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ABSTRACT. We prove various extensions of the Local Flatness Criterion over a Noe-
therian local ringR with residue fieldk. For instance, ifΩ is a completeR-module
of finite projective dimension, thenΩ is flat if and only if TorR

n (Ω, k) = 0 for all
n = 1, . . . , depth(R). In low dimensions, we have the following criteria. IfR is one-
dimensional and reduced, thenΩ is flat if and only if TorR

1 (Ω, k) = 0. If R is two-
dimensional, then in order forΩ to be flat, it suffices that it is separated, that its projective
dimension is finite and thatTorR

1 (Ω, k) = 0.
Many of these criteria have global counterparts and in particular, it is shown that thea-

adic completion of a flat module of finite projective dimension over an arbitrary Noetherian
ring is again flat.

1. INTRODUCTION

Flatness is an important and often useful property, and, consequently, one wants general
criteria to detect it. The literature on the subject is extensive, and many sorts of criteria
have been proposed, sometimes with additional assumptions on the module or the algebra.
In this paper, mainly homological criteria will be studied. Preferably, the criteria should
require the vanishing of only finitely many homological invariants.

More concretely, let(R,m, k) be a Noetherian local ring andΩ an arbitraryR-module
(in the text we will also treat non-local rings). Then-th Betti numberof Ω is by definition
the vector space dimension ofTorR

n (Ω, k). The main theme of this paper is how the van-
ishing of certain Betti numbers ofΩ influences its flatness. For instance, ifΩ is finitely
generated, then the vanishing of the first Betti number already implies flatness. The Local
Flatness Criterion extends this to include all modules finitely generated over a Noetherian
localR-algebra ([10, Theorem 22.3]; for some generalizations, see [16, Theorem 2.6.3] or
Theorem5.1below). Nonetheless, many modules are not of this type and similar flatness
criteria do not seem to exist for them. It should be pointed out that the vanishing of the
first Betti number is in general not sufficient: for instance, letR be a two-dimensional
regular local ring and letΩ be the residue field of a height one prime ideal inR; for a
separated counterexample, see Example7.1 below. Nonetheless, some vestige of flatness
is preserved: the vanishing of the first Betti number of a non-degeneratedR-algebraS
implies thatR → S is cyclically pure, that is to say,I = IS ∩R for all idealsI ⊆ R (see
[14, Theorem 2.2]). Here a non-zeroR-moduleΩ is calledseparatedif the intersection of
all mnΩ is zero; andnon-degenerated, if Ω 6= mΩ. More consequences of the vanishing
of the first Betti number are treated in§6.

What if we require that some (preferably finitely many) Betti numbers vanish? This
is of course a necessary condition, but unfortunately, even the vanishing of all Betti num-
bers is not sufficient in general (see Examples7.2 and7.3). The reason for this failure is
twofold. Firstly, a flat module over a Noetherian local ring has necessarily finite projective
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dimension. Therefore, whatever flatness criterion we propose, it should entail at least fini-
tude of projective dimension. This question, in terms of vanishing of certainTor-modules,
has been studied in detail in [13] and some of it is reproduced here in the final section.
It should be noted that, depending on the size of the singular locus, these tests may re-
quire the vanishing of infinitely manyTor-modules. To not confound the issue, finitude
of projective dimension will be taken as part of the hypotheses. Nonetheless, even under
the assumption that the module has finite projective dimension, the vanishing of all Betti
numbers does not always entail its flatness (see Example7.3).

The second obstruction is more serious and comes from the fact that a non-finitely
generated module need not be separated or might even be degenerated. In particular,
Nakayama’s Lemma fails in general. An additional complication is that the class of sepa-
rated modules is not closed under base change. Namely, ifΩ is separated,Ω/IΩ need not
be separated for some idealI. It turns out that imposing certain separatedness conditions
will yield valid ‘Betti tests for flatness’.

Results. Let me now quote some of the more important results proved in this paper.

Theorem 7.6. Let (R,m) be a Noetherian local ring with residue fieldk and letq be the
depth ofR. LetΩ be an arbitraryR-module. IfΩ has finite projective dimension and all
TorR

n (Ω, k) vanish forn = 1, . . . , q, thenΩ̂ is flat.

In particular, for a completeR-module of finite projective dimension, flatness is equiv-
alent with the vanishing of the firstq Betti numbers. The assumptions in Theorem7.6also
imply that Ω̂ is m-adically complete (more precisely, them-adic topology coincides with
the canonical completion topology). Another corollary is the result from [2] that the com-
pletion of a flat module is again flat. In fact, we can prove the following global version,
generalizing a result of Enochs in [6] by removing the assumption onA to have finite Krull
dimension; note that a flat module over a finite dimensional Noetherian ring has always
finite projective dimension by [11, Corollary 3.2.7].

Theorem5.9. LetA be a Noetherian ring,a an ideal inA andΩ anA-module. IfΩ is flat
and has finite projective dimension, then itsa-adic completion̂Ωa is also flat.

Moreover,Ω̂a is a-adically complete and we have isomorphismsΩ̂a/amΩ̂a ∼= Ω/amΩ
for all m ≥ 1.

Another useful flatness criterion is for modules of projective dimension one.

Theorem 5.4. Let (R,m) be a Noetherian local ring with residue fieldk andΩ an arbi-
trary R-module. IfTorR

1 (Ω, k) = 0 andΩ has projective dimension one, thenΩ is flat.

In low dimensions, we establish criteria involving only the first Betti number.

Theorem 6.3 and 6.5. Let (R,m) be a Noetherian local ring with residue fieldk and
let Ω be anR-module of finite projective dimension. IfR is one-dimensional, or, ifR is
two-dimensional andΩ is separated, then the vanishing ofTorR

1 (Ω, k) implies thatΩ is
flat.

Methods. Our proofs will be based upon the following well-known homological criterion:
the flatness of a moduleΩ is equivalent with

TorR
1 (Ω, R/a) = 0 for all (prime) idealsa of R.

In order to reduce the number of homological tests needed, we have to better understand
the category of cyclicR-modules ‘up to homology’. I introduced in [13] the following
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formalism to aid us with this problem: a class of finitely generatedR-modules is anet if
it is closed under extensions and direct summands. For our purposes, we need a relative
version, and this is discussed in detail in§2. However, to generate the class of all cyclic
modules as a net, we need in general infinitely many generators. In§3, we explain how
imposing one more ‘net-type’ generation rule allows us to reduce this to a single genera-
tor, to wit, the residue field. Loosely speaking, a net isformational if wheneverM/xM
belongs to it, for someM -regular elementx, then so doesM . The various separatedness
assumptions that occur in our criteria stem from the following use of this formational rule:
if TorR

n (Ω,M/xM) = 0 for somen, then from the long exactTor-sequence, multiplica-
tion with x on TorR

n (Ω,M) is surjective, and hence ifTorR
n (Ω,M) is non-degenerated,

then it must be zero. Before we derive the flatness criteria in§5 using formational nets, we
first need to study some properties of flat modules in§4. In §6 we then investigate some
vestiges of flatness for modules whose first Betti number vanishes. The final section con-
tains some examples showing that some of our results are sharp. We also discuss in more
detail the hypothesis on the finitude of projective dimension, relying on results from [13].

2. NETS

Let A be a Noetherian ring (always assumed commutative, with unit). For an ideal
a ⊆ A, we letV(a) denote the Zariski closed subset of all prime idealsp of A containing
a. LetM be a class of finitely generatedA-modules containing the zero module.

2.1.Definition. A subclassN ⊆ M is called anM-net, if N is closed under extensions
and direct summands inM. More precisely,N is anM-net provided for every short exact
sequence

0 → K → M → N → 0

of A-modules inM,

(Net ): if K andN belong toN, then so doesM ;
(DirSum ): if this sequence is moreover split exact (that is to say, ifM ∼= K⊕N )

andM belongs toN, then so do bothK andN .

Clearly, M itself is anM-net. The intersection of an arbitrary number ofM-nets is
again anM-net. Therefore, for each subsetK ⊆ M, there exists a smallestM-net con-
taining it, which we will call theM-net generated byK. If the M-net generated byK is
equal toM itself, then we will simply say thatK is net-generatingfor M.

2.2.Remark.One easily verifies that a moduleM ∈ M belongs to theM-net generated
by K if and only if there exist short exact sequences

(1) 0 → Mi → Mi+1 → Ki → 0

for i = 0, . . . , n − 1, with M0 and eachKi a direct summand of a module inK and with
M = Mn. In proofs, we can therefore induct onn to show that a certain module belongs
to the net generated by a particular class.

2.3. Proposition. Let A be a Noetherian ring and leta be an ideal inA. Let Pa be the
collection of all modules of the formA/p with p ∈ V(a). ThenPa is net-generating for
the class of all cyclic modules of the formA/I with I an ideal containing some power of
a, as well as for the class of all finitely generatedA-modules that are annihilated by some
power ofa.
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Proof. LetMa be the class of all finitely generatedA-modules that are annihilated by some
power ofa and letCa be the subclass of all cyclic modules inMa. Towards a contradiction,
suppose that the first statement is false and letI be maximal among all ideals containing a
power ofa for which A/I does not lie in theCa-net generated byPa. Clearly,I cannot
be a prime ideal. Letp be a minimal prime ofI. It follows thatp containsa and we have
an exact sequence

(2) 0 → A/p → A/I → A/J → 0

with J properly containingI. By maximality,A/J lies in theCa-net generated byPa.
SinceA/p ∈ Pa, we get a contradiction by means of rule (Net ).

Assume next that the second assertion is false. Hence there existsM ∈ Ma not belong-
ing to theMa-net generated byPa. Let N be maximal so thatM/N does not belong to
theMa-net generated byPa and choose an elementµ ∈ M outsideN . The image ofµ in
M/N generates a non-zero cyclic moduleC belonging toMa whence toCa. By what we
just proved,C lies in theCa-net generated byPa whence a priori in theMa-net generated
by Pa. By maximality, so doesM/(N + Aµ), so that the exact sequence

0 → C → M/N → M/(N + Aµ) → 0

again contradicts rule (Net ). �

Two special cases are worth mentioning separately, where in the first, we takea to be
the zero ideal, and in the second, the maximal ideal.

(2.3.1) The class of all cyclicA-modules of the formA/p with p a prime ideal ofA is
net-generating for the class of all cyclicA-modules as well as for the class of
all finitely generatedA-modules.

(2.3.2) The residue field of a Noetherian local ring is net-generating for the class of
all modules of finite length.

Application to functors. The main application of nets is through the following easy ob-
servation.

2.4. Proposition. Let A be a ring and letF be an additive functor from a category of
A-modules to some Abelian category. SupposeF is exact in the middle. LetK ⊆ M be
classes of finitely generatedA-modules with0 ∈ M. If F(K) = 0 for everyK ∈ K, then
F(M) = 0 for everyM in theM-net generated byK.

Proof. Recall that a (covariant) functor is calledexact in the middle, if any short exact
sequence

0 → K → M → N → 0

transforms into an exact sequence

F(K) → F(M) → F(N).

For a contravariant functor the definition is the same apart from reversing the arrows. The
statement is now immediate by an easy inductive argument (see Remark2.2). �

For A an arbitrary ring andΩ an arbitraryA-module, each of the functorsTorA
i (Ω, ·),

Exti
A(Ω, ·) or Exti

A(·,Ω) is exact in the middle, for anyi. More generally, any derived
functor of a left or right exact functor is exact in the middle. Therefore, Propositions2.3
and2.4yield:
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2.5. Corollary. Let (R,m) be a Noetherian local ring with residue fieldk. Let Ω be an
arbitrary R-module and letn ≥ 1. If TorR

n (Ω, k) vanishes, then so doesTorR
n (Ω, N) for

everyR-moduleN of finite length.
More generally, ifA is a Noetherian ring,a an ideal ofA andΩ an A-module, such

thatTorA
n (Ω, R/p) = 0 for all p ∈ V(a), thenTorA

n (Ω,M) = 0 for all finitely generated
A-modules annihilated by some power ofa.

Let A be a Noetherian ring,a an ideal ofA andΩ anA-module. We will denote the
a-adic completionof Ω by Ω̂a. Recall that̂Ωa is given as the inverse limit of allΩ/amΩ
endowed with the inverse limit topology and that in this topologyΩ̂a is complete. IfΩ is
not finitely generated, the inverse limit topology onΩ̂a might not be the same as thea-
adic one. That is to say, the canonical morphismsΩ̂a/amΩ̂a → Ω/amΩ, although always
surjective, might fail to be injective, even whenm = 1. Put differently,amΩ̂a need not
be closed in the inverse limit topology. IfA is local with maximal idealm, then by the
completionof Ω we mean itsm-adic completion and denote it simply bŷΩ.

2.6.Corollary. LetA be a Noetherian ring anda an ideal ofA. Let

0 → Π → Λ → Ω → 0

be a short exact sequence ofA-modules. IfTorA
1 (Ω, A/p) = 0 for all p ∈ V(a), then

(3) 0 → Π̂a → Λ̂a → Ω̂a → 0

is exact.

Proof. By Corollary2.5, all TorA
1 (Ω, A/am) vanish, for eachm ≥ 1. Hence, for eachm,

tensoring withA/am yields an exact sequence

0 → Π/amΠ → Λ/amΛ → Ω/amΩ → 0.

Taking these exact sequences for allm simultaneously, gives an exact sequence of inverse
systems. Since the first inverse system is flasque, we have, after taking inverse limits, the
desired exact sequence (3) by [8, Proposition 1.6] or [10, Theorem 8.1]. �

3. FORMATIONAL NETS

In this section, we amend the net-generating rules by one additional rule, which will
enable us to generate the class of all finitely generated modules from a relatively small
subclass (which in the local case can even be taken to be a singleton). LetA be a Noetherian
ring anda a proper ideal ofA. LetM be a class of finitely generatedA-modules containing
the zero module and letN be anM-net.

3.1.Definition. We say thatN isa-formational, if the following holds: given anA-module
M ∈ M and anM -regular elementx ∈ a, if M/xM belongs toN, then so doesM . In
other words, the new generating rule is:

(Auto ): Given an exact sequence

0 → M
x−−→M →N → 0

with x ∈ a andM ∈ M. If N belongs toN, then so doesM .

3.2.Remark.If aM = M for someM ∈ M, thenM belongs to anya-formationalM-net.
Indeed, by Nakayama’s Lemma, there is somex ∈ a such that(1−x)M = 0. In particular,
M = xM andx is M -regular, so that we have an exact sequence (Auto ) with N = 0.
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If R is a local ring andm its maximal ideal, then we call anM-net formational, if it is
m-formational. GivenK ⊆ M, thea-formationalM-net generated byK is by definition
the smallesta-formationalM-net containingK. If the a-formationalM-net generated by
K is M, then we say thatK is a-formationally net-generatingfor M. A similar inductive
description of thea-formationalM-net generated byK can be given as in Remark2.2, but
this time the connection betweenMi andMi+1 is either given by an exact sequence (1) or
by an exact sequence of the form

0 → Mi+1
x−−→Mi+1 →Mi → 0

with x anMi+1-regular element insidea.

3.3.Theorem. Let A be a Noetherian ring and leta be a proper ideal. LetPa be the set
of all A/p with p ∈ V(a). ThenPa is a-formationally net-generating for the class of all
cyclicA-modules as well as for the class of all finitely generatedA-modules.

Proof. We will prove the second statement, the first then follows by inspection of our
argument. LetM be the class of all finitely generatedA-modules and letN be thea-
formationalM-net generated byPa. Towards a contradiction, assume that there exists
someM ∈ M not in N. Let N be a maximal submodule ofM such thatM/N does
not belong toN. In particular,a(M/N) is not equal toM/N lestM/N belongs toN by
Remark3.2. We consider two cases.

Case 1. Suppose thatM/N has non-zeroa-depth. Hence there exists anx ∈ a, such that
x is M/N -regular. Therefore we have an exact sequence

0 → M/N
x−−→M/N →M/(N + xM) → 0.

However,N is properly contained inN + xM , so that by maximalityM/(N + xM)
belongs toN, contradicting rule (Auto ).

Case 2. Assume now thatM/N hasa-depth zero, which by [10, Theorem 16.7] is equiv-
alent withHomA(A/a,M/N) 6= 0. Take a non-zero morphismA/a → M/N and factor
this out over its kernel. We obtain an embeddingA/b ↪→ M/N , whereb is some proper
ideal ofA containinga. Let p be a minimal prime ofb, so that in particulara ⊆ p. Com-
posing an embeddingA/p ↪→ A/b with A/b ↪→ M/N gives rise to an exact sequence

0 → A/p → M/N → M/N ′ → 0

whereN ′ is some submodule containingN properly. By maximality,M/N ′ belongs toN
and by assumption so doesA/p. However, this is in violation of rule (Net ). �

Note thatPa is finite if a is a maximal ideal, so that in particular we get:

3.4.Corollary. If R is a Noetherian local ring, then its residue field is formationally net-
generating for the class of all finitely generatedR-modules.

Application to linear functors. A functorF on a category ofA-modules is calledlinear

if it preserves multiplication, that is to say, the image underF of the morphismM
x−−→M

given by multiplication byx ∈ A, is the multiplication mapF(M) x−−→F(M). Recall from
[4, Proposition 9.1.2] that an arbitraryA-moduleΩ is said to havea-depth zero, for a an
ideal inA, if HomA(A/a,Ω) is non-zero, that is to say, if there is some non-zero element
µ ∈ Ω such thataµ = 0. By [4, Proposition 9.1.4] this is equivalent withΩ having an
associated prime containinga. We callΩ non-degenerated in thea-adic topology, if either
Ω is zero or otherwiseaΩ 6= Ω; anda-adically separated, if the intersection of allamΩ is
zero. The following proposition is the analogue of Proposition2.4for formational nets.
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3.5. Proposition. Let A be a Noetherian ring and leta be a proper ideal ofA. LetF
be an additive linear functor on a category ofA-modules which is exact in the middle.
Let K ⊆ M be classes of finitely generatedA-modules with0 ∈ M. If F is covariant,
assumeF(M) is non-degenerated in thea-adic topology for everyM ∈ M, and ifF is
contravariant, assume thatF(M) is either zero or has zeroa-depth for everyM ∈ M.

If F(K) = 0 for everyK ∈ K, thenF(M) = 0 for everyM in the a-formational
M-net generated byK.

Proof. Let us first consider the covariant case. The proof will follow from Proposition2.4
and an inductive argument, once we have shown the following. Let

(4) 0 → M
x−−→M →N → 0

be an exact sequence withx ∈ a andF(N) = 0. We have to show thatF(M) = 0. Our
hypotheses on the functorF imply that we have an exact sequence

F(M) x−−→F(M) → F(N) = 0.

Let Π := F(M), so thatxΠ = Π, whenceΠ = aΠ. By assumptionΠ is non-degenerated
in thea-adic topology, and therefore must be zero.

Similarly, in the contravariant case, we obtain from (4) an exact sequence

(5) 0 = F(N) → F(M) x−−→F(M).

If Π := F(M) were non-zero, then by assumption, it would have zeroa-depth, so that
some non-zeroπ ∈ Π would be annihilated bya. In particular,xπ = 0, contradicting
(5). �

3.6.Remark. In the covariant case, we can relax the assumption onF further: it suffices
thatF(M) is non-degenerated in thexA-adic topology for everyM ∈ M and everyx ∈ a.
In the contravariant case, we only need that for everyM ∈ M for whichF(M) 6= 0, and
for everyx ∈ a, we can find a non-zero elementµ ∈ F(M), such thatxµ = 0. In
other words, we need for eachx ∈ a thatAnnF(M)(x) 6= 0. If a = (x1, . . . , xs)A, then
AnnF(M)(a) is the intersection of allAnnF(M)(xi), and it might well be that the latter are
non-zero but their intersection is zero, so that the above condition is indeed weaker than
requiring thatF(M) has zeroa-depth.

3.7.Remark.The covariant functorsTorA
n (Ω, ·) andExtn

A(Ω, ·) and the contravariant func-
tor Extn

A(·,Ω) are all linear, forΩ an arbitraryA-module. IfΩ is finitely generated, then
TorA

n (Ω, ·) takes finitely generated modules to finitely generated modules. In particular,
if (A,m) is a Noetherian local ring, then the image of a finitely generated module under
TorA

n (Ω, ·) is separated in them-adic topology and hence in anya-adic topology, fora a
proper ideal, so that the proposition applies to it. Shortly we will indicate some milder
restrictions onΩ for which the theorem will still be applicable.

If Ω has finite length, then so does eachExtn
A(Ω,M) with M finitely generated. More-

over, the functorExtn
A(·,Ω) maps any module into a module which is either zero or has

zero depth, and the proposition applies in either case.

4. PROPERTIES OF FLAT MODULES

4.1.Lemma. Let A be a ring anda a proper ideal. LetΦ := ⊕EA be a freeA-module
whereE is some (possibly infinite) index set and letΠ :=

∏
E Âa be the corresponding

direct product of thea-adic completionÂa of A. Then thea-adic completion ofΦ is
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isomorphic to the submodule ofΠ consisting of all sequences for which for everym, only
finitely many entries are non-zero moduloamÂa.

Proof. It is easy to verify thatΠ is a-adically complete. HencêΦa is thea-adic closure of
Φ insideΠ, that is to say,

Φ̂a =
⋂
m

Φ + amΠ.

The assertion is now clear. �

We leave the proof of the following immediate corollary to the reader.

4.2.Corollary. LetA be a Noetherian ring andΦ a freeA-module. For each idealI ⊆ A,
we have an isomorphism

̂(Φ/IΦ)
a ∼= Φ̂a/IΦ̂a.

In particular, thea-adic topology on̂Φa is the same as the inverse limit topology andΦ̂a

is a-adically complete. �

4.3.Proposition. LetA be a Noetherian ring,a an ideal ofA andΦ anA-module. IfΦ is
free, then itsa-adic completion̂Φa is flat.

Proof. SinceΦ̂a is anÂa-module and sinceA → Âa is flat, we may assume without loss
of generality thatA is a-adically complete. Choose some index setE such thatΦ = ⊕EA

and letΠ be the corresponding direct product
∏

E A. By Lemma4.1, we may viewΦ̂a as
a submodule ofΠ. If a is a sequence inΠ, then we denote itse-th component bya(e) ∈ A.

To establish flatness, we use the ‘equational criterion for flatness’ ([10, Theorem 7.6] or
[5, Corollary 6.5]). Assume we have a linear formL overA in s variables and ans-tuple
b := (b(e))e ∈ (Φ̂a)s such thatL(b) = 0. Define a mapo : E → N by lettingo(e) be the
largestm such that all entries ofb(e) ∈ As belong toam. By Lemma4.1, the level sets
o−1(n) of this map are all finite. LetV ⊆ As be the submodule generated by allb(e) with
e ∈ E. By Noetherianity, there exists a finite subsetF ⊆ E such thatV is generated by
all b(f) with f ∈ F . By the Artin-Rees Lemma, there is somec such that

(6) V ∩ amAs ⊆ am−cV

for all m ≥ c. We may choosec large enough so thatF lies insideo−1({1, . . . , c− 1}).
Without loss of generality, we may then assume that both sets are in fact equal. Note that
by our previous argument,F is still finite.

In particular,o(e) ≥ c for all e ∈ E \ F , so thatb(e) lies in ao(e)−cV by (6). Hence,
for eachf ∈ F , there exists a sequenceaf ∈ Π such that

b =
∑
f∈F

b(f)af

with af (e) ∈ ao(e)−c for all e /∈ F . By this last condition and Lemma4.1, eachaf lies in
Φ̂a. Sinceb is a solution to the linear equationL = 0, so is eachb(f) for f ∈ F . Hence
we verified the equational flatness criterion. See§5.16below for an alternative proof. �

4.4. Artin-Rees like modules. We say that anA-moduleΩ is Artin-Rees like, if for all
idealsI anda of A, we can find somec such that

IΩ ∩ amΩ ⊆ am−cIΩ

for all m ≥ c.
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The classical example of an Artin-Rees like module, due to Artin-Rees ([10, Theorem
8.5]), is a finitely generated module over a Noetherian ring. Using the equational criterion
for flatness, any flat moduleΩ over a Noetherian ringA is Artin-Rees like. Indeed, by the
Artin-Rees lemma applied inA, we can find ac such thatI ∩ am ⊆ am−cI for all m ≥ c.
In general, ifΩ is flat, thenIΩ ∩ JΩ = (I ∩ J)Ω for all idealsI andJ (see for instance
[10, Theorem 7.4]. Applying this withJ := am then gives the desired result.

4.5. Universally a-separated modules.Let A be a Noetherian ring anda an arbitrary
proper ideal. We say that an arbitraryA-moduleΩ is universallya-separated, if Ω/IΩ is
separated in thea-adic topology for every idealI of R. If A is local with maximal ideal
m, then we simply sayuniversally separatedto mean universallym-separated. Note that a
moduleΩ is universallya-separated if and only ifIΩ is closed in thea-adic topology for
every idealI of A.

Examples of universally separatedA-modules are: projective modules; founded mod-
ules (see [12]); and, if A is local with maximal idealm, finitely generated modules, or
more generally, modules which are finitely generated over anA-algebraB with mB con-
tained in the Jacobson radical ofB. For the first assertion, use that a direct summand of a
universally separated module is again universally separated plus the fact that a free module
is universally separated; for the second, use that founded implies separated plus the fact
thatΩ founded overA impliesΩ/IΩ founded overA/I (see [12, §2]); for the last two, use
Krull’s Intersection Theorem.

4.6.Proposition. Let A be a Noetherian ring,a a proper ideal ofA andΩ anA-module.
If Ω is a-adically complete and Artin-Rees like, then it is universallya-separated. In par-
ticular, ana-adically complete, flatA-module is universallya-separated.

Proof. The last statement follows from the first and our discussion in§4.4. So we need to
show that for an arbitrary idealI, the submoduleIΩ is a-adically closed. In other words,
we have to show an equality

(7) IΩ =
∞⋂

m=0

IΩ + amΩ.

Choosec so that

(8) IΩ ∩ amΩ ⊆ am−cIΩ

for all m ≥ c. Let ω be in the right hand side of (7). For all m ≥ c, we can write
ω = αm + θm with αm ∈ IΩ andθm ∈ amΩ. Therefore,αm+1 − αm = θm − θm+1 lies
in IΩ ∩ amΩ. By (8), we have

(9) θm − θm+1 = βm

for someβm ∈ am−cIΩ. It follows form repetitive use of (9) that

ω =: αc + βc + βc+1 + · · ·+ βm + θm+1.

SinceΩ is a-adically complete, we get

ω = αc +
∑
m≥c

βm.

If I = (f1, . . . , fs)A, then writing eachβm as a linear combination of thefi shows that
ω ∈ IΩ, as required. �
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5. FLATNESS CRITERIA

We start with a variant of the well-known Local Flatness Criterion–if we takeA local
anda its maximal ideal, then our version agrees with the version stated in [10, Theorem
22.3]. Recall that a moduleΩ is calleda-adically ideal-separated, if for each idealI, the
moduleΩ⊗A I is a-adically separated.

5.1.Theorem (Local Flatness Criterion). LetA be a Noetherian ring and leta be a proper
ideal ofA. LetΩ be an arbitrarya-adically ideal-separatedA-module. IfTorA

1 (Ω, A/p) =
0 for all p ∈ V(a), thenΩ is flat.

Proof. SetF := TorA
1 (Ω, ·), so thatF is linear and exact in the middle. Using Theo-

rem3.3and Proposition3.5with respect to the class of cyclic modules, it suffices to show
that the non-degeneracy condition in Proposition3.5 holds for the functorF restricted to
the category of cyclic modules. Indeed, assuming this, we conclude thatTorA

1 (Ω, A/I)
vanishes for all idealsI, showing thatΩ is flat. Therefore, letI be an ideal ofA. We need
to prove thatTorA

1 (Ω, A/I) is non-degenerated in thea-adic topology. From the short
exact sequence

0 → I → A → A/I → 0
we obtain an exact sequence

0 → TorA
1 (Ω, A/I) → Ω⊗A I.

By our assumption onΩ, the tensor productΩ⊗A I is a-adically separated. Therefore, so
is TorA

1 (Ω, A/I), as it is a submodule, and hence in particular, it is non-degenerated.�

From the proof it is clear that we can weaken the hypothesis onΩ: it suffices that every
submodule ofΩ⊗A I is non-degenerated in thea-adic topology, for every idealI. In fact,
our present techniques are applicable to an even wider class ofA-modules, as we will now
see.

5.2. Theorem. Let A be a Noetherian ring and leta be a proper ideal ofA. Let Ω be
an arbitrary A-module. Assume thatΩ is the quotient of a flat module by a universally
a-separated submodule. IfTorA

1 (Ω, A/p) = 0 for all p ∈ V(a), thenΩ is flat.
In particular, if (R,m) is local with residue fieldk, then the quotientΩ of a flat module

by a universally separated submodule is flat if and only ifTorR
1 (Ω, k) = 0.

Proof. By the same argument as in the proof of Theorem5.1, it suffices to show that
TorA

1 (Ω, A/I) is a-adically separated for every idealI of A. By assumption, we have an
exact sequence

0 → Π → Φ → Ω → 0,

with Φ flat andΠ universallya-separated. Tensoring withA/I yields a short exact se-
quence

(10) 0 → TorA
1 (Ω, A/I) → Π/IΠ.

SinceΠ/IΠ is a-adically separated, so isTorA
1 (Ω, A/I). �

5.3.Corollary. LetA be a Noetherian ring and letΩ be an arbitraryA-module. IfΩ has
projective dimensione and if TorA

e (Ω, A/m) = 0 for some maximal idealm of A, thenΩ
has flat dimension at moste− 1.

In particular, if Ω has projective dimension one andTorA
1 (Ω, A/m) = 0 for some

maximal idealm, thenΩ is flat.
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Proof. We induct on the projective dimensione of Ω. If e = 1, thenΩ is the quotient of a
free module by a projective module, so that Theorem5.2applies. Fore > 1, choose a free
moduleΦ and an exact sequence

(11) 0 → Π → Φ → Ω → 0.

Therefore,Π has projective dimensione− 1. From theTor long exact sequence, it follows
thatTorA

e−1(Π, A/m) ∼= TorA
e (Ω, A/m) = 0. By induction,Π has flat dimension at most

e−2. From the exact sequence (11), it then follows thatΩ has flat dimension at moste−1,
as required. �

In caseR is local ande = 1, we get:

5.4.Theorem. Let (R,m) be a Noetherian local ring with residue fieldk andΩ an arbi-
trary R-module. IfTorR

1 (Ω, k) = 0 andΩ has projective dimension one, thenΩ is flat.

5.5. Corollary. Let (R,m) be a Noetherian local ring with residue fieldk. Suppose we
have anR-module morphismu : Π → Φ with Π universally separated andΦ flat. If
u ⊗ k : Π/mΠ → Φ/mΦ is injective, then so isu. Moreover,cokeru andΠ are both flat
andu is pure.

Proof. It is well-known that injectivity ofu ⊗ k implies thatu is injective, sinceΠ is
separated (see for instance [10, Theorem 22.5]). LetΩ denote the cokernel ofu, that is
to say,Ω = Φ/u(Π). The injectivity ofu ⊗ k implies furthermore thatTorR

1 (Ω, k) = 0.
SinceΩ is the quotient of a flat module by an universally separated module, the flatness of
Ω follows from Theorem5.2. Therefore,Π is flat andu is pure. �

5.6.Theorem. LetA be a Noetherian ring,a a proper ideal ofA andΩ anA-module. IfΩ
has finite projective dimension andTorA

n (Ω, A/p) vanishes for alln ≥ 1 and allp ∈ V(a),
then thea-adic completion̂Ωa of Ω is flat.

Moreover, we have isomorphismŝΩa/amΩ̂a ∼= Ω/amΩ for all m ≥ 1 and Ω̂a is a-
adically complete.

Proof. Let q be the projective dimension ofΩ. We will induct onq. If q = 0, thenΩ is
projective. Since completion commutes with direct summands, it suffices to show that the
a-adic completion of a free module is flat anda-adically complete, which is what we proved
in Corollary4.2and Proposition4.3. So assumeq > 0 and choose an exact sequence

(12) 0 → Π → Φ → Ω → 0

with Φ a freeA-module. It follows thatΠ has projective dimensionq−1. By Corollary2.6,
we get an exact sequence

(13) 0 → Π̂a → Φ̂a → Ω̂a → 0.

SinceTorA
n (Π, A/p) = TorA

n+1(Ω, A/p) = 0 for all n ≥ 1 and allp ∈ V(a), induc-

tion yields thatΠ̂a is flat anda-adically complete. Moreover, we have isomorphisms
Π̂a/amΠ̂a ∼= Π/amΠ for all m ≥ 1. It follows from Proposition4.6 that Π̂a is uni-
versallya-separated. SincêΦa is flat by Proposition4.3, Theorem5.2 yields thatΩ̂a is
flat.

Tensoring (12) with A/am and using thatTorA
1 (Ω, A/am) = 0 by Corollary2.5, we

get an exact sequence

0 → Π/amΠ → Φ/amΦ → Ω/amΩ → 0.
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On the other hand, tensoring (13) with A/am and using that̂Ωa is flat gives an exact
sequence

0 → Π̂a/amΠ̂a → Φ̂a/amΦ̂a → Ω̂a/amΩ̂a → 0.

By our induction hypothesis, the first modules in both exact sequences are isomorphic,
and so are the middle ones. By diagram chasing, the last modules in both sequences are
therefore isomorphic too. In particular, thea-adic topology on̂Ωa coincides with its inverse
limit topology, so that̂Ωa is alsoa-adically complete. �

We state the following important instance of the theorem separately.

5.7.Corollary. LetA be a Noetherian ring,a a proper ideal ofA andΩ anA-module. If
Ω is a-adically complete and has finite projective dimension, and ifTorA

n (Ω, A/p) = 0 for
all n ≥ 1 and allp ∈ V(a), thenΩ is flat.

5.8.Remark.AssumeA has finite Krull dimensiond. Inspecting the above proof, we see
that it suffices thatTorA

n (Ω, A/p) vanishes for all1 ≤ n ≤ d+1 and allp ∈ V(a), since by
work of Auslander-Buchsbaum, Bass and Jensen (see for instance [8, p. 44]), the projective
dimension of anA-module, when finite, is at mostd + 1. In fact, assumeA is moreover
local with residue fieldk and leta be equal to the maximal ideal ofA. Let δ = d whenA
is Cohen-Macaulay, andδ = d − 1 otherwise. By a result of Auslander-Buchsbaum ([1,
Theorem 2.4]; see also [15, Theorem 4.6]), the flat dimension ofΩ is at mostδ, so that all
TorA

n (Ω, k) vanish forn ≥ δ + 1. Therefore, we only need to check the vanishing of the
first δ Betti numbers. We will further improve this bound in Theorem7.6below, showing
that we may replaceδ by the depth ofA.

5.9.Theorem. Let A be a Noetherian ring,a an ideal inA andΩ an A-module. IfΩ is
flat and has finite projective dimension, then itsa-adic completion̂Ωa is also flat.

Moreover,Ω̂a is a-adically complete and we have isomorphismsΩ̂a/amΩ̂a ∼= Ω/amΩ
for all m ≥ 1.

Proof. Since allTorA
n (Ω, A/p) vanish forn ≥ 1 andp ∈ V(a), Theorem5.6 yields the

flatness of̂Ωa and the assertion on the topology ofΩ̂a. �

This result was proved by Enochs in [6, Proposition 2.3] for Noetherian rings of finite
Krull dimension using pure injective resolutions; the result for local rings was already
proved by Bartijn-Strooker in [2, Corollaire 3.15] using basic modules. Note that ifA has
finite Krull dimension, thenΩ, being flat, has finite projective dimension by [11, Corollary
3.2.7]. The following corollary generalizes [10, Theorem 22.6].

5.10.Corollary. Let (R,m) be a Noetherian local ring and letA be anR-algebra. Let
Ω be anA-module which is flat as anR-module. Ifa ∈ A is Ω/mΩ-regular, thena is
Ω̂-regular andΩ̂/aΩ̂ is flat overR. If Ω is moreover separated, thena is Ω-regular.

Proof. By Theorem5.9, the completion̂Ω is flat and complete in them-adic topology.
ThereforeΩ̂ is universally separated by Proposition4.6. Letua be the endomorphism of̂Ω
given by multiplication witha. SinceΩ/mΩ ∼= Ω̂/mΩ̂, our assumption ona implies that
ua ⊗ k is injective, wherek is the residue field ofR. By Corollary5.5, the endomorphism
ua is pure and injective. In particular,̂Ω/aΩ̂ is flat overR anda is Ω̂-regular. IfΩ is
separated, it is a submodule of its completion and it follows thata is Ω-regular. �

5.11.Definition. Let A be a ring,a an ideal andΩ anA-module. AnA-submoduleΠ of
Ω is calleda-pure, if Π ∩ aΩ = aΠ.
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Equivalently,Π is a-pure inΩ, if the canonical morphismΠ/aΠ → Ω/aΩ is injective.
In particular, beinga-pure is transitive. AssumeΩ is moreover flat. Inspecting the long
exact sequence forTor, it follows thatΠ is a-pure if and only ifTorA

1 (Ω/Π, A/a) = 0. In
particular,Π is a-pure for all idealsa if and only if Ω/Π is flat, if and only if the inclusion
Π ⊆ Ω is pure.

5.12.Corollary. Let(R,m) be a Noetherian local ring and letΦ be a flatR-module. Then
any finitely generatedm-pure submodule ofΦ is free and pure. In particular, any element
in Φ−mΦ has zero annihilator.

Proof. Let H be a finitely generated andm-pure submodule ofΦ. Put Λ = Φ/H. It
follows thatTorR

1 (Λ, k) = 0. SinceH is universally separated,Λ is flat by Theorem5.2.
Therefore,H is pure inΦ and flat, whence free.

The last statement follows by lettingH be the module generated by an elementω in
Φ− mΦ. An element inH ∩ mΦ is of the formrω for somer ∈ R. If r is not inm, then
it is a unit, so thatω ∈ mΦ, contradiction. This shows thatH is m-pure inΦ whence free
by the first assertion. AsH ∼= R/ AnnR(ω), we getAnnR(ω) = 0, as claimed. �

5.13.Corollary. LetA be a Noetherian ring anda a proper ideal ofA. Letd be the Krull
dimension ofA (possibly infinite). LetΩ be anA-module of finite projective dimension.
If Ω is universallya-separated andTorA

n (Ω, A/p) = 0 for all 1 ≤ n ≤ d + 1 and all
p ∈ V(a), thenΩ is flat.

Proof. By Theorem5.6 and Remark5.8, the completion̂Ωa is flat and we have isomor-
phisms

Ω/IΩ ∼= Ω̂a/IΩ̂a

for any idealI containing a power ofa. SinceΩ isa-adically separated, it is a submodule of
Ω̂a and the previous statement then shows that this embedding isI-pure for allI containing
some power ofa. Let Π be the quotient modulêΩa/Ω. SinceΩ̂a is flat, p-purity implies
thatTorA

1 (Π, A/p) = 0 for all p ∈ V(a). SinceΩ is universallya-separated, Theorem5.2
yields thatΠ is flat, and therefore, so isΩ. �

The proof even shows thatΩ is a pure submodule of itsa-adic completion. By Re-
mark5.8, we get the following improvement in the local case.

5.14.Corollary. LetR be ad-dimensional Noetherian local ring with residue fieldk and
let δ be equal tod whenR is Cohen-Macaulay, and tod − 1 otherwise. LetΩ be anR-
module of finite projective dimension. IfΩ is universally separated andTorR

n (Ω, k) = 0
for all 1 ≤ n ≤ δ, thenΩ is flat.

In the next section, we will weaken the separatedness condition for one-dimensional
and two-dimensional local rings. As a final corollary, we obtain the following sharpening
of Corollary5.10for universally separated modules.

5.15.Corollary. Let (R,m) be a Noetherian local ring and letA be anR-algebra. Let
Ω be anA-module which is universally separated and flat as anR-module. Ifa ∈ A is
Ω/mΩ-regular, thena is Ω-regular andΩ/aΩ is flat overR.

Proof. It follows from Corollary5.10thata is Ω-regular and̂Ω/aΩ̂ is flat. From the proof
of Corollary5.13it follows thatΛ =: Ω̂/Ω is flat. SinceΩ is universally separated, one
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checks that the canonical morphismΩ/aΩ → Ω̂/aΩ̂ is injective. By the snake lemma, the
cokernel of this inclusion is equal toΛ/aΛ. It follows from the exact sequence

0 → Λ a−−→ Λ→ Λ/aΛ → 0

thatΛ/aΛ has flat dimension at most one. SinceΩ̂/aΩ̂ is flat, so is thereforeΩ/aΩ. �

5.16. An alternative proof of Proposition 4.3. As in the proof of the proposition, we
may assume thatA is a-adically complete. LetΠ be the direct product of copies ofA and
let Λ be the quotientΠ/Φ̂a. One checks, using the Artin-Rees lemma, thatΦ̂a is I-pure
in Π for any idealI of A (see Definition5.11). In particular,TorA

1 (Λ, A/p) = 0 for every
p ∈ V(a). By Lemma4.2, taking into account that a completion is always separated,
it follows that Φ̂a is universallya-separated. Therefore, we can apply Theorem5.2 to
conclude thatΛ is flat. But then so iŝΦa. �

6. VANISHING OF THE FIRSTBETTI NUMBER

In this section, we let(R,m) be a Noetherian local ring with residue fieldk andΩ an
arbitraryR-module. We are interested in consequences of the assumption thatTorR

1 (Ω, k)
vanishes. Recall that a moduleΩ is called torsion-freeif any R-regular element isΩ-
regular. In particular, ifR has depth zero, then any module is vacuously torsion-free.

6.1.Theorem. Let (R,m) be a Cohen-Macaulay local ring with residue fieldk and letΩ
be anR-module. IfΩ is separated andTorR

1 (Ω, k) = 0, thenΩ is torsion-free.

Proof. Let x be anR-regular element. Choosex1, . . . , xd−1 ∈ m, such that(x1, . . . , xd)
is a maximalR-regular sequence, where we putxd := x. SinceR is Cohen-Macaulay,
n := (x1, . . . , xd)R is primary. ThereforeTorR

1 (Ω, R/n) = 0 by Corollary 2.5. Put
R̄ := R/(x1, . . . , xd−1)R andΩ̄ := Ω/(x1, . . . , xd−1)Ω. By [14, Lemma 2.1], we have

(14) TorR̄
1 (Ω̄, R/n) = 0.

SinceR/n = R̄/xR̄ andx is R̄-regular, (14) implies thatx is Ω̄-regular.
If d = 1, so thatR̄ is just R, thenx is Ω-regular. Note that we have not used the

separatedness condition yet and hence we proved Corollary6.2below. So we may assume
d > 1. Let xµ = 0 for someµ ∈ Ω. Sincex is Ω̄-regular, the image ofµ in Ω̄ is zero,
that is to say,µ ∈ (x1, . . . , xd−1)Ω ⊆ mΩ. However, replacing(x1, . . . , xd−1) in the
above argument by(xn

1 , xn
2 , . . . , xn

d−1) for arbitraryn ≥ 1, we may conclude by the same
argument thatµ ∈ mnΩ for all n. SinceΩ is separated,µ = 0, as we wanted to show.�

In the course of the previous proof, we derived the following corollary (note that the
depth zero case holds trivially).

6.2.Corollary. Let (R,m) be a one-dimensional Noetherian local ring with residue field
k and letΩ be anR-module. IfTorR

1 (Ω, k) = 0, thenΩ is torsion-free. �

We now turn to some flatness criteria in low dimension. The first result generalizes the
well-known fact that flatness is the same as being torsion-free over a discrete valuation
ring.

6.3.Theorem. Let (R,m) be a one-dimensional Noetherian local ring with residue field
k and letΩ be anR-module. IfTorR

1 (Ω, k) = 0 and Ω has finite projective dimension
(which already follows from the first hypothesis whenR is reduced), thenΩ is flat.

In particular, if R is a one-dimensional local Cohen-Macaulay ring andΩ has finite
projective dimension, thenΩ is flat if and only if it is torsion-free.
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Proof. If R is not Cohen-Macaulay, thenΩ has projective dimension at most one by [8,
p.44] and the assertion follows from Theorem5.4 (alternatively, one can use that the flat
dimension ofΩ, when finite, is zero by [3, Corollary 5.3]). If R is Cohen-Macaulay,
thenΩ is a so-calledbalanced big Cohen-Macaulay moduleby Corollary6.2. Flatness
then follows from [13, Theorem IV.1]. Note that ifR is reduced, thenR has an isolated
singularity. By [13, Corollary III.4], the vanishing ofTorR

1 (Ω, k) then implies thatΩ has
finite projective dimension. This proves the first assertion.

One direction in the second assertion is immediate. Hence, assume thatΩ is a torsion-
free module of finite projective dimension over a one-dimensional local Cohen-Macaulay
ringR. Letx be anR-regular element. Sincex isΩ-regular,TorR

1 (Ω, R/xR) = 0. Choose
an exact sequence

0 → k → R/xR → C → 0
and tensor withΩ to yield an exact sequence

TorR
2 (Ω, C) → TorR

1 (Ω, k) → TorR
1 (Ω, R/xR).

We already established that the last module in this exact sequence is zero. The first module
is also zero becauseΩ has finite projective dimension, so that its flat dimension is at most
one by [1, Theorem 2.4] (see Remark5.8). HenceTorR

1 (Ω, k) = 0, so thatΩ is flat by our
first assertion. �

6.4.Corollary. Let (R,m) be a Noetherian local ring with residue fieldk and letΩ be an
arbitrary R-module. IfTorR

1 (Ω, k) = 0, thenΩ is flat along every curve inSpec R.

Proof. By the latter expression we mean thatΩ/aΩ is flat as anR/a-module for every
radical ideala of R with dim(R/a) = 1. Indeed, fora of this form, TorR

1 (Ω, k) = 0
impliesTorR/a

1 (Ω/aΩ, k) = 0 by [14, Lemma 2.1], and we are done by Theorem6.3. �

In dimension two, we require an additional separatedness condition.

6.5.Theorem. Let (R,m) be a two-dimensional Noetherian local ring with residue field
k and let Ω be anR-module. IfΩ is separated, has finite projective dimension and
TorR

1 (Ω, k) = 0, thenΩ is flat.

Proof. Our proof will be non-uniform, as we need to treat the Cohen-Macaulay differently
from the non-Cohen-Macaulay case. Assume first thatR is Cohen-Macaulay and let(x, y)
be anR-regular sequence. SinceΩ is separated, Theorem6.1 implies thatx is Ω-regular.
Moreover, sinceTorR/xR

1 (Ω/xΩ, k) = 0 by [14, Lemma 2.1] and sincey isR/xR-regular,
Corollary6.2applied to the one-dimensional local Cohen-Macaulay ringR/xR then yields
thaty is Ω/xΩ-regular. Hence(x, y) is Ω-regular and we showed thatΩ is a balanced big
Cohen-Macaulay module. Flatness now follows from [13, Theorem IV.1].

So assumeR is not Cohen-Macaulay. By Theorem5.6 together with Remark5.8, the
completionΩ̂ is flat. SinceΩ is separated, it is a submodule of its completion and we have
an exact sequence

(15) 0 → Ω → Ω̂ → Λ → 0.

SinceΩ is m-pure inΩ̂ and sincêΩ is flat, we getTorR
1 (Λ, k) = 0. From theTor long

exact sequence, we also getTorR
2 (Λ, k) = 0. Moreover,Ω̂ being flat, has finite projective

dimension. Therefore, so hasΛ. From [8, p. 44] it follows thatΛ has projective dimension
at most two, sinceR is not Cohen-Macaulay. Therefore, by Corollary5.3, its flat dimension
is at most one. From the exact sequence (15) and the fact that̂Ω is flat, it then follows that
Ω must be flat. �
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In higher dimensions, an even stronger separatedness condition is needed. The follow-
ing is a strengthening of Corollary5.13under the additional Cohen-Macaulay assumption;
we will drop this assumption in Corollary7.8below.

6.6. Theorem. Let (R,m) be a local Cohen-Macaulay ring with residue fieldk and let
Ω be anR-module. IfΩ is universally separated, has finite projective dimension and
TorR

1 (Ω, k) = 0, thenΩ is flat.

Proof. We will use once more [13, Theorem IV.1] to prove flatness. Hence, it suffices to
show that if(x1, . . . , xn) is R-regular, then it isΩ-regular. We induct onn. Theorem6.1
yields thatx1 isΩ-regular. By [14, Lemma 2.1], we haveTorR/x1R

1 (Ω/x1Ω, k) = 0. Since
Ω/x1Ω is again universally separated, induction yields that(x2, . . . , xn) isΩ/x1Ω-regular,
as we wanted to show. �

Flatificators. We say that an arbitraryR-moduleΩ admits a flatificator, if there is a
(unique) smallest idealf such thatΩ/fΩ is flat overR/f; the idealf is then called the
flatificatorof Ω. In an unpublished paper, I showed that if(R,m) is a complete Noetherian
local ring,A a NoetherianR-algebra such thatmA lies in the Jacobson radical ofA, and
Ω a finitely generatedA-module, thenΩ, viewed as anR-module, has a flatificator. There-
fore, the next result can be seen as a partial generalization of the Local Flatness Criterion.

6.7.Corollary. Let (R,m) be a Noetherian local ring with residue fieldk and letΩ be an
R-module. Letn denote the nilradical ofR. If Ω admits a flatificator andTorR

1 (Ω, k) = 0,
thenΩ/nΩ is flat overR/n. In particular, if R is moreover reduced, thenΩ is flat.

Proof. Let f be the flatificator ofΩ. Let p be an arbitrary prime ideal ofR such thatR/p
is one-dimensional, aone-dimensional primefor short. Corollary6.4 yields thatΩ/pΩ
is flat as anR/p-module. Therefore, by definition of flatificator,f ⊆ p. I claim that the
intersection of all one-dimensional prime ideals is equal to the nilradicaln. Assuming the
claim, it follows thatf ⊆ n, showing thatΩ/nΩ is flat overR/n.

To prove the claim, we need to show that the intersection of all one-dimensional prime
ideals lies in any minimal prime idealg of R. Therefore, we may replaceR by R/g
and assume, without loss of generality, thatR is a domain. Supposex is a non-zero el-
ement lying in every one-dimensional prime ideal ofR. By prime avoidance (see for
instance [10, Theorem 14.1]), we can choose a sequencex1 = x, x2, . . . ,xd in R such that
(xi+1, . . . , xd)R has heightd − i for all i, whered = dim R. Let p be a minimal prime
ideal of (x2, . . . , xd)R. Sincep has heightd − 1, it is one-dimensional. By assumption,
x ∈ p, contradicting that(x1, . . . , xd)R has heightd. �

7. FURTHER REMARKS

We start with a couple of examples showing that some of the results obtained in this
paper are sharp.

7.1.Example (Theorem6.5 is false in higher dimensions). Let R be a regular local ring
and letE be the injective hull of the residue fieldk. It is well-known thatTorR

n (E, k) = 0
for all n 6= d and thatTorR

d (E, k) ∼= k, whered is the dimension ofR. Clearly,E is
not separated, so that the various separatedness conditions made in this paper cannot be
omitted. Moreover, ifd ≥ 3 and we take an exact sequence

0 → Λ → Φ → E → 0

with Φ free, thenΛ is separated, has finite projective dimension (sinceR is regular) and
TorR

1 (Λ, k) = 0, butΛ is not flat (sinceTorR
d−1(Λ, k) 6= 0).
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7.2.Example (Lazard). In [9], Lazard uses the following example to disprove that every
module of flat dimension one is the inductive limit of modules of projective dimension one.
Let k be a field, putA := k[x, y, z] and letR be the localization ofA/(x2, xy, xz)A at
the maximal idealm := (x, y, z)A. One checks thatR has dimension two and depth zero,
so thatR is not Cohen-Macaulay. Moreover,Sing R = {m}, so thatR has an isolated
singularity. Letg := xR andp := (x, y)R. Consider the exact sequence

0 → Rp → Rg → Π → 0

SinceRg is flat andRp ⊗ k = 0, tensoring withk yieldsTorR
1 (Π, k) = 0. Tensoring the

above sequence on the other hand withR/yR yieldsTorR
1 (Π, R/yR) ∼= Rp/yRp and the

latter is isomorphic tok(p), showing thatΠ is not flat. Note thatRp
∼= k(z)[y]yk(z)[y] is

a discrete valuation ring, althoughp has depth zero. However, sinceRp andRg are flat,
Π has flat dimension one. So, allTorR

n (Π, k) = 0 for n ≥ 1, andΠ has finite projective
dimension. Therefore, one cannot hope that the vanishing ofTorR

1 (Ω, k) implies flatness,
that is to say, Theorem5.4cannot be improved, even not if we require that all Betti numbers
vanish. Neither can we drop the separatedness condition in Corollary5.13.

7.3.Example (Bartijn-Strooker). The following example of a separated non-balanced big
Cohen-Macaulay module of finite projective dimension is taken from [2, Exemple 3.11 a)].
Let R := k[[x, y, z]] with k an arbitrary field and letΦ be a freeR-module of infinite rank.
Let Ω := Φ + (x, y)Φ̂. ClearlyΩ is separated, aŝΦ is. I claim thatΩ is a non-flat (non-
balanced) big Cohen-MacaulayR-module for which all Betti numbers vanish. In order to
prove this, it suffices to show that(x, y) is notΩ-regular but(z, x, y) is. Indeed, it then
follows thatΩ is is a non-flat big Cohen-Macaulay module. Moreover, sinceTorR

n (Ω, k) ∼=
TorR/(z,x,y)R

n (Ω/(z, x, y)Ω, k) = 0, all Betti numbers vanish.
We start with showing thaty is not(Ω/xΩ)-regular. To this end, take anyθ ∈ Φ̂ − Ω.

It follows thatxθ andyθ both lie inΩ. Let ω := xθ, thenω /∈ xΩ andyω = x(yθ) ∈ xΩ,
showing thaty is a zero divisor moduloxΩ. Next, I claim thatΩ/zΩ is isomorphic to the
completion ofΦ/zΦ. Since by Proposition4.3, the latter is a flatR/zR-module,(z, x, y) is
Ω-regular. To prove the isomorphism, we need to show thatΩ∩zΦ̂ = zΩ andΦ̂ = Ω+zΦ̂.
The last equality is clear sinceΦ is dense inΦ̂ and the former is easily verified using
Lemma4.1.

Note that the completion ofΩ is Φ̂, which is clearly flat. The reader can verify thatΩ
has flat dimension one. LetΛ be a first syzygy ofΩ, that is to say,Λ is the kernel of an
epimorphism from a free module ontoΩ. It follows thatΛ is flat and separated. However,
it cannot be universally separated, for otherwise Theorem5.2would imply thatΩ is flat. In
particular, Proposition4.6does not hold with separated instead of complete. Also note that
Ω is anm-pure submodule of the (complete) flat and separatedR-moduleΦ̂. This shows
that if a module is separated, has finite projective dimension and ism-pure in a complete
flat module, then it is not necessarily flat.

Residual homological dimension.Let us call theresidual homological dimensionof a
moduleΩ over a Noetherian local ringR the largestn ≥ 0 for which TorR

n (Ω, k) 6= 0,
wherek is the residue field ofR (if no largestn exist, we set the residual homological
dimension equal to∞ and if all TorR

n (Ω, k) = 0, we set it equal to−1). The following
identity is proven in [2].

7.4.Theorem ([2, Théor̀eme 4.1]). Let (R,m) be a Noetherian local ring and letΩ be an
R-module. IfΩ has finite projective dimension and is non-degenerated, then the residual
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homological dimension ofΩ is equal to the difference between the depth ofR and the depth
of Ω.

According to the modern practice, thedepthof anR-moduleΩ is the leastn for which
Extn

R(k,Ω) 6= 0 (in [2] this was calledE-profondeurand depth referred there to the length
of a maximalΩ-regular sequence). The depth may be infinite, but it is finite for non-
degenerated modules. In particular, separated modules have finite depth.

7.5.Remark.As an immediate corollary of this theorem, we getTorR
n (Ω, k) = 0 for any

non-degeneratedR-moduleΩ of finite projective dimension and anyn strictly bigger than
the depth ofR, since the depth ofΩ cannot exceed the depth ofR. Hence we showed the
following improvement of Remark5.8(note that the degenerated case holds trivially):

7.6.Theorem. Let (R,m) be a Noetherian local ring with residue fieldk and letq be the
depth ofR. LetΩ be an arbitraryR-module. IfΩ has finite projective dimension and all
TorR

n (Ω, k) vanish forn = 1, . . . , q, thenΩ̂ is flat. �

This yields immediately the following flatness criterion for Noetherian local rings of
depth zero.

7.7.Corollary. Let(R,m) be a depth zero Noetherian local ring and letΩ be an arbitrary
R-module. IfΩ has finite projective dimension, then its completion is flat. In particular,
for a completeR-module, flatness is the same as having finite projective dimension.�

Another corollary is the following flatness criterion, which is a generalization of [13,
Theorem IV.1] for complete modules.

7.8.Corollary. Let (R,m) be a Noetherian local ring with residue fieldk and letΩ be an
R-module of finite projective dimension. If there exists some maximalR-regular sequence
which is alsoΩ-regular, or more generally, ifExtn

R(k,Ω) = 0 for all n = 0, . . . , q − 1,
whereq is the depth ofR, thenΩ̂ is flat. If Ω is moreover universally separated, thenΩ
itself is flat.

Proof. Since the degenerated case holds trivially, we may assumeΩ is non-degenerated,
and therefore has finite depth. IfΩ admits a regular sequence of lengthq, thenExtn

R(k,Ω)
vanishes, for eachn = 0, . . . , q − 1 (see for instance [7]). Therefore, the first assertion is
a special case of the second, so that we may assume that all theExt modules vanish in the
specified range. By definition of depth,Ω has depth at leastq. It follows that the residual
homological dimension ofΩ is zero by Theorem7.4. Therefore, Theorem5.6 gives the
flatness ofΩ̂ and Corollary5.13gives the flatness ofΩ under the additional assumption
thatΩ is universally separated. �

Finitude of projective dimension. Of course, ifR is regular, then the condition on a mod-
ule to have finite projective dimension is automatically satisfied. In the paper [13], various
homological criteria are given to ensure the finitude of the projective dimension of anR-
moduleΩ whenR is not regular. The most general criterion states that ifTorR

n (Ω, R/p) =
0 for all p in the singular locus ofR, thenΩ has finite projective dimension, where in the
Cohen-Macaulay case, we only need to check for a singlen ≥ d =: dim(R) and in the
non-Cohen-Macaulay case for alln in an interval inZ>0 of lengthd + 1.

This criterion takes a particularly easy form ifR has anisolated singularity, that is to
say, if all proper localizations ofR are regular. Indeed, in that case, it suffices that all
TorR

n (Ω, k) vanish in the specified region. For instance, Theorem6.5 for an isolated two-
dimensional singularity takes the following form:if Ω is separated andTorR

1 (Ω, k) =
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TorR
2 (Ω, k) = 0, and in the non-Cohen-Macaulay case, alsoTorR

3 (Ω, k) = 0, thenΩ
is flat. Similarly, Theorem6.6 can be reformulated as follows:if R is a d-dimensional
local Cohen-Macaulay ring with at most an isolated singularity andΩ is an universally
separatedR-module for whichTorR

1 (Ω, k) = TorR
d (Ω, k) = 0, thenΩ is flat.

The Main Theorem for isolated singularities becomes:

7.9.Theorem. Let (R,m) be ad-dimensional Noetherian local ring with an isolated sin-
gularity. Letk be its residue field and letΩ be anR-module. IfTorR

n (Ω, k) = 0 for all
n = 1, . . . , d + 1, thenΩ̂ is flat, and ifΩ is moreover universally separated, thenΩ itself
is flat. In fact, ifR is Cohen-Macaulay, we only need to check vanishing forn = 1, . . . , d.
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