = α−1(x̃s), y = α−1(ỹs),
x′ = xs, and y′ = ys.

We have a criterion for computable enumerability of certain collections C
of curves.

Theorem 3.6. Let g ≥ 2, let Q be a computable field, and let C be an infinite
subset of the Q-rational points of the moduli space Mg. Suppose for each Q-
rational point of the moduli space Mg, we can effectively compute a defining
set of equations over Q of an affine model of the curve of genus g determined
by this Q-rational point. Then relative to a computable representation of
the field extension Q ⊆ Q(C), the subset C is computably enumerable inside
Mg(Q).

Proof. Let C be a Q-rational point ofMg, viewed as a curve over Q of genus
g, and let f1, . . . , fs ∈ Q[x1, . . . , xm] be the defining equations of an affine
model of C (meaning that the function field of C is the field of fractions
of Q[x1, . . . , xm]/(f1, . . . , fs)Q[x1, . . . , xm]). We now search for a solution
P ∈ Q(C)m of the system of equations f1 = · · · = fs = 0 which is not defined
over the computable subfield Q. If such a solution exists, then C ∈ C by
Proposition 2.9.

Remark 3.7. For instance, if g = 2, any curve C of genus 2 has an affine
model Cf given by an equation y2 = f(x) with f a polynomial of degree 6
without double roots (so that in particular Cf is non-singular whence iso-
morphic to an open subset of C). Moreover, two such models Cf1 and Cf2

are birational to the same curve if and only if f1 and f2 are equal up to a
fractional linear transformation, that is to say, if and only if

f1(x) = (cx+ d)6 · f2

(
ax+ b

cx+ d

)
for some a, b, c, d ∈ Q with ad − bc 6= 0 (see for instance [3, §1.1]). Put
differently, the subset H in the Hilbert scheme P7

Q of degree six polynomials
without a double root admits a natural action of the group of fractional linear
transformations Γ := PGL(2, Q), and the geometric quotient H//Γ is the
moduli space M2.
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4 An Intrinsically Computable Basis

The field F built in Theorem 3.3 has uncountably many automorphisms, as
one sees by defining, for any S ⊆ ω, an automorphism extending the map

xi 7→
{
xi, if i ∈ S;
yi, if i /∈ S.

Therefore, between F and any computable field F̃ ∼= F , there exist 2ω-many
isomorphisms. The point of Theorem 3.3 was that at least one must be
computable, but the image of the transcendence basis B = {xi : i ∈ ω}
can have arbitrarily high Turing degree as well: its image under the above
automorphism is Turing-equivalent to S. In the language of computable
model theory, this says that B is far from being intrinsically computable.

Definition 4.1. Let M be any computable structure, and R an n-ary rela-
tion on M (generally not in the signature of M). The degree spectrum of R
on M is the set

DgSpM(R) = {deg f(R) : B ∼=M via f & B is a computable structure}.

If DgSpM(R) = {0}, then R is intrinsically computable.

So the degree spectrum measures the amount of complexity that can be
added to (or withheld from) R under isomorphisms onto other computable
structures. If that amount is bounded above (or below), then we think of R
as being intrinsically no more complex than (or no less complex than) that
bound. Degree spectra of relations have been studied widely in computable
model theory; see [15] for a survey of results. With our field F , the degree
spectrum of the basis B, viewed as a unary relation on F , contains every
Turing degree, simply by the argument above using automorphisms from F
to itself.

In this section we show that we can go to the opposite extreme: an infinite
transcendence basis for a computable field can be intrinsically computable.
This would be trivial if the basis were finite, of course, but for the infinite
case, we believe this is the first proof of Theorem 4.2.

Theorem 4.2. There exists a computable field F , of infinite transcendence
degree over its prime field Q, with an intrinsically computable transcendence
basis.
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F will be the computable field defined in Theorem 3.3, and the key to
the proof is knowing the exact number of solutions in F to each of the
Fermat polynomials dpi

(X, Y ) used to identify transcendence basis elements.
Therefore, we need the following essential result of Tzermias and Leopoldt.

Theorem 4.3 (Tzermias [33]; Leopoldt [21]). Over an algebraically closed
field K of characteristic 0, the automorphism group of the projective curve
Xp + Y p + Zp is the semidirect product of the symmetric group S3 and the
group (µ(p))2, where µ(p) is the multiplicative group of p-th roots of unity in
K.

In particular, S3 acts by permuting the coordinates in P2(K), and (α, β) ∈
(µ(p))2 maps (x : y : z) to (αx : βy : z). Clearly each of these operations
maps solutions of Xp + Y p + Zp = 0 to other solutions; the content of the
theorem is that there are no other automorphisms.

Proposition 4.4. The function field Q(Dp) of the Fermat curve Dp of prime
exponent p > 3 contains exactly eight solutions (given below) to its defining
equation dp(X, Y ) = 0.

Proof. Since Q contains no non-trivial p-th roots of unity, the automorphism
group of Dp is isomorphic to S3, and corresponds by Remark 2.8 to the six
generic points on Dp. By Wiles’ positive solution to Fermat’s Last Theorem,
Dp(Q) consists of three points, including the point at infinity (1 : −1 : 0).
Excluding the point at infinity gives a total of eight affine solutions to the
equation dp = 0.

We now describe this proof more explicitly for readers with less back-
ground in algebraic geometry. The function field Q(Dp) must contain at
least one nontrivial solution (x, y) to Xp + Y p = 1. Now with p > 3, Dp

has genus ≥ 2, so if (x′, y′) ∈ (Q(Dp))2 is any nontrivial solution, then x′

and y′ generate Q(Dp), by Proposition 2.5 (as do x and y also). Hence x′

is transcendental over Q, forcing Q(x) ∼= Q(x′), which in turn yields a chain
whose composition is an automorphism of Q(Dp):

Q(x, y) ∼= Q(x)[Y ]/(dp(x, Y )) ∼= Q(x′)[Y ]/(dp(x′, Y )) ∼= Q(x′, y′).

Thus (x′ : y′ : −1) gives an automorphism of the projective curve Xp +Y p +
Zp, using Remark 2.8, and so Theorem 4.3 shows that the only projective
solutions to Xp + Y p + Zp = 0 in the function field are (αx : βy : −1) and
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permutations thereof, with α and β ranging over the p-th roots of unity.
But all those roots except 1 lie outside of Q, since p is odd. Therefore,
any solution to Xp + Y p + Zp = 0 must be of the form (x : y : −1) or a
permutation of this, which translates to an affine solution (λx, λy,−λ) or
a permutation. For our purposes the affine solution must end with −1, in
order to yield Xp + Y p = 1. Clearly (x, y,−1) works, and choosing λ = − 1

x

gives (−1,− y
x
, 1

x
), while choosing λ = − 1

y
gives (−x

y
,−1, 1

y
), which both can

be permuted to the appropriate form. However, no other value for λ can give
the necessary coordinate −1.

Corollary 4.5. The six nontrivial solutions of Xp + Y p = 1 in Q(Dp) are
(x, y), (− y

x
, 1

x
), (−x

y
, 1

y
), and the transpositions of these, where (x, y) is any

one nontrivial solution.

So in Theorem 3.3, when we built the computable isomorphism f from
F onto an arbitrary computable copy F̃ , there were actually six possible
images for each xs in F̃ , which we identified by finding nontrivial solutions
to dps = 0. We simply chose f(xs) to be the first one we recognized, since
Theorem 2.11 shows that each of the six is a valid choice. For Theorem 4.2,
however, we need a transcendence basis each element of which has only one
possible image in the target field.

Proof of Theorem 4.2. Let F be the computable field defined in Theorem
3.3, presented as

F = Q(x0, x1, . . .)[y0, y1, . . .]/(dpi
(xi, yi) : i ∈ ω),

where 〈pi〉i∈ω was the computable sequence of primes chosen there. In the nice
presentation F constructed there, the transcendence basis B = {xi : i ∈ ω}
was computable, of course, but not intrinsically computable, as noted above.
However, we can build an intrinsically computable basis A from it.

The nontrivial solutions of each dpi
(X, Y ) = 0 in F were given by Proposi-

tion 4.4: 〈xi, yi〉, 〈yi, xi〉, 〈 1
yi
, −xi

yi
〉, 〈−xi

yi
, 1

yi
〉, 〈 1

xi
, −yi

xi
〉, 〈−yi

xi
, 1

xi
〉, and no others.

For each i, let zi be the sum of these six numbers:

zi = xi + yi +
1

yi

− xi

yi

+
1

xi

− yi

xi

=

(
1− xi

1− xpi

i

)
ypi−1

i +

(
xi − 1

xi

)
yi +

x2
i + 1

xi

,

where we have used the algebraic relation ypi

i = 1−xpi

i to rewrite the expres-
sion as a polynomial in yi over Q(xi). Thus zi clearly lies in Q(xi)[yi] but
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not in Q, as yi is algebraic of degree pi over Q(xi), and so zi is algebraically
interdependent with xi in F over Q. So we may replace each xi by zi in the
basis B, giving a new transcendence basis A = {zi : i ∈ ω} for F .

Now each zi is defined by a simple existential formula ψi(z): it is the sum
of six distinct elements x ∈ F , each satisfying

x 6= 0 & x 6= 1 & (∃y ∈ F )[xpi + ypi = 1].

By Proposition 4.4, this formula ψi(z) actually defines zi in F . So the tran-
scendence basis A is defined by

(∃i ∈ ω)ψi(z).

(This definition is in fact a computable infinitary Σ1 formula, quantifying
over ω as well as over E, which is acceptable for us, though anathema to
model theorists.) Therefore, the image f(A) under any isomorphism f (not
necessarily computable) from F onto any computable field F̃ must also be
existentially defined in F̃ , hence c.e. Now we invoke a simple lemma to show
that f(A) is computable in F̃ .

Lemma 4.6. In a computable field K, if a transcendence basis A is com-
putably enumerable, then A is computable.

Proof. K is algebraic over the purely transcendental extension Q(A), where
Q is the prime subfield of K. Given any t ∈ K, we find an n ∈ ω and a
nonzero polynomial p(T ) ∈ Q(a0, . . . , an)[T ] with p(t) = 0, by enumerating
A = {a0, a1, . . .} and searching though such polynomials (for all n simul-
taneously). But then t is algebraic over Q(a0, . . . , an), and so t ∈ A iff
t ∈ {a0, . . . , an}.
This completes the proof of Theorem 4.2.

We remark that Proposition 4.4 was essential to this proof of Theorem
4.2. In a field as described more generally in Theorem 3.4, one might not
be able to compute the number of solutions to Ci in its function field, and
therefore it could be impossible to state the definitions ψi(z) uniformly in i.

We also remark that this same proof shows the basis A to be relatively
intrinsically computable: its image f(A) under any isomorphism f is com-
putable relative to the Turing degree of the field f(F ). Likewise, this field F ,
and also those described by Theorem 3.4, are relatively computably categori-
cal : if F̃ is a field isomorphic to F but of arbitrary Turing degree, then there
is an isomorphism between these fields which is computable in the degree of
F̃ .
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5 Questions

Several basic questions arise from the algebraic geometry presented here.
For instance, we do not know whether cover relations exist among any of
the Fermat curves Dp and Dq with 3 < p < q. D3 is a special case, of
course, since its genus equals 1, and in Theorem 3.1 we chose specific primes
such that no cover relations exist among those curves. But the general case
remains unclear.

Also, while Theorems 3.3 and 3.4 give examples of computably categorical
fields of infinite transcendence degree, they leave open the larger question of
determining a structural criterion for computable categoricity of fields. If
anything, they make this question appear more difficult, since now we know
that infinite transcendence degree is not sufficient to rule out computable
categoricity.

Specifically, we remarked in Lemma 2.10 that there is no cover relation
among any collection of curves of any single fixed genus ≥ 2. Whether this
gives rise to other computably categorical fields of infinite transcendence
degree depends on whether one can produce a computable collection of such
curves which admits effective Mordell-Weil. It seems plausible that this can
be done, but the proof remains elusive, and introduces the larger question
of computing the number of solutions in Q of arbitrary curves satisfying
Mordell-Weil. Of course, the exact number of Q-rational points on a curve
given by a polynomial q ∈ Q[X, Y ] defines a limitwise monotonic function
lims g(q, s) (that is, with g computable and with g(q, s) ≤ g(q, s + 1) for all
q and s), and when we restrict to curves of genus ≥ 2, this function is total,
i.e., the limit is always finite. However, it remains unknown whether the
exact number is computable from q or not.

We regard this as a natural and challenging question. It seems related to
Hilbert’s Tenth Problem for Q, which demands a decision procedure for the
existence of Q-rational solutions to polynomials in arbitrarily many variables
over Q. However, it is not immediately clear whether such a decision pro-
cedure would allow one to compute the exact number of rational solutions
(even given that this number is finite). Conversely, even if we had effective
Mordell-Weil for all curves of genus ≥ 2, we would still not have an obvi-
ous algorithm for Hilbert’s Tenth Problem for polynomials in more than two
variables.
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Größen, J. f. Math. 92 (1882), 1–122.

[20] S. Lempp, C. McCoy, R. Miller, & R. Solomon; Computable categoricity
of trees of finite height, Journal of Symbolic Logic 70 (2005), 151–215.

[21] H.-W. Leopoldt; Über die Automorphismengrupper des Fermatkorpers,
Journal of Number Theory 56 (1996) 2, 256–282.

[22] G. Metakides & A. Nerode; Effective content of field theory, Annals of
Mathematical Logic 17 (1979), 289–320.

[23] R.G. Miller; The computable dimension of trees of infinite height, Jour-
nal of Symbolic Logic 70 (2005), 111–141.

[24] R.G. Miller; Computable fields and Galois theory, Notices of the AMS
55 (August 2008) 7, 798–807.

23



[25] R.G. Miller; Computability and differential fields: a tutorial, to ap-
pear in Differential Algebra and Related Topics: Proceedings of the Sec-
ond International Workshop, eds. L. Guo & W. Sit. Also available at
qcpages.qc.cuny.edu/˜rmiller/research.html.

[26] R.G. Miller; d-Computable categoricity for algebraic fields, to appear in
the Journal of Symbolic Logic.

[27] B. Poonen; Unramified covers of Galois covers of low genus curves, Math
Res. Lett. 12 (2005) 4, 475–481.

[28] M. Rabin; Computable algebra, general theory, and theory of com-
putable fields, Transactions of the American Mathematical Society 95
(1960), 341–360.

[29] J.B. Remmel; Recursively categorical linear orderings, Proceedings of
the American Mathematical Society 83 (1981), 387–391.

[30] J.B. Remmel; Recursive isomorphism types of recursive Boolean alge-
bras, Journal of Symbolic Logic 46 (1981), 572–594.

[31] R.I. Soare; Recursively Enumerable Sets and Degrees (New York:
Springer-Verlag, 1987).

[32] V. Stoltenberg-Hansen & J.V. Tucker; Computable Rings and Fields,
in Handbook of Computability Theory, ed. E.R. Griffor (Amsterdam:
Elsevier, 1999), 363–447.

[33] P. Tzermias; The group of automorphisms of the Fermat curve, Journal
of Number Theory 53 (1995) 1, 173–178.

Department of Mathematics
Queens College – C.U.N.Y.
65-30 Kissena Blvd.
Flushing, New York 11367 U.S.A.

Ph.D. Programs in Mathematics & Computer Science
C.U.N.Y. Graduate Center
365 Fifth Avenue
New York, New York 10016 U.S.A.

E-mail: Russell.Miller@qc.cuny.edu

24



Department of Mathematics
New York City College of Technology
300 Jay Street
Brooklyn, New York 11201 U.S.A.

Ph.D. Program in Mathematics
C.U.N.Y. Graduate Center
365 Fifth Avenue
New York, New York 10016 U.S.A.

E-mail: hschoutens@citytech.cuny.edu

25


