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Abstract. We show how Resolution of Singularities in characteristic p

implies the decidability of the existential theory of Fp[[t]] in the language
of discrete valuation rings, where t is a single variable and Fp the p-
element field.

1 Introduction

The aim of this paper is to study the ring Fp[[t]], where t is a single variable
and Fp the p-element field. Note that this is an equicharacteristic complete, whence
Henselian, discrete valuation ring with maximal ideal generated by t and residue
field Fp. Hence, from an algebraic point of view this is a very well understood ring.
However, from a model-theoretic point of view, it is poorly understood. This is in
spite of the analogies, made evident by the work [3] of Ax en Kochen, between
Fp[[t]] and the ring of p-adic integers. For instance, a complete recursive axiom
system for the theory of Fp[[t]] is still unknown. For many purposes, it is an
equivalent problem to understand the theory of the field Fp((t)) as a valued field
(where the valuation is the t-adic one). Indeed, in general, if (K, v) denotes a valued
field, with which we mean a field K with a valuation v on it, and if R denotes its
valuation ring, then R is obviously definable in K (in the language of valued fields),
and, conversely, for a, b ∈ R, we have that v(a) ≤ v(b) if, and only if, there exists
c ∈ R with b = ca.
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In [14] it is pointed out that the following ”obvious” candidate for an axiom
system for the field K = Fp((t)) with its natural valuation v, derived by analogy
from the axiom system for the p-adics, is not complete.

• The valued field (K, v) is Henselian and defectless.
• The characteristic of K is p.
• The value group of v is a Z-group.
• The residue field is Fp.

Note that the condition thatK be defectless is superfluous for fields of characteristic
zero, but in positive characteristic Henselian discretely valued fields with defect
exist (that is to say, fields which admit a finite extension in which the fundamental
equality fails). In [14], Kuhlmann proposes some additional axioms involving
additive polynomials, but the resulting system is still not known to be complete.

As an immediate consequence of the existence of a complete recursive axiom
system, we would get that the theory of Fp[[t]] is decidable. In this paper we will
explain how the decidability of the existential theory of Fp[[t]] in the language of
discrete valuation rings follows from Resolution of Singularities. More precisely,
let LDVR be the language of rings with a single constant symbol πππ added. Let
R be a discrete valuation ring with uniformizing parameter π (that is to say, the
maximal ideal of R is πR). We view R as an LDVR-structure by interpreting πππ
as the uniformizing parameter π. Let R0 be the subring of R generated by π,
then every term in LDVR names an element of R0 and conversely. For instance,
in case R = Fp[[t]] (with uniformizing parameter t) then R0 = Fp[t]. Note that in
the language LDVR, both formulae v(a) ≤ v(b) and v(a) < v(b) are existentially
definable, by requiring that there exists c ∈ R with b = ca, respectively b = caπ.
Therefore, our results on the decidability of the existential theory of R, also hold
when we add a symbol for the valuation to the language.

Our main result is that, assuming Resolution of Singularities, there exists an
algorithm which decides, for an arbitrary system of equations f1(ξ) = · · · = fm(ξ) =
0 and an inequation f0(ξ) 6= 0, with fi ∈ Fp[t, ξ] and ξ a finite set of variables,
whether this system has a solution in Fp[[t]]. In fact, we will prove this for a larger
class of discrete valuation rings; see Theorem 4.3. Unfortunately, Resolution of
Singularities (in the form we need it; see Theorem 1 below for the precise content)
is still conjectural in positive characteristic. The weaker version of De Jong, which
uses finite-to-one maps instead of birational maps, appears to be not strong enough
to carry out the present method of proof. What follows is a brief description of our
method.

As an immediate corollary of a theorem of Greenberg in [10], a system of
polynomial equations in a finite number of variables ξ over an excellent discrete
valuation ring R has a solution, if it has a solution modulo arbitrary high powers
of the maximal ideal. This was generalized by Artin in [2] to Henselian local rings
of the form R = κ[[t]] or R = κ[[t]]alg (the ring of algebraic power series), where t
is now a finite set of variables and κ is a field. Moreover, he obtains the following
effective version for systems of equations with polynomial coefficients. If fi ∈ κ[t, ξ],
then to find a solution of the system f1(ξ) = · · · = fm(ξ) = 0 over R, it suffices to
find an approximate solution modulo the N -th power of the maximal ideal, where
N depends only on the total degree d of the fi and the number of variables t and
ξ. This result is now commonly known as Strong Artin Approximation. Using non-
standard methods, the first author et al., have shown in [4] that N depends even



On the Decidability of the Existential Theory of Fp[[t]] 3

in a computable (recursive) way on d and the number of variables. For systems of
equations with more general coefficients, see [6].

Moreover, Artin conjectured Strong Artin Approximation to be true for any
excellent Henselian local ring. The status of this Conjecture has been unclear
for a while, but now several proofs have been put forward, see for instance [22]
or [18] (and the commentaries provided by Swan in an alas unpublished paper
[23]). For our purposes (but not for the main case of interest, namely when R =
Fp[[t]]), we need a Strong Artin Approximation theorem which includes parameters
(Theorem 3.1). This theorem follows from these general results together with some
structure theorems for complete Noetherian local rings.

In this paper we exhibit an algorithm that verifies whether a system of equations
together with some inequations over R0 has a solution over an equicharacteristic
Henselian discrete valuation ring R, at least relative to the residue field κ of R. (As
before R0 is the subring generated by some uniformizing parameter). Relative to
the residue field means that this algorithm will use the theory of κ as an oracle. In
fact, the algorithm will reduce the problem to finding a solution of some (effectively
constructible) system of equations and inequations over the residue field κ. Since
the theory of any finite or any algebraically closed field is decidable, this will yield
the decidability of the existential theory of any equicharacteristic Henselian discrete
valuation ring R with a finite or algebraically closed residue field. Unfortunately,
this result depends on the validity of Resolution of Singularities. This is known in
characteristic zero, but still conjectural for positive characteristic. In particular,
we do get a positive result for instance for the rings C[[t]] and C[[t]]alg, where t is a
single variable, but only a conjectural result for the rings Fp[[t]]. It should be noted,
however, that the results over C also follow from the work of Ax-Kochen-Ershov

([3] and [7, 8, 9]).

Sketch of the Algorithm. What follows is a brief sketch of the strategy in the
main case that R = Fp[[t]]. Let there be given an open W in a closed subscheme X
of An

R, both defined overR0 = Fp[t]. We describe an algorithm that decides whether
or not W admits an R-rational point (that is to say, a solution over R of the system
of equations and inequations that define W ; this will be explained in more detail
in 2.1). To simplify the argument, let us moreover assume that X is irreducible
and reduced. (In general, we will only be allowed to assume that the generic fibre
XK =: X ×SpecR SpecK is reduced, using Lemma 4.2.) If W = X , then using an
effective version of Greenberg’s result ([4, Theorem 3.2], or in the more general
case, Theorem 3.1 below), we can reduce the problem of finding an R-rational point
on X to a similar problem over Fp, so that this particular instance is decidable, as
already explained. Next we show that if the generic fibre of X has no singularities,
then either X admits no R-rational points at all or the R-rational points are dense
on X (see Theorem 2.4 below for an exact statement; the proof rests on some form
of Néron Desingularization). Therefore, in the non-singular case, we reduced the
problem of finding an R-rational point on W , to finding an R-rational point on
X , and we know already how to deal with this. Finally, if the generic fibre XK of
X has singularities, and under the assumption that Resolution of Singularities for
XK holds, we can (effectively) find a proper, birational morphism h : V → XK of
schemes of finite type over K with V non-singular. We then ’clear denominators’
to define a scheme Y over R with generic fibre equal to V and a proper birational
morphism f : Y → X which specializes to h after base change. Outside a nowhere



4 Jan Denef and Hans Schoutens

closed subset Z of X , the morphism f is an isomorphism (defined over R). Since
f is proper, there is therefore a one-one correspondence between R-rational points
on f−1(W )−f−1(Z) and W −Z, by the Valuative Criterium for Properness. Since
the generic fibre of Y is non-singular, we are back in the previous case. Finally, on
Z we get by with an inductive argument on the dimension.

The above proof collapses for arbitrary (excellent) Henselian local rings R, since
the Valuative Criterion for Properness fails for higher-dimensional local rings, so
that R-rationality can no longer be preserved in the way we did above. However, for
a W in general position, we can describe an algorithm which does not even rely on
Resolution of Singularities. This is explained in the last section, where the precise
definition of general position, in terms of the non-smooth locus of the generic fibre,
can be found.

Acknowledgement. The main ideas in this paper, namely the results on
the decidability of the existential theory of Fp[[t]] modulo Resolution of Singu-
larities, are entirely due to the first author, who had made these observations al-
ready in 1983. The second author, while taking up the task of working out the
details and preparing this manuscript for publication based on notes taken by F.-

V. Kuhlmann during an Oberwolfach meeting in 1999, has further generalized
these results to include arbitrary excellent Henselian discrete valuation rings.

2 Smooth Rational Points

2.1 Solutions and Rational Points. Let R be a ring and X a scheme over
SpecR. Let us denote the structure morphism by s : X → SpecR. With an R-
rational point x onX , we mean a section x : SpecR → X of the structure morphism
s, that is to say, such that s ◦ x is the identity on SpecR. If X is affine, say
X = SpecA with A an R-algebra, then an R-rational point x corresponds to an R-
algebra homomorphism φ : A→ R. In particular, if A is moreover finitely generated
as an algebra over R, say A ∼= R[ξ]/(f1, . . . , ft) with ξ = (ξ1, . . . , ξm) variables,
then an R-rational point on SpecA is uniquely determined by an m-tuple r =
(r1, . . . , rm) ∈ Rm such that f1(r) = · · · = ft(r) = 0. Namely, ri is the image of
(the class of) ξi under φ. In this terminology, we see that an R-rational point simply
corresponds to a solution over R of the system of equations f1 = · · · = ft = 0.

If f : Y → X is a morphism of schemes over SpecR, then we say that the R-
rational point y on Y is a lifting of the R-rational point x on X , or that x admits
an R-rational lifting y, if the following diagram commutes

�
�

�
�

�
��

A
A
A
A
A
AU-

SpecR

Y Xf

y x
(1)

The collection of all R-rational points y on Y lifting x is in one-one correspon-
dence with the collection of all R-rational points on the fibre product Y ×X SpecR
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given by the commutative diagram

?

-

?
-

SpecRY ×X SpecR

XY

x

f

(2)

If f is a locally closed immersion defined over R (that is to say, if Y is an open
inside a closed subscheme X ′ of X , where both X ′ and Y and the two inclusion
morphisms are defined over R), then an R-rational point x on X has at most one
lifting on Y , and if such a lifting exists, we simply say that x is an R-rational point
on Y . Moreover, if R is local and w is the closed point of SpecR corresponding
to the maximal ideal of R, then x is an R-rational point on an open Y ⊂ X if,
and only if, x(w) ∈ Y . Indeed, x−1(Y ) is an open in SpecR, since x is continuous.
The only open of SpecR containing the closed point w is SpecR itself. Therefore,
the image of x is entirely inside Y , showing that x is an R-rational point on Y . In
particular, it follows that each R-rational point on X is already an R-rational point
on an affine open subset of X , provided that R is local.

In spite of its name, an R-rational point on X is not a point of X . However, in
case R = K is a field, we can identify it with a point of X as follows. Let η be the
unique point of SpecK (that is to say, the point corresponding to the prime ideal
(0)). Let x be a K-rational point on X , that is to say, a morphism x : SpecK → X .
We now may identify x with the point x(η) of X . In fact x(η) is a closed point of
X with residue field K and each such point arises as the image of η under some
K-rational point.

For R a domain, let η denote the point of SpecR corresponding to the prime
ideal (0). We say that η is the generic point of SpecR. Let x be an R-rational
point on X . In particular, x(η) is a point of X . If X = SpecA is affine (and
by the remark above, we may always assume this provided R is moreover local),
then x corresponds to an R-algebra homomorphism φ : A → R. Therefore x(η)
corresponds to the prime ideal p =: φ−1(0), that is to say, to the kernel of φ. If R
is not a field, then p is no longer a maximal ideal, so that x(η) is not a closed point
of X . Let K denote the field of fractions of R and let i : SpecK → SpecR be the
morphism corresponding to the inclusion R ⊂ K. We have a base change (or fibre
product) diagram

?

-

?
-

XXK

SpecRSpecK

s

i

j

(3)

where XK denotes the fibre product X ×SpecR SpecK. In the rest of this paper,
we will always adopt the use of a subscript K to mean base change over i; this
convention might be applied to schemes as well as to morphisms.
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The scheme XK is called the generic fibre of X , since it can be identified with
s−1(η). In particular, since s◦x is by assumption the identity, we see that x(η) lies
in fact on s−1(η) ∼= XK . We denote the corresponding K-rational point of XK by
xK and call it the underlying point of x (on XK). It is simply the base change of
x over j, so that we have a commutative diagram

?

-

?
-

SpecRSpecK

XXK

xK x

j

i

(4)

Algebraically (that is to say, in case X = SpecA is affine), xK corresponds to the
kernel of the base change A ⊗R K → K, which is just p(A ⊗R K), since R ⊂ K
is flat. In conclusion, the underlying point of an R-rational point x on X , is a
K-rational point xK on XK .

A note of caution: one would be tempted to identify xK (or even x(η)) with the
composition xi. However, xi : SpecK → X is not even a K-rational point, since
X is in general not a scheme over SpecK (which was a necessary condition in our
definition).

2.2. Proposition Let R be a discrete valuation ring with field of fractions K.
Let f : Y → X be a proper morphism of Noetherian schemes over SpecR. Let x
be an R-rational point on X. If the underlying point xK of x admits a K-rational
lifting on the generic fibre YK , then x admits an R-rational lifting on Y .

More precisely, if w is a K-rational lifting of xK on YK , then we can choose
an R-rational lifting y of x on Y with underlying point equal to w.

Proof This is a direct application of the Valuative Criterium for Properness
as follows. Namely, let w be a K-rational point on YK lifting xK . This means that
w : SpecK → YK and xK = fK ◦w, where fK : YK → XK is the base change of f .

Let us denote by y0 : SpecK → Y the composition of w with the base change
morphism YK → Y . We therefore have a commutative diagram

?

-

?
-

SpecRSpecK

XY

y0 x

f

i

(5)

By [11, Chapter II, Theorem 4.7], there exists a morphism y : SpecR → Y , such
that fy = x and y0 = yi, which therefore defines an R-rational lifting of x, with
yK = w.

2.3. Definition Let R be a domain with field of fractions K. Let X be a
scheme over SpecR and let x be an R-rational point onX . By abuse of terminology,
we will say that x is non-singular, if the underlying point xK of x is a non-singular
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point of XK . Algebraically, in case X = SpecA is affine, this means that Ap ⊗R

K is a regular local ring, where p is the kernel of the homomorphism A → R
corresponding to x.

The following theorem shows that non-singular R-rational points are locally
dense. The proof uses some form of Néron Desingularization (Claim 2.5).

2.4. Theorem Let (R,m) be an Henselian local domain with fraction field K.
Let X be a scheme of finite type over SpecR. If X admits a non-singular R-rational
point x, then there exists an open X ′ of X, defined over R and admitting x as an
R-rational point, with the following property. Every open W of X ′ which is defined
over R, admits at least one R-rational point. (We’ll simply say that the R-rational
points are dense in a neighbourhood X ′ of the non-singular point x).

Proof We may assume that X = SpecA is affine, since R is local (see the
remark near the end of the second paragraph in 2.1). Let p be the kernel of the
R-algebra homomorphism A→ R corresponding to x. Let AK = A ⊗R K, so that
the generic fibre XK of X is isomorphic to SpecAK . Hence pAK is the maximal
ideal corresponding to the underlying point xK of x and we will still write p for its
image in AK .

Since by assumption (AK)p is regular, we can find a regular system of pa-
rameters (t1, . . . , th) for (AK)p, with ti ∈ A. Note that this simply means that
(t1, . . . , th)(AK)p = p(AK)p where h is the dimension of (AK)p. Consider the
K-algebra homomorphism

ψ : K[ξ] → AK (6)

given by sending ξi to ti, where ξ = (ξ1, . . . , ξh) are variables. Let n denote the
maximal ideal in K[ξ] generated by the ξi, so that

(AK)p/n(AK)p = (AK)p/p(AK)p = K. (7)

Note that (ξ1, . . . , ξh) is a regular sequence in K[ξ]n mapped bijectively by ψ onto
the regular sequence (t1, . . . , th) in (AK)p. By the Local Flatness Criterion [16,
Theorem 22.3], we get thatK[ξ]n → (AK)p is flat. Equation (7) shows thatK[ξ]n →
(AK)p is also unramified (note that both local rings have residue fieldK). Therefore
ψ is etale at p; see for instance [17, Chapter I.§3] or [19, Chapitre V] for definitions.
In other words, ψ induces a morphism f : XK → Ah

K which is etale at xK . Note
that this implies in particular that XK is smooth over K in the point xK .

After a translation, since x is R-rational, we might as well have taken x so that
xK lies over the origin in Ah

K (identified with the n-tuple 0). By [17, Corollary
3.16], we can write AK as

AK
∼= K[ξ, ζ]/(f1, . . . , fN ) (8)

with ξ = (ξ1, . . . , ξh) and ζ = (ζ1, . . . , ζN ) variables, and where h is the dimension of
XK and fj ∈ R[ξ, ζ] are polynomials without constant term, such that the Jacobian
Criterion holds in the point (0, 0) with respect to the ζ-variables. This means that
the determinant d of

∂(f1, . . . , fN)

∂(ζ1, . . . , ζN )
=:





∂f1/∂ζ1 ∂f1/∂ζ2 . . . ∂f1/∂ζN
∂f2/∂ζ1 ∂f2/∂ζ2 . . . ∂f2/∂ζN

...
...

. . .
...

∂fN/∂ζ1 ∂fN/∂ζ2 . . . ∂fN/∂ζN




(9)
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is non-zero when evaluated at (0, 0). Let d0 = d(0, 0) be this non-zero element.
Note that d0 ∈ R.

Set

B =: R[ξ, ζ]/(f1, . . . , fN) (10)

and let Y be the affine scheme SpecB. By construction, XK = YK , so that we can
find an open W of X which is defined over R and admits x as an R-rational point,
and an open V of Y , defined over R, such that W ∼= V (as schemes over SpecR).
Moreover, we can find an R-rational point y on V with underlying point equal to
xK . Therefore R-rational points are dense on X in a neighbourhood of x if, and
only if, they are dense on Y in a neighbourhood of y (in the terminology introduced
in the statement), so that we may as well assume that Y = X .

We define an R-algebra endomorphism σ on R[ξ, ζ] by letting
{
ξj 7→ d2

0ξj

ζj 7→ d0ζj .
(11)

Let fσ
i (ξ, ζ) denote the image of fi under σ. If r = (s1, . . . , sh, t1, . . . , tN ) ∈ Rh+N

is an R-rational solution of fσ = 0, then (d2
0s1, . . . , d

2
0sh, d0t1, . . . , d0tN ) is an R-

rational solution of f = 0. In particular, if the R-rational points are dense on the
variety Xσ defined by fσ, then so are the R-rational points on X .

2.5. Claim There exist gi ∈ R[ξ, ζ], for i = 1, . . . , N , such that the variety

over R defined by the gi is Xσ, and, moreover, the determinant of ∂(g1,...,gN )
∂(ζ1,...,ζN ) eval-

uated at (0, 0), equals 1, where ∂(g1,...,gN )
∂(ζ1,...,ζN ) is defined as in (9) with the gi instead of

the fi.

Assuming the claim, we therefore may assume upon replacing X by Xσ, that
d(0, 0) = d0 = 1. Let m denote the maximal ideal of R. Let W be a non-zero
open subset of X , defined over R. We need to show that W admits an R-rational
point. Without loss of generality, we may assume that W is the complement of
the hypersurface defined by some f0 ∈ R[ξ, ζ]. Since W is non-empty, the ideal
(f0, . . . , fN) has height at least N + 1 in K[ξ, ζ]. By taking generic hyperplanes,
we can find ai ∈ m, for i = 1, . . . , h− 1, such that the ideal

(f0, . . . , fN , ξ1 − a1, . . . , ξh−1 − ah−1) (12)

has height h + N in K[ξ, ζ], whence has only finitely many solutions (over the
algebraic closure of K). Therefore, we can choose ah ∈ m, so that

(f0, . . . , fN , ξ1 − a1, . . . , ξh − ah)K[ξ, ζ] (13)

is the unit ideal of K[ξ, ζ].
Set Fi(ζ) = fi(a1, . . . , ah, ζ), for i = 0, . . . , N , so that Fi ∈ R[ζ]. Write f for

(f1, . . . , fN) and F for (F1, . . . , FN ). Using (13), we get that

(F0, . . . , FN )K[ζ] = (1) (14)

Since f(0, 0) = 0 and ai ∈ m, we get that F (0) ≡ 0 mod m. Moreover, since

d(0, 0) = 1, we get that the determinant of ∂(F1,...,FN )
∂(ζ1,...,ζN ) is a unit in R when evaluated

at 0. Since R is Henselian, we can find t = (t1, . . . , tN ) ∈ RN , such that F (t) = 0.
By (14), we must have that F0(t) 6= 0. In other words, if we let r = (a1, . . . , ah, t),
then r defines an R-rational point on W , as required.
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So remains to prove our Claim 2.5. Let us write J for ∂(f1,...,fN )
∂(ζ1,...,ζN ) as defined

in (9). Taylor expansion at (0, 0) of f gives (in matrix notation)

f = ζJ + p(ξ) + q(ξ, ζ) (15)

with pi linear forms in the variables ξ and with qi ∈ (ξ, ζ)2R[ξ, ζ], where we have
written p = (p1, . . . , pN ) and q = (q1, . . . , qN ).

Let H be the adjoint matrix of J , so that H has also its entries in R and,
moreover, we have that

HJ = JH = dEN (16)

where EN denotes the (N×N)-identity matrix. Applying H to equation (15) yields

fH = dζ + p′(ξ) + q′(ξ, ζ) (17)

with the linear forms p′i in the ξ-variables and the polynomials q′i ∈ (ξ, ζ)2R[ξ, ζ]
the respective entries of the N -tuples p′ and q′. Let σ denote the change of vari-
ables (11). We will use in general a superscript σ to denote the image of an element
or a matrix under σ. Hence applying σ to Equation (17) gives

fσHσ = dσd0ζ + d2
0p

′′(ξ) + d2
0q

′′(ξ, ζ) (18)

with the linear forms p′′i in the variables ξ and the polynomials q′′i ∈ (ξ, ζ)2R[ξ, ζ]
the entries of p′′ and q′′ respectively. Since dσ(0, 0) = d(0, 0) = d0, we have in fact
that

fσHσ = d2
0

[
ζ + p′′′(ξ) + q′′′(ξ, ζ)

]
(19)

with the linear forms p′′′i in the ξ-variables and the polynomials q′′′i ∈ (ξ, ζ)2R[ξ, ζ]
the entries of p′′′ and q′′′ respectively. Put

g = ζ + p′′′(ξ) + q′′′(ξ, ζ), (20)

so that fσHσ = d2
0g, by (19). In particular, g defines the same variety Xσ as fσ.

Moreover, the determinant of ∂(g1,...,gN )
∂(ζ1,...,ζN ) evaluated at (0, 0) is 1, as required.

3 The Positive Existential Theory

The following theorem generalizes [4, Theorem 3.2] in that we allow now also
parameters. Nonetheless, the (non-standard) method of proof is the same, in the
main case that R is a power series ring over a field, but instead of using Artin’s
original result [2, Theorem 1.10], we need the general solution of the Artin Conjec-
ture due to [22] or [18].

3.1. Theorem (Strong Artin Approximation with Parameters)
Let (R,m) be an equicharacteristic excellent Henselian local ring. Let u be a k-tuple
(of parameters) over R. There exists a function NR,u : N2 → N, only depending on
R and on u, with the following property. Let fi(U, ξ), for i = 1, . . . , t, be polynomials
of degree at most d in the k variables U and the m variables ξ over Z. If there exists
an m-tuple r ∈ Rm such that all fi(u, r) ≡ 0 mod mN , with N = NR,u(d,m), then
there exists s ∈ Rm, such that all fi(u, s) = 0.

Proof Let fi ∈ Z[U, ξ] be of degree at most d ≥ 2, for i = 1, . . . , t with
U = (U1, . . . , Uk) and ξ = (ξ1, . . . , ξm) variables, where the U will play the role
of parameter variables and the ξ of indeterminates. We first reduce to the case
that R is complete, as follows. Let R be arbitrary and assume the theorem proven



10 Jan Denef and Hans Schoutens

for equicharacteristic complete Noetherian local rings. Let R̂ be the completion
of R (with respect to the m-adic topology). By the result [22] or [18] (see also

[23]), the pair R ⊂ R̂ has Artin Approximation. In model-theoretic terms, this

simply means that R is existentially closed in R̂. Algebraically, this means that
any polynomial system of equations overR is solvable overR, if it is already solvable

over R̂. We claim that we can simply take N bR,u
for the function NR,u. Indeed, let

N = N bR,u
(d,m) and suppose r ∈ Rm satisfies that all fi(u, r) ≡ 0 mod mN . Since

this remains true in R̂, we get by assumption that there exists r̂ ∈ R̂m, such that all
fi(u, r̂) = 0. Using Artin Approximation to the system of equations fi(u, ξ) = 0,
we therefore can find r̃ ∈ Rm, with all fi(u, r̃) = 0.

Therefore, we may moreover assume that R is complete. Next we show that
if the theorem holds for R, then it also holds for any homomorphic image of R.
Indeed, assume that NR,u has been shown to exist for R and all tuples u. Let
a = (v1, . . . , vl) be an ideal of R. Set R̄ = R/a and let u be a k-tuple over R.
Let r ∈ Rm and assume that fi(u, r) ≡ 0 mod mM R̄, for some M ∈ N (to be
determined later). Hence there exists aij ∈ R, such that

fi(u, r) ≡
l∑

j=1

aijvj mod mM (21)

in R, for all i = 1, . . . , t. Put

Fi(U, V, ξ, ζ) = fi(U, ξ) −
l∑

j=1

ζijVj (22)

for all i = 1, . . . , t, so that Fi is a polynomial over Z in the variables U , V =
(V1, . . . , Vl), ξ and ζ = (ζij). Note that Fi has again degree at most d. Set a = (aij)
and v = (v1, . . . , vl), so that Fi(u,v, r,a) ≡ 0 mod mM in R by (21). If we let M
be at least NR,(u,v)(d, n + lt), then we can find a tuple (s,b) ∈ Rn+lt, such that

all Fi(u,v, s,b) = 0. However, this simply means that all fi(u, s) = 0 in R̄, as
required.

Since any complete Noetherian local ring is a quotient of a complete regular
local ring by [16, Theorem 29.4], we may moreover assume by the previous argu-
ment that R is an equicharacteristic complete regular local ring. Therefore, R is
isomorphic to a power series ring over a field by Cohen’s Structure Theorem [16,
Theorem 28.3]. In other words, R = κ[[T ]], with T = (T1, . . . , Td) a finite set of
variables (where d is the dimension of R) and κ the residue field of R. We would like
to apply [4, Theorem 3.2], where the existence of the required computable function
is shown. However, (with notation from that paper), this result is only applicable
if ui ∈ κ[T ], by letting Fi(T, ξ) = fi(u, ξ) and taking NR,u equal to the function
β(d,m, δ, 0), where δ is the total degree of the polynomials Fi.

For arbitrary u, we cannot apply [4] as it stands. Instead we prove a more
general result using the same (non-standard) method of proof; for more details on
these non-standard techniques, we refer to [4]. Therefore, towards a contradiction,
assume that no such bound as in the statement exists for the pair (d,m). This

means that we can find for each c ∈ N a counterexample, fi
[c] ∈ κ[U, ξ] (we may as

well take coefficients in κ) and r[c] ∈ Rm as follows. The total degree of each fi
[c]
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is at most d and

fi
[c](u, r[c]) ≡ 0 mod mc (23)

but no solution over R to the system of equations fi
[c](u, ξ) = 0 exists. Let U be

some non-principal ultrafilter on N and let R[U ] and κ[U ] be the ultrapowers of R
and κ respectively. It follows from [4, Lemma 3.4] that

R[U ]/m∞R[U ] ∼= κ[U ][[T ]], (24)

where m∞R[U ] is the ideal of infinitesimals, that is to say, the intersection of all

mnR[U ]. Let r[U ] and fi
[U ] be the image of the sequences (r[c])c and (fi

[c])c in R[U ]

and κ[U ][U, ξ] respectively. Just observe that since each fi
[c] has degree at most d,

so does fi
[U ], whence it is in particular a polynomial. From (23), it follows that

fi
[U ](u, r[U ]) ∈ m∞R[U ], for all i. Therefore, by (24), each fi

[U ](u, r[U ]) = 0 when
viewed as an element in κ[U ][[T ]].

Let A denote the localization of κ[U ][T,u] (the κ[U ]-subalgebra of κ[U ][[T ]] gen-
erated by u and T ) at the maximal ideal mκ[U ][[T ]] ∩ κ[U ][T,u]. Since A is locally
of finite type over the field κ[U ], it is an excellent ring ([15, §34]). Note that

fi
[U ](u, ξ) ∈ A[ξ]. Since κ[U ][T ] ⊂ A, the completion of A is κ[U ][[T ]]. By Artin

Approximation [22] or [18] applied to the Henselization A∼ of A, we can find al-

ready a solution r∼ over A∼ to the system fi
[U ](u, ξ) = 0, that is to say, so that

fi
[U ](u, r∼) = 0. Since both u and κ[U ][T ] are contained in R[U ], so is A. By the

universal property of Henselizations and the fact that R[U ] is again Henselian by
 Los’s Theorem [13, Theorem 9.5.1], there is a unique A-algebra homomorphism

γ : A∼ → R[U ]. Therefore, if we put s = γ(r∼), then fi
[U ](u, s) = 0 in R[U ].

However, choosing some tuples s[c] over R so that the image s[U ] of the sequence
of these tuples in R[U ] is equal to s, we see that for almost all c, we have that

fi
[c](u, s[c]) = 0, for all i = 1, . . . , t, contradicting our original assumptions.

3.2. Remark The above proof in fact shows that we can prove a slightly more
general result. Namely in the statement of the theorem, we may take the fi to have
coefficients over any subfield λ of R.

3.3. Remark Let L(u) denote the language of rings together with constant
symbols denoting the entries of u. Using a similar proof as in [4, Theorem 6.1],
one can show that the function NR,u in the above statement can be chosen to be
computable modulo the L(u)-diagram of R (see [13, p. 16] for the definition of
diagram). In other words, when computing the function NR,u, we are allowed to
use as oracles, all equations and inequations over Z among the entries of u which
are true in R. In particular, if the the subring of R generated by u is computable,
in the sense that it admits an enumeration of its elements for which addition and
multiplication are computable functions, thenNR,u can be chosen to be computable.

3.4. Remark We will use this Strong Artin Approximation with Parameters
below to prove certain decidability results for excellent equicharacteristic discrete
valuation rings. In the main case of interest, that is, when R = Fp[[t]], we need
the above result with u equal to t, so that we can apply [4, Theorem 3.2] without
reserve. In particular, in this case, the proof does not rely on the general Artin
Approximation Theorem [22] or [18], but only on Artin’s result [2, Theorem 1.10].
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In [21], the second author gives a proof of a mixed characteristic form of Strong
Artin Approximation with Parameters, by essentially the same methods.

3.5. Proposition Let R be an equicharacteristic excellent Henselian local do-
main with residue field κ. Let u be a k-tuple in R. Then the positive L(u)-existential
theory of R is decidable relative to the existential theory of κ and the L(u)-diagram
of R.

More precisely, given a morphism of finite type f : Y → X of schemes of finite
type over R, we can obtain (in a constructive way from the parameters used to
describe X, Y and f) a morphism of finite type f : Y → X of schemes of finite type
over κ, such that, for each R-rational point x : SpecR → X, we can construct a
κ-rational point x̄ of X with the property that x admits an R-rational lifting on Y
if, and only if, the fibre Yx̄ = f−1(x̄) admits a κ-rational point.

Proof Let ϕ be a positive L(u)-existential formula, so that it is a disjunction
of statements of the form

(∃ξ)f1(u, ξ) = f2(u, ξ) = · · · = ft(u, ξ) = 0 (25)

with fi ∈ Z[U, ξ] and U = (U1, . . . , Uk) and ξ = (ξ1, . . . , ξm) tuples of variables.
Without loss of generality we may assume that ϕ is one such disjunct (25). Using
Strong Artin Approximation with Parameters (Theorem 3.1), we can find some N ,
such that ϕ holds if, and only if, there exists r ∈ Rm such that

f1(u, r) ≡ f2(u, r) ≡ · · · ≡ ft(u, r) ≡ 0 mod mN . (26)

Moreover, N depends in a computable way only on the L(u)-diagram of R, on m
and on the total degrees of the fi. In other words, we reduced the problem, modulo
the L(u)-diagram of R, to the decidability of the existential theory of R/mN . As
R/mN is a finite dimensional vector space over κ, we even reduced the problem to
the decidability of the existential theory of κ.

The last statement is just a translation into a more geometric language of the
above algorithm. Indeed, since the problem is local, we may assume that both X
and Y are affine. Since X is a closed subscheme of some affine space A

k
R, we may

as well assume that X is the affine space Ak
R = SpecR[U ], with U = (U1, . . . , Uk)

some variables. If B is the coordinate ring of Y , then B = R[U, ξ]/(f1, . . . , ft), for
some polynomials fi and some variables ξ = (ξ1, . . . , ξm). Suppose fi = gi(u

′, U, ξ)
with gi defined over Z and u′ a k′-tuple over R. Set C = Z[U ′, U, ξ]/(g1, . . . , gt),
with U ′ = (U ′

1, . . . , U
′

k′) variables. Let x be an R-rational point on Ak
R given by the

k-tuple u. The tuple (u′,u) then defines an R-rational point on A
k′+k
R . Moreover,

these rational points induce an equality of fibre products

SpecC ×
A

k′+k
R

SpecR = Y ×Ak
R

SpecR. (27)

Since a lifting of an R-rational point on A
k′+k
R or Ak

R corresponds to an R-rational
point on these respective fibre products, we may assume, after enlarging the tuple
of variables U , that the fi have already coefficients over Z.

Let e1, . . . , eτ be a basis of R/mN over κ. Write the image of u in R/mN as
l1e1 + · · · + lτeτ with li tuples over κ and set l equal to the tuple of all li. Let ζj
and λ be tuples of variables with ζ equal to the tuple of all ζj and write

f̄i(u, ζ1e1 + . . . ζτeτ ) = gi1(l, ζ)e1 + · · · + giτ (l, ζ)eτ (28)
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for i = 1, . . . , t, with gij ∈ κ[λ, ζ] and where f̄i denotes the reduction of fi modulo
m. Then the equivalence (26) has a solution if, and only if, the system of equations
gij(l, ζ) = 0 has a solution in κ. Therefore, we proved the last statement by setting
Y = Specκ[λ, ζ]/(gij) and X = Atτ

κ .

3.6. Remark In particular, if the subring generated by u is computable (see
Remark 3.3) and if κ is either a finite field or an algebraically closed field, then the
positive L(u)-existential theory of R is decidable. This is because in either case κ is
decidable. In fact, if κ is finite, then we do not need to assume that R is equichar-
acteristic, provided we have the equivalent statement for mixed characteristic in
Theorem 3.1, for then R/mN will also be finite whence decidable.

4 The Existential Theory of Fp[[t]].

We will assume the truth of the following Conjecture.

Conjecture 1 (Resolution of Singularities) Let X be a reduced scheme of

finite type over a field K. Then there exists a morphism f : X̃ → X of schemes of
finite type over K, such that

• f is a blowing up in a nowhere dense centre defined over K;
• X̃ is non-singular.

Note that a blowing up in a nowhere dense centre is a proper, birational mor-
phism by [11, Chapter II Proposition 7.16]. In fact, one expects that if the conjec-
ture is true then we can take f to be a composition of finitely many blowing ups
with smooth centres.

The Conjecture is known in the following cases.

• If K has characteristic zero, by a theorem of Hironaka in [12]; see also
[5].

• If X has dimension at most two, by a theorem of Abhyankar in [1].

4.1. Remark If the Conjecture holds for the scheme X , then we can in fact
calculate the desingularization f in an effective way as follows. Firstly, without
loss of generality, we may assume that X = SpecA is affine. Let K0 be a finitely
generated (whence countable) field over which X is already defined, so that X =
SpecA0×K0

K, where A0 is some finitely generatedK0-algebra. Let a1, a2, . . . be an
enumeration of all ideals of A0 defining a nowhere dense closed subset of SpecA0.
For each i = 1, 2, . . . , let fi : Xi → SpecA0 be the blowing up with respect to
ai. To check whether Xi is non-singular, we can use the Jacobian Criterion [16,
Theorem 30.3], which amounts in checking whether certain determinants vanish or
not. This establishes an effective procedure to find a desingularization for X , since
after checking a finite number of ideals, we must arrive, according to Resolution of
Singularities, at a situation where the blowing up is non-singular. This algorithm
does rely though on the fact that we can verify identities holding in K0 (or K). In
particular, if X is already defined over the prime field or a transcendental extension
of the prime field (or, for that matter, over any computable subfield), then the
desingularization is computable.

4.2. Lemma Let R be a domain with field of fractions K. Let X be a scheme
of finite type over SpecR. There exists a closed subscheme Y of X, such that YK

is equal to the reduced closed subscheme of XK (that is to say, YK and XK have
the same underlying set and YK is reduced), and such that any R-rational point on
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X lies already on Y . Moreover, there exists an algorithm which calculates Y from
X.

Proof We may assume thatX = SpecA is affine, with A a finitely generatedR-
algebra. Suppose A = R[ξ]/(f1, . . . , ft), with ξ = (ξ1, . . . , ξm) variables. Therefore,
K[ξ]/(f1, . . . , ft)K[ξ] is the affine algebra of XK . Let g1, . . . , gs ∈ R[ξ], so that
the radical of (f1, . . . , ft)K[ξ] equals (g1, . . . , gs)K[ξ]. By [20, Theorem 2.10], there
exists a uniform bound on the degrees of the gi, depending in a computable way,
only on the degrees of the fi. This latter fact implies that there is an algorithm
which effectively calculates these gi at least over K, after which we just need to
clear denominators to obtain polynomials over R.

Let B = R[ξ]/(f1, . . . , ft, g1, . . . , gs) and set Y = SpecB, so that Y is a closed
subscheme of X . By construction YK equals the reduced closed subscheme with the
same underlying set as XK . Suppose that x is an R-rational point on X . To x there
corresponds an R-tuple r ∈ Rm such that f1(r) = · · · = ft(r) = 0, as explained
above in 2.1. Since the gi belong to the radical of (f1, . . . , ft)K[ξ], it follows that
also g1(r) = · · · = gs(r) = 0. Using once more the correspondence between R-
rational points and solutions over R, we see that x is an R-rational point on Y , as
required.

We can now prove the main theorem of this paper.

4.3. Theorem Let us assume the validity of Conjecture 1. Let R be an excel-
lent equicharacteristic Henselian discrete valuation ring with residue field κ. Then
the existential theory of R in the language LDVR is decidable relative to the exis-
tential theory of κ and the LDVR-diagram of R.

In particular, the LDVR-existential theory of Fp[[t]] is decidable, where t is a
single variable.

Proof The last statement follows immediately from the first statement, as a
finite field is definable. Hence remains to show the first statement. Let m = πR
be the maximal ideal of R. Let K denote the field of fractions of R and let R0

be the subring of R generated by the uniformizing parameter π. Let ϕ be an
existential sentence in the language LDVR. The theorem states that there is an
algorithm deciding whether ϕ holds in R, where the algorithm is allowed to use the
existential theory of κ as an oracle, that is to say, we may assume that we know
how to decide whether an existential sentence is true over κ.

The sentence ϕ is a disjunction of sentences of the form

(∃ξ)f1(π, ξ) = f2(π, ξ) = · · · = ft(π, ξ) = 0 ∧ f0(π, ξ) 6= 0 (29)

with fi ∈ Z[U, ξ], for i = 0, . . . , t and where U and ξ = (ξ1, . . . , ξm) are variables.
We may assume that ϕ is just one such disjunct (29). Let X denote the closed
subscheme of Am

R defined by the ideal (f1(π, ξ), . . . , ft(π, ξ)), that is to say,

X = Spec(R[ξ]/(f1(π, ξ), . . . , ft(π, ξ)). (30)

Let W be the Zariski open subset of X defined by the extra condition f0(π, ξ) 6= 0.
We have to exhibit an algorithm which verifies whether or not W admits an R-
rational point. Using Lemma 4.2, we may even assume that XK is reduced, where
as always

XK
∼= Spec(K[ξ]/(f1(π, ξ), . . . , ft(π, ξ)) (31)

is the generic fibre of X .
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Apply Conjecture 1 to the reduced scheme XK to obtain a morphism h : V →
XK of schemes of finite type overK, such that h is a blowing up defined overK, and
V is non-singular. Moreover, by Remark 4.1, there is a computable function that
calculates this desingularization h, since XK is defined over the field of fractions
of R0. By clearing denominators in the defining equations of the centre, we can
find a scheme Y of finite type over SpecR (in fact, over R0) and a blowing up
f : Y → X with nowhere dense centre Z defined over R, such that YK

∼= V and the
base change fK of f coincides with h.

The algorithm now works as follows, by induction on the dimension ofX . Check
first whether W ∩Z admits an R-rational point, using the induction hypothesis on
the lower dimensional scheme Z. If a solution exists, we are done. So assume
no such solution exists. We then check whether Y admits an R-rational point
using Proposition 3.5. Suppose we found an R-rational point on Y . Since V is
non-singular, the underlying point of an arbitrary R-rational point on Y is non-
singular. Therefore, using Theorem 2.4, it follows that also the non-empty open
subset f−1(W ) − f−1(Z) admits an R-rational point y. Since f is defined over R,
it follows that f ◦ y is an R-rational point on W and we are done.

Finally, suppose neither does there exist an R-rational point on Y . I claim that
in that case W does not admit an R-rational point. Indeed, assume that x is an
R-rational point on W . By our first assumption, x must be an R-rational point on
the open X − Z. Therefore, the underlying point xK of x does not belong to ZK .
Since f is an isomorphism outside Z, so is h = fK outside ZK . Hence there exists
exactly one (K-rational) point w on YK with h(w) = xK . By Proposition 2.2 and
the fact that f is proper ([11, Chapter II Proposition 7.16]), there exists therefore
an R-rational point on Y (lifting x), contradiction.

4.4. Remark The restriction on R to be equicharacteristic comes from the
same restriction in Proposition 3.5. However, using the remark following that
Proposition, we can extend the above Theorem to the case that R has mixed char-
acteristic with finite residue field, provided the mixed characteristic analogue of
Theorem 3.1 holds. A similar remark applies to Theorem 5.2 below.

5 General Existential Sentences

5.1. Definition Let X be a reduced scheme of finite type over a field K. The
smooth stratification of X is the chain of closed subsets

∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xh ⊂ Xh+1 = X (32)

where each Xi is the non-smooth locus of Xi+1, for i = 1, . . . , h. Note that using
the Jacobian Criterion for smoothness [16, Theorem 30.3], the non-smooth locus
is closed. Moreover, given defining equations for X , one calculates the smooth
stratification of X using this Jacobian Criterion.

We define the bad locus Σ ofX as the union of all smooth connected components
of some Xi, where i ranges from 1 to h. Note that this union is in fact a disjoint
union. Indeed, let F be a smooth connected component of Xi, for some i = 1, . . . , h,
and let F ′ be another smooth connected component of Xi′ , for some i′ = 1, . . . , h.
If i = i′ but F 6= F ′, then clearly F and F ′ are disjoint, so we may assume i′ < i.
Since F is smooth, it is disjoint from Xi−1 whence from Xi′ , so that F ∩ F ′ = ∅,
proving our claim. In particular, the bad locus is itself a smooth scheme and its
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connected components are irreducible. The latter is a consequence of the fact that
a smooth and connected scheme is irreducible.

For example, if the non-smooth locus of X consists of three lines forming a
triangle together with a fourth line disjoint from these three, then the bad locus
consists of the three vertices of the triangle together with the fourth line.

In this paper, we will say that an open subset W of X lies in general position,
if its intersection with the bad locus is everywhere dense in the bad locus. Note
that this means that the complement X−W of W does not contain any irreducible
component of the bad locus. For instance, for the example in the previous para-
graph, W will be in general position if it contains the three vertices and intersects
the fourth line.

Let R be a domain with field of fractions K. Let fi ∈ R[ξ], for i = 0, . . . , t,
with ξ = (ξ1, . . . , ξm) variables. Let X be the closed subscheme of Am

R defined by
the ideal (f1, . . . , ft). In other words, X has affine coordinate ring R[ξ]/(f1, . . . , ft).
Let W be the open in X given by the extra condition f0 6= 0. We will say that the
existential sentence

(∃ξ)f1(ξ) = f2(ξ) = · · · = ft(ξ) = 0 ∧ f0(ξ) 6= 0 (33)

is general, if WK lies in general position on the reduction of XK , where as always a
subscript K indicates the generic fibre of a scheme, that is to say, the base change
over K. We call an arbitrary existential sentence general, if it is a disjunction of
general sentences of the form (33).

5.2. Theorem Let R be an excellent equicharacteristic Henselian local do-
main. Let u be a k-tuple in R. There is an algorithm relative to the residue field of
R and the L(u)-diagram of R, which decides whether a general existential sentence
with parameters u, holds in R.

Proof Let κ be the residue field of R and m its maximal ideal. Let K denote
the field of fractions of R. Let U = (U1, . . . , Uk) be a k-tuple of variables. Let ϕ
be a general existential sentence with parameters u. The theorem then states that
there is an algorithm deciding whether ϕ holds in R, where the algorithm is allowed
to use the existential theory of κ and the equational theory of the subring generated
by u as oracles, that is to say, we may assume that we know how to decide whether
an (arbitrary) existential sentence is true over κ and whether a polynomial h(U)
with integer coefficients vanishes on u in R.

Let ϕ be an arbitrary general existential sentence. In other words, ϕ is a
disjunction of general sentences of the form

(∃ξ)f1(u, ξ) = f2(u, ξ) = · · · = ft(u, ξ) = 0 ∧ f0(u, ξ) 6= 0 (34)

with fi ∈ Z[U, ξ], for i = 0, . . . , t and where ξ = (ξ1, . . . , ξm) is a tuple of vari-
ables. In order to prove the theorem, we may assume that ϕ is just one such
disjunct (34). Let X denote the closed subscheme of Am

R defined by the ideal
(f1(u, ξ), . . . , ft(u, ξ)) and let W be the Zariski open subset of X defined by the
extra condition f0(u, ξ) 6= 0. By definition, WK lies in general position on the
reduction of XK . Using Lemma 4.2, we may assume that XK is actually reduced
(the sentence corresponding to this new X is equivalent over R with the original
ϕ).

Choose an increasing sequence of closed subschemes

∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xh ⊂ Xh+1 = X (35)
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so that their generic fibers form the smooth stratification of XK . Recall that this
means that (X1)K and all the open subsets (Xi+1)K − (Xi)K , for i = 1, . . . , h
are smooth over K. Moreover, using the Jacobian Criterion for smoothness [16,
Theorem 30.3], such a sequence can effectively be constructed from the fi, modulo
the L(u)-diagram of R.

We next describe the algorithm that will verify whether or not W admits an
R-rational point. First check whether X1 has an R-rational point using Proposi-
tion 3.5. If there is an R-rational point on X1, we stop and let the output of our
algorithm be yes. If not, we check, using Proposition 3.5 again, whether X2 has
an R-rational point. If it does, we stop and let the output be yes, otherwise we
continue. At each stage, we check for the existence of an R-rational point on Xi

using Proposition 3.5, stop when such a point exists and give the output yes, or
continue otherwise. If we exhausted all the Xi (including the final Xh+1 = X) and
still have not found an R-rational point, we conclude that W has no R-rational
point, so we stop and give the output no.

Let us verify the correctness of this algorithm. Obviously, if an R-rational point
on W exists, then the algorithm will give output yes. Conversely, if the output
is yes, then at some stage i ∈ {1, . . . , h + 1}, we found an R-rational point x in
Xi, but no R-rational point was found in Xi−1. Therefore x lies in Xi − Xi−1.
Hence its underlying point xK lies in (Xi)K − (Xi−1)K whence is a smooth point
of (Xi)K . By Theorem 2.4, the R-rational points are therefore dense on Xi in a
neighbourhood of x. More precisely, there is an open V of Xi which is defined over
R and admits x as an R-rational point, such that if W ∩ V is non-empty (in the
scheme-theoretic sense), then W ∩ V admits also an R-rational point. Therefore
we established the validity of the algorithm, provided we can show that W ∩ V is
non-empty.

To this end, let F be an irreducible component of Xi. By construction of the
bad locus, we can find an irreducible component Z of the bad locus of XK with
Z ⊂ FK . Our general position assumption implies that Z ∩ WK is non-empty.
Therefore, FK ∩WK whence F ∩W is non-empty and therefore F ∩W is dense in
F . Since this holds for every irreducible component of Xi, it follows that W ∩Xi

is dense in Xi, so that W ∩ V is non-empty, as required.
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