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LOG-TERMINAL SINGULARITIES AND VANISHING
THEOREMS VIA NON-STANDARD TIGHT CLOSURE

HANS SCHOUTENS

Abstract

Generalizing work of Smith and Hara, we give a new characterization of log-
terminal singularities for finitely generated algebras overC, in terms of purity prop-
erties of ultraproducts of characteristicp Frobenii.

As a first application we obtain a Boutot-type theorem for log-terminal singu-
larities: given a pure morphismY → X between affineQ-Gorenstein varieties of
finite type overC, if Y has at most a log-terminal singularities, then so doesX.
The second application is the Vanishing for Maps of Tor for log-terminal singular-
ities: if A ⊆ R is a Noether Normalization of a finitely generatedC-algebraR

andS is anR-algebra of finite type with log-terminal singularities, then the natural
morphismTorA

i (M, R) → TorA
i (M, S) is zero, for everyA-moduleM and ev-

ery i ≥ 1. The final application is Kawamata-Viehweg Vanishing for a connected
projective varietyX of finite type overC whose affine cone has a log-terminal
vertex (for some choice of polarization). As a corollary, we obtain a proof of the
following conjecture of Smith: ifG is the complexification of a real Lie group act-
ing algebraically on a projective smooth Fano varietyX, then for any numerically
effective line bundleL on any GIT quotientY := X//G, each cohomology mod-
ule Hi(Y,L) vanishes fori > 0, and, ifL is moreover big, thenHi(Y,L−1)

vanishes fori < dim Y .

1. Introduction

The work of Smith, Hara et al., has led to a characterization of log-terminal singu-
larities (equivalence (1)⇔ (1’) below) in terms of purity properties of the Frobenius
on a general reduction modulop. Although this characterization has proven to be
very useful, one of its main drawbacks is the fact that it is not known to be inherited
by quotients of group actions. Our first result is a similar characterization without
this defect.

Theorem 1. LetR be a localQ-Gorenstein domain essentially of finite type over
a field of characteristic zero. Then the following are equivalent:

(1) R has log-terminal singularities.

Received 14.11.2003. Partially supported by a grant from the National Science Foundation and by
visiting positions at Paris VII and at the Ecole Normale Supérieure.

1



2 HANS SCHOUTENS

(1’) R is F-regular type.
(2) R is ultra-F-regular.

The implication (1’)⇒ (1) is proven in [39, Corollary 4.16] or [9], using Smith’s
work on rational singularities in [38]; the converse implication is proven by Hara in
[8, Theorem 5.2]. We will give a proof in§3.8 for the implications (1’)⇒ (2)⇒ (1).
The notion of ‘ultra-F-regularity’ should be viewed as a non-standard version of the
notion of ‘strong F-regularity’. More precisely, letR be a local domain essentially
of finite type overC (see Remark 1.2 below for arbitrary fields). In [32], we asso-
ciated toR a canonically defined extensionR∞, called thenon-standard hullof R,
which is realized as the ultraproduct of certain local rings in characteristicp, called
approximationsof R (see§2.1 below for exact definitions). One should view an ap-
proximation ofR as a more canonical way of reducingR modulop (see§2.19), and a
non-standard hull ofR, as a convenient way of storing all these reductions into a sin-
gle algebraic object (of characteristic zero). With anultra-FrobeniusonR, we mean
the ring homomorphism into the non-standard hullR∞ given by the rulex 7→ xπ,
whereπ is a non-standard integer obtained as the ultraproduct of various powers of
prime numbers (see§3.2 for precise definitions). We callR ultra-F-regular, if for
each non-zeroc in R, we can find an ultra-Frobeniusx 7→ xπ such that the morphism
R → R∞ : x 7→ cxπ is pure. One should compare this with the Hochster-Huneke
notion ofstrong F-regularityof a domainR of prime characteristicp: for each non-
zeroc in R, there is a powerq of p, such that the morphismR → R : x 7→ cxq is split
(which under these conditions is equivalent with it being pure). IfR is moreoverQ-
Gorenstein then strong F-regularity is equivalent by [24] withweakly F-regularity,
that is to say, with the property that every ideal is tightly closed.

Application 1: Quotients of Log-terminal Singularities. The first application
(see§3.12 for the proof) is the result that log-terminal singularities are preserved un-
der quotients of reductive groups, provided the quotient isQ-Gorenstein. Although
this seems to be a result that ought to have a proof using Kodaira Vanishing (as is the
case for the corresponding statement for rational singularities by [2]), I do not know
of any argument other than the one provided here.

Theorem 2. Let R → S be a local homomorphism ofQ-Gorenstein local do-
mains essentially of finite type over a field of characteristic zero. IfR → S is
cyclically pure (that is to say, ifa = aS ∩ R for all ideals a ⊆ R) and if S has
log-terminal singularities, then so hasR.

In particular, let G be a reductive group acting algebraically on an affineQ-
Gorenstein varietyX. If X has at most log-terminal singularities, then so has the
quotient spaceX/G, provided it isQ-Gorenstein.

The present proof is entirely elementary in caseX is assumed to be smooth in
the last assertion (see Remark 1.1). IfG is moreover finite, then the theorem was
already proven in [19] using canonical covers and Boutot’s result [2]. In this case,
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the condition that the quotient isQ-Gorenstein is automatically satisfied, but this is
not so in the general case. For some similar descent properties using non-standard
methods, see also [34].

Application 2: Vanishing of Maps of Tor. The next result (see Theorem 4.2 for
the proof) was previously only known forS regular, or more generally, forS weakly
CMn-regular ([13, Theorems 4.1 and 4.12]).

Theorem 3. LetR → S be a homomorphism ofC-affine algebras such thatS is
a domain with at most log-terminal singularities (or, more generally, a pure subring
of such a ring). LetA be a regular subring ofR over whichR is module finite.
Then for everyA-moduleM and everyi ≥ 1, the natural morphismTorA

i (M,R) →
TorA

i (M,S) is zero.

Application 3: Vanishing Theorems. Purity of Frobenius was used effectively
in [16] to prove the Cohen-Macaulayness of rings of invariants. Exploiting this fur-
ther, Mehta and Ramanathan deduced Vanishing Theorems for Schubert varieties
from purity properties of Frobenius in [25]. The approach in this paper is a non-
standard analogue of these ideas, especially those from [40]. LetX be a connected,
normal projective variety of characteristic zero. Recall thatSpec S is called anaffine
coneof X, if S is some finitely generated graded algebra such thatX = ProjS (for
each choice of ample invertible sheaf onX, one obtains such a graded ringS; see
§5 below). Thevertexof the affine cone is by definition the closed point onSpec S

determined by the irrelevant maximal ideal ofS (generated by all homogeneous el-
ements of positive degree). We callX globally ultra-F-regular, if some affine cone
of X has an ultra-F-regular vertex. In particular, in view of Theorem 1, if the ver-
tex of an affine cone is a log-terminal singularity, thenX is globally ultra-F-regular.
Since the anti-canonical cone of a smooth Fano variety (or more generally, of a Fano
variety with rational singularities) has this property (see Theorem 7.1 below), ev-
ery smooth Fano variety is globally ultra-F-regular. By Theorem 2, the same also
holds for any GIT (Geometric Invariant Theory) quotient of a smooth Fano variety.
In Corollaries 6.6 and 6.7 we will show the following vanishing of cohomology for
globally ultra-F-regular varieties.

Theorem 4. Let X be a globally ultra-F-regular projective variety and letL be
a numerically effective line bundle onX (this includes the caseL := OX ). For each
i > 0, the cohomology moduleHi(X,L) vanishes. Moreover, ifL is also big, then
Hi(X,L−1) vanishes for eachi < dim X.

Together with our previous remarks, we get the following result, which was orig-
inally conjectured by Smith in [40].

Theorem 5. LetG be a reductive group acting algebraically on a projective Fano
variety X with rational singularities and letY := X//G be a GIT quotient ofX
(with respect to some linearization of the action ofG). If L is a numerically effective
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line bundle onY , then each cohomology moduleHi(Y,L) vanishes fori > 0, and,
if L is moreover big, thenHi(Y,L−1) vanishes fori < dim Y .

Theorem 1 also begs the question what (weakly) F-regular type and ultra-F-
regularity would amount to if we drop theQ-Gorenstein condition. Without this
assumption, one should actually use the notion of strongly F-regular type (which
is only conjecturally equivalent with weakly F-regular type), but even then it is no
longer clear that this is equivalent with ultra-F-regularity (one direction holds by The-
orem 3.5 below). In [9,§4.6], the authors propose Nakayama’s notion ofadmissible
singularities([27]) as a candidate for an equivalent condition to strongly F-regular
type. They point out that an affine cone of a smooth Fano variety has in general only
admissible singularities (although its anti-canonical cone has log-terminal singular-
ities). The fact that any such cone is ultra-F-regular (see Remark 6.3) corroborates
hence their claim.

1.1. Remark on Kodaira Vanishing. Hara’s proof of implication (1)⇒ (1’) in
Theorem 1 relies heavily on Kodaira Vanishing (in fact, on Akizuki-Kodaira-Nakano
Vanishing). Therefore, it is of interest to see which of the results in this paper do not
make use of Kodaira Vanishing. If we letS be regular in Theorem 2, then we do
not need the implication (1)⇒ (1’) and hence no Vanishing Theorem is used (see
Remark 3.13 below). Similarly, our proof of Theorem 4 uses only elementary results
from cohomology theory and hence does not rely on Kodaira Vanishing. Nonethe-
less, in order to prove that smooth Fano varieties are globally ultra-F-regular, and
hence to obtain Theorem 5, we do need Hara’s result and hence Kodaira Vanishing.

1.2. Remark on the base field.To make the exposition more transparent, I have
only dealt in the text with the case that the base field isC. However, the results ex-
tend to arbitrary base fields of characteristic zero by the following two observations.
First, any algebraically closed field of characteristic zero and of cardinality2λ (for
some infinite cardinalλ) is the ultraproduct of (algebraically closed) fields of posi-
tive characteristic by the Lefschetz Principle (see for instance [32, Remark 2.5]) and
this is the only property we used ofC (cf. (1) below). Second, since all properties
admit faithfully flat descent, we can always make a base change to an algebraically
closed field of sufficiently large cardinality whence in particular to an algebraically
closed field realized as the ultraproduct of fields of positive characteristic.

Acknowledgement. I am grateful to Karen Smith for drawing my attention to
the question of Vanishing Theorems for GIT quotients of Fano varieties. Without
her continuous help and encouragement, this paper would not have been possible.
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2. Transfer and Approximations

In this section, I will briefly discuss an alternative construction of the usual ’re-
duction modulop’ construction from algebraic geometry. The advantage is that we
can work just with schemes of finite type over fields, that is to say, there is no need
to work with relative versions. The one drawback is that we need the base field to be
algebraically closed of cardinality2λ for some infinite cardinalλ (under the assump-
tion of the Generalized Continuum Hypothesis, each uncountable cardinal is of the
form 2λ). However, as explained in Remark 1.2, this is not too much of a constraint.
Moreover, in order to simplify the exposition, I will in the sequel only discuss the
case that the base field isC.

For generalities on ultraproducts, including Łos’ Theorem, see [32,§2]. Recall
that an ultraproduct of ringsCp is a certain homomorphic image of the direct product
of theCp. This ultraproduct will be denoted byulimp→∞ Cp, or simply byC∞, and
similarly, the image of a sequence(ap | p) in C∞ will be denoted byulimp→∞ ap,
or simply bya∞. Any choice of sequence of elementsap whose ultraproduct is equal
to a∞ will be called anapproximationof a∞ (note that we are using the term more
loosely than in [32], where we reserved the notion of approximation only forstan-
darda∞). The key ingredient for transfer between zero and positive characteristic is
the following fundamental isomorphism

(1) C ∼= ulim
p→∞

Falg
p ,

whereFalg
p denotes the algebraic closure of thep-element field. I will refer to (1) as

theLefschetz Principlefor algebraically closed fields; see [32, Theorem 2.4] or [33,
Fact 4.2] for proofs.

2.1. Affine Algebras. Let me briefly recall from [32] the construction of an ap-
proximation of a finitely generated (for short, anaffine) C-algebraC. For a fixed
tuple of variablesξ, let A∞ be the ultraproduct of theAp := Falg

p [ξ]. We callA∞
the non-standard hullof A := C[ξ] andAp an approximationof A. By [41], the
canonical homomorphismA → A∞ is faithfully flat (see also [28, Theorem 1.7] or
[35, A.2]). For an arbitrary affineC-algebraC, say of the formA/I, we let

(2) C∞ := A∞/IA∞ = C ⊗A A∞

and call it thenon-standard hullof C. One shows thatC∞ is the ultraproduct of
affine Falg

p -algebrasCp. Any such choice ofCp is called anapproximationof C.
There are two ways to construct these: either one observes thatIA∞ is the ultra-
product of idealsIp in Ap (we callIp anapproximationof I; see [32,§3]) and takes
Cp to beAp/Ip, or alternatively, one takes a model ofC, looks at its reductions
modulop and takes a suitably chosen base change overFalg

p (see Proposition 2.18
and§2.19 below). By [32, 3.4], the non-standard hullC∞ is independent (up to an
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isomorphism ofC-algebras) of the presentation ofC as a homomorphic image of
a polynomial ring. Consequently, ifC ′p are obtained fromC by the above process

starting from a different presentation ofC, thenCp
∼= C ′p (asFalg

p -algebras), for
almost allp. The non-standard hull does depend though on the choice of ultrafilter
and on the choice of the isomorphism (1).

We can similarly define the non-standard hull for a local ringR essentially of
finite type overC (a local affineC-algebra, for short). SupposeR is of the formCp

with C an affineC-algebra andp a prime ideal ofC. It follows from [32, Corollary
4.2] thatpC∞ is prime. We define thenon-standard hullof R to be the localization

R∞ := (C∞)pR∞ .

This is again independent from the choice of presentationR := Cp. As explained
above,pC∞ is an ultraproduct of idealspp in an approximationCp of C. By Łos’
Theorem, almost allpp are prime. We call the localizationRp := (Cp)pp

(for those
p for which it makes sense), anapproximationof R. It follows that the ultraproduct
of theRp is R∞.

In the forthcoming [1], we will drop the finite type condition and show the exis-
tence of approximations and non-standard hulls for arbitrary Noetherian local rings
containingQ.

2.2. Homomorphisms.Let ϕ : C → D be a (local) homomorphism of finite
type between (local) affineC-algebras. This corresponds to a presentation ofD as
C[ξ]/I (or a localization of the latter), for some finite tuple of variablesξ. Let Cp

andDp be approximations ofC andD respectively, where we use the presentation
D := C[ξ]/I to construct theDp. This shows that almost everyDp is aCp-algebra.
The corresponding ring homomorphismϕp : Cp → Dp is called anapproximation
of ϕ. The ultraproduct of theϕp is a homomorphismϕ∞ : C∞ → D∞, called the
non-standard hullof ϕ, whereC∞ andD∞ are the non-standard hulls ofC andD

respectively. We have a commutative diagram

(3)

?

-

?
-

DC

D∞.C∞
ϕ∞

ϕ

Note that if we choose a polynomial ringA of which bothC andD are homomorphic
images, thenC∞ ∼= C ⊗A A∞ andD∞ ∼= D ⊗A A∞ by (2), andϕ∞ is just the
base change ofϕ overA∞.
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2.3. Affine Schemes.If X is an affine scheme of finite type overC, say of the
formSpec C with C an affineC-algebra, then we callXp := Spec Cp anapproxima-
tion of X, for any choice of approximationCp of C. One has to be careful however:
it is not true that the ultraproductulimp→∞Xp of theXp is equal toSpec C∞. In
fact, ulimp→∞Xp is the subset ofSpec C∞ consisting of all prime ideals of the
form (I∞ : a∞) for I∞ a finitely generated ideal inC∞ (in fact, we may takeI∞ to
be generated by at mostdim X elements) anda∞ an element ofC∞ (and hence in
general is no longer a scheme). Instead, we callX∞ := Spec(C∞) thenon-standard
hull of X. We have a faithfully flat canonical morphismX∞ → X. SinceX∞ is no
longer a Noetherian scheme, it is more prudent to reason on its approximationsXp

instead, and that is the course we will take in this paper.
2.4. Affine Morphisms. Let f : Y → X be a morphism of finite type between

the affine schemesY := Spec D andX := Spec C of finite type overC. This
induces aC-algebra homomorphismϕ : C → D. Let ϕp : Cp → Dp be an approx-
imation of ϕ (as in §2.2) and letfp : Y p → Xp be the corresponding morphism
between the approximationsY p := Spec Dp andXp := Spec Cp. We callfp an
approximationof f . It follows from the corresponding transfer for affine algebras
(see [32,§4]) that if f is an (open, closed, locally closed) immersion (respectively,
injective, surjective, an isomorphism, flat, faithfully flat), then so are almost allfp.
We leave the details to the reader.

2.5. Modules. LetF be a coherentOX -module. Any such module is of the form
M̃ with M a finitely generatedC-module (see [10, II.5] for the notation). WriteM
as the cokernel of a matrixΓ overC, that is to say, given by an exact sequence

Ca Γ−−→Cb → M → 0.

Let Γp be an approximation ofΓ (that is to say, theΓp are(a × b)-matrices over
Cp with ultraproduct equal toΓ) and letMp be the cokernel ofΓp. We callMp an
approximationof M and we call their ultraproductM∞ thenon-standard hullof M .
Again one shows thatM∞ does not depend on the choice of matrixΓ; in fact, we
have an isomorphism

(4) M∞ ∼= M ⊗C C∞.

TheOXp
-moduleFp := M̃p associated toMp is called anapproximationof F .

2.6. Schemes.Let X be a scheme of finite type overC. Let Ui be a finite cov-
ering ofX by affine open subsets. For eachi, let Uip be an approximation ofUi.
I claim that for almost allp, theUip glue together into a schemeXp of finite type
overFalg

p , and, for any other choice of open affine covering{U ′i} of X, if the result-
ing glued schemes are denotedX ′

p, thenXp
∼= X ′

p, for almost allp. This justifies
calling theXp anapproximationof X. The proof of the claim is not hard, but is a
little tedious, in that we have to check that the whole construction of glueing schemes
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is constructive and hence passes by Łos’ Theorem through ultraproducts. Here is a
rough sketch: for each pairi < j, we have an isomorphism

ϕij : OUi |Ui∩Uj

∼= OUj

∣∣
Ui∩Uj

.

Taking approximationsϕijp of these maps as described in§2.4, we get from Łos’
Theorem thatϕijp defines an isomorphism

OUip

∣∣
Uip∩Ujp

∼= OUjp

∣∣
Uip∩Ujp

for almost allp. Hence theUip glue together to get a schemeXp. If we start from a
different open affine covering{U ′i}, then to see that the resulting schemesX ′

p agree
for almost allp, reason on a common refinement of these two coverings.

Similarly, if Ci is the affine coordinate ring ofUi, then theSpec(Ci∞) glue to-
gether and the resulting schemeX∞ will be called thenon-standard hullof X. In
particular, the canonical morphismX∞ → X is faithfully flat (since it is so locally).

2.7. Morphisms. Let f : Y → X be a morphism of finite type between schemes
of finite type overC. Let Xp andY p be approximations ofX andY respectively.
Choose finite affine open coveringsU andV of respectivelyX andY , such thatV
is a refinement off−1(U). In other words, for eachV ∈ V, we can findU ∈ U,
such thatf(V ) ⊆ U . Let us writef |V for the restrictionV → U induced byf .
Choose approximationsUp, Vp and(f |V )p of U, V and the affine morphismsf |V
respectively (use§2.4 for the latter). It follows that for any two opensV, V ′ ∈ V,
the morphisms(f |V )p and(f |V ′)p agree on the intersectionV p ∩ V ′

p, for almost
all p, and therefore determine a morphismfp : Y p → Xp, which we will call an
approximationof f . As for affine morphisms, most algebraic properties descend to
the approximations in the sense thatf has a certain property (such as being a closed
immersion or flat) if, and only if, almost allfp have.

2.8. Coherent Sheaves.LetF be a coherentOX -module. For eachi, letGip be
an approximation of the coherentOUi

-moduleF|Ui
as explained in§2.5 and§2.6

and with the notations therein. Again one easily checks that theseGip glue together
to give rise to a coherentOXp

-moduleFp, which we therefore call anapproximation
of F , and, moreover, the construction does not depend on the choice of open affine
covering.

If F is a coherent sheaf of ideals onX with approximationFp, then almost all
Fp are sheaves of ideals, and the closed subscheme they determine onXp is an
approximation of the closed subscheme determined byF . More generally, many
local properties (such as being invertible, locally free) hold for the sheafF if, and
only if, they hold for almost all of its approximationsFp, since they can be checked
locally and hence reduce to a similar transfer property for affine algebras discussed
at large in [32].
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2.9. Graded Rings and Modules.Recall that a ringS is called (Z-)gradedif it
can be written as a direct sum⊕j∈Z [S]j , where each[S]j is an additive subgroup
of S (called thej-th homogeneous pieceof S), with the property that[S]i · [S]j ⊆
[S]i+j , for all i, j ∈ Z. In particular, each[S]i is an[S]0-module. If all[S]j are zero
for j < 0, we callS positively graded. An S-moduleM is calledgradedif it admits
a decomposition⊕j∈Z [M ]j , where each[M ]j is an additive subgroup ofM (called
thej-th homogeneous pieceof M ), with the property that[S]i · [M ]j ⊆ [M ]i+j , for
all i, j ∈ Z. We will write M(m) for the m-th twist of M , that is to say, for the
gradedS-module for which[M(m)]j := [M ]m+j .

Let S be a graded affineC-algebra. LetSp be an approximation ofS andS∞
its non-standard hull. Our goal is to show that almost allSp are graded. Letxi be
homogeneous algebra generators ofS overC, say of degreedi. PutA := C[ξ] and
let ϕ : A → S be given byξi 7→ xi. We makeA into a graded ring be givingξi

weightdi, that is to say,[A]j is the vector space overC generated by all monomi-
als ξe1

1 · · · ξen
n such thatd1e1 + · · · + dnen = j. Hence the kernelI of A → S

is generated by homogeneous polynomials in this new grading. Give eachAp the
same grading asA (using the weightsdi) and letIp be an approximation ofI. It fol-
lows from Łos’ Theorem that almost allIp are generated by homogeneous elements.
SinceSp

∼= Ap/Ip for almost allp, we proved that almost all approximations are
graded. Moreover, ifS is positively graded, then so are almost allSp.

However, the non-standard hullS∞ is no longer a graded ring. Nonetheless, for
each non-standard integerj (that is to say, any elementj := ulimp→∞ jp in the
ultrapowerZ∞ of Z), we can define thej-th homogeneous piece[S∞]j of S∞ as
the ultraproduct of the[Sp]jp

. It follows that each[S∞]j is a direct summand of

S∞ (and in fact,Sgr
∞ := ⊕j∈Z∞ [S∞]j is a (proper) direct summand ofS∞), and

[S∞]i · [S∞]j ⊆ [S∞]i+j , for all i, j ∈ Z∞ (so thatSgr
∞ is aZ∞-graded ring). If

j is a standard integer (that is to say,j ∈ Z, whencejp = j for almost allp), the
embeddingS ⊆ S∞ induces an embedding

(5) [S]j ⊆ [S∞]j .

Note that this is not necessarily an isomorphism. For instance, ifS := C[ξ, ζ, 1/ξ]
with ξ andζ having weight1 (and1/ξ weight−1), then [S]0 ∼= C[ζ/ξ] whereas
[S∞]0 contains for instance the ultraproduct of theζp/ξp.

Let M be a finitely generated gradedS-module. LetMp be an approximation of
M andM∞ its non-standard hull. By the same argument as above, almost allMp

are gradedSp-modules. We define similarly thej-th homogeneous piece[M∞]j of
M∞ as the ultraproduct of the[Mp]jp

. It follows that[S∞]i · [M∞]j ⊆ [M∞]i+j ,
for eachi, j ∈ Z∞, and[M ]j ⊆ [M∞]j for each standardj.

If M → N is a degree preserving morphism of finitely generated gradedS-
modules (so that[M ]j maps inside[N ]j , for all j), then the same is true for almost
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all approximationsMp → Np. Hence the base changeM∞ → N∞ sends[M∞]j
inside[N∞]j , for eachj ∈ Z∞.

2.10. Projective Schemes.Suppose thatX := Proj S is a projective scheme,
with S an affine, positively gradedC-algebra. LetSp be an approximation ofS.
ThenSp is an affine, positively gradedFalg

p -algebra by§2.9, andXp
∼= ProjSp, for

almost allp. Indeed, this is clear forS := C[ξ0, . . . , ξn] (so thatX = Pn
C), and the

general case follows from this since any projective scheme of finite type overC is a
closed subscheme of somePn

C.
2.11. Polarizations.Let X be a projective variety andP an ample line bundle

onX (we will call P apolarizationand study this situation in more detail in§5). Let
Xp andPp be approximations ofX andP respectively. I claim that almost allPp

are ample line bundles. That almost all are invertible is clear from the discussion in
§2.8. Suppose first thatP is very ample. Hence there is an embeddingf : X → PN

C
such thatP ∼= f∗O(1). From the discussion in§2.7 and§2.9, the approximation
fp : Xp → PN

Falg
p

is an embedding andPp
∼= f∗pO(1) for almost allp, showing that

almost allPp are very ample. IfP is just ample, thenPm is very ample for some
m > 0 by [10, II. Theorem 7.6]. Hence by our previous argument, almost allPm

p

are very ample. By another application of [10, II. Theorem 7.6], almost allPp are
ample.

Presumably the converse also holds, but this requires a finer study of the depen-
dence of the exponentm on the ample sheaf: it should only depend on the degree
complexity of the sheaf (that is to say, on the maximum of the degrees of the poly-
nomials needed in describing the sheaf).

2.12. Complexes.Let C• be an arbitrary bounded complex in which each term
Cm is a finitely generated module over an affineC-algebra. Using§2.2 and§2.3, we
can choose an approximation for each term and each homomorphism in this com-
plex. Let(C•)p denote the corresponding object. By Łos’ Theorem, almost all(C•)p

are complexes. This justifies calling(C•)p anapproximationof C•. Let A be a poly-
nomial ring overC such that eachCm is anA-module. It follows from (4) that we
have an isomorphism of complexes

(6) C• ⊗A A∞ ∼= ulim
p→∞

(C•)p.

Since taking cohomology consists of taking kernels, images and quotients, each of
which commutes with ultraproducts, taking cohomology also commutes with ultra-
products. Applying this to (6), we get for eachi, an isomorphism

(7) Hi(C•)⊗A A∞ ∼= Hi(C• ⊗A A∞) ∼= ulim
p→∞

Hi((C•)p)

where we used thatA → A∞ is faithfully flat for the first isomorphism.
Our next goal is to show that an approximation of the cohomology of a coherent

OX -moduleF is obtained by taking the cohomology of its approximations. In order
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to prove this, we usĕCech cohomology to calculate sheaf cohomology (this will be
studied further in§5.3.1 below).

2.13. C̆ech Cohomology.Recall that theC̆ech complexC•(U;F) of F associ-
ated to an open affine coveringU := {U1, . . . , Us} of X is by definition the complex
in which them-th term form ≥ 1 is

Cm(U;F) :=
⊕

i

H0(Ui,F)

wherei runs over allm-tuples of indices1 ≤ i1 < i2 < · · · < im ≤ s and where
Ui := Ui1 ∩ Ui2 ∩ · · · ∩ Uis

(see [10, III.4] for more details). Note thatC•(U;F) is
a bounded complex of affineC-algebras.

Lemma 2.14. Let X be a scheme of finite type overC, let U be a finite affine
open covering ofX and letF be a coherentOX -module. IfXp, Up andFp are
approximations ofX, U andF respectively, then the complexesC•(Up;Fp) are an
approximation of the complexC•(U;F).

Proof. Since an approximation ofU is obtained by choosing an approximation
for each affine open in it, we get from Łos’ Theorem thatUp is an open covering of
Xp for almost allp. Moreover, ifU is an affine open with approximationUp, then
H0(Up,Fp) is an approximation ofH0(U,F). The assertion readily follows from
these observations. �

If X is separated and of finite type overC and if F is a coherentOX -module,
then the cohomology modulesHi(X,F) can be calculated as the cohomology of
the C̆ech complexC•(U;F), for any choice of finite open affine coveringU ([10,
Theorem 4.5]). More precisely,

(8) Hi(X,F) ∼= Hi+1(C•(U;F))

(some authors start numbering theC̆ech complex from zero, so that there is no shift
in the superscripts needed). IfU consists of affine opensSpec Ci, we can choose a
polynomial ringA overC so that everyCi is a homomorphic image ofA. It follows
that each module inC•(U;F) is a finitely generatedA-module, and hence so is each
Hi(X,F).

If X is moreover projective, then eachHi(X,F) is a finite dimensional vector
space overC and its dimension will be denoted byhi(X,F).

Theorem 2.15. LetX be a separated scheme of finite type overC and letF be a
coherentOX -module. LetXp andFp be approximations ofX andF respectively.
For an appropriate choice of a polynomial ringA overC and for eachi, we have an
isomorphism

(9) Hi(X,F)⊗A A∞ ∼= ulim
p→∞

Hi(Xp,Fp).

In particular, if X is moreover projective, thenhi(X,F) is equal tohi(Xp,Fp)
for almost allp.
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Proof. By Lemma 2.14, theC•(Up;Fp) are an approximation ofC•(U;F). The
first assertion now follows from (7) and (8). The last assertion follows from the first,
by taking lengths of both sides and using [29, Proposition 1.5]. �

Therefore, ifHi(X,F) vanishes for somei, then so do almost allHi(Xp,Fp).
More precisely, for a fixed choice of approximation, letΣi,F be the collection of
prime numbersp for whichHi(Xp,Fp) vanishes. By the above result,Σi,F belongs
to the ultrafilter if, and only if,Hi(X,F) = 0. However, if we have an infinite
collection of coherent sheavesFn with zeroi-th cohomology, the intersection of all
Σi,Fn

will in general no longer belong to the ultrafilter, and therefore can very well
be empty. The next result shows that by imposing some further algebraic relations
among theFn, the intersection remains in the ultrafilter.

Corollary 2.16. Let X be a projective scheme of finite type overC. LetL be an
invertibleOX -module and letE be a locally freeOX -module. LetXp,Lp andEp be
approximations ofX, L andE respectively. If for somei and somen0, we have that
Hi(X, E ⊗ Ln) = 0 for all n ≥ n0, then for almost allp, we have, for alln ≥ n0,
thatHi(Xp, Ep ⊗ Ln

p ) = 0.

Proof. LetA denote the symmetric algebra⊕n≥0Ln of L and letF := A⊗ E ⊗
Ln0 . Note thatF = ⊕n≥n0E ⊗Ln, so that our assumption becomesHi(X,F) = 0.
We cannot apply Theorem 2.15 directly, asF is not a coherentOX -module. Let
Y := SpecA be the scheme overX associated toA (see [10, II. Ex. 5.17]). Since
A is a finitely generated sheaf ofOX -algebras, the morphismf : Y → X is of finite
type. Moreover,f is affine (that is to say,f−1(U) ∼= SpecA(U) for every affine
openU of X) andA ∼= f∗OY . Let G := f∗(E ⊗ Ln0), so thatG is a coherent
OY -module. We have isomorphisms

f∗G ∼= f∗OY ⊗ E ⊗ Ln0 ∼= A⊗ E ⊗ Ln0 = F ,

where the first isomorphism follows from the projection formula (see [10, II. Ex.
5.1]). Therefore,

(10) Hi(Y,G) ∼= Hi(X, f∗G) = Hi(X,F) = 0

where the first isomorphism holds by [10, III. Ex. 4.1].
Let fp : Y p → Xp be an approximation off (as described in§2.7) and letFp

andGp be approximations ofF andG respectively. By Łos’ Theorem, we have
isomorphisms
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Gp
∼= f∗p(Ep ⊗ Ln0

p )(11)

(fp)∗Gp
∼= Fp(12)

(fp)∗OYp
∼=

⊕
n≥0

Ln
p(13)

Fp
∼=

⊕
n≥n0

Ep ⊗ Ln
p(14)

for almost allp. Applying Theorem 2.15 to (10), we get that almost allHi(Y p,Gp)
vanish. Hence, by the analogue of (10) in characteristicp, almost allHi(Xp,Fp)
vanish. In view of (14), this proves the assertion. �

Let us conclude this section with showing that this non-standard formalism just
introduced is closely related to the usual reduction modulop (as for instance used in
the definition of tight closure in characteristic zero in [14]).

2.17. Models.Let K be a field andR a K-affine algebra. With amodel ofR
relative toK (calleddescent datain [14]) we mean a pair(Z,RZ) consisting of a
subringZ of K which is finitely generated overZ and aZ-algebraRZ essentially
of finite type, such thatR ∼= RZ ⊗Z K. Oftentimes, we will think ofRZ as being
the model. Clearly, the collection of modelsRZ of R forms a direct system whose
union isR. We say thatR is F-rational type(respectively,weakly F-regular type, or
strongly F-regular type), if there exists a model(Z,RZ), such thatRZ/pRZ is F-
rational (respectively, weakly F-regular or strongly F-regular) for all maximal ideals
p of Z (note thatRZ/pRZ has positive characteristic). See [14] or [17, App. 1] for
more details.

The following was proved in [34, Corollary 5.9] for local rings; the general case
is proven by the same argument.

Proposition 2.18. LetR be aC-affine domain. For each finite subset ofR, we can
find a model(Z,RZ) of R containing this subset, and, for almost allp, a maximal
ideal pp of Z and a separable extensionZ/pp ⊆ Falg

p , such that the collection of
base changesRZ ⊗Z Falg

p gives an approximation ofR. Moreover, for anyr ∈ RZ ,
the collection of images ofr under the various homomorphismsRZ → RZ ⊗Z Falg

p

gives an approximation ofr.

2.19. Approximations as Universal Reductions.Suppose(RZ′ , Z
′) is another

model ofR satisfying the assertion of the previous proposition (so that we have ho-
momorphismsZ ′ → Falg

p ). Since any two approximations agree almost everywhere
as mentioned in§2.1, we get thatRZ ⊗Z Falg

p
∼= RZ′ ⊗Z′ Falg

p for almost allp.
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3. Log-terminal Singularities

In [9], the authors show that aQ-GorensteinC-affine algebra has log-terminal sin-
gularities if it is weakly F-regular type (note that weakly F-regular type and strongly
F-regular type are equivalent under theQ-Gorenstein condition by [24]), whereas
the converse is proved in [8]. In this section we will define a third condition in
terms of ultraproducts of Frobenii and prove its equivalence with the other ones.
The advantage of the latter property is that it is easily seen to descend under pure
homomorphisms (see Proposition 3.11). We recall some terminology first.

3.1. Q-Gorenstein Singularities. A normal schemeX is calledQ-Gorensteinif
some positive multiple of its canonical divisorKX is Cartier; the least such positive
multiple is called theindexof X. If f : X → X is a resolution of singularities ofX
andEi are the irreducible components of the exceptional locus, then the canonical
divisorKX is numerically equivalent tof∗(KX)+

∑
aiEi (asQ-divisors), for some

uniqueai ∈ Q (ai is called thediscrepancyof X alongEi; see [20, Definition 2.22]).
If all ai > −1, we callX log-terminal(in case we only have a weak inequality, we
call X log-canonical).

3.2. Ultra-Frobenii. Any ring R of characteristicp is endowed with theFrobe-
nius endomorphismϕp : x 7→ xp, and its powersϕq := ϕe

p, whereq := pe. We
can therefore viewR as a module over itself via the homomorphismϕq, and to em-
phasize this, we will use the notationϕq∗R (a notation borrowed from algebraic
geometry; other authors use notations such asRF , Rϕq or eR). Similarly, for an
arbitraryR-moduleM , we will write ϕq∗M for theR-module structure onM via
ϕq (that is to say,x ·m = xqm). It follows thatϕq∗M

∼= M ⊗R ϕq∗R.
For each prime numberp, choose a positive integerep and letπ be the non-

standard integer given as the ultraproduct of the powerspep . To each suchπ, we
associate anultra-Frobeniusin the following way. For eachC-affine domainR with
non-standard hullR∞, consider the homomorphism

R → R∞ : x 7→ xπ := ulim
p→∞

(xp)pep

wherexp is an approximation ofx (one easily checks that this does not depend on
the choice of approximation). We will denote this ultra-Frobenius byϕπ, or simply
ϕ; whenever we want to emphasize the ringR on which it operates, we writeϕπ;R or
simply ϕR. This assignment is functorial, in the sense that for any homomorphism
f : R → S of finite type, we have a commutative diagram
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(15)

?

-

?
-

SR

S∞.R∞

ϕR ϕS

f∞

f

Note thatϕ is the restriction toR of the ultraproduct of theϕpep . In particular, if
all ep = 1, then the corresponding ultra-Frobeniusϕ∞ was called thenon-standard
Frobeniusin [32].

Each ultra-Frobenius induces anR-module structure onR∞, which we will de-
note byϕ∗R∞ (so thatx · r∞ = ϕ(x)r∞). It follows that ϕ∗R∞ is the ultra-
product of the(ϕpep )∗Rp, with Rp an approximation ofR. If M is a finitely
generatedR-module with non-standard hullM∞, then theR-module structure on
M∞ ∼= M ⊗R R∞ via the action ofϕ on the second factor, will be denotedϕ∗M .
It follows that ϕ∗M is isomorphic toM ⊗R ϕ∗R∞ and hence isomorphic to the
ultraproduct of the(ϕpep )∗Mp.

Definition 3.3. We say that aC-affine domainR is ultra-F-regular, if for each
non-zeroc ∈ R, we can find an ultra-Frobeniusϕ such that theR-module morphism

cϕR : R → ϕ∗R∞ : x 7→ cϕ(x)

is pure.
For M an R-module, we will writecϕM : M → M ⊗R ϕ∗R∞ for the base

change ofcϕR. Since purity is preserved under localization, one easily verifies that
the localization of an ultra-F-regular ring is again ultra-F-regular.

Remark 3.4. If R is normal, so that purity and cyclical purity are the same by [11,
Theorem 2.6], then purity ofcϕR is equivalent to the condition that for everyy ∈ R

and every idealI in R, if cϕ(y) ∈ ϕ(I)R∞, theny ∈ I. From this and the fact that
any ultra-Frobenius on a regular local ring is flat (same proof as for [32, Proposition
6.1]), one easily checks that a regular (local)C-affine domain is ultra-F-regular.

In [34], we called a localC-affine domain with approximationRp weakly gener-
ically F-regular (respectively,generically F-rational), if each idealI in R (respec-
tively, some idealI generated by a system of parameters), is equal to its generic tight
closure. Recall from [32] that an elementx ∈ R lies in thegeneric tight closureof
an idealI, if xp lies in the tight closure ofIp, for almostp, whereIp andxp are
approximations ofI andx respectively. We proved in [34, Theorem C] that being
generically F-rational is equivalent with having rational singularities. Let us callR

generically F-regularif every localization ofR is weakly generically F-regular.
Theorem 3.5. LetR be aC-affine domain.

(1) If R is strongly F-regular type, then it is ultra-F-regular.
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(2) If R is ultra-F-regular, then it is generically F-regular.

Proof. To prove (1), letc be a non-zero element ofR. Let (Z,RZ) be a model of
R containingc. By Proposition 2.18, there exists for almost allp, a maximal ideal
pp of R and a separable extensionZ/pp ⊆ Falg

p , such thatRp := RZ ⊗Z Falg
p is an

approximation ofR and such that for any elementr ∈ RZ , its image inRp under
the base changeγp : RZ → Rp is an approximation ofr. In particular,c is the
ultraproduct of theγp(c). By definition, we may choose the model in such way that
almost allSp := RZ/ppRZ are strongly F-regular. In particular, we can find powers
q := pep , such that the morphism

Sp → ϕq∗(Sp) : x 7→ γp(c)xq

is pure. By base change, theRp-module morphism

Rp → ϕq∗(Sp)⊗Rp : x 7→ γp(c)xq ⊗ 1

is also pure. SinceZ/pp ⊆ Falg
p is separable, we get thatϕq∗(Sp) ⊗ Rp

∼= ϕq∗Rp,
showing that theRp-module morphism

(16) Rp → ϕq∗Rp : x 7→ γp(c)xq

is pure. Letϕ be the ultra-Frobenius given as the (restriction toR of the) ultra-
product of theϕq and letg∞ be the ultraproduct of the morphisms given in (16). It
follows thatg∞(x∞) = cϕ(x∞), so that the restriction ofg∞ to R is preciselycϕR.
Moreover, from the purity of (16), it follows, using Łos’ Theorem, that every finitely
generated idealJ of R∞ is equal to the contraction of its extension underg∞. Since
R → R∞ is faithfully flat, whence cyclically pure, it follows that the restriction of
g∞ to R, that is to say,cϕR, is cyclically pure. SinceR is in particular normal,cϕR

is pure by [11, Theorem 2.6], showing thatR is ultra-F-regular.
Assume next thatR is ultra-F-regular. Without loss of generality, we may assume

thatR is moreover local. LetI be an ideal inR and letx be an element in the generic
tight closure ofI. We need to show thatx ∈ I. Let xp andIp be approximations
of x andI respectively. By [32, Proposition 8.3], we can choosec ∈ R such that
almost everycp is a test element forRp, whereRp andcp are approximations ofR
andc respectively. Letϕ be an ultra-Frobenius such that theR-module morphism
cϕR is pure. In particular this implies for everyy ∈ R that

(17) if c ϕ(y) ∈ ϕ(I)R∞, theny ∈ I.

Supposeϕ is the ultraproduct of theϕep
p . Therefore, (17) translated in terms of an

approximationyp of an elementy ∈ R, becomes the statement

(18) if cp ϕep
p (yp) ∈ ϕep

p (Ip)Rp, thenyp ∈ Ip,

for almost allp.
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By assumption, almost everyxp lies in the tight closure ofIp. Sincecp is a test
element, this means that

cp ϕN
p (xp) ∈ ϕN

p (Ip)Rp,

for all N . With N := ep, we get from (18) thatxp ∈ Ip. Taking ultraproducts shows
thatx lies in IR∞, whence inI, by the faithful flatness ofR → R∞. �

Remark 3.6. Note that ifR is ultra-F-regular with approximationRp, then it is
not necessary the case that almost allRp are strongly F-regular. Namely, the setΣy,I

of prime numbersp for which (18) holds, depends a priori ony andI, and therefore,
their intersection over all possibley andI might very well be empty.

The prime characteristic analogue of the next result was first observed in [42]; we
follow the argument given in [39, Theorem 4.15].

Proposition 3.7. LetR ⊆ S be a finite extension of localC-affine domains,́etale
in codimension one. Letc be a non-zero element ofR andϕ an ultra-Frobenius. If
cϕR : R → ϕ∗R∞ is pure, then so iscϕS : S → ϕ∗S∞.

In particular, if R is ultra-F-regular, then so isS.

Proof. Let R ⊆ S be an arbitrary finite extension ofd-dimensional localC-
affine domains and fix a non-zero elementc and an ultra-Frobeniusϕ. Let n be the
maximal ideal ofS andωS its canonical module. I claim that ifR ⊆ S is étale,
thenS ⊗R ϕ∗R∞ ∼= ϕ∗S∞. Assuming the claim, letR ⊆ S now only beétale in
codimension one. It follows from the claim that the supports of the kernel and the
cokernel of the base changeS ⊗R ϕ∗R∞ → ϕ∗S∞ have codimension at least two.
Hence the same is true for the base change

ωS ⊗S S ⊗R ϕ∗R∞ → ωS ⊗S ϕ∗S∞.

Applying the top local cohomology functorHd
n , we get, in view of Grothendieck

Vanishing and the long exact sequence of local cohomology, an isomorphism

(19) Hd
n(ωS ⊗R ϕ∗R∞) ∼= Hd

n(ωS ⊗S ϕ∗S∞).

By Grothendieck duality,Hd
n(ωS) is the injective hullE of the residue field ofS.

Taking the base change ofcϕR and cϕS over ωS , and then taking the top local
cohomology, yields the following commutative diagram

E = Hd
n(ωS) −−−−→ E ⊗R ϕ∗R∞ −−−−→ Hd

n(ωS ⊗R ϕ∗R∞)∥∥∥ y y∼=
E = Hd

n(ωS) −−−−→ E ⊗S ϕ∗S∞ −−−−→ Hd
n(ωS ⊗S ϕ∗S∞)

where the last vertical arrow in this diagram is the isomorphism (19). Since by as-
sumption,cϕR : R → ϕ∗R∞ is pure, so is the base changeωS → ωS ⊗R ϕ∗R∞.
Since purity is preserved after taking cohomology, the top composite arrow is in-
jective, and hence so is the lower composite arrow. In particular, its first factor
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E → E ⊗S ϕ∗S∞ is injective. Note that this morphism is still given as multiplica-
tion byc, and hence is equal to the base changecϕE of cϕS . By [13, Lemma 2.1(e)],
the injectivity of cϕE = cϕS ⊗ E then implies thatcϕS is pure, as we set out to
prove.

To prove the claim, observe that ifR → S is étale with approximationRp → Sp,
then almost all of these aréetale. Indeed, by [26, Corollary 3.16], we can writeS

asR[ξ]/I, with ξ := (ξ1, . . . , ξn) andI := (f1, . . . , fn)R[ξ], such that the Jacobian
J(f1, . . . , fn) is a unit inR, and by Łos’ Theorem, this property is preserved for al-
most all approximations. In general, ifC → D is anétale extension of characteristic
p domains, then we have an isomorphismϕq∗C ⊗C D ∼= ϕq∗D (see for instance
[12, p. 50] or the proof of [39, Theorem 4.15]). Applied to the current situation, we
get thatSp⊗Rp

ϕq∗Rp
∼= ϕq∗Sp, for q any power ofp ([12, p. 50]). Therefore, after

taking ultraproducts, we obtain the required isomorphismS ⊗R ϕ∗R∞ ∼= ϕ∗S∞
(note thatS∞ ∼= R∞ ⊗R S sinceR → S is finite).

To prove the last assertion, we have to show that we can find for each non-zero
c ∈ S an ultra-Frobeniusϕ such thatcϕS is pure. However, if we can do this for
some non-zero multiple ofc, then we can also do this forc, and hence, sinceS is
finite overR, we may assume without loss of generality thatc ∈ R. SinceR is
ultra-F-regular, we can find therefore an ultra-Frobeniusϕ such thatcϕR is pure,
and hence by the first assertion, so is thencϕS , proving thatS is ultra-F-regular. �

3.8. Proof of Theorem 1.The equivalence of (1) and (1’) is proven by Hara in
[8, Theorem 5.2]. Theorem 3.5 proves (1’)⇒ (2). Hence remains to prove (2)⇒ (1).

To this end, assumeR is ultra-F-regular. Recall the construction of the canonical
cover ofR due to Kawamata. Letr be the index ofR, that is to say, the leastr such
thatOX(rKX) ∼= OX , whereX := Spec R andKX the canonical divisor ofX.
This isomorphism induces anR-algebra structure on

R̃ := H0(X,OX ⊕OX(KX)⊕ · · · ⊕ OX((r − 1)KX)),

which is called thecanonical coverof R; see [19]. SinceR → R̃ is étale in codi-
mension one (see for instance [39, 4.12]), we get from Proposition 3.7 thatR̃ is ultra-
F-regular. HencẽR is weakly generically F-regular, by Theorem 3.5. In particular,
R̃ is generically F-rational, whence has rational singularities, by [37, Theorem 6.2].
By [19, Theorem 1.7], this in turn implies thatR has log-terminal singularities. �

Remark 3.9. Note that without relying on Hara’s result (which uses Kodaira
Vanishing), we proved the implications (1’)⇒ (2) ⇒ (1), recovering the result of
Smith in [38, 39].

Remark 3.10. There are at least eight more conditions which are expected to be
equivalent with the ones in Theorem 1 for a localQ-GorensteinC-affine domainR,
namely

(3) R is weakly generically F-regular;
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(3’) R is generically F-regular;
(4) R is weakly F-regular (that is to say, every ideal is equal to its tight closure

in the sense of [14]);
(4’) R is F-regular (that is to say, every localization ofR is weakly F-regular);
(5) R → B(R) is cyclically pure (we will say thatR isB-regular; see§4 below

for the definition ofB(R));
(5’) S → B(S) is cyclically pure for every localizationS of R;
(6) R is weakly difference regular (that is to say, every ideal is equal to its non-

standard tight closure in the sense of [32]; see [36,§3.10]);
(6’) R is difference regular (that is to say, every localization ofR is weakly

difference regular);

The implications (6)⇒ (3)⇒ (4) and (3)⇒ (5) follow respectively from the facts
that generic tight closure is contained in non-standard tight closure [32, Theorem
10.4], that classical tight closure is contained in generic tight closure [32, Theorem
8.4], and thatB-closure is contained in generic tight closure [34, Corollary 4.5].
We have similar implications among the accented conditions, and, of course, the
accented conditions trivially imply their weak counterparts. By [34, Theorem 5.2]
conditions (5) and (5’) are equivalent. Finally, Theorem 3.5 proves that (2)⇒ (3’).

Conjecturally, weakly F-regular is the same as weakly F-regular type, so that
therefore all (weak) conditions (1)–(4) would be equivalent for localQ-Gorenstein
C-affine domains. If we conjecture moreover thatB-closure is the same as generic
tight closure (as plus closure is expected to be the same as tight closure), (1)–(5)
would be equivalent. Without these assumptions, it is not hard to show that ifR is
B-regular, then any ultra-Frobenius is pure. The fact that we allow in the definition
of ultra-F-regularity any ultra-Frobenius, and not just powers of the non-standard
Frobenius, causes an obstruction in proving that (2)⇒ (6).

The importance of this new characterization of log-terminal singularities in Theo-
rem 1 is the fact that unlike the first two properties, ultra-F-regularity is easily proved
to descend under (cyclically) pure homomorphisms.

Proposition 3.11. Let R → S be a cyclically pure homomorphism betweenC-
affine algebras. IfS is ultra-F-regular, then so isR.

Proof. SinceS is in particular normal, so isR (see for instance [37, Theorem
4.7]). Therefore, the embeddingR → S is pure, by [11, Theorem 2.6]. Letc be a
non-zero element ofR. By assumption, we can find an ultra-Frobeniusϕ such that
theS-module morphism

cϕS : S → ϕ∗S∞ : x 7→ cϕ(x)

is pure, and whence so is its composition withR → S. However, this composite
morphism factors ascϕR followed by the inclusionϕ∗R∞ ⊆ ϕ∗S∞. Therefore, the
first factor,cϕR, is already pure, showing thatR is ultra-F-regular. �
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Remark 3.12. Proposition 3.11 together with Theorem 1 and Remark 1.2 there-
fore yield the first assertion of Theorem 2. The last assertion is then a direct con-
sequence of this (after localization), since the hypotheses imply that the inclusion
AG ⊆ A is cyclically pure (in fact even split), whereA is the affine coordinate ring
of X andAG the subring ofG-invariant elements (so thatX/G = Spec AG).

Remark 3.13. Under the stronger assumption thatS is regular in Theorem 2
rather than just having log-terminal singularities, we can still conclude thatR has
log-terminal singularities, without having to rely on the deep result by Hara. Namely,
sinceS is regular, it is ultra-F-regular (Remark 3.4), whence so isR by Proposi-
tion 3.11, and thereforeR has log-terminal singularities by (2)⇒ (1) in Theorem 1.

3.14. Log-canonical singularities.The following is yet unclear. If the non-
standard Frobenius ϕ∞ : R → R∞ is pure, for R a Q-Gorenstein local C-affine
domain, does R have log-canonical singularities? Is the converse also true? What
if we only require that some ultra-Frobenius is pure? Note that F-pure type implies
log-canonical singularities by [43, Corollary 4.4], and this former condition is sup-
posedly the analogue ofϕ∞ being pure. If the question and its converse are both
answered in the affirmative, we also have a positive solution to the following ques-
tion: if R → S is a cyclically pure homomorphism of Q-Gorenstein local C-affine
domains and if S has log-canonical singularities, does then so have R? See also
Remark 6.8 below for some related issues.

4. Vanishing of Maps of Tor

We start with providing a proof of Theorem 3 from the introduction. To this end,
we need to review some results from [34] on the canonical construction of big Coh-
en-Macaulay algebras. ForR a localC-affine domain, letB(R) be the ultraproduct
of the absolute integral closures(Rp)+, whereRp is some approximation ofR. We
showed in [34, Theorem A] thatB(R) is a (balanced) big Cohen-Macaulay algebra
of R. It follows that if R is regular, thenR → B(R) is faithfully flat ([34, Corollary
2.5]).

This construction is weakly functorial in the sense that given any local homomor-
phismR → S of local C-affine domains, we can find a (not necessarily unique)
homomorphismB(R) → B(S) making the following diagram commute
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(20)

?

-

?
-

SR

B(S).B(R)

If R → S is finite, thenB(R) = B(S) (see [34, Theorem 2.4]). As already observed
in Remark 3.10, we have the following purity result.

Proposition 4.1. If a local C-affine domainR is ultra-F-regular, thenR → B(R)
is cyclically pure (that is to say,R isB-regular).

Theorem 3 is a special case of the next result in view of Theorem 1 and Propo-
sition 3.11. It generalizes [13, Theorem 4.12] (I will only deal with the Tor functor
here; the more general form of loc. cit., can be proved by the same arguments).

Theorem 4.2(Vanishing of maps of Tor). LetR → S be a homomorphism ofC-
affine algebras such thatS is an ultra-F-regular domain. LetA be a regular subring
of R over whichR is module finite. Then for everyA-moduleM and everyi ≥ 1,
the natural morphismTorA

i (M,R) → TorA
i (M,S) is zero.

Proof. If the map is non-zero, then it remains so after a suitable localization of
S, so that we may assume thatS is local. We then may localizeA andR at the
respective contractions of the maximal ideal ofS, and assume thatA and R are
already local. Letp be a minimal prime ofR contained in the kernel of the ho-
momorphismR → S. The compositionR → R/p → S induces a factorization
TorA

i (M,R) → TorA
i (M,R/p) → TorA

i (M,S). Thus, in order to prove the state-
ment, it suffices to show that the second homomorphism is zero, so that we may
assume thatR is a domain.

We have a commutative diagram

(21)

A −−−−→ R −−−−→ Sy y y
B(A) B(R) −−−−→ B(S).

Let φ be the composite morphism

(22) TorA
i (M,R) → TorA

i (M,B(R)) → TorA
i (M,B(S)).

By the preceding discussion and our assumptions,B(A) = B(R) andB(A) is flat
over A. Therefore, the middle module in (22) is zero, whence so isφ. Using the
commutativity of (21), we see thatφ also factors as

TorA
i (M,R) → TorA

i (M,S) → TorA
i (M,B(S)).
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By Proposition 4.1, the embeddingS → B(S) is cyclically pure, whence pure,
by [11, Theorem 2.6] and the fact thatS is normal. Therefore,TorA

i (M,S) →
TorA

i (M,B(S)) is injective (see [13, Lemma 2.1(h)]). It follows fromφ = 0 that
then alsoTorA

i (M,R) → TorA
i (M,S) must be zero, as required. �

The next two results follow already from Hara’s characterization of log-terminal
singularities (equivalence (1)⇐⇒ (1’) in Theorem 1) together with the pertinent
facts on zero characteristic tight closure. However, we can give more direct proofs
using our methods. The first of these is a Briançon-Skoda type result. For regular
rings, it was first proved in [22]; a tight closure proof was given in [12].

Theorem 4.3(Briançon-Skoda). LetR be a local domain essentially of finite type
over a field of characteristic zero and assumeR has at most log-terminal singulari-
ties (or, more generally, is ultra-F-regular). IfI is an ideal inR generated by at most
n elements, then the integral closure ofIn+k is contained inIk+1, for everyk ≥ 0.

Proof. The proof is an immediate consequence of Proposition 4.1 applied to [34,
Theorem B]. For the reader’s convenience, we repeat the argument. LetR be ultra-
F-regular and letI an ideal generated by at mostn elements. Letz be an element in
the integral closure ofIn+k, for somek ∈ N. Take approximationsRp, Ip andzp of
R, I andz respectively. Sincez satisfies an integral equation

zn + a1z
n−1 + · · ·+ an = 0

with ai ∈ I(n+k)i, we have for almost allp an equation

(zp)n + a1p(zp)n−1 + · · ·+ anp = 0

with aip ∈ (Ip)(n+k)i an approximation ofai. In other words,zp lies in the integral
closure of(Ip)n+k, for almost allp. By [13, Theorem 7.1], almost everyzp lies
in (Ip)k+1R+

p ∩ Rp. Taking ultraproducts, we get thatz ∈ Ik+1B(R) ∩ R. By
Proposition 4.1, we get thatz ∈ Ik+1 as required. �

Recall that thesymbolic powerI(n) of an idealI in a ringR is by definition the
collection of alla ∈ R for which there exists anR/I-regular elements ∈ R such
thatsa ∈ In. We always have an inclusionIn ⊆ I(n). If I := p is prime, thenp(n)

is just thep-primary component ofpn. The following generalizes the main results of
[4] and [15] to log-terminal singularities.

Theorem 4.4. Let R be a log-terminal (or, more generally, ultra-F-regular)C-
affine domain. Leta be an ideal inR and leth be the largest height of an associated
prime ofa (or more generally, the largest analytic spread ofaRp, for p an associated
prime ofR). If a has finite projective dimension, thena(hn) ⊆ an, for all n.

Proof. The same argument that deduces [31, Theorem 3.4] from its positive char-
acteristic counterpart [15, Theorem 1.1(c)], can be used to obtain the zero charac-
teristic counterpart of [15, Theorem 1.1(b)], to wit, the fact thata(hn) lies in the
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generic tight closure ofan (use [30, Proposition 6.3] in conjunction with the tech-
niques from [32,§4]). By Theorem 1 and Theorem 3.5, each ideal is equal to its
generic tight closure, proving the assertion. �

5. Polarizations

In this section,X denotes a projective scheme of finite type over some alge-
braically closed fieldK. Given an ample invertibleOX -moduleP, we will call the
pair (X,P) apolarized schemeand we callP apolarizationof X.

Fix a polarized scheme(X,P). For eachOX -moduleF , we define itspolariza-
tion to be the sheaf

Fpol :=
⊕
n∈Z

F ⊗OX
Pn.

In particular, for eachF , we have an isomorphism

Fpol ∼= F ⊗OX
Opol

X .

Definition 5.1. Thesection ringS of (X,P) is the ring of global sections ofOpol
X ,

that is to say,

(23) S :=
⊕
n∈Z

H0(X,Pn).

Note thatS is a finitely generated graded algebra overH0(X,OX) = K by let-
ting [S]n := H0(X,Pn) (ampleness is used to guarantee thatS is finitely generated).
In fact,S is positively graded, sincePn has no global sections forn < 0.

The polarization can be completely recovered from the section ringS by the rules

X ∼= ProjS and P ∼= S̃(1).

In fact,Pn = S̃(n), for anyn ∈ Z. Global properties ofX can now be studied via
local properties ofS (or more accurately, ofSm, wherem is the irrelevant maximal
ideal generated by all homogeneous elements of positive degree).

Definition 5.2. The section moduleof anOX -moduleF (with respect to the
polarizationP) is the module of global sectionsH0(X,Fpol) of Fpol and is denoted
MP(F), or justM(F), if the polarization is clear.

In particular, the section moduleM(OX) ofOX is justS itself. LetF := M(F).
We makeF into aZ-gradedS-module by[F ]n := H0(X,F ⊗ Pn), for n ∈ Z. In-
deed, for eachm,n ∈ Z, we have[S]m · [F ]n ⊆ [F ]m+n because we have canonical
isomorphismsPm ⊗ (F ⊗ Pn) ∼= F ⊗ Pm+n. If F is coherent, then there is some
n0 such thatF ⊗ Pn is generated by its global sections for alln ≥ n0, sinceP is
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ample. Therefore, ifF is coherent,F is finitely generated as anS-module. For each
n ∈ Z, we have an isomorphism

(24) ˜M(F)(n) ∼= F ⊗ Pn.

Indeed, it suffices to prove that both sheaves have the same sections on each open
D+(x) (:= the set of all homogeneous prime ideals not containing the homogeneous
elementx), and this is straightforward. Note that we can in particular recoverF
from its section moduleM(F) sinceF ∼= M̃(F).

5.3. C̆ech Cohomology and Polarizations.Let (X,P) be a polarized scheme
with section ringS := M(OX). Let m be the maximal irrelevant ideal ofS and let
x := (x1, . . . , xs) be a homogeneous system of parameters ofS (so thatxS is in
particularm-primary). For each tuplei of indices given by1 ≤ i1 < i2 < · · · <

im ≤ s, set

xi := xi1xi2 · · ·xim and Ui := D+(xi)

Let Ux be the affine open covering ofX given by theUi := D+(xi).
5.3.1. C̆ech complex of a sheaf.Let F be a quasi-coherentOX -module. We

generalize the discussion in§2.13 to polarizations as follows. ThĕCech complexof
the polarization ofF with respect to the coveringUx is the complexC•(Ux;Fpol)
given as

0 → C1 :=
⊕

i

H0(Ui,Fpol) → · · · → Cm :=
⊕

i

H0(Ui,Fpol) → . . .

where inCm the indexi runs over allm-tuples of indices1 ≤ i1 < i2 < · · · < im ≤
s and where the morphisms are, up to sign, given by restriction (see [10, Chapt. III.
§4] for more details). Using (24), we see thatH0(Ui,F ⊗ Pn) is isomorphic to
[M(F)xi

]n. Therefore, we have a (degree preserving) isomorphism

(25) H0(Ui,Fpol) ∼= M(F)xi
.

5.3.2. C̆ech complex of a module.More generally, we associate to an arbitrary
S-moduleF a C̆ech complexC•(x;F ) given as

(26) 0 → C1 :=
⊕

i

Fxi → · · · → Cm :=
⊕

i

Fxi
→ . . .

(with notation as above) where the morphisms are, up to sign, the natural inclusions
(in fact, this construction can also be made in the non-graded case, withx an arbitrary
tuple of elements inS; see [3, p. 129] for more details). For anOX -moduleF , we
get using (25), an isomorphism of complexes

(27) C•(Ux;Fpol) ∼= C•(x;M(F)).

In particular, the cohomology of either complex can be used to compute the sheaf
cohomology ofF .
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5.3.3. Local cohomology.On the other hand, for an arbitraryS-moduleF , the
complexC•(x;F ) can also be used to calculate local cohomology. Recall that
H0

m(F ) is equal to them-torsionΓm(F ) of F , that is to say, equal to the (homo-
geneous) submodule of all elements ofF which are annihilated by some power of
m; the derived functors ofΓm(·) are then the local cohomology modulesHi

m(·). By
[3, Theorem 3.5.6], the local cohomology of anS-moduleF can be computed as the
cohomology of the augmented complex0 → F → C•(x;F ) (that is, we inserted an
additional termC0 := F in (26)). Hence fori > 1, we have an isomorphism

(28) Hi(C•(x;F )) ∼= Hi
m(F ),

whereas fori = 1, we have a short exact sequence

(29) 0 → H0
m(F ) → F → H1(C•(x;F )) → H1

m(F ) → 0.

Since all local cohomology modules are Artinian,F andH1(C•(x;F )) have the
same localizations at the variousxi. If F is a finitely generated gradedS-module,
thenH1(C•(x;F )) = M(F̃ ), whereF̃ is theOX -module associated toF (use (33)
below). In conclusion, we have an equality of complexes

(30) C•(x;F ) = C•(x;M(F̃ ))

and (29) becomes the exact sequence (see also [5, Theorem A4.1])

(31) 0 → H0
m(F ) → F → M(F̃ ) → H1

m(F ) → 0.

5.3.4. Comparison of cohomology.Let us summarize some of these observa-
tions. By (8) and (27), we have for eachi ≥ 0, isomorphisms of gradedS-modules

(32) Hi(X,Fpol) ∼= Hi+1(C•(Ux;Fpol)) ∼= Hi+1(C•(x;M(F))).

Moreover, fori ≥ 1, these modules are also isomorphic toHi+1
m (M(F)) by (28). In

particular, withi = 0, isomorphism (32) becomes

(33) M(F) = H0(X,Fpol) ∼= H1(C•(Ux;Fpol)).

Using that the isomorphisms in (32) preserve degree, we have for eachi ≥ 0 and
eachn ∈ Z, isomorphisms

(34) Hi(X,F ⊗ Pn) ∼= Hi+1([C•(x;M(F))]n) ∼=
[
Hi+1

m (M(F))
]
n

(where the final isomorphism only holds fori ≥ 1).
Lemma 5.4. Let (X,P) be a polarized scheme with section ringS and letF

andG be two coherentOX -modules. IfP is very ample, then there is a short exact
sequence (of degree preserving morphisms)

(35) 0 → H0
m(M(F)⊗S M(G)) → M(F)⊗S M(G) →

M(F ⊗OX
G) → H1

m(M(F)⊗S M(G)) → 0.
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Proof. Let F := M(F) andG := M(G) be the respective section modules of

F andG. By (31), it suffices to show that theOX -moduleF̃ ⊗S G associated to
F ⊗S G is isomorphic withF ⊗OX

G. SinceP is very ample,S is generated by its
linear forms and it suffices to check that both sheaves agree over each openD+(x)
with x homogeneous of degree one. To this end, we get, using (24), isomorphisms

(F ⊗OX
G)(D+(x)) ∼= F(D+(x))⊗OX(D+(x)) G(D+(x))

∼= [Fx]0 ⊗[Sx]0
[Gx]0

∼= [(F ⊗S G)x]0
∼= ˜(F ⊗S G)(D+(x))

where the penultimate isomorphism follows from [7, II. Proposition 2.5.13] (to apply
this, it is necessary thatx has degree one). �

The main application of Frobenius is through the following easy fact.

Lemma 5.5. If (X,P) is a polarized scheme of characteristicp > 0 andF an
invertible sheaf onX, then for any powerq of p, we have

(36) ˜(ϕq∗(M(F))) ∼= Fq.

Proof. Let S := M(OX) be the section ring of the given polarization. Since
(36) can be checked locally, one easily reduces to the case thatF is the ideal-sheaf
associated to a principal idealaS, with a a non-zero divisor inS. Moreover, the zero-
th and first local cohomology ofaS vanish, so thatM(F) = aS by (31). Therefore,
ϕq∗(M(F)) = ϕq∗(aS) ∼= aqS, from which (36) follows by taking associated
sheaves. �

We also want to remind the reader of the following observation made in [40].

Proposition 5.6. The section ring of a polarized scheme(X,P) is Cohen-Mac-
aulay if, and only if,Hi(X,Pn) = 0 for all n and all0 < i < dim X.

Under the additional assumption thatX is Cohen-Macaulay, some section ring
of X is Cohen-Macaulay if, and only if,Hi(X,OX) = 0 for all 0 < i < dim X.

Proof. Let S be the section ring of(X,P) and letm be its maximal irrelevant
ideal. As explained in [18, Proposition 2.1], the local cohomology groupsH0

m(S)
andH1

m(S) always vanish. By a theorem of Grothendieck ([3, Theorem 3.5.7]),S is
Cohen-Macaulay if, and only if,Hi+1

m (S) = 0, for all i < dim X. By (32) in§5.3.4,
this in turn is equivalent withHi(X,Pn) = 0, for all 0 < i < dim X and alln,
proving the first assertion.

SupposeX is moreover Cohen-Macaulay. SinceP is invertible,Hi(X,Pn) = 0
for all 0 < i < dim X andn � 0 by Serre duality ([10, III. Theorem 7.6]). The same
is true forn � 0, sinceP is ample ([10, III. Proposition 5.3]). Therefore polarizing
X with respect to a sufficiently large powerPs instead ofP, we may even assume
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thatHi(X,Pn) = 0 for all n 6= 0 and0 < i < dim X. The second assertion then
follows from this and the first assertion (applied to the new polarization). �

6. Vanishing Theorems

In [40], Smith introduces the notion of a globallyF -regular type variety and
shows that it admits several vanishing theorems. She moreover conjectures that any
GIT quotient by a reductive group of a smooth Fano variety satisfies these vanishing
theorems. We will establish this conjecture using similar arguments as in loc. cit.,
but substituting ultra-F-regularity for F-regularity.

LetX be a connected projective scheme of finite type overC (aprojective variety,
for short).

Definition 6.1. We say thatX is globally ultra-F-regular, if some section ringS
of X is ultra-F-regular at its vertex, that is to say,Sm is ultra-F-regular wherem is
the maximal irrelevant ideal ofS.

Remark 6.2. In [40], Smith callsX globally F-regular if some section ringS
is strongly F-regular type (note that sinceS is positively graded, this is equivalent
by [23] with S being weakly F-regular type). By Theorem 3.5, this implies thatS

is ultra-F-regular and hence thatX is globally ultra-F-regular. In particular, ifSm

is (Q-)Gorenstein, wherem is the maximal irrelevant ideal, then globally F-regular
type and globally ultra-F-regular are equivalent in view of Theorem 1.

So we could deduce the desired vanishing theorems from Theorem 1 and the work
of Smith in [40], if we are willing to use Hara’s characterization of F-regular type.
However, using a non-standard version of her arguments, we can as easily derive the
vanishing theorems directly, without any appeal to Hara’s work (and hence without
using Kodaira Vanishing).

Remark 6.3. As in [40], one can prove directly that ifX is globally ultra-F-
regular, then every section ring is locally ultra-F-regular at its vertex. Alternatively,
this follows from [40, Theorem 3.10] (even without localizing at the irrelevant max-
imal ideal), if we use Theorem 1 as in the previous remark.

In that respect, note that if the section ringS with respect to the polarizationP
is ultra-F-regular at its vertex, then so is any Veronese subringS(r) := ⊕n [S]rn by
Proposition 3.11, as it is a pure subring. In particular, any section ring corresponding
to a positive power ofP is ultra-F-regular at its vertex. In particular, we may al-
ways assume, without relying on the results from [40], that a globally ultra-F-regular
variety admits avery amplepolarization whose section ring is ultra-F-regular at its
vertex.
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As already mentioned, the main advantage of using ultra-F-regularity instead of F-
regular type is the fact that it descends under pure homomorphism (Proposition 3.11).
In particular, we get the following descent property for quotient singularities.

Theorem 6.4. LetX be a connected projective variety overC. LetG be a reduc-
tive group acting algebraically onX and letX//G be an arbitrary GIT quotient of
X. If X is globally ultra-F-regular, then so isX//G.

Proof. Any GIT quotient ofX is obtained by taking some polarizationP of X,
extending theG-action toP, taking the section ringS with the inducedG-action and
lettingX//G := ProjSG, whereSG is the ring of invariants ofS. In particular,SG

is a section ring ofX//G. SinceS is ultra-F-regular by Remark 6.3, so isSG by
Proposition 3.11 asSG ⊆ S is pure (even split). �

We now proceed with the main technical result in this section, which will be used
to derive the Kawamata-Viehweg vanishing stated in Theorem 4.

Theorem 6.5. Let X be a globally ultra-F-regular connected projective variety
overC and letF be an invertibleOX -module. If for somei > 0 and some effective
Cartier divisorD, all Hi(X,Fn(D)) vanish forn � 0, thenHi(X,F) vanishes.

Proof. Choose a polarizationP of X with section ringS, so thatSm is ultra-
F-regular, wherem is the maximal irrelevant ideal ofS. By Remark 6.3, we may
assume without loss of generality thatP is very ample. LetI be the section module
of I := OX(D). Let x be a homogeneous system of parameters ofS and letUx be
the open affine covering given by theD+(xi)(= Proj([Sxi ]0)). SinceD is Cartier,
I is a fractional ideal, that is to say, a finitely generated rank-oneS-submodule of the
field of fractionsK of S. Clearing denominators in the inclusionI ⊆ K, we can find
anS-module morphismg : I → S. SinceD is effective,I admits a canonical section
s ∈ [I]0 = H0(X, I) (see for instance [6, B.4.5]). In particular, the morphismS →
I : 1 7→ s is degree preserving. Putc := g(s). By ultra-F-regularity, there is an ultra-

Frobeniusϕ such thatcϕSm
is pure. The compositionS → I

g−−→S : 1 7→ s 7→ c is
equal to multiplication withc onS (where we disregard the grading). Tensoring this
composite homomorphism withϕ∗S∞ gives

ϕ∗S∞ → I ⊗ ϕ∗S∞ → ϕ∗S∞ : 1 7→ s⊗ 1 7→ c

which composed with the inclusionS ↪→ ϕ∗S∞ therefore gives the morphismcϕS .
By assumption, the base changecϕSm

is pure. Since

Sm → Sm ⊗ I ⊗ ϕ∗S∞

is a factor of the pure morphismcϕSm
, it is also pure. LetF := M(F) be the section

module ofF . Tensoring withF yields a pureSm-module morphism

Fm → (F ⊗ I ⊗ ϕ∗S∞)m.

Using the isomorphismϕ∗F ∼= F⊗ϕ∗S∞ (see§3.2), we can identifyF⊗I⊗ϕ∗S∞
with I ⊗ ϕ∗F . Taking C̆ech complexes with respect to the tuplex yields a pure
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homomorphism of̆Cech complexes

C•(x;Fm) → C•(x; (I ⊗ ϕ∗F )m).

It is well-known that purity is preserved after taking cohomology, so that we have a
pure morphism

Hi+1(C•(x;Fm)) ↪→ Hi+1(C•(x; (I ⊗ ϕ∗F )m)).

Since at a maximal ideal, the cohomology of a localizedC̆ech complex is the same
as the cohomology of the non-localizedC̆ech complex (see for instance [3, Remark
3.6.18]), we get an injective morphism

(37) Hi+1(C•(x;F )) ↪→ Hi+1(C•(x; I ⊗ ϕ∗F ))

By a similar argument as in§2.9, each module inC•(x; I ⊗ ϕ∗F ), although not
graded, has a graded piece in each (standard or non-standard) degree. This property
is inherited by the cohomology groups and (37) preserves degrees. Hence in degree
zero, we get an injective morphism

(38)
[
Hi+1(C•(x;F ))

]
0

↪→
[
Hi+1(C•(x; I ⊗ ϕ∗F ))

]
0
.

I claim that the right hand side of (38) is zero, whence by injectivity, so is the left
hand side. Since the latter is justHi(X,F) by (34), the theorem follows from the
claim.

To prove the claim, let(Xp,Pp), Sp, xp,Fp andIp be approximations of(X,P),
S, x, F andI respectively, and suppose the ultra-Frobeniusϕ is given as the ultra-
product of the Frobeniiϕq (for q := pep some power ofp). By §2.11, almost all
(Xp,Pp) are polarized. Using Theorem 2.15, the section modulesF p := M(Fp)
andIp := M(Ip) are approximations of respectivelyF andI. In particular, the ul-
traproduct of theϕq∗F p

∼= F p⊗ϕq∗Sp is equal toϕ∗F and we have an isomorphism
of C̆ech complexes

C•(x; I ⊗ ϕ∗F ) ∼= ulim
p→∞

C•(xp; Ip ⊗ ϕq∗F p).

Since cohomology commutes with ultraproducts, we get an isomorphism

Hi+1(C•(x; I ⊗ ϕ∗F )) ∼= ulim
p→∞

Hi+1(C•(xp; Ip ⊗ ϕq∗F p)).

Therefore, the claim follows if we can show that almost all

(39)
[
Hi+1(C•(xp; Ip ⊗ ϕq∗F p))

]
0

= 0.

Let Uxp
be the affine covering ofXp given by theD+(xip). By Lemma 5.5, we

have isomorphisms ofOXp
-modules

˜(ϕq∗F p) ∼= Fq
p.
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Applying Lemma 5.4 twice shows thatM(Ip⊗Fq
p) andIp⊗ϕq∗F p are isomorphic

up tom-torsion. In particular, this yields an isomorphism ofC̆ech complexes

C•(xp; Ip ⊗ ϕq∗F p) ∼= C•(Uxp
; (Ip ⊗Fq

p)
pol).

Taking cohomology, we get

Hi+1(C•(xp; Ip ⊗ ϕq∗F p)) ∼= Hi+1(C•(Uxp
; (Ip ⊗Fq

p)
pol)).

By (34) in §5.3.4, the zero-th homogeneous part of the right hand side is isomorphic
to Hi(Xp, Ip ⊗ Fq

p), and this is zero for large enoughp by Corollary 2.16 and our
assumption. Thus, we showed (39) and hence completed the proof. �

As in [40], we immediately obtain the following corollaries; we include their
proofs for the reader’s convenience. Together with Remark 1.2, they prove Theo-
rem 4 from the introduction.

Corollary 6.6. Let X be a globally ultra-F-regular connected projective variety
overC and letL be an invertibleOX -module. IfL is numerically effective (NEF),
thenHi(X,L) vanishes, for alli > 0.

Proof. Suppose first thatL is ample. By Serre Vanishing,Hi(X,Ln) = 0 for
n � 0 and i > 0. HenceHi(X,L) = 0 by Theorem 6.5. Suppose now thatL
is merely NEF. This means hat we can find an ample effective Cartier divisorD

such thatLn(D) is ample, for alln ≥ 0. Since we already proved the ample case,
Hi(X,Ln(D)) = 0, for all n ≥ 0 andi > 0. Therefore,Hi(X,L) = 0 by another
application of Theorem 6.5. �

Corollary 6.7 (Kawamata-Viehweg Vanishing). LetX be a connected projective
variety overC and letL be an invertibleOX -module. IfX is globally ultra-F-
regular and ifL is big and NEF, thenHi(X,L−1) = 0, for all i < dim X.

Proof. Fix somei < dim X. BecauseL is big and NEF, we can find an effective
Cartier divisorD such thatLm(−D) is ample for allm � 0, by [20, Proposition
2.61]. LetS be a section ring ofX which is ultra-F-regular. SinceS is therefore
Cohen-Macaulay, so isX. Given an ample invertible sheafP, Serre duality yields
Hi(X,Pn) = 0, for all n of sufficiently large absolute value (see the argument in
the proof of Proposition 5.6). Applied toP := Lm(−D), this gives

Hi(X, (L−m(D))n) = Hi(X, (Lm(−D))−n) = 0

for all sufficiently largem andn. Hence, for fixedm, Theorem 6.5 yields the van-
ishing ofHi(X,L−m(D)). Since this holds for all largem, another application of
Theorem 6.5 then givesHi(X,L−1) = 0. �

Remark 6.8. Call a C-affine domainR ultra-F-pure, if R → ϕ∗R∞ is pure
for some ultra-Frobeniusϕ. Call a connected projective varietyX overC globally
ultra-F-pure, if some section ring ofX is ultra-F-pure. Inspecting the proof of Theo-
rem 6.5, we get the following weaker version (D = 0): if X is globally ultra-F-pure
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and L invertible with Hi(X,Ln) = 0 for all n � 0, then Hi(X,L) = 0. In particu-
lar, the argument in the proof of Corollary 6.6 shows that on a globally ultra-F-pure
variety, an ample invertible sheaf has no higher cohomology.

In fact, we can even prove Kodaira Vanishing for this class of varieties:if X is
globally ultra-F-pure and Cohen-Macaulay, then Hi(X,L−1) = 0 for all i < dim X

and all ample invertible sheaves L on X . Indeed, by Serre duality ([10, III. Corollary
7.7]), the dual ofHi(X,L−n) is Hd−i(X, ωX ⊗Ln) whered is the dimension ofX
andωX the dualizing sheaf onX. BecauseL is ample, the latter cohomology group
vanishes for largen, and hence so does the first. Applying the weaker version of the
vanishing theorem to this, we get thatHi(X,L−1) vanishes.

Because of the analogy with the notion ofFrobenius split(see [40, Proposition
3.1]) and the fact that a Schubert variety has this property ([25, Theorem 2]), it is
reasonable to expect that a Schubert variety is globally ultra-F-pure. The referee
has pointed out to me that the analogue of this in positive characteristic has recently
been proven in the preprint [21]. In particular, if this result on Schubert varieties also
holds in characteristic zero, then we get Kodaira Vanishing for any GIT quotient of a
Schubert variety, since ultra-F-purity descends under pure homomorphisms (by the
same argument as for Proposition 3.11).

7. Fano Varieties

Let X be a connected, normal projective variety overC. The canonical (or,du-
alizing) sheafωX of X is the unique reflexive sheaf which agrees with the sheaf
∧dΩX/C on the smooth locus ofX. We callX Fano, if its anti-canonical sheafω−1

X

is ample (we do not requireX to be smooth).

Theorem 7.1. A Fano variety with rational singularities is globally ultra-F-
regular.

Proof. Let X be a Fano variety with rational singularities. LetS be the anti-
canonical section ring ofX, that is to say, the section ring with respect to the po-
larization given by the ample sheafω−1

X . It is well-known (see for instance [40,
Proposition 6.2]), thatS is Gorenstein and has again rational singularities. Since ra-
tional Gorenstein singularities are log-terminal, we obtain from Theorem 1 thatSm

is ultra-F-regular, showing thatX is globally ultra-F-regular. �

Remark 7.2. In proving that a Fano variety with rational singularities is globally
ultra-F-regular, we have used Kodaira Vanishing twice: via Hara’s result in Theo-
rem 1 and via [40, Proposition 6.2]. Combining Theorems 4 and 6.4 with the previ-
ous theorem yields Theorem 5 from the introduction.
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