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Abstract

In this paper, we develop an algebraic theory for local rings of finite embedding di-
mension. Several extensions of (Krull) dimension are proposed, which are then used
to generalize singularity notions from commutative algebra. Finally, variants of the
homological theorems are shown to hold in equal characteristic.

This theory is then applied to Noetherian local rings in order to get: (i) over a Coh-
en-Macaulay local ring, uniform bounds on the Betti numbers of a Cohen-Macaulay
module in terms of dimension and multiplicity, and similar bounds for the Bass num-
bers of a finitely generated module; (ii) a characterization for being respectively ana-
lytically unramified, analytically irreducible, unmixed, quasi-unmixed, normal, Cohen-
Macaulay, pseudo-rational, or weakly F-regular in terms of certain uniform arithmetic
behavior; (iii) in mixed characteristic, the Improved New Intersection Theorem when
the residual characteristic or ramification index is large with respect to dimension (and
some other numerical invariants).

Key words: commutative algebra; local rings; Betti numbers; homological
conjectures; ultraproducts

1. Introduction

This paper is devoted to the study of local rings of finite embedding dimension,
where by a local ring,2 we mean a not necessarily Noetherian, commutative ring R
with a unique maximal ideal m, and where the embedding dimension of R, denoted
embdim(R), is the minimal number of elements generating m. We will see that there
are various ways of extending the dimension and singularity theory of Noetherian local
rings to this larger class. The motivation for this study comes from the subclass of
ultra-Noetherian local rings: these are the ultraproducts of Noetherian local rings of
fixed embedding dimension. I had used these ultra-Noetherian rings in my previous

1Partially supported by the National Science Foundation and a PSC-CUNY grant
2Other authors may call these quasi-local.
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work on transfer from positive to zero characteristic ([38, 41]) and on non-standard
tight closure ([4, 45, 40, 43, 48, 49]), but the actual study of their properties was only
prompted by the papers [39, 47], where it was essential to have a generalized dimen-
sion and singularity theory to get asymptotic versions of various homological theorems
in mixed characteristic. It was this realization that led me to develop a systematic ‘lo-
cal algebra’ for these rings. Consequently, we will be able to derive from this study
some improved asymptotic versions in the final section. For some other recent papers
studying ultraproducts of Noetherian rings, see [31, 32, 33].

Closely related to a local ring of finite embedding dimension are two local rings
which are always Noetherian: its graded ring and its completion. Especially through
the latter the study of local rings of finite embedding dimension is greatly facilitated.
Accordingly, I will use the modifier cata- to indicate that a property is inherited by
completion. In contrast, for ultra-Noetherian local rings, the prefix ultra- is used to
refer to properties that are inherited by the ultraproduct. The main goal is now to find
conditions under which both versions agree, which often requires the introduction of
a third, intrinsic (pseudo-) variant. To study these variants, we introduce the notion of
a cataproduct, defined as the completion of the ultraproduct. In fact, the cataproduct
is obtained from the ultraproduct by factoring out the ideal of infinitesimals, that is to
say, the ideal of elements lying in each power of the maximal ideal. In [50], both the
ultraproduct and the cataproduct are called chromatic products, inspired by our musical
notation R\ and R] respectively (a third chromatic product, not discussed in this paper,
is called the proto-product and denoted R[).

What follows is a brief outline of the present paper. To illustrate the methods and
concepts, I will here only treat the special case that (R\,m\) is an ultra-Noetherian
local ring, realized as the ultraproduct of Noetherian local rings (Rn,mn) of the same
embedding dimension. Section 2 contains general facts of local rings of finite embed-
ding dimension, by far the most important of which is the already mentioned result
that its completion is Noetherian (Theorem 2.2). In particular, the cataproduct R] is
Noetherian.3 Our first task is now to develop a good dimension theory, which is done
in §§3–5. Krull dimension in this context is of minor use, as it is always infinite for
example for ultra-Noetherian local rings, except when almost all Rn are Artinian of
a fixed length l, in which case R\ is also zero-dimensional and has length l. A first
variant, called geometric dimension, is inspired by the geometric intuition that dimen-
sion is the least number of hypersurfaces cutting out a finitely supported subscheme.
Specifically, the geometric dimension, gdim(R\), of R\ is the least number d of non-
units x1, . . . , xd such that R\/(x1, . . . , xd)R\ is Artinian. Other variants are obtained
by the general principle discussed above: the ultra-dimension, udim(R\), of R\ is
the common dimension of almost all Rn; and its cata-dimension is the dimension of
its completion, that is to say, of R]. It turns out that the cata-dimension is equal to
the geometric dimension (Theorem 3.4). These dimensions also have a combinatorial
nature: whereas Krull dimension is the combinatorial dimension of the full spectrum
Spec(R\), the ultra-dimension of R\ is equal to the combinatorial dimension of the
subset of all associated prime ideals of finitely generated ideals; the cata-dimension

3Special cases of this result were already observed and used by various authors [4, 6, 32].
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is equal to the combinatorial dimension of the subset of all m\-adically closed prime
ideals (Theorem 5.19; see also [33] for some related results). The ultra-dimension of
R\ is at most its cata-dimension, with equality precisely when almost all Rn have the
same parameter degree (Theorem 5.23).

Our next step is to develop a singularity theory for local rings of finite embedding
dimension. Three options present themselves to us: cata-singularities via completions
(§6); ultra-singularities via ultraproducts (§8); and pseudo-singularities via homologi-
cal algebra (§7). For instance, R\ is called cata-regular if R] is regular; ultra-regular
if almost all Rn are regular; and pseudo-regular if its depth equals its embedding di-
mension. Requiring each one of the first three quantities

depth(R) ≤ udim(R\) ≤ gdim(R\) ≤ embdim(R\) (1)

in this chain of inequalities to be equal to the last turns out to determine these reg-
ularity conditions, in decreasing order of strength: pseudo-regularity, ultra-regularity,
and cata-regularity respectively (note that we do not observe such a distinction in the
Noetherian case). In fact, the two first conditions are equal (Theorem 8.1). Moreover,
Serre’s criterion for regularity extends to this larger class (Theorem 7.11). In partic-
ular, for coherent local rings of finite embedding dimension, regular in the sense of
Bertin ([7, 18]) implies pseudo-regular, and the converse holds for uniformly coherent
local rings of finite embedding dimension (Theorem 7.18). Next, variants of the Coh-
en-Macaulay property are analyzed—for instance, by equating the first quantity in (1)
with respectively the second and third, we get the notions of ultra-Cohen-Macaulay and
pseudo-Cohen-Macaulay local rings. Unfortunately, these variants behave less well.
For instance, although the class of local Cohen-Macaulay rings of fixed dimension and
multiplicity is closed under cataproducts (Corollary 8.8), the converse need not be true,
that is to say, R] can be Cohen-Macaulay without the Rn being Cohen-Macaulay. At
the source of these discrepancies lies the fact that a sequence can be quasi-regular with-
out being regular in non-Noetherian rings. In 5.20, we present an example showing that
all of the four quantities in (1) can be different. Although R\ is rarely coherent, un-
der an additional pseudo-Cohen-Macaulay assumption, it behaves much like one: any
m\-primary ideal, and more generally, any finitely generated ultra-Cohen-Macaulay
module is finitely presented. Another generalization of the Cohen-Macaulay condition
for local rings of finite embedding dimension, motivated by model-theoretic considera-
tions, was introduced in [37]; we show that up to a Nagata extension of the ring (which
can be taken to be trivial in the ultra-Noetherian case), this condition is equivalent with
being pseudo-Cohen-Macaulay (Theorem 7.26). Some further characterizations of the
various types of Cohen-Macaulay singularities are given in §9 by means of an analogue
of Noether Normalization for the class of local rings of finite embedding dimension.

Once we have developed a sufficiently well-behaved singularity theory, we analyze
the homological theory of the class of local rings of finite embedding dimension; this is
the contents of §10. We show that most homological theorems, properly restated, hold
in an arbitrary equicharacteristic local ring of finite embedding dimension. The main
tool is the existence of an analogue of big Cohen-Macaulay algebras for this class of
rings. In fact, it suffices to assume that only the completion is equicharacteristic, which
is a strictly weaker condition, as I will explain below. As an application, we provide the
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following partial answer to a question raised by Glaz ([19]) about the extent to which
split subrings of coherent regular local rings are Cohen-Macaulay (compare with [20,
Corollary 4.5]).

1.1 Corollary. If (R,m) is a local ring of finite embedding dimension containing a
field, and if S a coherent regular local ring locally of finite type over R, such that
R → S is cyclically pure (e.g., split), then there exists a (Noetherian) regular local
subring (A, p) of R such that each A-regular sequence is a quasi-regular sequence in
R, and each R/pnR is a finite, free A/pn-module.

In the final three sections, we apply the theory to ultra-Noetherian rings to obtain
new results about Noetherian local rings. In §11, we derive uniform bounds on Betti
and Bass numbers. In the literature, one often studies the asymptotic growth of the
Betti numbers βn(M) = dimk(TorRn (M,k)), as n goes to infinity, for M a finitely
generated module over a Noetherian local ring R with residue field k. In contrast,
varying the module and fixing n, we show in Theorem 11.1 that over a local Cohen-
Macaulay ring R, the n-th Betti number of a module M of finite length is bounded by
a function which only depends on the dimension and multiplicity of R and the length
of M . In particular, if PR(t) :=

∑
n βn(k)tn denotes the Poincare series of R, then

we show:

1.2 Corollary. For each d, e ≥ 0, there exists a power series Pd,e(t) ∈ Z[[t]] such
that the Poincare series PR(t) of any d-dimensional local Cohen-Macaulay ring R of
multiplicity e is dominated by Pd,e(t), meaning that Pd,e(t)− PR(t) has non-negative
coefficients.

Recall that a Cohen-Macaulay local ring R is called of bounded multiplicity type if
there is a bound ε(R) on the multiplicity of all of its indecomposable maximal Cohen-
Macaulay modules. According to the Brauer-Thrall conjectures such a ring is expected
to be of finite representation type, meaning that there exist only finitely many inde-
composable maximal Cohen-Macaulay modules. The conjecture is known to hold for
certain reduced, excellent Henselian isolated singularities by the work of [11, 34, 55].
In support of this, we prove the following two results:

1.3 Theorem (Brauer-Thrall for Isolated Singularities). LetR be an equicharacteristic,
unramified local isolated singularity with an uncountable algebraically closed residue
field. If R has bounded multiplicity type, then it has finite representation type.

Proof. Immediate from Theorem 11.6 below and [34, Theorem 1.2].

1.4 Corollary (Effective Brauer-Thrall). Let d, e, and ε be positive integers for which
the Brauer-Thrall conjecture holds, in the sense that every d-dimensional Cohen-Mac-
aulay local ring of multiplicity e and multiplicity type at most ε, has finite presentation
type. Then there is a bound on the number of indecomposable maximal Cohen-Macau-
lay modules which only depends on d, e and ε.

1.5 Corollary. Suppose R is a local Cohen-Macaulay ring of bounded multiplicity
type. There exists an R-algebra Z, and a complex of finite free Z-modules F•, such
that for every indecomposable maximal Cohen-Macaulay module M , there exists a
section Z → R, such that F• ⊗Z R is a free resolution of M .
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The theory also gives applications to preservation of properties under infinitesimal
deformations, of which the next result is but an example (recall that an invertible ideal
is a principal ideal generated by a non zero-divisor):

1.6 Corollary. Let R be a local Cohen-Macaulay ring and let I ⊆ R be an invertible
ideal. There exists a positive integer a := a(I) with the property that if J ⊆ R such
that R/J is Cohen-Macaulay of multiplicity at most the multiplicity of R/I , and such
that I + ma = J + ma, then J is invertible.

It is not clear yet whether similar bounds exist if we drop the Cohen-Macaulay
assumption in these results. In §12, we characterize ring-theoretic properties in terms
of uniform arithmetic in the ring. For instance, in Theorem 12.1, we reprove, as an
illustration of our methods, that multiplication is bounded in R if and only if R is an-
alytically irreducible. Whereas the ultraproduct method only gives the existence of a
uniform bound, we know in this particular case, by the work of Hübl-Swanson [27, 54],
that these bounds can be taken to be linear. Nonetheless, our method is far more ver-
satile, allowing us to derive in §12.8 many more characterizations of ring-theoretic
properties in terms of certain uniform asymptotic behavior of (m-adic) order and (pa-
rameter) degree. For instance, one can characterize the Cohen-Macaulay property as
follows:

Theorem (12.14). For each quadruple (d, e, a, b) there exists a bound δ(d, e, a, b) with
the following property. A d-dimensional Noetherian local ring (R,m) of multiplicity e
is Cohen-Macaulay if and only if for each ideal I generated by d− 1 elements, and for
any two elements x, y ∈ R, if R/(I + xR) has length at most a and y does not belong
to I + mb, then xy does not belong to I + mδ(d,e,a,b).

As already mentioned, our methods only prove the existence of uniform bounds
(and possibly their dependence on other invariants), but say nothing about the nature
of these bounds. It would be interesting to see whether for instance these new bounds
also have a linear character.

However, the main application of this paper is discussed in the final section. Here
we derive some asymptotic versions of the homological theorems in mixed characteris-
tic. Whereas the papers [39, 47] relied on a deep result from model theory, the so-called
Ax-Kochen-Ershov theorem, to carry out transfer from mixed to equal characteristic,4

the present paper departs from the following simple observation: if the (Rn,mn) have
mixed characteristic pn, then their cataproductR] is equicharacteristic in the following
two cases: (i) the pn grow unboundedly (in which case the ultraproduct R\ is already
equicharacteristic), or (ii), almost all pn are equal to a fixed prime number p, but the
ramification index, that is to say, the mn-adic order of p, grows unboundedly (in which
case, however, R\ still has mixed characteristic p). Thus we prove:

Theorem (13.6, Asymptotic Improved New Intersection Theorem). For each triple of
positive integers (m, r, l) there exists a bound κ(m, r, l) with the following property.

4In fact, although not mentioned explicitly in these papers (but see [50, §14] or [49, §6]), these methods
make heavily use of proto-products, one of the chromatic products not studied in this paper.
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Let (R,m) be a mixed characteristic Noetherian local ring of embedding dimension m
and let F• be a finite complex of finitely generated free R-modules of rank at most r.
If each Hi(F•), for i > 0, has length at most l and H0(F•) has a non-zero minimal
generator generating a submodule of length at most l, then the length of F• is at least
the dimension ofR, provided either the residual characteristic or the ramification index
of R is at least κ(m, r, l).

It should be noted that some Homological Conjectures, such as the Direct Sum-
mand Conjecture and the Hochster-Roberts theorem on the Cohen-Macaulayness of
pure subrings of regular local rings, at present elude our methods, and so no asymp-
totic versions in the style of this paper are known (but see [47, §9 and §10] for different
asymptotic versions).

I conclude the paper with a sketch of an argument that derives the full version
from its asymptotic counterpart, provided the bounding function does not grow too
fast. For example, if for some prime p, the bound κ(m, r, l) on the ramification in
the above theorem can be taken to be of the form c(m, r)lα(m,r), for some real valued
functions c(m, r) and α(m, r) with α(m, r) < 1, for all m and r, then the Improved
New Intersection Theorem holds in mixed characteristic p.

2. Finite embedding dimension

Although we will mainly be interested in the maximal adic topology of a local ring,
we start our exposition in a more general setup.

2.1. Filtrations

Recall that a filtration I = (In)n on a ring A is a descending chain of ideals
A = I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ . . . . An important instance of a filtration is obtained by
taking the powers of a fixed ideal I ⊆ A, that is to say, In := In; we call this the I-adic
filtration on A. A filtration I defines a topology on A, called the I-adic topology of A,
by taking for basic open subsets all cosets of all In. IfB is anA-algebra, then IB is the
extended filtration onB given by the ideals InB, and hence the natural homomorphism
A → B is continuous with respect to the respective adic topologies. The intersection
of all In will be denoted by I∞. Hence the I-adic topology is Haussdorf (separated) if
and only if I∞ = (0). Accordingly, the quotient A/I∞ is called the I-adic separated
quotient of A. The I-adic completion of A is defined as the inverse limit of the A/In
and is denoted ÂI. There is a natural map A → ÂI whose kernel is equal to I∞. In
fact, A and its I-adic separated quotient have the same I-adic completion. In general,
ÂI, although complete in the inverse limit topology, need not be complete in the IÂI-
adic topology.

Given a filtration I = (In)n we define its associated graded module, where we
view A with its trivial grading, as the direct sum

grI(A) :=
∞⊕
n=0

In/In+1.
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The initial form inI(a) ∈ grI(A) and the I-adic order ordI(a) of an element a ∈ A
are defined as follows. If a ∈ In \ In+1 for some n, then we set ordI(a) := n and
we let inI(a) be the image of a in In/In+1; otherwise a ∈ I∞, in which case we set
ordI(a) := ∞ and inI(a) := 0. For J an ideal in A, we let inI(J) be the ideal in
grI(A) generated by all inI(a) with a ∈ J . If J = (a1, . . . , an)A, then inI(J) is in
general larger than the ideal generated by the inI(ai) (even if A is Noetherian!).

Alternatively, we may think of a filtration as given by a function f : A → N̄ :=
N ∪ {∞} such that f(a + b) and f(ab) are greater than or equal to respectively the
minimum and the maximum of f(a) and f(b); we express this by calling f filtering.
Given a filtering function f , the ideals In of all elements a ∈ A for which f(a) ≥ n
form a filtration. Conversely, given a filtration I, the function ordI(·) is filtering.
Suppose f is filtering. If f(ab) ≥ f(a) + f(b), then we call f multiplicative (this then
corresponds to the property that InIm ⊆ In+m); and if 0 is the only element of infinite
f -value (so that the corresponding filtration is separated) and f(ab) = f(a) + f(b),
then f is called a valuation. If I is multiplicative, then grI(A) admits the structure of
a ring and as such is graded. This applies in particular to any ideal adic filtration.

We now specify these notions to the case of interest, where I is the m-adic filtration
of a local ring (R,m). The topology onR is always assumed to be the m-adic topology,
so that when we say that R is separated or complete, we are always referring to this
topology. With this in mind, the ideal of infinitesimals of R is the intersection of
all mn, and will be denoted IR. The m-adic order of an element x ∈ R is denoted
ordR(x) or just ord(x). The (m-adic) separated quotient R/IR is denoted R; the
graded ring associated to m is denoted gr(R); and the completion of R is denoted R̂.
By construction, R̂ is a complete local ring whose maximal ideal is equal to the inverse
limit of the m/mn. However, this maximal ideal may be strictly larger than mR̂, so that
R̂ need not be complete in the mR̂-adic topology.

Let (S, n) be a second local ring and let R→ S be a ring homomorphism. We call
this homomorphism local, or we say that S is a local R-algebra, if mS ⊆ n; if we have
equality, then we call the homomorphism unramified. A local homomorphism induces
local homomorphisms R → S and R̂ → Ŝ. The natural map R → R̂ is local. It is flat
if R is Noetherian, but no so in general.

Finite embedding dimension
Suppose from now on that R has moreover finite embedding dimension, that is to

say, that m is finitely generated. Since gr(R) is generated by m/m2 as an algebra over
the field R/m, it is itself a Noetherian local ring. For each n, let m̂n be the kernel of
the natural map R̂ → R/mn. It follows that mn/mn+1 ∼= m̂n/m̂n+1, so that gr(R)
is equal to the graded ring grM(R̂) associated to the filtration M := (m̂n)n on R̂.
By [12, Proposition 7.12], an ideal I ⊆ R̂ is generated by elements a1, . . . , an if its
initial from inM(I) in grM(R̂) is generated by the initial forms inM(a1), . . . , inM(an).
Therefore, since grM(R̂) ∼= gr(R) is Noetherian, so is R̂. Moreover, since mnR̂ has
the same initial form as m̂n, both ideals are equal. In particular, for each n, we have an
isomorphism R/mn ∼= R̂/mnR̂. In conclusion, we have proven:

2.2 Theorem. If (R,m) is a local ring of finite embedding dimension, then its comple-
tion R̂ is a complete Noetherian local ring with maximal ideal mR̂.

7



2.3 Corollary. If a local ring (R,m) has finite embedding dimension, then each m-
primary ideal is finitely generated.

Proof. Immediate from the fact that R/mn is Artinian and mn is finitely generated, for
every n.

An ideal I in a local ring (R,m) is called closed if it is closed in the m-adic topol-
ogy, that is to say, if I is equal to the intersection of all I + mn with n ∈ N.

2.4 Lemma. Let (R,m) be a local ring of finite embedding dimension and let I be an
arbitrary ideal in R. The completion of R/I is R̂/IR̂. In particular, IR̂ ∩ R = I if
and only if I is closed.

Proof. Let R̄ := R/I and let S := R̂/IR̂ = R̂ ⊗R R̄. The isomorphism R/mn ∼=
R̂/mnR̂ induces by base change an isomorphism R̄/mnR̄ ∼= S/mnS. Hence R̄ and S
have the same completion. However, since R̂ is complete, so is S, showing that it is
the completion of R̄.

Applied with I an m-primary ideal, we get an isomorphism R/I ∼= R̂/IR̂ showing
that IR̂ ∩ R = I , that is to say, that I is contracted from R̂. Since this property is
preserved under arbitrary intersections, every closed ideal I is contracted from R̂, as it
is the intersection of the m-primary ideals I + mn. Conversely, if IR̂ ∩ R = I , then
R/I embeds in R̂/IR̂, and by the first assertion, this is its completion. In particular,
R/I is separated, that is to say, I is closed.

The above proof shows that the closure of an ideal I is equal to IR̂∩R. In particular,
any closed ideal is the closure of a finitely generated ideal, since R̂ is Noetherian by
Theorem 2.2. Moreover, the ascending chain condition holds for closed ideals in R: if
I1 ⊆ I2 ⊆ . . . is an increasing chain of closed ideals in R, then, since R̂ is Noetherian,
their extension to R̂ must become stationary, say InR̂ = In+kR̂ for all k, and hence
contracting back to R gives In = In+k for all k. This immediately yields:

2.5 Corollary. A local ring is Noetherian if and only if it has finite embedding dimen-
sion and every ideal is closed.

2.6 Corollary. A closed ideal in a local ring R of finite embedding dimension has
finitely many minimal primes and each of them is closed.

Proof. Let I be a closed ideal and let Q1, . . . ,Qs be the minimal prime ideals of IR̂.
Let qi := Qi ∩ R and let J be their product. Hence Jn ⊆ IR̂ for some n. By
Lemma 2.4, we have Jn ⊆ IR̂ ∩ R = I . Hence any prime ideal p of R containing I
contains one of the qi. This shows that all minimal prime ideals of I must be among
the qi.

2.7 Corollary. If (R,m) is a local ring of finite embedding dimension, then the image
of the map Spec(R̂)→ Spec(R) consists precisely of the closed prime ideals of R.

Proof. By Lemma 2.4, the image of the map consists of closed prime ideals. To prove
the converse, let p be an arbitrary closed prime ideal of R. By Lemma 2.4, we have
p = pR̂ ∩ R. Let N be maximal in R̂ with the property that p = N ∩ R. I claim that
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N is a prime ideal, showing that p lies in the image of Spec(R̂)→ Spec(R). To prove
the claim, suppose fg ∈ N, but f, g /∈ N. By maximality, there exist a, b ∈ R \ p such
that a ∈ N + fR̂ and b ∈ N + gR̂. Hence ab ∈ N + fgR̂ = N and since ab ∈ R, we
get ab ∈ N ∩R = p, contradicting that p is prime.

2.8 Lemma. If the completion of a local ring (R,m) of finite embedding dimension is
Artinian, then so is R.

Proof. By assumption, mnR̂ = 0, for some n. Since R/mn+1 ∼= R̂/mn+1R̂ = R̂, we
get mn/mn+1 = 0. Since m is finitely generated, we may apply Nakayama’s Lemma
and conclude that mn = 0, which implies that R is Artinian.

2.9. Infinite ramification

We conclude this section with a note on ramification in mixed characteristic, which
we will use occasionally. Let (R,m) be a local ring with residue field k. We say that R
is equicharacteristic (or has equal characteristic) if R and k have the same character-
istic; in the remaining case, that is to say, if R has characteristic 0 and k characteristic
p, we say that R has mixed characteristic p. A local ring is equicharacteristic if and
only if it contains a field.

For the next definition, assume that the residue field of R has characteristic p. We
call ord(p) the ramification index of R. We say R is unramified if its ramification in-
dex is one; and infinitely ramified, if its ramification index is infinite, that is to say, if
p ∈ IR. If R is infinitely ramified and Noetherian (or just separated), then in fact it has
equal characteristic p (in the literature this is also deemed as an instance of an ‘unram-
ified’ local ring, but for us, it will be more useful to make the distinction). However,
in the general case, a local ring can have characteristic zero and be infinitely ramified
(see Lemma 13.5 below). It follows that the separated quotient and the completion of
an infinitely ramified local ring are both equicharacteristic.

3. Geometric dimension

The dimension dim(A) of a ring A will always mean its Krull dimension, that is
to say, the maximal length (possible infinite) of a chain of prime ideals in A. The
dimension of an ideal I ⊆ A is the dimension of its residue ring A/I . If R is local and
Noetherian, then its dimension is always finite, but without the Noetherian assumption,
it is generally infinite. In this section, we propose a first substitute for Krull dimension
for an arbitrary local ring (R,m); other alternatives will be discussed in §4.

3.1 Definition. We define the geometric dimension of R recursively as follows. We
say that R has geometric dimension zero, and we write gdim(R) = 0, if and only if R
is Artinian. For arbitrary d, we say that gdim(R) ≤ d, if there exists x ∈ m such that
gdim(R/xR) ≤ d − 1. Finally, we say that R has geometric dimension equal to d if
gdim(R) ≤ d, but not gdim(R) ≤ d− 1, and we simply write gdim(R) := d. If there
is no d such that gdim(R) ≤ d, then we set gdim(R) :=∞.
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It follows that gdim(R) ≤ embdim(R). In fact, R has finite geometric dimension
if and only if it has finite embedding dimension. If R has finite embedding dimension
then gdim(R) = 0 if and only if m is nilpotent. The following fact is immediate from
the definition.

3.2 Lemma. If (R,m) is a local ring and a ∈ m, then

gdim(R)− 1 ≤ gdim(R/aR) ≤ gdim(R).

The geometric dimension can be formulated, as in the Noetherian case, in terms
of the minimal number of generators of an m-primary ideal (showing that geometric
dimension and Krull dimension agree for Noetherian local rings):

3.3 Lemma. The geometric dimension of a local ring (R,m) of finite embedding di-
mension is the least possible number of elements generating an m-primary ideal.

Proof. Let d := gdim(R). By Lemma 3.2, there exists no sequence y of length less
than d such that R/yR has geometric dimension zero. It follows that any m-primary
ideal is generated by at least d elements. So remains to show that there exists a tuple
of length d generating an m-primary ideal. We induct on d, where the case d = 0
is clear, since then (0) is m-primary. By definition, we can choose x1 ∈ m such
that gdim(R/x1R) = d − 1. By induction, there exist elements x2, . . . , xd whose
image in R/x1R generate an m(R/x1R)-primary ideal. Hence (x1, . . . , xd)R is m-
primary.

3.4 Theorem. Let (R,m) be a local ring of finite embedding dimension. The following
numbers are all equal.

• the geometric dimension d of R;

• the least possible number of elements d′ generating an m-primary ideal;

• the dimension d̂ of the completion R̂ of R;

• the dimension d of the graded ring gr(R) associated to R;

• the degree d of the Hilbert-Samuel polynomial HSR, where HSR is the unique
polynomial with rational coefficients for which HSR(n) equals the length of
R/mn for all large n;

• the geometric dimension d of the separated quotient R;

Proof. The equality of d and d′ is given by Lemma 3.3. We already observed that
gr(R) and R̂ are Noetherian and that we have isomorphisms

mn/mn+1 ∼= mnR̂/mn+1R̂

for all n. Hence HSR = HS bR and gr(R) ∼= gr(R̂). It follows that d = d̂, by the
Hilbert-Samuel theory and that d = d̂ by [29, Theorem 13.9]. This shows already that
d = d̂ = d.
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Let (y1, . . . , yd) be a tuple generating an m-primary ideal. Since (y1, . . . , yd)R̂ is
then mR̂-primary, d̂ ≤ d. Finally, let (ξ1, . . . , ξd) be a homogeneous system of param-
eters of gr(R) and choose xi ∈ R such that ξi = in(xi). Let I := (x1, . . . , xd)R. By
[12, Exercise 5.3], we have an isomorphism

gr(R)/ in(I) ∼= gr(R/I).

Since (ξ1, . . . , ξd) gr(R) ⊆ in(I), we see that gr(R)/ in(I) is Artinian, whence so is
gr(R/I). This in turn means that R/I has a nilpotent maximal ideal, so that d ≤ d
by definition of geometric dimension. This proves that the first five numbers in the
statement are equal. That they are also equal to the last, d, follows by applying the
result to R together with the fact that R and R have the same completion.

3.5 Remark. If the leading coefficient of the Hilbert-Samuel polynomial is written
as e/d!, with d := gdim(R), then we call e the multiplicity of R and we denote it
mult(R). It follows that R has the same multiplicity as its completion and as its sepa-
rated quotient.

3.6 Corollary. IfR is a local ring of geometric dimension one, then there existsN ∈ N
such that every closed ideal is the closure of an N -generated ideal.

Proof. By Theorem 3.4, the completion R̂ is a one-dimensional Noetherian local ring,
and hence by the Akizuki-Cohen theorem ([1, 10]), there is some N such that every
ideal in R̂ is generated by at most N elements. Let I ⊆ R be an arbitrary ideal.
Since IR̂ is generated by at most N elements, we may choose by Nakayama’s Lemma
a1, . . . , aN ∈ I such that IR̂ = (a1, . . . , aN )R̂. Contracting this equality back to R
shows, by Lemma 2.4, that I is the closure of (a1, . . . , aN )R.

It is well-known that one may take N to be equal to the multiplicity of R, in case
the latter is Cohen-Macaulay. In view of Remark 3.5 and our definition in §6 below,
the same holds true under the assumption that R is cata-Cohen-Macaulay.

3.7. Generic sequences
A tuple x is called generic, if it generates an m-primary ideal and its length is equal

to the geometric dimension of R; it is called part of a generic sequence, if it can be
extended to a generic sequence. If x is a single element which is part of a generic
sequence, then we simply call x a generic element.

3.8 Lemma. Let (R,m) be a local ring of geometric dimension d. A tuple (x1, . . . , xe)
is part of a generic sequence if and only if R/(x1, . . . , xe)R has geometric dimension
d− e.

In particular, x is generic if and only if gdim(R/xR) = gdim(R)− 1.

Proof. Suppose (x1, . . . , xe) is part of a generic sequence and enlarge it to a generic
sequence (x1, . . . , xd). One checks that (the image of) (xe+1, . . . , xd) is a generic
sequence in R/(x1, . . . , xe)R. This shows that gdim(R/(x1, . . . , xe)R) = d − e.
Conversely, assume gdim(R/(x1, . . . , xe)R) = d− e. Choose a tuple (xe+1, . . . , xd)
in R so that its image in R/(x1, . . . , xe)R is a generic sequence. Since (x1, . . . , xd)
generates an m-primary ideal and has length d, it is generic.
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3.9 Proposition. Let (R,m) be a local ring of finite embedding dimension. A sequence
in R is generic if and only if its image in R̂ is a system of parameters.

Proof. One direction has already been noted, so let x be a tuple in R whose image in
R̂ is a system of parameters. By Theorem 3.4, the geometric dimension of R is equal
to the length of this tuple. Let J := xR. By Lemma 2.4, the completion of R/J is
R̂/JR̂. As the latter is Artinian, so must the former be by Lemma 2.8, showing that x
is generic.

It follows that (x1, . . . , xd) is generic if and only if so is (xn1
1 , . . . , xndd ). However,

this does in general not imply that (in(x1), . . . , in(xd)) is a system of parameters in
gr(R) (this even fails in the Noetherian case as the example {ξ2, ξζ + ζ3} in k[[ξ, ζ]]
shows). Immediately from Proposition 3.9 and [29, Theorem 14.5] we get:

3.10 Corollary. Any generic sequence x in R is analytically independent in the sense
that if F (ξ) is a homogeneous form over R such that F (x) = 0, then all coefficients of
F (ξ) lie in the maximal ideal of R.

3.11. Threshold primes
By Proposition 3.9, an element x is generic if and only if the image of x in R̂ is

part of a system of parameters. More concretely, let d be the geometric dimension
of R and let p1, . . . ps be the d-dimensional prime ideals of R̂. Note that R̂ itself has
dimension d by Theorem 3.4, so that all its d-dimensional primes are minimal (but there
may be other minimal prime ideals, of lower dimension). We call the qi := pi ∩R the
threshold primes ofR. By Corollary 2.7, every threshold prime q is closed and contains
no proper closed prime ideals. Moreover, R/q has the same geometric dimension as R
by Theorem 3.4, since R̂/qR̂ has the same dimension as R̂. By a threshold prime of
an ideal I , we mean a threshold prime of its residue ring R/I . Proposition 3.9 yields
the following criterion for genericity.

3.12 Corollary. An element x ∈ R is generic if and only if it is not contained in any
threshold prime of R. In particular, the product of any two generic elements is again
generic.

3.13 Corollary. Any m-primary ideal contains a generic sequence. More precisely, if
R is a Z-algebra and I ⊆ Z an ideal such that IR is m-primary, then there exists a
tuple x over Z with entries in I such that its image in R is a generic sequence.

Proof. We prove the last assertion by induction on the geometric dimension d of R.
Since there is nothing to show if d = 0, we may assume d > 0. Let q1, . . . , qs be the
threshold primes of R. Towards a contradiction, suppose I is contained in the union of
the qi∩Z. By prime avoidance, there is some i such that I ⊆ qi∩Z. But then IR ⊆ qi,
forcing qi = m, thus contradicting by Corollary 3.12 that d > 0. Hence there exists
x ∈ I so that its image in R lies outside every threshold prime of R, and therefore is
generic by Corollary 3.12. By Lemma 3.8, the geometric dimension of R/xR is d− 1.
Therefore, by induction, we can find a tuple y of length d− 1 with entries in I so that
its image in R/xR is generic. The desired sequence is now given by adding x to this
tuple y.
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In [20], the authors introduce the notion of a strong parameter sequence. It should
be noted that this is different from our present notion of generic sequence. For example,
if V is an ultra-discrete valuation ring (see Example 6.3 for more details), and x a
non-zero infinitesimal in V , then x is V -regular, whence a strong parameter by [20,
Proposition 3.3(f)], but x is clearly not generic (in fact, the unique threshold prime of
V is the ideal of infinitesimals IV ).

3.14. Geometric codimension

Given an ideal I in a local ring (R,m) of finite embedding dimension, we call
its geometric codimension the maximal length of a tuple in I that is part of a generic
sequence and we denote it gcodim(I). In particular, an ideal is m-primary if and only
if its geometric codimension equals the geometric dimension of R. Our terminology is
justified by the next result.

3.15 Proposition. Let (R,m) be a local ring of finite embedding dimension. For every
ideal I ⊆ R, we have an equality gcodim(I) = gdim(R)− gdim(R/I).

Proof. Let d be the geometric dimension of R and let h be the geometric codimension
of I . Choose a tuple y in I of length h which is part of a generic sequence of R. Put
S := R/yR, so that gdim(S) = d − h by Lemma 3.8. Since IS contains no generic
element, it must be contained in some threshold prime q of S by Corollary 3.12. From
the inclusions IS ⊆ q we get gdim(S) ≥ gdim(S/IS) ≥ gdim(S/q) = gdim(S),
and hence all these geometric dimensions are equal to d− h. Since S/IS = R/I , we
are done.

3.16. Parameter degree and degree

We conclude this section with another genericity criterion, in terms of an invariant
which was introduced for Noetherian rings in [46, 47] and which will play a crucial
role in what follows. The parameter degree of a local ring R of finite embedding
dimension is by definition the minimal length of a residue ring R/xR, where x runs
over all possible generic sequences of R. We denote the parameter degree of R by
pardeg(R). We will show in Lemma 6.11 below that the multiplicity of R is bounded
by its parameter degree and indicate when they are equal.

Closely related to this is an invariant, which for want of a better name, we call
degree and which is defined as follows. Let R be a local ring of geometric dimension
d ≥ 1. We define the degree degR(x) of an element x to be the least possible length
of a residue ring R/(xR + yR), where y runs over all tuples of length d − 1 inside
the maximal ideal. Hence, if x is a unit, its degree is zero; if x is generic, its degree
is the parameter degree of R/xR; and in the remaining case, its degree is infinite. In
particular, we showed:

3.17 Corollary. An non-unit in a non-Artinian local ringR of finite embedding dimen-
sion is generic if and only if its degree is finite. Moreover, the parameter degree of R is
the minimum of the degrees of all non-units in R.
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4. Extended dimensions

In this section, we introduce several other dimension notions for a local ring (R,m).
With an extended dimension, we mean an invariant on the class of local rings taking
values in N̄ := N ∪ {∞} which agrees with Krull dimension on the subclass of all
Noetherian local rings. Clearly, Krull dimension itself is an extended dimension, and
so is geometric dimension by the results from the previous section. Note, however, that
embedding dimension is not an extended dimension.

Recall that a partially ordered set Γ has combinatorial dimension (or, height) d if
any proper (ascending) chain in Γ has length at most d (meaning that it contains at most
d + 1 elements). Hence, the dimension of a ring A is the combinatorial dimension of
Spec(A) (the set of all prime ideals ordered by inclusion). Given ideals J ⊆ p in A
with p prime, we say that p is an associated prime of J if p is of the form (J : a);
a minimal prime of J if no prime ideal is properly contained between J and p; and
a minimal associated prime of J if it is associated and no associated prime of J is
properly contained between J and p.

4.1. Cl-dimension

Let CL-Spec(R) be the subset of Spec(R) consisting of all closed prime ideals
of R. Note that the maximal ideal as well as the threshold primes (see §3.11) belong
to CL-Spec(R). In fact, we showed in Corollary 2.7 that CL-Spec(R) is the image
of the canonical map Spec(R̂) → Spec(R). We call the combinatorial dimension of
CL-Spec(R) the cl-dimension ofR and denote it cldim(R). It is clear that cldim(R) =
dim(R) when R is Noetherian, showing that cl-dimension is an extended dimension.

4.2. Fr-dimension

We say that an ideal I ⊆ R is n-generated, if there exists a tuple x of length n such
that xR = I . We say that an ideal a ⊆ R is n-related if it is of the form a = (I : a)
with I an n-generated ideal. An ideal a is called finitely related if it is n-related for
some n < ∞. Let FR-Spec(R) be the subset of Spec(R) consisting of all finitely
related prime ideals, that is to say, all associated prime ideals of finitely generated
ideals of R. We call the combinatorial dimension of FR-Spec(R) the fr-dimension
of R and denote it frdim(R). When R is Noetherian, every ideal is finitely related
whence frdim(R) = dim(R), showing that fr-dimension is an extended dimension.
Let us call a prime ideal p strongly finitely related if it is of the form (I : a) with I
finitely generated and a /∈ p. A priori, not every finitely related prime ideal is strong,
but see Corollaries 5.3 and 5.27.

4.3. Pi-dimension

We say that R has pi-dimension at most d, if m is a minimal associated prime of a
d-generated ideal. The pi-dimension, pidim(R), of R is then the least d such that R
has pi-dimension at most d. That pi-dimension is an extended dimension follows from
Krull’s Principal Ideal theorem (from which it borrows its name; see for instance [29,
Theorem 8.10]).
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4.4 Theorem. For an arbitrary local ring (R,m), we have the following inequalities
between extended dimensions:

4.4.1. frdim(R), cldim(R) ≤ dim(R);
4.4.2. pidim(R) ≤ gdim(R);
4.4.3. cldim(R) ≤ gdim(R), with equality if gdim(R) is finite.

Moreover, each of these inequalities can be strict.

Proof. Inequalities (4.4.1) are immediate from the definition. In order to show inequal-
ity (4.4.2), we may assume that gdim(R) = d <∞. By definition, R/I is an Artinian
local ring for some d-generated ideal I . It follows that m is a minimal associated prime
of I , whence the pi-dimension of R is at most d.

So remains to prove (4.4.3). There is nothing to show if R has infinite geomet-
ric dimension, so assume R has finite geometric dimension, say, d (whence also fi-
nite embedding dimension). By Corollary 2.7, there is a surjective map Spec(R̂) →
CL-Spec(R). In particular, the combinatorial dimension of CL-Spec(R) is at most
the dimension of R̂, that is to say, in view of Theorem 3.4, at most d. So remains to
prove the other inequality by induction on d. There is nothing to show if d = 0, so
we may assume d > 0. By Corollary 2.7, the minimal elements in CL-Spec(R) are
the contractions of the minimal primes of R̂. Hence there are only finitely many of
them, all different from the maximal ideal m. By prime avoidance, we may choose
x ∈ m outside all these finitely many prime ideals. In particular, since the thresh-
old primes are among these, x is generic and hence R/xR has geometric dimension
d − 1. By induction, the combinatorial dimension of CL-Spec(R/xR) is d − 1. By
Lemma 2.4, the completion of R/xR is R̂/xR̂. The homomorphism R̂ → R̂/xR̂ in-
duces an injection Spec(R̂/xR̂) ↪→ Spec(R̂), whose image is the subset of all prime
ideals of R̂ containing x. It follows that the canonical injection Spec(R/xR) ↪→
SpecR maps CL-Spec(R/xR) into the subset of CL-Spec(R) consisting of all closed
prime ideals containing x. Using this and the fact that the combinatorial dimension
of CL-Spec(R/xR) is d − 1, we can find a proper chain of closed primes ideals
q1  q2  · · ·  qd = m in R with x ∈ q1. Let q0 be a minimal element of
CL-Spec(R) lying inside q1. Since by construction x /∈ q0, the qi form a proper chain
of length d, showing that the combinatorial dimension of CL-Spec(R) is at least d.
This proves (4.4.3).

Finally, the local ring in Example 4.5 (respectively, in Example 4.6) shows that in
general, the inequalities (4.4.1) and (4.4.2) (respectively, inequality (4.4.3)) are strict.

4.5 Example. Let R\ be the ultraproduct (see §5 for more details) of the A/pn for
n = 1, 2 . . . , where (A, p) is a d-dimensional Noetherian local ring, for d > 0.
Its pi-dimension and fr-dimension are equal to zero, its geometric dimension and cl-
dimension are equal to d, and its Krull dimension is infinite.

4.6 Example. Let (R\,m\) be the ultraproduct of the An/m2
n for n = 1, 2 . . . , where

(An,mn) is the power series ring over a field k in n indeterminates. Since m2
\ = 0

in R\, the local ring R\ has cl-dimension and Krull dimension equal to zero, but its
embedding dimension, whence its geometric dimension, is infinite.
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There is a more instructive way to see (4.4.2): the geometric dimension of a local
ring (R,m) of finite embedding dimension is at most d if and only if m is a minimal
prime of a d-generated ideal (that is to say, the same definition as for pi-dimension, but
omitting the term ‘associated’).

Let ‘e-dim’ be some extended dimension. We call e-dim first-order if the property
e-dim(·) = d is first-order in the sense of §5.5 below, for every d ∈ N. Moreover, to
prove this, it suffices to show that the property e-dim(·) ≤ d is first-order.

4.7 Lemma. Fr-dimension and pi-dimension are first-order; geometric dimension, cl-
dimension and Krull dimension are not.

Proof. The assertion is obvious for pi-dimension, since we can express in a first-order
way that the maximal ideal m of a local ring is of the form (I : a) for some d-generated
ideal I such that no prime ideal of the form (I : b) is properly contained in m (note that
m admits a first-order definition as the collection of all non-units). As for fr-dimension,
for each n, let τn,d be the statement expressing that there does not exist a proper chain
of length d+1 consisting of n-related prime ideals. Hence a local ring has fr-dimension
at most d if and only if τn,d holds in it, for all n.

The local ring in Example 4.5 shows that Krull dimension, cl-dimension and geo-
metric dimension are not first-order.

5. Ultra-Noetherian rings

Before we further develop the ‘local algebra’ of local rings of finite embedding
dimension, we introduce an important subclass, arising as ultraproducts of Noetherian
local rings. Fix an infinite index set W and a non-principal ultrafilter on W . We will
moreover assume that the ultrafilter is countably incomplete. This is equivalent with
the existence of a function f : W → N such that for each k, the set of all w ∈ W for
which f(w) ≥ k belongs to the ultrafilter. If W is countable, then any non-principal
ultrafilter is countably incomplete, and this is the situation we will find ourselves in all
applications.5 For each w ∈ W , let Rw be a local ring and let R\ be the ultraproduct
of the Rw (for a quick review on ultraproducts, see [40, §1]; for more details see for
instance, [14, 26, 35, 50]). It is important to note that Rw are not uniquely defined
by R\ (not even almost all; see the example in §5.5). By Łos’ Theorem, R\ is a local
ring with maximal ideal m\ equal to the ultraproduct of the maximal ideals mw. If for
somem, almost allRw have embedding dimension at mostm, then we say that theRw
have bounded embedding dimension; a similar usage will be applied to other numerical
invariants. Hence if the Rw have bounded embedding dimension, then R\ has finite
embedding dimension, whence finite geometric dimension. In case all Rw are equal to
a single local ring R, we refer to R\ as the ultrapower of R.

When dealing with ultraproducts, Łos’ Theorem is an extremely useful tool for
transferring properties between almost all Rw and R\. However, this only applies to

5In fact, it is consistent with ZF to assume that every non-principal ultrafilter on any infinite set is count-
ably incomplete. Moreover, for most of what we say, we will not need to assume that the ultrafilter is
countably incomplete; it is only used explicitly in Lemma 5.6 below.
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first-order properties (see §5.5 below for more details). In view of this, we introduce
the following more general set-up for discussing transfer through ultraproducts. Let P
be a property of local rings of finite embedding dimension and letR be a local ring. We
call R cata-P if it has finite embedding dimension and its completion has property P.
In particular, by Theorem 2.2, any such ring is, in our newly devised terminology, cata-
Noetherian. We call a local ring ultra-P if it is equal to an ultraproductR\ of local rings
Rw of bounded embedding dimension almost all of which satisfy property P. In par-
ticular, R\ has finite embedding dimension too. In fact, according to this terminology,
an ultra-ring is any ultraproduct of local rings of bounded embedding dimension; and
an ultra-Noetherian ring is any ring isomorphic to an ultraproduct of Noetherian local
rings of bounded embedding dimension. It is important to notice that the well-known
duality between rings and affine schemes breaks down under ultraproducts:

5.1 Proposition. Let Rw be Noetherian local rings of bounded embedding dimension
and let R\ be their ultraproduct. Then the ultraproduct of the Spec(Rw) is equal to
FR-Spec(R\).

Proof. Recall that FR-Spec(R\) consists of all finitely related prime ideals of R\ (see
§4.2). If I\ is a finitely generated ideal in R\, say of the form (x1\, . . . , xn\)R\, and if
xiw ∈ Rw are such that their ultraproduct is equal to xi\, then the ultraproduct of the
ideals Iw := (x1w, . . . , xnw)Rw is equal to I\. Moreover, if y\ ∈ R\ is the ultraprod-
uct of elements yw ∈ Rw, then (I\ : y\) is equal to the ultraproduct of the (Iw : yw).
If (I\ : y\) is prime, then so are almost all (Iw : yw) by Łos’ Theorem. Hence any
finitely related prime ideal in R\ belongs to the ultraproduct of the Spec(Rw).

Conversely, for each w, let pw be a prime ideal in Rw, and let p\ be their ultraprod-
uct. By Łos’ Theorem, p\ is prime. Since theRw have bounded embedding dimension,
they also have bounded dimension. Therefore, there is a d such that almost each Rw
has dimension d (in the terminology of §5.18 below, d is the ultra-dimension of R\).
By Krull’s Principal Ideal theorem, almost each pw is d-related, whence so is p\ by
Łos’ Theorem.

In particular, the ultraproduct of the Spec(Rw) does not depend on the choice of
the Rw having as ultraproduct R\. The local algebra of rings of finite embedding
dimension is hampered by the fact that very few localizations have finite embedding
dimension. We will discuss one case here (see Corollary 8.3 for another one). We first
prove a bound for Noetherian rings.6 For a Noetherian ring A, let γ(A) ∈ N∪ {∞} be
the supremum of all embdim(Ap), where p runs through all prime ideals of A.

5.2 Proposition. If A is a d-dimensional, excellent ring, then γ(A) <∞. In fact, if A
is equicharacteristic and local, then γ(A) ≤ d+ ρ, where ρ is the parameter degree of
A.

Proof. We prove the first statement by induction on d. Let p1, . . . , ps be the mini-
mal prime ideals of A, and let N be a bound on their number of generators. Since

6In §§11 and 12, we adopt the reverse strategy, by developing bounds from our local algebra results.

17



any prime ideal p contains one of the pi, we see that γ(A) is bounded by the max-
imum of all γ(A/pi) + N . Hence we may assume without loss of generality that
A is an excellent domain. Therefore, its regular locus is non-empty and open. Let
U = SpecAf be a non-empty affine open contained in the regular locus of A. By
regularity, embdim(Ap) ≤ d, for any p ∈ U , and so we only need to show a bound for
those prime ideals containing f . Put Ā := A/fA. Note that Ā has Krull dimension
d− 1 and is again excellent, so that by induction γ(Ā) <∞. Therefore, for any prime
ideal p of A containing f , we have an estimate embdim(Ap) ≤ γ(Ā) + 1, finishing
the proof of the first assertion.

Assume next thatA is moreover equicharacteristic and local, with parameter degree
ρ. I claim that γ(A) ≤ γ(Â), where Â is the completion of A. Assuming the claim, we
may take A to be complete, since parameter degree does not change under completion.
By the Cohen structure theorem, A contains a d-dimensional regular local subring R
over which it is finite. Moreover, by [46, Proposition 3.5], we may choose R so that A
is generated by ρ elements as an R-module. Let p be a prime ideal in A and put g :=
p ∩ R. By base change, the fiber ring Ag/gAg has dimension ρ over the residue field
of g. Moreover, Ap/gAp is a direct summand of Ag/gAg by the structure theorem of
Artinian local rings ([12, Corollary 2.16]), whence has length at most ρ. In particular,
embdim(Ap/gAp) ≤ ρ. Since R is regular, gRg is generated by at most d elements,
whence so is gAp. It follows that embdim(Ap) ≤ ρ+ d, as we wanted to show.

To prove the claim, let q be a minimal prime ideal of pÂ. Since A/p is excellent,
its completion Â/pÂ is reduced. Therefore, the localization of Â/pÂ at q is a field,
showing that pÂq = qÂq, an ideal generated by at most γ(Â) elements. Since Ap →
Âq is faithfully flat, pAp is therefore also generated by at most γ(Â) elements, showing
that γ(A) ≤ γ(Â).

5.3 Corollary. If R is an excellent local ring, then any localization of its ultrapower
R\ at a finitely related prime ideal has finite embedding dimension. Moreover, every
finitely related prime ideal of R\ is strong.

Proof. Let p be a finitely related prime ideal of R\. By Proposition 5.1, we can find
prime ideals pw in R with ultraproduct equal to p. Let γ(R) be the bound given by
Proposition 5.2 on the embedding dimension of all Rpw . Since (R\)p is the ultraprod-
uct of the Rpw , its embedding dimension is at most γ(R) as well. In fact, we can find
ideals Iw ⊆ pw generated by at most γ(R) elements, so that IwRpw = pwRpw . Hence,
there exists aw /∈ pw, such that (Iw : aw) = pw. Taking ultraproducts, we see that p is
strongly finitely related (see §4.2 for the definition).

In fact, we have the following more general version of the second assertion.

5.4 Proposition. A finitely related prime ideal p in an ultra-Noetherian local ring R\
is strongly finitely related if and only if (R\)p has finite geometric dimension.

Proof. Note that a local ring has finite geometric dimension if and only if it has finite
embedding dimension. One direction is true in any ring A: if p is strongly finitely
related, say, of the form (I : s) with I ⊆ A finitely generated and s /∈ p, then pAp =
IAp, showing that Ap has finite embedding dimension.
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Conversely, suppose (R\)p has finite geometric dimension, whence finite embed-
ding dimension. In particular, there exists a finitely generated ideal I ⊆ p such that
I(R\)p = p(R\)p. By Łos’ Theorem and Proposition 5.1, we can find ideals Iw ⊆ pw
so that their respective ultraproducts are I and p. In particular, almost all pw are prime
and Iw(Rw)pw = pw(Rw)pw , for almost all w. Hence, we can find sw /∈ pw such that
pw = (Iw : sw). Letting s\ be the ultraproduct of the sw, we get p = (I : s\) and
s\ /∈ p, showing that p is strong.

5.5. First-order properties

A property P of rings is called first-order if there exists a first-order theory T , in
the language of rings, such that R is a model of T if and only if R satisfies P. Łos’
Theorem states that if P is first-order, then ultra-P implies P. Although we will not
use this here, the converse is also true, due to a theorem of Keisler-Shelah (see for
instance [26, Theorem 9.5.7]). It follows that if P is not first-order, then there exists an
ultra-ring S\ which is at the same time ultra-P and ultra-non-P. Indeed, by what we
just said, there exist Rw of bounded embedding dimension satisfying P so that there
ultraproduct R\ does not satisfy P. Let S\ be any ultrapower of R\. Since S\ is then
also an ultraproduct of the Rw, but for a larger underlying index set, S\ is both ultra-P
and ultra-non-P.

For an ultra-Noetherian example, consider the property C0: ‘being a Noetherian
local ring of characteristic zero’. The ultraproduct V \ of all the rings of p-adic inte-
gers Zp (with respect to some non-principal ultrafilter on the set of prime numbers) is
ultra-C0, but by the Ax-Kochen-Ershov theorem, this ring can also be realized as the
ultraproduct of non-C0 local rings, to wit, the Fp[[t]], where t is a single indeterminate
and Fp is the p element field (see also Example 9.7 below).

Cataproducts

Let Rw be Noetherian local rings of bounded embedding dimension and let R\ be
their ultraproduct. The separated quotient of R\, that is to say, the factor ring R] :=
R\/IR\ , is called the cataproduct of the Rw. If all Rw are equal to a single ring R,
then we call R] the catapower of R. This terminology is justified by:

5.6 Lemma. The cataproduct of local rings of bounded embedding dimension is equal
to the completion of their ultraproduct, whence in particular is Noetherian.

Proof. Let (R\,m\) be the ultraproduct of Noetherian local rings (Rw,mw) of embed-
ding dimension at most e, and let R] be their cataproduct, that is to say, R\/IR\ . We
start with showing that any Cauchy sequence a\ : N → R\ has a limit. After taking a
subsequence if necessary, we may assume that a\(n) ≡ a\(n + 1) mod mn

\ , for all
n. For each n, choose aw(n) ∈ Rw such that their ultraproduct is equal to a\(n). By
Łos’ Theorem, we have for a fixed n that

aw(n) ≡ aw(n+ 1) mod mn
w (2)

for almost all w, say, for all w in Dn. I claim that we can modify the aw(n) in such
way that (2) holds for all n and all w. More precisely, for each n there exist ãw(n)
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with ultraproduct equal to a\(n), such that

ãw(n) ≡ ãw(n+ 1) mod mn
w (3)

for all n and w. We will construct the ãw(n) recursively from the aw(n). When
n = 0, no modification is required (since by assumption m0

w = Rw), and hence we
set ãw(0) := aw(0) and ãw(1) := aw(1). So assume we have defined already the
ãw(j) for j ≤ n such that (3) holds for all w. Now, for those w for which (2) fails
for some j ≤ n, that is to say, for w /∈ (D0 ∪ · · · ∪ Dn), let ãw(n + 1) be equal
to ãw(n); for the remaining w, that is to say, for almost all w, we make no changes:
ãw(n+ 1) := aw(n+ 1). It is now easily seen that (3) holds for all w. Since, for every
n, almost each ãw(n) is equal to aw(n), their ultraproduct is a\(n), thus establishing
our claim.

So we may assume (2) holds for all n and w. Let f : W → N be a function on
the index set W such that for each n, almost all f(w) ≥ n (this is where we use that
the ultrafilter is countably incomplete; if W = N, we can of course simply take the
identity map). Let b\ be the ultraproduct of the aw(f(w)). Since aw(f(w)) ≡ aw(n)
mod mn

w for almost all w by (3), Łos’ Theorem yields b\ ≡ a\(n) mod mn
\ , for each

n, showing that b\ is a limit of a\. Although this limit might not be unique, it will
be in the separated quotient R], showing that the latter is a complete local ring, equal
therefore to R̂\. Noetherianity now follows from Theorem 2.2.

5.7 Corollary. The closure of an ideal I in an ultra-Noetherian ring R\ is equal to
I + IR\ . In particular, if R] is the cataproduct of the Rw, and I\ the ultraproduct of
ideals Iw ⊆ Rw, then R]/I\R] is the cataproduct of the Rw/Iw.

Proof. Since R] := R\/IR\ is Noetherian by Lemma 5.6, the ideal IR] is closed by
Krull’s intersection theorem. All assertions now follow from Lemma 2.4.

5.8 Corollary. The cataproduct R] of Noetherian local rings Rw of bounded embed-
ding dimension is equal to the cataproduct S] of their completions.

Proof. Let (R\,m\) and (S\, n\) be the ultraproduct of respectively the Rw and the
R̂w. By Łos’ Theorem, m\S\ = n\ and R\ is dense in S\. Hence both rings have the
same completion, which by Lemma 5.6 is respectively the cataproduct of the Rw and
of the R̂w.

However, this is not the only case in which different rings can have the same
cataproduct. Let (R,m) be a local ring of finite embedding dimension. A filtration
I = (In)n on R is called analytic if its extension IR̂ induces a Haussdorf topology
on R̂, or, equivalently, if the intersection of all InR̂ is zero. In particular, the m-adic
filtration is analytic by Theorem 2.2. Given two filtrations I = (In)n and J = (Jn)n,
we say that I is bounded by J, if the I-adic topology is stronger than or equal to the
J-adic topology, that is to say, for each fixed N , we have In ⊆ JN for all sufficiently
big n.

5.9 Lemma (Chevalley). A filtration on a Noetherian local ring (R,m) is analytic if
and only if it is bounded by the m-adic filtration.
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Proof. If I = (In)n is analytic, then the intersection of all InR̂ is zero. By Chevalley’s
theorem (see for instance [29, Exercise 8.7]) we have for fixed N an inclusion InR̂ ⊆
mN R̂ for n sufficiently big. By faithful flatness, In ⊆ mN for n� 0. The converse is
immediate from Krull’s intersection theorem (see for instance [29, Theorem 8.10]).

5.10 Corollary. If (In)n is an analytic filtration on a Noetherian local ring R, then
the catapower R] of R is isomorphic to the cataproduct S] of the R/In.

Proof. Without loss of generality, we may assume R is complete. The natural surjec-
tions R → R/In induce a map R] → S], which is again surjective by Łos’ Theorem.
Let x\ be an element in the ultrapower R\ of R so that its image in R] is in the kernel
of R] → S]. Choose xn ∈ R with ultraproduct equal to x\ and fix N . Since x\ ∈ IS\ ,
almost each xn ∈ mN (R/In). By Lemma 5.9, almost each In ⊆ mN and hence al-
most each xn ∈ mN . By Łos’ Theorem, x\ ∈ mNR\. Since N was arbitrary, x\ lies in
IR\ and hence its image is zero in R], showing that R] → S] is also injective.

It should be noted that the corresponding ultraproducts R\ and S\, however, are far
from equal, as, for instance, FR-Spec(S\) is always a singleton by Proposition 5.1.
Contrary to the Noetherian case, the natural map R → R̂ does not need to be flat if
R has finite embedding dimension. We nevertheless expect some vestige of (faithful)
flatness to hold. One example of this is given by Lemma 2.4, namely I = IR̂ ∩ R for
any closed ideal I . It is well-known (see for instance [44, Theorem 2.2]) that the latter
property already follows from the vanishing of TorR1 (R̂, k), where k is the residue
field of R. For ultra-Noetherian local rings, where completion and separated quotient
coincide by Lemma 5.6, this latter property does indeed hold:

5.11 Proposition. For every ultra-Noetherian local ring R\ with residue field k\, we
have TorR\1 (R], k\) = 0.

Proof. From the exact sequence

0→ IR\ → R\ → R] → 0

we get after tensoring over k\ an exact sequence

0→ TorR\1 (R], k\)→ IR\/m\IR\ → k\ → k\ → 0,

where m\ is the maximal ideal ofR\. In particular, the first Betti number ofR] vanishes
if and only if m\IR\ = IR\ . To prove the latter equality, let (Rw,mw) be Noetherian
local rings with ultraproduct R\. Let a\ be a non-zero element in IR\ and choose
non-zero aw ∈ Rw so that their ultraproduct is equal to a\. Let m\ be generated by
x1\, . . . , xe\ and, for each i, choose xiw ∈ Rw whose ultraproduct equals xi\. By Łos’
Theorem, mw = (x1w, . . . , xew)Rw. If aw has order nw, then we can find biw ∈ Rw
of order nw− 1 such that aw = x1wb1w + · · ·+xewbew. Let bi\ be the ultraproduct of
the biw. Fix someN . Since a\ ∈ IR\ , its order is strictly bigger thanN and hence so is
almost each nw. Therefore, almost each biw has order at least N and hence bi\ ∈ mN

\ .
Since this holds for all N , we get bi\ ∈ IR\ . Since a\ = x1\b1\ + · · ·+xe\be\ by Łos’
Theorem, we are done.
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5.12 Corollary. Let (R\,m\) be an ultra-Noetherian local ring and I an ideal in R\.
If I is closed, then so is Imn

\ for every n.

Proof. By Corollary 5.7, we have IR\ ⊆ I . Since IR\ = mn
\ IR\ by the proof of

Proposition 5.11, we get IR\ ⊆ Imn
\ , showing that Imn

\ is closed by another applica-
tion of Corollary 5.7.

We may extend the notion of cataproduct to modules as well: for each w, let Mw

be an Rw-module, and let M \ be their ultraproduct. It follows that M \ is an R\-
module. We define the cataproduct of the Mw as the R]-module M ] := M \ ⊗R\
R] = M \/IR\M \ given by base change. If Nw ⊆ Mw are submodules, then N \ ⊆
M \. However, the induced homomorphism N ] → M ] may fail to be injective. The
following result is an exercise on Łos’ Theorem (see for instance [36]), and the proof
is left to the reader.

5.13 Proposition. Let M \ and M ] be the respective ultraproduct and cataproduct of
the Mw. Almost each Mw is minimally generated by s elements (respectively, has
length s), if and only if M \ is minimally generated by s elements (respectively, has
length s), if and only if so does M \.

Flatness of catapowers

A key result about catapowers, one which will be used frequently in our character-
izations through uniform behavior in §12, is the following theorem and its corollary:

5.14 Theorem. Let R be a Noetherian local ring and R] its catapower. There is a
canonical homomorphism R → R] which is faithfully flat and unramified. In particu-
lar, R and R] have the same dimension.

Proof. LetR\ be the ultrapower ofR andR→ R\ the diagonal embedding. Composed
with the canonical surjection R\ → R] = R\/IR\ , we get the map R → R]. By
Corollary 5.8 and the fact that completion is faithfully flat, we may already assume
that R is complete. Since mR] is the maximal ideal of R], the map R → R] is
unramified. So remains to show that this map is flat. Let us first prove this under the
additional assumption that R is regular. We induct on its dimension. Let x be a regular
parameter of R, that is to say, an element of order one. I claim that x is R]-regular.
This follows for instance from the results in §8 (proving among other things that R] is
then regular), but we can give a direct argument here. Indeed, suppose s\ ∈ R\ is such
that xs\ ∈ IR\ . If sw ∈ R have ultraproduct equal to s\, then for a fixed N , almost
each xsw ∈ mN . Since R is regular and x has order one, sw ∈ mN−1 and hence by
Łos’ Theorem, s\ ∈ mN−1R\. Since this holds for all N , we get s\ ∈ IR\ , showing
that x is R]-regular. It is not hard to see that R]/xR] is the catapower of the regular
local ring R/xR, so that by induction, R/xR → R]/xR] is faithfully flat. Since any
R/xR-regular sequence is then R]/xR]-regular, R] is a balanced big Cohen-Macau-
lay algebra over R. Since R is regular, R → R] is therefore faithfully flat (see for
instance [42, Theorem IV.1] or [25, Lemma 2.1(d)]).

For the general case, we may write R as a homomorphic image S/I of a complete
regular local ring S by Cohen’s theorem. By what we just proved, S → S] is faithfully
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flat, where S] is the catapower of S. Hence the base changeR = S/I → R] = S]/IS]
is also flat. The equality of dimension is now a well-known consequence of the first
assertion.

5.15 Corollary. Let R be an excellent local ring (e.g., a complete Noetherian local
ring) with catapower R]. The natural map R → R] is regular. In particular, R is
regular (respectively, normal, reduced, Cohen-Macaulay or Gorenstein), if and only if,
so is R].

Proof. The second assertion is a well-known consequence of the first (see for instance
[29, Theorem 32.2]). As for the first, let us first show this in the special case thatR = k
is a field. Note that in this case, the catapower is equal to the ultrapower k\ of k. Hence,
we need to show that k → k\ is separable, and so we may assume that k has positive
characteristic p. We will establish separatedness by verifying MacLane’s criterion (see
for instance [29, Theorem 26.4]). Let b1, . . . , bn be elements in k1/p which are linearly
independent over k. Suppose x1\b1 + · · · + xn\bn = 0 for some xi\ ∈ k\. Choose
xiw ∈ k with ultraproduct equal to xi\ ∈ k\. Taking p-th powers, using Łos’ Theorem
and then taking p-th roots, we get x1wb1 + · · ·+xnwbn = 0 for almost all w. Since the
bi are linearly independent over k, almost all xiw are zero. By Łos’ Theorem, each xi\
is zero, showing that the bi, viewed as elements in k1/p

\ , remain linearly independent
over k\, as we wanted to show.

For R arbitrary, Theorem 5.14 yields that R→ R] is faithfully flat and unramified.
By what we just proved, the induced residue field extension is separable. Therefore
R → R] is formally smooth by [29, Theorem 28.10]. Regularity then follows from a
result by André in [2] (see also [29, p. 260]).

5.16 Corollary. If (R,m) is an equicharacteristic complete Noetherian local ring with
residue field k, then its catapower R] is isomorphic to the m-adic completion of R ⊗k
k\, where k\ is the ultrapower of k.

Proof. By Cohen’s structure theorem, R is a homomorphic image of a power series
ring k[[x]], with x an n-tuple of indeterminates. Since catapowers commute with ho-
momorphic images by Corollary 5.7, we may assume R = k[[x]]. So remains to show
that R] ∼= k][[x]]. However, this is clear by Cohen’s structure theorem, since R] is reg-
ular by Corollary 5.15, with residue field k], and dimension n, by Theorem 5.14.

5.17 Proposition. Let R ⊆ S be an injective, local homomorphism between Noethe-
rian local rings and let R] → S] be the induced map of catapowers.

5.17.1. If R ⊆ S is finite, then R] → S] is finite and injective.
5.17.2. If R ⊆ S is cata-injective, that is to say, if R̂ → Ŝ is injective, then R] → S] is

injective too.

Proof. Let m and n be the maximal ideals of respectively R and S. Assume R ⊆ S
is finite, so that na ⊆ mS for some a. By the Artin-Rees Lemma, mnS ∩ R ⊆ mn−c

for some c and all n ≥ c. Hence nna ∩ R ⊆ mn−c for all n ≥ c and hence by Łos’
Theorem, the same inclusions hold in the extension R\ ⊆ S\ of ultrapowers. Using

23



this, it is not hard to show that IS\ ∩R\ = IR\ , showing that R] ⊆ S] is injective (and
clearly also finite).

If R ⊆ S is cata-injective, then the filtration nk ∩ R, for k = 0, 1, . . . , is easily
seen to be analytic, whence bounded by the m-adic filtration by Lemma 5.9. Again one
derives from this that IS\ ∩R\ = IR\ , whence that R] ⊆ S] is injective.

5.18. Extended dimensions in ultra-Noetherian local rings
We extend the nomenclature introduced in the beginning of this section to include

invariants. In particular, we define the cata-dimension of R, denoted cdim(R), as the
(Krull) dimension of its completion R̂. For an ultra-Noetherian local ring R\ given
as the ultraproduct of Noetherian local rings Rw of embedding dimension at most m,
we define its ultra-dimension, denoted udim(R\), as the dimension of almost all Rw.
Since almost all Rw have dimension at most m, the ultra-dimension of R\ is finite.

5.19 Theorem. For an ultra-Noetherian local ring R\, we have inequalities

depth(R\) ≤ pidim(R\) = frdim(R\) = udim(R\)
≤ cldim(R\) = gdim(R\) = cdim(R\) ≤ embdim(R\). (4)

Proof. By Theorems 3.4 and 4.4, the cata-dimension of R\ is equal to its geometric
dimension and to its cl-dimension. Łos’ Theorem and Lemma 4.7 yield that the ultra-
dimension of R\ coincides with its pi-dimension and its fr-dimension. Depth is also
first-order, as it is cast in terms of the vanishing of the Koszul homology of a generating
set of m (see §7.1 below for more details). Since in a Noetherian local ring depth never
exceeds dimension, the first inequality is then also clear.

There are no further constraints on the above invariants of an ultra-Noetherian ring,
as the following examples show (in the discussion of these examples, we will also use
some terminology from later sections).7

5.20 Example. Let e ≤ h ≤ d ≤ m. We will construct an ultra-Noetherian local
ring R\ with depth e, ultra-dimension h, cata-dimension d, and embedding dimension
m. First we introduce some notation. Let R\ be the ultraproduct of the Rw and let
n\ be a non-standard positive integer, that is to say, an ultraproduct of an unbounded
sequence of positive integers nw. For an element a\ ∈ R\, realized as an ultraproduct
of elements aw ∈ Rw, we write an\\ to denote the ultraproduct of the elements anww ;
one verifies that this is independent of the choice of aw or nw. Let S\ be the ultrapower
of S := k[[ξ]], for some indeterminates ξ := (ξ1, . . . , ξm) and some field k, let

I := (ξn\e+1ξm, . . . , ξ
n\
h ξm, ξ

n\
h+1, . . . , ξ

n\
d , ξ

2
d+1, . . . , ξ

2
m)S\

and put R\ := S\/I . By Łos’ Theorem, (ξ1, . . . , ξe) is R\-regular and since the
maximal ideal of R\/(ξ1, . . . , ξe)R\ is annihilated by the element ξn\−1

e+1 · · · ξ
n\−1
d ·

7One should note that for Noetherian rings, other than the obvious restriction that pi-dimension and
dimension agree, we also have the remarkable fact that when dimension and embedding dimension agree,
that is to say, when the ring is regular, then this common value must also be equal to its depth.
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ξd+1 · · · ξm, we see that R\ has depth e. Since ξd+1, . . . , ξm are nilpotent, we get
from Proposition 5.22 below that the ultra-dimension of R\ is the same as the ultra-
dimension of

R\/(ξd+1, . . . , ξm)R\ = S\/(ξ
n\
h+1, . . . , ξ

n\
d , ξd+1, . . . , ξm)S\,

that is to say, equal to h. On the other hand, IS] = (ξ2d+1, . . . , ξ
2
m)S], where S] is the

catapower of S (note that S] ∼= k\[[ξ]], where k\ is the ultrapower of k; see for instance
[4, Proposition 3.1]). Hence the catapower R] of R has dimension d. By Lemma 5.6,
the cata-dimension of R\ is therefore d. Finally, it follows from Łos’ Theorem that R\
has embedding dimension m. Note that since R] is Cohen-Macaulay, R\ is cata-Coh-
en-Macaulay (see §6.8).

More generally, let q be any number between e and d and let R′\ := S\/I
′, where

I ′ is the sum of the ideal I above and the ideal (ξq+1ξm, . . . , ξdξm)S\. Then R′\ has
still the same depth, ultra-dimension, cata-dimension and embedding dimension as R\,
but now the depth of R], that is to say, the cata-depth of R\, is q, since (ξ1, . . . , ξq) is
a regular sequence.

5.21 Example. The previous example might one lead to think that the depth of R
is always at most its cata-depth. However, this is not the case as the following ex-
ample shows. Let S\ be as in the previous example with m = 3, and let R\ :=
S\/(ξ21 , ξ1ξ2, ξ1ξ3 − ξ

n\
2 )S\, with n\ a non-standard positive integer. Since ξ3 is R\-

regular and since R\ has ultra-dimension one, the depth of R\ is one by Theorem 5.19.
On the other hand, R] is equal to S]/(ξ21 , ξ1ξ2, ξ1ξ3)S], whence has depth zero. Note
that R] has dimension two, so that R\ itself has cata-dimension two. Hence R\ is
ultra-Cohen-Macaulay(see §8.5), but not cata-Cohen-Macaulay.

Isodimensionality

We call a local ring R of finite embedding dimension isodimensional if (4.4.2) is
an equality, that is to say, if the geometric dimension of R is equal to its pi-dimension.
In view of Theorem 5.19, an ultra-Noetherian local ring is isodimensional if and only
if its ultra-dimension is equal to its cata-dimension.

5.22 Proposition. Let R\ be an ultra-Noetherian local ring. If a is a finitely related
ideal contained in nil(R\), then R\ and R\/a have the same ultra-dimension. In par-
ticular, R\ is isodimensional if and only if R\/a is.

Proof. Let h be the ultra-dimension of R\, and write it as the ultraproduct of h-
dimensional Noetherian local rings Rw of bounded embedding dimension. Since a is
finitely related, it can be realized as the ultraproduct of finitely related ideals aw by the
argument in the proof of Proposition 5.1. By Łos’ Theorem, almost each aw is nilpo-
tent, and therefore Rw/aw has again dimension h. Hence R\/a has ultra-dimension h
as well.

The final assertion follows from the fact thatR\ andR\/a have the same geometric
dimension (this is true in general, since a is contained in every threshold prime of
R\).
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For ultra-Noetherian local rings, we have the following important criterion for
isodimensionality:

5.23 Theorem. Let R\ and R] be the respective ultraproduct and cataproduct of Noe-
therian local rings Rw of bounded embedding dimension. The following are equiva-
lent:

5.23.1. R\ is isodimensional;
5.23.2. almost all Rw have dimension equal to gdim(R\);
5.23.3. almost all Rw have the same dimension as R];
5.23.4. almost allRw have the same parameter degree (which is then also the parameter

degree of R\ and of R]).

Proof. The equivalence of (5.23.2) and (5.23.3) follows from Lemma 5.6 and Theo-
rem 3.4. Let d ≤ m be the respective geometric dimension and embedding dimension
of R\. By Theorem 5.19, the cata-dimension of R\ is d. Since dim(Rw) ≤ m, almost
all Rw have a common dimension h ≤ m, which is then the ultra-dimension of R\ by
definition, from which we get the equivalence of (5.23.1) and (5.23.2).

Remains to show the equivalence of (5.23.2) and (5.23.4). Suppose pardeg(Rw) =
e for almost all w. In each Rw, choose an h-tuple xw so that almost all Rw/xwRw
have length e. Let x\ be the ultraproduct of the xw. By Proposition 5.13, the length
of R\/x\R\, being the ultraproduct of the Rw/xwRw, is also e. It follows that R\ has
geometric dimension at most h. We already argued that its geometric dimension is at
least h, so that we get h = d. In particular, the parameter degree of R is at most e,
and by reversing this argument, one can also show that it cannot be less than e, whence
must be equal to e.

Conversely, assume h = d. Let x\ be a generic sequence inR\ and choose d-tuples
xw whose ultraproduct is x\. By Łos’ Theorem, almost each xw generates an mw-
primary ideal, and therefore must be a system of parameters in Rw, since almost each
Rw has dimension h = d. Let l be the length ofR\/x\R\. By Proposition 5.13, almost
each Rw/xwRw has length l, showing that pardeg(Rw) ≤ l, for almost w.

5.24 Example. We cannot replace parameter degree with multiplicity in the previous
result as the following example shows. Fix some e > 0 and put

Rw := S/(ξw, ξeζw−e)S

for each w ≥ e, where S := k[[ξ, ζ]] and k is a field. Let R\ be the ultraproduct of the
Rw, let k\ be the ultrapower of k and let S] ∼= k\[[ξ, ζ]] be the catapower of S. Since
the ultraproduct of the ξw and the ξeζw−e are infinitesimals, the cataproduct of the Rw
is R] = S], showing that R\ is not isodimensional (since the Rw are one-dimensional
and R] is two-dimensional). Therefore, by the theorem, the parameter degree of the
Rw is unbounded (in fact, equal to w). On the other hand, ζ is a parameter in each Rw
so that we can calculate the multiplicity ofRw by Lech’s lemma ([29, Theorem 14.12])
as the limit of ewn/n as n tends to infinity, where ewn is the length of Rw/ζnRw. One
calculates that ewn = w(w−1)+e(n−w+2) and hence mult(Rw) = e. This shows,
in view of Remark 3.5, that multiplicity is in general not first-order.
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5.25 Remark. In view of Theorem 5.23, we will often require that a collection of Noe-
therian local rings Rw have (almost all) the same embedding dimension and the same
parameter degree, to ensure that their cataproduct is again Noetherian of the same di-
mension. In fact, we can replace this requirement with the more natural requirement
that (almost all) Rw have the same dimension and parameter degree. Indeed, if a
Noetherian local ring R has dimension d and parameter degree e, then its embedding
dimension is at most d+ e− 1.

Note that by Lemma 6.11 below, if almost all Rw are Cohen-Macaulay we may
further simplify this to the requirement that almost all Rw have the same dimension
and multiplicity. The previous example shows that this is no longer true without the
Cohen-Macaulay assumption.

5.26 Corollary. If R\ is an isodimensional ultra-Noetherian local ring and x\ the
ultraproduct of elements xw, then x\ is generic if and only if deg(xw) is bounded.

Proof. Let Rw be Noetherian local rings with ultraproduct R\. By Theorem 5.23, al-
most eachRw has dimension d := gdim(R\). Suppose x\ is generic. Hence, R\/x\R\
has geometric dimension d − 1, whence ultra-dimension at most d − 1. In particular,
almost each Rw/xwRw must have dimension d − 1. Hence xw is generic in Rw and
R\/x\R\ is again isodimensional. By Theorem 5.23, this means that the Rw/xwRw
must have bounded parameter degree, proving the direct implication.

Conversely, suppose the deg(xw) are bounded, that is to say, almost all xw are
generic and the parameter degrees of the Rw/xwRw are bounded. By Theorem 5.23
once more, R\/x\R\ has geometric dimension d− 1, showing that x\ is generic.

Without the isodimensional assumption, the result is false: for instance if R\ has
ultra-dimension zero (e.g., the ultraproduct of the R/mn), then no element in R\ is
realized as an ultraproduct of elements of finite degree. We can now give the following
improvement of Corollary 5.3.

5.27 Corollary. Let R\ be an ultra-Noetherian local ring, realized as the ultraproduct
of equicharacteristic excellent local rings Rw. If R\ is isodimensional, then any local-
ization at a finitely related prime ideal has finite embedding dimension, and any finitely
related prime ideal is strong.

Proof. Let p ∈ FR-Spec(R\). By Proposition 5.1, there exist prime ideals pw ⊆ Rw
with ultraproduct equal to p. By Theorem 5.23, there is some ρ, such that almost
each Rw has parameter degree ρ. Hence, by Proposition 5.2, almost each (Rw)pw has
embedding dimension at most d + ρ, where d is the common dimension of almost all
Rw (that is to say, the ultra-dimension, whence geometric dimension, of R\). Since
(R\)p is the ultraproduct of the (Rw)pw , its embedding dimension is at most d + ρ.
Proposition 5.4 then implies that p is strong.

We actually showed that the stalk of Spec(R\) at a point in FR-Spec(R\) has
embedding dimension at most d + ρ, where d is the geometric dimension of R\ and ρ
its parameter degree. Inspecting the proof of Proposition 5.2, we see that almost each
(Rw)pw has parameter degree at most ρ, showing that each stalk is also isodimensional,
of ultra-dimension, whence geometric dimension, at most d.
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6. Cata-singularities

According to the definitions in §5, a local ring of finite embedding dimension is
cata-regular if its completion is a regular (Noetherian) local ring.

6.1 Theorem. Let (R,m) be a local ring of geometric dimension d and let k be its
residue field. The following are equivalent:

6.1.1. R is cata-regular;
6.1.2. R is cata-regular;
6.1.3. gdim(R) = embdim(R);
6.1.4. m is generated by a generic sequence;
6.1.5. m is generated by a quasi-regular sequence;
6.1.6. gr(R) is isomorphic to k[ξ], with ξ a d-tuple of indeterminates.

Proof. The equivalence of (6.1.1) and (6.1.2) is clear since R has the same completion
as R, and their equivalence with (6.1.6) follows from [29, Theorem 14.4], since we
have an isomorphism of graded rings gr(R) ∼= gr(R̂). The equivalence of (6.1.3) and
(6.1.4) is clear from the definition of geometric dimension. Suppose (6.1.4) holds, so
that m is generated by a generic sequence (x1, . . . , xd). There is a natural surjective
homomorphism k[ξ]→ gr(R) which maps ξi to in(xi), where ξ = (ξ1, . . . , ξd). Since
both rings have the same dimension by Theorem 3.4, the kernel must be zero, proving
(6.1.6). Conversely, assume gr(R) ∼= k[ξ]. Hence m/m2 is generated by d elements,
and therefore, by Nakayama’s Lemma m is generated by d elements, showing that
(6.1.4) holds.

Remains to show the equivalence of the other conditions with (6.1.5). Recall that
x is quasi-regular if F (x) = 0, for a homogeneous polynomial F ∈ R[ξ], implies that
F has all its coefficients in I := xR. This is equivalent with the natural epimorphism
(R/I)[ξ1, . . . , ξd]→ grI(R) being injective, whence an isomorphism (see for instance
[29, §16]). Hence taking I = m, we see that (6.1.5) is equivalent with (6.1.6).

6.2 Remark. In the above proof, we actually showed that if R is cata-regular of geo-
metric dimension d, then any d-tuple generating m is quasi-regular. We will shortly
show (Theorem 6.9 below) that, in fact, every generic sequence is quasi-regular. The
ringR in the next example shows that a generic sequence generating the maximal ideal
in a cata-regular local ring is not necessarily a regular sequence.

6.3 Example. A local ring of geometric dimension zero is cata-regular if and only
if it is a field. A local ring of geometric dimension one is cata-regular if and only if
its maximal ideal is generated by a non-nilpotent element. For instance, let V \ be an
ultraproduct of discrete valuation rings (an ultra-DVR for short), or more generally, a
valuation ring of finite embedding dimension (which is then automatically one). If x is
an element in the ideal of infinitesimals IV \ of V \, then R := V \/xV \ is cata-regular
of geometric dimension one. If x 6= 0, then R is not a domain. In fact, R has then
depth zero (and so is not pseudo-regular in the sense of §7.6 below).

The following fact, however, is noteworthy: if R is moreover separated, then any
quasi-regular element is regular; see for instance [29, Theorem 16.3]. In fact, we have
the following result:
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6.4 Corollary. If a cata-regular local ring is separated, then it is a domain. More
generally, the separated quotient of a cata-regular local ring is a domain.

Proof. Immediate from the fact thatR embeds in R̂ and the fact that Noetherian regular
local rings are always domains.

6.5 Corollary. If R is cata-regular, then so is any homomorphic image R/I , for I ⊆
IR.

Proof. Since R and R/I have the same separated quotient, the result follows from
Theorem 6.1.

6.6 Corollary. For each d, the class of cata-regular local rings of geometric dimension
d is first-order definable.

Proof. Observe that a ring is local if and only if any sum of two non-units is again a
non-unit. In fact, an element lies in the maximal ideal of a local ring if and only if it
is not a unit. Therefore, the maximal ideal of a local ring is definable, as is expressing
that some element lies in the maximal ideal. In particular, the formula λd,n(x,a) is
first order, where λd,n(x,a) is the formula in the variables x := (x1, . . . , xd) and a :=
(aν)ν , for ν running over all d-tuples in Nd whose sum |ν| is equal to n, expressing
that

if x generates the maximal ideal and if
∑
|ν|=n

aνxν = 0,

then some aν lies in the maximal ideal.
(5)

Let Td be the theory consisting of all sentences (∀x,∀a)λd,n(x,a), for n = 1, 2, . . . ,
together with the sentence σd expressing that the maximal ideal is generated by some
d-tuple. I claim that Td axiomatizes the class of cata-regular local rings of geometric
dimension d. Indeed, suppose that (R,m) satisfies Td. By σd, there is a d-tuple x such
that m = xR. Since λd,n(x,a) holds for all tuples a in R, we see that x is quasi-
regular. Hence R is cata-regular by Theorem 6.1. Conversely, if R is cata-regular of
geometric dimension d, then it satisfies Td by Remark 6.2.

This immediately gives a large class of cata-regular local rings. Namely, any ultra-
product of regular local rings of dimension d is cata-regular, of geometric dimension
d. We will address this situation further in §8 below.

6.7 Corollary. A local ring R of geometric dimension one is cata-regular if and only
if R is a discrete valuation ring.

Proof. Assume R is cata-regular so that R̂ is a discrete valuation ring with valuation
ord bR(·). Since ordR(a) = ord bR(a) for all a ∈ R, also ordR(·) is a valuation, showing
that R is a discrete valuation ring. Conversely, if R is a discrete valuation ring, then R
is cata-regular by Theorem 6.1.
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6.8. Cata-Cohen-Macaulay local rings

We now turn to the study of cata-Cohen-Macaulay local rings of finite embedding
dimension, that is to say, local rings whose completion is Cohen-Macaulay. Clearly,
any cata-regular local ring is cata-Cohen-Macaulay.

6.9 Theorem. A local ring of finite embedding dimension is cata-Cohen-Macaulay if
and only if its separated quotient is cata-Cohen-Macaulay if and only if some (equiva-
lently, every) generic sequence is quasi-regular.

Proof. Let (R,m) be a local ring of geometric dimension d and let x be a generic
sequence. Since grxR(R) ∼= grx bR(R̂), the sequence x is quasi-regular in R if and only
if it is so in R̂. Since R and R have the same completion, we only need to show the
equivalence of the first and last condition. Assume the last condition, and choose a
generic tuple x. By our previous observation, x is R̂-quasi-regular, and therefore R̂-
regular by [29, Theorem 16.3] and the fact that R̂ is Noetherian. Since R̂ has dimension
d by Theorem 3.4, it is Cohen-Macaulay, showing that R is cata-Cohen-Macaulay.

Conversely, suppose R̂ is Cohen-Macaulay, and let x be any generic tuple. Since
x is a system of parameters in R̂ by Proposition 3.9, it is R̂-regular, whence R̂-quasi-
regular. By the above, x is then quasi-regular in R.

6.10 Corollary. A local ring of finite embedding dimension is cata-regular if and only
if it is cata-Cohen-Macaulay and has multiplicity one.

Proof. If a local ring R is cata-regular, its completion R̂ is regular, whence has multi-
plicity one. Since R and its completion R̂ have the same multiplicity by Remark 3.5,
the direct implication is clear. Conversely, if R is cata-Cohen-Macaulay of multiplic-
ity one, then R̂ is Cohen-Macaulay with mult(R̂) = 1 by Remark 3.5. Since R̂ is
unmixed, it is regular by [30, Theorem 40.6], showing that R is cata-regular.

6.11 Lemma. The multiplicity of R is at most its parameter degree. If R has infinite
residue field then we have equality if and only if R is cata-Cohen-Macaulay.

Proof. Let x be a generic sequence of R. By Proposition 3.9, it is a system of param-
eters in R̂ and R/xR ∼= R̂/xR̂ by Lemma 2.4. The common length of the latter two
quotients is at least the multiplicity of the ideal xR̂ by [29, Theorem 14.10] which in
turn is at most mult(R̂) by [29, Formula 14.4]. The desired inequality now follows
from this, since R and R̂ have the same multiplicity by Remark 3.5.

The last assertion holds if R is Noetherian by [46, Lemma 3.3]. The general case
follows from this since R and R̂ have the same multiplicity and the same parameter
degree.

6.12 Theorem. A local ring of finite embedding dimension is cata-Gorenstein (respec-
tively, a cata-‘complete intersection’) if and only if so is its separated quotient, if and
only if it admits a quasi-regular, generic sequence x such that R/xR is Gorenstein
(respectively, a complete intersection).
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Proof. Let (R,m) be a local ring of geometric dimension d. Since R and R have the
same completion, we only need to show the equivalence of the first and last condition.
Suppose x is a quasi-regular, generic sequence. In particular, R is cata-Cohen-Mac-
aulay by Theorem 6.9, whence R̂ is Cohen-Macaulay and x is R̂-regular. Moreover,
R/xR ∼= R̂/xR̂ by Lemma 2.4. Therefore the former is Gorenstein (respectively, a
complete intersection) if and only if the latter is, if and only if R̂ is (see [9, Theorem
2.3.4 and Proposition 3.1.19]).

6.13 Proposition. A local ring of finite embedding dimension is cata-Gorenstein if
and only if there exists a quasi-regular, generic sequence generating an irreducible
ideal. When this is the case, every generic sequence is quasi-regular and generates an
irreducible ideal.

Proof. Let x be a quasi-regular, generic sequence. The result is now immediate from
the fact that xR is irreducible if and only if R/xR is Gorenstein.

7. Pseudo-singularities

The cata-singularities from the previous section do not always correspond to their
‘ultra’ versions (which will be treated in the next section). To this end we will define
some stronger versions of these cata-singularities, defined intrinsically, that is to say,
without reference to the completion. Throughout this section, (R,m) is a local ring of
finite embedding dimension.

7.1. Grade and depth.

Let A be an arbitrary ring and I a finitely generated ideal in A. Choose a tuple of
generators x = (x1, . . . , xn) of I . The grade of I , denoted grade(I), is by definition
equal to n − h, where h is the largest value i for which the i-th Koszul homology
Hi(x;A) is non-zero. One shows that the grade of I does not depend on the choice of
generators x. For a local ring R of finite embedding dimension, we define its depth as
the grade of its maximal ideal; it is non-zero if and only if its maximal ideal is not an
associated prime.

Grade, and hence depth, deforms well, in the sense that the

grade(I(A/xA)) = grade(I)− |x| (6)

for every A-regular sequence x contained in I . If R has geometric dimension d, then
its depth is at most d. Indeed, by definition, the grade of a finitely generated ideal never
exceeds its minimal number of generators, and by [9, Proposition 9.1.3], the depth of
R is equal to the grade of any of its m-primary ideals, and the assertion now follows
from Theorem 3.4.

The relationship between depth and the length of a regular sequence (sometimes
called the naive depth of R) is less straightforward in the non-Noetherian case and
requires an additional definition. For a local ring (R,m) and a finite tuple of indeter-
minates ξ := (ξ1, . . . , ξn), we will denote the localization of R[ξ] at the ideal mR[ξ]
by R(ξ) (this is sometimes called the n-fold Nagata extension of R). It follows that
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R → R(ξ) is faithfully flat and unramified, with closed fiber equal to the residue field
extension k ⊆ k(ξ), where k is the residue field of R and k(ξ) the field of fractions of
k[ξ].

7.2 Lemma. Let (R,m) be a local ring of finite embedding dimension and let ξ be a
tuple of indeterminates. Then R and R(ξ) have the same geometric dimension and the
same depth.

Proof. Let d be the geometric dimension of R and e its depth. We will induct on
d to show that gdim(R(ξ)) = d. It is easy to see that R is Artinian if and only if
R(ξ) is, thus proving the case d = 0. In the general case, we may choose x ∈ m so
that gdim(R/xR) = d − 1. By induction, (R/xR)(ξ) ∼= R(ξ)/xR(ξ) has geometric
dimension d − 1, showing that gdim(R(ξ)) ≤ d. On the other hand, induction also
shows that gdim(R(ξ)) > d− 1, so that we get gdim(R(ξ)) = d, as required.

As for depth, this follows from [9, Proposition 9.1.2] since R→ R(ξ) is faithfully
flat.

We can now characterize depth in terms of regular sequences:

7.3 Lemma. For a local ring R of finite embedding dimension, its depth is equal to
the maximal length of an R(ξ)-regular sequence, where ξ runs over all finite tuples of
indeterminates. More precisely, if R has depth e, then we can find a regular sequence
(y1, . . . , ye) in R(ξ1, . . . , ξe) which is part of a generic sequence.

Proof. In view of Lemma 7.2, it suffices to prove the second assertion. To this end, we
need to construct, by Lemma 3.8, an R(ξ)-regular sequence (y1, . . . , ye) such that the
geometric dimension of R(ξ)/(y1, . . . , ye)R(ξ) is d− e, where ξ := (ξ1, . . . , ξe). We
induct on the depth e of R, where there is nothing to show if e = 0. Let (x1, . . . , xd)
be a generic sequence and let n be the ideal generated by this sequence. Since n is then
m-primary, its grade is e. By [9, Proposition 9.1.3], the element

y1 := x1 + x2ξ1 + · · ·+ xdξ
d−1
1

is an R[ξ1]-regular element. Since R[ξ1] → R(ξ1) is flat, y1 is R(ξ1)-regular. Let
S := R(ξ1)/y1R(ξ1). Since S/(x2, . . . , xd)S ∼= (R/n)(ξ1), it is Artinian. Therefore,
the geometric dimension of S is at most d−1. By Lemma 7.2, the geometric dimension
of S cannot be less, and hence it is equal to d − 1. In particular, we are done in case
e = 1.

Assume therefore e > 1. It follows from Lemma 7.2 and (6) that S has depth
e − 1. By induction, there exists an S(ξ2, . . . , ξe)-regular sequence (y2, . . . , ye) such
that S(ξ2, . . . , ξe)/(y2, . . . , ye)S(ξ2, . . . , ξe) has geometric dimension d − e. Hence
with ξ := (ξ1, . . . , ξe), the sequence (y1, . . . , ye) is R(ξ)-regular and part of a generic
sequence.

7.4 Remark. The argument even shows that, for a given generic sequence (x1, . . . , xd),
we may choose an R(ξ)-regular sequence (y1, . . . , ye) so that

(y1, . . . , ye, xe+1, . . . , xd)R(ξ) = (x1, . . . , xd)R(ξ).

In particular, if R is moreover cata-regular, then we may take (y1, . . . , ye) equal to a
generating set of the maximal ideal of R(ξ).
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For ultra-Noetherian rings, no such extension is necessary, since depth is first-order
definable:

7.5 Proposition. The depth of an ultra-Noetherian local ringR is equal to the maximal
length of an R-regular sequence.

7.6. Pseudo-singularities
We now introduce some singularity variants that are based on depth. Let R be a

local ring of finite embedding dimension. If the depth of R is equal to its embedding
dimension, then we callR pseudo-regular, and if it is equal to its geometric dimension,
we call R pseudo-Cohen-Macaulay. Immediate from the definitions we get:

7.7 Proposition. A local ring of finite embedding dimension is pseudo-regular if and
only if it is cata-regular and pseudo-Cohen-Macaulay.

In order to derive a homological characterization of pseudo-regularity analogous to
Serre’s characterization for regularity, we need some additional definitions.

7.8. Finite presentation type
We say that an R-module M admits a finite free resolution (of length n), if there

exists an exact sequence

0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0 (7)

with each Fi a finitely generated freeR-module. The alternating sum of the ranks of the
Fi is called the Euler number Eul(M) of M . It follows from Schanuel’s Lemma that
Eul(M) does not depend on the choice of finite free resolution, and by [29, Theorem
19.7], it is always non-negative. Also, if

0→ H → Gm → Gm−1 → · · · → G1 → G0 →M → 0

is an arbitrary exact sequence with all Gi finitely generated free R-modules, then H is
also finitely generated, and Eul(M) is the alternating sum of the ranks of the Gi and
of Eul(H) (see [29, §19] for more details).

In general, very few modules admit a finite free resolution, and hence we introduce
the following weaker version: we say that an R-module is finitely n-presented, if it
admits finitely generated i-th syzygies for i = 0, . . . , n, or equivalently, if there exists
an exact sequence as in (7), but without the initial zero, with all Fi finitely generated
free R-modules. Hence M is finitely 0-presented if and only if it is finitely generated,
and M is finitely 1-presented if and only if it is finitely presented. We will say that an
R-module has finite presentation type, if it is finitely n-presented, for all n. Although
these definitions do not require R to be local, the next one does: we call a R-module
complex (G•, d•) minimal if the kernel of each morphism di lies inside mGi.

7.9 Lemma. Let (R,m) be a local ring with residue field k. AnR-moduleM is finitely
n-presented if and only if there exist a minimal exact sequence

Fn → Fn−1 → · · · → F1 → F0 →M → 0 (F•)
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with each Fi a finitely generated freeR-module. Moreover, if this is the case then the i-
th Betti number βRi (M) ofM , that is to say, the vector space dimension of TorRi (M,k),
is equal to the rank of Fi, for all i ≤ n, showing that F• is unique up to isomorphism.

Proof. One direction is immediate and the other can by induction be reduced to the
case that M is finitely 0-presented, that is to say, finitely generated. This case is then
simply a reformulation of Nakayama’s Lemma. To prove the last assertion, augment
F• by adding on the left a free module Fn+1, possibly of infinite rank, which maps onto
the kernel of Fn → Fn−1. Tensoring this exact sequence with k gives a complex in
which all morphisms are zero and hence its i-th homology is Fi ⊗ k, for i = 0, . . . , n.
Since this homology is also equal to TorRi (M,k), we proved the second assertion.

Since a projective module over a local ring is always free ([29, Theorem 2.5]), a
necessary and sufficient condition for an R-module M to have a finite free resolution
is that M has projective dimension n <∞ and is finitely n-presented. By the previous
result, such a module then admits a unique minimal finite free resolution.

7.10 Lemma. Any direct summand of an R-module with a finite free resolution has
itself a finite free resolution. Similarly, any direct summand of a finitely n-presented
module is again finitely n-presented.

Proof. We prove both results simultaneously. Suppose M ⊕N has a finite free resolu-
tion of length n as in (7) (respectively, of the form F•). We will show by induction on n
that M has a finite free resolution (respectively, is finitely n-presented). If n = 0, that
is to say, if M ⊕ N is free, then M is projective whence free (respectively, if n = 0,
that is to say, M ⊕ N is finitely generated, then so is M ). Hence assume n > 0 and
choose an exact sequence

0→ K → Rm →M ⊕N → 0 (8)

such thatK admits a finite free resolution of length n−1 (respectively is finitely n−1-
presented). Clearly, M and N must also be finitely generated, so that we can choose
exact sequences

0→ G→ Ra →M → 0

0→ H → Rb → N → 0.

Taking the direct sum of these last two exact sequences and comparing it with (8), we
get from Schanuel’s Lemma an isomorphism K ⊕Ra⊕Rb ∼= G⊕H ⊕Rn. Since the
module at the left hand side has a finite free resolution of length n − 1 (respectively,
is finitely n − 1-presented), our induction hypothesis yields that G has a finite free
resolution (respectively, is finitely n − 1-presented), whence so does M (respectively,
whence M is finitely n-presented).

7.11 Theorem. A local ring of finite embedding dimension is pseudo-regular if and
only if its residue field admits a finite free resolution.
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Proof. Suppose first that (R,m) is pseudo-regular of geometric dimension d. Let x be
a generic sequence generating m. Since R has depth d, all Hi(x;R) vanish, showing
that the Koszul complex K•(x) of x is exact, yielding the desired finite free resolution
of the residue field k.

Conversely, assume that k has a finite free resolution

0→ Ran → Ran−1 → · · · → Ra1 → R→ k → 0.

Let m be the embedding dimension of R (so that we may choose a1 = m). Observe
that both hypothesis and conclusion are invariant under taking a Nagata extension of
the form R ⊆ R(ξ) (by faithful flatness), so that at any time we may make such an
extension if needed. There is nothing to show if m = 0, so we induct on m > 0. By
[29, Theorem 19.6], the depth of R must be positive. By Lemma 7.3, we may assume
after making a Nagata extension, that some minimal generator x of m is R-regular. Put
S := R/xR, so that its embedding dimension is m − 1. For each i > 1, we have an
isomorphism

TorRi (S, k) ∼= TorRi−1(S,m) ∼= TorSi−1(S,m/xm) = 0

since x is R-regular, whence also m-regular. This implies that the complex

0→ San → San−1 → · · · → Sa1

is acyclic, that is to say, is a finite free resolution of m ⊗ S = m/xm. I claim that k
is a direct summand of m/xm. Assuming the claim, Lemma 7.10 then yields that k
admits a finite free resolution as an S-module. Therefore, by our induction hypothesis,
S is pseudo-regular, whence has depth m− 1. It follows from (6) that R has depth m,
showing that it is pseudo-regular.

To prove the claim, choose x2, . . . , xm ∈ m so that (x, x2, . . . , xm)R = m. Let
H be the R-submodule of m/xm generated by the image of x. Hence H ∼= k and we
want to show thatH is a direct summand of m/xm. LetN be the submodule generated
by the images of the x2, . . . , xm in m/xm, so that m/xm = H + N . Let a ∈ m
and suppose its image in m/xm lies in H ∩ N . It follows that we can write a in two
different ways, namely as a = a1x = a2x2 + · · ·+amxm+rxwith ai ∈ R and r ∈ m.
By Nakayama’s lemma, we therefore must have a1 ≡ r ≡ 0 mod m, that it so say,
a ∈ xm. In other words, we showed that H ∩N = 0 and hence that m/xm ∼= H ⊕N ,
as required.

7.12 Remark. Under the assumptions of the theorem, k has projective dimension equal
to the geometric dimension of R and Eul(k) = 0 (use the Koszul complex to cal-
culate both numbers). The Koszul complex is minimal and therefore TorRi (k, k) has

dimension equal to
(n
i

)
for all i.

7.13 Remark. Using a similar argument, one can show that R is pseudo-Cohen-Mac-
aulay if and only if there exists a generic sequence x such that R/xR has a finite free
resolution (which then can be chosen to be the Koszul complex K•(x) of x). For a
related result, see Proposition 8.11 below.
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To not confuse with our present terminology we deviate from [7] or [18, §5] by
calling a ring Bertin-Serre regular, if every finitely generated ideal has finite projective
dimension. If R is moreover coherent, then it is shown that any finitely generated ideal
admits a finite free resolution. Applied to the maximal ideal, we get immediately from
Theorem 7.11:

7.14 Corollary. A coherent Bertin-Serre regular local ring of finite embedding dimen-
sion is pseudo-regular.

For the converse, we have the following:

7.15 Corollary. Let (R,m) be a pseudo-regular local ring of geometric dimension d,
and let beM anR-module. IfM is finitely d+1-presented, thenM has finite projective
dimension (at most d).

Proof. By Lemma 7.9, there exists a minimal exact sequence F• with n = d + 1, and
the i-th Betti number of M is the rank of Fi. However, k has projective dimension d
by Remark 7.12, and hence βd+1(M) = 0, showing that Fd+1 = 0.

7.16 Corollary. Let R be a pseudo-regular local ring of geometric dimension one. If
R is coherent, then it is Bertin-Serre regular.

Proof. Let I be a finitely generated ideal. Since R is coherent, it is finitely presented.
Hence R/I is finitely 2-presented, and therefore has finite projective dimension by
Corollary 7.15.

We cannot expect for this result to also hold if the geometric dimension d is strictly
bigger than one, since a coherent Bertin-Serre regular ring is Cohen-Macaulay in the
sense of [20] and therefore admits a regular sequence of length d (that is to say, in such
a ring, naive depth always equals depth). To obtain a converse, we require a stronger
coherence condition:

7.17 Theorem. A local ring of finite embedding dimension is coherent and Bertin-
Serre regular if and only if it is pseudo-regular and every finitely generated ideal has
finite presentation type.

Proof. If R is coherent and Bertin-Serre regular, then any finitely generated ideal has
a finite free resolution by [17], whence has in particular finite presentation type. More-
over, R is pseudo-regular by Corollary 7.14. To prove the converse, let I be a finitely
generated ideal. By assumption, I , whence also R/I , is finitely n-presented, and
therefore has finite projective dimension by Corollary 7.15 applied with n sufficiently
large.

In [53], Soublin calls a ringR uniformly coherent8 if there exists a function α : N→
N such that any morphism Rn → R has a kernel generated by at most α(n) elements.

8This is quite a strong hypothesis, even for Noetherian rings, for which it forces, among other things, that
the dimension is at most two.
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7.18 Theorem. Let R be a uniformly coherent local ring of finite embedding dimen-
sion. Then every finitely generated ideal ofR has finite presentation type. In particular,
R is pseudo-regular if and only if it is Bertin-Serre regular.

Proof. By [53] or [3, Corollary 2.3], the countable direct productRN is coherent. Since
a finitely generated submodule of a finitely generated free R-module embeds in RN, it
is finitely presented. Applied to the syzygies of a finitely generated ideal I , we see that
I has finite presentation type. The second assertion then follows from Theorem 7.17.

Pseudo-Cohen-Macaulay local rings
Recall that we called R pseudo-Cohen-Macaulay, if its depth equals its geometric

dimension.

7.19 Theorem. A pseudo-Cohen-Macaulay local ring is cata-Cohen-Macaulay.

Proof. Let R be a pseudo-Cohen-Macaulay local ring of geometric dimension d and
let x be a generic sequence. Since R has depth d, the grade of n := xR is d, implying
that all Hi(x;R) vanish, for i > 0. For i = 1, this yields that x is quasi-regular by [8,
Ch. X, §9, Théorème 1]. Hence R is cata-Cohen-Macaulay by Theorem 6.9.

The converse is in general false: R can be cata-Cohen-Macaulay without being
pseudo-Cohen-Macaulay; an example is provided by the depth zero cata-regular ring
in 6.3. On the other hand, neither is it the case that in a pseudo-Cohen-Macaulay local
ring R every R-regular element is R̂-regular. For instance, R could be a non-separated
domain, in which case any non-zero element in the ideal of infinitesimals is R-regular,
but zero in R̂. This also gives an example of an R-regular element which is not part of
a generic subset. From the proof of [29, Theorem 16.3], it follows that ifR is separated
and cata-Cohen-Macaulay, then every generic element is R-regular. In particular, we
showed that if R has geometric dimension one, then R is cata-Cohen-Macaulay if and
only if R is pseudo-Cohen-Macaulay.

7.20 Example. Let Rw := A/(ξ2, ξζw)A where A := k[[ξ, ζ]]. It follows that all
Rw have depth zero and dimension one. Hence their ultraproduct R\ has depth zero
and ultra-dimension one. The cataproduct R] is isomorphic to k\[[ξ, ζ]]/ξ2k\[[ξ, ζ]],
where k\ is the ultrapower of k. This is a one-dimensional Cohen-Macaulay local ring.
Hence R\ is cata-Cohen-Macaulay and has geometric dimension one. In conclusion,
R\ is isodimensional and cata-Cohen-Macaulay, but not pseudo-Cohen-Macaulay.

7.21 Corollary. A local ring of finite embedding dimension is pseudo-regular if and
only if it is pseudo-Cohen-Macaulay and has multiplicity one.

Proof. The direct implication follows from Proposition 7.7 and Corollary 6.10. Con-
versely, if R has multiplicity one and is pseudo-Cohen-Macaulay, then it is cata-Coh-
en-Macaulay by Theorem 7.19, whence cata-regular by Corollary 6.10, and the result
now follows from Proposition 7.7.

7.22 Corollary. LetR be a pseudo-Cohen-Macaulay local ringR of geometric dimen-
sion two. If R is either a domain or separated, then any generic sequence is R-regular.
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Proof. Let (x, y) be a generic sequence in R. If R is a domain, then x is R-regular.
Let us show that the same holds if R is separated. Since R has depth two by as-
sumption, H2(x, y;R) = 0. This means that whenever ax + by = 0 for some
a, b ∈ R then (a, b) = r(y,−x) for some r ∈ R. In particular, if a ∈ AnnR(x),
then (a, 0) = r(y,−x) for some r ∈ R, showing that a ∈ yAnnR(x). In other
words, AnnR(x) = yAnnR(x) so that by induction AnnR(x) = yn AnnR(x) whence
AnnR(x) ⊆ IR = 0. This concludes the proof that x is R-regular. Using once more
the above characterization of H2 = 0, we see that in either case, y is R/xR-regular,
whence (x, y) is R-regular.

We can generalize Proposition 5.11 substantially under an additional Cohen-Mac-
aulay assumption.

7.23 Proposition. LetR be a local ring of finite embedding dimension and letM be an
R-module of finite length. IfR is pseudo-Cohen-Macaulay, then TorRi (R̂,M) vanishes
for all i > 0.

Proof. Since M has finite length, its annihilator is m-primary, and hence contains a
generic sequence by Corollary 3.13. Since R → R(ξ) is faithfully flat, the vanishing
of the Tor’s is unaffected by such an extension. Hence, after some Nagata extension,
we may assume, using Remark 7.4, that R admits an R-regular, generic sequence x
contained in the annihilator of M . Since R̂ is Cohen-Macaulay by Theorem 7.19, the
sequence x is also R̂-regular. By a well-known deformation property of Tor modules,
we get

TorRi (R̂,M) ∼= TorR/xRi (R̂/xR̂,M)

for all i > 0. Vanishing now follows since R/xR ∼= R̂/xR̂ by Lemma 2.8.

Given a moduleM over a local ringR of finite embedding dimension, we define its
geometric dimension to be the geometric dimension of R/AnnR(M), and we denote
it gdim(M). Since the notions of grade and depth also extend to modules, we may call
a finitely generated R-module M pseudo-Cohen-Macaulay, if its geometric dimension
equals its depth.

7.24 Corollary. Let R be a local ring of finite embedding dimension and let M be
a finitely generated R-module. If both R and M are pseudo-Cohen-Macaulay, then
TorRi (R̂,M) = 0, for all i > 0, and M ⊗ R̂ is a Cohen-Macaulay module.

Proof. We induct on the geometric dimension e of M . If e = 0, then M is a finitely
generated module over the Artinian local ring R/AnnR(M), whence has finite length,
and the result follows from Proposition 7.23. So assume e > 0. As far as proving
the vanishing is concerned, we may always, by faithfully flat descent, take a Nagata
extension of R. Hence, by the module analogue of Lemma 7.3 (the proof of which is
left to the reader), we may assume, after possibly taking a Nagata extension, that x is
an M -regular element. From the exact sequence

0→M
x→ M → M/xM → 0
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we get, by tensoring with R̂, part of a long exact sequence

0 = TorRi+1(R̂,M/xM)→ TorRi (R̂,M) x→

TorRi (R̂,M)→ TorRi+1(R̂,M/xM) = 0

where the two outer modules are zero by induction. Fix i and put T := TorRi (R̂,M).
Since T = xT , we have T = IRT . As R̂ is Noetherian, IRR̂ vanishes, whence so does
IRT , since T is the homology of a complex of modules over R̂. This shows T = 0,
completing our proof of the first assertion.

To prove that M̂ := M ⊗ R̂ is Cohen-Macaulay, we induct once more on the
geometric dimension e of M , where the case e = 0 is trivial since then M = M̂ . Once
more, faithfully flat descent allows us to take a Nagata extension if necessary, and so
we may assume that there exists an element x ∈ R which is R-regular and M -regular.
Since M/xM is again pseudo-Cohen-Macaulay (as its geometric dimension and depth
have both decreased by one), TorR1 (R̂,M/xM) = 0 by the first part. Hence tensoring
the exact sequence

0→M
x→ M → M/xM → 0

yields an exact sequence

0→ M̂
x→ M̂ → M̂/xM̂ → 0

By induction, M̂/xM̂ is Cohen-Macaulay, and whence so is M̂ by the latter exact
sequence.

7.25 Example. In [37], a class of local rings was introduced which extends the class of
Cohen-Macaulay local rings. More precisely, for each d, e ≥ 0, let CMd,e be the class
of all local rings R such that there exists an R-regular sequence of length d and such
that the minimal length of a homomorphic image R/xR is e, where x is an arbitrary
tuple in R of length d. The latter condition implies that R has geometric dimension at
most d, and the former that its depth is at least d. It follows that R is pseudo-Cohen-
Macaulay of geometric dimension d. Let x be an arbitrary tuple of length d. Suppose
R/xR is Artinian of length l (by assumption l ≥ e). Hence R/xR ∼= R̂/xR̂ and x is
generic in R. Moreover, x is R̂-regular, since R̂ is Cohen-Macaulay. It follows that the
ideal xR̂ has multiplicity l. For a general choice of system of parameters y in R̂, the
ideal yR̂ is a reduction of mR̂ ([29, Theorem 14.14]), so that the multiplicity of yR̂
is equal to mult(R̂). By assumption, the minimal value of the multiplicity of an ideal
generated by a d-tuple from R is e. Since these form a general subset of all d-tuples in
R̂, we showed that R̂ has multiplicity e, whence so does R by Remark 3.5. In fact, we
have the following characterization of these classes:

7.26 Theorem. A local ring R is pseudo-Cohen-Macaulay of geometric dimension d
and multiplicity e if and only if R(ξ) belongs to the class CMd,e for some (d-)tuple of
indeterminates ξ.

Proof. Since R and R(ξ) are easily seen to have the same multiplicity (by comparing
their completions), one direction follows from the previous discussion. On the other
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hand, supposeR is pseudo-Cohen-Macaulay of geometric dimension d and multiplicity
e. By the same argument as above, we may choose a generic sequence x in R such that
xR̂ is a reduction of mR̂, whence has multiplicity e. It follows from Lemma 2.8 that
R/xR has length e and by a similar argument that this is the least possible length.
In order to construct an R-regular sequence, we have to go to an extension R(ξ) by
Lemma 7.3 and this extension is then in the class CMd,e.

In particular, by Corollary 7.21, a local ring R is pseudo-regular if and only if R(ξ)
belongs to CMd,1 for some d and some d-tuple of indeterminates ξ. Moreover, by
Proposition 7.5, an ultra-Noetherian local ring belongs to CMd,e if and only if it is
pseudo-Cohen-Macaulay of geometric dimension d and multiplicity e.

Let R be a local ring of finite embedding dimension. We say that R is pseudo-
Gorenstein, if it is pseudo-Cohen-Macaulay and there exists a generic sequence x such
that R/xR is an Artinian Gorenstein ring.

7.27 Proposition. A pseudo-Cohen-Macaulay local ring is pseudo-Gorenstein if and
only if it is cata-Gorenstein.

In fact, let (R,m) be a pseudo-Cohen-Macaulay local ring of geometric dimension
d and let k be its residue field. If R is pseudo-Gorenstein, then ExtiR(k,R) = 0, for
all i 6= d and ExtdR(k,R) ∼= k. Conversely, if ExtiR(k,R) vanishes for some i > d or
if ExtdR(k,R) ∼= k, then R is pseudo-Gorenstein.

Proof. Let x be a generic sequence in R. By Lemma 7.2, the extension R(ξ) is again
pseudo-Cohen-Macaulay and x is generic in R(ξ). Since

R/xR→ (R/xR)(ξ) ∼= R(ξ)/xR(ξ)

is faithfully flat and unramified, the former is Gorenstein if and only if the latter is.
Since the Ext-functors commute with faithfully flat base change, we may replace R by
R(ξ) everywhere and assume by Lemma 7.3 that x is a regular sequence.

In particular,R is pseudo-Gorenstein if and only ifR/xR ∼= R̂/xR̂ is Gorenstein if
and only if R̂ is Gorenstein, since x is R̂-regular. This already proves the first assertion.
Since x is R-regular, we have

ExtiR(k,R) ∼= Exti−dR/xR(k,R/xR) (9)

where we let ExtjR(·, ·) be the zero functor for negative j (see for instance [9, Lemma
3.1.16] and the proof of (3) ⇔ (1) of [29, Theorem 16.6]). The final assertion now
follows from [29, Theorem 18.1] applied to the Artinian local ring R/xR.

It follows that if R is pseudo-Gorenstein, then R/xR is Gorenstein for every
generic sequence x.

8. Ultra-singularities

We now compare the ‘cata’ and ‘pseudo’ versions from the previous two sections
with their ‘ultra’ counterparts. Throughout this section, unless mentioned explicitly,R\
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is an ultra-Noetherian local ring with maximal ideal m\ and residue field k\, realized as
the ultraproduct of Noetherian local rings (Rw,mw) of bounded embedding dimension
and residue field kw. Recall (Lemma 5.6) that the cataproduct R] of the Rw is the
separated quotient as well as the completion of R\, and it is in particular Noetherian.

8.1 Theorem. For an ultra-Noetherian local ring R\, the following are equivalent:

8.1.1. R\ is pseudo-regular;
8.1.2. R\ is ultra-regular;
8.1.3. R\ is cata-regular and isodimensional.

Proof. LetR\ be the ultraproduct of Noetherian local ringsRw of bounded embedding
dimension. If R\ is pseudo-regular, then it is isodimensional by Theorem 4.4 and
therefore cata-regular by Theorem 5.19. Moreover, by Łos’ Theorem, almost all Rw
are regular since embedding dimension and depth are first-order definable. This shows
that R\ is ultra-regular, and the converse follows along the same lines. Finally, if R\ is
cata-regular and isodimensional, then it is pseudo-regular, again by Theorem 4.4.

The same proof also shows that R\ is ultra-regular if and only if it is not ultra-
singular. In view of Lemma 5.6, we may rephrase the theorem as follows:

8.2 Corollary. LetRw be Noetherian local rings of the same dimension and parameter
degree and let R] be their cataproduct. Then almost all Rw are regular if and only if
R] is.

8.3 Corollary. Any localization of an ultra-regular local ring at a finitely related prime
ideal is ultra-regular.

Proof. LetR\ be an ultra-regular local ring, given as the ultraproduct of d-dimensional
regular local rings Rw, and let p ∈ FR-Spec(R\). By Proposition 5.1, there exist
prime ideals pw ⊆ Rw whose ultraproduct is equal to p. Since almost each (Rw)pw is
regular of dimension at most d, their ultraproduct (R\)p is ultra-regular (of geometric
dimension at most d).

We conclude our discussion of ultra-regular rings with an ultraproduct version of
Corollary 5.15.

8.4 Corollary. The canonical embedding R → R\ of an excellent local ring in its
ultrapower has ultra-regular fibers at finitely related prime ideals: for every p ∈
FR-Spec(R\), the fiber ring (R\/gR\)p is ultra-regular, where g = p ∩R.

Proof. To show that (R\/gR\)p is ultra-regular, we may replace R by R/g, since
R\/gR\ is the ultrapower of R/g, and assume without loss of generality that R is a
domain and p ∩ R = (0). By Corollary 5.3, the localization (R\)p has finite embed-
ding dimension, and p is the ultraproduct of prime ideals pw ∈ Spec(R). Since R
is an excellent domain, its singular locus is a proper, closed subset, say, defined by a
non-zero ideal I ⊆ R. If almost all pw would belong to this singular locus, then they
would almost all contain I , whence so would p, contradicting that p∩R = (0). Hence
almost all pw are in the regular locus, and the result now follows from the proof of
Corollary 8.3.
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8.5. Ultra-Cohen-Macaulay local rings

Recall that R\ is called ultra-Cohen-Macaulay if almost all Rw are Cohen-Macau-
lay. We can characterize this property in terms of the fundamental inequalities (1).

8.6 Theorem. For an ultra-Noetherian local ring R\, the following are equivalent

8.6.1. R\ is ultra-Cohen-Macaulay;
8.6.2. the depth of R\ equals its ultra-dimension.

In particular, R\ is pseudo-Cohen-Macaulay if and only if it is ultra-Cohen-Macaulay
and isodimensional.

Proof. The first assertion follows immediately from the fact that depth is first-order.
The second assertion is now also clear, since a pseudo-Cohen-Macaulay must be isodi-
mensional by Theorem 5.19.

8.7 Remark. Note that unlike in the regular case, isodimensionality together with be-
ing cata-Cohen-Macaulay is not sufficient for being pseudo-Cohen-Macaulay, as ex-
ample 7.20 shows.

Also note that ultra-Cohen-Macaulay does not imply pseudo-Cohen-Macaulay nor
even cata-Cohen-Macaulay. Namely, let (R,m) be a non-Cohen-Macaulay local ring
and let R\ and R] be the respective ultraproduct and cataproduct of the R/mn. Corol-
laries 5.10 and 5.15 together imply that R] is not Cohen-Macaulay. Hence R\ is not
cata-Cohen-Macaulay, although it is clearly ultra-Cohen-Macaulay (there is no contra-
diction with the above theorem, since R\ is not isodimensional).

8.8 Corollary. The cataproduct of Cohen-Macaulay local rings having the same di-
mension and the same multiplicity, is again Cohen-Macaulay.

Proof. Let R\ and R] be the respective ultraproduct and cataproduct of Noetherian
local rings Rw of the same multiplicity and the same dimension. If almost all Rw are
Cohen-Macaulay, thenR\ is isodimensional by Remark 5.25. Therefore, R\ is pseudo-
Cohen-Macaulay by Theorem 8.6, and henceR] is Cohen-Macaulay by Theorem 7.19.

Let us call an ultra-module M \, that is to say, an ultraproduct of Rw-modules
Mw, ultra-Cohen-Macaulay, if almost all Mw are Cohen-Macaulay. Although such a
module need not be finitely generated, we have:

8.9 Lemma. For each w, let Mw be a finitely generated module over Rw, and let M \

be their ultraproduct. If almost all Rw are Cohen-Macaulay, of the same dimension
and multiplicity, thenM \ is finitely generated and pseudo-Cohen-Macaulay if and only
if almost all Mw are Cohen-Macaulay of the same multiplicity.

Proof. If almost all Mw are Cohen-Macaulay of multiplicity l, then there exists, by [9,
Theorem 4.6.10], an Rw-regular and Mw-regular sequence xw such that Mw/xwMw

has length l. Since each sequence can have length at most d, almost all have the same
length s ≤ d. The ultraproductM \/x\M \, too, has length l by Proposition 5.13, where
x\ is the ultraproduct of the xw. In particular,M \ is finitely generated. Moreover, x\ is
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M \-regular, showing that M \ has depth at least s. On the other hand, since M \/x\M \

has finite length, the geometric dimension of M \ is at most s. This proves that M \ is
pseudo-Cohen-Macaulay.

Conversely, assume M \ is pseudo-Cohen-Macaulay and finitely generated. As
depth is first-order, by the (module version of) Proposition 7.5, there exists an M \-
regular sequence x\ such that M \/x\M \ has geometric dimension zero. As M \ is
finitely generated, M \/x\M \ has finite length, say, l. Letting xw be tuples in Rw
having as ultraproduct x\, the ultraproduct of the Mw/xwMw is equal to M \/x\M \,
and hence almost allMw/xwMw have length l by Proposition 5.13. Moreover, almost
each xw is Mw-regular, showing that Mw is Cohen-Macaulay, of multiplicity at most
l, by another application of [9, Theorem 4.6.10].

Let us call the multiplicity type ε(R) of a Cohen-Macaulay local ring R the supre-
mum of the multiplicities of its indecomposable, maximal Cohen-Macaulay modules.
Hence, R has bounded multiplicity type if and only if ε(R) <∞.

8.10 Corollary. For some d, e ∈ N and for each w, let Rw be a d-dimensional Coh-
en-Macaulay local ring of multiplicity e, and let R] be their cataproduct. If, for some
ε, almost all Rw have multiplicity type at most ε, then so does R].

Proof. Let M be an indecomposable, maximal, whence d-dimensional, Cohen-Mac-
aulay R]-module. Since M is finitely generated, say by m elements, there exist m-
generated Rw-modules Mw whose cataproduct is equal to M . Since M = M \/IRM \

is Cohen-Macaulay, M \ is pseudo-Cohen-Macaulay. Since the ultraproduct M \ of
the Mw is then also finitely generated, almost all Mw are maximal Cohen-Macaulay
modules of the same multiplicity as M , by Lemma 8.9. By Łos’ Theorem, almost all
Mw must be indecomposable, since M , whence M \, is. By assumption, therefore,
almost all Mw, whence also M , has multiplicity at most ε.

The next result, which is some type of coherence property for ultra-Cohen-Macau-
lay local rings, will be used in §11 to deduce some uniform bounds on Betti numbers.
Recall that the i-th Betti number βi(M) of a module over a local ring R with residue
field k is the (possibly infinite) dimension of TorRi (M,k); for the notion of finite pre-
sentation type, see §7.8.

8.11 Proposition. If R\ is an isodimensional, ultra-Cohen-Macaulay local ring, then
every finitely generated pseudo-Cohen-MacaulayR\-module (e.g., everyR\-module of
finite length) has finite presentation type. More precisely, for any given e, if almost each
Mw is a Cohen-Macaulay Rw-module of multiplicity e, then, for each n, almost all
Mw have the same n-th Betti number as their ultraproductM \ and as their cataproduct
M ].

Proof. In view of Lemma 8.9, it suffices to prove the second assertion. We will show,
by induction on n, that

βn(M \) = βn(M ]) = βn(Mw)

for almost all w. The case n = 0 follows from Proposition 5.13, since M \ is finitely
generated by Lemma 8.9. So assume n ≥ 1.

43



Let
Fn,w → Fn−1,w → · · · → F1,w →Mw → 0

be a minimal finite free resolution of Mw, with each Fi,w a finite free Rw-module of
rank ri,w := βi(Mw) (see §7.8). Taking ultraproducts, we get by Łos’ Theorem a
minimal resolution

Fn,\ → Fn−1,\ → · · · → F1,\ →M \ → 0 (10)

By induction and Lemma 7.9, we get Fi,\ ∼= Rri\ , for i < n, where ri is the common
value of almost all βi(Mw). Theorem 8.6 implies that R\ is pseudo-Cohen-Macaulay,
and hence by Corollary 7.24, all TorR\i (R],M \) vanish for i > 0. Therefore, if we
tensor (10) with R], we get again a minimal resolution

Fn,] → R
rn−1
] → · · · → Rr1] →M ] → 0

Since R] is Noetherian and the resolution is minimal, ri = βi(M ]) for i < n, and the
last module in this resolution, Fn,], is generated by rn := βn(M ]) elements. Tensoring
with the common residue field k\ of R\ and R], we get

krn\
∼= Fn,]/m\Fn,] ∼= Fn,\/m\Fn,\.

Since the latter module is the ultraproduct of the Fn,w/mwFn,w ∼= k
rn,w
w , where kw is

the residue field of Rw, we get rn,w = rn for almost all w, as we wanted to show.

8.12 Theorem. A pseudo-Cohen-Macaulay ultra-Noetherian local ring R\ is cata-
Gorenstein if and only if it is ultra-Gorenstein; and it is a cata-‘complete intersection’
if and only if it is an ultra-‘complete intersection’.

In particular, if Rw are Cohen-Macaulay local rings having the same dimension
and multiplicity, then their cataproduct R] is respectively Gorenstein or a complete
intersection if and only if so are almost all Rw.

Proof. The second assertion follows from the first in view of Theorem 5.23 and The-
orem 8.6. We already observed that R\ is isodimensional, so that R] and almost all
Rw have the same dimension, d, say. Hence if x\ is a generic sequence in R\, realized
as an ultraproduct of tuples xw in Rw, then almost each xw is a system of parameters
in Rw, whence Rw-regular. Therefore, almost all Rw are Gorenstein if and only if so
are almost all Rw/xwRw. This in turn is equivalent with R\/x\R\ being Gorenstein
by Łos’ Theorem (using that these are Artinian local rings; see [36] for more details).
Since R\/x\R\ ∼= R]/x\R], the latter is then equivalent with R] being Gorenstein.

By Proposition 8.11, we have a minimal free resolution of R]-modules

Rr] → Rm] → R] → k\ → 0

where r = β2(k\) = β2(kw) and m = β1(k\) = β1(kw), for almost all w. Moreover,
R] has the same dimension d as almost allRw by Theorem 8.6. By [9, Theorem 2.3.3],
therefore, R] is a complete intersection if and only if r = m(m+ 2)/2−d, if and only
if almost all Rw are complete intersections.
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Lefschetz Hulls

In [4], we showed that every Noetherian local ring R of equal characteristic zero
(that is to say, containing the rationals) admits an ultra-Noetherian faithfully flat ex-
tension D(R) which is Lefschetz, meaning that D(R) is the ultraproduct of Noetherian
local rings Rw of prime characteristic. In fact, the Rw may be chosen to be complete
with algebraically closed residue field. We call D(R) a Lefschetz hull of R. Although
the construction can be made more functorial, it still depends on a choice of a cardinal
number larger than the cardinality ofR. However, in caseR is of finite type over an un-
countable9 algebraically closed field of characteristic zero, there is a canonical choice
for D(R), called the non-standard hull of R and denoted R∞; see [40, 49] for details.
In view of our characterizations of pseudo-singularities in this section, the following
result is immediate from [4, Theorem 5.2]:

8.13 Theorem. A Noetherian local ring R of equal characteristic zero with Lefschetz
hull D(R) is Cohen-Macaulay (respectively, Gorenstein or regular) if and only if D(R)
is pseudo-Cohen-Macaulay (respectively, pseudo-Gorenstein or pseudo-regular).

9. Cata-normalizations

An extremely useful fact in commutative algebra is the existence of Noether nor-
malizations: any finitely generated algebra over a field or any complete Noetherian
local domain admits a regular subring over which it is module-finite. This result is not
hard to show in equal characteristic, so that we will adopt this additional assumption
in this section to formulate an analogue for local rings of finite embedding dimension.
In the sequel, let (R,m) be an equicharacteristic local ring with residue field k and let
π : R→ k denote the induced surjection.

Weak coefficient fields

A subfield κ of R is called a weak coefficient field of R if the restriction of π to
κ induces an algebraic extension π(κ) ⊆ k. If this extension is an isomorphism, then
we call κ a coefficient field of R (in the literature one also encounters the notion of a
quasi-coefficient defined as a weak coefficient field κ for which the induced extension
π(κ) ⊆ k is also separable). The next result is well-known, but its proof is included
for convenience.

9.1 Lemma. Let (R,m) be an equicharacteristic local ring. For any subfield κ0 of R,
we can find a weak coefficient field κ of R containing κ0.

If, moreover, R has characteristic zero and is Henselian, then we can choose κ to
be a coefficient field.

Proof. Let κ be maximal among all subfields of R containing κ0 (such a field exists
by Zorn’s lemma). We need to show that the extension π(κ) ⊆ k is algebraic, where k
is the residue field of R and π : R → k the residue map. To this end, take an arbitrary

9Strictly speaking, of cardinality equal to 2λ, for some infinite cardinal λ.
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element u ∈ k \ π(κ). Let a ∈ R be such that π(a) = u. It follows that a /∈ κ.
By maximality, the subring κ[a] of R generated by a must contain a non-zero non-
invertible element (lest κ(a) be a larger subfield of R). This means that P (a) ∈ m, for
some non-zero P ∈ κ[ξ]. Hence taking reductions, we get Pπ(u) = 0 in k, where Pπ

is the polynomial obtained from P by applying π to each of its coefficients. Since Pπ

is not identical zero, u is algebraic over π(κ).
To prove the last assertion, assume by way of contradiction thatR has characteristic

zero and is Henselian, but that π(κ) is strictly contained in k. Take u ∈ k \ π(κ). Let
p be a minimal equation of u over π(κ) and let P ∈ κ[ξ] be such that its image Pπ is
equal to p. Since u is a single root of p, Hensel’s Lemma yields the existence of a root
a ∈ R of P with π(a) = u. However, this implies that the field κ[ξ]/Pκ[ξ] embeds in
R via the assignment ξ 7→ a, contradicting the maximality of κ.

A local homomorphism A → R is called cata-integral (respectively, cata-finite,
cata-injective, cata-surjective, cata-flat) if its completion Â → R̂ is integral (respec-
tively, finite, injective, surjective, flat). Let (R,m) be a local ring of finite embedding
dimension.

Cata-normalization

A cata-normalization of R is a cata-integral local homomorphism θ : (A, p) →
(R,m) such that A is a (Noetherian) regular local ring and pR is m-primary. We say
that a cata-normalization θ is Cohen, if pR = m, and Noether if θ is injective.

9.2 Theorem. An equicharacteristic local ring of finite embedding dimension admits
a cata-normalization, which can be chosen to be either Cohen or Noether.

Proof. Let (R,m) be an equicharacteristic local ring of finite embedding dimension.
By Lemma 9.1, there exists a weak coefficient field κ of R. Choose a tuple x :=
(x1, . . . , xn) generating some m-primary ideal. Let A be the localization of the poly-
nomial ring κ[ξ] at the ideal generated by the indeterminates ξ = (ξ1, . . . , ξn). Let
θ : A → R be the (unique) κ-algebra homomorphism which sends ξi to xi, for each
i. To show that θ is a cata-normalization, we only need to show that its completion is
integral, since the other conditions are immediate. Therefore, without loss of gener-
ality, we may already assume that A and R are complete, so that both rings are now
Noetherian. Let π : R → k be the residue map and let l be a finite extension of π(κ)
contained in k. Put Bl := π−1(l). Since κ + m ⊆ Bl, one checks easily that Bl is a
local ring with maximal ideal m. The local homomorphism A → Bl induces a finite
extension of residue fields. Therefore, since A is complete and Bl is separated, Bl is
finitely generated as an A-module by [29, Theorem 8.4]. Since k is the union of all its
finite extensions l containing π(κ), so is R the union of all the Bl, showing that R is
integral over A.

It is clear that if we choose x so that it generates m, then θ is Cohen. Assume next
that x is a generic sequence. In particular, R̂ has dimension n by Theorem 3.4. Since
Â is an n-dimensional domain and Â→ R̂ is integral, this map must be injective. But
then so must A→ R be, that is to say, θ is Noether.
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9.3 Remark. If I is a finitely generated ideal of R, then we can always choose a cata-
normalization A→ R with the additional property that there is some ideal J ⊆ A with
JR = I . Simply choose x so that it contains a set of generators of I .

9.4 Remark. From the above proof it is also clear that if R admits a coefficient field,
then we can choose the cata-normalization A→ R to be cata-finite.

9.5 Theorem. An equicharacteristic local ring R of finite embedding dimension is ca-
ta-Cohen-Macaulay if and only if there exists a cata-flat, cata-normalization A→ R.

Proof. If Â → R̂ is flat with A regular, then R̂ is Cohen-Macaulay by [29, Corollary
to Theorem 23.3], since the closed fiber has dimension zero. This proves one direction.
To prove the converse implication, assume that R̂ is Cohen-Macaulay. Let A → R be
any Noether cata-normalization. Since Â→ R̂ is a local homomorphism of Noetherian
local rings of the same dimension, with closed fiber having dimension zero, it is flat by
[29, Theorem 23.1], because Â is regular and R̂ is Cohen-Macaulay.

From the proof it follows that any Noether cata-normalization of a cata-Cohen-
Macaulay local ring is cata-flat. We conclude this section with an instance of true
Noether Normalization:

9.6 Theorem. If R\ is an ultraproduct of equicharacteristic complete d-dimensional
Noetherian local rings, then R\ is isodimensional if and only if there exists an ultra-
regular local subring S\ ⊆ R\ such that R\ is module-finite over it.

Proof. Let us show that the if-direction holds for any ultra-Noetherian local ring of
finite embedding dimension. Let S\ ⊆ R\ be a finite extension with S\ ultra-regular,
realized as the ultraproduct of regular local rings Sw ⊆ Rw. By Proposition 5.13, if
R\ is generated by at most N elements over S\, then almost each Rw is generated by
at most N elements over Sw. If yw is a regular system of parameters in Sw, then its
image is a system of parameters in Rw. Since Rw/ywRw has vector space dimension
at most N over the residue field of Sw, its length is at most N , showing that the Rw
have bounded parameter degree. Hence, R\ is isodimensional by Theorem 5.23.

Conversely, assume R\ is as in the statement, so that in particular its geometric
dimension is d. By Theorem 5.23, almost all Rw have parameter degree ρ, for some
ρ < ∞. By [46, Corollary 3.8], almost each Rw is a module-finite extension of a
regular subring Sw, generated as an Sw-module by at most ρ elements. Let S\ be the
ultra-regular local ring given as the ultraproduct of the Sw. Another application of
Proposition 5.13 yields that R\ is generated by at most ρ elements over S\.

9.7 Example. The equicharacteristic condition is necessary as the following example
shows. Fix a prime number p and an indeterminate ξ, and let Zp denote the ring of
p-adic integers. Put Rw := Zp[ξ]/(ξ2w+1 − p2)Zp[ξ] and let R\ be the ultraproduct of
the Rw. Each Rw is a one-dimensional complete local Cohen-Macaulay domain with
multiplicity (=parameter degree) two. Hence R\ is isodimensional (indeed, the cat-
aproduct R] ∼= (Zp]/p2Zp])[[ξ]] is also one-dimensional, where Zp] is the catapower
of Zp).

Suppose there is an ultra-regular subring S\ ⊆ R\ such that R\ is generated as
an S\-module by N elements. Hence by Łos’ Theorem, there is a regular subring
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Sw ⊆ Rw, such that Rw is generated as an Sw-module by N elements, for almost all
w. This, however, contradicts [46, Proposition 3.5 and Example 3.2], where it is shown
that the least number of generators for any regular subring of Rw must be equal to the
length of Rw/pRw (the so-called equi-parameter degree of Rw), that is to say, must be
at least 2w + 1.

By varying the prime p as well (say, by letting pw be an enumeration of all prime
numbers and replacing p by pw in the definition of Rw), we can construct a similar
counterexample R\ which itself is equicharacteristic zero. This latter ring also shows
the extent to which the Ax-Kochen-Ershov theorem ([5, 15, 16]) holds. Namely, let V \
be the ultraproduct of the Zpw , so that V \ is in particular ultra-regular. By Ax-Kochen-
Ershov, V \ is also the ultraproduct of the Fpw [[t]] where Fpw is the pw-element field
and t a single indeterminate. Put R′w := Fpw [[t, ξ]]/(ξ2w+1 − t2)Fpw [[t, ξ]] and let R′\
be their ultraproduct (so that R′\ and R′w are the equicharacteristic analogues of R\ and
Rw). Both R\ and R′\ contain V \ as a subring in a natural way, but neither extension
is finite. However, there is a second embedding of V \ into R′\ making the latter a finite
extension. Namely, V \ is also isomorphic with the subring given as the ultraproduct of
the Fpw [[ξ]]. Under this identification, R′\ is isomorphic to V \[t]/(t2 −α)V \[t], where
α is the ultraproduct of the ξ2w+1. In conclusion, R\ and R′\ cannot be isomorphic
(note, however, that their cataproducts are isomorphic, to F \[[t, ξ]]/t2F \[[t, ξ]], where
F \ is the ultraproduct of the Fpw ).

9.8 Remark. Using [46, Proposition 3.5], we can use the same argument to show that
if R\ is an ultraproduct of complete d-dimensional Noetherian local rings of mixed
characteristic and of bounded equi-parameter degree, then R\ admits an ultra-regular
local subring S\ over which it is module-finite. Recall that the equi-parameter degree
of a Noetherian local ring A of mixed characteristic p is the least possible length of a
homomorphic image A/I modulo a parameter ideal I ⊆ A containing p.

9.9 Corollary. If S\ ⊆ R\ is a local module-finite extension of ultra-Noetherian local
rings with S\ ultra-regular, then R\ is pseudo-Cohen-Macaulay if and only if it is flat
over S\.

Proof. Let (Sw, nw) and Rw be Noetherian local rings with ultraproduct equal to
(S\, n\) and R\ respectively. By Łos’ Theorem, almost all Sw ⊆ Rw are finite ex-
tensions with Sw regular. Suppose first that R\ is pseudo-Cohen-Macaulay, whence
ultra-Cohen-Macaulay by Theorem 8.6. Hence almost all Rw are Cohen-Macaulay,
whence flat over Sw. To show that R\ is flat over S\, it suffices by [29, Theorem
7.8(3)] to show that TorS\1 (R\, S\/I\) vanishes for all finitely generated ideals I\ of
S\. Choose Iw ⊆ Sw whose ultraproduct equals I\. Since ultraproducts commute with
homology, TorS\1 (R\, S\/I\) is the ultraproduct of the TorSw1 (Rw, Sw/Iw). Since the
latter are zero by flatness, so is the former.

Conversely, suppose S\ ⊆ R\ is flat. In particular, R\ isodimensional by (the proof
of) Theorem 9.6. By the same argument as above, the vanishing of TorS\1 (R\, S\/n\)
implies the vanishing of almost all TorSw1 (Rw, Sw/nw). By the local flatness criterion,
this implies that almost all Rw are flat over Sw, whence are Cohen-Macaulay. Hence
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R\ is ultra-Cohen-Macaulay, and therefore pseudo-Cohen-Macaulay by Theorem 8.6.

10. Homological theorems

In this section, we prove for local rings of finite embedding dimension the counter-
parts of the homological theorems from commutative algebra, under the the assumption
that the completion is equicharacteristic. We start with an immediate corollary of the
definitions:

10.1 Corollary (Monomial Theorem). Let R be a local ring of geometric dimension
d and let x be a generic sequence in R. Suppose R has either equal characteristic or
otherwise is infinitely ramified (see §2.9). If ν0, . . . , νs ∈ Nd are multi-indices such
that ν0 does not belong to the semigroup generated by ν1, . . . , νs, then xν0 does not lie
in the ideal in R generated by xν1 , . . .xνs .

Proof. If the contrary were true, then the same ideal membership holds in the comple-
tion R̂. However, by Proposition 3.9, the image of x in R̂ is a system of parameters,
thus violating the usual Monomial Theorem (see for instance [21]), since R̂ is equichar-
acteristic.

A special instance of the assertion (which is often already referred to as the Mono-
mial Theorem) is the fact that for any generic sequence (x1, . . . , xd) in R, we have

(x1 · · ·xd)t /∈ (xt+1
1 , . . . , xt+1

d )R (11)

for all t. In the Noetherian setup, the latter result suffices to show the so-called Direct
Summand Theorem (see for instance [9, Lemma 9.2.2]). However, it is not clear how
to derive this in the present setup (presently, I can only get a weaker version, which I
omit here).

Next we have a look at the Hochster-Roberts theorem. Although one can formulate
a more general version, we will only give the result for local homomorphisms R →
S which are locally of finite type, meaning that S is a localization of some finitely
generated R-algebra. Note that the class of local rings of finite embedding dimension
is closed under such algebras: if (R,m) → (S, n) is locally of finite type, then so is
R/m→ S/mS. In particular, S/mS is Noetherian, and n(S/mS) is finitely generated.
Hence if m is finitely generated, then so is n.

10.2 Theorem (Hochster-Roberts). Let R → S be a local homomorphism between
local rings of finite embedding dimension. Suppose R has equal characteristic or is
infinitely ramified. If R → S is cyclically pure and locally of finite type, and if S is
cata-regular, then R is cata-Cohen-Macaulay.

Proof. It suffices to show that R̂→ Ŝ is cyclically pure, for then the classical Hochster-
Roberts theorem shows that R̂ is Cohen-Macaulay by [25, Theorem 2.3], since Ŝ is
regular and equicharacteristic. To prove cyclical purity, we need to show that I =
IŜ ∩ R̂ for each ideal I in R̂. Since any ideal is an intersection of mR̂-primary ideals,
it suffices to show this for I an mR̂-primary ideal, where m is the maximal ideal of R.
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By Lemma 2.8, any such ideal is extended from R, that is to say of the form I = aR̂
with a an m-primary ideal of R. Since S/aS is locally of finite type over the Artinian
local ringR/a, it is Noetherian. Therefore, aS is closed, so that IŜ∩S = aŜ∩S = aS
by Lemma 2.4. Hence, in the composition

R̂/I ∼= R/a→ S/aS → Ŝ/IŜ

all maps are injective, as the first is an isomorphism by Lemma 2.4 and the second is
injective by assumption. This proves that IŜ ∩ R̂ = I , as required.

10.3 Remark. Combining this result with Theorems 6.9, 8.1 and 9.5, and Corollary 7.14
yields Corollary 1.1 from the introduction. In the theorem, less than cyclical purity is
required; it suffices that R→ S is pure-closed, in the sense that IS ∩R = I for every
closed (equivalently, every m-primary) ideal I ⊆ R. Furthermore, we may weaken the
condition that R → S is locally of finite type to requiring that its closed fiber S/mS
is Noetherian. In order to apply the techniques from §13 and deduce an asymptotic
version of the Hochster-Roberts theorem in mixed characteristic, we would like to
prove a stronger result: namely, under an additional isodimensionality assumption,
may we conclude that R is pseudo-Cohen-Macaulay?

To obtain other homological properties, we follow Hochster’s treatment [21], by
generalizing the notion of big Cohen-Macaulay modules. In fact, as in the Noetherian
case, we can even put a ring structure on the latter:

Big Cohen-Macaulay algebras

We call an R-algebra B a big Cohen-Macaulay algebra if some generic sequence
of R is B-regular; we call B a balanced big Cohen-Macaulay algebra if every generic
sequence is B-regular.

10.4 Theorem. Let R be a local ring of finite embedding dimension. If R has equal
characteristic or is infinitely unramified, then it admits a balanced big Cohen-Macau-
lay algebra.

Proof. By the work of Hochster and Huneke ([23, 25]) or the more canonical con-
struction of [4, §7] (note that the algebras in the latter paper are local), any equichar-
acteristic Noetherian local ring admits a balanced big Cohen-Macaulay algebra. This
applies in particular to the completion R̂ as it is always equicharacteristic by the dis-
cussion in §2.9. So remains to show that any balanced big Cohen-Macaulay R̂-algebra
B is a balanced big Cohen-Macaulay R-algebra. However, this is clear for if x is a
generic sequence, then it is a system of parameters in R̂ by Proposition 3.9, whence
B-regular.

10.5 Remark. We may drop the requirement on the characteristic when R has geomet-
ric dimension at most three, since in that case, regardless of characteristic, R̂ admits
a balanced big Cohen-Macaulay algebra by [22]. In particular, all the homological
theorems below also hold under this assumption.
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10.6 Remark. In fact, we may choose balanced big Cohen-Macaulay algebras in a
weakly functorial way in the following sense. We will call a local homomorphism
R→ S cata-permissible, if R̂→ Ŝ is permissible in the sense of [28, §9] or [4, §7.9].
In that case, we may choose a balanced big Cohen-Macaulay R̂-algebra B (whence a
balanced big Cohen-Macaulay R-algebra), a balanced big Cohen-Macaulay Ŝ-algebra
B′ (whence a balanced big Cohen-Macaulay S-algebra) and a homomorphismB → B′

extending R̂ → Ŝ, whence also extending R → S. Recall from the cited sources
that any local algebra is permissible over an equidimensional and universally catenary
Noetherian local ring (e.g., a complete local domain).

10.7 Proposition. If R is pseudo-regular with residue field k and if B is a balanced
big Cohen-Macaulay R-algebra, then all TorRi (B, k) vanish for i > 0, and IB ∩R is
equal to the closure of I for each ideal I ⊆ R.

Proof. It is not hard to verify thatB⊗RS is a balanced big Cohen-Macaulay S-algebra,
for S := R(ξ) and ξ a tuple of indeterminates. Since R→ S is faithfully flat, we may
pass from R to S and therefore assume in view of Remark 7.4 that the maximal ideal
of R is generated by a regular sequence x. Since x is also B-regular and k = R/xR,

TorRi (B, k) ∼= TorR/xRi (B/xB, k) = 0

for all i > 0. Therefore, for any m-primary ideal n, we get TorR/n1 (B/nB, k) = 0 by
[44, Lemma 2.1]. Since R/n is Artinian, B/nB is faithfully flat by the Local Flatness
Criterion, and hence in particular n = nB ∩ R. The last assertion then follows since
any closed ideal is the intersection of all m-primary ideals containing it.

Using an argument similar to the one in the proof of Corollary 7.24, one can show
that under the above assumptions, each TorRi (B,M) vanishes, for i > 0 and M a
finitely generated pseudo-Cohen-Macaulay module: for the Artinian case, induct on
the length of M , and for the general case, on the depth of M , using that IRB = 0 by
construction; details are left for the reader. Before stating the next result, we need to
introduce some terminology. We will follow the treatment in [9, §9.4] and refer to this
source for more details. Let F• be a complex

0→ Fs
ϕs→ Fs−1

ϕs−1→ . . .
ϕ2→ F1

ϕ1→ F0 → 0

with each Fi a finitely generated free R-module. We call s the length of F• and we call
the cokernel of ϕ1 the cokernel of the complex. For each 1 ≤ n ≤ s, we will define
the n-th Fitting ideal In(F•) of F• as follows. Fix 1 ≤ n ≤ s and put

r :=
s∑
i=n

(−1)i−n rankFi.

Let Γ be a matrix representing the morphism ϕn (by choosing bases for Fn and Fn−1)
and let In(F•) be the ideal in R generated by all r × r-minors of Γ. One shows that
this is independent from the choices made.

We say that F• is acyclic if all Hi(F•) vanish, for i > 0; if also H0(F•) vanishes
(that is to say, if the cokernel of F• is zero), then we say that F• is exact. In particular,
if F• is acyclic, then it is a finite free resolution of its cokernel.
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10.8 Theorem. Let (R,m) be an equicharacteristic or an infinitely ramified local ring
of finite embedding dimension. Let F• be a finite complex of finitely generated free R-
modules of length s and let M be its cokernel. If the geometric codimension of In(F•)
is at least n for each n = 1, . . . , s, then the geometric codimension of AnnR(µ) is at
most s, for any non-zero minimal generator µ of M .

Proof. Let d and e be the geometric dimension of R and R/AnnR(µ) respectively. In
view of Proposition 3.15, we need to show that d− e ≤ s, and we do this by induction
on e. Assume first that e = 0, so that AnnR(µ) is m-primary. By Theorem 10.4, there
exists a balanced big Cohen-Macaulay R-algebra B. By Proposition 3.15, we can find
part of a generic sequence of length n in In(F•), which is therefore B-regular. Hence
each In(F•)B has grade at least n, and the Buchsbaum-Eisenbud Acyclicity criterion
([9, Theorem 9.1.6]) then yields that the complex F•⊗RB is acyclic. SinceB, whence
each module in F•⊗R B, has depth d, and since M ⊗R B is the cokernel of F•⊗R B,
the depth of M ⊗R B is at least d − s by [9, Proposition 9.1.2(e)]. By Nakayama’s
lemma, the image of µ in M/mM is non-zero, which implies that µ⊗ 1 is non-zero in
M ⊗R B. Since the annihilator of µ⊗ 1 contains AnnR(µ), it is m-primary. It follows
that M ⊗R B has depth zero, and hence that d− s ≤ 0.

Assume now that e > 0. The threshold primes of R and AnnR(µ) are all differ-
ent from m, and so are the threshold primes of those In(F•) that are not m-primary.
By prime avoidance, we may therefore choose x ∈ m outside all these finitely many
threshold primes. Put Rn := R/In(F•) and S := R/xR. We want to apply the
induction hypothesis to the complex F• ⊗R S and the image of µ in M ⊗R S. By
Corollary 3.12, the geometric dimension of S and R0 ⊗R S are d − 1 and e − 1 re-
spectively, and the geometric dimension of S/In(F• ⊗R S) ∼= Rn ⊗R S is at most
d − n − 1 (this is trivially true if In(F•) is m-primary and follows from Lemma 3.8
in the remaining case). Since S/AnnS(µ) is a residue ring of R0 ⊗R S, its geo-
metric dimension is at most e − 1, so that our induction hypothesis applies, yielding
d− 1− (e− 1) ≤ gcodim(AnnS(µ)) ≤ s.

We can now generalize the new intersection theorems due to Evans-Griffith and
Peskine-Szpiro-Roberts.

10.9 Corollary. Let (R,m) be an equicharacteristic or an infinitely ramified local ring
of finite embedding dimension. Let F• be a finite complex of finitely generated free R-
modules of length s and let M be its cokernel.

10.9.1. If F• is acyclic when localized at any closed prime ideal of R different from m
and there exists a non-zero minimal generator of M whose annihilator is m-
primary, then gdim(R) ≤ s.

10.9.2. If F• is exact when localized at any closed prime ideal of R different from m and
s < gdim(R), then F• is exact.

Proof. To prove (10.9.1), assume s < d := gdim(R). We reach the desired contra-
diction from Theorem 10.8, if we can show that R/In(F•) has geometric dimension at
most d− n, for all n = 1, . . . , s. Fix n and let I := In(F•). There is nothing to show
if I is m-primary, so that we may exclude this case. By Remark 9.3, we can choose
a cata-normalization A0 → R and an ideal J ⊆ A0 such that JR = I (note that I is
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finitely generated by construction). Let A be the image of A0 in R, so that A ⊆ R is
also cata-integral and cata-injective (although Noetherian, A will, in general, no longer
be regular). Since Â → R̂ is integral and injective, Â, whence also A, has dimension
d. Suppose JA has height h and let q be a minimal prime of JA of height h. By [29,
Theorem 9.3], we can find a prime ideal P in R̂ lying above q. Let p := P∩R (which
is therefore closed by Corollary 2.7). Note that since I is not m-primary, h < d, and
therefore p 6= m. By assumption, (F•)p is acyclic, so that the grade of IRp is at least n
by the Buchsbaum-Eisenbud Acyclicity criterion ([9, Theorem 9.1.6]). By [9, Proposi-
tion 9.1.2(g)], the grade of JAq is therefore also at least n. In particular, Aq has depth
at least n, showing that n ≤ h. This in turn implies that A/JA has dimension at most
d− n. Since Â/JÂ→ R̂/IR̂ is integral, the dimension of the first ring is at least that
of the second ring. Hence we showed that R̂/IR̂ has dimension at most d − n. By
Lemma 2.4 and Theorem 3.4, this in turn implies that R/I has geometric dimension at
most d− n, as required.

The second assertion follows from the first by a standard argument (see for instance
the proof of [9, Corollary 9.4.3]). Namely, it implies that the cokernel M of F• has
finite length. The only way that this does not contradict (10.9.1) is that M = 0 (by
Nakayama’s Lemma). This in turn implies that we can split of the last term in F• and
then an inductive argument on s finishes the proof.

We can translate these results to more familiar versions of the homological theo-
rems.

10.10 Theorem (Superheight). Let R → S be a local homomorphism of equicharac-
teristic or infinitely ramified local rings of finite embedding dimension and let M be an
R-module admitting a finite free resolution F• of length s. If M ⊗R S has finite length,
then S has geometric dimension at most s.

Proof. Let m and n be the respective maximal ideals of R and S. Let q be an ideal in
S different from n and put p := q ∩ R. Since the localization of M ⊗R S at q is zero,
we get

Mp/pMp ⊗k(p) Sq/pSq = 0,

where k(p) is the residue field of p. Since Sq/pSq is non-zero, Mp/pMp must be
zero, and therefore Mp = 0, by Nakayama’s Lemma. Hence (F•)p is exact whence
split exact. Therefore, this remains so after tensoring with Sq. In other words, the
conditions of (10.9.2) are met for the complex F• ⊗R S over the ring S, showing that
S must have geometric dimension at most s.

10.11 Theorem (Intersection Theorem). LetR be an equicharacteristic or an infinitely
ramified local ring of finite embedding dimension and let M,N be R-modules. If M
has a finite free resolution of length s, then gdim(N) ≤ s+ gdim(M ⊗R N).

Proof. Assume first that M ⊗R N has finite length and let S := R/AnnR(N). It
follows that M ⊗R S has finite length, so that the geometric dimension of S is at most
s by Theorem 10.10. For the general case, we induct on the geometric dimension of
M ⊗ N . Using Proposition 3.9, one can find x ∈ R such that it is part of a generic
subset of both R/AnnR(N) and R/AnnR(M ⊗ N). It follows that the geometric
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dimensions of N/xN and M ⊗N/xN both have dropped by one, so that we are done
by induction.

10.12 Theorem (Canonical Element Theorem). Let (R,m) be an equicharacteristic
or an infinitely ramified local ring of finite embedding dimension. Let F• be a free
resolution of the residue field k of R and let x be a generic sequence in R. If γ is a
complex morphism from the Koszul complex K•(x) to F•, extending the natural map
γ0 : K0(x) = R/xR → k, then the morphism γd : Kd(x) → Fd is non-zero, where d
is the geometric dimension of R.

Proof. Suppose γd is zero. Let B be a local balanced big Cohen-Macaulay algebra for
R and let y ∈ B be such that its image in B/xB is a non-zero socle element. Define
ψ0 : R→ B by sending 1 to y. Since x isB-regular, the Koszul complexK•(x;B) :=
K•(x)⊗B is acyclic. It follows that ψ0 extends to a morphism of complexes ψ : F• →
K•(x;B). Let α := ψ ◦ γ be the composition K•(x) → K•(x;B). In particular
α0(1) = y and αd = 0. On the other hand, α0 induces by tensoring a morphism
of complexes β := 1 ⊗ α0 : K•(x) → K•(x) ⊗ B = K•(x;B). Since K•(x;B) is
acyclic, α and β differ by a homotopy σ. In particular, βd = βd−αd = σd−1◦δd, where
δd : Kd(x) = R→ Kd−1(x) = Rd is the left most map in the Koszul complex. Since
the image of δd lies in xRd, we get y = βd(1) = σd−1 ◦ δd(1) ∈ xB, contradicting
our choice of y.

To formulate the next result, which extends a result of Eisenbud and Evans in [13],
recall that for an R-module M and an element z ∈ M , the order ideal of z is the
ideal OM (z) consisting of all images α(z) for α ∈ HomR(M,R). Moreover, if R is
a domain with field of fractions K, then the rank of M is defined as the dimension of
the vector space M ⊗R K.

10.13 Theorem (Generalized Principal Ideal Theorem). Let (R,m) be an equicharac-
teristic or an infinitely ramified local domain of finite embedding dimension, and let
M be a finitely generated R-module. If z ∈ mM , then the geometric codimension of
OM (z) is at most the rank of M .

Proof. Let h be the geometric codimension of OM (z), let r be the rank of M , and
let d be the geometric dimension of R. By definition, there exists a generic sequence
(x1, . . . , xd) with xi ∈ OM (z), for i = 1, . . . , h. Replacing M by M ⊕ Rd−h and z
by the element (z, xh+1, . . . , xd), so that both the rank of M and the geometric codi-
mension of OM (z) increase by d− h, we may assume that OM (z) contains a generic
sequence x. Let y be a finite tuple generating m. As explained in the proof of [9,
Theorem 9.3.2], the canonical homomorphism R/xR → R/yR induces a morphism
of Koszul complexes α : K•(x) → K•(y). Let F• be a free resolution of the residue
field R/yR of R and β : K•(y) → F• be an induced morphism of complexes. By
Theorem 10.12, applied to the composition β ◦ α, we get in degree d a non-zero mor-
phism βd ◦ αd, showing in particular that αd is non-zero as well. Since αd is just the
d-th exterior power of α1, the rank of α1 is at least d. On the other hand, α1 factors by
construction through HomR(M,R), whence has rank at most r, yielding the desired
inequality d ≤ r (see [9, Theorem 9.3.2] for more details).
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11. Uniform bounds on Betti numbers

In the next two sections, we apply the previous theory to derive uniformity results
for Noetherian local rings. In this section, we study Betti numbers. Recall that given
a module M over a local ring R with residue field k, its n-th Betti number βn(M)
is defined as the vector space dimension of TorRn (M,k) ∼= ExtnR(M,k). It is equal
to the rank of the n-th module in a minimal free resolution of M (provided such a
resolution exists), and by Nakayama’s Lemma, it is then also equal to the least number
of generators of an n-th syzygy of M . One usually studies the behavior of these Betti
numbers for a fixed module as n goes to infinity. In contrast, we will study their
behavior for fixed n as we vary the module.

11.1 Theorem. For each quadruple (d, e, l, n) of non-negative integers, there exists a
bound ∆(d, e, l, n) with the following property. If R is a d-dimensional local Cohen-
Macaulay ring of multiplicity e, and M is a Cohen-Macaulay R-module of multiplicity
at most l, then

βn(M) ≤ ∆(d, e, l, n).

Proof. Suppose not, so that for some quadruple (d, e, l, n), we cannot define such
an upper bound. This means that for every w, we can find a d-dimensional Cohen-
Macaulay local ring Rw of multiplicity e, and a Cohen-Macaulay Rw-module Mw of
multiplicity at most l, such that βn(Mw) ≥ w. By Theorem 5.23, the ultraproduct
R\ is isodimensional, and by Lemma 8.9, the ultraproduct M \ is finitely generated
and pseudo-Cohen-Macaulay. Since the cataproduct M ] is therefore finitely generated
over the (Noetherian) cataproduct R], its n-th Betti number βn(M ]) is finite, and by
Proposition 8.11, equal to almost all βn(Mw), contradiction.

Theorem 11.1 applied to the residue field of R yields Corollary 1.2 from the intro-
duction. We can also reformulate the previous theorem in terms of universal resolu-
tions:

11.2 Corollary. For each triple (d, e, l), there exists a countably generated Z-algebra
Z and a complex F• of finite free Z-modules, with the following property. If R is a
d-dimensional local Cohen-Macaulay ring of multiplicity e, andM a finitely generated
Cohen-Macaulay module of multiplicity at most l, then there exists a homomorphism
Z → R, such that for any n and any R-module N , we have

TorRn (M,N) ∼= Hn(F• ⊗Z N) and ExtnR(M,N) ∼= Hn(HomZ(F•, N)).

If we impose furthermore that R is regular (whence e = 1) or, more generally,
that M has finite projective dimension, then we may take Z to be a finitely generated
Z-algebra and F• a complex of length d.

Proof. For each n, let δn := ∆(d, e, l, n) be the bound given by Theorem 11.1, and let
Ξn be a tuple of indeterminates viewed as a δn−1×δn-matrix. Let Z be the polynomial
ring over Z generated by all indeterminates Ξn modulo the relations Ξn · Ξn+1 = 0,
expressing that the product of two consecutive matrices is zero. We then define the
complex F• by letting its n-th term be Zδn , and its n-th differential the matrix Ξn.
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By construction, F• is a free complex. Now, given R and M as in the statement,
Theorem 11.1 implies that we may assign to each entry in Ξn, a value in R so that
under the induced map Z → R, the complex F• ⊗Z R becomes a free resolution of
M . The statement now follows from the definition of Tor and Ext.

The n-th Bass number µn(M) of a finitely generated R-module M is the vector
space dimension of ExtnR(k,M), where k is the residue field of R. The q-th Bass
number, with q equal to the depth of M , is also called the type of M .

11.3 Corollary. The type (respectively, for each n, the n-th Bass number) of a finitely
generated module M over a local Cohen-Macaulay ring R is bounded above by a
function (in n) depending only on the dimension and multiplicity of R, and on the
minimal number of generators of M .

Proof. Since the depth ofM is at most the dimension ofR, it suffices to prove the claim
for a fixed n. By Corollary 11.2, there is a resolution F• of k by finite free R-modules
Fn whose ranks βn(k) are bounded by the dimension and multiplicity of R. Since
ExtnR(k,M) is the n-th cohomology of HomR(F•,M), its length µn(M) is at most
the number of generators of HomR(Fn,M) ∼= Mβn(k), and the claim follows.

Let us extend some definitions from [51]. We will call a homomorphism R→ S of
Noetherian local rings formally etale (or a scalar extension), if it is faithfully flat and
unramified (=the maximal ideal of R extends to the maximal ideal of S). Let (R,m)
and (S, n) be Noetherian local rings, and let M be a finitely generated R-module and
N a finitely generated S-module. We define the jet distance between M and N as the
real number

d(M,N) := e−α

where α is the (possibly infinite) supremum of all j such that there exists an Artinian
local ring T , together with formally etale extensions R/mj → T and S/nj → T ,
yielding M ⊗R T ∼= N ⊗S T . As shown in [51] (where the distance is only defined
between rings), the jet distance is a (quasi-)metric, and, roughly speaking, up to a
formally etale base change, limits in this metric space can be calculated by means of
cataproducts.

11.4 Theorem. For each quadruple of positive integers (d, e, l, n), there exists a bound
ε := ε(d, e, l, n) > 0 such that if R and S are d-dimensional local Cohen-Macaulay
rings of multiplicity e, and M and N are finitely generated Cohen-Macaulay modules
of multiplicity at most l over R and S respectively, with d(M,N) ≤ ε, then βn(N) =
βn(M).

Proof. Suppose no such bound exists for the pair (d, e, l, n), resulting in a counterex-
ample for each w, given by d-dimensional Cohen-Macaulay local rings (Rw,mw) and
(Sw, nw) of multiplicity e, and finitely generated Cohen-Macaulay modules Mw and
Nw of multiplicity at most e over Rw and Sw respectively, such that d(Mw, Nw) ≤
e−w, but βn(Mw) 6= βn(Nw). Since Betti numbers are preserved under formally
etale extensions, the techniques in [51] allows us to reduce to the case that the distance
condition means that

Rw/m
w
w
∼= Sw/n

w
w and Mw/m

w
wMw

∼= Nw/n
w
wNw (12)
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Let M \ and N \ be the respective ultraproducts of the Rw, Sw, Mw, and Nw. By
Corollary 8.8, the respective ultraproducts R\ and S\ are pseudo-Cohen-Macaulay lo-
cal rings, and by Lemma 8.9, the respective ultraproducts M \ and N \ are finitely gen-
erated pseudo-Cohen-Macaulay modules over R\ and S\ respectively. Moreover, by
Łos’ Theorem and modding out infinitesimals, we get from (12) that the respective
cataproducts R] and S] are isomorphic, as are the respective cataproducts M ] and N ].
By Proposition 8.11, we therefore get for almost all w, the following contradictory
equalities

βn(Mw) = βn(M ]) = βn(N ]) = βn(Nw).

11.5 Corollary. Given a local Cohen-Macaulay ring R, there exists, for each n ∈ N,
a bound δ := δ(n) > 0 such that if M and N are maximal Cohen-Macaulay modules
with d(M,N) ≤ δ, then βn(N) = βn(M).

Proof. If d(M,N) < 1, then M and N have the same minimal number of genera-
tors m. In view of Theorem 11.4, it suffices to show that the multiplicity of M and
N are uniformly bounded in terms of m. Let ẽ and q̃ be respectively the maximum
multiplicity of R/p and the maximal length of Rp, where p runs over the finitely many
d-dimensional prime ideals of R. Since we have a surjective map Rm →M , tensoring
with one of these d-dimensional prime ideals p shows that the length of Mp is at most
mq̃. The bound on the multiplicity now follows from [9, Corollary 4.6.8].

11.6 Theorem. If an equicharacteristic Cohen-Macaulay local ring with uncountable
algebraically closed residue field has bounded multiplicity type (respectively, finite rep-
resentation type), then so does its completion.

In particular, to establish the Brauer-Thrall conjecture for an equicharacteristic
Cohen-Macaulay local ring with uncountable algebraically closed residue field, it suf-
fices to prove it for its completion.

Proof. Let k be the residue field of R, and let R̂ and R] be the respective completion
and catapower (with respect to a countable index set) of R. By Corollary 8.10, in
either case doesR] have bounded multiplicity type. By Corollary 5.16, the cataproduct
R] is obtained by taking the completion of the base change R̂ ⊗k k\, where k\ is
the ultrapower of k. Since k is algebraically closed and uncountable, k\ ∼= k. In
particular, the base change M ⊗ bR R] of any indecomposable maximal Cohen-Macau-
lay R̂-module M remains an indecomposable maximal Cohen-Macaulay R]-module.
Since the multiplicity of M ⊗ bR R] is at most ε(R]), so is the multiplicity of M by
faithfully flat descent, proving already that R̂ has bounded multiplicity type. Assume
that R has in fact finite representation type. As in the proof of Corollary 8.10, we
can find indecomposable maximal Cohen-Macaulay R-modules Mw with cataproduct
equal to M ⊗ bR R]. Since by assumption there are only finitely many indecomposable
maximal Cohen-MacaulayR-modules, almost allMw are equal to one of these, sayN ,
andM⊗ bRR] is just the catapower ofN , that is to say, equal toN⊗RR]. By faithfully
flat descent, M = N ⊗R R̂. Note that we in fact proved that for a Cohen-Macaulay
local ring of finite presentation type, any indecomposable maximal Cohen-Macaulay
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R̂-module is obtained by base change from an indecomposable maximal Cohen-Mac-
aulay R-module.

To prove the last assertion, assume thatR has finite multiplicity type ε(R). By what
we just proved, R̂ too has finite multiplicity type. If the Brauer-Thrall conjecture holds
for R̂, then it has finite representation type. Let N1, . . . , Ns be all its indecomposable
maximal Cohen-Macaulay modules. Let M be an indecomposable maximal Cohen-
Macaulay R-module. Since M̂ = M ⊗ R̂ is then a maximal Cohen-Macaulay R̂-
module, as are all of its direct summands, it is of the form

M̂ ∼= Ne1
1 ⊕ · · · ⊕Nes

s . (13)

SinceM , whence also M̂ , has multiplicity at most ε(R), each ei is at most ε(R). Hence
there are only finitely many possible decompositions (13), proving that there are then
also only finitely many possibilities for M .

Proofs of Corollaries 1.4, 1.5 and 1.6
Assume that no such bound exists, so that we can find d-dimensional Cohen-Mac-

aulay local rings Rw of multiplicity e, all of whose indecomposable maximal Cohen-
Macaulay modules have multiplicity at most ε, but there are at least w many. Let R]
be their cataproduct, which therefore is a d-dimensional Cohen-Macaulay local ring
of multiplicity e and multiplicity type at most ε. By assumption, it has only finitely
many indecomposable, maximal Cohen-Macaulay modules. However, by choosing for
each w some indecomposable maximal Cohen-Macaulay Rw-module, and taking their
cataproduct, we get an indecomposable maximal Cohen-Macaulay module by Corol-
lary 7.24, and we get infinitely many non-isomorphic ones in this fashion, contradic-
tion.

The second corollary follows immediately from the definitions and Theorem 11.1.
To prove the third, let e be the multiplicity of R/I . Since I = xR for some regular
element x ∈ R, the residue ring R/I is Cohen-Macaulay and has projective dimension
one. Hence β1(R/I) = 1 and β2(R/I) = 0. Choose some ε > 0 as given by
Theorem 11.4 such that d(R/I,M) ≤ ε implies that R/I and M have the same zero-
th, first and second Betti number, for M a Cohen-Macaulay module of multiplicity at
most e. Note that from β0(M) = β0(R/I) = 1 it follows that M is of the form R/J ,
so that in the statement, we did not even need to assume that M was cyclic. Choose
a such that e−a ≤ ε. In particular, d(R/I,R/J) ≤ ε, and therefore β1(R/J) = 1,
yielding that J is cyclic, and β2(R/J) = 0, yielding that it is invertible.

In terms of the Poincare series of a module M , defined as

PR(M ; t) :=
∑
n

βn(M)tn,

our results yield:

11.7 Corollary. Over a fixed local Cohen-Macaulay ring, the Poincare series is a
continuous map from the metric space of Cohen-Macaulay modules of multiplicity at
most e (respectively, from the space of all maximal Cohen-Macaulay modules), to Z[[t]]
with its t-adic topology.
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Proof. For each n, we can choose by Theorem 11.4 (respectively, by Corollary 11.5),
an ε > 0 such that d(M,N) ≤ ε implies that the first n Betti numbers of M and
N are the same, for M and N Cohen-Macaulay modules of multiplicity at most e
(respectively, maximal Cohen-Macaulay modules). Hence PR(M ; t) ≡ PR(N ; t)
mod tnZ[[t]].

Although we did not formulate it here, we may even extend this result by also
varying the base ring over all local Cohen-Macaulay rings of a fixed dimension and
multiplicity; see [51, §8]. Applied to a regular local ring, we immediately get:

11.8 Corollary. Let R be a regular local ring. For each e, there exists δ := δ(e) > 0
such that if M and N are Cohen-Macaulay modules of multiplicity at most e and
d(M,N) ≤ δ, then PR(M ; t) = PR(N ; t).

12. Uniform arithmetic

In this section, we prove several uniform bounds, and show that the existence of
such bounds is often equivalent with a certain ring theoretic property. We start with
examining the domain property. It is not true in general that the catapower of a domain
is again a domain: let R be the local ring at the origin of the plane curve over a field
k given by f := ξ2 − ζ2 − ζ3. The catapower of R is k\[[ξ, ζ]]/fk\[[ξ, ζ]], where
k\ is the ultrapower of k, and this is not a domain (since 1 + ζ has a square root in
k\[[ξ, ζ]]). Clearly, the problem is that R is not analytically irreducible, that is to say,
not a cata-domain.

Before we give a necessary and sufficient condition for a catapower to be a domain,
let us introduce some terminology which makes for a smoother presentation of our
results. Put N̄ := N ∪ {∞}. By an n-ary numerical function, we mean a map from
f : N̄n → N̄, with the property that f(s1, . . . , sn) =∞ if and only if one of the entries
si is equal to ∞. Moreover, we will always assume that a numerical function f is
non-decreasing in any of its arguments, that is to say, if si ≤ ti for i = 1, . . . , n, then
f(s1, . . . , sn) ≤ f(t1, . . . , tn). To indicate that a numerical function depends on a ring
R, we will write the ring as a subscript.

Recall thatR has bounded multiplication if there exists a binary numerical function
µR (called a uniformity function) such that

ord(xy) ≤ µR(ord(x), ord(y))

for all x, y ∈ R (see §2.1 for the definition of order). In view of our definition of nu-
merical function, the ideal of infinitesimals in a local ring with bounded multiplication
is a prime ideal, and hence the separated quotient is a domain.

12.1 Theorem. Let (R,m) be a Noetherian local ring. The following are equivalent:

12.1.1. R is analytically irreducible;
12.1.2. R has bounded multiplication;
12.1.3. some (equivalently, any) catapower R] of R is a domain.

59



Proof. The implication (12.1.2) ⇒ (12.1.1) is clear from the above discussion, since
having bounded multiplication is easily seen to be preserved under completions. In
order to prove (12.1.1)⇒ (12.1.3), assume R is analytically irreducible and let R] be
its catapower. Since R̂ has the same catapower by Corollary 5.8, we may moreover
assume that R is a complete Noetherian local ring. If R is normal, then so is R] by
Corollary 5.15, and hence again a domain. For the general case, let S be the normaliza-
tion of R, so that R ⊆ S is a finite extension. Since R is complete, S is again local. By
Proposition 5.17, we get an extension R] ⊆ S]. Since we argued that S] is a domain,
the same therefore is true for R].

Remains to show (12.1.3)⇒ (12.1.2). By way of contradiction, suppose no bound
exists for the pair (a, b). In other words, we can find xn, yn ∈ R such that ord(xn) =
a, ord(yn) = b and xnyn ∈ mn. Letting x\ and y\ be their respective ultraproducts,
we get ord(x\) = a, ord(y\) = b and x\y\ ∈ IR\ . Since IR\ is by assumption prime,
x\ or y\ lies in IR\ , neither of which is possible.

12.2 Remark. The equivalence of (12.1.1) and (12.1.2) is well-known and is usually
proven by a valuation argument. By [54, Theorem 3.4] and [27, Proposition 2.2]
these conditions are also equivalent with the existence of a linear uniformity function:
µR(a, b) := kR max{a, b}, for some k := kR ∈ N, in which case we say that R has
k-bounded multiplication. For a further result along these lines, see [32, Proposition
5.6].

By the same argument proving implication (12.1.3)⇒ (12.1.2), we get:

12.3 Corollary. Let Rn be Noetherian local rings of bounded embedding dimension.
If (almost) all Rn have bounded multiplication with respect to the same uniformity
function µ = µRn , then so do their ultraproduct R\ and cataproduct R]. In particular,
R] is a domain.

Note that the converse is not true. For instance, if R is a complete Noetherian local
domain, then the cataproduct of the R/mn is a domain by Corollaries 5.10 and 12.3.
If instead of order, we use degree (see §3.16 for the definition), we get the following
analogue of bounded multiplication, this time in terms of a bound whose dependence
on the ring is only through its embedding dimension.

12.4 Theorem. There exists a ternary numerical function ω with the following prop-
erty. For every Noetherian local ring R and any two elements x, y ∈ R, we have an
inequality

deg(xy) ≤ ω(embdim(R),deg(x),deg(y)).

Proof. Towards a contradiction, suppose such a function cannot be defined on the triple
(m, a, b). This means that for each n, we can find a Noetherian local ring Rn of em-
bedding dimension m and elements xn, yn ∈ Rn such that deg(xn) = a, deg(yn) = b
and deg(xnyn) ≥ n. Let R\, x\ and y\ be the respective ultraproduct of the Rn, the
xn and the yn. Let d be the ultra-dimension of R\, so that almost all Rn have di-
mension d. By Corollary 3.17, almost each Rn has parameter degree at most a and
hence R\ is isodimensional by Theorem 5.23. Hence x\ and y\ are both generic by
Corollary 5.26, and hence so is their product x\y\ by Corollary 3.12. However, this
contradicts Corollary 5.26 as the xnyn have unbounded degree.
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From the exact sequence

R/xR
y→ R/xyR→ R/yR→ 0

where the first map is induced by multiplication by y, we see that deg(xy) ≤ deg(x)+
deg(y) for all x, y in a one-dimensional Noetherian local ring (in fact, if R is Cohen-
Macaulay, then the first map is injective and we even have equality). I do not know
what happens in higher dimensions.

12.5. Order versus degree

We next investigate the relationship between order and degree. If R is Cohen-Mac-
aulay and x isR-regular, then the degree ofR is just the multiplicity ofR/xR. By [29,
Theorem 14.9], we get ord(x) ≤ deg(x)/mult(R). In particular, ord(x) ≤ deg(x),
and this latter inequality could very well always be true (see also §12.19 below). At
any rate, we have:

12.6 Corollary. There exists a binary numerical function π with the following property.
For every Noetherian local ring R and every element x ∈ R, we have an inequality

ord(x) ≤ π(embdim(R),deg(x)).

Proof. Suppose for some pair (m, a), we have for each n, a counterexample xn ∈ mn
n

of degree a in the Noetherian local ring (Rn,mn) of embedding dimension m. Let
x\ ∈ R\ be the ultraproduct so that by Theorem 5.23, the degree of x\ is a, yet x\ ∈
IR\ , contradicting Corollary 3.17.

Applying Corollary 12.6 to a product and then using Theorem 12.4, we get the
existence of a ternary numerical function η such that for any Noetherian local ring R
and elements x, y ∈ R, we have

ord(xy) ≤ η(embdim(R),deg(x),deg(y)) (14)

For Noetherian local rings that are analytically irreducible, order and degree are mutu-
ally bounded, and in fact, we have the following more precise result:

12.7 Theorem. There exists a quaternary numerical function ζ with the following
property. For every d-dimensional Noetherian local domain (R,m) of parameter de-
gree at most e and k-bounded multiplication, and for every x ∈ R, we have an in-
equality

deg(x) ≤ ζ(d, e, k, ord(x)).

Proof. It suffices to show that there exists a function β such that if ord(x) < a for some
x ∈ R and some a ∈ N, then deg(x) < β(d, e, k, a). Suppose no such bound exists for
the quadruple (d, e, k, a). Hence, for each n, we can find a d-dimensional Noetherian
local domain (Rn,mn) of parameter degree at most e and k-bounded multiplication,
and an element xn /∈ ma

n whose degree is at least n. Let (R\,m\) and x\ be the
respective ultraproduct of the (Rn,mn) and the xn. By Theorem 5.23, the geometric
dimension of R\ is d. Since the Rw/xwRw have dimension d − 1, but unbounded
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parameter degree, the same theorem shows that the geometric dimension ofR\/x\R\ is
strictly bigger than its ultra-dimension d−1, whence is also equal to d. In particular, x\
is not generic. Since the cataproductR] is a domain by Corollary 12.3, we get x\ ∈ IR\
by Corollary 3.12. However, by Łos’ Theorem, x\ /∈ ma

\ , a contradiction.

Whereas order is a filtering function (see §2), inducing the m-adic filtration on R,
this is no longer true for degree. For instance, let R be the local ring at the origin of
the curve with equation ξζ + ξ3 + ζ3 = 0. Then both ξ and ζ have degree three,
but their sum ξ + ζ has degree two. As we will see below in §12.19, on regular local
rings, degree is filtering. Can one characterize in general rings for which degree is
filtering? Is, for every n, the set of elements having degree at least n always a finite
union of ideals? In other words, as far as its properties are concerned, degree is still a
mysterious function. However, its main use in this paper is to characterize properties
via its asymptotic behavior, as we will now discuss.

12.8. Characterizations through uniform behavior

Recall that a Noetherian local ring is analytically unramified if its completion is
reduced. Any reduced excellent local ring is analytically unramified ([29, Theorem
32.2]).

12.9 Corollary. A Noetherian local ring R is analytically unramified if and only if
there exists a numerical function νR, such that for every x ∈ R, we have an inequality

ord(x2) ≤ νR(ord(x)).

Proof. Since order remains unaffected by completion, we may assume that R is more-
over complete. Suppose R is reduced. It suffices to show that there exists a function
νR such that x2 ∈ mνR(b) implies x ∈ mb. By way of contradiction, suppose this is
false for b. Hence, we can find xn ∈ R such that x2

n ∈ mn, but xn /∈ mb. Let R\ be the
ultrapower of R and let x\ be the ultraproduct of the xn. By Łos’ Theorem, x2

\ ∈ IR\
and x\ /∈ mbR\. However, IR\ is radical by Corollary 5.15. Hence x2

\ ∈ IR\ implies
x\ ∈ IR\ , contradiction.

Conversely, let the function νR be as asserted. If x2 is zero, then its order is infinite.
The only way that this can be bounded by νR(ord(x)), is for x to have infinite order
too, meaning that x = 0. This shows that R is reduced.

By a similar argument, one easily shows that if all Rn have bounded squares (in
the sense of the corollary) with respect to the same function ν = νRn , then their cat-
aproduct is reduced. If R is analytically irreducible, then the results of Hübl-Swanson
(see Remark 12.2) imply that we may take νR(b) of the form kRb for some kR and all
b. I do not know whether this is still true in general. Similarly, for the bounds we are
about to prove, is their still some vestige of linearity?

12.10 Corollary. A Noetherian local ring R is analytically irreducible if and only if
there exists a numerical function ξR such that for every x ∈ R, we have an inequality

deg(x) ≤ ξR(ord(x)).
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Proof. In view of Remark 12.2, the direct implication follows from an application of
Theorem 12.7. As for the converse, suppose degree is bounded in terms of order.
Since both order and degree remain the same after passing to the completion, we may
moreover assume R is complete. Since a non-zero element has finite order, it has
finite degree whence is generic. This shows that there are no non-zero prime ideals of
maximal dimension, which in turn forces the zero ideal to be a prime ideal.

Tweaking (14) slightly (for a fixed ringR), we can characterize the following prop-
erty. Recall that a Noetherian local ringR is called unmixed, if each associated prime p
of its completion R̂ has the same dimension as R; if the above is only true for minimal
primes of R̂, then we say that R is quasi-unmixed (also called formally equidimen-
sional).

12.11 Lemma. If a Noetherian local ring is (quasi-)unmixed, then so is its catapower.

Proof. By Corollary 5.8, we may assume R is a complete (quasi-)unmixed Noetherian
local ring. Let us first show that the catapower R] is quasi-unmixed. In any case, R
and R] have the same dimension, say d. Since R] is complete by Lemma 5.6, we need
to show that every minimal prime q ⊆ R] has dimension d. Since R is complete, it
is of the form S/I for some complete regular local ring S and some ideal I ⊆ S. By
Corollary 5.15, the catapower S] of S is regular, whence a domain. Let p := q∩R and
P := p ∩ S. By flatness, p is a minimal prime of R by [29, Theorem 15.1], whence
has dimension d, as R is equidimensional.

Since S → S] is flat, S]/PS] is equidimensional by [29, Theorem 31.5]. Since
S]/IS] ∼= R], we get S]/PS] ∼= R]/pR]. Since q is necessarily a minimal prime
of pR], equidimensionality yields that R]/q and R]/pR] have the same dimension.
Since R]/pR] is the catapower of R/p, this dimension is just d, showing that q is a
d-dimensional prime.

Assume next that R is unmixed. Since R has no embedded primes, it satisfies
Serre’s condition (S1), whence so does R] by Corollary 5.15 and [29, Theorem 23.9].
Since we already know that R] is quasi-unmixed, it is in fact unmixed.

12.12 Theorem. A Noetherian local ring R is unmixed if and only if there is a binary
numerical function χR such that for every x, y ∈ R, we have an inequality

ord(xy) ≤ χR(deg(x), ord(y)). (15)

Proof. Assume first that R is unmixed. Since degree and order remain the same when
we pass to the completion, we may assume R is complete. By Lemma 12.11, the
catapower R] is then also unmixed. By way of contradiction, assume that for some
pair (a, b), we can find elements xn, yn ∈ R with deg(xn) ≤ a and ord(yn) ≤ b, such
that xnyn ∈ mn. Hence, in the ultrapower R\ of R, the ultraproduct x\ of the xn has
degree at most a and the ultraproduct y\ of the yn has order at most b, but x\y\ ∈ IR\ .
Since x\ has finite degree, it is generic and hence its image inR] lies outside any prime
of maximal dimension. Since R] is unmixed, x\ is therefore R\-regular and hence
y\ = 0 in R], contradicting that its order is at most b.

Conversely, assume a function χ with the proscribed properties exists and let x be
a generic element, say, of degree a. We have to show that x is R-regular. If not, then
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xy = 0 for some non-zero y, say, of order b. However, the order of xy is bounded by
χ(a, b), contradiction.

By the same argument, one easily proves that the cataproduct of Noetherian lo-
cal rings Rn of bounded embedding dimension is unmixed, provided almost each Rn
satisfies the hypothesis of the statement with respect to the same uniformity function
χ = χRn . In order to characterize quasi-unmixedness, we have to introduce one more
invariant. Given a Noetherian local ring R, we define its nilpotency degree to be the
least t such that nt = 0, where n is the nilradical of R. Hence R is reduced if and only
if its nilpotency degree is one.

12.13 Proposition. A Noetherian local ring R of nilpotency degree at most t is quasi-
unmixed if and only if there exists a binary numerical function θR such that for every
x, y ∈ R, we have an inequality

ord((xy)t) ≤ θR(deg(x), ord(yt)).

Proof. Again, we may pass to the completion of R, since all invariants remain un-
changed under completion, and assume from the start that R is complete. Suppose that
θR has the above property. To show that R is quasi-unmixed, which in the complete
case is just being equidimensional, we need to show that any generic element x lies
outside any minimal prime of R. A moment’s reflection shows that this is equivalent
with showing that x is Rred-regular. Hence, towards a contradiction, assume y ∈ R is
a non-nilpotent element in R such that xy is nilpotent. By definition of t, this means
yt 6= 0, but (xy)t = 0. However, the order of (xy)t is bounded by the finite number
θR(deg(x), ord(yt)), contradiction.

Conversely, assume R is equidimensional, but no function θR can be defined for
some pair (a, b). Hence we can find counterexamples xn ∈ R of degree a and yn ∈ R
such that ytn /∈ mb+1, but (xnyn)t ∈ mn. Let x\, y\ and R\ be the respective ultra-
products, so that x\ is generic by Corollary 5.26, and yt\ /∈ mb+1R\, but (x\y\)t ∈ IR\
by Łos’ Theorem. However, by Lemma 12.11, the cataproduct R] is again equidimen-
sional (note that R] is complete), and therefore, x\, being generic in R], is (R])red-
regular. Hence (x\y\)t = 0 in R] yields that y\ is nilpotent in R]. Let n be the
nilradical of R. Since R]/nR] is the catapower of Rred = R/n by Corollary 5.7, it is
reduced by Corollary 5.15. This proves that the nilradical of R] is just nR] and hence
in particular, R] has nilpotency degree t too. Therefore, yt\ = 0, contradicting that
yt\ /∈ mb+1R].

12.14 Theorem. A d-dimensional Noetherian local ring R is Cohen-Macaulay if and
only if there exists a binary numerical function δR such that for all d-tuples x :=
(x1, . . . , xd) and (y1, . . . , yd) with x a system of parameters, we have an inequality

ordR(x1y1 + · · ·+ xdyd) ≤ δR(`(R/xR), ordR/(x1,...,xd−1)R(yd)). (16)

Moreover, the function δR only depends on the dimension and the multiplicity of R.

Proof. Assume first a function δR with the asserted properties exists. In order to prove
that R is Cohen-Macaulay, we take a system of parameters (z1, . . . , zd) and show that
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it is R-regular. Fix some i and suppose a1z1 + · · · + aizi = 0. We need to show
that ai ∈ I := (z1, . . . , zi−1)R. Fix some k and define xj and yj as follows. If
j = 1, . . . , d−i, then xj := zki+j and yj := 0; if j = d−i+1, . . . , d, then xj := zi+j−d
and yj := ai+j−d. In other words, we have

x := (x1, . . . , xd) = (zki+1, . . . , z
k
d , z1, . . . , zi)

y := (y1, . . . , yd) = (0, . . . , 0, a1, . . . , ai)
x1y1 + · · ·+ xdyd = a1z1 + · · ·+ aizi = 0.

(17)

Apply (16) to these two tuples x and y. Since x is again a system of parameters,
`(R/xR) is finite. Hence, by the last equation in (17), the order of yd = ai in
R/(x1, . . . , xd−1)R must be infinite, that is to say,

ai ∈ (x1, . . . , xd−1)R = I + (zki+1, . . . , z
k
d )R.

Since this holds for all k, Krull’s intersection theorem yields ai ∈ I .
To prove the converse, supposeR is Cohen-Macaulay, but δR(a, b) is undefined for

some pair (a, b). This means that there exists for each n, a system of parameters xn :=
(x1n, . . . , xdn) such that R/xnR has length a, and a d-tuple yn := (y1n, . . . , ydn),
such that

ordR/(x1n,...,xd−1,n)R(ydn) = b

and x1ny1n + · · · + xdnydn has order at least n. Let x\ := (x1\, . . . , xd\) and yi\ be
the respective ultraproducts of the xn and yin inside the ultrapower R\ of R. By Łos’
Theorem, the order of yd\ in R\/(x1\, . . . , xd−1\)R\ is b, the length of R\/x\R\ is a,
and the sum x1\y1\+· · ·+xd\yd\ is an infinitesimal. In particular, the image of x\ in the
catapowerR] is a system of parameters, whenceR]-regular, sinceR] is Cohen-Macau-
lay by Corollary 5.15. Since x1\y1\+· · ·+xd\yd\ = 0 inR], regularity forces yd\ to be
in the ideal (x1\, . . . , xd−1\)R], contradicting that its order in R]/(x1\, . . . , xd−1\)R]
is finite.

To prove the final statement, observe that for fixed dimension d and multiplicity e,
we may modify the above proof by taking each counterexample xn and yn in some d-
dimensional local Cohen-Macaulay ringRn of multiplicity e. Indeed, by Corollary 8.8,
the cataproduct R] of the Rn is again Cohen-Macaulay so that we can copy the above
argument.

One can view the previous result as a quantitative version of the unmixedness the-
orem. Namely, we can rewrite condition (16) as follows: for any d− 1-tuple z and any
x, y ∈ R, if z is part of a system of parameters, then

ordR/zR(xy) ≤ δR(degR/zR(x), ordR/zR(y)). (18)

Comparing this with (15), we can now rephrase Theorem 12.14 using the following
terminology: by a curve, we mean a one-dimensional subscheme C of X := Spec(R);
we call a curve C a complete intersection in X if it is of the form Spec(R/I) with I
an ideal generated by dimR− 1 elements; we call C unmixed, if its coordinate ring is
(note that this is equivalent with C being Cohen-Macaulay).
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12.15 Corollary. A Noetherian local ring R is Cohen-Macaulay if and only if every
complete intersection curve C in Spec(R) is unmixed with respect to a uniformity
function χ = χC (as given by Theorem 12.12) independent from C.

We can depart from other criteria for Cohen-Macaulayness to get some more uni-
formity characterizations. For instance, we could use the criterion proven in [50,
Corollary 5.2.11] that R is Cohen-Macaulay if and only if every system of parameters
x := (x1, . . . , xd) is independent, in the sense that a relation x1y1 + · · · + xdyd = 0
implies that all yi lie in xR. Thus, we get the following modified form of (16): a d-
dimensional Noetherian local ring R is Cohen-Macaulay if and only if there exists a
binary numerical function δ′R such that for every two d-tuples x := (x1, . . . , xd) and
(y1, . . . , yd), we have an inequality

ordR(x1y1 + · · ·+ xdyd) ≤ δ′R(`(R/xR), ordR/xR(yd)).

Next, we characterize normality:

12.16 Theorem. A Noetherian local ringR is normal if and only if there exists a binary
numerical function εR such that for all x, y, z ∈ R, we have an inequality

min
k
{ordR/zkR(xyk)} ≤ εR(ord(x), ordR/zR(y)). (19)

Proof. SupposeR is normal, but εR cannot be defined for a pair (a, b). Hence, for each
n, there exist elements xn, yn, zn ∈ R such that xn has order a and yn has order b
modulo znR, but ordR/zknR(xnykn) ≥ n for all k. Let x\, y\, z\ ∈ R\ be the respective
ultraproducts of xn, yn, zn ∈ R. In particular, x\ is non-zero in the catapower R] and
y\ /∈ z\R]. On the other hand, since x\yk\ ∈ zk\R] for all k, a well-known criterion
shows that y\ lies in the integral closure of z\R]. SinceR] is normal by Corollary 5.15,
any principal ideal is integrally closed, so that y\ ∈ z\R], contradiction.

Conversely, assume a numerical function εR exists with the proscribed properties.
Taking z = 0 in (19), we see that R is a domain by Theorem 12.1. Suppose y/z is an
element in the field of fractions of R which is integral over R. We want to show that
y/z ∈ R. Since y is then in the integral closure of zR, there exists a non-zero x such
that xyk ∈ zkR for all k. The left hand side in (19) is therefore infinite, whence so
must the right hand side be, forcing y ∈ zR.

In our last two examples, we show how also tight closure conditions fit in our
present program of characterizing properties by certain uniform behavior. We will
adopt the usual tight closure notation of writing I [q] as an abbreviation for the ideal
(wq1, . . . , w

q
n)R, where I := (w1, . . . , wn)R is some ideal and q is some power of

the prime characteristic p of R. An element y ∈ R lies in the tight closure I∗ of I ,
if there exists c ∈ R outside all minimal prime ideals, such that cyq ∈ I [q] for all
powers q of p. We say that R is F-rational if some parameter ideal is tightly closed, in
which case every parameter ideal is tightly closed (recall that a parameter ideal is an
ideal generated by a system of parameters). On the other hand, if every ideal is tightly
closed, then we call R weakly F-regular.
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12.17 Theorem. An excellent local ringR of characteristic p is pseudo-rational if and
only if there exists a ternary numerical function ϕR such that for all elements x, y ∈ R
and every (equivalently, some) parameter ideal I , we have an inequality

min
q
{ordR/I[q](xy

q)} ≤ ϕR(deg(x), `(R/I), ordR/I(y)) (20)

where q runs over all powers of p.

Proof. We will use Smith’s tight closure characterization [52] thatR is pseudo-rational
if and only if it is F-rational. Assume first that R is pseudo-rational whence F-rational,
but a numerical function ϕR cannot be defined on the triple (a, b, c). Hence there exist
for each n, elements xn, yn ∈ R and a parameter ideal In in R such that xn has
degree a and R/In is an Artinian local ring of length b in which yn has order c, but
ord

R/I
[q]
n

(xyq) ≥ n for all powers q of p. Let x\, y\, I\ be the respective ultraproducts
of the xn, yn, In and let R] be the catapower of R. Let J be a parameter ideal in R.
Hence JR] is a parameter ideal in R]. Since R→ R] is regular by Corollary 5.15 and
since J is tightly closed, so is JR] by [28, Theorem 131.2] or [24], showing that R] is
F-rational.

Since a pseudo-rational local ring is a domain, x\ is generic in R] and I\R] is a
parameter ideal in R]. Moreover, y\ /∈ I\R], but x\y

q
\ ∈ I

[q]
\ R] for all q. By definition

of tight closure, y\ ∈ (I\R])∗. In particular, every parameter ideal, including I\R], is
tightly closed and hence y\ ∈ I\R], contradiction.

Conversely, assume ϕR satisfies (20) for some parameter ideal I . To verify that R
is F-rational, let y ∈ I∗. Hence, for some x ∈ R not in any minimal prime, xyq ∈ I [q]

for all q. The left hand side of (20) is therefore infinite whence so is the right hand side.
Since x is generic, whence has finite degree, the third argument must be infinite, that is
to say, y ∈ I .

12.18 Theorem. A Noetherian local ring (R,m) of characteristic p is weakly F-
regular if and only if there exists a ternary numerical function ψR such that for all
elements x, y ∈ R and all m-primary ideals I , we have an inequality

min
q
{ordR/I[q](xy

q)} ≤ ψR(deg(x), `(R/I), ordR/I(y)) (21)

where q runs over all powers of p.

Proof. Note that for R to be weakly F-regular, it suffices that every m-primary ideal
is tightly closed, since by Krull’s Intersection Theorem, any ideal is an intersection of
m-primary ideals. Moreover, if R is weakly F-regular, then so is its catapower R] by
[24, Theorem 7.3] in conjunction with Corollary 5.15. In view of these facts, the proof
is now almost identical to the one for Theorem 12.17; details are left to the reader.

12.19. Epilogue: characterization of regularity
Let me make a few further observations, although they do no longer relate to our

proof method. If R is regular, then in fact ord(xy) = ord(x) + ord(y). However,
the latter condition does not characterize regularity, but only the strictly weaker con-
dition that the associated graded ring gr(R) is a domain. The following condition,
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however, does characterize regularity: a Noetherian local ring R is regular if and only
if ord(x) = deg(x) for all x ∈ R. Indeed, if R is regular and ord(x) = a, then
by judiciously choosing a regular system of parameters (x1, . . . , xd), we can ensure
that x still has order a in V := R/(x1, . . . , xd−1)R. Since V is a discrete valu-
ation ring with uniformizing parameter xd, one checks that `(V/xV ) = a. Since
deg(x) ≤ `(R/(x, x1, . . . , xd−1)R) = a, we get deg(x) ≤ ord(x). The other in-
equality follows from our discussion in §12.5.

Conversely, if order and degree agree, then in particular there exists an element
of degree one, and hence a system of parameters x such that R/xR has length one,
whence is a field, showing that x is a regular system of parameters.

13. Asymptotic homological conjectures in mixed characteristic

In [39, 47], we derived asymptotic versions of the homological conjectures for
local rings of mixed characteristic p, where by asymptotic, we mean that the residual
characteristic p must be large with respect to the complexity of the data. In the above
papers, complexity was primarily given in terms of the degrees of the polynomials
defining the data. In this paper, we phrase complexity in terms of (natural) invariants
of the ring and the data only.

Improved New Intersection Theorem

To not have to repeat each time the conditions from this theorem, we make the
following definition: given a finite complex F• of finitely generated free R-modules, a
finite free complex, for short, we say that its rank is at most r, if all Fi have rank at most
r; and we say that its INIT-degree is at most l, if each Hi(F•), for i > 0, has length at
most l, and H0(F•) has a minimal generator generating a submodule of length at most
l. Recall that the length of F• is the largest n such that Fn 6= 0.

13.1 Theorem (Asymptotic Improved New Intersection Theorem). For each triple of
non-negative integers (m, r, l), there exists a bound κ(m, r, l) with the following prop-
erty. Let R be a Noetherian local ring of mixed characteristic p and of embedding
dimension at most m. If F• is a finite free complex of rank at most r and INIT-degree
at most l, then its length is at least the dimension of R, provided p ≥ κ(m, r, l).

Proof. Since the dimension of R is at most m, there is nothing to show for complexes
of length m or higher. Suppose the result is false for some triple (m, r, l). This means
that for infinitely many distinct prime numbers pw, we can find a dw-dimensional Noe-
therian local ring (Rw,mw) of mixed characteristic pw and embedding dimension at
mostm, and we can find a finite free complex F•w of rank at most r, of length sw ≤ m,
and of INIT-degree at most l, such that sw < dw. Choose a non-principal ultrafilter and
let (R\,m\) be the ultraproduct of the (Rw,mw). Since sw < dw ≤ m, their respective
ultraproducts satisfy s < d ≤ m. By Theorem 5.19, the geometric dimension of R\
is at least d. Let F•\ be the ultraproduct of the complexes F•w. Since the ranks are at
most r, each module in F•\ is a free R\-module of rank at most r. Since ultraproducts
commute with homology, and preserve uniformly bounded length by Proposition 5.13,
the higher homology groups Hi(F•\) have finite length (at most l). Furthermore, by
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assumption, we can find a minimal generator µw of H0(F•w) generating a submod-
ule of length at most l. Hence the ultraproduct µ\ of the µw is by Łos’ Theorem a
minimal generator of H0(F•\), generating a submodule of length at most l. In con-
clusion, F•\ has INIT-degree at most l. In particular, F•\ is acyclic when localized at
a non-maximal prime ideal, and hence (10.9.1) from Corollary 10.9 applies, yielding
that s ≥ gdim(R\) ≥ d, contradiction.

We can even give an asymptotic version of Theorem 10.8, albeit in terms of some
less natural bounds.

13.2 Theorem. For each triple of non-negative integers (m, r, l), there exists a bound
σ(m, r, l) with the following property. Let (R,m) be a Noetherian local ring of mixed
characteristic p and of embedding dimension at most m, and let F• be a finite free
complex of rank at most r. Let M be the cokernel of F•, and let µ be a non-zero
minimal generator of M . Assume each R/Ik(F•) has dimension at most dimR − k
and parameter degree at most l, for k ≥ 1, and R/AnnR(µ) has parameter degree at
most l.

If p ≥ σ(m, r, l), then the length of the complex F• is at least the codimension of
AnnR(µ).

Proof. Suppose the result is false for some triple (m, r, l). This means that for infinitely
many distinct prime numbers pw, we can find a dw-dimensional mixed characteristic
Noetherian local ring (Rw,mw) whose residue field has characteristic pw and whose
embedding dimension is at mostm, and we can find a finite free complex F•w of length
sw and of rank at most r, and a non-zero minimal generator µw of its cokernel Mw

such that Rw/Ik(F•w) has dimension at most dw − k and parameter degree at most l,
for all k = 1, . . . , sw, and such that Rw/AnnRw(µw) has parameter degree at most
l, but dimension strictly less than dw − sw. Choose a non-principal ultrafilter and let
(R\,m\) be the ultraproduct of the (Rw,mw). Since sw ≤ dw ≤ m, their respective
ultraproducts satisfy s ≤ d ≤ m. By Theorem 5.19, the geometric dimension of R\
is at least d. Let F•\ and µ be the ultraproduct of the complexes F•w and the minimal
generators µw respectively. Since the ranks are at most r, each module in F•\ will
be a free R\-module of rank at most r. By Theorem 5.23, the geometric dimension of
R\/Ik(F•\) is at most d−k, for all k = 1, . . . , s. Also by Łos’ Theorem, µ is a minimal
generator of the cokernel of F•\ and R\/AnnR\(µ), being the ultraproduct of the
Rw/AnnRw(µw), has geometric dimension strictly less than d − s by Theorem 5.23.
However, this is in contradiction with Theorem 10.8, which yields that R\/AnnR\(µ)
has geometric dimension at least d− s.

Using the same techniques, we can deduce from Theorem 10.12 the following
asymptotic version (details are left to the reader).

13.3 Theorem (Asymptotic Canonical Element Theorem). For each triple of non-
negative integers (m, r, l), there exists a bound ρ(m, r, l) with the following property.
Let R be a d-dimensional Noetherian local ring of mixed characteristic p and embed-
ding dimension at most m, and let F• be a free resolution of the residue field k of R, of
rank at most r.
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If x is a system of parameters in R such that R/xR has length at most l and
if the morphism of complexes γ : K•(x) → F• extends the natural homomorphism
R/xR→ k, then γd 6= 0, provided p ≥ ρ(m, r, l).

13.4 Remark. Perhaps it is not entirely justified to call this theorem a ‘canonical el-
ement theorem’, since it does not necessarily produce a canonical element in local
cohomology like it does in the equicharacteristic case. This is due to the fact that we
can not apply the theorem to the various ‘powers’ of a system of parameters as in the
discussion in [9, p. 346-347] without having to raise the bound ρ(n, r, l). In partic-
ular, the above result does not imply an asymptotic version of the Direct Summand
conjecture.

Ramification

Instead of requiring that the residual characteristic is large in the above asymptotic
results, we can also require the ramification to be large, as we will now explain. For
the proofs, we only need to apply the corresponding versions in §10 for infinitely ram-
ified local rings of finite embedding dimension. The main observation is the following
immediate corollary of Łos’ Theorem:

13.5 Lemma. Let Rw be Noetherian local rings of mixed characteristic p and embed-
ding dimension m. If for each n, almost all Rw have ramification index at least n, then
their ultraproduct R\ is infinitely ramified and hence their cataproduct R] has equal
characteristic p.

13.6 Theorem. For each triple of non-negative integers (m, r, l), there exists a non-
negative integer κ(m, r, l) with the following properties. Let (R,m) be a d-dimensional
mixed characteristic Noetherian local ring of embedding dimension at most m, and let
F• be a finite free complex of rank at most r. If the ramification index of R is at least
κ(m, r, l), then the following are true:

13.6.1. If F• has INIT-degree at most l, then the length of F• is at least d.
13.6.2. If each R/Ik(F•) has dimension at most d− k and parameter degree at most l,

for k ≥ 1, and if µ is a non-zero minimal generator of the cokernel of F• such
that R/AnnR(µ) has parameter degree at most l, then the length of F• is at
least the codimension of AnnR(µ).

13.6.3. If F• is a free resolution of R/m, if x is a system of parameters in R such that
R/xR has length at most l and if the morphism of complexes γ : K•(x) → F•
extends the natural homomorphism R/xR→ R/m, then γd 6= 0.

Proof. Suppose first that such a bound for a triple (m, r, l) cannot be found in a fixed
residual characteristic p. In other words, we can find mixed characteristic p Noetherian
local rings Rw, whose embedding dimension is at most m, and whose ramification in-
dex is at leastw, satisfying the negation of one of the above properties. By Lemma 13.5,
their cataproduct is equicharacteristic and the proof follows by the previous discussion;
details are left to the reader. To make this bound independent from p as well, we use
the corresponding bounds from the previous theorems.
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Monomial Theorem
By the same process as above, we can derive some asymptotic version of the Mono-

mial Theorem from Corollary 10.1. Unfortunately, the bounds will also depend on the
monomials involved, and hence does not lead to an asymptotic version of the Direct
Summand conjecture. More precisely, given ν0, . . . , νs ∈ Nd with ν0 not a positive lin-
ear combination of the νi and given l,m, there is a bound N depending on these data,
such that for every mixed characteristic pNoetherian local ringR of embedding dimen-
sion at mostm and dimension d, and for every system of parameters x := (x1, . . . , xd)
in R such that R/xR has length at most l, if either p or the ramification index of R is
at least N , then xν0 does not belong to the ideal in R generated by the xνi .

In particular, for fixed m and l, we get a bound Nt, for each t ≥ 1, such that (11)
holds, whenever x and R satisfy the assumptions from the previous paragraph. To
derive from this an asymptotic version of the Direct Summand conjecture, we need to
show that the Nt can be chosen independently from t. To derive this conclusion, we
would like to establish the following result. Let (R\,m\) be an isodimensional ultra-
Noetherian local ring, say the ultraproduct of d-dimensional Noetherian local rings
(Rw,mw) of bounded embedding dimension and parameter degree. Let Hd

∞(R\) be
the ultraproduct of the local cohomology groups Hd

mw
(Rw). There is a natural map

Hd
m\

(R\)→ Hd
∞(R\).

13.7 Conjecture. The canonical map Hd
m\

(R\)→ Hd
∞(R\) is injective.

Without proof, I state that the conjecture is true when R\ is ultra-Cohen-Macaulay.
Let us show how this conjecture implies that the Nt can be chosen to be independent
from t, thus yielding a true asymptotic version of the Monomial Theorem (whence
also of the Direct Summand Theorem) in mixed characteristic. Indeed, assume the
conjecture and let (x1\, . . . , xd\) be a generic sequence inR\ and choose xiw ∈ Rw so
that their ultraproduct is xi\. Since the (image of the) element 1/(x1\ · · ·xd\) in the top
local cohomology module Hd

m\
(R\) is non-zero by Corollary 10.1—here we realize

H•m\(R\) as the cohomology of the C̆ech complex associated to (x1\, . . . , xd\)—its
image in Hd

∞(R\) is therefore also non-zero, whence almost each 1/(x1w · · ·xdw) is
non-zero in Hd

mw
(Rw). Hence (11) is valid for almost each (x1w, . . . , xdw) and all t.

Towards a proof of the full Improved New Intersection Theorem
Although our methods can in principle only prove asymptotic versions, a better

understanding of the bounds can in certain cases lead to a complete solution of the
conjecture. To formulate such a result, let us say that a numerical function f grows
sub-linearly if there exists some 0 ≤ α < 1 such that f(n)/nα remains bounded when
n goes to infinity.

13.8 Theorem. Suppose that for each pair (m, r) the numerical function fm,r(l) :=
κ(m, r, l) grows sub-linearly, where κ is the numerical function given in (13.6.1), then
the Improved New Intersection Theorem holds.

Proof. Let Im,r,l be the collection of counterexamples with invariants (m, r, l), that
is to say, all mixed characteristic Noetherian local rings R of embedding dimension
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at most m, admitting a finite free complex F• of rank at most r and INIT-degree at
most l, such that the length of F• is strictly less than the dimension of R. We have
to show that Im,r,l is empty for all (m, r, l), so by way of contradiction, assume it is
not for the triple (m, r, l). For each n, let f(n) be the supremum of the ramification
indexes of counterexamples in Im,r,n (and equal to 0 if there is no counterexample). By
Theorem 13.6, this supremum is always finite. By assumption, f grows sub-linearly,
so that for some positive real numbers c and α < 1, we have f(n) ≤ cnα, for all n. In
particular, for n larger than the (1− α)-th root of clα

f(l) , we have

f(ln) < nf(l). (22)

Let (R,m) be a counterexample in Im,r,l of ramification index f(l), witnessed by
the finite free complex F• of length strictly less than the dimension of R. Since the
completion of R will be again a counterexample in Im,r,l of the same ramification
index, we may assumeR is complete, whence by Cohen’s structure theorem of the form
R = V [[ξ]]/I for some discrete valuation ring V , some tuple of indeterminates ξ, and
some ideal I ⊆ V [[ξ]]. Let n� 0 so that (22) holds, and let W := V [t]/(tn − π)V [t],
where π is a uniformizing parameter of V . Let S := W [[ξ]]/IW [[ξ]], so that R → S
is faithfully flat and S has the same dimension and embedding dimension as R. By
construction, its ramification index is equal to nf(l). By faithful flatness, F• ⊗R S is
a finite free complex of length strictly less than the dimension of S, with homology
equal to H•(F•) ⊗R S. I claim that if H is an R-module of length a, then H ⊗R S
has length na. Assuming this claim, it follows that S belongs to Im,r,nl, and hence its
ramification is by definition at most f(ln), contradicting (22).

The claim is easily reduced by induction to the case a = 1, that is to say, when H
is equal to the residue field R/m = V/πV = k. In that case, H ⊗R S = S/mS =
W/πW , and this is isomorphic to k[t]/tnk[t], a module of length n.
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