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Abstract

For a Noetherian local ring, the prime ideals in

the singular locus completely determine the category of

finitely generated modules up to direct summands, ex-

tensions and syzygies. From this some simple homolog-

ical criteria are derived for testing whether an arbitrary

module has finite projective dimension.
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I. Introduction

In this paper, we address the problem of determining whether

a certain module Ω over a Noetherian ring R has finite projective

dimension. By the results of Jensen and others, the exact value of

this projective dimension, when finite, might depend on one’s model

of set theory (see for instance [5, §5]). Here, we will content ourselves

1

Copyright C© 2000 by Marcel Dekker, Inc. www.dekker.com



2 Hans Schoutens

with proving its finiteness. In fact, we actually will give criteria for

Ω to have finite flat dimension (that is to say, admitting a finite

flat resolution). It is well-known that this is equivalent with having

finite projective dimension (see for instance [5, Proposition 5.6]).

Moreover, for Noetherian local rings, flat dimension is at most the

dimension of the ring ([1, Theorem 2.4]).

Since this is essentially a local issue, I will in the remainder of this

introduction assume that R is moreover local with maximal ideal

m and residue field k. If Ω is finitely generated, then the vanishing

of TorR
n (Ω, k) suffices to conclude that Ω has flat (whence projec-

tive) dimension at most n− 1. The Local Flatness Criterion (see

for instance [7, Theorem 22.3]) can be used to extend this to certain

non-finitely generated modules, albeit chiefly in case n = 1. However,

for an arbitrary R-module Ω, the vanishing of a single Tor module

will not suffice. In fact, k-rigidity fails in this generality. That is

to say, the vanishing of TorR
n (Ω, k) does not necessarily entail the

vanishing of the higher Tor modules TorR
m(Ω, k), with m > n. How-

ever, I will prove in Theorem V.4 that k-rigidity holds whenever n

is at least the dimension of R, under the additional assumption that

R is Cohen-Macaulay. Although the proof uses the degeneration of

spectral sequences and does not work without the Cohen-Macaulay

assumption, it is conceivable that this latter assumption can actually

be removed from the statement.

Nonetheless, this restriction on the asymptotical behavior of the

Betti numbers does not yet solve our original problem. To this end,

we need to show that TorR
n (Ω, ·) is the zero functor, for some n ≥ 1,

and in fact, it suffices to show this for the restriction of TorR
n (Ω, ·) to

the category modR of finitely generated R-modules. In homological

algebra, one can distinguish three rules of inference for the vanishing

of a functor: (1) if the functor is additive, vanishing is preserved un-

der direct summands; (2) if the functor is exact in the middle, then

vanishing on the outer two modules in a short exact sequence en-

tails the vanishing on the inner module; (3) if we have a collection of

derived functors, then vanishing is transferred between two consec-
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utive derivatives by taking (co-)syzygies.* In conclusion, we need to

understand the structure of the category modR up to the formation

of direct summand, extension and syzygy. This will be formalized in

this paper by the notion of syzygycal net (see Section VI for details).

If we want to study a Tor functor in a single dimension, we should

not use the third inference rule; the corresponding weaker notion

is that of a net. In other words, a net is a subclass of modR closed

under direct summands and extensions. The key observation is that

modR, as a net, can be built up from a relative small collection of

(cyclic) modules: it suffices to take all R/I where I is either a prime

ideal in the singular locus of R or otherwise a parameter ideal (an

ideal generated by as many elements as its height). If R is moreover

Cohen-Macaulay, then any parameter ideal is generated by a regular

sequence and therefore has finite projective dimension. Therefore,

the following result (Theorem VI.8 in the text) is immediate under

this additional assumption, whereas if R is not Cohen-Macaulay, a

more detailed study of Koszul homology is required.

Main Theorem. Let R be a Noetherian ring. Any finitely generated

R-module can be built up from cyclic modules of the form R/p with p

a prime ideal in the singular locus of R, by taking direct summands,

extensions and syzygies.

It follows from a careful analysis of the way in which a finitely

generated R-module is obtained from the singular locus by the three

inference rules, that, for some a > 0, the vanishing of TorR
n (Ω, R/p)

for all n = a, . . . , a + d and all p in the singular locus of R, implies

that Ω has finite projective dimension. Using k-rigidity in high di-

mension (as explained above), it suffices to show this for a single

value n ≥ d (in the non-local case, we need n > d) under the ad-

ditional Cohen-Macaulay assumption. In fact, we can improve this

even further to obtain the following result.

Corollary. Let R be a d-dimensional local Cohen-Macaulay ring

with residue field k. Let Ω be an arbitrary R-module. If the Betti

*There is in fact a fourth rule, deformation by means of regular elements, which

is implicitly used in the proofs of Theorems V.4 and VI.10.
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number βR
a (p; Ω) vanishes, that is to say, if TorR

a (Ω, R/p)p = 0, for

some a ≥ d and for all p in the singular locus of R, then Ω has finite

projective dimension.

In particular, if R is Cohen-Macaulay with an isolated singularity,

then the vanishing of the single Tor module TorR
a (Ω, k), for some

a ≥ d, implies that Ω has finite projective dimension.

Without the Cohen-Macaulay assumption, we cannot formulate

such a criterion using the vanishing of Tor in just a single dimension.

In stead, we need to require that we have vanishing for all n in some

interval of length d + 1. Presumably, this is not an optimal result

and it would be interesting to reduce the size of such a test interval;

of course, if k-rigidity in high dimensions holds, then we can reduce

this again to a single value for n.

II. Nets

II.1. Definition. Let R be a ring. The collection of all (isomor-

phism classes of) finitely generated R-modules will be denoted by

modR. Let N ⊂ modR be a class of finitely generated R-modules. We

say that N is a net, if N is closed under extensions and direct sum-

mands. In other words, if the following two conditions are satisfied.

(Net) If we have a short exact sequence of finitely generated R-

modules

0→ K →M → N → 0

for which K and N belong to N , then so does M .

(DirSum) If the above sequence is split exact (that is to say, M ∼=
K ⊕N) and M belongs to N , then so do both K and N .

In particular, if R belongs to a net N , then so does any finitely

generated free module, and, more generally, any finitely generated

projective module. The intersection of an arbitrary number of nets is

again a net. Therefore, for each class of finitely generated R-modules

K, there exists a smallest net containing it. We will denote this net

by net(K) and call it the net generated by K.
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Recall that a subset V of SpecR is called stable under special-

ization, if p ∈ V and p ⊂ q ∈ SpecR imply q ∈ V . In particular, a

Zariski closed subset is stable under specialization.

For an arbitrary subset V of SpecR, let us denote by supp(V )

the collection of all finitely generated R-modules M which support

in V , that is to say, M belongs to supp(V ), if Mp 6= 0 implies p ∈ V ,

for every prime ideal p of R. Recall that for a finitely generated R-

module M , the support SuppM is equal to the Zariski closed set

defined by the annihilator, AnnR(M), of M .

II.2. Lemma. Let R be a Noetherian ring and let V be a subset of

SpecR. If V is stable under specialization, then supp(V ) is a net,

and, moreover, as such, it is generated by all cyclic modules of the

form R/p with p ∈ V .

Proof. Let N be the net generated by all cyclic modules R/p with

p ∈ V . We need to show that supp(V ) = N . Let M be a finitely gen-

erated R-module with SuppM ⊂ V . There is a filtration by finitely

generated R-modules

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

such that each Mi+1/Mi is isomorphic to some R/p, with p ∈ SuppM

(see for instance [7, Theorem 6.4]). By an inductive use of rule (Net),

it follows that M ∈ N .

Conversely, we need to show that if M ∈ N , then its support lies

inside V . This is trivial for the modules R/p with p ∈ V , since the

support of R/p consists of the Zariski closed set defined by p and

since V is stable under specialization. If the support of a module

lies in V , then so does the support of any of its direct summands.

Therefore, by an inductive argument, it suffices to prove that if

0→ K →M → N → 0

is exact with the support of K and N contained in V , then so is

the support of M . However, this is clear, since always SuppM =

SuppK ∪ SuppN .

II.3. Example (Nets and their generators). Let us apply the

lemma to various choices of V . The resulting nets are then generated
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by all cyclic modules of the form R/p with p ∈ V .

1. Let V be SpecR. This is trivially stable under specialization

and supp(V ) = modR.

2. Fix some h ≥ 0 and let V be the subset of SpecR consisting

of all prime ideals p of height at least h. This is clearly stable

under specialization and supp(V ) is the net Ih consisting of

all finitely generated R-modules whose annihilator has height

at least h.

3. Fix some h ≥ 0 and let V be the subset of SpecR consisting

of all prime ideals p of depth at least h. Again this is stable

under specialization and supp(V ) is the net Gh consisting of

all finitely generated R-modules of grade at least h.

4. Fix some h ≥ 0 and let V be the subset of SpecR consisting

of all prime ideals p for which R/p has dimension at most h.

Again this is stable under specialization and supp(V ) is the net

Dh consisting of all finitely generated R-modules of dimension

at most h.

5. Let V be the subset of SpecR consisting of all maximal ide-

als. This is trivially stable under specialization and supp(V )

consists of all finitely generated R-modules of finite length.

The usefulness of nets becomes apparent by the following result.

II.4. Proposition. Let R be a ring and let F be an additive functor

from the category of R-modules to an abelian category. Suppose F

is exact in the middle. Let K be a collection of finitely generated R-

modules such that F(K) = 0, for each K ∈ K. Then F(M) = 0, for

each M ∈ net(K).

Proof. Recall that a (covariant) functor is called exact in the middle,

if any short exact sequence

0→ K →M → N → 0

transforms into an exact sequence

F(K)→ F(M)→ F(N).

For a contravariant functor the definition is the same apart from re-

versing the arrows. The statement is now immediate using induction
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on the number of times the rules (Net) and (DirSum) are used.

II.5. Remark. For R an arbitrary ring and Ω an arbitrary R-module,

the following are additive functors which are exact in the middle:

TorR
i (Ω, ·), ExtiR(Ω, ·) and ExtiR(·,Ω), for any i, and, more generally,

so is any derived functor of a left or right exact functor.

II.6. Corollary. Let (R,m) be a Noetherian local ring with residue

field k. Let Ω be an arbitrary R-module. If TorR
n (Ω, k) = 0, for some

n ∈ N, then TorR
n (Ω,M) = 0, for every R-module M of finite length.

Proof. Follows immediately from (5) in Example II.3 in combination

with Proposition II.4 and Remark II.5.

Of course, the same is true for any other additive functor which

is exact in the middle. For some more applications of Corollary II.6,

see [8].

III. Singular Locus

The singular locus of a Noetherian ring R is the collection of all

prime ideals p of R for which Rp is not regular. We will denote it by

Sing R. In this paper, an ideal I is called a parameter ideal, if it is

generated by as many elements as its height (the reader should be

aware that this is not always the standard usage of the term). With

the phrase I generates locally one of its minimal primes, we will

mean that for some minimal prime p of I, we have that IRp = pRp.

Note that if I is moreover a parameter ideal, then such a minimal

prime is necessarily in the regular locus of R. The key result of this

paper is the following theorem.

III.1. Theorem. Let R be a Noetherian ring. Then modR, as a net,

is generated by all cyclic modules of the form R/I, with I either a

prime ideal in the singular locus of R or else a parameter ideal which

generates locally one of its minimal primes.

Proof. Let N be the net generated by all R/I with I either in

the singular locus of R or else a parameter ideal which generates

locally one of its minimal primes. By (1) in Example II.3 (or by a
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simple induction on the number of generators), modR is generated as

a net by all cyclic modules. Therefore, towards a contradiction, we

may assume that at least one R/a does not belong to N . Let a be

maximal among all such ideals. Let p be a minimal prime of a. If

a 6= p, then we have an exact sequence

0→ R/p→ R/a→ R/b→ 0

with a  b. However, by maximality both R/p an R/b belong to N .

By rule (Net), then so does R/a, contradiction. Therefore a = p. By

our assumption, we must have that p /∈ Sing R, that is to say, that

Rp is regular. I claim that there exists a parameter ideal I inside

p of height ht p, such that IRp = pRp. This is an easy exercise in

prime avoidance, but for sake of completeness, I will give a proof by

induction on the height h of p. The case h = 0 is trivial, since Rp is

then a field. Suppose h > 0. In particular, p is not contained in any

minimal prime of R. By prime avoidance, we can find x1 ∈ p, not in

p2 nor in any minimal prime p0j of R. In particular, x1R has height

one. If h = 1 we are done, since regularity implies that x1Rp = pRp.

Otherwise, if h > 1, we have that p is neither a minimal prime p1j

of x1R nor can it be equal to x1R + p2, by Nakayama’s Lemma.

By prime avoidance, we can find x2 ∈ R, not in x1R + p2 nor in any

p0j or p1j . It follows that (x1, x2)R has height 2. Continuing this

way, we find x1, . . . , xh ∈ p, such that their images in pRp/p
2Rp are

linearly independent and such that (x1, . . . , xh)R has height h. Since

Rp is regular, the first condition implies that (x1, . . . , xh)Rp = pRp

(see for instance [7, Theorem 14.2]).

Since p is a minimal prime of I, we can find s ∈ R, such that

p = (I :R s). Since IRp = pRp, one checks that s /∈ p. We have an

equality

I = p ∩ (I + sR).

Indeed, one inclusion is immediate, so take z ∈ p ∩ (I + sR). Hence

we can write z = i + sa, with i ∈ I and a ∈ R. Since sa = z − i ∈ p

and since s /∈ p, we get a ∈ p. Since p = (I : s), we get that sa belongs

to I, whence so does z, as claimed.

In general, if a and b are ideals in a ring R, then we have an exact
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sequence

0→ R/(a ∩ b)
s
−→ (R/a)⊕ (R/b)

t
−→R/(a + b)→ 0,

where s sends an element x + (a ∩ b) to the pair (x + a, x + b) and t

sends a pair (x + a, y + b) to the element (x− y) + (a + b). Applied

to the present situation with a = p and b = I + sR, we get an exact

sequence

0→ R/I → R/p⊕R/(I + sR)→ R/(p + sR)→ 0. (1)

By maximality, R/(p + sR) belongs to N and by construction so

does R/I. Using the rules (Net) and (DirSum), it then follows from

(1) that also R/p belongs to N , contradiction.

III.2. Remark. If R is moreover Cohen-Macaulay, then any parame-

ter ideal is generated by an R-regular sequence. Under this additional

assumption, fix some h ∈ N. Consider the net Gh consisting of all

finitely generated R-modules of grade at least h, as discussed in (3)

in Example II.3. By Lemma II.2, the net Gh is generated by all R/p

with p a prime ideal of depth at least h. Analyzing the above proof,

we see that the collection of all R/I already generate Gh, where I is

either an ideal generated by an R-regular sequence of length at least

h or a prime ideal in the singular locus of R of depth at least h.

However, in the presence of embedded associated primes, funny

things can happen: it is very well possible that p belongs to the

regular locus of R but its depth is strictly less than its height. If R is

not Cohen-Macaulay, then the nets Gh are of lesser use. Instead, one

can use the nets Ih, introduced in (2) in Example II.3, consisting of

all finitely generated R-modules whose annihilator has height at least

h. The argument in the proof of the Theorem shows that this net is

generated by all R/I, with I an ideal of height at least h which is

either a parameter ideal locally generating one of its minimal primes

or else a prime ideal in the singular locus of R.

The following example shows some of the complications that arise

in the absence of the Cohen-Macaulay property.

III.3. Example. Let k be a field and let

R := (k[X,Y,Z]/I)
m
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where I is the ideal generated by X2, XY and XZ and where m

is the maximal ideal generated by X, Y and Z. One checks that

R has dimension 2 and depth 0, so that it is not Cohen-Macaulay.

Moreover, Sing R = {m}. In this case, we cannot expect that we can

strengthen the assertion in the Theorem by taking only parameter

ideals generated by a regular sequence. Indeed, in this case, there

are no such, except for the zero ideal. However, the net generated

by k = R/m and R is not modR. Indeed, suppose the contrary. Let

g = XR and p = (X,Y )R. Consider the exact sequence

0→ Rp→ Rg→ Ω→ 0

Since Rg is flat and Rp⊗ k = 0, we get after tensoring this sequence

with k that TorR
1 (Ω, k) = 0. Therefore, if modR would be equal to

net(k,R), then by Corollary II.6, we would have that TorR
1 (Ω, ·) is

identically zero on modR. Consequently, Ω would be flat. However,

tensoring the above sequence with R/Y R yields TorR
1 (Ω, R/Y R) ∼=

Rp/Y Rp and the latter is isomorphic to k(p), showing that Ω is not

flat. Note that Rp
∼= k(Z)[Y ](Y ) is a DVR, although p has depth 0.

III.4. Corollary. Let R be a d-dimensional Cohen-Macaulay ring

and let Ω be an R-module. If TorR
a (Ω, R/p) = 0, for some a ≥ d and

all p ∈ Sing R, then Ω has finite projective dimension.

Proof. Since this is a local problem, we may assume without loss of

generality that R is local with maximal ideal m. Moreover, as the con-

clusion holds trivially for regular local rings, we may assume that R

is not regular. Let I be a parameter ideal which, moreover, generates

locally one of its minimal primes. In particular, this last condition

forces that minimal prime to be in the regular locus. Therefore, any

such parameter ideal has height h at most d− 1. Moreover, since

R is Cohen-Macaulay, I is generated by an R-regular sequence of

length h by [7, Theorem 17.4]. It is well-known (see for instance [2,

Corollary 1.6.14]) that R/I has projective dimension h. Therefore,

we get that

TorR
a (Ω, R/I) = 0.

By Theorem III.1 and Proposition II.4, we conclude that TorR
a (Ω, ·)
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vanishes identically on modR, showing that Ω has flat dimension (at

most a− 1). Since any flat module has finite projective dimension,

the claim follows.

There is a similar criterion for finite injective dimension.

If ExtaR(R/p,Ω) = 0, for some a ≥ d and all p ∈ Sing R,

then Ω has finite injective dimension.

Indeed, the question is again local and by [7, §18 Lemma 1], it

suffices to show that ExtaR(·,Ω) vanishes on modR to conclude that

Ω has finite injective dimension at most a− 1.

IV. Big Cohen-Macaulay Modules

We apply the results from the previous section to obtain a flat-

ness criterion for balanced big Cohen-Macaulay modules over a lo-

cal Cohen-Macaulay ring. Recall that an arbitrary module Ω over a

Noetherian local ring (R,m) is called a big Cohen-Macaulay module,

if there exists a system of parameters (x1, . . . , xd) in R, such that

(x1, . . . , xd) is a Ω-regular sequence. We call Ω moreover balanced,

if this is true for every system of parameters. Note that if R itself

is Cohen-Macaulay, then Ω is a (balanced) big Cohen-Macaulay if

(every) some maximal R-regular sequence is Ω-regular. In particular,

any flat R-module is a balanced big Cohen-Macaulay module. For a

regular local ring, the converse also holds; see [3, p. 77], [4, Proof of

Theorem 9.1] or the argument in the proof below. The following is a

generalization to local Cohen-Macaulay rings.

IV.1. Theorem. Let (R,m) be a local Cohen-Macaulay ring with

an isolated singularity. Let k denote the residue field of R and d its

dimension. For an R-module Ω, the following are equivalent.

1. Ω is flat;

2. Ω is a balanced big Cohen-Macaulay module of finite projective

dimension;

3. Ω is a balanced big Cohen-Macaulay module with TorR
1 (Ω, k) =

0.
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In fact, for the equivalence of (1) and (2), we do not need to assume

that R has an isolated singularity.

Proof. Assume first that R is only Cohen-Macaulay. It follows that

any system of parameters is an R-regular sequence. As being a reg-

ular sequence is preserved by flatness, (1) implies (2). To prove that

(2) implies (1), one can use essentially the same argument as in the

parenthetical remark in [3, p. 77] or in the proof of [4, Theorem

9.1]. For sake of convenience, I repeat this argument here. Let n

be the maximum of all i ≥ 1 for which TorR
i (Ω, ·) is not identically

zero. Note that n is finite, since Ω has finite projective dimension.

By (1) in Example II.3, there is some prime ideal p of R for which

TorR
n (Ω, R/p) 6= 0. Let (x1, . . . , xh) be a maximal regular sequence

in p. Since R is Cohen-Macaulay, h is the height of p, so that p is a

minimal prime of R/(x1, . . . , xh)R. Therefore, we have a short exact

sequence

0→ R/p→ R/(x1, . . . , xh)R→ C → 0

for some finitely generated R-module C. The Tor long exact sequence

gives an exact sequence

TorR
n+1(Ω, C)→ TorR

n (Ω, R/p)→ TorR
n (Ω, R/(x1, . . . , xh)R)

The left most module in this sequence is zero by maximality of n

whereas the right most is zero since (x1, . . . , xh) is also Ω-regular.

Therefore, TorR
n (Ω, R/p) = 0, contradiction.

So remains to show the equivalence of (3) with the first two con-

ditions under the additional assumption that R has an isolated sin-

gularity. Clearly (1) implies (3). Therefore, assume that (3) holds

and we seek to show that then so does (2). We only need to show

that Ω has finite projective dimension. Let (x1, . . . , xd) be a maximal

R-regular sequence. By assumption, (x1, . . . , xd) is also Ω-regular. In

particular, we have, for every j > 0, that

TorR
j (Ω, R/(x1, . . . , xd)R) = 0. (2)

Since (x1, . . . , xd)R is m-primary, we can find an ascending chain of

ideals ai with a0 = (x1, . . . , xd)R and am = m, such that ai+1/ai
∼= k,

for all i. Let us show by lexicographical induction on the pair (j, i)
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that all TorR
j (Ω, R/ai) = 0, for j ≥ 1 and i = 0, . . . ,m. When j = 1,

this follows from our assumption that TorR
1 (Ω, k) = 0 and Corol-

lary II.6, since each ai is m-primary. Therefore, let j > 1. Equal-

ity (2) proves the case i = 0, hence we may also assume that i > 0.

By construction, we have an exact sequence

0→ k → R/ai−1 → R/ai → 0.

From the Tor long exact sequence we get that

TorR
j (Ω, R/ai−1)→ TorR

j (Ω, R/ai)→ TorR
j−1(Ω, k).

By induction on i, the first of these modules is zero and by induction

on j, so is the last. This proves the claim. In particular, we showed

that TorR
j (Ω, k) vanishes, for all j ≥ 1. By Corollary III.4 we get that

Ω has finite projective dimension, as required.

Using Kunz’s Theorem, we get the following criterion for regu-

larity. Recall that for a ring of prime characteristic p, the Frobenius

endomorphism is defined by Fp : x 7→ xp. Let us write RFp for R

viewed as an R-module via Fp.

IV.2. Corollary. Let R be a reduced Cohen-Macaulay ring of prime

characteristic p. Then R is regular if, and only if, RFp has finite

projective dimension.

Proof. One direction is of course just Serre’s homological char-

acterization of regularity. Therefore assume R is a reduced Cohen-

Macaulay ring such that RFp has finite projective dimension over

R. Since everything is preserved under localization, we may assume

that R is local. Clearly, if (x1, . . . , xn) is R-regular, then the same

is true for (xp
1, . . . , x

p
n), showing that RFp is a balanced big Cohen-

Macaulay module. Theorem IV.1 then yields that RFp is flat over R.

By Kunz’s Theorem (see for instance [6, Theorem107]), it follows

that R is regular.

Note that if R is moreover local, then R is regular if, and only

if, TorR
1 (RFp , k) = 0, where k is the residue field of R. Indeed, by

the Local Flatness Criterion ([7, Theorem 22.3]) the vanishing of

TorR
1 (RFp , k) implies that R→ RFp (that is to say, the homomor-
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phism Fp) is flat and Kunz’s Theorem then shows that R is regular.

For some other, related consequences of Theorem IV.1, see [9].

V. Asymptotic behavior of Betti numbers

V.1. Definition. Let R be a Noetherian ring and let Ω be an arbi-

trary R-module. The n-th Betti number of Ω at the prime p, is the

(possibly infinite) dimension of the k(p)-vector space

Tor
Rp

n (Ωp, k(p)) = TorR
n (Ω, R/p)p,

where k(p) denotes the residue field of p, that is to say, k(p) =

Rp/pRp. We denote n-th Betti number by βR
n (p; Ω), or simply, by

βn(p; Ω) if the ring is understood.

The following result gives a restriction on the asymptotic behavior

of the Betti numbers.

V.2. Theorem (k-rigidity in high dimensions). Let (R,m) be a

d-dimension local Cohen-Macaulay ring with residue field k and let

Ω be an arbitrary R-module. If TorR
a (Ω, k) = 0, for some a ≥ d, then

TorR
m(Ω, k) = 0, for all m ≥ a.

Proof. We will induct on the dimension d of R. Suppose first that

d = 0. If a = 0, so that 0 = TorR
0 (Ω, k) = Ω⊗R k, whence Ω = mΩ,

we get that Ω = 0, as m is nilpotent. Suppose next that a = 1. By

Corollary II.6, it follows that TorR
1 (Ω,M) = 0, for every R-module M

of finite length. However, since R is Artinian, every finitely generated

R-module has finite length. Therefore, Ω is in fact flat, and the claim

holds trivially. For a ≥ 2, we can take syzygies to reduce to the case

a = 1.

Next, suppose that d = 1. Again, by taking syzygies, we may re-

duce to the case that a = 1. Since R is Cohen-Macaulay, we can find

an R-regular element x ∈ m, so that the standard spectral sequence

TorR/xR
p (TorR

q (Ω, R/xR), k) =⇒ TorR
p+q(Ω, k)
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degenerates into an exact sequence

Tor
R/xR
m−1 (AnnΩ(x), k)→ TorR

m(Ω, k)→ TorR/xR
m (Ω/xΩ, k)→ . . .

→ AnnΩ(x)⊗ k → TorR
1 (Ω, k)→ Tor

R/xR
1 (Ω/xΩ, k)→ 0, (3)

where AnnΩ(x) denotes the submodule of all elements in Ω an-

nihilated by x. Since by assumption TorR
1 (Ω, k) vanishes, so does

Tor
R/xR
1 (Ω/xΩ, k) by (3). Therefore, we obtain by the above zero

dimensional case that all Tor
R/xR
m (Ω/xΩ, k) vanish, for m ≥ 1. Us-

ing (3) once we more, we get that AnnΩ(x)⊗ k vanishes. Again by

the zero dimensional case we obtain that all Tor
R/xR
m (AnnΩ(x), k)

vanish. Therefore, so do all TorR
m(Ω, k), by (3).

Finally, assume d ≥ 2 and let x ∈ m be R-regular. Let

0→ Π→ Φ→ Ω→ 0

be exact, with Φ free. In particular, we obtain, for all p ≥ 1, that

TorR
p+1(Ω, k) ∼= TorR

p (Π, k). (4)

Moreover, since Π is a submodule of a free module, we have that x

is also Π-regular, so that

TorR
m(Π, k) ∼= TorR/xR

m (Π/xΠ, k), (5)

for all m ≥ 1. By assumption TorR
a (Ω, k) = 0, where a ≥ d ≥ 2, so

that by (4) and (5), we have that Tor
R/xR
a−1 (Π/xΠ, k) = 0. Therefore,

Tor
R/xR
m (Π/xΠ, k) = 0, for all m ≥ a− 1, by our induction hypoth-

esis. By (4) and (5) again, it follows that TorR
p (Ω, k) = 0, for all

p ≥ a.

V.3. Example. In low dimensions, however, k-rigidity fails, even

for regular local rings, as the following example shows. Let (R,m) be

a regular local ring of dimension d ≥ 2. Let E be the injective hull of

the residue field of R. It is well-known that all βR
n (m;E) = 0, except

when n = d, in which case the Betti number is one (see for instance

[2, Exercise 3.3.26]).

I do not know of any counterexample to the Theorem without the

Cohen-Macaulay condition.
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Our next goal is to replace in Corollary III.4 the requirement that

TorR
n (Ω, R/p) vanishes, by the weaker condition that (TorR

n (Ω, R/p))p
vanishes, that is to say, that βR

n (p; Ω) = 0.

V.4. Theorem. Let R be a d-dimensional Cohen-Macaulay ring

and let Ω be an R-module. If for some a ≥ d, we have that βR
a (p; Ω) =

0, for all p in the singular locus of R, then Ω has finite projective

dimension.

Proof. By localizing, we may assume from the start that R is a

d-dimensional local Cohen-Macaulay ring with residue field k and

maximal ideal m. Moreover, the statement is trivial if R is regular,

so that we may assume that m lies in the singular locus. By Theo-

rem V.2, all βR
m(p; Ω) = 0, for m ≥ a and p ∈ Sing R. Note that each

Rp is Cohen-Macaulay of dimension at most d.

As in the proof of Corollary III.4, for I a parameter ideal of height

at most d− 1, we have that

TorR
m(Ω, R/I) = 0 (6)

for all m ≥ d, since any such ideal is generated by an R-regular se-

quence.

I claim that TorR
m(Ω, R/p) = 0, for all prime ideals p which are in

the singular locus Sing R of R and all m ≥ a. Assuming the claim,

the assertion then follows from Corollary III.4. To prove the claim,

we will perform a downward induction on the height h of p. By

assumption, the case p = m, that is to say, h = d, holds, so that we

may assume h < d. By Remark III.2, the net Ih+1, introduced in (3)

of Example II.3, is generated by all R/I, with I a parameter ideal of

height e ≥ h + 1 which generates locally one of its minimal primes,

together with all R/q, with q a prime ideal in the singular locus of

R of height at least h + 1. Since R is not regular, e is at most d− 1.

By induction on h, we have that TorR
m(Ω, R/q) = 0, for all m ≥ a

and all prime ideals q ∈ Sing R of height at least h + 1. In view of

(6) this implies by Remark III.2 and Proposition II.4 that TorR
m(Ω, ·)

vanishes on the whole net Ih+1, for all m ≥ a. Take a height h prime

p in the singular locus of R, if any. For an arbitrary x /∈ p, we have
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an exact sequence

0→ R/p
x
−→R/p→R/a→ 0. (7)

where a := xR + p. In particular, since a has height h + 1, we get

that

TorR
m(Ω, R/a) = 0, (8)

for all m ≥ a. Fix some m ≥ a. From the long exact sequence ob-

tained from (7) by tensoring with Ω, we get from (8), that

0→ TorR
m(Ω, R/p)

x
−→TorR

m(Ω, R/p)→ 0

is exact (note that at this point, it is crucial that we do not just have

vanishing in dimension a). In particular, x is not a zero-divisor on

TorR
m(Ω, R/p). By assumption

(TorR
m(Ω, R/p))p = Tor

Rp

m (Ωp, k(p)) = 0.

It follows from these two observations that TorR
m(Ω, R/p) = 0 by

Lemma V.5 below.

V.5. Lemma. Let Λ be an R-module and let p be a prime ideal of

R. If Λp = 0 and x is Λ-regular, for every x /∈ p, then Λ = 0.

Proof. Pick any τ ∈ Λ. Since Λp = 0, there is some x /∈ p, such that

xτ = 0. By assumption, x is Λ-regular, showing that τ = 0.

VI. Syzygycal Nets

The goal of this section is to establish a similar result as Corol-

lary III.4 without the Cohen-Macaulay assumption. To this end, it

is useful to view the results from Section III in an alternative way.

VI.1. Definition. Let R be a ring and N a net. We call N syzygy-

cal, if it is closed under syzygies and co-syzygies. More precisely, if

the following condition is satisfied

(Syz) Given an exact sequence of finitely generated R-modules

0→ K → F →M → 0, (9)
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with F free, then M ∈ N if, and only if, K ∈ N .

Since any net contains the zero module (by rule (DirSum)) and

since R is a syzygy of the zero module, any syzygycal net contains

R. Therefore, any syzygycal net contains all finitely generated pro-

jective modules. Therefore, by rule (Syz), any syzygycal net contains

all finitely generated modules of finite projective dimension. In par-

ticular, if R is regular, then the only syzygycal net is modR itself.

VI.2. Definition (Meanders). We call the smallest syzygycal net

N generated by some class K of finitely generated R-modules, the

syzygycal net generated by K. To measure how far we have ’mean-

dered’ from the generators K by invoking rule (Syz), we introduce

the notion of a K-meander of a member M of N . A K-meander (or

simply, meander, if K is clear from the context) will be an interval

in Z of the form [−a, b] with a, b ∈ N. In the following recursive def-

inition of a meander of M (with respect to K), it is understood that

M is derived from K using the three rules for syzygycal nets and for

each of the intermediate modules, at least one meander has already

been defined.

1. If M ∈ K or M is projective, then [0, 0] is a meander of M .

2. If M is the direct summand of some N ∈ N , then any meander

of N is also a meander of M .

3. Suppose we have an exact sequence

0→ K →M → N → 0

with K,N ∈ N . If JK is a meander of K and JN a meander

of N , then JK ∪ JN is a meander of M .

4. Suppose we have an exact sequence

0→ N → F →M → 0

with F free and N ∈M. If [−a, b] is a meander of N , then

[−a, b + 1] is a meander of M .

5. Suppose we have an exact sequence

0→M → F → N → 0

with F free and N ∈M. If [−a, b] is a meander of N , then
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[−a− 1, b] is a meander of M .

This concludes the recursive definition of a meander of M . Of

course, a module might have infinitely many meanders, but it will

only have finitely many meanders which are minimal with respect

to inclusion. Indeed, if [−a, b] is a meander of M , then a moment’s

reflection shows that M can have at most a + b distinct minimal

meanders. Note that if M lies already in the net generated by K,

that is to say, is derived form K using only rules (Net) or (DirSum),

then [0, 0] is the unique minimal meander of M .

We will tacitly use the following fact, whose easy proof is left to

the reader. Let K ⊂ N be subclasses of finitely generated R-modules.

SupposeN lies in the syzygical net generated by K and every N ∈ N
has a K-meander contained in [−a, b]. Then any M ∈ net(N ) has

also a K-meander contained in [−a, b] (note that in any case, net(N )

is contained in the syzygycal net generated by K).

VI.3. Definition (Kernels). Let F be a right exact (covariant)

functor on the category of R-modules. We denote its left derived

functors by LnF. Let M be an arbitrary finitely generated R-module.

We define the F-kernel, KerF(M), of M as the collection of all n ∈ N
for which LnF(M) = 0.

For instance, let (R,m) be a Noetherian local with residue field

k ring and let F be the functor · ⊗R k. If M is a finitely gener-

ated R-module of projective dimension d, then KerF(M) = [d,∞) (if

d =∞, this means that KerF(M) = ∅). If K is a class of finitely gen-

erated R-modules, then KerF(K) is by definition the intersection of

all KerF(K) with K ∈ K. A similar definition can be made for left

exact functors and for contravariant functors.

VI.4. Theorem. Let R be a ring and F a right exact covariant

functor for which KerF(R) = N \ {0}. Let K be a class of finitely

generated R-modules and let N be the syzygycal net generated by K.

Let M ∈ N and let [−a, b] be a meander of M . If for some non-zero

u, v ∈ N, the interval [u, v] lies in KerF(K), then [u + b, v − a] lies in

KerF(M).

Proof. By a recursive argument, it suffices to show this for M and
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[−a, b] given by one of the five formation rules in Definition VI.2.

In case (1), the assertion is just our assumption that all positive

integers belong to KerF(R). In case (2), let M be a direct summand

of some N in N . Any right exact functor, whence also its derived

functors, are additive, so that KerF(N) ⊂ KerF(M), and the asser-

tion holds, since each meander of N is also a meander of M . In

case (3), let

0→ K →M → N → 0

be an exact sequence, where K,N ∈ N have respective meanders

[−aK , bK ] and [−aN , bN ] and where [−a, b] is obtained as the union

of these two meanders, that is to say,

a = max{aK , aN} b = max{bK , bN}

By induction, [u + bK , v − aK ] lies in KerF(K) and [u + bN , v − aN ]

lies in KerF(N). From the long exact sequence

LnF(K)→ LnF(M)→ LnF(N).

it is clear that LnF(M) = 0, for all n in

[u + bK , v − aK ] ∩ [u + bN , v − aN ] = [u + b, v − a].

In case (4), consider an exact sequence

0→ N → F →M → 0

with F free and N ∈M with meander [−a, b− 1]. By induction,

we have that [u + b− 1, v − a] lies in KerF(N). From the long exact

sequence of derived functors, we get isomorphisms

Ln+1F(M) ∼= LnF(N) (10)

for all n ≥ 1. Therefore, since everything gets shifted up by one, we

have that [u + b, v − a + 1] lies in KerF(M) and the assertion holds.

In case (5), the same reasoning holds, where this time we have to

shift everything down by one.

We turn now to the generalization of Theorem III.1 and Corol-

lary III.4. Let us first reinterpret the result of Theorem III.1 in our

new terminology.
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VI.5. Corollary. Let R be a Cohen-Macaulay ring. The syzygycal

net generated by the singular locus Sing R of R, is modR.

More precisely, if S is the class of all R/p with p ∈ Sing R, then

any finitely generated R-module M has an S-meander contained in

[0, d], where d is the dimension of R. If R is moreover local but not

regular, then M has an S-meander contained in [0, d − 1].

Proof. Let N be the syzygycal generated by S. If I is a height e pa-

rameter ideal which generates locally one of its minimal primes, then

I is generated by a regular sequence of length e, since R is Cohen-

Macaulay. The Koszul complex of this sequence is a free resolution

of R/I by [2, Corollary 1.6.14]. Therefore, R/I belongs to N with

(S-)meander [0, e]. In general e ≤ d, and if R is local but not regular,

then I cannot have height d, so that e ≤ d− 1. The statement now

follows from Theorem III.1.

To extend this to the non-Cohen-Macaulay case, we need a lemma

about homology of complexes.

VI.6. Lemma. Let R be a Noetherian ring and N a syzygycal net.

Let F• be a finite complex of finitely generated free R-modules. If for

all i > 0, the homology modules Hi(F•) belong to N , then so does

H0(F•).

Proof. Let F• be a finite free complex of length e, that is to say, a

complex of the form

Fe
fe−−→Fe−1

fe−1

−−−→ . . .
f2−−→F1

f1−−→F0

with each Fi a finitely generated free R-module. Let Hi := Hi(F•),

for i = 0, . . . , e. Let Ki and Zi−1 denote respectively the kernel and

the image of fi. Put K0 := F0 and Ze := 0. By assumption, all Hi =

Ki/Zi for i = 1, . . . , e, belong toN . We prove by downward induction

on i that Zi and Ki belong to N , where the case i = e holds by

assumption (note that Ke = He). When we have reached i = 0, we

then conclude by rule (Syz) that also H0 = F0/Z0 belongs to N and

we are done.

Therefore, suppose the claim proven for i + 1, with 0 ≤ i < e.
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From the exact sequence

0→ Ki+1 → Fi+1 → Zi → 0

and induction, the cosyzygy Zi belongs to N by rule (Syz). If i = 0,

we are done, since K0 = F0 by definition. If i > 0, the exact sequence

0→ Zi → Ki → Hi → 0

our assumption and rule (Net) then show that Ki belongs to N .

VI.7. Remark. In fact, the above proof shows that H0(F•) belongs

to the syzygycal net generated by all Hi(F•) with i > 0 and as such,

it has a meander [0, e + 1], where e is the length of F•, since we took

e + 1 times a cosyzygy.

VI.8. Theorem. Let R be a d-dimensional Noetherian ring. The

syzygycal net generated by the singular locus Sing R of R, is modR.

More precisely, if S is the class of all R/p with p ∈ Sing R, then

any finitely generated R-module M has an S-meander contained in

[0, d + 1], where d is the dimension of R. If R is moreover local but

not regular, then M has an S-meander contained in [0, d].

Proof. By Theorem III.1, the net modR is generated by the cyclic

modules of the form R/I, with I ∈ Sing R or I a parameter ideal

which generates locally one of its minimal primes. Therefore, it suf-

fices to show that any cyclic module of the form R/I with I =

(x1, . . . , xh)R a parameter ideal as above, belongs to the syzygycal

net generated by S, with the indicated meander. Let K•(I) be the

Koszul complex of (x1, . . . , xh). If p is a prime containing I but not in

the singular locus of R, then the image of (x1, . . . , xh) in Rp is an Rp-

regular sequence, since Rp is in particular Cohen-Macaulay. There-

fore, K•(I) becomes acyclic after localization at p. It follows that

the homology modules Hi(K•(I)) for i > 0 all have support inside

Sing R. Therefore, by Lemma II.2 and the fact that Sing R is stable

under specialization, each Hi(K•(I)), for i > 0, belongs to the net

generated by S. By Lemma VI.6, we then get that H0(K•(I)) = R/I

belongs to the syzygycal net generated by S. By Remark VI.7, it has

an S-meander [0, h + 1].
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Since always h ≤ d, the first assertion of the final statement is

clear. Suppose finally that R is moreover local but not regular. Since

the parameter ideal I is assumed to locally generate one of its min-

imal primes, h < d (lest the maximal ideal of R is generated by d

elements) and the last assertion follows.

VI.9. Theorem. Let R be a d-dimensional Noetherian ring and let

Ω be an R-module. If there is some a ≥ 1, such that TorR
a+j(Ω, R/p) =

0 (respectively, Exta+j
R (R/p,Ω) = 0), for all j = 0, . . . , d + 1 and all

p ∈ Sing R, then Ω has finite flat (respectively, finite injective) di-

mension (at most a + d).

Moreover, if R is local but not regular, then we only have to check

the vanishing of the Tor modules in the range j = 0, . . . , d.

Proof. Let F = Ω⊗R · in the first case and HomR(·,Ω) in the second

case. In either case, KerF(R) = [1,∞), so that Theorem VI.4 applies.

Let S consist of all R/p with p ∈ Sing R. By assumption, [a, a + d +

1] ⊂ KerF(S). Let M be an arbitrary finitely generated R-module.

By Theorem VI.8, the interval [0, d + 1] contains an S-meander of

M . Therefore, by Theorem VI.4, the interval [a + d + 1, a + d + 1]

lies in KerF(M). This shows that in the first case TorR
a+d+1(Ω, ·)

vanishes on each finitely generated R-module, showing that Ω has

flat dimension at most a + d. In the second case, the vanishing of

Exta+d+1
R (·,Ω) on modR implies that Ω has injective dimension at

most a + d, by [7, §18 Lemma 1]. The final assertion now follows

from the last statement in Theorem VI.8.

The final result is a local criterion similar to Theorem V.4, involv-

ing only Betti numbers. Since we do not know whether k-rigidity in

high dimensions holds for non-Cohen-Macaulay rings, we can only

state the following weaker version of Theorem V.4.

VI.10. Theorem. Let R be a Noetherian ring and let Ω be an R-

module. If for some a ≥ 1, we have that βR
a+j(p; Ω) = 0, for all p

in the singular locus of R and all j = 0, . . . ,ht p, then Ω has finite

projective dimension (and, in fact, flat dimension at most a− 1).

Proof. By localizing, we may assume from the start that R is a

Noetherian local ring with residue field k and maximal ideal m. We
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will prove the result by induction on the dimension d of R. If d = 0,

then either R is a field and there is nothing to prove, or we have that

TorR
a (Ω, k) = 0. By Corollary II.6, we get that TorR

a (Ω,M) = 0, for

every R-module M of finite length. Since R is Artinian, every finitely

generated R-module has finite length and hence we showed that Ω

has finite flat dimension at most a− 1. So let d > 0 and assume that

the result is proven for all lower dimensional Noetherian local rings.

If R is regular, there is nothing to prove, so we may assume that m

lies in the singular locus of R. Let p be a prime ideal different from m.

Since the singular locus of Rp is contained in the singular locus of R,

induction on the dimension yields that Ωp has finite flat dimension

at most a− 1. In particular, βj(p; Ω) = 0, for all j ≥ a and all prime

ideals p different from m.

I claim that TorR
j (Ω, R/p) = 0, for all prime ideals p of R and

for all j ∈ [a, a + d− h], where h is the height of p. Assuming the

claim, we get that TorR
a (Ω, R/p) vanishes for all prime ideals p,

proving that Ω has flat dimension at most a− 1 by (1) in Exam-

ple II.3. To prove the claim, we perform a downward induction on

the height h of the prime ideal p. Since the case h = d is covered

by the hypothesis (recall that R is singular), we may assume that

h < d. By (2) in Example II.3 and our induction hypothesis on h,

we get that TorR
j (Ω, R/a) = 0, for all a of height at least h + 1 and

all j ∈ [a, a + d− h + 1].

Let x be an arbitrary element of R not in p, and put a := xR + p.

Tensoring the short exact sequence

0→ R/p
x
−→R/p→R/a→ 0

with Ω, yields a long exact sequence

TorR
j+1(Ω, R/a)→ TorR

j (Ω, R/p)
x
−→TorR

j (Ω, R/p)

Since a has height h + 1, the left most module vanishes for all j

in the range [a, a + d− h]. Therefore, x is not a zero-divisor on

TorR
j (Ω, R/p), for all j ∈ [a, a + d− h]. Since βj(p; Ω) = 0, for all

j ≥ a, we get by Lemma V.5 that TorR
j (Ω, R/p) = 0, for j ∈ [a, a +

d− h], as claimed.

Note that in this proof, we did not use the theory of syzygycal
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nets. Moreover, the range in which the Betti numbers are required

to vanish is smaller than the one given in Theorem VI.9. Together

with k-rigidity in high dimensions (Theorem V.2), this also provides

in the Cohen-Macaulay case an alternative proof for Theorem V.4.
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