
A GEOMETRIC APPROACH TO DEFINABLE SUBSETS

Goal. The goal of this problem is to explore an alternative definition of definable subset.
There are several questions, some of which I only want you to verify and others to
prove. Whenever I say verify, you should check for yourself that the claim is correct.
For a good understanding of a mathematical subject, it is crucial that at least once in
you lifetime, you check all its tedious but easy facts in gruesome detail. Once you have
convinced yourself (or your peers–I greatly encourage working together in group), there
is no need to ever bother with these again. The problems where I ask you to prove
something, I want you to hand in a solution in sufficient detail. You are allowed to refer
to any property proven in the book, and even to assertions stated as exercises (but then
you should check for yourself whether you can actually do the exercise).

By the way, if you want to produce smooth looking math papers, I strongly recom-
mend you to learn TeX. You will definitely want to learn this once you start writing
your thesis. There are several TeX variants, but the most commonly used one nowadays
is LaTeX. This assignment was written in an enriched form of LaTeX, developed by the
American Mathematical Society, called AMS-LaTeX.

Definitions. Let M be a set, and let P(M) be its power set, that is to say, the set of all
subsets of M . We want to define a structure on M , but instead of using signatures and
languages, we take a more geometrical approach. We need a couple of definitions. By
a Boolean subalgebra D ⊆ P(M) on M , we mean a collection of subsets of M closed
under (finite) intersections, unions and complements, and containing the empty set ∅
as well as the whole set M . Fix a positive integer n. The diagonal Dij in Mn, where
1 ≤ i < j ≤ n, is the collection of all n-tuples which have the same i-th entry as j-th
entry, that is to say, all (x1, . . . , xn) with xi = xj . Given a second positive integer k, let
πn+k,n : Mn+k → Mn be the projection onto the first n coordinates, given by sending
an (n+k)-tuple (x1, . . . , xn+k) to the tuple (x1, . . . , xn). Given a k-tuple ā ∈Mk and a
subset C ⊆Mn+k, we define the fiber of C at ā as the subset Cā ⊆Mn consisting of all
n-tuples x̄ such that the (n+k)-tuple (x̄, ā) belongs toC. Given a function f : Mn →M
we define its graph as the subset in Mn+1 given by all (n+ 1)-tuples (a1, . . . , an, b) such
that f(a1, . . . , an) = b.

We are now ready to define the notion of a weak geometry D on a set M . It consists
of a collection D = (Dn)n, where each Dn ⊆ P(Mn) is a Boolean subalgebra on Mn

with the following three properties:
(i) for all 1 ≤ i < j ≤ n, the diagonal Dij ⊆Mn belongs to Dn;

(ii) for every C ∈ Dn and B ∈ Dk, the product C ×B ⊆Mn+k belongs to Dn+k;
(iii) for every C ∈ Dn+k, its projection under πn+k,n : Mn+k →Mn is in Dn.

If, moreover, also the following property holds
(iv) for every C ∈ Dn+k and every ā ∈Mk, the fiber Cā belongs to Dn,

then we will say that D is a geometry. Given a subset C in some Cartesian power Mk,
we say that C belongs to the geometry D = (Dn)n, if C ∈ Dk.
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Properties. Verify that if D = (Dn)n and D′ = (D′
n)n are (weak) geometries, then so

is their intersection D ∩ D′ := (Dn ∩ D′
n)n. In fact, the same is also true for infinite

intersections. Let G = (Gn)n be any collection of subsets Gn ⊆ P(Mn). We say
that G is contained in a (weak) geometry D = (Dn)n, if Gn ⊆ Dn, for all n. To
define the (weak) geometry generated by G, consider the class of all (weak) geometries
D containing G and let D(G) be their intersection. By what we just argued, D(G) is a
(weak) geometry, and is called therefore the (weak) geometry generated byG. Verify that
D(G) is the smallest, with respect to inclusion, (weak) geometry containing G, and that
any subset belonging to D(G) can be obtained by a finite number of applications of the
rules (i)–(iv) (or, in the weak case, only using the first three rules) to the subsets in G.

Our next goal is to associate to an L-structureM = (M ; CM; FM; RM) (in the lan-
guage L with signature (C,F,R)) a (weak) geometry as follows. We start with defining
for each n, a collection Gn of subsets of Mn. If n = 1, then G1 consists precisely of
all singletons {c} where c is some constant in CM together with all subsets defined by
a unary predicate in R. For n > 1, let Gn consist of all n-ary subsets R ∈ RM as
well as of all graphs of (n − 1)-ary functions f ∈ FM. Let Dw

M be the weak geometry
generated by G := (Gn)n and let DM be the geometry generated by G := (Gn)n, called
respectively the weak geometry and geometry associated toM. The main result I want
you to prove is then:

Theorem. LetM be an L-structure and let Dw
M and DM be the respective weak geometry

and geometry associated to M. A subset C ⊆ Mn is definable without parameters if and
only if it belongs to Dw

M; and it is definable with parameters if and only if it belongs to DM.

Here are some hints that might help you in the proof: Exercise (3.3.6) can make
the presentation more streamlined. You also might want to prove the following fact
separately: if C ⊆ Mn+k is definable, then so is its projection under πn+k,n : Mn+k →
Mn. The key to understand this last assertion is to see that projection corresponds to
taking an existential quantifier.

There is also a converse to the Theorem, which I only want you to verify. Namely,
given a weak geometry D = (Dn)n on a set M , construct a signature which has a n-
ary relation symbol C for each subset C ∈ Dn (where we identify 1-ary relations with
constants) and let LD be the corresponding language. Make M into an LD-structure
MD by interpreting each relation symbol C by the subset C ⊆ Mn. Verify that the
associated weak geometry of this LD-structure is the same as D. Conversely, if we
start from an L-structure M, associate to it its weak geometry Dw

M and then take the
corresponding structure MDw

M
, then we get an LDw

M
-structure which is isomorphic

with M when we view both structures in the expanded language L ∪ LDw
M

(or more
precisely, both structures admit an isomorphic expansion to the larger language).

I leave you with the following puzzling fact (intentionally designed to confuse you, I
admit): we know that ifM = (M, . . . ) is an L-structure and N ⊆M just a subset, then
we cannot always define an L-structure N on N such that the inclusion map N ↪→ M
induces a homomorphism of L-structures (give a concrete example). However, verify
that if D = (Dn)n is a (weak) geometry on M , then the collection D|N consisting of all
C ∩ Nn with C ∈ Dn, for all n, is a (weak) geometry on N , called the restriction of D
to N . So we could start withM, associate to it the weak geometry Dw

M, then take its
restriction Dw

M|N to N and, finally, take the associated first-order structureMDw
M|N

,

to get a structure on N . How can you reconcile both facts?


