
EMBEDDED RESOLUTION OF SINGULARITIES

IN RIGID ANALYTIC GEOMETRY.

Hans Schoutens

Abstract. We give a rigid analytic version of Hironaka’s Embedded Resolution
of Singularities over an algebraically closed field of characteristic zero, complete with
respect to a non-archimedean norm. This resolution is local with respect to the
Grothendieck topology. The proof uses Hironaka’s original result, together with
an application of our analytization functor.

0. Introduction and preliminaries.

0.1. Introduction

0.1.1. Introduction In this work we prove the analogue version of Hironaka’s
Embedded Resolution of Singularities in the frame work of rigid analytic geome-
try. We will work over a fixed algebraically closed field K, of characteristic zero,
endowed with a complete non-archimedean norm. The requirement on the charac-
teristic could be dropped, if a version of Hironaka’s Theorem would be available
in characteristic p.

Our main theorem (3.2.3) states that given an hypersurface in an affinoid man-
ifold, we can find a finite affinoid covering of the embedding space and maps above
each admissible open, which are a composition of finitely many blowing up maps
with ’nice’ centers, such that the inverse image of this hypersurface under these
maps has normal crossings. We show that this theorem then implies a Desingular-
isation Theorem (3.2.5) in the following sense: Given any integral rigid analytic
variety, there exists an admissible affinoid covering of this variety and above each
admissible open a finite sequence of blowing up maps after which the space becomes
regular.

We haven’t bothered to give a fully global version of this theorem, but contented
ourselves with a version which is local with respect to the Grothendieck topology,
i.e., modulo an admissible affinoid covering. Nonetheless, using the more recent
uniform versions of Embedded Resolution of Singularities, such as [BM 2] , one
can modify the present proof to obtain a global version of Embedded Resolution
of Singularities; see the remark following (3.2.3). However, for the applications
we have in mind the local version is more than sufficient. The main application
appeared already in the papers [Sch 2] and [GS] on the Uniformization of rigid
subanalytic sets (see also [Sch 3] and [Sch 5] for some more applications). In
(3.2.6) we give an extension of this Uniformization Theorem to the non-smooth
case, by using our Desingularization Theorem. A first but incomplete version of
Embedded Resolution had already appeared in our Ph.D. Thesis [Sch 0] .
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Let us briefly sketch an outline of the proof of our main theorem. Our main
tool is the principle of analytization of certain (algebraic) schemes over K. An
analytization of a scheme X over K is essentially a morphism (η, η#) : (X,OX) →
(X,OOOX) of locally ringed spaces over K, where X is a rigid analytic variety, such
that this morphism is universal with respect to morphisms of locally ringed spaces
from a rigid analytic variety to X, for a precise definition we refer to definition
(1.1.1). By the universal property, it is straightforward to give also the definition of
the analytization of a map between schemes, both of which admit an analytization,
so that we actually obtain a functor from the category of analytic schemes (see
(1.3.3) for a definition) to the category of rigid analytic varieties.

We want to mention that the construction is a generalization of the analytization
of a scheme of finite type over K, which for instance is described in the excellent
book [BGR] . Our analytization is so to speak the relative version of this, since we
construct the analytization of any scheme of finite type over an affinoid algebra (and
even a slightly larger class, see (1.3.4)). In particular, if A is an affinoid algebra,
then SpA is the analytization of SpecSpecSpecA. A notational remark: all schemes and their
maps will appear in bold face to distinguish them from rigid analytic varieties and
maps. A main property of an analytization η : X → X, is that η induces a bijection
between the points of X and the closed points of X and that the completion of the
local morphism in a (closed) point is an isomorphism. Therefore most properties
of X are carried over on, or, vice versa, are determined by X , such as, for example,
reducedness, regularity and normality. (See (1.3.5)).

We also need a result on the maximal ideals of an algebra of finite type over
an affinoid algebra. We prove a Weak Nullstellensatz stating that maximal ideals
’come from points’, in other words that their residue field equals K, see (0.2.2).
A result no longer true if one were to replace strictly convergent power series by
formal power series. We thank the referee for pointing out Lemma (0.2.1) to us,
thus simplifying the original proof of the Nullstellensatz.

We would like to mention that U. Köpf has independently developed the theory
of analytization of schemes of finite type over affinoid algebras in her Ph.D Thesis
[Köp] , a fact which was brought to our attention by Bosch only after we had
already written down the first draft of this work. She uses a different starting point
and a slightly different approach, but basically the same results are obtained. In
the second part of her work she then gives a GAGA principle for the analytization
of proper schemes of finite type over an affinoid algebra. Since, however, her work is
not readily available, we decided to present the details of the analytization functor,
in order to remain self contained.

In the second chapter, we investigate the analytization of a blowing up map.
(For the definition and elementary properties of blowing up maps in rigid analytic
geometry, we refer to our paper [Sch 4] .) Essentially we show that blowing up
commutes with the analytization functor, see (2.2.2). We like to draw the attention
to proposition (2.2.1), used to prove the above result. This proposition provides
a partial inverse to the analytization functor. We show that in a restricted case,
we can attach to a map of rigid analytic varieties which both are analytizations
of affine schemes, a map of the corresponding schemes. In other words, we can
’algebraize’ this analytic map.

The last section then contains the proof of our main theorem. The proof heavily
relies on Hironaka’s Theorem, in that we will apply it to an algebraic situation
derived from our data and then take the analytization of this algebraic resolution.
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Let us be a bit more specific. Given are the affinoid manifold M = SpA (i.e.,
A is an affinoid algebra which is a regular domain) and the hypersurface H in it.
The morphism η : M → M = SpecSpecSpecA is an analytization morphism. Take a point
x ∈ M and let x = η(x), with m the corresponding maximal ideal of A. Apply
Hironaka’s Embedded Resolution (see (3.1.2)) to the excellent local ring Am in

order to find a morphism h : X̃ → SpecSpecSpec(Am), which is a finite sequence of blowing
up maps with ’nice’ centers, rendering the inverse image of the (local germ of the)
hypersurface to a normal crossings situation. It should be observed that at this
point, we cannot yet apply the analytization functor, since SpecSpecSpec(Am) is not an
analytic scheme, i.e., an analytization does not exist. But since everything is local
in the Zariski topology, we can find a small enough neighborhood of x over which
the map h can be extended and such that all its main properties remain. This
(Zariski) open in SpecSpecSpecA now admits an analytization. So, using that analytization
and blowing up commute and that analytization preserves the necessary properties,
we have found a Zariski open U around each point x ∈ M and a map h : Ũ → U
of the type described above, so that the inverse image of the hypersurface H has
normal crossings. Since each covering by Zariski opens is admissible, we are done
by taking an admissible affinoid covering of each open U and then selecting a finite
subcovering of the collection of all admissible affinoids involved.

We would like to thank M. Van der Put and S. Bosch for some useful dis-
cussions we had with them.

0.1.2. Conventions. Throughout this paper will be fixed an algebraically closed
field K endowed with a complete non-archimedean norm. We adopt the notation
and the terminology from [BGR] for rigid analytic geometry overK. In particular,
let X be a rigid analytic variety. We will denote its structure sheaf by OX . Let
i : Y → X be a closed immersion of rigid analytic varieties. Then we call Y a
closed analytic subvariety of X . Let i# : OX → i∗(OY ) denote the corresponding
surjective homomorphism of OX -modules. The kernel I = ker(i#) is a coherent
OX -ideal and we call it the OX-ideal defining Y , or alternatively, we say that Y is
the closed analytic subvariety of X associated to the OX -ideal I.

The underlying set |i(Y )| of the image i(Y ) is an analytic subset of X . By abuse
of notation, we will sometimes consider Y itself as an analytic subset ofX , especially
when we consider the admissible open given by X \ Y , where the correct notation
should be X \ |i(Y )|. Note that on an analytic subset Y of X , we can define many
structures of a closed analytic subvariety. Namely one for each coherent OX -ideal
I, such that V(I) = Y . Recall that

V(I) = {x ∈ X | Ix 6= OX,x } ,

and we call this analytic subset the zero-set of I. (Any analytic subset is realized
in such way). In particular there is exactly one structure of a reduced analytic
subvariety on Y , given by the coherent OX -ideal id(Y ), which is a radical ideal.

0.1.3. Definition. Given a map f : Y → X and a coherent sheaf of OX -ideals
I, we call the inverse image ideal sheaf of I, the image of the canonical map
f∗I → OY , and we denote this coherent sheaf of OY -modules by f−1(I)OY , or,
when no confusion can arise, simply by IOY .

If Z is the closed analytic subvariety of X defined by I, then we define f−1(Z) to
be the closed analytic subvariety of Y associated to IOY . In other words, we have
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that f−1(Z) = Z ×X Y . Of course, if Z is only considered as an analytic subset of
X , we mean by f−1(Z) only the closed analytic subset, which is the set-theoretical
inverse image of Z.

In particular, if both X and Y are affinoid, with corresponding affinoid algebra
A, respectively B, and if a is the ideal of A corresponding to I, then aB corresponds
to IOY .

If y ∈ Y , then we will sometimes denote the stalk of f−1(I)OY at y by IOY,y,
in stead of the more cumbersome (f−1(I)OY )y or IxOY,y, where x = f(y).

The next result will be used below. It’s proof is fairly easy, but by lack of
reference we give it nevertheless.

0.1.4. Lemma. Let X = SpA be an affinoid variety and let a be an ideal in A.
Let U be an admissible open of X, contained in X \V(a). Then aOX(U) = OX(U).

Proof. See [Sch 4, Lemma 0.4] . �

0.2. Weak Nullstellensatz for K〈X〉[Y ]

0.2.1. Lemma. Let A be a domain with field of fractions F , such that F does not
equal the localisation Af for any element f ∈ A. If m is a maximal ideal in A[Y ]
with Y = (Y1, . . . , Yn), then mF [Y ] = 1.

Proof. Suppose not, so that m ∩A = (0). Hence the field L = A[Y ]/m contains F .
As L is finitely generated over F , it follows that it is a finite field extension of F .
Let Pi ∈ A[T ] be a minimal polynomial of Yi (viewed as an element of L) over F ,
for i = range1n, and let f be the product of the leading coefficients of these Pi.
Hence L is integral over Af . However, since L is a field, it follows that also Af is
a field and whence equal to F , contradiction. �

0.2.2. Corollary (Weak Nullstellensatz). Let K be a not necessarily alge-
braically closed field which is endowed with a complete non-archimedean norm. Let
X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be finite sets of variables. Then any max-
imal ideal m of K〈X〉[Y ] is algebraic, i.e., K〈X〉[Y ]/m is a finite field extension of
K.

Remark. Hence, in particular, if K is algebraically closed, each maximal ideal m is
of the form

m = (X1 − x1, . . . , Xn − xn, Y1 − y1, . . . , Ym − ym),

with xi, yi ∈ K and |xi| ≤ 1.

Proof. We will give a proof by induction on the number n of X-variables. If there
are none, the statement is nothing but Hilberts Nullstellensatz for polynomial rings
over a field K.

So assume n ≥ 1 and the theorem proven for a smaller number of X-variables.
Let L denote the fraction field of K〈X〉. We will consider two different cases.

Case 1. Suppose first that mL[Y ] = 1. Hence there exists a non-zero element
ρ(X) in m∩K〈X〉. By the Noether Normalization Theorem for affinoid algebras, we
know that after a change of variables, there exists a finite injective map K〈X ′〉 →֒
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K〈X〉/(ρ) ( [BGR, 6.1.2. Corollary 2] ), where X ′ = (X1, . . . , Xn−1). Let m′ =
m ∩K〈X ′〉[Y ], then also the map

K〈X ′〉[Y ]/m′ →֒ K〈X〉[Y ]/m

is finite and injective. But since the latter is a field, the former has also to be a
field, which by induction must be finite over K. This establishes the first case.

Case 2. We may now assume that mL[Y ] 6= 1. By (0.2.1), this implies that for
some f ∈ K〈X〉 we would have that K〈Y 〉f = L. However this is ruled out by the
following argument. Let g ∈ K〈X〉 be an irreducible element not dividing f . Using
that K〈X〉 is a UFD, we see that 1/g does not belong to the localisation K〈X〉f .
�

1. Analytization

1.1. Definition of Analytization

1.1.1. Definition. Let (X,OOOX) be a scheme over K. We call a rigid analytic
variety X an analytization of X, if there exists a morphism of locally ringed spaces
over K,

(η, η#) : (X,OX) → (X,OOOX)

such that, given any rigid analytic variety (Y,OY ), and, given any morphism

(θ, θ#) : (Y,OY ) → (X,OOOX),

of locally ringed spaces over K, there exists a unique map of rigid analytic varieties

(ϕ,ϕ#) : (Y,OY ) → (X,OX)

making following diagram commute

(Y,OY )
(θ,θ#)
−−−−→ (X,OOOX)

(ϕ,ϕ#)

y
∥∥∥

(X,OX) −−−−→
(η,η#)

(X,OOOX)

Note that, since an analytization is defined by a universal property, we have that,
if an analytization exists, then it must be unique (up to a unique isomorphism).
We will denote this analytization by

Xan = X.

The morphism (η, η#) will sometimes be referred to as the analytizing morphism.
Let us now look at morphisms. Suppose X and Y are two K-schemes which have

an analytization η : Xan → X, respectively ζ : Yan → Y (for sake of simplicity, we
will sometimes not write the corresponding map of sheaves). Let

f : X → Y
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be a map of schemes (over K). Then there exists a unique map Xan → Yan,
denoted by fan, such that following diagram commutes

(Xan,OXan)
(η,η#)
−−−−→ (X,OOOX)

(fan,fan#)

y
y(f ,f#)

(Yan,OYan) −−−−→
(ζ,ζ#)

(Y,OOOY)

This follows immediately from the definition of Yan applied to the composite map
f ◦ η : Xan → X → Y.

If g : Y → Z is a second map of schemes, where Z is a K-scheme which also
admits an analytization, then one checks that

(g ◦ f)an = gan ◦ fan.

Note that, if f is injective, then so is fan, provided we know that ζ is injective
(which will be the case in all the situations we know that an analytization exists).

1.1.2. Lemma. Let X be a scheme over K. In order to check whether a given
morphism of locally ringed spaces (η, η#) : (X,OX) → (X,OOOX), where X is a
rigid analytic variety, is an analytization of X, it is enough to check the universal
property in definition (1.1.1) only for Y affinoid.

Proof. Assume that the universal property has been checked for every affinoid va-
riety and let Y be an arbitrary rigid analytic variety, such that there exists a
morphism

(θ, θ#) : (Y,OY ) → (X,OOOX),

of locally ringed spaces over K. Let {Yi}i be an admissible affinoid covering and

let (θi, θi
#) be the restriction of (θ, θ#) to (Yi,OYi

). By our hypothesis we can find
unique maps of rigid analytic varieties

(ϕi, ϕ
#
i ) : (Yi,OYi

) → (X,OX)

making the following diagram commute

(1)

(Yi,OYi
)

(θi,θi
#)

−−−−−→ (X,OOOX)

(ϕi,ϕi
#)

y
∥∥∥

(X,OX) −−−−→
(η,η#)

(X,OOOX)

The uniqueness of the (ϕi, ϕ
#
i ), ensures us that they agree on Yi ∩ Yj , for all i 6= j.

Indeed, let {Uk}k be an admissible affinoid covering of Yi ∩ Yj . Then both ϕi| Uk

and ϕj | Uk
make the following diagram commute

(2)

(Uk,OUk
)

(θ,θ#)|Uk
−−−−−−→ (X,OOOX)

y
∥∥∥

(X,OX) −−−−→
(η,η#)

(X,OOOX)
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By our hypothesis, we have that there exists only one map Uk → X making the
above diagram (2) commute. Hence ϕi|Uk

and ϕj | Uk
must be equal. From this

our claim follows directly.
Therefore, we can paste the ϕi together (see [BGR, 9.3.3. Proposition 1] ) to

obtain a map of rigid analytic varieties

(ϕ,ϕ#) : (Y,OY ) → (X,OX)

making following diagram commute

(3)

(Y,OY )
(θ,θ#)
−−−−→ (X,OOOX)

(ϕ,ϕ#)

y
∥∥∥

(X,OX) −−−−→
(η,η#)

(X,OOOX)

The uniqueness of (ϕ,ϕ#), follows from the fact that any (ϕ,ϕ#) making (3) com-
mute, when restricted to (Yi,OYi

), is a solution to the commutativity of (1), and

therefore must coincide with (ϕi, ϕ
#
i ). �

1.1.3. Lemma. Let X be a scheme over K, which admits an analytization

(η, η#) : (Xan,OXan) → (X,OOOX).

Let U be an open of X. Then the restriction

(η, η#)
∣∣

η−1(U) : (η−1(U),Oη−1(U)) → (U,OOOU)

of (η, η#) is an analytization of U.

Proof. Let us simplify notation by putting X = Xan and U = η−1(U) and let
ζ = η| U . First of all, note that by definition of an analytization, η is continuous,
so that U is an admissible open in X , and hence in particular is a rigid analytic
variety.

Let
(θ, θ#) : (Y,OY ) → (U,OOOU),

be a morphism of locally ringed spaces over K, where Y is a rigid analytic variety.
Since X is the analytization of X, there exists a unique map of rigid analytic
varieties

(ϕ,ϕ#) : (Y,OY ) → (X,OX)

making following diagram commute

(Y,OY )
(θ,θ#)
−−−−→ (U,OOOU)

(ϕ,ϕ#)

y
y

(X,OX) −−−−→
(η,η#)

(X,OOOX)

The commutativity of above diagram implies that ϕ(Y ) ⊂ U , so that ϕ can be
considered as a map Y → U . This map is necessarily unique, since the original
map was. �
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1.2. Construction of an Analytization for Affine Schemes

1.2.0. Let A be an affinoid algebra and B a finitely generated A-algebra. Let us
denote by X = SpecSpecSpec(B) the affine scheme associated to B. In this section we want
to give a construction of a rigid analytic variety X and a map of locally ringed
spaces (η, η#) : (X,OX) → (X,OOOX), which in the next section will be proved to
be the analytization of X.

1.2.1. Construction. Since B is finitely generated over A, there exists a finite
set of variables T = (T1, . . . , Ts) and an ideal I of A[T ], such that

(1) B =
A[T ]

I
.

Choose π ∈ K, such that |π| < 1 and define, for all i, the following affinoid algebras

Bi
def
=

A〈πiT 〉

IA〈πiT 〉
.

This gives rise to a sequence of affinoid algebras

B → . . . B2 → B1 → B0.

Let us denote by Xi = Sp(Bi). Hence, using [BGR, 7.2.2. Corollary 6] , we have
an ascending chain of affinoid subdomains

X0 →֒ X1 →֒ X2 →֒ . . . .

We can paste these together (see loc. cit.) in order to obtain a rigid analytic variety
X . We have that

(2) X =
⋃

i

Xi

and {Xi}i is an admissible affinoid covering of X .

1.2.2. Claim. The points of X are in one-one correspondence with the closed
points of X, i.e. with the maximal ideals of B. (Recall our convention that K is
algebraically closed.)

Proof. Let us define a map (of sets)

η : X → X

as follows. Let x be a point of X , say x ∈ Xi. Let mi be the corresponding maximal
ideal of Bi. Then we define η(x) as the point of X corresponding to m = mi ∩ B.
It is easy to see that this definition of η(x) does not depend on the particular i we
chose. From the inclusions K →֒ B/m →֒ Bi/mi = K, we conclude that m is even
a maximal ideal of B, or, in other words, that η(x) is a closed point of X. To prove
that this map is a bijection from X to the set of closed points of X, we construct
its inverse as follows.

Let m be a maximal ideal of B. Let A = K〈X〉/a be a representation of A,
where X = (X1, . . . , Xn). Using the Weak Nullstellensatz (0.2.2), we can write

m = (X1 − x1, . . . , Xn − xn, T1 − t1, . . . , Ts − ts)B

where xj and tj are elements of K with |xj | ≤ 1, for all j. Choose i big enough, such
that

∣∣πitj
∣∣ ≤ 1, for all j. Then mBi remains a maximal ideal in Bi, so corresponds

to a point x of Xi ⊂ X . Again we have that the assignment of x to m is independent
of the choice of i. Moreover, mBi ∩ B = m, so that m corresponds to the point
η(x). �
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1.2.3. Claim. The map η is a continuous morphism of topological spaces.

Proof. Let a be an ideal in B and let V = VVV(a) be the corresponding zero-set of a

in X. We can define a coherent OX -ideal I, by setting I(Xi) = aBi. The reader
should check that this uniquely defines I and that, moreover, I is coherent. It is
now an easy exercise to show that

η−1(V) = V(I).

Hence the inverse image of a closed subset of X under η is an analytic subset of
X . Therefore, the inverse image of a Zariski-open of X under η is a Zariski-open
subset of X and hence is admissible open. This proves the continuity of η. �

1.2.4. Claim. There exists a map η# : OOOX → η∗OX of OOOX-sheaves.

Proof. Let ηi : Xi → X denote the restriction of η to Xi. It is enough to construct
maps of OOOX-sheaves,

(3) η#
i : OOOX → (ηi)∗OXi

which are compatible with each other. Without proof we state that it is enough to
construct natural maps

η#
i (U) : OOOX(U) → OXi

(η−1
i (U))

for U of the form U = X \ VVV(f), where f ∈ B. Hence U = {x ∈ X | f(x) 6= 0 } is
the inverse image of U under η. Let Ui = U ∩Xi so that Ui = η−1

i (U). In other
words, we need a natural map

(4) η#
i (U) : OOOX(U) → OXi

(Ui).

But OOOX(U) = Bf (the localization of B at the multiplicative set of powers of f).
Since Ui ⊂ Xi is an admissible open, we have the natural restriction map

OXi
(Xi) = Bi → OXi

(Ui).

By (0.1.4), we know that f , considered as an element of OXi
(Ui) via the composite

map B → Bi → OXi
(Ui), is invertible. Hence we obtain from this composite map,

a map
Bf → OXi

(Ui).

This is our desired map of (4). We leave it as an exercise to the reader to verify

that these maps define a map η#
i of OOOX-sheaves as in (3), and hence a map η# as

claimed. �

1.2.5. Claim. The map

(η, η#) : (X,OX) → (X,OOOX)

is a morphism of locally ringed spaces over K.

Proof. The only new thing to be proved is that the induced maps on the stalks are
local. Let therefore x ∈ X be a point, say x ∈ Xi. Let mi denote the corresponding
maximal ideal of Bi. From (1.2.2), we get that m = mi ∩B is a maximal ideal of
B, corresponding to η(x) = x and mBi = mi. We have now a sequence of natural
(local) maps

OOOX,x = Bm → (Bi)mi

ǫ
−→OXi,x = OX,x

where the map ǫ is given by [BGR, 7.3.2. Proposition 3] . The composition is
exactly the map η#

x , and hence the latter is local. �
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1.2.6. Claim. The map

(η, η#) : (X,OX) → (X,OOOX)

is a locally formal isomorphism.

Remark. We say in general that a morphism of locally ringed spaces

(α, α#) : (X,OX) → (Y,OY )

is a locally formal isomorphism, if, for every point x ∈ X , we have that the com-
pletion

α̂#
x : ÔY,α(x) → ÔX,x

of the local map α#
x is an isomorphism.

Proof. Let x be a point in X , say x ∈ Xi and let mi denote the corresponding
maximal ideal in Bi of x. Let m = mi ∩ B, so that m is the maximal ideal of B
corresponding to η(x) = x and mBi = mi. The local ring at x is equal to Bm and
by [BGR, 7.3.2. Proposition 3] , the completion of the local ring at x is isomorphic

with (̂Bi)mi
. Hence we must show that the natural map

(5) η̂#
x : B̂m → (̂Bi)mi

is an isomorphism. However, we have that m(̂Bi)mi
= mi(̂Bi)mi

. Therefore, if we

tensor (5) with K = B̂m/mB̂m over B̂m, we obtain an isomorphism. By [Mats,
Theorem 8.4] , we deduce that η̂#

x is surjective. Let us now show injectivity. Since
the map A[Y ] → A〈Y 〉 is flat, the same holds for B → Bi, for all i. Hence also η̂#

x

is flat and since it is local, it is faithfully flat and hence injective. �

Remark. Note that by faithfully flat descent we get that the local maps η#
x are flat.

It is not clear at first whether the association X  X is well-defined, since the
construction of X depended on the representation (1) of B and the choice of π.
However, as a consequence of the following theorem, we will get that X is in fact
independent of these choices.

1.3. Analytization of an Analytic Scheme

1.3.1. Proposition. Let A be an affinoid algebra and B a finitely generated A-
algebra. Let X = SpecSpecSpec(B) be the corresponding scheme over K and let X and
(η, η#) be as constructed in (1.2). Then

(η, η#) : (X,OX) → (X,OOOX)

is the analytization of X.

Proof. Let Y be a rigid analytic variety and let

(1) (θ, θ#) : (Y,OY ) → (X,OOOX)
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be a map of locally ringed spaces (over K). We have to prove that there exists a
unique factorization of (θ, θ#) over (X,OX). In other words, we have to show that
there exists a unique map of rigid analytic varieties

(ϕ,ϕ#) : (Y,OY ) → (X,OX)

such that the following diagram commutes

(2)

(Y,OY )
(θ,θ#)
−−−−→ (X,OOOX)

(ϕ,ϕ#)

y
∥∥∥

(X,OX) −−−−→
(η,η#)

(X,OOOX)

By lemma (1.1.2), we can assume that Y = SpC is affinoid. From (1), we get a
K-algebra morphism

f
def
= θ#(X) : B = OOOX(X) → OY (Y ) = C.

Let

B =
A[T ]

I
,

be the representation (1) of (1.2.1), with the aid of which we constructed X .
Choose i big enough, such that, for all j, we have that |f(Tj)| <

∣∣1/πi
∣∣. Therefore,

we can factor f over a map

g : Bi =
A〈πiT 〉

IA〈πiT 〉
→ C

by sending Tj to f(Tj). This is well-defined by [BGR, 6.1.1. Proposition 4] , since
by our choice of i, the elements f(πiTj) are power-bounded elements. This map g
gives rise to a map of affinoid varieties ϕ′ : Y = SpC → Xi = Sp(Bi). We claim
that the composite map ϕ : Y → Xi →֒ X is the desired map.

Let us first prove that (2) is commutative. Let y ∈ Y be a point and let x = θ(y).
Let m be the maximal ideal in C corresponding to y and let p be the prime ideal
of B corresponding to x. We claim that

(3) p = m ∩B

via the map f : B → C. Indeed, since (θ, θ#) is a morphism of locally ringed
spaces, we must have a local morphism

θ#y : Bp → OY,y.

Since Cm and OY,y have the same completion, we get a local map

(4) Bp → Ĉm.

This means that pBp = mĈm ∩Bp, from which our claim (3) follows readily.
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Since m ∩ B corresponds to ηϕ(y), we get by (3) that p is a maximal ideal and
that x = η(ϕ(y)). This proves the commutativity of diagram (2) considered only
as maps of sets. To prove the commutativity as a diagram of morphisms of locally
ringed spaces, we only need to check commutativity on the stalks in each point.
Therefore, suppose that x ∈ Xi and let N = m ∩ Bi be the maximal ideal of Bi

corresponding to x ∈ Xi. Consider following diagram

(5)

Bp −−−−→ OY,y
i

−−−−→ Ĉm∥∥∥
x

x

Bp

η#
x−−−−→ OX,x −−−−→ (̂Bi)N.

The outer diagram is commutative by construction and the second inner diagram
since all maps are natural. Since i is injective, we conclude that also the first
diagram has to be commutative, which is exactly what we needed to show.

Next, we have to show that ϕ is uniquely determined by (2). Hence let

ψ : Y → X

be another map of rigid analytic varieties making (2) commutative. Let y ∈ Y be
a point and set x = ϕ(y) and x′ = ψ(y). By the commutativity of diagram (2),
we have that η(x) = θ(y) = η(x′), and hence, since η is a injection, we obtain that
x = x′. Hence, as a map of sets, ϕ and ψ agree.

Let us keep notation as above and suppose that x = ϕ(y) ∈ Xi. Let as before m

correspond to y and p to x = θ(y) and let N = m ∩Bi be the maximal ideal of Bi

corresponding to x ∈ Xi. Using the commutativity of (2), we get two local maps

ϕ#
y , ψ

#
y : OX,x = OXi,x → OY,y

making the first inner diagram of (5) commute. Since the completion

η̂#
x : B̂p → (̂Bi)N

of η#
x is an isomorphism by (1.2.6), we get, from the commutativity of this diagram,

that
ϕ̂#

x = ψ̂#
x .

Since this holds for all points x ∈ X , one deduces that ϕ = ψ. �

1.3.2. Examples.

(1) Suppose that in (1.2) B is already affinoid, so that we can take the trivial
representation B = A. We get that all Bi = B and hence X = SpB is the
analytization of SpecSpecSpec(B).

(2) Suppose that in (1.2) A = K, in other words, that X is of finite type
over K. Then in [BGR, 9.3.4. Example 2] the authors construct a rigid
analytic variety Xan, which they call the associated rigid analytic variety
of X. Their construction is exactly the same as ours in this special case,
justifying our notation and proving that the in loc. cit. described associated
rigid analytic variety is exactly the analytization of X. Therefore, we also
obtain a better proof of the uniqueness of their construction.
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1.3.3. Definition. We call a scheme X over K an analytic scheme, if X admits
an open affine covering {Xi}i, where, for each i, the scheme Xi is of finite type
over an affinoid algebra Ai.

1.3.4. Theorem. Each analytic scheme X has an analytization.

Proof. Let {Xi}i be an open affine covering of X, with each Xi of finite type
over some affinoid algebra. From (1.3.1), we know that, for each i, we have an
analytization

(ηi, η
#
i ) : (Xan

i ,OXan
i

) → (Xi,OXi,).

To simplify our notations, let us denote by Xi = Xan
i and set Xij = Xi ∩Xj . From

(1.1.3), we get that
η−1

i (Xij) = Xan
ij = η−1

j (Xij).

Hence we can paste the Xi together along these common open subsets, in order to
obtain a rigid analytic variety X . Likewise, we would like to paste the ηi together,
in order to obtain a morphism (η, η#) of locally ringed spaces. One should be a bit
careful with this, since X and X are of a different nature. However, the usual proofs
for pasting morphisms in the rigid analytic case (see [BGR, 9.3.3. Proposition 1]
) or the algebraic geometric case, are carried over without any surprises, so we will
not go into details.

We claim that the above constructed rigid analytic variety X is the wanted
analytization (with analytizing map η). We will just give the outlines of the proof,
since most details are tedious but straightforward.

Let (θ, θ#) : (Y,OY ) → (X,OOOX) be a morphism of locally ringed spaces, where
Y is a rigid analytic variety. Let Yi = θ−1(Xi) and θi the restriction of θ to Yi.
Hence the Yi are admissible opens of Y and the collection {Yi}i is an admissible
covering of Y . Since Xi is the analytization of Xi, there exists, for each i, a unique
morphism of locally ringed spaces

(ϕi, ϕ
#
i ) : (Yi,OYi

) → (Xi,OXi
)

such that the following diagram commutes

(3)

(Yi,OYi
)

(θi,θi
#)

−−−−−→ (Xi,OOOXi
)

(ϕi,ϕi
#)

y
∥∥∥

(X,OX) −−−−−→
(ηi,ηi

#)
(Xi,OOOXi

)

Using (1.1.3), one sees that ϕi and ϕj have to agree on Yi ∩ Yj . Hence we can
paste them together to obtain a map ϕ : Y → X , such that

(4)

(Y,OY )
(θ,θ#)
−−−−→ (X,OOOX)

(ϕi,ϕi
#)

y
∥∥∥

(X,OX) −−−−−→
(ηi,ηi

#)
(X,OOOX)

commutes. The uniqueness of ϕ follows from the uniqueness of the ϕi and the fact
that any ϕ making (4) commute, when restricted to Yi, renders (3) commutative
and hence has to be equal to ϕi. �
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1.3.5. Corollary. Let X be an analytic scheme and η : X = Xan → X be its
analytization. Then η is a locally formal isomorphism and the set of (closed) points
of X is in one-one correspondence, through η, with the set of closed points of X.
The local map in each (closed) point is flat.

Moreover, X is reduced, regular or normal, if and only if, X is reduced, regular
or normal, respectively.

Proof. From the proof of (1.3.4) and (1.2.6) the first three statements follow
immediately. For the last statement, recall that an affinoid algebra is a G-ring
(Grothendieck ring, see [Mats, §32] for a definition) and therefore also each
finitely generated algebra over an affinoid algebra is a G-ring. The last assertion is
now clear by Theorem 32.2 of loc. cit. and [BGR, 7.3.2. Proposition 8] . �

2. Blowing Up and Analytization.

2.1. Sheaves and Analytization

2.1.1. Definition. We want to recall the following definitions of inverse image
and direct image of a sheaf. Let us just give the definitions in the cases we are
interested in. Let X be an analytic scheme and let η : X → X be the analytization
of X. Let FFF be a sheaf on X. Recall that the inverse image sheaf η−1(FFF) is defined
as the sheafification of the presheaf

V 7→ lim−→
η(V )⊂U

FFF(U).

If, moreover, FFF is an OOOX-module, then this inverse image sheaf η−1(FFF) is an
η−1(OOOX)-module. Hence we can form the tensor product with OX to obtain the
OX -module

η∗(FFF) = η−1(FFF) ⊗
η−1(OOOX) OX

called the inverse image of FFF .
Let G be an OX -module. Then one defines the direct image sheaf η∗(G), given

by the rule
η∗(G)(U) = G(η−1(U)),

where U is an open in X. This is an OOOX-module.

2.1.2. Lemma. Let η : X → X be the analytization of the analytic scheme X. Let
FFF be an OOOX-module. Let x be a point of X and let x = η(x). Then the following
holds.

(1) We have that
(i) (η−1(FFF))x

∼= FFFx,
(ii) η∗(FFF)x

∼= FFFx ⊗OOOX,x
OX,x.

(2) If FFF is coherent, then so is η∗(FFF).
(3) We have that FFF is invertible, if and only if, η∗(FFF) is.
(4) If FFF is an OOOX-ideal, then η∗(FFF) is an OX -ideal. Moreover,

η∗(FFF)x = FFFxOX,x.
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Proof. (1) is easy and left to the reader as an exercise. (2) follows along the same
lines as in the algebraic geometric case (see for instance [Ha, Chapter II, Propo-
sition 5.8] . (3) follows from the second isomorphism of (1) and the fact that
OOOX,x → OX,x is flat by (1.3.5). Finally, (4) follows from the fact that, for each
admissible open U of X , the map

η−1(OOOX)(U) → OX(U)

is flat by using (1) and (1.3.5). �

Remark. Note that the direct image of a coherent sheaf is in general not coherent
anymore, as can be easily seen by the next example. Let A be an affinoid algebra
and X = SpA and X = SpecSpecSpec(A) and let η : X → X be the analytization map.
Then η∗(OX) is in general not a coherent OOOX-module (neither an OOOX-ideal). For
instance, if U = X \ V(f), where f ∈ A, then OX(U) is not a finite Af -module.

2.1.3. Corollary. Let X be an analytic scheme and let η : X → X be its ana-
lytization. Let III be a coherent OOOX-ideal and let Z be the closed subscheme of X
defined by it. Let Z be the closed analytic subvariety of X defined by η∗III. Then
the following holds.

(1) As analytic subsets, we have that Z = η−1(Z).
(2) Z is the analytization of Z.

Remark. Therefore, in the sequel, we will mean by η−1(Z) the rigid analytic variety
with closed analytic subvariety structure given by η∗III.

Proof. (1) is easy, using (4) of (2.1.2). In order to prove (2), let us first define a
morphism

(3) (ζ, ζ#) : (Z,OZ) → (Z,OOOZ)

of locally ringed spaces. Let ζ = η| Z , so that by (1), we have a continuous map
ζ : Z → Z. Next we have to define a map ζ# of OOOZ-sheaves. Let U be an open of
Z. Hence, there exists an open W of X, such that U = W ∩ Z. By definition, we
have that

(4) OOOZ(U) =
OOOX(W)

III(W)
.

If we denote by W = η−1(W), then by (1) again, we have that ζ−1(U) = W ∩ Z.
Furthermore, we get by (2.1.2.(4)) that

(η∗III)(W ) = III(W)OX(W ).

Hence we obtain that

(5) OZ(ζ−1(U)) =
OX(W )

III(W)OX(W )
.

Therefore, we define, with aide of (4) and (5), the map

ζ#(U) : OOOZ(U) → OZ(ζ−1(U))
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as the base change
OOOX(W)

III(W)
→

OX(W )

III(W)OX(W )

of η#(W) : OOOX(W) → OX(W ). This defines the wanted map in (3) and the reader
should check that it is indeed a morphism of locally ringed spaces.

Let Y be an arbitrary rigid analytic variety and let

(θ, θ#) : (Y,OY ) → (Z,OOOZ),

be a morphism of locally ringed spaces. After composing this with the closed
immersion Z →֒ X, we get from the fact that X is the analytization of X, a unique
map ϕ : Y → X of rigid analytic varieties, making following diagram commute

(6)

(Y,OY )
(θ,θ#)
−−−−→ (Z,OOOZ)

(ϕ,ϕ#)

y
y

(X,OX) −−−−→
(η,η#)

(X,OOOX)

Clearly, from the commutativity of the above diagram and (1), we obtain that
ϕ(Y ) ⊂ Z. We want to proof that ϕ even as a map of rigid analytic varieties
factors through Z. Therefore, we need to show that (η∗III)OY = 0. We can check
this on the stalks. So let y be a point of Y and let x = ϕ(y) and x = θ(y) = η(x).
From (1) of (2.1.2), we get that

(η∗III)OY,y = (η∗III)xOY,y

= IIIxOY,y = 0,

where the vanishing of the latter follows from the fact that the composed map
Y → X factors over Z, by the commutativity of (6), and clearly IIIxOOOZ,x = 0.

Hence, ϕ becomes a map Y → Z which renders following diagram commutative

(Y,OY )
(θ,θ#)
−−−−→ (Z,OOOZ)

(ϕ,ϕ#)

y
∥∥∥

(Z,OZ) −−−−→
(ζ,ζ#)

(Z,OOOZ)

The uniqueness of this map is easily verified. �

2.2. Analytization of a Blowing Up

2.2.1. Proposition. Let X be an affine analytic scheme and let

(η, η#) : (X,OX) → (X,OOOX)

be its analytization. Let Y = SpA be an affinoid variety and let Y = SpecSpecSpec(A). Let

(ζ, ζ#) : (Y,OY ) → (Y,OOOY)
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be the analytization of Y. Let θ : Y → X be a map of rigid analytic varieties.
Then there exists a unique map of schemes θθθ : Y → X, making following diagram
commute

(1)

(Y,OY )
(ζ,ζ#)
−−−−→ (Y,OOOY)

(θ,θ#)

y
y(θθθ,θθθ#

)

(X,OX) −−−−→
(η,η#)

(X,OOOX)

Moreover, θ equals the analytization θθθan of θθθ.

Proof. Let X = SpecSpecSpec(B), where B is a finitely generated S-algebra and S is an
affinoid algebra. The map η induces a morphism of algebras

η#(X) : B = OOOX(X) → OX(X),

whereas the map θ induces a morphism of algebras

θ#(X) : OX(X) → OY (Y ) = A.

Composing these two morphisms gives a map f : B → A, which induces a map of
schemes

θθθ : Y → X.

Let us prove that this map meets the requirements of the statement. So, first of
all, we have to show that (1) commutes. Let y be a point of Y and let N be the
corresponding maximal ideal of A. Hence ζ(y) corresponds also to this maximal
ideal and therefore, θθθζ(y) corresponds to the prime ideal N ∩B of B.

On the other hand, take a representation B = S[T ]/I as in (1) of (1.2.1) and
define the affinoid algebras Bi as in loc. cit., so that X =

⋃
Xi, where Xi = SpBi.

Suppose that θ(y) ∈ Xi. Let mi denote the maximal ideal of Bi corresponding to
θ(y) and let m = mi ∩ B. Hence m is the maximal ideal of B corresponding to
ηθ(y). So we need to prove that m = N ∩B. Since m is maximal, we only need to
show that m ⊂ N. Consider the completion

θ̂#y : (̂Bi)mi
→ ÂN

of the local map θ#y . Composed with the local map Bm → (̂Bi)mi
, this yields a

local map

Bm → ÂN.

This proves that m ⊂ N, as we had to show. The uniqueness of θθθ is clear from the
fact that η and ζ are locally formal isomorphisms which are bijections between the
sets of closed points. Moreover, diagram (1) proves that θ must be the analytization
of θθθ. �
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2.2.2. Theorem. Let X be an analytic scheme and let

(η, η#) : (X,OX) → (X,OOOX)

be its analytization. Let Z be a closed subscheme of X. Let

πππ : X̃ → X

be the blowing up of X with center Z. Then X̃ is also an analytic scheme. Moreover,
let

(η̃, η̃#) : (X̃,OX̃) → (X̃,OOOX̃)

denote its analytization. Then the map

π = πππan : X̃ → X

is the blowing up of X with center Z = Zan(= η−1(Z)).

Proof. Since the blowing up map πππ is proper by [Ha, Chapter II, Proposition 7.10]

, we have that X̃ is of finite type over X, and hence is also an analytic scheme.
Let III denote the coherent OOOX-ideal defining Z. Let I = η∗(III). Then I is the

coherent OX -ideal defining Z, by (2.1.3). One verifies easily, using (2.1.2.(4))
that

η̃∗(IIIOOOX̃) ∼= IOX̃

by checking this on all the stalks. Hence by (2.1.2.(3)), we get that this last sheaf
is invertible.

Let Y = SpA be an affinoid variety and let f : Y → X be a map of rigid analytic
varieties, such that IOY is invertible. To complete the proof, we have to show that
there exists a unique map g : Y → X̃ making following diagram commute

(1)

Y
g

−−−−→ X̃
∥∥∥

yπ

Y −−−−→
f

X

Let Y = SpecSpecSpec(A) and let

(ζ, ζ#) : (Y,OY ) → (Y,OOOY)

be the analytization of Y.
Case 1. Assume that X = SpecSpecSpec(B), where B is finitely generated over an affinoid

algebra.
By (2.2.1), there exists a unique map

f : Y = SpecSpecSpec(A) → X

making the following diagram commute

(2)

(Y,OY )
(ζ,ζ#)
−−−−→ (Y,OOOY)

(f,f#)

y
y(f ,f#)

(X,OX) −−−−→
(η,η#)

(X,OOOX)
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By (2.1.2.(4)), one sees that

(3) ζ∗(IIIOOOY) = IOY .

Hence by (2.1.2.(3)), we get that IIIOOOY is invertible. Therefore, by the universal
property defining blowing up in algebraic geometry, there exists a unique map
g : Y → X̃, making following diagram commute

(4)

Y
g

−−−−→ X̃
∥∥∥

yπππ

Y −−−−→
f

X

If we set g = gan, then the analytization of diagram (4) is exactly diagram (1),
proving its commutativity.

We need to prove that this map g is unique. Hence let h : Y → X̃ be another
map making diagram (1) commute. Let {X̃i}i be an open affine covering of X̃.

Let X̃i = η̃−1(X̃i). Hence, by (1.1.3) we have that the restriction η̃ : X̃i → X̃i is

the analytization of X̃i (where we will no longer distinguish in notation between a
map and its restriction). It is always possible to find an admissible affinoid covering

{Yi = SpAi}i of Y , such that h(Yi) ⊂ X̃i. Let Yi = SpecSpecSpec(Ai) and let ζi : Yi → Yi

denote the analytization of Yi. By proposition (2.2.1) we can find unique maps

hi : Yi → X̃i, making following diagram commute

(5)

(Yi,OYi
)

(ζi,ζi
#)

−−−−−→ (Yi,OOOYi
)

(h,h#)

y
y(hi,hi

#)

(X̃i,OX̃i
) −−−−→

(η̃,η̃#)
(X̃i,OOOX̃i

)

Moreover, also by (2.2.1), we find unique maps αααi : Yi → Y making the following
diagram commute

(6)

(Yi,OYi
)

(ζi,ζi
#)

−−−−−→ (Yi,OOOYi
)

y
y(αααi,αααi

#)

(Y,OY ) −−−−→
(ζ,ζ#)

(Y,OOOY)

Claim A. The ideal IIIOOOYi
is invertible.

Suppose we proved this, then, by the universal property of a blowing up applied
to the composite map fαααi, there exists a unique map ti : Yi → X̃, such that
following diagram commutes

(7)

Yi
ti−−−−→ X̃

∥∥∥
yπππ

Yi −−−−→
fαααi

X

Clearly, the map gαααi renders (7) commutative, hence we get that

(8) ti = gαααi.
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Claim B. We have that
fαααi = πππhi.

Assuming the claim, we get that also hi renders (7) commutative and hence
must be equal to ti. Together with (8), we therefore get that

hi = gαααi.

Taking the analytization of these maps, we obtain that h| Yi
= g| Yi

, proving the
uniqueness of g.

So, the only thing which remains to be done is proving both claims A and B.
Claim A follows from the identity

ζ∗i (IIIOOOYi
) = IOYi

,

which can be derived from (3). By assumption the latter ideal is invertible, so that
we are done by (2.1.2.(3)).

To prove claim B, let us first show that the composition of both maps with ζi
are equal. By (6) and then using (2) we get that

fαααiζi = fζ

= ηf.

On the other hand, by (5), the definition of π = πππan and our assumption on h, we
get that

πππhiζi = πππη̃h

= ηπh

= ηf.

Hence, both fαααi and πππhi are solutions to the commutativity of the following diagram

(Yi,OYi
)

(ζi,ζi
#)

−−−−−→ (Yi,OOOYi
)

(f,f#)

y
y

(X,OX) −−−−→
(η,η#)

(X,OOOX)

Since by (2.2.1) there exists a unique solution to this commutativity, both maps
must be the same, therefore establishing our claim and finishing the proof in this
case.

Case 2. Let X be an arbitrary analytic scheme and let {Xi}i be an affine open
covering of X. Let Xi = η−1(Xi). Then from (1.1.3) we know that Xi is the
analytization of Xi. From algebraic geometry we know that the restriction

πππi : πππ−1(Xi) → Xi

of πππ to πππ−1(Xi), is the blowing up of Xi with center Z ∩ Xi. Let X̃i denote the
analytization of πππ−1(Xi) and let

(4) πi : X̃i → Xi
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denote the analytization of πππi. Hence from case 1, we obtain that (4) is the blowing
up of Xi with center the analytization of Z ∩ Xi, which equals Z ∩Xi by (2.1.3).
Using (1.1.3), we have that

X̃i = η̃−1(πππ−1(Xi)).

In other words, we get that

πi = π| X̃i
.

We are now done by lemma [Sch 4, Proposition 1.4.4] . �

2.2.3. Corollary. Let X be a rigid analytic variety, Z a closed analytic subvariety
and π : X̃ → X the blowing up of X with center Z. If X is reduced, then so is X̃.
If X and Z are both manifolds, then so is X̃.

Proof. The questions being local, we may assume that X = SpA is affinoid. Let
X = SpecSpecSpecA and Z = VVVI, where I is the ideal defining Z. Hence by (2.1.3), X
and Z are the analytizations of X and Z respectively. By (1.3.5), X is reduced
(respectively, X and Z are regular), if X is (respectively, X and Z are). Let

π̃ : X̃ → X be the blowing up of X with center Z. Then it is well-known that X̃
is reduced (respectively, regular). Since by the previous theorem (2.2.2), X̃ is the

analytization of X̃ we are done by using (1.3.5) once more. �

3. Embedded Resolution of Singularities.

3.1. Hironaka’s Embedded Resolution of Singularities

3.1.1. Definition. Let A be a noetherian regular ring (i.e. a ring all of whose
localizations are regular local rings) and f ∈ A, with f 6= 0. Let p be a prime ideal
of A, then we say that f has normal crossings at p, if there exist a regular system
of parameters {ξ1, . . . , ξd} of Ap, a unit u ∈ Ap and integers Ni ∈ N, such that we
can write f , considered as an element of Ap, as

f = uξN1

1 · · · ξNd

d .

We will say that f has normal crossings in A (or in SpecSpecSpec(A)), if it has normal
crossings in each prime ideal of A. More general, if X is a regular integral (or,
smooth) scheme, V ⊂ X a closed subset of codimension one (a hypersurface, for
short) and x ∈ X, then we say that V has normal crossings in x, if f has normal
crossings in the local ring OOOX,x of X at x, where f is a local equation of V at x.
We say that V has normal crossings in X, if it has normal crossings in each point
of X.

Remark. Let A be a noetherian regular ring and f ∈ A, with f 6= 0. One verifies
that the locus of points p ∈ SpecSpecSpec(A), such that f has normal crossings at p is
Zariski open (see for instance [BM] ) and the same is true if we work in the
maximal spectrum (i.e. only consider maximal ideals).
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3.1.2. Theorem (Hironaka’s Embedded Resolution of Singularities).
Let A be an excellent regular local ring which contains a field of characteristic zero,
X a regular integral scheme of finite type over SpecSpecSpec(A) and V a hypersurface of

X. Then there exist a regular integral scheme X̃ of finite type over SpecSpecSpec(A) and a

map h : X̃ → X, such that

(i) h is a composition of finitely many blowing up maps with respect to smooth
centers of codimension at least two,

(ii) h−1(V) has normal crossings in X̃.

Proof. See [Hi, p.146 Corollary 3 and p.161 Remark] . For an explanation of (i),
see the remark following (3.2.3) below. �

3.2. Embedded Resolution of
Singularities in Rigid Analytic Geometry

3.2.1. Definition. Let M = SpA be an affinoid variety. We call M an affinoid
manifold if A is a regular domain. In other words, M is irreducible and for each
x ∈ M , the local ring OM,x is regular. Indeed, if mx denotes the maximal ideal of
A corresponding to x, then we know from [BGR, 7.3.2. Proposition 8] that Amx

is regular if and only if OM,x is regular.

Let M be a rigid analytic variety, then we will call M a rigid analytic manifold,
if it is quasi-compact and the local ring OM,x at each point x ∈ M is regular. We
sometimes might express this also by saying that M is regular. So, in particular,
M admits a finite admissible affinoid covering X = {Xi}i, such that each Xi is an
affinoid manifold. Indeed, just take a finite admissible affinoid covering X = {Xi}i

of M . Since by [BGR, 9.1.4. p.346] each connected component of Xi is an
admissible affinoid open inXi, we may already assume that all theXi are connected.
But each point of Xi = SpAi is regular, proving that Ai is a regular ring, hence by
applying [Kap, Theorem 168] and using that Xi is connected, we conclude that
Ai is a regular domain and hence each Xi is an affinoid manifold.

3.2.2. Lemma. Let X be a smooth analytic scheme and let η : X → X be its
analytization. Let V be a hypersurface in X (with its reduced induced subscheme
structure) and let V = η−1(X) be the analytization of V. Let x ∈ X be a point and
let x = η(x) be the corresponding point in X. If V has normal crossings at x, then
V has normal crossings at x.

Remark. Note that by (1.3.5), we know that X is regular, so that it makes sense
to talk about normal crossings at a point of X . Also by loc. cit., we get that
dimensions and codimensions are preserved under analytization, since all the local
maps are flat. In other words, V is again a hypersurface.

Proof. Let (ξ1, . . . , ξd) be a regular system of parameters in OOOX,x, where d is the
dimension of X. Since the local map

ηx : OOOX,x → OX,x

is an analytic isomorphism, we get that the maximal ideal of OOOX,x generates the
maximal ideal in OX,x. Therefore (ξ1, . . . , ξd) is also a regular system of parameters
in OX,x. From this our claim follows immediately. �
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3.2.3. Theorem (Embedded Resolution in Rigid Analytic Geometry).
Suppose that K is of characteristic zero. Let M = SpA be an affinoid manifold
and f ∈ A, with f 6= 0.

Then there exists a finite admissible affinoid covering X = {Xi}i∈I of M , and,

for each i ∈ I, a rigid analytic manifold X̃i and a map hi : X̃i → Xi of rigid
analytic varieties, such that

(i) hi is a composition of finitely many blowing up maps with respect to regular
centers of codimension at least two,

(ii) h−1
i (V(f) ∩Xi) has normal crossings in X̃i.

Remark. Let us explain what we mean by (i). Fix some i ∈ I and let us, for the sake

of convenience, drop the indices i, so that we can write h : X̃ → X . Saying that h
is of the type as described in (i) means the following. There exists rigid analytic

varieties Yj , for j = 0, . . . , k, where Y0 = X and Yk = X̃, and maps πj : Yj+1 → Yj ,
for j = 0, . . . , k−1, such that each πj is the blowing up of Yj with center Zj , which
is smooth and of codimension at least two in Yj , such that

h = πk−1 ◦ · · · ◦ π0.

By (2.2.3) all Yk are rigid analytic manifolds, so, in particular, so is X̃ is.
Below we will consider the strict transform of a closed analytic subspace H of

X under such a map h. With this we mean the consecutive strict transforms under
the πj , i.e., for each j = 0, . . . , k − 1, let Wj+1 ⊂ Yj+1 denote the strict transform
of Wj ⊂ Yj under πj , where W0 = H . In other words, Wj+1 is the blowing up

of Wj with center Wj ∩H . We then will call H̃ = Wk the strict transform of H

under h. Note that the strict transform H̃ ’survives’, i.e. is not the empty space,
if and only if, neither of the Wj is fully contained in the center of blowing up Zj .
Consequently, if the subspace H we started with was irreducible, the same holds
for all strict transforms by [Sch 4, Corollary 3.2.3] , and moreover, each blowing
up map is surjective and therefore so is their composition h| H̃ . In particular h is
surjective.

Proof. Let M = SpecSpecSpec(A) and let

η : M → M

denote the analytization of M. Let x ∈ M be a point and let x = η(x) be the
corresponding point in M. Let m be the maximal ideal of A corresponding to x
(and x). Let X = SpecSpecSpec(Am). Let T be the hypersurface of X defined by f and let
V be the hypersurface defined by the same f , but now as a closed subscheme of
M.

By (3.1.2), we can find a regular integral scheme X̃ and a map h : X̃ → X,
such that

(i) h is a composition of finitely many blowing up maps with respect to smooth
centers of codimension at least two,

(ii) h−1(T) has normal crossings in X̃.

Therefore, we can find an s /∈ m, such that h can be extended to Y = SpecSpecSpec(As). By

this we mean that there exists a scheme Ỹ and a map g : Ỹ → Y such that g is
a composition of finitely many blowing up maps with respective centers extensions
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of the centers of h. Moreover, the canonical map ααα : X → Y gives rise to a map
α̃αα : X̃ → Ỹ such that the following diagram

X̃
h

−−−−→ X

α̃αα
y

yααα

Ỹ −−−−→
g

Y

is the strict transform diagram of ααα under h. Indeed, this follows from the fact
that ααα is flat. We leave the details to the reader.

Since the regular locus is open, we can even choose s in such manner that all the
centers of g are smooth. In particular, we get that also Ỹ is smooth.

From the remark after (3.1.1), we know that the locus of points of Ỹ at which

g−1(V ∩ Y) has no normal crossings is a closed subset of Ỹ. Hence its image under
g is a closed subset in Y, since g is proper. Therefore, we can choose s in such
manner that g−1(V ∩ Y) has normal crossings everywhere.

By construction Y is an analytic scheme and, moreover, by (1.1.3), we know

that Y = η−1(Y) is its analytization. Let Ỹ be the analytization of Ỹ and let

g : Ỹ → Y be the analytization of g. By theorem (2.2.2) we know that g is
a composition of finitely many blowing up maps with respect to regular centers
of codimension at least two. Moreover, by (3.2.2), we get that g−1(V ∩ Y ) has
normal crossings.

To summarize, we found, for each point x ∈M , a Zariski-open Y (x), containing
x, and maps g(x) : Ỹ (x) → Y (x), such that (i) and (ii) of our statement hold for
these maps. Since each covering by Zariski open subsets is admissible, we can take
an admissible affinoid covering of each Y (x), so that the union of all these admissible
affinoid coverings forms an admissible affinoid covering of M . Therefore, already
finitely many of these cover M , say X = {Xi}i. For each i, there exists an x ∈M ,

such that Xi ⊂ Y (x). Hence, if we set X̃i = g(x)−1
(Xi) and

hi = g(x)
∣∣∣ X̃i

: X̃i → Xi,

then, by [Sch 4, Proposition 1.4.4] , the hi and the X̃i meet the requirements of
our statement. �

Remark. With a little extra effort, one can prove a global version of this theorem
in the sense that only a single map h : X̃ → X with the properties (i) and (ii) is
needed. Namely, in stead of applying Hironaka’s Theorem to the hypersurface
given by f = 0 in each X = SpecSpecSpec(Am), use [BM 2] . The latter gives a canonically
defined blowing up process g(x) on the various Y (x) (notation as above), which
therefore patch together to form a global map h.

3.2.4. Corollary. Suppose that K is of characteristic zero. Let X be a rigid
analytic manifold and H an irreducible hypersurface in X.

Then there exists an admissible affinoid covering X = {Xi}i∈I of X, and, for

each i ∈ I, a rigid analytic manifold X̃i and a map hi : X̃i → Xi of rigid analytic
varieties, such that

(i) hi is a composition of finitely many blowing up maps with respect to regular
centers of codimension at least two,

(ii) the strict transform of H ∩Xi under hi is a rigid analytic manifold.
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Proof. By taking an admissible affinoid covering, we may assume that X is affinoid.
By (3.2.3) we can find a (finite) admissible affinoid covering X = {Xi}i∈I of X ,

and, for each i ∈ I, a rigid analytic manifold X̃i and a map hi : X̃i → Xi of rigid
analytic varieties, such that hi satisfies condition (i) of loc. cit. and, moreover, the

inverse image h−1
i (H ∩Xi) has normal crossings in X̃i.

In other words, in each point x ∈ X̃i, there exists a regular system of parameters
ξ = (ξ1, . . . , ξt), such that the local equation of h−1

i (X ∩Xi) is given by a monomial

ξe1

1 · · · ξet

t = 0.

But the strict transform of H ∩ Xi under hi is an irreducible component of this
inverse image. Indeed, the strict transform is again irreducible and reduced by
(2.2.3) and the remark before the proof of (3.2.3), and an analytic subvariety of

X̃i of codimension one by [Sch 4, Corollary 3.2.3. and Proposition 3.1.2] . Hence
the local equation of the strict transform must be given by ξi = 0, for some i, and
hence is regular. �

Remark. We call the resolution of singularities of H as above an embedded resolu-
tion. As observed in the remark before the proof of (3.2.3), the strict transform

of each H ∩Xi under hi is obtained by a sequence h̃i of blowing up maps, which
are derived from the ones in hi by restricting the centers. In particular, the centers
used in h̃i are of codimension at least one. However, they might fail to be regular.

3.2.5. Theorem (Resolution of Singularities). Suppose that K is of charac-
teristic zero. Let X be an integral (=irreducible and reduced) rigid analytic variety.

Then there exists an admissible affinoid covering X = {Xi}i∈I of X, and, for

each i ∈ I, a rigid analytic manifold X̃i and a map hi : X̃i → Xi of rigid analytic
varieties which is a composition of finitely many blowing up maps with respect to
centers of codimension at least one. In particular, each hi is surjective.

Proof. Since the statement is local with respect to the Grothendieck topology, we
may assume that X = SpA is affinoid, with A a domain. We then can embed X
in an W = Sp (K〈X〉), for some variables X . In other words, we can assume from
the start that X is embedded in a rigid analytic manifold W and we will prove the
theorem under this additional assumption by induction on the codimension d of X
in W .

If d = 1 (i.e., X is a hypersurface in W ), then we are done by (3.2.4) and the
remark following it.

For general codimension d > 1, take any analytic hypersurface V of W , con-
taining X . By (3.2.4) applied to V , we can find an ’embedded resolution’ for V .
Again, since everything is local, we can assume without loss of generality that we
have found an analytic manifold W̃ and a map h : W̃ → W of which the centers
are smooth and of codimension at least two and such that the strict transform Ṽ
under this map is smooth as well. Again, looking at each stage in the blowing up
process, there is no loss in generality if we assume that h is given by one blowing
up with (smooth) center Z of codimension at least two (in W ). There are two cases
to be considered.

Case 1. X is contained in Z. Since Z is smooth, we are done by induction on
the codimension, since the codimension of X in Z has become smaller than d.
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Case 2. X is not contained in Z. Hence the strict transform X̃ of X under h is
given by blowing up X with center Z ∩X , which is of codimension at least one in
X . Again we are done by induction on the codimension, applied this time to the
pair X̃ ⊂ Ṽ .

As for the last statement on the surjectivity, this has already been observed in
the remark before the proof of (3.2.3). �

3.2.6. Corollary. Suppose that K has characteristic zero. Let X be a quasi-
compact integral rigid analytic variety and let Σ be a subanalytic subset of X. Then
there exist finitely many maps hi : X̃i → X of rigid analytic varieties, for i =
1, . . . , s, with each hi a finite composition of local blowing up maps, such that

(i) h−1
i (Σ) is (globally) semianalytic in X̃i, for all i = 1, . . . , s;

(ii) the union of all Imhi equals X.

Proof. For the definition of subanalytic and semianalytic sets, see [GS] . By

(3.2.5), there exists a finite admissible affinoid covering Xi and maps hi : X̃i → Xi

which are compositions of finitely many blowing up maps, such that each X̃i is a
quasi-compact rigid analytic manifold. Taking a finite admissible covering Yij on

each of these X̃i and applying the Uniformization Theorem [GS, Theorem 3.1] to
the subanalytic sets h−1

i (Σ) ∩ Yij , we obtain the required maps. �
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