A LOCAL FLATNESS CRITERION FOR COMPLETE MODULES

HANS SCHOUTENS

ABSTRACT. We prove various extensions of the Local Flatness Criterion over a Noe-
therian local ringR with residue fieldk. For instance, if2 is a completeR-module
of finite projective dimension, thef is flat if and only if TorZ(Q, k) = 0 for all
n = 1,...,depth(R). In low dimensions, we have the following criteria. &f is one-
dimensional and reduced, théhis flat if and only if TorE(Q, k) = 0. If R is two-
dimensional, then in order fd® to be flat, it suffices that it is separated, that its projective
dimension is finite and thafor*(Q, k) = 0.

Many of these criteria have global counterparts and in particular, it is shown that the
adic completion of a flat module of finite projective dimension over an arbitrary Noetherian
ring is again flat.

1. INTRODUCTION

Flatness is an important and often useful property, and, consequently, one wants general
criteria to detect it. The literature on the subject is extensive, and many sorts of criteria
have been proposed, sometimes with additional assumptions on the module or the algebra.
In this paper, mainly homological criteria will be studied. Preferably, the criteria should
require the vanishing of only finitely many homological invariants.

More concretely, letR, m, k) be a Noetherian local ring arfdl an arbitraryR-module
(in the text we will also treat non-local rings). Theth Betti numbeof 2 is by definition
the vector space dimension ®br’ (€2, k). The main theme of this paper is how the van-
ishing of certain Betti numbers @ influences its flatness. For instance(lifis finitely
generated, then the vanishing of the first Betti number already implies flathess. The Local
Flatness Criterion extends this to include all modules finitely generated over a Noetherian
local R-algebra (].0, Theorem 22.3]; for some generalizations, se& Theorem 2.6.3] or
Theorem5.1 below). Nonetheless, many modules are not of this type and similar flatness
criteria do not seem to exist for them. It should be pointed out that the vanishing of the
first Betti number is in general not sufficient: for instance, ebe a two-dimensional
regular local ring and lef2 be the residue field of a height one prime idealRnfor a
separated counterexample, see Exanipldoelow. Nonetheless, some vestige of flatness
is preserved: the vanishing of the first Betti number of a non-degenefatddebras
implies thatk — S'is cyclically pure, that is to say, = 1.5 N R for all ideals! C R (see
[14, Theorem 2.2]). Here a non-zefmodulef? is calledseparatedf the intersection of
all m"Q) is zero; anchon-degeneratedf 2 # m(). More consequences of the vanishing
of the first Betti number are treated§a.

What if we require that some (preferably finitely many) Betti numbers vanish? This
is of course a necessary condition, but unfortunately, even the vanishing of all Betti num-
bers is not sufficient in general (see Examplezdand?7.3). The reason for this failure is
twofold. Firstly, a flat module over a Noetherian local ring has necessarily finite projective
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dimension. Therefore, whatever flatness criterion we propose, it should entail at least fini-
tude of projective dimension. This question, in terms of vanishing of ceftaimodules,
has been studied in detail inj] and some of it is reproduced here in the final section.
It should be noted that, depending on the size of the singular locus, these tests may re-
quire the vanishing of infinitely manyor-modules. To not confound the issue, finitude
of projective dimension will be taken as part of the hypotheses. Nonetheless, even under
the assumption that the module has finite projective dimension, the vanishing of all Betti
numbers does not always entalil its flathess (see Example

The second obstruction is more serious and comes from the fact that a non-finitely
generated module need not be separated or might even be degenerated. In particular,
Nakayama’s Lemma fails in general. An additional complication is that the class of sepa-
rated modules is not closed under base change. Namélisiteparated /I need not
be separated for some idefal It turns out that imposing certain separatedness conditions
will yield valid ‘Betti tests for flatness’.

Results. Let me now guote some of the more important results proved in this paper.

Theorem 7.6. Let (R, m) be a Noetherian local ring with residue fieldand letq be the
depth ofR. Let() be an arbitrary R-module. IfQ2 has finite projective dimension and all
Tor®(Q, k) vanish forn = 1,. .., q, thenQ is flat.

In particular, for a complet&-module of finite projective dimension, flatness is equiv-
alent with the vanishing of the firgtBetti numbers. The assumptions in Theorémalso
imply that() is m-adically complete (more precisely, thheadic topology coincides with
the canonical completion topology). Another corollary is the result fréjthat the com-
pletion of a flat module is again flat. In fact, we can prove the following global version,
generalizing a result of Enochs ifi] by removing the assumption ofito have finite Krull
dimension; note that a flat module over a finite dimensional Noetherian ring has always
finite projective dimension byl[l, Corollary 3.2.7].

Theorem5.9. Let A be a Noetherian ringg an ideal inA and2 an A-module. I is flat
and has finite projective dimension, thendtadic completiorﬁCl is also flat.

Moreover,Q® is a-adically complete and we have isomorphisxlAﬁ’?s/amfzcl ~Q/amQ
forall m > 1.

Another useful flatness criterion is for modules of projective dimension one.

Theorem5.4. Let (R, m) be a Noetherian local ring with residue fiekdand 2 an arbi-
trary R-module. HTorf(Q, k) = 0 and{2 has projective dimension one, th@nis flat.

In low dimensions, we establish criteria involving only the first Betti number.

Theorem 6.3 and 6.5. Let (R, m) be a Noetherian local ring with residue field and
let 2 be anR-module of finite projective dimension. Afis one-dimensional, or, iR is
two-dimensional and? is separated, then the vanishing B6r’*(Q, k) implies that() is
flat.

Methods. Our proofs will be based upon the following well-known homological criterion:
the flatness of a modul is equivalent with

Torf(Q, R/a) =0 for all (prime) idealss of R.

In order to reduce the number of homological tests needed, we have to better understand
the category of cyclidR-modules ‘up to homology’. | introduced in.f] the following
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formalism to aid us with this problem: a class of finitely generdgenhodules is aetif

it is closed under extensions and direct summands. For our purposes, we need a relative
version, and this is discussed in detailsih However, to generate the class of all cyclic
modules as a net, we need in general infinitely many generatof$3, ime explain how
imposing one more ‘net-type’ generation rule allows us to reduce this to a single genera-
tor, to wit, the residue field. Loosely speaking, a nefoisnationalif wheneverM /M
belongs to it, for somé/-regular element;, then so doed/. The various separatedness
assumptions that occur in our criteria stem from the following use of this formational rule:

if Tor™(Q, M/zM) = 0 for somen, then from the long exador-sequence, multiplica-

tion with = on Tor?(Q, M) is surjective, and hence For’(Q, M) is non-degenerated,

then it must be zero. Before we derive the flatness criter§d using formational nets, we

first need to study some properties of flat module&4inin §6 we then investigate some
vestiges of flatness for modules whose first Betti number vanishes. The final section con-
tains some examples showing that some of our results are sharp. We also discuss in more
detail the hypothesis on the finitude of projective dimension, relying on results fréjm [

2. NETS

Let A be a Noetherian ring (always assumed commutative, with unit). For an ideal
a C A, we letV(a) denote the Zariski closed subset of all prime idgadg A containing
a. Let M be a class of finitely generatettmodules containing the zero module.

2.1. Definition. A subclassN C M is called anM-net, if N is closed under extensions
and direct summands M. More preciselyN is anM-net provided for every short exact
sequence

00— K—-M-—=N—0
of A-modules inM,

(Net): if K andN belong toN, then so doed/;
(DirSum ): if this sequence is moreover split exact (thatis to sayf it K@ N)
andM belongs taN, then so do botti and V.

Clearly, M itself is anM-net. The intersection of an arbitrary numberMf-nets is
again anM-net. Therefore, for each subd€t C M, there exists a smalledl-net con-
taining it, which we will call theM-net generated b¥. If the M-net generated b¥ is
equal toM itself, then we will simply say thak is net-generatingor M.

2.2.Remark. One easily verifies that a moduld € M belongs to théM-net generated
by K if and only if there exist short exact sequences

Q) 0—- M, - M4 — K;—0

fori =0,...,n — 1, with M, and eachX; a direct summand of a module K and with
M = M,. In proofs, we can therefore induct anto show that a certain module belongs
to the net generated by a particular class.

2.3.Proposition. Let A be a Noetherian ring and let be an ideal inA. LetP, be the
collection of all modules of the form/p with p € V(a). ThenP, is net-generating for
the class of all cyclic modules of the fotAy I with I an ideal containing some power of
a, as well as for the class of all finitely generatdemodules that are annihilated by some
power ofa.
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Proof. LetM, be the class of all finitely generateédmodules that are annihilated by some
power ofa and letC, be the subclass of all cyclic moduleshf,. Towards a contradiction,
suppose that the first statement is false and et maximal among all ideals containing a
power ofa for which A/I does not lie in theC,-net generated bf,. Clearly,I cannot
be a prime ideal. Let be a minimal prime of . It follows thatp containsa and we have
an exact sequence

(2) 0—A/p— A/l - A/J—0

with J properly containing/. By maximality, A/J lies in theC,-net generated b¥,,.
SinceA/p € P,, we get a contradiction by means of ruiet ).

Assume next that the second assertion is false. Hence there&xistd/1, not belong-
ing to theM,-net generated bP,. Let N be maximal so thal//N does not belong to
theM,-net generated bl?, and choose an elememntc M outsideN. The image of: in
M /N generates a non-zero cyclic moddleelonging taM, whence taC,. By what we
just proved (' lies in theC,-net generated b, whence a priori in th&1,-net generated
by P,. By maximality, so doed//(N + Ap), so that the exact sequence

0—-C—M/N—M/(N+Au)—0

again contradicts ruleNet ). |

Two special cases are worth mentioning separately, where in the first, we takse
the zero ideal, and in the second, the maximal ideal.

(2.3.1) The class of all cyclicA-modules of the formd /p with p a prime ideal of4 is
net-generating for the class of all cyclicmodules as well as for the class of
all finitely generatedd-modules.

(2.3.2) The residue field of a Noetherian local ring is net-generating for the class of
all modules of finite length.

Application to functors. The main application of nets is through the following easy ob-
servation.

2.4. Proposition. Let A be a ring and letF be an additive functor from a category of
A-modules to some Abelian category. Suppgsis exact in the middle. LK C M be
classes of finitely generatettmodules with) € M. If F(K) = 0 for everyK € K, then
F (M) = 0 for everyM in the M-net generated b¥K.

Proof. Recall that a (covariant) functor is callexact in the middleif any short exact

sequence
0O—-K—-M-—N-—>0

transforms into an exact sequence

F(K)— F(M)— F(N).
For a contravariant functor the definition is the same apart from reversing the arrows. The
statement is now immediate by an easy inductive argument (see Rérfark |

For A an arbitrary ring and an arbitraryA-module, each of the functofgor;' (12, -),
Ext’ (Q,-) or Ext’ (-, Q) is exact in the middle, for anj. More generally, any derived
functor of a left or right exact functor is exact in the middle. Therefore, Proposifighs
and2.4yield:
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2.5.Corollary. Let (R, m) be a Noetherian local ring with residue field Let{) be an
arbitrary R-module and let, > 1. If Tor®(Q, k) vanishes, then so do&@sr” (02, N) for
everyR-moduleN of finite length.

More generally, ifA is a Noetherian ringa an ideal of A and 2 an A-module, such
that Tor’ (Q, R/p) = 0 for all p € V(a), thenTor? (Q, M) = 0 for all finitely generated
A- modules annihilated by some poweraof

Let A be a Noetherian ringy an ideal ofA and) an A-module. We will denote the
a-adic completiorof Q by 0°. Recall that)® is given as the inverse limit of afd/a™2
endowed with the inverse limit topology and that in this topol@‘yis complete. IfQ is
not finitely generated, the inverse limit topology o mlght not be the same as the
adic one. That is to say, the canonical morphlﬁﬁ;éamﬂa — Q/a™Q, although always
surjective, might fail to be injective, even whem = 1. Put differently,a m()® need not
be closed in the inverse limit topology. M is local with maximal ideai, then by the
completionof 2 we mean itsn-adic completion and denote it simply by

2.6.Corollary. Let A be a Noetherian ring and an ideal ofA. Let
0—-MIT—-A—-Q—0

be a short exact sequenceAfmodules. Iffor{!(Q, A/p) = 0 for all p € V(a), then

3) 00" > A*—0"—=0

is exact.

Proof. By Corollary2.5, all Tor{' (€2, A/a™) vanish, for eachn > 1. Hence, for eachn,
tensoring withA/a™ yields an exact sequence

0—1II/a™I — AJa™A — Q/a™Q — 0.

Taking these exact sequences forralsimultaneously, gives an exact sequence of inverse
systems. Since the first inverse system is flasque, we have, after taking inverse limits, the
desired exact sequencs®) py [8, Proposition 1.6] or]0, Theorem 8.1]. |

3. FORMATIONAL NETS

In this section, we amend the net-generating rules by one additional rule, which will
enable us to generate the class of all finitely generated modules from a relatively small
subclass (which in the local case can even be taken to be a singletord) beet Noetherian
ring anda a proper ideal ofi. LetM be a class of finitely generatedmodules containing
the zero module and I& be anM-net.

3.1.Definition. We say thalN is a-formational if the following holds: given ami-module
M € M and anM-regular element € a, if M /xM belongs taN, then so doed/. In
other words, the new generating rule is:

(Auto ): Given an exact sequence
0—-M-"M-—N-—0
with z € aandM € M. If N belongs tdN, then so doed/.

3.2.Remark.If aM = M for someM € M, thenM belongs to ang-formationalM-net.
Indeed, by Nakayama's Lemma, there is satme a such that1—xz)M = 0. In particular,
M = zM andz is M-regular, so that we have an exact sequeAesd ) with NV = 0.
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If Ris alocal ring andn its maximal ideal, then we call aM-netformational if it is
m-formational. GiverlK C M, the a-formationalM-net generated b¥ is by definition
the smallesti-formationalM-net containindk. If the a-formationalM-net generated by
K is M, then we say thaK is a-formationally net-generatinfpr M. A similar inductive
description of ther-formationalM-net generated biK can be given as in Remagk?2, but
this time the connection betwe@dd; and ;. is either given by an exact sequendgdr
by an exact sequence of the form

0 — Mi+1 L) ]\/.[7;+1 — ]\/.[Z — 0
with z an M, -regular element inside.

3.3.Theorem. Let A be a Noetherian ring and let be a proper ideal. LeP, be the set
of all A/p withp € V(a). ThenP, is a-formationally net-generating for the class of all
cyclic A-modules as well as for the class of all finitely generatethodules.

Proof. We will prove the second statement, the first then follows by inspection of our
argument. LefM be the class of all finitely generatettmodules and leN be thea-
formationalM-net generated b¥,. Towards a contradiction, assume that there exists
someM € M notin N. Let N be a maximal submodule df/ such that)//N does

not belong taN. In particular,a(M/N) is not equal taM//N lest M /N belongs taN by
Remark3.2. We consider two cases.

Case 1 Suppose that//N has non-zera-depth. Hence there exists anc a, such that
x is M /N-regular. Therefore we have an exact sequence

0— M/N =5 M/N — M/(N + zM) — 0.

However, N is properly contained itV + zM, so that by maximalityM /(N + zM)
belongs taN, contradicting ruleAuto ).

Case 2 Assume now thad//N hasa-depth zero, which byl[0, Theorem 16.7] is equiv-
alent withHom 4 (A/a, M/N) # 0. Take a non-zero morphisth/a — M /N and factor
this out over its kernel. We obtain an embedditip — M /N, whereb is some proper
ideal of A containinga. Letp be a minimal prime ob, so that in particulan C p. Com-
posing an embedding/p — A/b with A/b6 — M /N gives rise to an exact sequence

0— A/p— M/N — M/N"—0

whereN’ is some submodule containidg properly. By maximalityM/ /N’ belongs taN
and by assumption so dodsp. However, this is in violation of ruleNet ). |

Note thatP, is finite if a is @ maximal ideal, so that in particular we get:

3.4.Corollary. If Ris a Noetherian local ring, then its residue field is formationally net-
generating for the class of all finitely generat&dmodules.

Application to linear functors. A functor F on a category ofi-modules is calledinear
if it preserves multiplication, that is to say, the image unfélesf the morphism\/ - M

given by multiplication byr € A, is the multiplication magF (M) F(M). Recall from

[4, Proposition 9.1.2] that an arbitrary-module? is said to haves-depth zerofor a an
ideal in A, if Hom 4 (A/a, Q) is non-zero, that is to say, if there is some non-zero element
u € Q such thatay, = 0. By [4, Proposition 9.1.4] this is equivalent wifk having an
associated prime containing We call{2 non-degenerated in theadic topology if either

Q is zero or otherwisef2 # (2; anda-adically separatedif the intersection of alb™ < is
zero. The following proposition is the analogue of Proposifichfor formational nets.
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3.5. Proposition. Let A be a Noetherian ring and lat be a proper ideal ofA. Let F
be an additive linear functor on a category dfmodules which is exact in the middle.
LetK C M be classes of finitely generatedmodules witt) € M. If F is covariant,
assumeF (M) is non-degenerated in theadic topology for evenM € M, and if F is
contravariant, assume thef (M) is either zero or has zere-depth for every\/ € M.

If F(K) = 0 for everyK € K, thenF(M) = 0 for every M in the a-formational
M-net generated b¥K.

Proof. Let us first consider the covariant case. The proof will follow from ProposRidn
and an inductive argument, once we have shown the following. Let

4) 0—-M-M-—N-—0

be an exact sequence withe a andF(N) = 0. We have to show thaf (M) = 0. Our
hypotheses on the functdr imply that we have an exact sequence

F(M)2F(M) — F(N) = 0.

LetIT := F(M), so thateII = II, whencell = all. By assumptiodl is non-degenerated
in the a-adic topology, and therefore must be zero.
Similarly, in the contravariant case, we obtain froffi&n exact sequence

(5) 0=F(N)— F(M)Z-F(M).

If II := F(M) were non-zero, then by assumption, it would have zedepth, so that
some non-zerar € II would be annihilated by. In particular,zm = 0, contradicting
(5). O

3.6.Remark. In the covariant case, we can relax the assumptiofF darther: it suffices

thatF (M) is non-degenerated in thed-adic topology for every € M and every: € a.

In the contravariant case, we only need that for evene M for which 7 (M) # 0, and

for everyxz € a, we can find a non-zero elementc F(M), such thatzpy = 0. In

other words, we need for eaghc a thatAnnzy(z) # 0. If a = (21,...,25)A, then
Annz(yp (a) is the intersection of alhnn z(yr) (z;), and it might well be that the latter are
non-zero but their intersection is zero, so that the above condition is indeed weaker than
requiring thatF (M) has zeras-depth.

3.7.Remark.The covariant functoror? (€2, -) andExt", (2, -) and the contravariant func-
tor Ext’; (-, ) are all linear, forQ2 an arbitraryA-module. IfQ is finitely generated, then
Torﬁ(Q, -) takes finitely generated modules to finitely generated modules. In particular,
if (A, m) is a Noetherian local ring, then the image of a finitely generated module under
Torf}(Q, -) is separated in the-adic topology and hence in amyadic topology, fora a
proper ideal, so that the proposition applies to it. Shortly we will indicate some milder
restrictions o2 for which the theorem will still be applicable.

If ©2 has finite length, then so does edttt’; (2, M) with M finitely generated. More-
over, the functoExt’y (-, 2) maps any module into a module which is either zero or has
zero depth, and the proposition applies in either case.

4. PROPERTIES OF FLAT MODULES

4.1.Lemma. Let A be aring anda a proper ideal. Letd := ¢ A be a freeA-module
whereE is some (possibly infinite) index set andIet= [[; A® be the corresponding
direct product of then-adic completion/TCl of A. Then thea-adic completion of® is
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isomorphic to the submodule Bf consisting of all sequences for which for evesyonly
finitely many entries are non-zero moduld A®.

Proof. Itis easy to verify thail is a-adically complete. Hence® is thea-adic closure of
® insidell, that is to say,

o = ()@ +a™IL
The assertion is now clear. O

We leave the proof of the following immediate corollary to the reader.

4.2.Corollary. Let A be a Noetherian ring an@ a free A-module. For each ideal C A,
we have an isomorphism

(®/18)" = &°/13".
In particular, thea-adic topology ond® is the same as the inverse limit topology abtl
is a-adically complete. |

4.3.Proposition. Let A be a Noetherian ringg an ideal ofA and® an A-module. If® is
free, then itmi-adic completiond® is flat.

Proof. Since®® is an A°-module and sincel — A® is flat, we may assume without loss
of generality thatd is a-adically complete. Choose some index Betuch thatb = & A
and letII be the corresponding direct prodydt, A. By Lemma4.1, we may viewd® as
a submodule ofl. If a is a sequence iH, then we denote its-th component by.(e) € A.
To establish flatness, we use the ‘equational criterion for flatness Theorem 7.6] or
[5, Corollary 6.5]). Assume we have a linear fofrover A in s variables and ar-tuple
b := (b(e)). € (#*)* such thatL(b) = 0. Define a map: £ — N by lettingo(e) be the
largestm such that all entries db(e) € A® belong toa™. By Lemma4.1, the level sets
o~ Y(n) of this map are all finite. Let’ C A* be the submodule generated byta(t) with
e € E. By Noetherianity, there exists a finite subgetC E such thatl” is generated by
all b(f) with f € F. By the Artin-Rees Lemma, there is somsuch that

(6) VNa"A® Cam oV

for all m > c. We may choose large enough so thdt lies insideo!({1,...,c —1}).
Without loss of generality, we may then assume that both sets are in fact equal. Note that
by our previous argument; is still finite.

In particular,o(e) > cforalle € E \ F, so thatb(e) lies ina®(®©)=¢V by (6). Hence,
for eachf € F, there exists a sequenee < II such that

b= b(flay
feFr

with ay(e) € a®®=¢for all e ¢ F. By this last condition and Lemmé&l, eacha; lies in

®°. Sinceb is a solution to the linear equatidn= 0, so is eactb(f) for f € F. Hence
we verified the equational flatness criterion. §&d 6below for an alternative proof. O

4.4. Artin-Rees like modules. We say that am-module(? is Artin-Rees likeif for all
ideals! anda of A, we can find some such that

IQNa™Q Ca™ IO

forall m > c.
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The classical example of an Artin-Rees like module, due to Artin-Rées Theorem
8.5]), is a finitely generated module over a Noetherian ring. Using the equational criterion
for flatness, any flat modul@ over a Noetherian ringl is Artin-Rees like. Indeed, by the
Artin-Rees lemma applied id, we can find a such thatl N a™ C a™~ [ for allm > c.

In general, ifQ2 is flat, thenIQ2 N JQ = (I N J)Q for all idealsI and.J (see for instance
[10, Theorem 7.4]. Applying this witly := a™ then gives the desired result.

4.5. Universally a-separated modules.Let A be a Noetherian ring andl an arbitrary
proper ideal. We say that an arbitrafiymodule(? is universallya-separatedif /I is
separated in the-adic topology for every ideal of R. If A is local with maximal ideal
m, then we simply sayniversally separatetb mean universallyn-separated. Note that a
modulef? is universallya-separated if and only ifQ) is closed in ther-adic topology for
every ideall of A.

Examples of universally separatedmodules are: projective modules; founded mod-
ules (see 17)); and, if A is local with maximal idealn, finitely generated modules, or
more generally, modules which are finitely generated oved-aigebraB with mB con-
tained in the Jacobson radical Bf For the first assertion, use that a direct summand of a
universally separated module is again universally separated plus the fact that a free module
is universally separated; for the second, use that founded implies separated plus the fact
thatQ2 founded overd implies$2/IQ2 founded overd /I (see [ 2, §2]); for the last two, use
Krull's Intersection Theorem.

4.6.Proposition. Let A be a Noetherian ringg a proper ideal ofA and an A-module.
If 2 is a-adically complete and Artin-Rees like, then it is universallseparated. In par-
ticular, an a-adically complete, flai-module is universally-separated.

Proof. The last statement follows from the first and our discussidj#id. So we need to
show that for an arbitrary ided] the submoduld(2 is a-adically closed. In other words,
we have to show an equality

(7) 9= () IQ+amq.
m=0

Chooser so that

(8) INNa™Q Ca™ cIN

for all m > c¢. Letw be in the right hand side of7). For allm > ¢, we can write

W =y + Oy, With o, € IQ andf,,, € a™ Q). Thereforep,, 11 — am = 0y — Oimy1 lies
in IQ N a™Q. By (8), we have

9) Om — Om+1 = Bm
for somegs,, € a™<IQ. It follows form repetitive use ofJ) that
W=+ Pe+ Ber1+ -+ P+ Oy
Sincef is a-adically complete, we get
w=a.+ Z Bm-
m>c

If I =(f1,...,fs)A, then writing eachs,, as a linear combination of thg shows that
w € I, as required. O
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5. FLATNESS CRITERIA

We start with a variant of the well-known Local Flatness Criterion—if we tdkecal
anda its maximal ideal, then our version agrees with the version statetljinTheorem
22.3]. Recall that a modul® is calleda-adically ideal-separatedf for each ideall, the
moduleQ) ® 4 I is a-adically separated.

5.1.Theorem(Local Flatness Criterion)Let A be a Noetherian ring and letbe a proper
ideal of A. Let(2 be an arbitrarya-adically ideal-separatedi-module. IfTor{ (2, A/p) =
0forall p € V(a), thenQ2is flat.

Proof. SetF := Tor{(f,-), so thatF is linear and exact in the middle. Using Theo-
rem3.3and Propositior3.5with respect to the class of cyclic modules, it suffices to show
that the non-degeneracy condition in Propositiofiholds for the functorF restricted to
the category of cyclic modules. Indeed, assuming this, we conclud&thgd((, A/ 1)
vanishes for all ideal$, showing that is flat. Therefore, lef be an ideal ofA. We need
to prove thatTor{!(Q, A/I) is non-degenerated in theadic topology. From the short
exact sequence

0-I—-A—A/T—0

we obtain an exact sequence
0 — Tor}' (Q,A/T) — Q@4 I.

By our assumption of2, the tensor produd® ® 4 I is a-adically separated. Therefore, so
is Tor{*(Q2, A/I), as it is a submodule, and hence in particular, it is non-degenerated.

From the proof it is clear that we can weaken the hypothesi3:ahsuffices that every
submodule of) ® 4 I is non-degenerated in theadic topology, for every idedl. In fact,
our present techniques are applicable to an even wider classradules, as we will now
see.

5.2. Theorem. Let A be a Noetherian ring and lat be a proper ideal ofd. Let() be
an arbitrary A-module. Assume th&? is the quotient of a flat module by a universally
a-separated submodule. Tor{ (2, A/p) = 0 for all p € V(a), then( is flat.

In particular, if (R, m) is local with residue field:, then the quotier2 of a flat module
by a universally separated submodule is flat if and onljuif’* (2, k) = 0.

Proof. By the same argument as in the proof of Theorery it suffices to show that
Tori! (2, A/I) is a-adically separated for every ideBbf A. By assumption, we have an
exact sequence

0—-IT—®—Q—0,

with @ flat andII universallya-separated. Tensoring with/I yields a short exact se-
quence

(10) 0 — Tor{!(Q, A/T) — TI/I1L.
Sincell/ITI is a-adically separated, so®r{ (Q, A/T). O

5.3.Corollary. Let A be a Noetherian ring and le® be an arbitrary A-module. If2 has
projective dimensiom and if Tor’ (€2, A/m) = 0 for some maximal ideah of 4, thenQ
has flat dimension at most— 1.

In particular, if Q has projective dimension one afithr{!(Q, A/m) = 0 for some
maximal ideaim, then(2 is flat.



A LOCAL FLATNESS CRITERION FOR COMPLETE MODULES 11

Proof. We induct on the projective dimensierof Q. If e = 1, then( is the quotient of a
free module by a projective module, so that TheofeBapplies. Foe > 1, choose a free
module® and an exact sequence

(12) 0—-MT—-o—Q—0.

Therefore IT has projective dimension— 1. From theTor long exact sequence, it follows
that Tor? | (IT, A/m) = Tor’ (€2, A/m) = 0. By induction,II has flat dimension at most
e —2. From the exact sequencEl], it then follows that? has flat dimension at most- 1,
as required. |

In caseR is local ande = 1, we get:

5.4.Theorem. Let (R, m) be a Noetherian local ring with residue fiekdand (2 an arbi-
trary R-module. IfTor’(Q, k) = 0 andQ has projective dimension one, th@ris flat.

5.5.Corollary. Let (R, m) be a Noetherian local ring with residue field Suppose we
have anR-module morphism:: II — & with II universally separated ané flat. If
u® k: II/mIl — ®/m® is injective, then so is. Moreover,coker v andII are both flat
andw is pure.

Proof. It is well-known that injectivity ofu ® k implies thatu is injective, sincell is
separated (see for instance)] Theorem 22.5]). Lef2 denote the cokernel af, that is
to say,Q = ®/u(1I). The injectivity ofu ® k implies furthermore thalor{’ (2, k) = 0.
Since is the quotient of a flat module by an universally separated module, the flatness of
Q follows from Theoren®.2. Therefore]l is flat andu is pure. (|

5.6.Theorem. Let A be a Noetherian ringg a proper ideal ofA and2 an A-module. If2
has finite projective dimension afibr? (€2, A/p) vanishes for alh > 1 and allp € V(a),
then thea-adic completiorﬁCl of Q is flat.

Moreover, we have isomorphisrﬁ?/amﬁc‘ = Q/a™Q for all m > 1 and Q° is a-
adically complete.

Proof. Let ¢ be the projective dimension 6i. We will induct ong. If ¢ = 0, thenQ is
projective. Since completion commutes with direct summands, it suffices to show that the
a-adic completion of a free module is flat amédically complete, which is what we proved

in Corollary4.2and Propositiod.3. So assume > 0 and choose an exact sequence

(12) 0-IMI—-P—-Q—0

with ® a freeA-module. It follows thall has projective dimensian- 1. By Corollary?2.6,
we get an exact sequence

(13) 0— I — 3* - 0* —0.

Since Tor;, (I, A/p) = Tor/,,(Q,A/p) = 0foralln > 1 and allp € V(a), induc-
tion yields thatll® is flat and a-adically complete. Moreover, we have isomorphisms
II*/a™II® = II/a™II for all m > 1. It follows from Proposition4.6 that II° is uni-
versally a-separated. Sincé® is flat by Propositiont.3, Theorem5.2 yields thatQ® is
flat.

Tensoring {2) with A/a™ and using thaffor:' (2, A/a™) = 0 by Corollary2.5, we
get an exact sequence

0—1II/a™I — &/a™P® — Q/a™Q — 0.
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On the other hand, tensoring3) with A/a™ and using thaf)® is flat gives an exact
sequence

0 — i /o™ i® — &% /am e — O /a0 — 0.
By our induction hypothesis, the first modules in both exact sequences are isomorphic,
and so are the middle ones. By diagram chasing, the last modules in both sequences are
therefore isomorphic too. In particular, thedic topology o2 coincides with its inverse
limit topology, so thaf)® is alsoa-adically complete. O

We state the following important instance of the theorem separately.

5.7.Corollary. Let A be a Noetherian ringg a proper ideal ofA and2 an A-module. If
Q is a-adically complete and has finite projective dimension, afiéhif (2, A/p) = 0 for
alln > 1landallp € V(a), thenQ is flat.

5.8.Remark.AssumeA has finite Krull dimensioni. Inspecting the above proof, we see
that it suffices thallor? (2, A/p) vanishes forall < n < d+1andallp € V(a), since by
work of Auslander-Buchsbaum Bass and Jensen (see for instanqcelfd]), the projective
dimension of anA-module, when finite, is at mogt+ 1. In fact, assumel is moreover
local with residue field: and leta be equal to the maximal ideal ¢f. Let§ = d when A

is Cohen-Macaulay, andl = d — 1 otherwise. By a result of Auslander-Buchsbaurm ([
Theorem 2.4]; see alsd}, Theorem 4.6]), the flat dimension €fis at most, so that all
Tor (€, k) vanish forn > ¢ + 1. Therefore, we only need to check the vanishing of the
flrst & Betti numbers. We will further improve this bound in Theor&ri below, showing
that we may replacé by the depth ofA.

5.9. Theorem. Let A be a Noetherian ringg an ideal in A and2 an A-module. IfQ2 is
flat and has finite projective dimension, thendtadic completiorf2® is also flat.

Moreover,Q® is a-adically complete and we have isomorphisﬁﬁ‘s:’amﬁu >~ Q0/a™mQ
forall m > 1.

Proof. Since allTor? (2, A/p) vanish forn > 1 andp € V(a), Theorems.6yields the
flatness of2® and the assertion on the topologymff. |

This result was proved by Enochs i@, [Proposition 2.3] for Noetherian rings of finite
Krull dimension using pure injective resolutions; the result for local rings was already
proved by Bartijn-Strooker inZ, Corollaire 3.15] using basic modules. Note thatiihas
finite Krull dimension, theri2, being flat, has finite projective dimension kiyi] Corollary
3.2.7]. The following corollary generalizes(, Theorem 22.6].

5.10.Corollary. Let (R, m) be a Noetherian local ring and let be anR-algebra. Let
) be anA-module which is flat as af®-module. Ifa € A is /mQ-regular, thena is

ﬁ-regular andﬁ/aﬁ is flat overR. If €2 is moreover separated, thenis Q2-regular.

Proof. By 1 Theoremb.9, the completlonQ is flat and complete in ther-adic topology
ThereforeQ is universally separated by Proposnkm Letu, be the endomorphism ot
given by multiplication witha. SinceQ2/m§) = Q/mQ, our assumption on implies that
uq ® k is injective, wherek is the residue field of:. By Corollary5.5, the endomorphism
u, iS pure and injective. In particulaﬁ/aﬁ is flat over R anda is ﬁ-regular. IfQ is
separated, it is a submodule of its completion and it follows dhiat2-regular. O

5.11.Definition. Let A be aring,a an ideal and2 an A-module. AnA-submoduldI of
Q is calleda-pure, if II N aQ) = all.



A LOCAL FLATNESS CRITERION FOR COMPLETE MODULES 13

Equivalently,IT is a-pure in€), if the canonical morphisfil/aIl — Q/af) is injective.
In particular, beings-pure is transitive. Assum® is moreover flat. Inspecting the long
exact sequence fdior, it follows thatII is a-pure if and only ifTor{!(Q/II, A/a) = 0. In
particular,IT is a-pure for all ideals: if and only if /11 is flat, if and only if the inclusion
I1 C Qis pure.

5.12.Corollary. Let(R,m) be a Noetherian local ring and &t be a flatR-module. Then
any finitely generateech-pure submodule ob is free and pure. In particular, any element
in ® — m® has zero annihilator.

Proof. Let H be a finitely generated and-pure submodule of. PutA = ®/H. It
follows thatTor (A, k) = 0. SinceH is universally separated, is flat by Theoren®.2.
Therefore,H is pure in® and flat, whence free.

The last statement follows by lettin be the module generated by an elemerit
® — m®. An element ind N m® is of the formrw for somer € R. If r is not inm, then
it is a unit, so thaty € m®, contradiction. This shows thaf is m-pure in® whence free
by the first assertion. AH = R/ Anng(w), we getAnng(w) = 0, as claimed. O

5.13.Corollary. Let A be a Noetherian ring and a proper ideal ofA. Letd be the Krull
dimension ofA (possibly infinite). Lef) be an A-module of finite projective dimension.
If Q is universallya-separated andlor? (Q, A/p) = O forall 1 < n < d+1 and all

p € V(a), thenQ is flat.

Proof. By Theorems5.6 and Remaris.8, the completiorf)® is flat and we have isomor-
phisms

Q/I0 = 0% /100

for any ideall containing a power af. Sincef? is a-adically separated, itis a submodule of
0°® and the previous statement then shows that this embeddingriee for alll containing
some power ofi. LetII be the quotient modulé“/Q. SinceQ)* is flat, p-purity implies
that Tor{' (TI, A/p) = 0 for all p € V(a). Sincef is universallya-separated, Theorem?
yields thatll is flat, and therefore, so 3. |

The proof even shows that is a pure submodule of its-adic completion. By Re-
mark5.8, we get the following improvement in the local case.

5.14.Corollary. Let R be ad-dimensional Noetherian local ring with residue fiéldand
let § be equal tad whenR is Cohen-Macaulay, and té — 1 otherwise. Lef2 be anR-
module of finite projective dimension. {¥ifis universally separated arﬂﬂorf(ﬂ, k)y=0
forall 1 <n <4, thenQ is flat.

In the next section, we will weaken the separatedness condition for one-dimensional
and two-dimensional local rings. As a final corollary, we obtain the following sharpening
of Corollary5.10for universally separated modules.

5.15.Corollary. Let (R, m) be a Noetherian local ring and led be anR-algebra. Let
Q be anA-module which is universally separated and flat asrémodule. Ifa € A is
Q/mQ-regular, thena is Q-regular andQ2/af is flat overR.

Proof. It follows from Corollary5.10thata is Q-regular ancﬁ/aﬁ is flat. From the proof
of Corollary5.13it follows that A =: Q/Q is flat. Since(2 is universally separated, one
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checks that the canonical morphigiia() — ﬁ/aﬁ is injective. By the snake lemma, the
cokernel of this inclusion is equal tb/aA. It follows from the exact sequence

0—A—"A—Aah—0
thatA/aA has flat dimension at most one. Siregaf) is flat, so is therefor@/a). O

5.16. An alternative proof of Proposition 4.3, As in the proof of the proposition, we
may assume that is a-adically complete. Lell be the direct product of copies df and

let A be the quotienH/%“. One checks, using the Artin-Rees lemma, thatis I-pure

in II for any ideall of A (see Definitiorb.11). In particular,Tor{‘(A, A/p) = 0 for every

p € V(a). By Lemma4.2 taking into account that a completion is always separated,
it follows that ®° is universallya-separated. Therefore, we can apply Theokfegto
conclude that\ is flat. But then so i®*. O

6. VANISHING OF THE FIRSTBETTI NUMBER

In this section, we lefR, m) be a Noetherian local ring with residue figtdand(2 an
arbitrary R-module. We are interested in consequences of the assumpticfoi, k)
vanishes. Recall that a module is calledtorsion-freeif any R-regular element i$2-
regular. In particular, if? has depth zero, then any module is vacuously torsion-free.

6.1.Theorem. Let (R, m) be a Cohen-Macaulay local ring with residue fiéldind let(2
be anR-module. IfQ is separated andor’*(Q, k) = 0, thenQ is torsion-free.

Proof. Let 2 be anR-regular element. Chooss, . ..,x4—1 € m, such tha{xy,...,x4)
is a maximalR-regular sequence, where we pyt := z. SinceR is Cohen-Macaulay,
n = (x1,...,24)R is primary. Thereforélor’(Q, R/n) = 0 by Corollary2.5. Put
R:=R/(x1,...,24-1)RandQ := Q/(z1,...,24-1)Q. By [14, Lemma 2.1], we have
(14) Torf(Q, R/n) = 0.

SinceR/n = R/xR andx is R-regular, (4) implies thatz is Q-regular.

If d = 1, so thatR is just R, thenz is Q-regular. Note that we have not used the
separatedness condition yet and hence we proved Coréllabelow. So we may assume
d > 1. Letzpu = 0 for somey € . Sincez is Q-regular, the image of in Q is zero,
that is to sayy € (z1,...,24-1)2 C mQ. However, replacindzxy,...,xz4_1) in the
above argument bt , x5, . .., %, ) for arbitraryn > 1, we may conclude by the same
argument thate € m™ < for all n. Sincef2 is separatedy = 0, as we wanted to show.[

In the course of the previous proof, we derived the following corollary (note that the
depth zero case holds trivially).

6.2.Corollary. Let(R,m) be a one-dimensional Noetherian local ring with residue field
k and letQ2 be anR-module. IfTor*(Q2, k) = 0, then(2 is torsion-free. O

We now turn to some flatness criteria in low dimension. The first result generalizes the
well-known fact that flatness is the same as being torsion-free over a discrete valuation
ring.

6.3.Theorem. Let (R, m) be a one-dimensional Noetherian local ring with residue field
k and letQ be anR-module. IfTor? (€2, k) = 0 andQ has finite projective dimension
(which already follows from the first hypothesis wheis reduced), thefi is flat.

In particular, if R is a one-dimensional local Cohen-Macaulay ring afdas finite
projective dimension, theq is flat if and only if it is torsion-free.



A LOCAL FLATNESS CRITERION FOR COMPLETE MODULES 15

Proof. If R is not Cohen-Macaulay, then has projective dimension at most one By [
p.44] and the assertion follows from Theorém (alternatively, one can use that the flat
dimension of), when finite, is zero byd, Corollary 5.3]). If R is Cohen-Macaulay,
then( is a so-callechalanced big Cohen-Macaulay modulg Corollary6.2. Flatness
then follows from [L3, Theorem IV.1]. Note that if? is reduced, therR has an isolated
singularity. By [.3, Corollary 111.4], the vanishing offor’*(Q, k) then implies thaf has
finite projective dimension. This proves the first assertion.

One direction in the second assertion is immediate. Hence, assunggithattorsion-
free module of finite projective dimension over a one-dimensional local Cohen-Macaulay
ring R. Letx be anR-regular element. Sinceis Q-regular,Torf(Q, R/xzR) = 0. Choose
an exact sequence

0—kk— R/zR—C —0
and tensor with to yield an exact sequence

Tor¥ (€, C) — Torf(Q, k) — Torl(Q, R/zR).

We already established that the last module in this exact sequence is zero. The first module
is also zero becaudge has finite projective dimension, so that its flat dimension is at most
one by [, Theorem 2.4] (see Rematkd). HenceTorf(Q, k) = 0, so that is flat by our

first assertion. |

6.4.Corollary. Let(R,m) be a Noetherian local ring with residue fieldand let(2 be an
arbitrary R-module. IfTorf(Q, k) = 0, thenQ is flat along every curve ifipec R.

Proof. By the latter expression we mean tifata( is flat as anR/a-module for every
radical ideala of R with dim(R/a) = 1. Indeed, fora of this form, Torf(Q,k) = 0

impIiesTorf”/“(Q/aQ, k) = 0 by [14, Lemma 2.1], and we are done by Theoréra O
In dimension two, we require an additional separatedness condition.

6.5. Theorem. Let (R, m) be a two-dimensional Noetherian local ring with residue field
k and let2 be an R-module. If$2 is separated, has finite projective dimension and
Tor(Q, k) = 0, thenQ is flat.

Proof. Our proof will be non-uniform, as we need to treat the Cohen-Macaulay differently
from the non-Cohen-Macaulay case. Assume firstthstCohen-Macaulay and 1ét, i)
be anR-regular sequence. Sin€kis separated, Theoreflimplies thatz is Q2-regular.
Moreover, Sincd“or?/IR(Q/xQ, k) = 0 by [14, Lemma 2.1] and sincgis R/x R-regular,
Corollary6.2applied to the one-dimensional local Cohen-Macaulay Rrig R then yields
thaty is Q/xQ-regular. Hencéx, y) is Q-regular and we showed th@tis a balanced big
Cohen-Macaulay module. Flatness now follows frorfi, [Theorem IV.1].

So assumeR is not Cohen-Macaulay. By Theoret together with Remark.8, the
completionﬁ is flat. Since? is separated, it is a submodule of its completion and we have
an exact sequence

(15) 0-0Q—=0—A—0.
Since2 is m-pure inQ and since is flat, we getTorf(A, k) = 0. From theTor long

exact sequence, we also géirf(A, k) =0. Moreover () being flat, has finite projective
dimension. Therefore, so has From [3, p. 44] it follows thatA has projective dimension
at most two, sincé is not Cohen-Macaulay. Therefore, by Corollar§, its flat dimension
is at most one. From the exact sequericg &nd the fact thaf) is flat, it then follows that

Q) must be flat. O
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In higher dimensions, an even stronger separatedness condition is needed. The follow-
ing is a strengthening of Corollaf13under the additional Cohen-Macaulay assumption;
we will drop this assumption in Corollary.8 below.

6.6. Theorem. Let (R, m) be a local Cohen-Macaulay ring with residue figtdand let
Q2 be an R-module. IfQ) is universally separated, has finite projective dimension and
Torf(Q, k) = 0, thenQ is flat.

Proof. We will use once morel[3, Theorem IV.1] to prove flatness. Hence, it suffices to
show that if(x1, ..., z,) is R-regular, then it if2-regular. We induct om. Theoremt.1
yields thatx, is Q-regular. By [L4, Lemma 2.1], we ha\/éorf/“R(Q/mQ, k) = 0. Since
Q/xz1Q is again universally separated, induction yields that . . . | z,,) is Q/x,Q-regular,
as we wanted to show. O

Flatificators. We say that an arbitrary2-module 2 admits a flatificatoy if there is a
(unique) smallest idedl such that)/Q is flat over R/f; the idealf is then called the
flatificator of 2. In an unpublished paper, | showed thathf, m) is a complete Noetherian

local ring, A a NoetherianR-algebra such that A lies in the Jacobson radical gf, and

Q a finitely generated!-module, therf), viewed as arz-module, has a flatificator. There-
fore, the next result can be seen as a partial generalization of the Local Flatness Criterion.

6.7.Corollary. Let(R,m) be a Noetherian local ring with residue fieldand let(2 be an
R-module. Let denote the nilradical oR. If Q admits a flatificator andorf(Q, k) = 0,
thenQ/n( is flat overR /n. In particular, if R is moreover reduced, thenis flat.

Proof. Let f be the flatificator of2. Letp be an arbitrary prime ideal a® such thatR/p
is one-dimensional, ane-dimensional priméor short. Corollary6.4 yields that()/pQ
is flat as anR/p-module. Therefore, by definition of flatificatdr,C p. | claim that the
intersection of all one-dimensional prime ideals is equal to the nilradicAksuming the
claim, it follows thatf C n, showing that2/n(2 is flat overR/n.

To prove the claim, we need to show that the intersection of all one-dimensional prime
ideals lies in any minimal prime idegl of R. Therefore, we may replacB by R/g
and assume, without loss of generality, tifats a domain. Suppose is a non-zero el-
ement lying in every one-dimensional prime ideal ®f By prime avoidance (see for
instance {0, Theorem 14.1]), we can choose a sequence z, xs, ...,zqin R such that

(Tit1,-.-,2zq)R has heightt — i for all i, whered = dim R. Letp be a minimal prime
ideal of (xa,...,2z4)R. Sincep has heightl — 1, it is one-dimensional. By assumption,
x € p, contradicting thatz+, . . ., 24) R has heightl. O

7. FURTHER REMARKS

We start with a couple of examples showing that some of the results obtained in this
paper are sharp.

7.1.Example (Theorem6.5is false in higher dimensions).et R be a regular local ring

and letE be the injective hull of the residue field It is well-known thalTorff‘(E, k)=0

for all n # d and thatTor’(E, k) = k, whered is the dimension oR. Clearly, E is

not separated, so that the various separatedness conditions made in this paper cannot be
omitted. Moreover, ifl > 3 and we take an exact sequence

0—-A—-P—-FE—0

with @ free, thenA is separated, has finite projective dimension (siRRces regular) and
Torf (A, k) = 0, but A is not flat (sinceTor | (A, k) # 0).
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7.2.Example (Lazard) In [9], Lazard uses the following example to disprove that every
module of flat dimension one is the inductive limit of modules of projective dimension one.
Let &k be a field, putd := k[z,vy, 2] and letR be the localization ofd/(z2, zy, z2)A at

the maximal ideain := («,y, z) A. One checks thak has dimension two and depth zero,
so thatR is not Cohen-Macaulay. MoreoveSing R = {m}, so thatR has an isolated
singularity. Letg := xR andp := (x, y) R. Consider the exact sequence

0—R, - Ry —1I—0

SinceR, is flat andR, ® k = 0, tensoring withk yields Tor?*(II, k) = 0. Tensoring the
above sequence on the other hand withy R yields Tor (11, R/yR) = R, /yR, and the
latter is isomorphic td:(p), showing thafll is not flat. Note thai?, = k(z)[y]yk(-)y IS

a discrete valuation ring, althoughhas depth zero. However, sinég and R, are flat,

IT has flat dimension one. So, ﬂrbrff(H,k) = 0 forn > 1, andII has finite projective
dimension. Therefore, one cannot hope that the vanishifigdf (€2, k) implies flatness,
that is to say, Theorem 4cannot be improved, even not if we require that all Betti numbers
vanish. Neither can we drop the separatedness condition in CorbltERy

7.3.Example (Bartijn-Strooker) The following example of a separated non-balanced big
Cohen-Macaulay module of finite projective dimension is taken frarkEkemple 3.11 a)].
Let R := k[[z, y, z]] with k an arbitrary field and leb be a freeR-module of infinite rank.
LetQ := @ + (x, y)<f>. Clearly (2 is separated, ad is. | claim that(2 is a non-flat (non-
balanced) big Cohen-Macauld@+*module for which all Betti numbers vanish. In order to
prove this, it suffices to show thét, y) is notQ-regular but(z, z,y) is. Indeed, it then
follows thatQ is is a non-flat big Cohen-Macaulay module. Moreover, sifieg (Q, k) =
Tor/ =R/ (2, 2,4)Q, k) = 0, all Betti numbers vanish.

We start with showing thag is not (Q2/2Q)-regular. To this end, take arfyc d-Q.
It follows thatzf andy6 both lie inQ). Letw := z6, thenw ¢ 2 andyw = z(yfd) € zQ,
showing thaty is a zero divisor module2. Next, | claim that)/>(2 is isomorphic to the
completion ofb/z®. Since by Propositiod.3, the latter is afIaR/zR module,(z, z y) is
Q-regular. To prove the isomorphism, we need to showstimat® = 20 and® = Q-+ 2.
The last equality is clear sinceé is dense in® and the former is easily verified using
Lemma4.L N

Note that the completion ab is ®, which is clearly flat. The reader can verify tHat
has flat dimension one. Let be a first syzygy of, that is to sayA is the kernel of an
epimorphism from a free module o It follows thatA is flat and separated. However,
it cannot be universally separated, for otherwise Thediehwould imply thatQ2 is flat. In
particular, Propositiod.6does not hold with separated instead of complete. Also note that
Q2 is anm-pure submodule of the (complete) flat and separdﬁedodule&). This shows
that if a module is separated, has finite projective dimension amdpare in a complete
flat module, then it is not necessarily flat.

Residual homological dimension.Let us call theresidual homological dimensioof a
moduleQ over a Noetherian local ring the largest. > 0 for which Tor?(Q, k) # 0,
wherek is the residue field of? (if no largestn exist, we set the reS|duaI homological
dimension equal tec and if all Tor’(Q, k) = 0, we set it equal to-1). The following
identity is proven in f].

7.4.Theorem ([2, Theoeme 4.1]) Let (R, m) be a Noetherian local ring and |2 be an
R-module. IfQ2 has finite projective dimension and is non-degenerated, then the residual
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homological dimension @ is equal to the difference between the deptR @ihd the depth
of 2.

According to the modern practice, thdepthof an R-modulef? is the least: for which
Ext's(k, Q) # 0 (in [2] this was calledE-profondeurand depth referred there to the length
of a maximalQ2-regular sequence). The depth may be infinite, but it is finite for non-
degenerated modules. In particular, separated modules have finite depth.

7.5.Remark. As an immediate corollary of this theorem, we get*(Q, k) = 0 for any
non-degenerate®-module? of finite projective dimension and amystrictly bigger than
the depth ofR, since the depth df2 cannot exceed the depth Bf Hence we showed the
following improvement of Remark.8 (note that the degenerated case holds trivially):

7.6.Theorem. Let (R, m) be a Noetherian local ring with residue fietdand letq be the
depth ofR. Let(2 be an arbitrary R-module. If2 has finite projective dimension and all
Tor’(Q, k) vanish forn = 1, ... ., ¢, thenQ is flat. a

This yields immediately the following flatness criterion for Noetherian local rings of
depth zero.

7.7.Corollary. Let(R,m) be a depth zero Noetherian local ring and {&be an arbitrary
R-module. If©2 has finite projective dimension, then its completion is flat. In particular,
for a completeR-module, flatness is the same as having finite projective dimensionl

Another corollary is the following flatness criterion, which is a generalization.&f [
Theorem IV.1] for complete modules.

7.8.Corollary. Let(R,m) be a Noetherian local ring with residue fieldand let(2 be an
R-module of finite projective dimension. If there exists some maxiwagular sequence
which is alsoQ2-regular, or more generally, iExty(k,2) = 0foralln =0,...,¢ — 1,
whereq is the depth ofR, then) is flat. If Q is moreover universally separated, th@n
itself is flat.

Proof. Since the degenerated case holds trivially, we may ass$uisenon-degenerated,
and therefore has finite depth.S¥fadmits a regular sequence of lengtithenExt'; (k, €2)
vanishes, for each = 0,...,q — 1 (see for instance/]). Therefore, the first assertion is
a special case of the second, so that we may assume that Bkth@dules vanish in the
specified range. By definition of deptfi,has depth at leagt It follows that the residual
homological dimension of? is zero by Theoren7.4. Therefore, Theorerh.6 gives the
flatness of and Corollary5.13gives the flatness d under the additional assumption
that( is universally separated. O

Finitude of projective dimension. Of course, ifR is regular, then the condition on a mod-
ule to have finite projective dimension is automatically satisfied. In the pafenprious
homological criteria are given to ensure the finitude of the projective dimension Bf an
moduleQ whenR is not regular. The most general criterion states th#bif? (Q, R/p) =

0 for all p in the singular locus oR, then{2 has finite projective dimension, where in the
Cohen-Macaulay case, we only need to check for a single d =: dim(R) and in the
non-Cohen-Macaulay case for alin an interval inZ~ o of lengthd + 1.

This criterion takes a particularly easy formAfhas anisolated singularity that is to
say, if all proper localizations oR are regular. Indeed, in that case, it suffices that all
Tor’(Q, k) vanish in the specified region. For instance, Theogefifor an isolated two-
dimensional singularity takes the following fornif. 2 is separated an(Torf(Q, k) =
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Tor¥(Q,k) = 0, and in the non-Cohen-Macaulay case, alBa5 (Q,k) = 0, then®
is flat. Similarly, Theorem6.6 can be reformulated as followsf R is a d-dimensional
local Cohen-Macaulay ring with at most an isolated singularity &hds an universally
separatedrR-module for whicHTorf(Q, k) = Tor (€2, k) = 0, thenQ is flat.

The Main Theorem for isolated singularities becomes:

7.9.Theorem. Let (R, m) be ad-dimensional Noetherian local ring with an isolated sin-
gularity. Letk be its residue field and lgt be anR-module. 1fTor’*(Q, k) = 0 for all

n=1,...,d+1, thenQ is flat, and ifQ2 is moreover universally separated, th@ritself
is flat. In fact, if R is Cohen-Macaulay, we only need to check vanishingufer1,. .. d.
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