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Abstract

A local numerical invariant is a map which assigns to a local rin§g a natural number

w(R). It induces on any schem¥ a partition given by the sets consisting of all points

x of X for whichw(Ox ) takes a fixed value. Criteria are given for this partition to be
constructible, in cas& is a scheme of finite type over a field. It follows that if the partition

is constructible, then it is finite, so that the invariant takes only finitely many different values
on X. Examples of local numerical invariants to which these results apply, are the regularity
defect, the Cohen-Macaulay defect, the Gorenstein defect, the complete intersection defect,
the Betti numbers and the (twisted) Bass numbers.

As an application, we obtain that an affine scheme of finite type over a field is ‘asymp-
totically a complete intersection’.

Key words: Constructible property, invariant, Betti number, Bass number, regularity
defect, complete intersection defect, Gorenstein defect, Cohen-Macaulay defect.

1 Introduction

In [2, Chap. IV,§9], Grothendieck studies in detail the nature of the subset on a
schemeX consisting of all points which have a certain property, or the fiber of
which with respect to a map of finite type — X has a certain property. To
name a few of these properties, points (or rather, their local rings) could be regular,
complete intersections, Gorenstein or Cohen-Macaulay, and fibers could be non-
empty, reduced or regular. Subsets defined by these conditions often turn out to
be open (or closed). This is particularly useful in arguments using induction on the
dimension, especially for the study of fibers of a map. In fact, all one needs to know
is that the set (or its complement) is dense for the induction to go through.
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The aim of this paper is to extend thgsialitativeanalysis of [2] to eguantitative

one in the following sense. Rather than study properties, we will study numerical
(and other) invariants which, in some sense, describe the defect that a particular
property holds. For instance, 1éR, m) be a Noetherian local ring. Let be its
dimension ana its embedding dimension, that is to say, the minimal number of
generators ofir. Then alwaysl < e, with equality if and only ifR is regular. Hence

the numerical invariant — d measures the defect &f being regular and accord-
ingly is called theegularity defecof R. The goal is now to study the collection,

of all points on a schem& with a prescribed regularity defecte N (the regularity
defect of a point is the regularity defect of its local ring). Our techniques will show
that at least for schemes of finite type over a field, such a s&t, is constructible.

In particular, as we let the regularity defect run over all possible values, we get a
constructible partition ok (after dismissing thos& , which are empty, of course).
Such a partition is necessarily finite: indeed, except for the finitely ndangon-
taining a generic point, their dimension is strictly smaller than the dimensioh of
and hence by induction on the dimension, only finitely many can be non-empty. In
particular, there are only finitely many regularity defects which can occur on a fixed
scheme. This extends to include various other singularity defects, where we mean
with a singularity defectany of the following defects (see Section 7 for their def-
inition): regularity defect, Cohen-Macaulay defect, Gorenstein defect or complete
intersection defect.

Theorem 1.1 For each schem& of finite type over a fieldy, the collection of
points for which a singularity defect has a fixed valiiés a constructible subset of
X. In particular, a singularity defect takes only finitely many different values on a
schemeX.

More generally, iff: Y — X is a map of finite type of schemes of finite type over
K, then the collection of pointg in Y for which the fiberf~1(f(y)) has a pre-
scribed singularity defect at, is constructible, and only finitely many possibilities
for these values occur.

The first part, under the additional assumption tRats algebraically closed, is
Theorem 7.1 below; the full version then follows from this by the results in the last
two sections. Applying the theorem for the complete intersection defect gives the
following corollary (see the end of Section 8 for a proof).

Theorem 1.2 For each mapf: Y — X of finite type of schemes of finite type over
a field K, there exists a numbeb,; € N, such that for eacn and each point

x € X, if the fiberY, := f~'(x) is embedded as a closed subschemabf,
wherek(z) is the residue field of the point, thenY, is the (scheme-theoretic)
intersection of at mosb, + n hypersurfaces.

Corollary 1.3 Let X be an affine scheme of finite type over a figland for each
closed immersion: X — A}‘((’), let p(i) be the minimal number of hypersurfaces



needed to defin@ scheme-theoretically. Thexi is asymptotically a complete in-
tersectionin the sense that the limit @f(i) /n(:) for n(:) going to infinity is equal
to one.

Proof. By Theorem 1.2, there exists a boubd= D(X) such thap(i) < D+n(7).

On the other hand, sineé:= dim(X) is at least(i) — p(i) by Krull’s Principal
Ideal Theorem, we have(i) — d < p(i) < n(i) + D, proving that in the limit
p(i)/n(i)isone. O

Let me briefly describe the strategy for obtaining the constructibility results stated
in Theorem 1.1. To simplify the exposition, assume thakenotes a numerical in-
variant, that is to say assigns to a Noetherian local ridiga natural numben(R).

(In the text we will deal with more complicated invariants, involving finitely gen-
erated modules and maps). L€tbe a scheme of finite type over an algebraically
closed fieldK (the generalization to arbitrary fields is postponed until the last sec-
tion). We want to determine the nature of lbeelset

Xy ={reX|wOx,) =5}, (1)

wheres is a natural number. In order to prove tlatis constructible, we first show
that Xmax N X is constructible, wher& .« denotes the (topological) space of all
closed (that is to sayy -rational) points onX. Next we show thak, is saturated

in the following sense: for any € X, we can find apecializationy € Xmax Of
which also lies inX. It then follows, by a general argument discussed in Section 4,
that X, is constructible. In fact, to prove that, is saturated, it suffices to show that
itis devissablgfrom the Frencluévissage meaning that for each non-closed point
x in X, we can find an opefi C X containingz with the following property. Ify

is an immediate specialization oflying in U, theny lies also inX,. Under some
additional assumptions, namely,Xf is Cohen-Macaulay and deforms wellthat

is to say, is stable under reduction modulo a regular element; see Definition 5.3), it
suffices to check this far a generic point ofX . It follows by an easy induction on
dimension that a devissable set is saturated.

In summary, our task is twofold. Given an invariantand a scheme&’ over an
algebraically closed field&’, in order to prove that the level seXs are constructible
we have to establish the following two facts:

(2.3.1) Each level seX, when restricted to the space of closed poilits. IS con-
structible (in the induced Zariski topology).
(1.3.2) Each level seX; is devissable.

It turns out that the first condition is model-theoretic in nature and the second is
algebraic. To solve problem (1.3.1) for the invariants mentioned in the abstract,
the necessary research has already been carried out in [6] and | only need to dis-
cuss how to translate the results from that paper into the geometric language of this
paper. This is carried out in the second section. The model-theoretic approach guar-



antees that these constructibility results will be base field free whence also charac-
teristic free. The advantage of this is the applicability of the Lefschetz Principle
and is demonstrated in length in the papers [6,7]. It also provides us with a more
uniform and functorial result, which is needed for the second part of Theorem 1.1.

The third and fourth section develop the general theory. The two subsequent sec-
tions put this general theory to use by showing the constructibility of the Betti and
Bass numbers and the singularity defects. Most of the work here goes to proving
devissability, that is to say, to solving problem (1.3.2). In fact, in view of the alge-
braic nature, this part can be carried out in a more general setup: often it suffices
that the scheme is excellent. The penultimate section deals with a relative version
needed for the second part of Theorem 1.1 and the final section explains how these
results can be extended to base fields which are no longer algebraically closed,
using some form of faithfully flat descent.

Notation. In this paper, except in the last sectidi, will always denote some
algebraically closed field. Schemes will always be understood to be Noetherian,
and often, they will be of finite type ovex. If a schemeX is defined ovefZ, then

X (K) will denote the set of{ -rational points ofX and X x the base change i@,

that is to sayXx = X x Spec K. In other words X (K) = (Xk)max An affine
algebra is an algebra essentially of finite type over a field.

The difference of two setg’ andG is denoted by — G. Whenever it is clear in
which ambient seX we work, we will denote the complemeit — F of a subset
F of X simply by —F.

2 Local invariants

All rings and schemes in this paper will be understood to be Noetheriars het
an arbitrary set; ofteB8 will just be the set of natural numbels

Definition 2.1 With a(local,S-valued, ring) invariantwe mean a functio@ which
assigns to a Noetherian local ring an element(R) in S. With a(local, S-valued)
module invariant, we mean a function which assigns to a pa®; M), an element
w(R,M) € S, whereR is a Noetherian local ring and/ a finitely generated?-
module.

If the ring R is understood, we might just write(A/) for w(R, M). Sometimes

we simply talk about a local invariant and leave it to the context whether a module
invariant or a ring invariant is meant, or which values this invariant takes. In case
S C Z (possibly including alsa-00), we callw anumerical invariant For naturally
occurring invariants, we often have to restrict the scope tf a subclass of pairs



(R, M), although we could formally circumvent this by adding a symb@l ¢ehich

we then assign to a pair with undefinedsalue. Anyway, at times, we will be only
interested in an invariant restricted to a certain subclass, and we will make this then
explicit.

Let X be a scheme and@ a coherentDx-module. Given a point € X, we say
that w is defined(for F) at x if it is defined onOyx , (respectively, on the pair
(Ox., F:))- When this is the case, we put

wx () = w(Ox.), respectively wx(z,F):=w(Oxz Fa),

where we may leave out the subscrlpif the underlying schemé&’ is understood.

We say that is defined(for F) on X, if its defined (forF) at each point ofX.

Since we are especially interested in schemes of finite type over an algebraically
closed field, we reserve a special name for any invariant that is defined on them: we
will say that such an invariant f finite type Assumew is defined (forF) on X.

Fors € S, we define théevel seto be the set

wy'(s) ={z € X |w(x)=s}
or, in case of a module invariant, the set

wxr(s) ={zeX|wxF)=s}.

3 Geometrically constructible sets

Let X be a Noetherian scheme. WithsabsetT' of X we really mean a subset
of the underlying set of points of. The Zariski closureof 7" will be denoted by
cl(T). Recall thatT is calledconstructibleif it is a finite Boolean combination of
Zariski closed subsets. Tlwenstructible topologpn X has as opens precisely the
constructible subsets of. We denote the collection of all closed pointsXfby
Xmax @nd view it with its induced Zariski topology. More generally, for an arbitrary
subsefl’ C X, we putTax := XmaxN 7.

Geometrically constructible sets. A subsetl’ of X is calledgeometrically con-
structible if there exists a constructible subdetof X, such thatFiax = Tmax IN

other words,I’ is geometrically constructible ifi,ax IS constructible inX .. Re-

call that a scheme is callethcobsonf it admits a finite open covering by affine
schemes$Spec A; with eachA; a Noetheriadacobsorring, that is to say, a Noethe-
rian ring in which each radical ideal is equal to the intersection of all maximal ideals
containing it. Any scheme of finite type over a field is Jacobson; more generally, so
is any scheme of finite type over a Noetherian Jacobson ring ([1, Theorem A.17]).
We proved in [10, Theorem 1.13] that is Jacobson if and only if every closed



subset of dimensiod > 0 contains infinitely many irreducible closed subsets of
dimensiond — 1, if and only if any constructible subset has the same dimension as
its closure. Here are some further characterizations.

Lemma 3.1 For a Noetherian schem&, the following are equivalent:

e X is Jacobson;
e if I/ G C X are constructible and',ax = Gmax thenF' = G
e XaxiS dense in the constructible topology.

Proof. Note thatX.x being dense in the constructible topology means Hak

is non-empty, whenever is a non-empty constructible subset. Applying this crite-
rion to the symmetric differencg” — G) U (G — F'), we see that the last two con-
ditions are equivalent. Remains to prove the equivalence with the first condition.
Since the problem is local, we may assume tkiat Spec A is affine. Assume first
that A is Jacobson and supposeis a non-empty constructible subset. Since we
want to show thaf. # ), we may reduce to the case that= V' N U is locally
closed, withl” a closed subset arid an open subset. Sindéis also Jacobson, we
may replaceX by V' and hence assume th&tis a non-empty open subset, say of
the form X — V(a), with a a radical ideal. Since is the intersection of all max-
imal ideals containing it and since it is not nilpotent Iésbe empty, there must
be at least one maximal ideal of A not containinga. This maximal ideal then
determines a closed point insidé as we wanted to show.

Conversely, letn be a radical ideal and lét be the intersection of all maximal
ideals containing:. Let F' andG be the closed subsets defineddgndb respec-
tively. By construction,Fimax = Gmax @nd hence by assumptiofl, = G. By the
Nullstellensatz, this in turn implies=b. O

In order to solve problem (1.3.1) from the Introduction, that is, to show that the
level sets are geometrically constructible, we restrict to the case of a scheme of
finite type over an algebraically closed field As we need to study the behavior

of a local invariant in families, we need the notion diaaily of affine local rings
Moreover, we also want to include finitely generated modules in our treatment.
Algebraic geometry does not provide us with such families in a straightforward
way, so that we need the following device.

Letg: Y — U be a map of finite type between schemes of finite type @vesy
the definability results in [5,6], there exists a constructible suhsgtof U, such
that for each algebraically closed field, a K-rational pointu of U(K) lies in
Irr,(K) if and only if g~'(u) is irreducible (as a scheme ovAi). If Y itself is
irreducible, therdrr, is dense.

Definition 3.2 Let X be a scheme of finite type ovér With anabstract familyR



of local rings onX we mean a commutative diagram

g
Y X

g / @

U - T

of maps of finite type ovet.

One verifies that for each € U, the image ofy~!(u) under~ is mapped inside
[~ Y= (u)). By the same argument as above, there is a constructible dutbsetf
U, such that for each algebraically closed fi&fdand each: € U(K), the Zariski
closure ofy(g~!(u)) is irreducible if and only ifu lies inIrry(K). ClearlyIrr, is
contained irlrrg, but the latter set might be biggerfis a coheren© x-module,
then we call the paift = (R, F) anabstract family of local modules ak. For
an algebraically closed fiel#’, these yield families of affine locd{ -algebras and
finitely generated modules as follows. For ed€hrational pointu in Irrgy(K),
let R, be the localization of the coordinate ring 6f!(w(u)) at the prime ideal
defining the closure of (¢! (u)) in the former fiber. In other word$3, is the stalk
of f~!(x(u)) at the point;, wheren is the generic point of (¢! (u)). For instance,
if all schemes iRk are affine with a corresponding commutative diagram

C - D

3)

A B

of finitely generated’-algebra homomorphisms (so th&dt = Spec A, etc.), then
R, is isomorphic to

(Ag /(0N Ck)AK)nBrnAx
wheren is the maximal ideal oD, associated to th& -rational pointu € U(K)
and where a subscriptdenotes the base changegifoTo obtain a family of finitely
generatedRk,-modules, let)t, be the base changé ® R,. An affine local K-
algebranr, or a finitely generated moduf&,, will be referred to as aactualization
over K of the abstract family.

3.2.1 Family of closed stalks. An example of an abstract family is tHiamily
of closed stalk®f a schemeX over Z defined as follows. Let/ be equal toX,
Y equal toX x X andT equal toSpecZ, with g and~ the projections onto the
second component andand f the canonical maps tepec Z. Forz € X (K), the



fiber g=!(x) is mapped undey to the singleton{z}, whereasf ~!(n(z)) is Xk,

so thatR, = Ox, .. If, moreover, we have an abstract family of local modules
2 over this family of closed stalks given by a coheréht-module F, then its
actualizations are exactly the stalBx ). (whereFx is the base change ¢f to

K).

3.2.2 Definability in families. We say that aB-valued invariani of finite type

is definable in familiesif for each schem& of finite type ovelZ, for each abstract
family of local rings?R on X asin (2) and for each € S, there exists a constructible
subsetLy ; C Irry (defined ovefZ), such that for each algebraically closed field
K, a K-rational pointu of Irrx(K) lies in Ly (K) if and only if w(R,) = s.
Similarly, anS-valued module invariant of finite type isdefinable in familiesif

for each abstract family of local modul&® = (R, F) on X and for eacls € S,
there is a constructible subskfy ; of Irry, such that € Loy (K) if and only if
w(MR,, M,) = s, for every algebraically closed field and everyu € Irru(K).

Theorem 3.3 Let w be anS-valued invariant which is definable in families. For
each schemg of finite type over an algebraically closed figid for each coherent
Ox-moduleF and for eachs € S, the level sety',(s) (respectively, the level set
wy'(s) in the ring invariant case) is geometrically constructible.

Proof. Let X’ be a scheme of finite type ov&rsuch thatX}. = X. Now apply the
definition to the family of closed stalks of’ defined in§3.2.1. O

In [6], | laid out the basis to prove that many of the invariants encountered in com-
mutative algebra and algebraic geometry are definable in families. The key obser-
vation is that many invariants are defined using (co)homology, and in particular,
using Tor and Ext groups. Therefore, the main results in that paper, are derived
from the fact that these cohomology groups are definable in families. This in turn
follows from the fact that they are bounded in the senseThgf (M, N) has de-

gree complexity (see below) uniformly bounded by the degree complexiti&s of

M andN. In the remainder of this section, | will briefly explain the notiondef

gree complexityand show how the present definition of being definable in families
is identical with the model-theoretic one in [6,7].

Let us fix some notation. Letl be a finitely generateds-algebra, say of the
form K[¢]/1 for some ideal/ of K[¢] and for some fixed set of variablgs=
(&1,...,&,). Letp be a prime ideal ofA and letR := A,, so thatR is an example
of an affine local K-algebra. Finally, letV be finitely generatedz-module and
choose an exact sequenge — R* — M — 0. Since the first map is given by a
matrix A, over R, we simply say thab/ is given as theokernel ofA .

Definition 3.4 We say thatA (respectively,R) hasdegree complexityat mostd,
if n < d and if I (respectively]/ andp) is generated by polynomials of degree at



mostd. If, moreovera, b < d and each entry of the matriX,, can be written as a
fraction p/q with p and ¢ of degree at mosf andq¢ ¢ p, then we say thad/ has
degree complexitat mostd.

If I = (f1,...,[fs)K[], with f; of degree at most, then the tuplex, of all coef-
ficients of thef;, listed in a once and for all fixed order, completely determides
Similarly, if p = (g1, ..., 9:)K[£], with g; of degree at most, then the tupleay

of all coefficients of thef; and theg; completely determine&. We call the tuples

a, anday codedfor A andR. Moreover, one checks that the length of these tuples
is completely determined by. The tuple of all coefficients of all entries d@f,,
together with a code foR, is acodea,, for M. Clearly, the length of this code
depends only on the degree complexity. (For these definitions, we do not need to
assume thak is algebraically closed).

In [6], a propertyP of affine local algebras (respectively, of finitely generated mod-
ules over affine local algebras) is calladymptotically definablaf, for eachd,
there is a first order formula, p, without parameters, such that a cadgof an
affine local K -algebraR of degree complexity at most(respectively, a coda,,

of a finitely generated?-module M of degree complexity at mod), satisfies the
formulay, p if and only if R (respectively, M) has propertyP. It is important to
note that these formulae are independent from the field.et w be anS-valued
invariant and lets € S. Let us writeP,, ; for the property that a local ring (or a
module) hasv-value s. In Theorem 3.5 below, | will show that is definable in
families if and only if the propert¥,, , is asymptotically definable, for eashe S.

For the proof, we need to describe the family of all affine local rings of degree
complexity at mosti.

3.4.1 Universal families. Leté = (&,...,¢&,) be afixed set of variables amd
a positive integer. Lef’ be thegeneral polynomiabf degreed in the variableg
given by

F(t,é) = Ztaga

wherea runs over all indicesr = (ay, ..., a,) with ay + - - - + o, < d and where

t is a tuple of variables, say of lengffi = N(d). Let r; be N-tuples of variables
and letr be the tuple of all these;, fori = 1,..., N. Let A be the quotient of
Z|r,&] modulo the ideal generated by &l(r;, £), fori = 1,..., N. In other words,
one could think ofX := Spec A as the intersection oV general hypersurfaces
of 7-degree one ang-degree at mosi. Let T' be the affineN?-spaceSpec Z[7].
The closed fibers of : X — T are precisely the finitely generatéd-algebras of
degree complexity at mosgt(just observe that any ideal generated by polynomials
of degree at most requires at mostV generators).

To obtain local affine algebras, we essentially duplicate this constructiory: bet
new N-tuples of variables and letbe the tuple of all the; and7/, fori = 1,..., N.



Let Y be the closed subscheme of affit&? + n space defined by alF(7;, €)
and all F(7/,¢) and letU be affines-space. This yields an abstract famiif®
given by a commutative diagram (2), called thmeiversal family of affine local
algebras of degree complexity at mdsfThe actualizations of this family are then
precisely the affine locak’-algebras of degree complexity at maestindeed, if
u = (t,t') € Irrgya) (K), theng=*(u) andf~1(¢) have coordinate ring&’[¢]/p and
K]/ I respectively, wherd is the ideal generated by all(¢;, &) and wherep is
the ideal generated b¥ and all F'(¢, £). By constructionp is prime. Therefore,
R is the localization of [¢] /I atp and so is an affine locdl -algebra of degree
complexity at mostl. Conversely, any affine locd{-algebra of degree complexity
at mostd is realized in this way.

The reason for calling the famili€g® ‘universal’ is because any abstract family

is a subfamily of som& @, in the sense that every actualization of the former is
isomorphic to some actualization of the latter, over any algebraically closed field.
Indeed, choosé bigger than the degree of any polynomial defining the schemes
and the maps occurring in the commutative diagram of an abstract family (since
everything is of finite type and locally affine, there is such a maximal value). In
fact, this ‘embedding’ of an abstract family in a universal family can be carried out
in a constructible way, which is what we need to prove the equivalence of the two
definitions.

Theorem 3.5 An S-valued invariantv of finite type is definable in families if and
only if for eachs € S, the propertyP,, , is asymptotically definable.

Proof. By construction of the familie®i(?), it is clear thafP,, , is asymptotically
definable ifw is definable in families. Conversely, assulPg is asymptotically
definable, for a fixeds € S. | will only treat the ring invariant case; the module
invariant case is completely analogous. kebe a scheme and 18t be an abstract
family of local rings onX. We need to show that there exists a constructible subset
Lg s of Irrg, such that for each algebraically closed figld a /K -rational point

u in Irry(K) lies in Ly (K) if and only if w(R,) = s. Since the property we
seek to prove is local in the constructible topology, we may assume without loss of
generality that all schemes %R are affine. Let

C - D

(4)

A B

be the corresponding commutative diagram of finitely generédtedhebras. As
before, we will write a subscript to denote the base change to an algebraically
closed fieldK. Let n be the maximal ideal oDy corresponding to & -rational

10



pointu in Irry. By definition

R, = (Ax /(0N Cr)AK ) aBrnag

where by assumptionBx N Ak is a prime ideal. Sinc& and7 are closed sub-
schemes of affine spaces, we may assume without loss of generalify tha|r]
andD = Zlo], for some tuples of variablesando. Suppos&”’ — D is given by
T = P(0), for some tupleP of polynomials with integer coefficients. Sinekeand
B are finitely generated over and D respectively, we may writel = Z[r,£]/1
andB = Z[o, ¢]/J for some tuples of variablegsand( and some ideal$ and.J.
In view of the commutativity of diagram (4), the homomorphisim— B is given
by 7 = P(o) and{ = Q(o, (), for some tupley of polynomials with integer co-
efficients. Takel € N larger than the degree of any polynomial involved, that is
to say, each entry aP and(@ has degree at modf and the idealg and.J can be
generated by polynomials of degree at mast

With this notationp is the ideal inDx = K|[o] generated by the linear formag—a;,
where theu; are the coordinates of the poimt Thereforen N C'x is generated by
the linear formsr; — P;(a,), wherea, is the tuple of coordinates; of u. If we
put A, equal toAx /(n N Ck) Ak, thenA, is isomorphic taK'[¢]/I(P(a,)), where
I(P(a,)) denotes the ideal ii’[¢] obtained froml by substitutingP(a,,) for the
variablesr. In particular,A, has degree complexity at mo#t. Moreover, there
exists a magh: U — AY, such that its base changg sendsu to a code of the
K-algebraA, of degree complexity at most

Next, we want to describe a code for the prime ide&k N Ax. Note that if we
localize A, with respect to this prime ideal, we g&t,. It follows from [6, The-
orem 2.7] tham By N Ak is generated by (images of) polynomials of degree at
mostd’, whered' only depends or (and not onu nor on K). A polynomial in
K|[r,&] of degree at most’ can be written in the fornf'(w, 7, &), for some tu-
ple w over K and some polynomial’ with integer coefficients of degree at most
d' 4+ 1. One checks that such a polynomialw, 7, £) lies innBx N A if and only

if F(w,P(a,),Q(ay,()) liesinJ(a,), whereJ(a,) denotes the ideal i&k [¢] ob-
tained fromJ by substitutinga,, for the variables. It follows from the arguments
in [6] that there exists a first order formulg without parameters (not depending on
K nor onu but solely ond), such thata,,, w) satisfies), if and only if F/(w, 7, &)
lies innByg N Ag. To obtain a code fofR,, we now do the following. Consider
the conditionV,; on a tuple(a,, wy, ..., wyr) expressing that eadla,, w;) satis-
fiesy, and, for any other tupler, if (a,, w) satisfieg),, thenF'(w, 7, ¢) is a linear
combination of the’(w;, 7, £) modulo.J(a,,). Here we takeV’ equal to the number
of monomials inV + d variables of degree at maogt+ 1 (it follows thatn B N Ag

is generated by at most’ elements). Another application of [6] shows thatis a

first order statement. Moreover, a tugte,, w1, ..., wy/) satisfiesl, if and only
if (wy,...,wp)is acode for the prime idealB; N Axk.
In summary, any tupléhy(u), wy, ..., wyr) for which (a,, wy, ..., wys) satis-

11



fies ¥, is a code forr,. By the asymptotical definability dP,, ;, there exists a
first order formulap, s, such that if a tupléh (u), wy, ..., wy) satisfiesp, s and

(a,, wi, ..., wy) satisfiesl,, thenw(R,) = s. Therefore, letb, , be the formula
stating that: € Irrg and that there exist tuples; such that(hy(u), wq, ..., wyr)
satisfiesp, s and(a,, w, ..., wy/) satisfiesl,. It follows thata, satisfiesd, ; if

and only ifw(R,,) = s. Since the theory of algebraically closed fields has Quanti-
fier Elimination, the set defined by the formulg ; is a constructible subséiy ,

of Irry, which therefore has the required propertiesl

4 Constructible sets

In this section, X denotes an arbitrary Noetherian scheme and. X an arbi-
trary subset (of points ak). A pointy € X is called aspecializationof a point
x € X or anz-specializationif y lies in cl({z}). We say thaty is animmedi-
ate x-specializationif y is minimal incl({z}) — {«}. If y is an (immediate)-
specialization, then we will also say that thais an {mmediat¢ y-generalization
If X = Spec A is affine andp andq are the prime ideals oft corresponding re-
spectively tor andy, theny is az-specialization if and only iff is anoverprime
of p, that is to sayp C q; andy is an immediates-specialization, if there is no
prime ideal strictly in betweep andgq, in which case we say thatis animmediate
overprimeof p. Note thatg is an immediate overprime @fif and only if its image
in A/p has height one.

Definition 4.1 (Saturated Sets)We say thafl” is saturategif for eachx € T', we
can find a closed poinj € T which is a specialization of.

Lemma 4.2 Let X be a scheme anfl a subset ofX. If

(4.2.)) T is geometrically constructible, and,
(4.2.2 for each open subsét of X, bothT N U and(—7") N U are saturated ir/,

thenT is constructible.

Proof. As the problem is local, we may assume without loss of generality that
X = Spec A is affine. Assume that

Fnax = Trax )
with F' a constructible set of the form
(V(ap) N U ) U---U(V(as) NUs)
with eacha; an ideal ofA andU; a Zariski open oBpec A. Letx € F and letp be

the prime ideal inA corresponding ta. Hence for some, say fori = 1, we have
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a; € pandp € U,. Suppose that ¢ T. As (—T') N U, is saturated, we can find
a maximal idea of A, containingp and belonging ta—7") N U;. It follows that
m € V(a;) NU; C F and hence by (5), that € T', contradiction.

In other words, we showed that C 7'. By the same argument, this time applied
to -7 and—F’, and using thai’ N U is saturated, it follows that alse " C —T'.
Putting these two inclusions together, we obtain that 7. O

Note that conversely, iX is Jacobson, then each non-empty constructible subset
contains a closed point by Lemma 3.1, and therefore each constructible set satisfies
Conditions (4.2.1) and (4.2.2) of Lemma 4.2. On the other hamtlisfa local ring,

then the only subsets df = Spec A satisfying (4.2.2) ar@ and X . Let us call a
subsefl" universally saturatedf 7' N U is saturated, for every opénin X.

Definition 4.3 We call T’ devissablef, for each non-closed point € T, we can
find an operUU of X containingz, such that any immediate specializationy in U
belongs tdr".

Of interest is also the following stronger variant: we datrongly devissabl for

each pointr € T', we can find an opeli’ containingz, such that/ Ncl({z}) C T,

that is to say, if anyc-specialization insidé/ belongs tol'. Any subset ofX

is trivially devissable, showing that in general, devissable subsets need not be con-
structible (but the converse does hold by Theorem 4.4 below). It is not hard to see
that an arbitrary union or a finite intersection of (strongly) devissable subsets is
again (strongly) devissable. Recall tHais said to bend-constructibleif it is an
arbitrary union of constructible subsets. The complement of an ind-constructible
subset, that is to say, an arbitrary intersection of constructible subsets, is called a
pro-constructiblesubset.

Theorem 4.4 Let X be a Noetherian scheme affida subset ofX. Consider the
following properties the subs&t can have

(4.4.7) constructible;

(4.4.2 ind-constructible;
(4.4.3 strongly devissable;
(4.4.4 devissable;

(4.4.5 universally saturated,;
(4.4.9 saturated.

Then we have implications
(44.1)= (4.4.2)= (4.4.3)= (4.4.4) and (4.45)= (4.4.6)
Moreover, if X is Jacobson, the(¥.4.4)=- (4.4.5)

If T is geometrically constructible, and bothand —7T" are universally saturated,
thenT is constructible.
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Proof. The last statement is just Lemma 4.2, so that we only need to prove the
stated implications. The implications (4.4.31 (4.4.2), (4.4.3)= (4.4.4) and
(4.4.5)= (4.4.6) are immediate. Hence assumad-constructible, say the union

of locally closed setd; N U;, whereV is closed and/; is open. Forr € T, say

x € V;, NU,,, it suffices to takd/ = U, in the definition of strong devissability.
This proves (4.4.2% (4.4.3). Conversely, i’ is strongly devissable, then we can
find for eachz € T an openU, such that the locally closed s&t. N cl({z}) is
contained in7". Therefore,I" is the union of all the/, N cl({z}) whence is ind-
constructible.

Remains to show (4.4.4» (4.4.5) under the additional assumption thais Ja-
cobson. IfT" is devissable, then so 8 N U for all openU. Hence it suffices to
show that ifT" is devissable, then it is saturated. Let us prove by downward induc-
tion on the dimension o0y , that any non-closed point € 7" admits a closed
x-specialization inl". By assumption, there exists an op€ncontainingz, such

that any immediate-specializatiorny € U belongs tol'. Let F' := U N cl({z}).
Since Frax IS non-empty by Lemma 3.1, there exists at least one immediate
specializationy € F. By the choice ofU, the pointy belongs tal'. By induction,
there exists € Thnax generalizing tgy, whence tor, as we wanted to show.O

In fact, we can add the following characterization to the ones in Lemma 3.1: every
constructible subset of is saturated if and only iX is Jacobson. Indeed, we just
proved one direction. For the other, it suffices by Lemma 3.1 to showHR{at

is non-empty wheneveF' is non-empty, and this is clear since by assumption, if
x € F, then there exists a specializationzoivhich lies in Fiax.

For the reader’s convenience, | have included the following well-known results on
the constructible topology.

Proposition 4.5 Let X be a Noetherian scheme.Af, for i € I, are constructible
subsets ofX whose union is equal t&, then already finitely many covex. In
other words,X is quasi-compact in the constructible topology.

Proof. We will prove this by Noetherian induction, which means that we may as-
sume that it holds for any proper closed subset@&nd we now have to show it for

X itself. In particular, we may assuni¢ is irreducible. Without loss of generality,
since a constructible set is a finite union of locally closed sets, we may also assume
that each¥; is locally closed, that is to say, of the forthN Z; with U; Zariski open
and Z; Zariski closed. Let) be the generic point ok’ and assumé;, contains.
Therefore/;,, being a closed set containing the generic point, must be equal to

In other words F;, is Zariski open. LetX,, be the complement of;,. Clearly, the
collection of allF; — F;, coverX, so that by Noetherian induction, already finitely
many coverXy, say fori € I, with I, a finite subset of . It is now clear thatX is

the union ofF;, and allF; withi € I,. O

Corollary 4.6 Let X be a Noetherian scheme arfd a subset ofX. ThenF' is
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constructible if and only if it is pro-constructible and ind-constructible.

Proof. Let F' be pro-constructible and ind-constructible. In particular, we can write

F=JF, and -F=_JG,

iel jeJ

with F; andG; constructible subsets. The together with the?; form a covering
of X. By Proposition 4.5, we can find subsétsC I and.J, C J, such that the;
andG; coverX, fori € I, andj € Jy. One checks that' is the union of allF;
with ¢ € I, whence is constructible. O

Corollary 4.7 Let X be a Noetherian scheme arfda finite partition ofX. If each
member ofF is strongly devissable, thef is constructible.

Proof. By Theorem 4.4, each € F is ind-constructible. MoreoveF, is the union
of the complements of the other members, and therefore is pro-constructible since
the partition is finite. Hence' is constructible by Corollary 4.6.0

In particular, a subséf’ is constructible if and only iff” and its complement are
strongly devissable. Let us consider the following weaker varianticall X bi-
devissablef T"and—T are both devissable. X is a one-dimensional scheme or a
semi-local two-dimensional scheme, then a subsistconstructible if and only if

it is bi-devissable. Indeed, we only need to prove sufficiency, and for that we may
assumeX is irreducible and affine, since the problem is local. Repladiruy its
complement if necessary, we may assume Thabntains the generic point. Since

T is devissable, there is some non-empty offesuch that any height one prime in

U belongs tdl'. Since we may choodé disjoint from X5« in the semi-local case,

we getU C T'. Since—U is finite, T' is easily seen to be constructible.

This last result is no longer true in higher dimensions. For instance le¢ the
affine plane ovefC and let7” C X consist of all closed points with coordinates
(e™,n), forn € N. Clearly,T is ind-constructible whence devissable, but not con-
structible. Sincd lies on the transcendental curge= €, any (algebraic) curve

in X meetsT only in finitely many points. In particulagl({z}) — T is a con-
structible subset for each non-closed pairdther than the generic point Since

—T —{n} is the union of all these constructible subsets, it is also ind-constructible.
Furthermore, any immediatgspecialization belongs te7". These two results to-
gether prove that-T' is devissable and hence tHatis bi-devissable but not con-
structible. We can build a similar example of a non-constructible bi-devissable sub-
set in a local scheme of dimension three or higher. In particular, we cannot leave
out the Jacobson condition in the next result.

Theorem 4.8 Let X be a Jacobson scheme afidh partition of X. If each member

of F is geometrically constructible and devissable, tli#€ns constructible and
finite.
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Proof. Note that if ' € F is devissable, then so is its complement, since deviss-
ability is preserved under arbitrary unions and sird@ is the union of the other
members inF. HenceF is constructible by Theorem 4.4, whence finite by Propo-
sition4.5. O

We may replace devissability in the statement by the weaker condition that the
invariant is universally saturated. We conclude this section with a generalization,
which might be useful when dealing with arbitrary schemes.

4.8.2 T'-constructible subsets. Let X be a scheme anil a subset ofX. We

say that a subsét' C X is I'-constructibleif there exists a constructible subset
F C X suchthat' nTI" = FNT. Inother words,I" is I'-constructible, if ' N I’

is constructible in the induced topology ®n Moreover, we will say thaf™ is I'-
saturatedif eachx € T"admits a specialization belongingTon I'. As before, we
then say that is universallyl'-saturatedif TNU is '-saturated i/, for any open

U C X. Note thatifl' = Xnax then we recover the homonymous concepts defined
previously. Inspecting the proof of Lemma 4.2, we immediately get the following
generalization.

Lemma 4.9 Let X be a scheme andl a subset ofX. If 7" is I'-constructible, and,
bothT and —T are universallyl'-saturated, therT" is constructible. The converse
holds ifI" is dense in the constructible topology.

5 Constructible invariants

Let w be anS-valued invariant. LelP be one of the properties (4.4.1)—(4.4.6) in
Theorem 4.4, or for that matter any property of subsets of a scheme.

Definition 5.1 We say thatv has propertyP, if for each scheme, for each co-
herentO x-moduleF and for eachs € S, the level seb '~ (s) (or, in the ring case,
the level sety' (s)) has propertyP.

Of course, our convention for partially defined invariants is still in effect, meaning
that we only quantify over those schemes or sheaves for whichdefined. For
instance, ifw is a of finite type, then in the above definition is assumed to be

of finite type over an algebraically closed field. Sincés only a property about
local rings (and their modules), any saturated invariant is universally saturated. In
this new terminology, Theorem 3.3 states that any invariant which is definable in
families is geometrically constructible. On occasion, we will use the following al-
gebraic translation of what it means for an invarianio be devissable: for every
Noetherian ringA, every finitely generated-module M and every non-maximal
prime idealg in A, there exists: ¢ g such thatv(A,, M,) = w(A,, M,) for all
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height one prime idealsin A./gA.. Here we have identified the height one prime
ideals ofA./g A, with the immediate overprimes gfnot containing:, via the nat-
ural locally closed immersiofipec(A./gA.) — Spec A. A similar criterion exists
for strong devissability, where we now impose no restriction on the heighirof
the above.

Theorem 5.2 Let w be anS-valued invariant of finite type. & is definable in
families and devissable (or, saturated), then it is constructible. In particular,ig
a scheme of finite type over an algebraically closed fi€ldnd if 7 is a coherent
Ox-module, therw(z, F) takes only finitely many different values:asuns over
all points of X.

Moreover, if X is irreducible, then there is some non-empty opeof X such that
w(-, F) is constant orU.

Proof. Immediate from Theorem 4.8 and Theorem 3.3. For the last statement, let
n be the generic point ok and lets := w(n, F). The level setvy'x(s) is a finite
union of locally closed subsets, one of which contajrad therefore is open.O

More generally, ifX is a Jacobson scheme ands an arbitrary invariant which is
geometrically constructible and devissableX¥nthen it is constructible oX by
Theorem 4.8. The value at the generic point of an irreducible scheme is sometimes
referred to as th@eneric value The last statement in Theorem 5.2 justifies this
terminology. Ifw is a ring invariant andX is moreover integral, then the generic
value is equal tav(K (X)), where K(X) is the function field ofX. Often, an
invariant is preserved under scalar extensions (see definition 9.1 below), so that
in that case, the generic value is equalids) and even tav(IF), whereF is the

prime field of the same characteristic &s In other words, the generic value only
depends on the characteristic of the base field. For instance the singularity defects
(see Section 7 below) all have generic value zero. In the next two sections, we
will treat in detail some numerical invariants: Betti numbers, Bass numbers and
defects. Here are some more examples. In the next two examplé€dyéea finitely
generated.-algebra.

5.2.1 Height. Let/ be anidealirC' and define aring invariant ari-algebras by
puttingw!(R) := ht(I R), for any localC-algebrak. Here we take the convention
that the unit ideal has height, so thatw!® is an invariant withS = N U {co}.

It follows from [6, Proposition 5.1] in conjunction with Theorem 3.5 thét, or
rather, the invariant of finite type determined by it, is definable in families in the
sense that for any abstract famifyof C'-algebras, the set of closed points Irrsy

for which IR, has a fixed height, is (geometrically) constructible. We next argue
thatw! is also devissable. Namely, ldtbe a Noetheriad-algebra and leg be a
non-maximal prime ideal. Suppo&e(/A,) = s. If s = oo, meaning that ¢ g,
then we can take fol/ the open of all prime ideals not containiigSo we may
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assumes < oo. Letq;, fori = 1,...,m, be the minimal prime ideals dfA and
renumber in such way that thefirst ones lie ing and the remaining ones do not. It
follows thats is the minimum of the heights of thg fori = 1,...,n. Therefore,

if we let U be the complement of (q,,41) U - -- U V(q,), thenht(/A,) = s, for
any overprime of g in U, showing thats!* is strongly devissable. In conclusion,
by Theorem 5.2, the invariant® is constructible on schemes of finite type over an
algebraically closed field.

5.2.2 Regular sequence. As above (' is a finitely generate@-algebra. Leta

be a (finite) tuple inC. We define a module invariant;*® as follows: forR a
local C-algebra and/ a finitely generated&-module, letu’*¢(M ) be either one or
zero, according to whetheris an M-regular sequence or not. Here we can prove
directly that this is a constructible invariant. By induction on the length of the tuple,
we may reduce to the case that we have a single eleimertt. Given a Noetherian
C'-algebraA and a finitely generated-module)M/, one easily checks thatis M-
regular if and only ifp belongs to the support df/ /aM andAnn4(Anny,(a)) is

not contained irp. The former is a closed condition and the latter an open, showing
thatw’® is a constructible invariant.

5.2.3 Hilbert series. The following example will be studied in more detail in
a future paper. Le$ be the polynomial rindZ[T’] in a single variablé’ over the
integers. LetR be a Noetherian local ring and I8t be a finitely generatedk-
module. TheHilbert seriesof M is defined as the formal power series

Hy(T) ==Y lr(m"M/m" ' M)T",

wherelr(H) denotes the length of an arbitraRrmodule . It is shown (see for
instance [1, Chapter 4]) thaf,, is of the form

Hy(T) = m (6)

whereQ),, is a polynomial oveZ with Q,(1) # 0 andh is the dimension of\/
(that is to say, the dimension &/ Anng(M)). The assignment ap,, to the pair

(R, M) is an example of a module invariant. It turns out that this is a constructible
invariant on schemes of finite type over an algebraically closed field.

5.2.4 Singularities. Properties of local rings or of their finitely generated mod-
ules provide also examples of invariants. This time weSlet {0,1}. Let P be

a property of local rings (for instance, to be regular, complete intersection, Goren-
stein or Cohen-Macaulay), then we s&t(R) equal tol or 0, according to whether
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the local ringR does or does not have the propetyFor each of the above men-
tioned properties, this is indeed a constructible invariant on excellent schemes, as
shown in [2, Chap. I\§9].

Definition 5.3 (Deformations) We say that arb-valued module invariant de-
forms well if for eacha € m — m? which is simultaneouslyz-regular and M-
regular, we have

w(R, M) =w(R/aR, M/aM),
whereR is a Noetherian local ring with maximal ideal and M a finitely gener-
ated R-module. In case is a ring invariant, we require that(R) = w(R/aR) for
everyR-regular element € m — m?.

The following well-known result (see for instance §4.8 Lemma 2]) is very useful
in combination with deformation.

Lemma 5.4 Let R be aring and letV and H be R-modules. Itz € R annihilates
H and is bothR-regular andM -regular, then we have isomorphisms

Tor™(H, M) = Tor™“®(H, M/aM)
Extyp(M, H) = Extl ,zn(M/aM, H)
Exty ! (H, M) 2 Extl ,z(H, M/aM),

for each: > 0.

6 Betti and Bass numbers

Let R be a Noetherian local ring with residue figtcand letM be a finitely gen-
eratedR-module. We define the Betti and Bass invariants as followswEet be
the numerical invariant given as twth Betti number

WP (M) = dimy, Tor;*(k, M).

(2

Supposel/ has depthy. LetwP** be the numerical invariant given as

wBass(M> = dimy EXt‘II;'L‘(kﬁ, M)

7

In other wordsw?ass(M) is the (¢ + i)-th Bass number of\/. Note that by [4,
Theorem 16.7], we havExt{%(k, M) =0, for j < ¢. By [6, Theorem 4.5] in con-
junction with Theorem 3.5, the Betti numbers and the Bass numbers are definable
in families. Therefore, so are the invariants®* andw?*s. Note that the Bass
numbers themselves cannot be constructible invariants:iff a Gorenstein ring
andp a prime ideal ofA, then thei-th Bass number of equals one, if is the
height ofp, and is zero otherwise. This example motivates the dimension shift in
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the definition ofu?ass, We will show that thesP°*" and thewP*ss are devissable as
well and therefore constructible.

Theorem 6.1 For eachi, the numerical invariants)>**" andw?*s are devissable
on excellent schemes.

Proof. For the duration of this proof, let be an excellent ring)/ a finitely gen-
eratedA-module andy a non-maximal prime ideal.

6.1.1  The following subset will be useful later on as well. Lgeg, be the
collection of all prime idealg for which A,/gA, is either regular or zero. If we
identify Spec(A/g) with the closed subset &fpec A consisting of all prime ideals

of A containingg, thenReg, N Spec(A/g) is exactly the regular locus ot/g.
Since A/g is an excellent domain, this regular locus is a non-empty open subset.
On the other hand, the complementgpkc(A/g) is contained iReg,. Therefore,

if W' is any open subset containiggthen’V N Reg, is also open. In particular,
whenever we want to do so, we may shrink some dpeoontainingg so that it is
entirely contained iReg,,.

This has the following advantage. SuppdEes an open insid&eg, containingg
and supposg € W is an immediate overprime gf The latter means that, /gA,
has dimension one, and hence is a discrete valuation ring, 8inceReg,. There-
fore, the image of any elemente p — (p? + g) is a uniformizing parameter in
A,/gA,. In other words, we have an equality

pA, = gA, + aA,. (7)

Moreover, suppose€ is an arbitrary finitely generated-module such thaf), # 0.

If p is not an associated prime @Fa condition that can be enforced by shrinking
W since@ has only finitely many associated primes—, then by prime avoidance, we
may assume thatis (),-regular.

6.1.2  We first treat the invariant$°*"'. By Nakayama’'s LemmayF©t*i( 1) is
equal top(M,), the minimal number of generators of,. It is well known (see

for instance [4, Theorem 4.10]) that the minimal number of generators is a con-
structible invariant, whence in particular strongly devissable. Let us choose for an
arbitrary finitely generatedi-module( an openGeng, ; of Spec A containingg,

such thatuF**(Q,) is constant for all overprimgsof g insideGeny, 4. This con-

stant value is of course equaldg°(Q,). This settles the case of*'* by taking

for open setGen,y .

6.1.3 Before treating the remaining invariants, we need a devissage result on
depth. I claim that for each finitely generatéemodule(, there exists an open set
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Dep, , of Spec A containingg with the property that for any immediate overprime
p of gin Dep, ,, we have

depth @, = depth Q4 + 1.

Let us first prove the claim in casg, has depth zero. This means thats an
associated prime a@. Therefore, there is some € @) for which Anny(m) = g.
ChooseDep, , so that it does not contain any associated primg ,of) or N :=
Q/Am other thang Moreover, by§6.1.1, we may choosPep, , inside Reg;g
Letp € Depg, , be animmediate overprime gf It follows that we may choose an
a € p satisfying (7) which is simultaneousl,-regular,(),-regular andV,-regular.
From the exact sequence

0—=Am —-Q — N —0

andAm = A/g, we get after localizing at and then applyinglom 4, (k(p), -), an
exact sequence

Homa, (k(p), Np) — BExty, (k(p), Ap/g4,) — Exty, (k(p), Qp) (8)

Sinceyp is not an associated prime of, the depth ofV, is positive. Consequently,
the left most module in (8) is zero. Using Lemma 5.4 and the factdhatA,-
regular, we get

EXt,laxp (k(p), Ap/gAp) = Homoy, jan, (k(p), Ap/ (g4, + aAy)).

By (7), this latter module is simpl¥(p). ThereforeExtilp (k(p), Q) is non-zero,
by (8), showing that), has depth one, by [4, Theorem 16.7], as required.

Assume next thaf), has depthy > 0. Let (a4, ..., q,) be a maximak)-regular
sequence, withy; € g. Let B := A/(ay,...,a,)A and H = Q/(ay,...,a,)Q.

It follows that Hyp has depth zero. LdDepy, ., be the open subset Spec B
for the depth zera@3-module H defined above. In other words, for any immediate
overprime’3 of g B insideDepy, ., the depth off/y; is one. The canonical closed
immersionSpec B — Spec A given by — p := P N A induces a bijection
between the immediate overprimes g#8 and g respectively. Sincéay, ..., a,)

is Qg-regular, we can find an opéi containingg, such that(a,, ..., a,) is Q-
regular, for anyp € U containingg by §5.2.2. Therefore, if we leDep, , be the
intersection ofDep,; . andU, then we get from [1, Proposition 1.2. 10] th@g
has depthy + 1, for every immediate overprimeof g inside Dep, ,, proving the
claim.

6.1.4  We now treat the remaining invariants simultaneously Suppdgsbas
depthg. For anyA-algebraB, let C;(B) be either the modul&or” (B/gB, M ®4
B) or the moduleExt%™ (B/gB, M ®4 B) according to whether we are in the
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Betti case or in the Bass case. Note that i~ B is flat, thenC;(A) ® B = C;(B).
Fix i € N and letb be respectively,?*"" (M) or wP*s(M,). By definition, b is

the dimension of;(4,) = (C;(A)), overk(g). Thereforep is also the minimal
number of generators &f;(A4,). LetU be an open inside

Genci(A)’g N Devag

as defined ir$6.1.2 andg6.1.3 respectively. Moreover, we can chodsso that it
does not contain any associated primedof A/ or of C, 1 (A) other thang. Fix
an immediate overprimg of g in U. By the choice o/, we have thaC;(A,) =
(Ci(A)), is minimally generated by elements and/, has depthy + 1. Sincep
lies in Reg,, we may choose am € p satisfying (7) which is simultaneously,-
regular, M,-regular andC,,(A,)-regular. Let us write a bar to indicate that we
take reduction module, so that for instancel = A/aA andM = M/aM. By
Nakayama’'s Lemma(;(A,) is also minimally generated byelements. | claim
that

Ci(Ap) = Ci(Ap). 9)
Assuming the claim, it follows that';(A4,) is minimally generated by elements.
By (7), we have an isomorphismi,/gA, = k(p), so thatC;(4,) is in fact ab-
dimensionalk(p)-vector space. More precisely, in the Betti caég(A4,) is the

module Tor, " (k(p), M,). Sincea is A,-regular andM,-regular, Lemma 5.4 im-

plies that this latter module is isomorphic mrf“(k(p),MP). Combining these
isomorphisms, we get that®**"!(1/,) = b. In the Bass case,

Ci(Ap) = ExtL (k(p), Iy).

By Lemma 5.4 the right hand side is isomorphiddet,’ " (k(p), M,). SinceM,
has depthy + 1, it follows thatb = w*5(MM,), as required.

6.1.5  Soremains to prove isomorphism (9). Consider the exact sequence
O—>Mpi>]\/[p—>ﬂp—>().

Applying respectively the functad,/gA, ®,, - or Homy, (A,/gA,, -) to this se-
guence yields part of a long exact sequence

Ci(Ap)L’ Ci(Ap) -T2 Ci+1(Ap)L> Ci+1(Ap)-

whereT is respectivelyTor,” (A,/gA,, M,) or Extif:i(Ap/ gA,, M,). Since mul-
tiplication by« is injective onC;;(A,), we get thad is the zero homomorphism.
It follows thatC;(A,) = T'. On the other hand, sineeis A,-regular and is not con-

tained ing, we get by Lemma 5.4 an isomorphisivez C;(A4,), proving (9). O

As an immediate corollary, we get from Theorem 6.1 and Theorem 5.2 the follow-
ing result.
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Theorem 6.2 For eachi > 0, the numerical invariants)?** and w?*s are con-
structible on schemes of finite type over an algebraically closed field. In particular,
if X is such a scheme anfl is a coherentO xy-module, then the points of for
which the Betti or the twisted Bass numberfofare equal to some fixed number
form a constructible set and only finitely many possibilities for these numbers oc-
cur.

Corollary 6.3 The invariantw®P™ assigning to a finitely generated-module
M its projective dimension is constructible on schemes of finite type over an alge-
braically closed field.

Proof. Note thato" "™ takes values ifN U {oco}. However, for each fixed base
ring R, there are only finitely many possibilities, to wit, all values up to the dimen-
sion of R together withoo. Using this observation in conjunction with [6, Proposi-
tion 6.3], we see that"P™ js definable in families.

We will show devissability for all excellent schemes; constructibility then follows
by Theorem 5.2. Letl be an excellent ring, let/ be a finitely generated-module
and letg be a non-maximal prime ideal &f. Suppose,"™Pm (M) = ¢. If ¢ = oo,
thenwroiPm ()1} = oo, for all prime idealg containingg, sincelM/, is a localiza-
tion of M,. Therefore, assumgfinite. By the Auslander-Buchsbaum Formula (see
[4, Theorem 19.1]),

q = depth(A,) — depth(My).

By §6.1.3, if we take foU the intersectioep, , N Dep,, , and ifp € U is an
immediate overprime of, thendepth(A,) = depth(A,) + 1 anddepth(M,) =
depth(M,) + 1. By another application of the Auslander-Buchsbaum Formula, we
getwiPm (A1) = ¢, as required. O

The invariant which assigns to d@module)M its injective dimensiornjdim (M)

is not constructible, as the injective dimension is either infinite or equal to the depth
of R. However, the differencmjdim (M) —depth(R) is definable in families by [6,
Corollary 5.5] and devissable (it is eith@or oo according to whethek/ has finite
injective dimension or not), and therefore, it is constructible on schemes of finite
type over an algebraically closed field. Consequently, the locus of points on such
a schemeX for which the stalk of a coherer®x-module F has finite injective
dimension, is constructible. In Section 8, we will use the following result to obtain
a uniform version of Theorem 6.2.

Proposition 6.4 The numerical invariants®c* andw?ass deform well.

Proof. Let (R, m) be a Noetherian local ring with residue figtcand M a finitely
generatedr-module. Letz € m — m? be R-regular and/-regular. By Lemma 5.4,

23



we have isomorphisms

Tor®(M, k) = Tor™*®(M/aM, k)
Extif ! (k, M) = Exty ,z(k, M/aM)

for all i > 0. Since the depth ol//aM as anR/aR-module is one less than the
depth of M as ank-module, the statement follows.O

7 Singularity defects

In this section, we study several numerical ring invariants which measure the failure
that some property holds. Using the general theory developed in the first part, we
will show that they are constructible. L&tbe a Noetherian local ring with maximal
idealm.

Regularity defect. We define theegularity defectof R to be the difference be-
tween its embedding dimension and its (Krull) dimension and we denote it by
wiesbel (R Recall that theembedding dimensioambdim R of R is by defini-

tion the minimal number of generators of its maximal ideal, which by Nakayama’s
Lemma is equal to the dimensionef'm? viewed as a vector space over the residue
field & of R. Therefore, the embedding dimension is also equabtt'(m) =
wPeti (L), wherek is the residue field oR. By definition, a Noetherian local ring is
regular if and only ifoResPef(R) = 0.

Complete intersection defect. We define thecomplete intersection defeot R

to be the number

w]13etti<k)2 +w]13etti<k)
2

WP (RY = wBetti(k) — + dim R. (10)

It follows from [1, Theorem 2.3.3] that“'"*f( R) is always non-negative and that
R is a complete intersection if and onlydf“'"*f(R) = 0. See (17) below for an
alternative formula forw“™°f which better explains its name.

Cohen-Macaulay defect. We define theCohen-Macaulay defedf R to be the
number
wMPl(RY .= dim R — depth R.

Note thatw“™MP<f( R) is always non-negative, and equal to zero precisely when
is Cohen-Macaulay.
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Gorenstein defect. We define thé&sorenstein defeatf R to be the number
wrPE(RY i= wMP(R) + type(R) — 1 (12)

wheretype(R) denotes the type a®. Recall that theypeof R is by definition the
zero-th twisted Bass numbef**(R), that is to say, the-th ordinary Bass number
of R, whereq is the depth of2. SincewP**(R) is positive,w P (R) is always
non-negative and is equal to zero if and onlwi*P{(R) = 0 andtype(R) = 1,
and this in turn is equivalent witk being Gorenstein by [1, Theorem 3.2.10].

We will refer to the above four invariants sisigularity defectsThe following result
in combination with Theorem 4.8 proves already the first assertion of Theorem 1.1
over an algebraically closed field.

Theorem 7.1 Each singularity defect is definable in families and deforms well.
Moreover, each singularity defect is devissable on any scheme admitting a closed
immersion into an excellent regular scheme.

Proof. Definability in families of each singularity defect follows from the results of

[6] together with Theorem 3.5. More precisely, apart from the Betti and (twisted)
Bass numbers, which were discussed in the previous section, we only need to con-
sider depth and dimension of a local algelitaThis, however, is covered by [6,
Proposition 5.1].

If « € m — m? is an R-regular element, then both embedding dimension, depth
and dimension have dropped by one f@faR. In other wordsw?eePef(R) =
wRegDef(R/aR) and (,UCMDef(R) — WCMDef(R/aR), SO thatwRegDef and wCMDef
deform well. Complete intersection defect deforms well by [1, Theorem 2.3.4].
Finally, since

Ext%(k, R) = Ext{, ,,(k, R/aR)
by Lemma 5.4, we getype(R) = type(R/aR), from which it follows that also
wborPet deforms well.

Hence remains to prove that these singularity defects are devissable on any closed
subscheme of an excellent regular scheme.A e a homomorphic image of an
excellent regular ring and lgtbe a non-maximal prime ideal of. We need to find

an openlU/ containingg, such that for any immediate overprimpeof g in U, the
localizationsA, and A, have the same defect. Moreover, we will always choose

U inside Reg, so that the results df6.1.1 apply. In particular, we will take an

a € p— (p? + g) (possibly subject to some other constraints), so that equality (7)
holds. We fix the above notation and treat each singularity defect separately.

7.1.1 Regularity defect. Supposed, has embedding dimensian Apply the
fact thatwf'" is devissable to thel-module M = g at the prime ideay. In other
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words, if we takel/ insideGeng ¢ as defined ir§6.1.2, then

1(gAp) = p(g4g) = e. (12)

Our aim is to show that
p(pAp) = e+ 1. (13)
To this end, consider the exact sequence

0 — ad, — pA, — pA,/aA, — 0
and tensor it with the residue fieldp) of A, to get an exact sequence
k(p) — pAp/pQAp — (pAp/adAy) @ k(p) — 0. (14)

The first homomorphism in this sequence is not zero singe p*. Therefore, it
must be injective. | claim that the last module in (14) has lengtfrom which
(13) then follows. Now, in view of (7), this claim is equivalent with showing that
pA,/aA, = gA,/aA, is minimally generated by elements. By (12), we can find
elementsy,, . .., a. € g which minimally generatgA,. So we only need to verify
that they also form a minimal set of generators §of,/aA,. If not, then after
renumbering, we would have an equation

a; = cpa + Z Ci; (15)

1=2

in A,, for somec; € A,. However, froma ¢ g we getc, € gA,, so that we can
write ¢y = _ d;a, for somed; € A,. Substituting this in (15) yields

€

0= Z<Cl + dia)ai

i=1

in A,, where we let; := —1. By Nakayama’s Lemma, this violates the fact that the
a; minimally generatgyA,. Hence we showed the validity of (13). Next, we may
assume, by shrinking if necessary, that any overprim®f g in U contains exactly
the same minimal prime ideals gsin particular, sinced is catenary, the height of

q is equal to the height af plus the height ofj(A/g). Applied to the immediate
overprimep, we get that the dimension of, is one less than the dimension.4f.
Together with (13), this shows thdt; and A, have the same regularity defect.

7.1.2 Cohen-Macaulay defect. SupposeA, has depthy. Take U inside the
openDep , , defined in§6.1.3 applied with) = A. It follows that A, has depth
g+ 1, so thatv™Pef (4 ) = h — g = w™MPel(4,).
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7.1.3 Gorenstein defect. Using the previous case, we only need to show that
we can maintain the type of, since the sum of devissable invariants is again
devissable. Since the type is equal to the zero-th Bass number of the migule
devissability follows from Theorem 6.1 applied witli = A.

7.1.4 Complete intersection defect. One might be tempted to infer directly
from the devissability of the Betti numbers proven in Theorem 6.1 dR&te! is
devissable. However, the Betti numbers as they appear in (10) vary with the point:
at each point, we take a different module, to wit, the residue field of that point.
In other words, the ring invariant which assigns to a local riaighe i-th Betti
numberwBetti(k) of its residue field: is not devissable. For instance; i 1 then

wPet (k) = embdim R, which is clearly not devissable.

Therefore, we need an alternative descriptions6fP{(R). It follows from [1,
Theorem 2.3.2] that

wCIDef<R) =€ (R) _ wRegDef(R) (16)

wheree; (R) is the length of the first Koszul homology,; (R) of a system of pa-
rameters ofR (this is independent from the choice of system of parameters; see [1,
§2.3]). Moreover, ifR a homomorphic imag#8/a of a regular local ring, then we
have

e1(R) = embdim R — dim S + p(a)
by [4, Theorem 21.1]. Putting these two equations together, we get

WP (R) = dim R — dim S + pu(a) = u(a) — ht(a), (17)
where the last equality holds sinSas a regular local ring.

Let B be an excellent regular ring such that= B/a for some ideah in B and

let f: Spec A — Spec B be the corresponding closed immersion. &et=gN B

and letl be an open irspec B containing® witnessing the strong devissability

of w® proven in§5.2.1. Choosél’ moreover inGen, ¢ as given by§6.1.2 applied

to the B-modulea. LetU := f~!(W) and let]3 := p N B, where as beforg is an
immediate overprime of insideU. It follows that’3 is an immediate overprime

of & insidelV. Strong devissability ab* gives thata By andaBg have the same
height. On the other hand, devissability of the minimal number of generators yields
pu(aBg) = p(aBg), showing by (17) applied witlR equal to respectivelyl, =
B@/CIBQS andAp = ng/Clng, thathIDef<Ag) = wCIDef<Ap). O

From the proof it is clear that all singularity defects other than the complete inter-

section defect are devissable on any excellent scheme. However, the latter defect
seems to require some type of Noether normalization.
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Corollary 7.2 The invariant assigning to an affine local algebkaits first devia-
tion €, (R) is constructible. The same is true for the invariant which assigng to
its type.

Proof. Immediate from equalities (16) and (11), together with the following fact:
if w; are constructible numerical invariants, then so is any polynomial expression

w:= Pwy,...,wy)

in thew; with P € Z[&,, ..., &,]. To prove the latter fact, observe that thetake
only finitely many values on each schetiie say given by the finite subsgtof Z.
Thereforewy' (s) consists of all points: € X, for which there exist; € S with
s = P(sy,...,s,) andw;(x) = s;, and hence is constructible J

This raises the question whether the higher deviatigr{that is to say, the length

of the Koszul homologie#/,(R)) are also constructible on schemes of finite type
over an algebraically closed field. Definability in families follows from [6, Theo-
rem 4.7] and the fact that we can choose a system of parameters of bounded degree
complexity. In case = 2, we can use alternatively [1, Theorem 2.3.12] to show de-
finability in families. Moreover, assuming the devissability of the Poincare series,

it follows from the expression in [1, Theorem 2.3.12] tor that it is devissable
whence constructible. For the higher deviations, additional work seems to be re-
quired.

Definition 7.3 We call a subset’ of a schemeX generically devissabiig for each
generic pointy of X which belongs td’, we can find an opefy of X containing
n, such that any immediatgspecializatiory € U belongs tdl".

In particular, any subset omitting all the generic points is automatically generically
devissable. We call a ring invariantgenerically devissab)ef for each scheme&

and for each generic pointe X, the level setvy' (w(n)) is generically devissable

in X.

Proposition 7.4 Letw be a ring invariant defined on the class of all excellent Coh-
en-Macaulay schemes. df deforms well and is generically devissable, then it is
devissable.

Proof. In view of the local nature of the assertion, we may reduce the proof to the
following special case. Letl be an excellent Cohen-Macaulay ring apnd non-
maximal prime ideal inA. We need to show that there exists@ag g, such that
w(Ag) = w(A,) for every height one prime ideglin A./gA..

We will prove this statement for all pai(sl, g) by induction on the height of g,
where the casé = 0 holds by assumption. So assume- 0 and lets := w(A,).
Since A, is Cohen-Macaulay, there exists dg-regular element, which we may
choose moreover outsigg. Let B := A/zA. Sincew deforms wellw(Byz) = s.
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SinceB is Cohen-Macaulay and singé# has height:—1, our induction hypothesis
implies the existence of an elemen¢ g such thatu(B,5) = s for any height one
prime idealp in B./gB. = A./gA.. Replacinge by some multiple of it (which
corresponds to shrinking the open defined:lgy 0), we may moreover assume by
§7.1.1, applied respectively iB and A, that B,z and B,z have the same regularity
defect, and so dol; and A,. Moreover, by§5.2.2, we may assume thatis A,-
regular whenevep belongs toA./gA..

Let us verify that thisc satisfies the desired properties. Take a height one prime
ideal in A./gA., and let us denote the corresponding immediate overpringe of
in A by p. Sincez ¢ g?, the embedding dimension @, is one less than the
embedding dimension ofl; by Nakayama’'s Lemma. Hence both rings have the
same regularity defect, which is then by choice also the same regularity defect
of A, and B,p. This in turn implies that the embedding dimensionf; is one
less than the embedding dimensionAf By another application of Nakayama’s
Lemma,z ¢ p?. Sincez is A,-regular andv deforms well,w(A4,) = w(Byg).
Sincep(B./gB.) = p(A./gA.) has height one, we get from our choiceathat
w(Byp) = s. In conclusion, we showed that A,) = s for every height one prime
inA./gA.. O

8 Constructible families

So far we have been dealing with ring and module invariants, but it should be
obvious that the present techniques allow us to treat more general situations. Given
a local ring R, we call anR-algebraS alocal R-algebraif S is a local ring and

R — S'is alocal homomorphism.

Definition 8.1 (Relative Invariants) A mapr which assigns to a paifR, S) a
value in a sefS, where R is a Noetherian local ring and> a Noetherian local
R-algebra, will be called aelative §-valued ring) invariant

One can similarly define a relative module invariant; details are left to the reader.
We say thatv is of finite type if we moreover impose that is essentially of finite
type over an algebraically closed field afids essentially of finite type oveR. If

f:Y — X is amap of schemes anpdh point ofY’, then we write

V(y7 f) = V(OX,xa OY,y)
wherez = f(y).

As before, thdevel setof v are defined for a map — X, as the collection of all
pointsy € Y for whichv(y, f) = s, for somes € S. Note that they form a partition
of Y. We call v saturated(respectively,devissablegeometrically constructible
constructiblg, if each of its level sets is. It is immediate from Theorem 4.8 that a
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relative invariant of finite type which is geometrically constructible and devissable,
is in fact constructible. As before, most invariants only behave properly on some
subcategory’ of schemes, and to emphasize this we may say:tietdefined for
schemes (or maps) (h

For our purposes, the following construction of a relative invariant will be the only
example used in this paper. Namely, we start fronfSaralued ring invarianto.

To w, we associate a relative invariant, denofgdas follows. Given a local map
(R,m) — (S5, n) of Noetherian local rings, we set

5(R, 8) = w(S/mS). (18)

Let us study a little closer this definition in case we have a riap”™ — X of
schemes and a poipte Y. Let R := Oy, andS := Oy, Wherez = f(y). If m
denotes the maximal ideal iR, thenS/mS is the local ring of the fibef—!(z) at
the pointy, and therefore

WY, f) = w(Of-1(2) ) (19)

Proposition 8.2 Let w be anS-valued invariant and let> denote the associated
relative invariant. Ifw is strongly devissable and deforms well, thers strongly
devissable for flat maps.

Proof. Let f: Y — X be a flat map and fix some e S. Since the property we
seek to prove is local, we may assume without loss of generalityrthatSpec B
and X = Spec A are affine. Le® be a prime ideal irB corresponding to a point
y € Y and letg := & N A be the prime ideal correspondingito= f(y). Since the
base changel/g — B/gB has the same fibers as— B, we may reduce to the
case thap = 0. Lets := &(y, f). Hence, by definitions = w(Bg). Applying our
strong devissability hypothesis i at the prime idea®, we can find an open set
V' C Y, such that for all overprime¥ of & in V', we have

s = w(Bgy). (20)

LetU be a non-empty open set &fcontained irReg, as defined i6.1.1. Let: €
V' N f~4U) be anz-specialization and Iep be the overprime of5 corresponding
to z. Hencep := B N A corresponds to the poirft z) € U. Leth be the height of
p. SinceA, is regular of dimension, we can find a regular sequenes, ..., z)
in p such that

(1,...,2p)Ap = pA,. (22)
SinceA — Bisflat, (z1,. .., z;) is alsoBg-regular, and hence

s = w(Byp) = w(By/(x1, ..., 1) By) = w(Byp/pBy) = w(z, f)

where the first equality follows from (20), the second by deformation, the third from
(21) and the final by definition @b. In conclusion, we showed thatis strongly
devissable. O
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Presumably, we can replace strong devissability by devissability and drop the flat-
ness assumption, but for our purposes, the above result suffices.

Theorem 8.3 Letw be anS-valued invariant of finite type, which is definable in
families, devissable and deforms well.fIf Y — X is a map of finite type of
schemes of finite type over an algebraically closed field, then there exists a finite
constructible partitiony” = Y,, U--- UYj, , indexed by elementg € S, such that

for eachy € Y, , we have

Sk

w(Op-1(s(5)) ) = Sk-

Proof. In view of (19), all we need to do is show that the associated invagiant
is constructible. By [2, CorollaryV .6.9.3], we can find a constructible partition
X = X, U---U X,, such that each base changje(X;) — X; is flat. Since the
local rings of the fibers of ! (X;) — X; and of f are the same, we may therefore
pass to one of these base changes and assume from the stgrtishabreover
flat. By Theorem 5.2, the invariantis constructible, whence in particular strongly
devissable by Theorem 4.4. Hentés strongly devissable by Proposition 8.2.

So remains to show that is geometrically constructible in view of Theorem 5.2.
Fix somes € S. We need to show that the subsetYofK') consisting of allK -
rational pointsy for which @(y, f) = s, is constructible inY’(K). Consider the
abstract familyR given by the commutative diagram

Y xxY 7 Y
g / (22)
Y 7 X

wherey = g is the projection onto the second coordinate. & Y (K), we have
(g~ (y)) = y. ThereforefR, is the local ring of the fibef ~*(f(y)) at the point
y. By (19), we geti(y, f) = w(R,). Sincew is definable in families, the collection
of ally € Y(K) for whichw(y, f) = s is therefore constructible, as required:

By Proposition 6.4, the invarianig®**! andw?*** deform well and so we can apply
Theorem 8.3 to them. The same is true for the singularity defects from Section 7
in view of Theorem 7.1. In particular, this proves Theorem 1.1 over algebraically
closed fields; the case of an arbitrary base field is then covered by the arguments in
the next section. The next theorem gives a similar application of good deformation;
this time we get a constructible partition in the target space.

Theorem 8.4 Letw be anS-valued invariant of finite type. Assumes definable
in families, devissable and deforms well. lfetY” — X be a map of finite type of
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schemes of finite type over an algebraically closed field. For eaehX, let
Valy(2) = {0(Of-10),) |y € f () }-
ThenVal,, () is finite.
Moreover, for an arbitrary subsér of S, let
Fr:={xe X |Val(z)=T}.

Then the partition ofX consisting of the non-empty sdts, whereT runs through
all subsets of, is constructible. In particular, only finitely many finite subsgtsf
S occur as a set of the forivial,, ().

Proof. By (19), we have

Valu(x) = { &, f) |y € (@)},

wherew is the relative invariant associatedtoBy Theorem 8.3, the collection of
(non-empty) level sets

Go={yeY |y f)=s}

of @, is a constructible partition, whereruns over all possible values &f In
particular, this partition is finite so that only finitely many valuesSisan occur.
Therefore, also eactial,, () is finite.

Let T be a finite subset . Let us write

Y/']r = U GS.

s¢T

Since the partitiod G, } is finite and constructible, eadh is constructible. | claim
that

Fr = (ﬂ f(Gt)> — [(Ya). (23)

Assuming the claim, the result then follows by Chevalley’s Theorem. To prove the
claim, assumer € Fr. Since thenVal,(z) = T, we getw(y, f) € T for each
y € f~(z). In other words

fTHa)ynJGs=10

s¢T

which shows that: does not lie inf(Yr). On the other hand, for eache T =
Val,(z), we can find ary € G; with f(y) = x, so thatz lies indeed in the right
hand side of (23).
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Conversely, ifr lies in the right hand side of (23), then we can find for eaehT,
ay € Gy, such thatt = f(y), showing thafl' C Val,(z). However, sincer does
not lie in f(Yr), one checks that no other valueSican occur, so that = Val,, (),
as required. O

SupposeP is a property of local rings, such as being regular or Cohen-Macau-
lay. We say that a schemé has propertyP if each of its local rings has. Let”

be the associated invariant which takes the values0 according to whether the
property holds or not. Applying Theorem 8.4 to the singléfos {1}, we see that

the collection of all points: in X for which the fiberf~*(z) has propertyP, is a
constructible set whelX is of finite type over an algebraically closed field. This
yields an alternative approach to the results from [2, Chag9y,

Proof of Theorem 1.2. Let f: Y — X be of finite type over an algebraically
closed fieldK (but using the results from the next sectidn,can in fact be any
field) and letz be a point ofX. Suppose ! () is embedded as a closed subscheme
of Ay ). Let] be the ideal defining this embedding. We need to show thgt— n

is bounded independently from I or n.

Since everything is of finite type, we may assume that both schemes are affine, so
that f corresponds to & -algebra homomorphism — B of finite type. By Theo-

rem 8.3 applied to the complete intersection defécP*!, there is a bound such

that, if y is a point of some fibef ~*(z), thenO;-1(,,, has complete intersection
defect at mosD. In other words,R := B,/pB, has complete intersection defect

at mostD, whereq is the prime ideal ofB corresponding tgy andp = q N A the

prime ideal corresponding ta

On the other hand, by assumption, the coordinate Bpgp B, of f~!(z) is iso-
morphic toC/I, for C' = k(p)[¢] with £ = (&4, ..., &,) some variables and far
some ideal irC. Therefore R = Cq/ICq, whereQ = qB, N C. By (17),

WIPH(R) = p(ICq) — ht(ICq).
In particular,u(ICq) is at mostD +n. Since this estimate holds for any prime ideal
Q of C'/1, we obtain from the Forster-Swan Theorem that) < D + n + dim B

(use for instance [8, Corollary 3.2]).0

Applying Theorem 1.2 to the universal family of finitely generated algebras of de-
gree complexity at most defined in§3.4.1, we get:

Corollary 8.5 For eachd € N, there exists a boundl € N, such that for any affine

K-algebraA of degree complexity at masbver a field/K” and for any presentation
A=K[&,...,&]/1, we haveu(l) < d +n.
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9 Constructible invariants over arbitrary base fields

In this section, we will drop the restriction that the base figlds algebraically
closed. Let us call a local homomorphig®t,m) — (S, n) of Noetherian local
rings ascalar extensionif it is faithfully flat andmS = n. For some properties of
this notion, including the reason for its terminology, see [9]. For our purposes, the
following example of a scalar extension is the only one used in this papet: let
be an algebra over a field and letB := A ®x L be its base change over some
algebraic field extensioh of K. Then for any prime ideaj of B, the localization

A, — B, is a scalar extension, whepe= q N A. Indeed, the fibers ot — B

are all finite sinced — B is integral. Hence B, is the Jacobson radical &f, and
therefore, after localizing, we gef3, = qB,.

Definition 9.1 Let w be anS-valued ring invariant. We say that is preserved
under scalar extensions for each scalar extensio® — S, we havew(R) =
w(S).

In casew is a module invariant, then we require for each finitely generdted
module) thatw(R, M) = w(S, M Qg S).

Theorem 9.2 Letw be anS-valued invariant of finite type. Supposas definable

in families and devissable (or, saturated)wlfs preserved under scalar extensions,
then for every schemg of finite type over a field& and every coherer® x-module
F, the (non-empty) level sets

w}}f(s) ={zre X |wOx.,F:) =5}
form a constructible partition ok .

Proof. In caseX is algebraically closed, this is just Theorem 5.2. Kaan arbitrary
field, let K denote its algebraic closure. L&t := X xgpecx Spec K and F :=
F ® Ox be the base changes &f and F over K. Let = be a point inX and
let x := w(7), wherer: X — X denotes the canonical map. SinkeC K is
algebraic, the natural homomorphisfy , — Oxz is a scalar extension by our
previous discussion. Preservation under scalar extensions then yields

wx (T, F) = wx(z, F).

It follows that
W(w;f(s)) = w;(}f(s), (24)

for all s € S. By Theorem 5.2, the level sets oh are constructible. In particular,
only finitely many are non-empty. Sineeis surjective, it follows from (24) that

all but finitely many level sets oX are empty. Moreover, by [3, Proposition 6.F],
each level setiX is pro-constructible, since it is the image of a constructible set by
(24). In particular, since each level set is the intersection of the complements of the
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other level sets and since a finite intersection of ind-constructible sets is again ind-
constructible, it follows that each level set is also ind-constructible. Corollary 4.6
then yields that each level set is constructibléel

Proposition 9.3 The invariantsu?et'i, ,Bass and all the singularity defects are pre-
served under scalar extensions.

Proof. Let (R,m) — (S,n) be a flat local homomorphism witimS = n and

let M be a finitely generated-module. Letk be the residue field oR. Hence
S®k = S/mS is the residue field of S. By [4, Theorem 15.1], the invariant given
by Krull dimension, and by [4, Theorem 23.3], the invariant given by depth are both
preserved under scalar extensions. In particdigsth M = depth M ®5 S. Since

we have isomorphisms

Tor?(k, M) @ S = Tor{ (I, M ®g S) (25)
Ext’(k, M) ®p S = Extis(l, M ®g S), (26)

it follows that alsow?*'* andw?ss are preserved under scalar extensions. As the
singularity defects are made up of dimension, depth, Betti and/or Bass numbers,
they are all preserved under scalar extensions as well.

Proposition 9.3 together with Theorem 9.2 proves Theorem 1.1 in full.
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