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LOG-TERMINAL SINGULARITIES AND VANISHING
THEOREMS VIA NON-STANDARD TIGHT CLOSURE

HANS SCHOUTENS

Abstract

Generalizing work of Smith and Hara, we give a new characterization of log-
terminal singularities for finitely generated algebras @gin terms of purity prop-
erties of ultraproducts of characteristid-robenii.

As a first application we obtain a Boutot-type theorem for log-terminal singu-
larities: given a pure morphisii — X between affiné€)-Gorenstein varieties of
finite type overC, if Y has at most a log-terminal singularities, then so d&¥es
The second application is the Vanishing for Maps of Tor for log-terminal singular-
ities: if A C R is a Noether Normalization of a finitely generat€ehlgebraiR
andS is an R-algebra of finite type with log-terminal singularities, then the natural
morphismTor{! (M, R) — Tor (M, S) is zero, for everyA-moduleM and ev-
eryi > 1. The final application is Kawamata-Viehweg Vanishing for a connected
projective varietyX of finite type overC whose affine cone has a log-terminal
vertex (for some choice of polarization). As a corollary, we obtain a proof of the
following conjecture of Smith: if7 is the complexification of a real Lie group act-
ing algebraically on a projective smooth Fano varigtythen for any numerically
effective line bundleC on any GIT quotient” := X //G, each cohomology mod-
ule Hi(Y, £) vanishes fori > 0, and, if £ is moreover big, therl ¢ (Y, £~1)
vanishes fof < dimY".

1. Introduction

The work of Smith, Hara et al., has led to a characterization of log-terminal singu-
larities (equivalence (1% (1) below) in terms of purity properties of the Frobenius
on a general reduction moduto Although this characterization has proven to be
very useful, one of its main drawbacks is the fact that it is not known to be inherited
by quotients of group actions. Our first result is a similar characterization without
this defect.

Theorem 1. Let R be a localQ-Gorenstein domain essentially of finite type over
a field of characteristic zero. Then the following are equivalent:

(1) R has log-terminal singularities.
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(1) Ris F-regular type.
(2) Ris ultra-F-regular.

The implication (1')=- (1) is proven in [39, Corollary 4.16] or [9], using Smith’s
work on rational singularities in [38]; the converse implication is proven by Hara in
[8, Theorem 5.2]. We will give a proof if3.8 for the implications (1'}= (2) = (1).

The notion of ‘ultra-F-regularity’ should be viewed as a non-standard version of the
notion of ‘strong F-regularity’. More precisely, |6t be a local domain essentially

of finite type overC (see Remark 1.2 below for arbitrary fields). In [32], we asso-
ciated toR a canonically defined extensid?,, called thenon-standard hulbf R,
which is realized as the ultraproduct of certain local rings in charactepistialled
approximationf R (see§2.1 below for exact definitions). One should view an ap-
proximation of R as a more canonical way of reduciRgmodulop (see§2.19), and a
non-standard hull oR, as a convenient way of storing all these reductions into a sin-
gle algebraic object (of characteristic zero). Withidina-Frobeniuson R, we mean

the ring homomorphism into the non-standard MRl given by the ruler — z™,
wherer is a non-standard integer obtained as the ultraproduct of various powers of
prime numbers (se€3.2 for precise definitions). We calt ultra-F-regular, if for

each non-zeroin R, we can find an ultra-Frobenius— x™ such that the morphism

R — Re: x — cx™ is pure. One should compare this with the Hochster-Huneke
notion ofstrong F-regularityof a domaink of prime characteristip: for each non-
zerocin R, there is a powet of p, such that the morphisiR — R: z — cz? is split
(which under these conditions is equivalent with it being pureR i$§ moreoverQ-
Gorenstein then strong F-regularity is equivalent by [24] wittakly F-regularity

that is to say, with the property that every ideal is tightly closed.

Application 1: Quotients of Log-terminal Singularities. The first application
(see§3.12 for the proof) is the result that log-terminal singularities are preserved un-
der quotients of reductive groups, provided the quotief@-Gorenstein. Although
this seems to be a result that ought to have a proof using Kodaira Vanishing (as is the
case for the corresponding statement for rational singularities by [2]), | do not know
of any argument other than the one provided here.

Theorem 2. Let R — S be a local homomorphism @-Gorenstein local do-
mains essentially of finite type over a field of characteristic zeroR I~ S is
cyclically pure (that is to say, ift = aS N R for all idealsa C R) and if S has
log-terminal singularities, then so hds.

In particular, let G be a reductive group acting algebraically on an affi@e
Gorenstein varietyX. If X has at most log-terminal singularities, then so has the
quotient spaceX /G, provided it isQ-Gorenstein.

The present proof is entirely elementary in cdses assumed to be smooth in
the last assertion (see Remark 1.1).Glfis moreover finite, then the theorem was
already proven in [19] using canonical covers and Boutot's result [2]. In this case,
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the condition that the quotient {3-Gorenstein is automatically satisfied, but this is
not so in the general case. For some similar descent properties using non-standard
methods, see also [34].

Application 2: Vanishing of Maps of Tor. The next result (see Theorem 4.2 for
the proof) was previously only known féf regular, or more generally, féf weakly
CM"-regular ([13, Theorems 4.1 and 4.12]).

Theorem 3. Let R — S be a homomorphism @i-affine algebras such thét is
a domain with at most log-terminal singularities (or, more generally, a pure subring
of such a ring). LetA be a regular subring of? over whichR is module finite.
Then for everyd-moduleM and everyi > 1, the natural morphisrffors (M, R) —
Tor{*(M, S) is zero.

Application 3: Vanishing Theorems. Purity of Frobenius was used effectively
in [16] to prove the Cohen-Macaulayness of rings of invariants. Exploiting this fur-
ther, Mehta and Ramanathan deduced Vanishing Theorems for Schubert varieties
from purity properties of Frobenius in [25]. The approach in this paper is a non-
standard analogue of these ideas, especially those from [40K lbet a connected,
normal projective variety of characteristic zero. Recall thatc S is called araffine
coneof X, if S is some finitely generated graded algebra suchXhat Proj S (for
each choice of ample invertible sheaf &h one obtains such a graded rifg see
85 below). Thevertexof the affine cone is by definition the closed point$pec S
determined by the irrelevant maximal ideal®{generated by all homogeneous el-
ements of positive degree). We call globally ultra-F-regular, if some affine cone
of X has an ultra-F-regular vertex. In particular, in view of Theorem 1, if the ver-
tex of an affine cone is a log-terminal singularity, th€ris globally ultra-F-regular.
Since the anti-canonical cone of a smooth Fano variety (or more generally, of a Fano
variety with rational singularities) has this property (see Theorem 7.1 below), ev-
ery smooth Fano variety is globally ultra-F-regular. By Theorem 2, the same also
holds for any GIT (Geometric Invariant Theory) quotient of a smooth Fano variety.
In Corollaries 6.6 and 6.7 we will show the following vanishing of cohomology for
globally ultra-F-regular varieties.

Theorem 4. Let X be a globally ultra-F-regular projective variety and I€tbe
a numerically effective line bundle o1 (this includes the casé := Ox). For each
i > 0, the cohomology modulE‘(X, £) vanishes. Moreover, if is also big, then
Hi(X, £~1) vanishes for each < dim X.

Together with our previous remarks, we get the following result, which was orig-
inally conjectured by Smith in [40].

Theorem 5. LetG be a reductive group acting algebraically on a projective Fano
variety X with rational singularities and let” := X//G be a GIT quotient ofX
(with respect to some linearization of the actior®f If £ is a numerically effective
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line bundle onY’, then each cohomology modulE (Y, £) vanishes for > 0, and,
if £ is moreover big, thed/*(Y, £~!) vanishes for < dim Y.

Theorem 1 also begs the question what (weakly) F-regular type and ultra-F-
regularity would amount to if we drop th@-Gorenstein condition. Without this
assumption, one should actually use the notion of strongly F-regular type (which
is only conjecturally equivalent with weakly F-regular type), but even then it is no
longer clear that this is equivalent with ultra-F-regularity (one direction holds by The-
orem 3.5 below). In [9§4.6], the authors propose Nakayama’s notioadrissible
singularities([27]) as a candidate for an equivalent condition to strongly F-regular
type. They point out that an affine cone of a smooth Fano variety has in general only
admissible singularities (although its anti-canonical cone has log-terminal singular-
ities). The fact that any such cone is ultra-F-regular (see Remark 6.3) corroborates
hence their claim.

1.1. Remark on Kodaira Vanishing. Hara'’s proof of implication (1)} (1') in
Theorem 1 relies heavily on Kodaira Vanishing (in fact, on Akizuki-Kodaira-Nakano
Vanishing). Therefore, it is of interest to see which of the results in this paper do not
make use of Kodaira Vanishing. If we I8tbe regular in Theorem 2, then we do
not need the implication (1} (1’) and hence no Vanishing Theorem is used (see
Remark 3.13 below). Similarly, our proof of Theorem 4 uses only elementary results
from cohomology theory and hence does not rely on Kodaira Vanishing. Nonethe-
less, in order to prove that smooth Fano varieties are globally ultra-F-regular, and
hence to obtain Theorem 5, we do need Hara’s result and hence Kodaira Vanishing.

1.2. Remark on the base field.To make the exposition more transparent, | have
only dealt in the text with the case that the base fiel@.idHowever, the results ex-
tend to arbitrary base fields of characteristic zero by the following two observations.
First, any algebraically closed field of characteristic zero and of cardir&lifjor
some infinite cardinal) is the ultraproduct of (algebraically closed) fields of posi-
tive characteristic by the Lefschetz Principle (see for instance [32, Remark 2.5]) and
this is the only property we used 6f (cf. (1) below). Second, since all properties
admit faithfully flat descent, we can always make a base change to an algebraically
closed field of sufficiently large cardinality whence in particular to an algebraically
closed field realized as the ultraproduct of fields of positive characteristic.

Acknowledgement. | am grateful to Karen Smith for drawing my attention to
the question of Vanishing Theorems for GIT quotients of Fano varieties. Without
her continuous help and encouragement, this paper would not have been possible.
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2. Transfer and Approximations

In this section, | will briefly discuss an alternative construction of the usual 're-
duction modulgy’ construction from algebraic geometry. The advantage is that we
can work just with schemes of finite type over fields, that is to say, there is no need
to work with relative versions. The one drawback is that we need the base field to be
algebraically closed of cardinaliB/ for some infinite cardinal (under the assump-
tion of the Generalized Continuum Hypothesis, each uncountable cardinal is of the
form 2*). However, as explained in Remark 1.2, this is not too much of a constraint.
Moreover, in order to simplify the exposition, | will in the sequel only discuss the
case that the base field@s

For generalities on ultraproducts, including Los’ Theorem, see{3R, Recall
that an ultraproduct of ringS/, is a certain homomaorphic image of the direct product
of theC,,. This ultraproduct will be denoted bytim,, .. C,, or simply byC., and
similarly, the image of a sequenée, | p) in C'« will be denoted byulim, . a,,
or simply bya.. Any choice of sequence of elemenjswhose ultraproduct is equal
to a, Will be called anapproximationof a, (note that we are using the term more
loosely than in [32], where we reserved the notion of approximation onlgtéon-
dard a.). The key ingredient for transfer between zero and positive characteristic is
the following fundamental isomorphism
1) = ulim F;Ig,

pP—0Q0
whereF2? denotes the algebraic closure of thelement field. | will refer to (1) as
the Lefschetz Principléor algebraically closed fields; see [32, Theorem 2.4] or [33,
Fact 4.2] for proofs.

2.1. Affine Algebras. Let me briefly recall from [32] the construction of an ap-
proximation of a finitely generated (for short, affing C-algebraC. For a fixed
tuple of variables, let A, be the ultraproduct of thel, := F29¢]. We call A
the non-standard hulbf A := C[¢] and A, anapproximationof A. By [41], the
canonical homomorphisM — A is faithfully flat (see also [28, Theorem 1.7] or
[35, A.2]). For an arbitrary affin€-algebraC, say of the formA/I, we let

@) Coo = Ao /TAse = C @4 Ao

and call it thenon-standard hulbf C. One shows thaf’, is the ultraproduct of
affine FZ'g-algebrasOp. Any such choice of”), is called anapproximationof C.
There are two ways to construct these: either one observeg thatis the ultra-
product of ideald, in A, (we calll, anapproximatiorof I; see [32§53]) and takes
C, to be A,/I,, or alternatively, one takes a model ©f looks at its reductions
modulop and takes a suitably chosen base change Eﬁ%r(see Proposition 2.18

and§2.19 below). By [32, 3.4], the non-standard h@ill, is independent (up to an
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isomorphism ofC-algebras) of the presentation 6fas a homomorphic image of
a polynomial ring. Consequently, {f;, are obtained front’ by the above process
starting from a different presentation 6f, thenC, = C}, (asIFﬁ'g-aIgebras), for
almost allp. The non-standard hull does depend though on the choice of ultrafilter
and on the choice of the isomorphism (1).

We can similarly define the non-standard hull for a local riRgessentially of
finite type overC (alocal affineC-algebra, for short). Suppogeis of the formC,,
with C an affineC-algebra ang a prime ideal ofC. It follows from [32, Corollary
4.2] thatpC o, is prime. We define theon-standard hulbf R to be the localization

Ry = (Ctoo)pROQ .

This is again independent from the choice of presentalios= C,. As explained
above,pC is an ultraproduct of ideals, in an approximatiorC,, of C. By tos’
Theorem, almost alj,, are prime. We call the localizatioR,, := (C,),,, (for those
p for which it makes sense), approximationof R. It follows that the ultraproduct
of the R, is Ro.

In the forthcoming [1], we will drop the finite type condition and show the exis-
tence of approximations and non-standard hulls for arbitrary Noetherian local rings
containingQ.

2.2. Homomorphisms.Let ¢: C — D be a (local) homomorphism of finite
type between (local) affin€-algebras. This corresponds to a presentatiof afs
C€]/I (or a localization of the latter), for some finite tuple of variatfed et C),
andD,, be approximations of’ and D respectively, where we use the presentation
D := C[¢]/I to construct theD,,. This shows that almost every, is aC)-algebra.
The corresponding ring homomorphism: C, — D, is called arapproximation
of . The ultraproduct of the, is a homomorphisnp, : Coo — Do, called the
non-standard hulbf ¢, whereC, and D, are the non-standard hulls 6fand D
respectively. We have a commutative diagram

®
C - D

3

C » Doo.
Yoo

Note that if we choose a polynomial ringyof which bothC andD are homomorphic
images, therC', =2 C ®4 A and Dy, = D ®4 Ay by (2), andp, is just the
base change a@f over A,.
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2.3. Affine Schemeslf X is an affine scheme of finite type ov€r say of the
form Spec C with C an affineC-algebra, then we cak’,, := Spec C}, anapproxima-
tion of X, for any choice of approximatiofi;,, of C. One has to be careful however:
it is not true that the ultraproduetim,_, ., X, of the X, is equal toSpec C'.. In
fact, ulim, .., X, is the subset ofpec C, consisting of all prime ideals of the
form (I : ax) for I afinitely generated ideal ifi'», (in fact, we may takd ., to
be generated by at modim X elements) and., an element ot”, (and hence in
generalis no longer a scheme). Instead, weXall := Spec(C,) thenon-standard
hull of X. We have a faithfully flat canonical morphisk,, — X. SinceX ., is ho
longer a Noetherian scheme, it is more prudent to reason on its approximatjons
instead, and that is the course we will take in this paper.

2.4. Affine Morphisms. Let f: Y — X be a morphism of finite type between
the affine scheme¥ := Spec D and X := Spec C of finite type overC. This
induces &C-algebra homomorphisgp: C' — D. Lety,: C\, — D, be an approx-
imation of ¢ (as in§2.2) and letf,: Y, — X, be the corresponding morphism
between the approximationts, := Spec D, and X, := SpecC,,. We call f, an
approximationof f. It follows from the corresponding transfer for affine algebras
(see [32,84]) that if f is an (open, closed, locally closed) immersion (respectively,
injective, surjective, an isomorphism, flat, faithfully flat), then so are almogtall
We leave the details to the reader.

2.5. Modules. Let F be a coheren® x-module. Any such module is of the form
M with M a finitely generated’-module (see [10, 11.5] for the notation). Wrife
as the cokernel of a matrix overC, that is to say, given by an exact sequence

oo Lot - M=o,

Let ', be an approximation af (that is to say, thd", are (a x b)-matrices over
C), with ultraproduct equal td') and letA/,, be the cokernel of,. We call M, an
approximatiorof M and we call their ultraprodudt/ ., thenon-standard hulbf A1.
Again one shows that/,, does not depend on the choice of mafrixin fact, we
have an isomorphism

4) Mo 2 M Q¢ Co.

TheOx -moduleF, := J\7p associated td/,, is called arapproximationof F.

2.6. Schemeslet X be a scheme of finite type ové&r. Let U; be a finite cov-
ering of X by affine open subsets. For eagHet U;, be an approximation af;.
| claim that for almost alp, the U;,, glue together into a schen?€é,, of finite type
overF29 and, for any other choice of open affine cover{iigf } of X, if the result-
ing glued schemes are denot&(, thenX, = X, for almost allp. This justifies
calling theX',, anapproximationof X. The proof of the claim is not hard, but is a
little tedious, in that we have to check that the whole construction of glueing schemes
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is constructive and hence passes by tos’ Theorem through ultraproducts. Here is a
rough sketch: for each pair< j, we have an isomorphism

o
Pij* Ou, U:NU; — OUJ u;nu; *

Taking approximations;;, of these maps as describedgia.4, we get from tos’
Theorem that;;,, defines an isomorphism

~

OU“D U;pNUjp = OUM)

Uimejp

for almost allp. Hence thédJ;,, glue together to get a schemg,. If we start from a
different open affine coveringU; }, then to see that the resulting schem&sagree
for almost allp, reason on a common refinement of these two coverings.

Similarly, if C; is the affine coordinate ring df;, then theSpec(C; ) glue to-
gether and the resulting schemYe,, will be called thenon-standard hulbf X. In
particular, the canonical morphisi,, — X is faithfully flat (since it is so locally).

2.7. Morphisms. Let f: Y — X be a morphism of finite type between schemes
of finite type overC. Let X, andY, be approximations ok andY respectively.
Choose finite affine open coveringgsandy of respectivelyX andY’, such thaty
is a refinement off ~1(4). In other words, for eacl € 2, we can findU € 4,
such thatf(V)) C U. Let us write f|,, for the restriction’ — U induced byf.
Choose approximatiorts,, U, and( f|,,), of &, % and the affine morphismsg|,,
respectively (us§2.4 for the latter). It follows that for any two opef§V’ € 2,
the morphismg f|y,), and( f|.), agree on the intersectiori, N V7, for almost
all p, and therefore determine a morphigin: Y, — X,, which we will call an
approximationof f. As for affine morphisms, most algebraic properties descend to
the approximations in the sense tlfatas a certain property (such as being a closed
immersion or flat) if, and only if, almost afl,, have.

2.8. Coherent SheaveslLet F be a coheren®) x-module. For eaclh letg;, be
an approximation of the cohere@;,-module ]—‘|in as explained ir§2.5 and§2.6
and with the notations therein. Again one easily checks that #igsgiue together
to give rise to a cohereid -moduleF ), which we therefore call aapproximation
of F, and, moreover, the construction does not depend on the choice of open affine
covering.

If F is a coherent sheaf of ideals da with approximationF,,, then almost all
F, are sheaves of ideals, and the closed subscheme they determiig isnan
approximation of the closed subscheme determinedbyMore generally, many
local properties (such as being invertible, locally free) hold for the slied#f and
only if, they hold for almost all of its approximatioifs,, since they can be checked
locally and hence reduce to a similar transfer property for affine algebras discussed
at large in [32].
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2.9. Graded Rings and Modules.Recall that a ringS is called ¢-)gradedif it
can be written as a direct sum;cz [S];, where eachiS]; is an additive subgroup
of S (called thej-th homogeneous piead 5), with the property thatS], - [S]; C
(5], forall, j € Z. In particular, eachS], is an[S],-module. If all[S],; are zero
for j < 0, we call$ positively gradedAn S-module) is calledgradedif it admits
a decompositiorbcz [M];, where each)M]; is an additive subgroup af/ (called
the j-th homogeneous piecd 1), with the property thatS], - [M]; C [M],;, for
all 4,5 € Z. We will write M (m) for the m-th twistof M, that is to say, for the
gradedS-module for whichlM (m)]; := [M],,, ..

Let S be a graded affin€-algebra. LetS, be an approximation of and S
its non-standard hull. Our goal is to show that almostSallare graded. Let; be
homogeneous algebra generatorsaiver C, say of degred,. PutA := C[¢] and
let o: A — S be given by¢; — x;. We makeA into a graded ring be giving;
weightd;, that is to say{A}j is the vector space ovér generated by all monomi-
als¢pt -+ &8 such thatdye; + - -+ + dpe, = j. Hence the kernel of A — S
is generated by homogeneous polynomials in this new grading. GiveAatine
same grading ad (using the weightg;) and let/,, be an approximation af. It fol-
lows from Los’ Theorem that almost dl}, are generated by homogeneous elements.
SinceS, = A,/I, for almost allp, we proved that almost all approximations are
graded. Moreover, if' is positively graded, then so are almostsjl

However, the non-standard hudl,, is no longer a graded ring. Nonetheless, for
each non-standard integgr(that is to say, any elemerjt := ulim,_, j, in the
ultrapowerZ., of Z), we can define thg-th homogeneous pie¢®|; of S as
the ultraproduct of th¢Sp]jp. It follows that eachS]; is a direct summand of
Soo (and in fact,S% = @z [S]; is a (proper) direct summand 6t..), and
[Socl; - [Seo); € [Secliy ;s foralli,j € Zo, (s0 thatS%, is aZe.-graded ring). If
Jj is a standard integer (that is to sgye Z, whencej, = j for almost allp), the
embeddingS C S, induces an embedding

®) [5]

Note that this is not necessarily an isomorphism. For instance;# C[¢, ¢, 1/¢]
with ¢ and¢ having weightl (and1/¢ weight —1), then[S], = C[(/¢] whereas
[S~], contains for instance the ultraproduct of gg/¢?.

Let M be a finitely generated gradédmodule. Let),, be an approximation of
M and M , its non-standard hull. By the same argument as above, almakf,all
are gradeds,,-modules. We define similarly theth homogeneous pie¢Moo}j of
M . as the ultraproduct of thkMp]jp. It follows that[Se]; - [Mso]; € [M o]
for eachi, j € Zoo, and[M]; C [M ], for each standargl.

If M — N is a degree preserving morphism of finitely generated gréted
modules (so thaM/]; maps insidgN],, for all j), then the same is true for almost

itj
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all approximations\/,, — N,,. Hence the base changé.. — No sendsM ],
inside[N | ;, for eachj € Z.

2.10. Projective SchemesSuppose thak := Proj.S is a projective scheme,
with S an affine, positively grade@-algebra. LetS, be an approximation of.
Thens, is an affine, positively gradeff%-algebra by§2.9, andX, = Proj S,,, for
almost allp. Indeed, this is clear faf := C[¢, ..., &,] (so thatX = P¢), and the
general case follows from this since any projective scheme of finite type(bigea
closed subscheme of sorfig.

2.11. Polarizations.Let X be a projective variety an® an ample line bundle
on X (we will call P apolarizationand study this situation in more detailg). Let
X, andP,, be approximations ok andP respectively. | claim that almost &R,
are ample line bundles. That almost all are invertible is clear from the discussion in
§2.8. Suppose first thak is very ample. Hence there is an embeddingX — P¥
such thatP = f*O(1). From the discussion if2.7 and§2.9, the approximation
fp: Xp — PJJF\QQ is an embedding an®,, = f+O(1) for aimost allp, showing that
almost allP, are very ample. IfP is just ample, therP™ is very ample for some
m > 0 by [10, Il. Theorem 7.6]. Hence by our previous argument, almosPil
are very ample. By another application of [10, Il. Theorem 7.6], almosPalare
ample.

Presumably the converse also holds, but this requires a finer study of the depen-
dence of the exponemt on the ample sheaf: it should only depend on the degree
complexity of the sheaf (that is to say, on the maximum of the degrees of the poly-
nomials needed in describing the sheaf).

2.12. Complexes.Let C* be an arbitrary bounded complex in which each term
C™ is afinitely generated module over an affiiealgebra. Using2.2 and§2.3, we
can choose an approximation for each term and each homomorphism in this com-
plex. Let(C*), denote the corresponding object. By tos’ Theorem, almogtall,
are complexes. This justifies callifi§*®),, anapproximationof C*. Let A be a poly-
nomial ring overC such that each™ is an A-module. It follows from (4) that we
have an isomorphism of complexes
(6) C®®a A = gli)lg(cw)p.

Since taking cohomology consists of taking kernels, images and quotients, each of
which commutes with ultraproducts, taking cohomology also commutes with ultra-
products. Applying this to (6), we get for eathan isomorphism

) H'(C*) @4 Ao = H'(C* ©4 Acc) = ulim H'((C*),)
where we used that — A, is faithfully flat for the first isomorphism.

Our next goal is to show that an approximation of the cohomology of a coherent
Ox-moduleF is obtained by taking the cohomology of its approximations. In order
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to prove this, we us€ech cohomology to calculate sheaf cohomology (this will be
studied further ir5.3.1 below).

2.13. Cech Cohomology. Recall that theCech complex* (i; F) of F associ-
ated to an open affine coverifig:= {U, ..., U,} of X is by definition the complex
in which them-th term form > 1is

C™ (W F) = P HO (UL, F)

wherei runs over alim-tuples of indiced < i; < iy < -+ < 4, < s and where
Ui :=U;, NU, N---NU,, (see[10, 4] for more details). Note th&t (L; F) is
a bounded complex of affing-algebras.

Lemma 2.14. Let X be a scheme of finite type ov&r let 4l be a finite affine
open covering ofX and let* be a coherentDx-module. 1fX,, 4, and F, are
approximations of{, 4l and F respectively, then the complex@¥iL,; 7,) are an
approximation of the comple® (41; F).

Proof. Since an approximation df is obtained by choosing an approximation
for each affine open in it, we get from tos’ Theorem thgtis an open covering of
X, for almost allp. Moreover, ifU is an affine open with approximatidri,, then
H°(U,,F,) is an approximation of/°(U, F). The assertion readily follows from
these observations. O

If X is separated and of finite type ov€rand if 7 is a coherentD x-module,
then the cohomology modulggi(X, F) can be calculated as the cohomology of
the Cech complexC* (4L, F), for any choice of finite open affine covering([10,
Theorem 4.5]). More precisely,

®) HY(X,F) = HTHC (& F))

(some authors start numbering tBech complex from zero, so that there is no shift
in the superscripts needed).lfconsists of affine operfspec C;, we can choose a
polynomial ringA overC so that every; is a homomorphic image of. It follows
that each module id® (4; F) is a finitely generatedi-module, and hence so is each
HY(X,F).

If X is moreover projective, then eadh’(X, F) is a finite dimensional vector
space ove€ and its dimension will be denoted (X, F).

Theorem 2.15. Let X be a separated scheme of finite type déeand letF be a
coherentO x-module. LetX, and ¥, be approximations ok and F respectively.
For an appropriate choice of a polynomial ring overC and for eachi, we have an
isomorphism
9) HY(X,F)®a As = ulim H (X, Fp).

p—00

In particular, if X is moreover projective, theli' (X, ) is equal toh? (X, F)
for almost allp.
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Proof. By Lemma 2.14, th€* (LL,; F,,) are an approximation @*(4; F). The
first assertion now follows from (7) and (8). The last assertion follows from the first,
by taking lengths of both sides and using [29, Proposition 1.5]. O

Therefore, ifH*(X, F) vanishes for somé then so do almost alf* (X ,,, ).
More precisely, for a fixed choice of approximation, et be the collection of
prime numberg for which H*(X ,, F,) vanishes. By the above resuli; » belongs
to the ultrafilter if, and only if, H*(X,F) = 0. However, if we have an infinite
collection of coherent sheavés, with zeroi-th cohomology, the intersection of all
3,7, will in general no longer belong to the ultrafilter, and therefore can very well
be empty. The next result shows that by imposing some further algebraic relations
among theF,,, the intersection remains in the ultrafilter.

Corollary 2.16. Let X be a projective scheme of finite type o@rLet £ be an
invertible O x-module and le€ be a locally freeD x-module. LetX,,, £, and€, be
approximations of{, £ and& respectively. If for someand some:,, we have that
HY(X,E® L") = 0forall n > ng, then for almost alp, we have, for allh > ny,
that H' (X, €, ® L) = 0.

Proof. Let A denote the symmetric algebta,>o L™ of £ and letF := A®E®
L™, Note thatF = &,,>,,€ ® L™, S0 that our assumption becomé$( X, F) = 0.
We cannot apply Theorem 2.15 directly, Asis not a coheren© x-module. Let
Y := Spec A be the scheme oveY associated tod (see [10, Il. Ex. 5.17]). Since
A is a finitely generated sheaf 6fx-algebras, the morphisgh: Y — X is of finite
type. Moreover,f is affine (that is to sayf ~!(U) = Spec A(U) for every affine
openU of X) and A = f.Oy. LetG = f*(£ ® L™), so thatG is a coherent
Oy-module. We have isomorphisms

G20y REQRLYZARERL™ = F,

where the first isomorphism follows from the projection formula (see [10, II. Ex.
5.1]). Therefore,

(10) HY(Y,G) = H(X, f.G) = H(X,F) =0

where the first isomorphism holds by [10, Ill. Ex. 4.1].

Let f,: Y, — X, be an approximation of (as described i§2.7) and letF,,
and G, be approximations ofF and G respectively. By Los’ Theorem, we have
isomorphisms
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(11) Gp = [o(Ep® L)
(12) (fp)eGp = F
(13) (fp):Ov, =P L}
n>0
(14) Fo= P e 0Ly
n>ng

for almost allp. Applying Theorem 2.15 to (10), we get that aimost/@f(y ,, G,)
vanish. Hence, by the analogue of (10) in characterjst@lmost allH*(X ,, F. )
vanish. In view of (14), this proves the assertion.

Let us conclude this section with showing that this non-standard formalism just
introduced is closely related to the usual reduction moguyks for instance used in
the definition of tight closure in characteristic zero in [14]).

2.17. Models.Let K be a field andk a K-affine algebra. With anodel of R
relative to K (calleddescent datén [14]) we mean a paifZ, Rz) consisting of a
subringZ of K which is finitely generated oveét and aZ-algebraR; essentially
of finite type, such thak = R; ®, K. Oftentimes, we will think ofR; as being
the model. Clearly, the collection of moddls, of R forms a direct system whose
union isR. We say thaiR is F-rational type(respectivelyweakly F-regular typeor
strongly F-regular typg if there exists a mod€lZ, Rz), such thatR; /pR is F-
rational (respectively, weakly F-regular or strongly F-regular) for all maximal ideals
p of Z (note thatR /p R has positive characteristic). See [14] or [17, App. 1] for
more details.

The following was proved in [34, Corollary 5.9] for local rings; the general case
is proven by the same argument.

Proposition 2.18. Let R be aC-affine domain. For each finite subseti®fwe can
find a model Z, R;) of R containing this subset, and, for almost glla maximal
ideal p,, of Z and a separable extensidfi/p, C ]Fg'g, such that the collection of
base change®; ® ]Fg'g gives an approximation a®. Moreover, for any € R,
the collection of images efunder the various homomorphismy, — Rz ®z IF;'Q
gives an approximation of.

2.19. Approximations as Universal Reductions Suppos€é Rz, Z') is another
model of R satisfying the assertion of the previous proposition (so that we have ho-
momorphismsZ’ — Fa'g) Since any two approximations agree almost everywhere
as mentioned i§2.1, we get thaR,; ®; F2% = R, ®, F29for almost allp.
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3. Log-terminal Singularities

In [9], the authors show that@-GorensteirC-affine algebra has log-terminal sin-
gularities if it is weakly F-regular type (note that weakly F-regular type and strongly
F-regular type are equivalent under t@eGorenstein condition by [24]), whereas
the converse is proved in [8]. In this section we will define a third condition in
terms of ultraproducts of Frobenii and prove its equivalence with the other ones.
The advantage of the latter property is that it is easily seen to descend under pure
homomaorphisms (see Proposition 3.11). We recall some terminology first.

3.1. Q-Gorenstein Singularities. A normal schemeX is calledQ-Gorensteirif
some positive multiple of its canonical divisfiry is Cartier; the least such positive
multiple is called thendexof X. If f: X — X is a resolution of singularities of
and E; are the irreducible components of the exceptional locus, then the canonical
divisor K is numerically equivalent t¢* (K x )+ a, E; (asQ-divisors), for some
uniquea; € Q (a; is called thediscrepancyf X alongFE;; see [20, Definition 2.22]).

If all a; > —1, we call X log-terminal(in case we only have a weak inequality, we
call X log-canonica).

3.2. Ultra-Frobenii. Any ring R of characteristip is endowed with thé&robe-
nius endomorphismp,,:  — 2”, and its powersp, := 7, whereq := p°. We
can therefore viewk as a module over itself via the homomorphigiy) and to em-
phasize this, we will use the notatign, R (a notation borrowed from algebraic
geometry; other authors use notations suctikRés R¥« or R). Similarly, for an
arbitrary R-module M, we will write ¢, M for the R-module structure o/ via
g (that is to sayy - m = x9m). It follows thaty, M = M ®r ¢4, R.

For each prime numbes, choose a positive integer, and letw be the non-
standard integer given as the ultraproduct of the powers To each suchr, we
associate anltra-Frobeniusin the following way. For eaclt-affine domainR with
non-standard hulR.,, consider the homomorphism

R — Ryo: @ — 2™ := ulim(z,)P”"

p—00

wherez, is an approximation of (one easily checks that this does not depend on
the choice of approximation). We will denote this ultra-Frobeniushyor simply

; whenever we want to emphasize the rign which it operates, we write,, z or
simply pr. This assignment is functorial, in the sense that for any homomorphism
f: R — S of finite type, we have a commutative diagram
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R / - S

(15) PR Ps

Ry . > Seo-
Note thaty is the restriction taR of the ultraproduct of they . In particular, if
all e, = 1, then the corresponding ultra-Frobenips, was called theon-standard
Frobeniusin [32].

Each ultra-Frobenius induces @imodule structure o, which we will de-
note byy. R (SO thatz - roo = ¢(2)rs). It follows thatp. R, is the ultra-
product of the(wpep)*Rp, with R, an approximation ofR. If M is a finitely
generated?-module with non-standard huli/ ., then theR-module structure on
M, 2 M ®g Ry Via the action ofp on the second factor, will be denoted M.
It follows that ¢, M is isomorphic toM ®gr p.R. and hence isomorphic to the
ultraproduct of thep,c,, ), M.

Definition 3.3. We say that &C-affine domainR is ultra-F-regular, if for each
non-zerac € R, we can find an ultra-Frobeniyssuch that the?-module morphism

cpp: R — @uRoo: x — cp(x)

is pure.

For M an R-module, we will writecp,,;: M — M ®pr p.R. for the base
change oty . Since purity is preserved under localization, one easily verifies that
the localization of an ultra-F-regular ring is again ultra-F-regular.

Remark 3.4. If Ris normal, so that purity and cyclical purity are the same by [11,
Theorem 2.6], then purity ofp 5 is equivalent to the condition that for eveyye R
and every ideal in R, if cp(y) € ¢(I)Rw, theny € I. From this and the fact that
any ultra-Frobenius on a regular local ring is flat (same proof as for [32, Proposition
6.1]), one easily checks that a regular (lod&affine domain is ultra-F-regular.

In [34], we called a locaC-affine domain with approximatio®,, weakly gener-
ically F-regular (respectivelygenerically F-rationa), if each ideall in R (respec-
tively, some ideal generated by a system of parameters), is equal to its generic tight
closure. Recall from [32] that an elemente R lies in thegeneric tight closuref
an ideall, if z, lies in the tight closure of ,, for almostp, wherel, andz, are
approximations off andx respectively. We proved in [34, Theorem C] that being
generically F-rational is equivalent with having rational singularities. Let usieall
generically F-regularif every localization ofR is weakly generically F-regular.

Theorem 3.5. Let R be aC-affine domain.

(1) If Ris strongly F-regular type, then it is ultra-F-regular.
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(2) If Ris ultra-F-regular, then it is generically F-regular.

Proof. To prove (1), let be a non-zero element &. Let (Z, R;) be a model of
R containinge. By Proposition 2.18, there exists for almostalla maximal ideal
p, of R and a separable extensi@ifp, C F39, such thatk, := R, ®, Fa%is an
approximation ofR and such that for any elemente Rz, its image inR, under
the base change,: Rz — R, is an approximation of-. In particular,c is the
ultraproduct of they, (c). By definition, we may choose the model in such way that
almost allS,, := Rz /p, R are strongly F-regular. In particular, we can find powers
q := p°», such that the morphism

Sp = 0q,(Sp): T — p(c)z?

is pure. By base change, tli&-module morphism
Ry — 4,(Sp) ® Rp: w1 vp(c)r? @ 1

is also pure. Sinc&/p, C F39is separable, we get that, (S,) @ R, = ¢, Ry,
showing that the?,,-module morphism

(16) Ry — g, Ryt & — yp(c)z?

is pure. Lety be the ultra-Frobenius given as the (restrictionR@f the) ultra-
product of thep, and letg., be the ultraproduct of the morphisms given in (16). It
follows thatg (2 ) = co(z), SO that the restriction af, to R is preciselycy .
Moreover, from the purity of (16), it follows, using tos’ Theorem, that every finitely
generated ideal of R is equal to the contraction of its extension unglgr. Since

R — R is faithfully flat, whence cyclically pure, it follows that the restriction of
Joo 10 R, that is to saysp g, is cyclically pure. SinceR is in particular normalgy ,

is pure by [11, Theorem 2.6], showing thatis ultra-F-regular.

Assume next thaR is ultra-F-regular. Without loss of generality, we may assume
that R is moreover local. Lel be an ideal inR and letz be an element in the generic
tight closure ofl. We need to show that € I. Letz, andl, be approximations
of x and I respectively. By [32, Proposition 8.3], we can choese R such that
almost every, is a test element foR,,, whereRz, andc, are approximations ok
andc respectively. Letp be an ultra-Frobenius such that tRemodule morphism
cpp is pure. In particular this implies for evegye R that

a7) if co(y) € o(I)Roo, theny € 1.

Supposey is the ultraproduct of the,”. Therefore, (17) translated in terms of an
approximatiory,, of an elemeny € R, becomes the statement

(18) if ¢, 0p7 (yp) € @7 (Ip) Ry, theny,, € 1),

for almost allp.
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By assumption, almost eveuy, lies in the tight closure of ,. Sincec, is a test

element, this means that

Cp @év(xp) € SD;Z)V(IP)RP»
forall N. With N := e,,, we get from (18) that, € I,,. Taking ultraproducts shows
thatx lies inI R, whence inl, by the faithful flatness oR — R.. O

Remark 3.6. Note that if R is ultra-F-regular with approximatioR,, then it is
not necessary the case that almosfgllare strongly F-regular. Namely, the 3&f ;
of prime number for which (18) holds, depends a priori grand/, and therefore,
their intersection over all possibleandl might very well be empty.

The prime characteristic analogue of the next result was first observed in [42]; we
follow the argument given in [39, Theorem 4.15].

Proposition 3.7. Let R C S be a finite extension of locél-affine domainsétale
in codimension one. Letbe a non-zero element &f and ¢ an ultra-Frobenius. If
cpp: R — ¢.R ispure, then soispg: S — p.Sx0.

In particular, if R is ultra-F-regular, then so is5.

Proof. Let R C S be an arbitrary finite extension eFdimensional localC-
affine domains and fix a non-zero elemersind an ultra-Frobeniug. Letn be the
maximal ideal ofS andwg its canonical module. | claim that iR C S is étale,
thenS ®r Y« Roo = ¢S Assuming the claim, leR C S now only beétale in
codimension one. It follows from the claim that the supports of the kernel and the
cokernel of the base changexr . R — ¢S~ have codimension at least two.
Hence the same is true for the base change

ws ®s S AR PsxRoo = Ws g ©iSoo.

Applying the top local cohomology functdid?, we get, in view of Grothendieck
Vanishing and the long exact sequence of local cohomology, an isomorphism

(19) Hg(wS @R (P*Roo) = Hg(wS s @*Soo)-

By Grothendieck duality//¢(ws) is the injective hullE of the residue field of.
Taking the base change o, andcpg over wg, and then taking the top local
cohomology, yields the following commutative diagram

E = Hws) —— E®r psRoo —— HY(ws ®r v« Roo)

H ! [

E= Hg(wS) — F ®s (p*Soo — Hg(WS ®s SD*SOC)

where the last vertical arrow in this diagram is the isomorphism (19). Since by as-
sumption,cpr: R — ¢. R is pure, so is the base change — ws @ ¢« Roo.

Since purity is preserved after taking cohomology, the top composite arrow is in-
jective, and hence so is the lower composite arrow. In particular, its first factor
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E — F ®s ¢S is injective. Note that this morphism is still given as multiplica-
tion by ¢, and hence is equal to the base changg of cp 4. By [13, Lemma 2.1(e)],
the injectivity of co, = cpg ® E then implies thatyg is pure, as we set out to
prove.

To prove the claim, observe thathf — S is étale with approximatio®, — S,
then almost all of these aédale. Indeed, by [26, Corollary 3.16], we can wirite
asR[¢]/I, with € := (&1,...,&,) and] == (f1,..., fo)R[£], such that the Jacobian
J(f1,..., fn)isaunitinR, and by tos’ Theorem, this property is preserved for al-
most all approximations. In general (if — D is anétale extension of characteristic
p domains, then we have an isomorphigm,C ®c D = ¢, D (see for instance
[12, p. 50] or the proof of [39, Theorem 4.15]). Applied to the current situation, we
getthatS, ®g, vq, Ry = ¢4, 5, for g any power of ([12, p. 50]). Therefore, after
taking ultraproducts, we obtain the required isomorphBm® g .« Roo = .S
(note thatS, =& R, ®gr S sinceR — S is finite).

To prove the last assertion, we have to show that we can find for each non-zero
¢ € S an ultra-Frobeniug such thatcpg is pure. However, if we can do this for
some non-zero multiple af, then we can also do this fer and hence, sinc§ is
finite over R, we may assume without loss of generality that R. SinceR is
ultra-F-regular, we can find therefore an ultra-Frobeniusuch thatcy, is pure,
and hence by the first assertion, so is theg, proving thatS is ultra-F-regular. O

3.8. Proof of Theorem 1. The equivalence of (1) and (1') is proven by Hara in
[8, Theorem 5.2]. Theorem 3.5 proves (£)(2). Hence remains to prove (2} (1).

To this end, assumR is ultra-F-regular. Recall the construction of the canonical
cover of R due to Kawamata. Let be the index ofR, that is to say, the leastsuch
thatOx (rKx) = Ox, whereX := Spec R and K x the canonical divisor o¥X.
This isomorphism induces aR-algebra structure on

R:= H'(X,0x @ Ox(Kx) @ - @ Ox((r — 1)Kx)),

which is called thecanonical covenf R; see [19]. Since? — R is étale in codi-
mension one (see for instance [39, 4.12]), we get from Proposition 3.Riisatltra-
F-regular. Hencek is weakly generically F-regular, by Theorem 3.5. In particular,
R is generically F-rational, whence has rational singularities, by [37, Theorem 6.2].
By [19, Theorem 1.7], this in turn implies th& has log-terminal singularities. [

Remark 3.9. Note that without relying on Hara’s result (which uses Kodaira
Vanishing), we proved the implications (13- (2) = (1), recovering the result of
Smith in [38, 39].

Remark 3.10. There are at least eight more conditions which are expected to be
equivalent with the ones in Theorem 1 for a loQalGorensteirC-affine domainR,
namely

(3) Ris weakly generically F-regular;
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(3') R is generically F-regular;
(4) R is weakly F-regular (that is to say, every ideal is equal to its tight closure
in the sense of [14]);
(4) Ris F-regular (that is to say, every localization®fs weakly F-regular);
(5) R — B(R) is cyclically pure (we will say thaR is B-regular; see§4 below
for the definition ofB(R));
(5") S — B(9) is cyclically pure for every localizatiof of R;
(6) R is weakly difference regular (that is to say, every ideal is equal to its non-
standard tight closure in the sense of [32]; see §3610]);
(6") R is difference regular (that is to say, every localizationffs weakly
difference regular);

The implications (6)= (3) = (4) and (3)=- (5) follow respectively from the facts

that generic tight closure is contained in non-standard tight closure [32, Theorem
10.4], that classical tight closure is contained in generic tight closure [32, Theorem
8.4], and thatB3-closure is contained in generic tight closure [34, Corollary 4.5].
We have similar implications among the accented conditions, and, of course, the
accented conditions trivially imply their weak counterparts. By [34, Theorem 5.2]
conditions (5) and (5") are equivalent. Finally, Theorem 3.5 proves that(2y’).

Conjecturally, weakly F-regular is the same as weakly F-regular type, so that
therefore all (weak) conditions (1)—(4) would be equivalent for ld@aborenstein
C-affine domains. If we conjecture moreover tlifatlosure is the same as generic
tight closure (as plus closure is expected to be the same as tight closure), (1)—(5)
would be equivalent. Without these assumptions, it is not hard to show tRaisif
B-regular, then any ultra-Frobenius is pure. The fact that we allow in the definition
of ultra-F-regularity any ultra-Frobenius, and not just powers of the non-standard
Frobenius, causes an obstruction in proving that£2)6).

The importance of this new characterization of log-terminal singularities in Theo-
rem 1 is the fact that unlike the first two properties, ultra-F-regularity is easily proved
to descend under (cyclically) pure homomorphisms.

Proposition 3.11. Let R — S be a cyclically pure homomorphism betwe@&n
affine algebras. IS is ultra-F-regular, then so igz.

Proof. Since S is in particular normal, so i (see for instance [37, Theorem
4.7]). Therefore, the embeddirigy — S is pure, by [11, Theorem 2.6]. Letbe a
non-zero element oR. By assumption, we can find an ultra-Frobenjusuch that
the S-module morphism

cpg: S — puSoo: T cp(x)

is pure, and whence so is its composition with— S. However, this composite
morphism factors asp 5, followed by the inclusiornp,. R, C ¢..S~. Therefore, the
first factor,cyp, is already pure, showing thatis ultra-F-regular. 0
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Remark 3.12. Proposition 3.11 together with Theorem 1 and Remark 1.2 there-
fore yield the first assertion of Theorem 2. The last assertion is then a direct con-
sequence of this (after localization), since the hypotheses imply that the inclusion
A% C Ais cyclically pure (in fact even split), wher is the affine coordinate ring
of X and A% the subring ofG-invariant elements (so tha/G = Spec A%).

Remark 3.13. Under the stronger assumption thatis regular in Theorem 2
rather than just having log-terminal singularities, we can still conclude Rhlahs
log-terminal singularities, without having to rely on the deep result by Hara. Namely,
since S is regular, it is ultra-F-regular (Remark 3.4), whence s®iby Proposi-
tion 3.11, and therefor® has log-terminal singularities by (2 (1) in Theorem 1.

3.14. Log-canonical singularities.The following is yet unclear.If the non-
standard Frobenius p,: R — R is pure, for R a Q-Gorenstein local C-affine
domain, does R have log-canonical singularities? Is the converse also true? What
if we only require that some ultra-Frobenius is pure? Note that F-pure type implies
log-canonical singularities by [43, Corollary 4.4], and this former condition is sup-
posedly the analogue @¢f,, being pure. If the question and its converse are both
answered in the affirmative, we also have a positive solution to the following ques-
tion: if R — S is a cyclically pure homomorphism of Q-Gorenstein local C-affine
domains and if S has log-canonical singularities, does then so have R? See also
Remark 6.8 below for some related issues.

4. Vanishing of Maps of Tor

We start with providing a proof of Theorem 3 from the introduction. To this end,
we need to review some results from [34] on the canonical construction of big Coh-
en-Macaulay algebras. Fét a localC-affine domain, leBB(R) be the ultraproduct
of the absolute integral closuré®, )", whereR,, is some approximation ak. We
showed in [34, Theorem A] tha&(R) is a (balanced) big Cohen-Macaulay algebra
of R. It follows that if R is regular, therR — B(R) is faithfully flat ([34, Corollary
2.5]).

This construction is weakly functorial in the sense that given any local homomor-
phism R — S of local C-affine domains, we can find a (not necessarily unique)
homomorphisnB(R) — B(S) making the following diagram commute
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R - S

(20)

B(R) - B(S).

If R — Sis finite, thenB(R) = B(S) (see [34, Theorem 2.4]). As already observed
in Remark 3.10, we have the following purity result.

Proposition 4.1. If a local C-affine domainR is ultra-F-regular, thenR — B(R)
is cyclically pure (that is to sayR is B-regular).

Theorem 3 is a special case of the next result in view of Theorem 1 and Propo-
sition 3.11. It generalizes [13, Theorem 4.12] (I will only deal with the Tor functor
here; the more general form of loc. cit., can be proved by the same arguments).

Theorem 4.2(Vanishing of maps of Tor)Let R — S be a homomorphism ¢i-
affine algebras such th&t is an ultra-F-regular domain. Lefl be a regular subring
of R over whichR is module finite. Then for every-moduleM and everyi > 1,
the natural morphisrfTor? (M, R) — Tor (M, S) is zero.

Proof. If the map is non-zero, then it remains so after a suitable localization of
S, so that we may assume théitis local. We then may localizd and R at the
respective contractions of the maximal ideal%f and assume that and R are
already local. Letp be a minimal prime ofR contained in the kernel of the ho-
momorphismR — S. The compositionR — R/p — S induces a factorization
Tor*(M, R) — Tori*(M, R/p) — Tor;* (M, S). Thus, in order to prove the state-
ment, it suffices to show that the second homomorphism is zero, so that we may
assume thak is a domain.

We have a commutative diagram

A R S
@) L
B(A) B(R) B(S).
Let ¢ be the composite morphism
(22) Torf‘(M, R) — TorlA(]V[,B(R)) — TorlA(M,B(S)).

By the preceding discussion and our assumptidiis}) = B(R) andB(A) is flat
over A. Therefore, the middle module in (22) is zero, whence sg. i4Jsing the
commutativity of (21), we see thatalso factors as

Tor (M, R) — Tori*(M, S) — Tori*(M, B(S)).
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By Proposition 4.1, the embedding — B(S) is cyclically pure, whence pure,
by [11, Theorem 2.6] and the fact thatis normal. ThereforeTor: (M, S) —
Tor (M, B(S)) is injective (see [13, Lemma 2.1(h)]). It follows from = 0 that
then alsdlor;' (M, R) — Tor{'(M, S) must be zero, as required. 0

The next two results follow already from Hara’s characterization of log-terminal
singularities (equivalence (B=-(1’) in Theorem 1) together with the pertinent
facts on zero characteristic tight closure. However, we can give more direct proofs
using our methods. The first of these is a Briangcon-Skoda type result. For regular
rings, it was first proved in [22]; a tight closure proof was given in [12].

Theorem 4.3(Briancon-Skoda)Let R be a local domain essentially of finite type
over a field of characteristic zero and assui&as at most log-terminal singulari-
ties (or, more generally, is ultra-F-regular). Ifis an ideal inR generated by at most
n elements, then the integral closurel6f* is contained inf*+!, for everyk > 0.

Proof. The proof is an immediate consequence of Proposition 4.1 applied to [34,
Theorem B]. For the reader’s convenience, we repeat the argumenk heultra-
F-regular and lef an ideal generated by at mastlements. Let be an element in
the integral closure of"**, for somek € N. Take approximation®,,, I,, andz, of
R, I andz respectively. Since satisfies an integral equation

2" da, =0
with a; € I("*+%)7 we have for almost aj) an equation
(2p)" + alz?(zp)rk1 ot anp =0

with a;, € (1,)"**) an approximation of;. In other wordsz,, lies in the integral
closure of(1,)"**, for aimost allp. By [13, Theorem 7.1], almost every, lies
in (I,)**'R} N R,. Taking ultraproducts, we get thate I**'B(R) N R. By
Proposition 4.1, we get thatc 7*+! as required. O

Recall that thesymbolic power (") of an ideall in a ring R is by definition the
collection of alla € R for which there exists af®/I-regular element € R such
thatsa € I"™. We always have an inclusiait C 1™ If T := p is prime, therp("”)
is just thep-primary component gi”. The following generalizes the main results of
[4] and [15] to log-terminal singularities.

Theorem 4.4. Let R be a log-terminal (or, more generally, ultra-F-regulat)-
affine domain. Let be an ideal inR and leth be the largest height of an associated
prime ofa (or more generally, the largest analytic spreachdt, , for p an associated
prime of R). If a has finite projective dimension, theff™) C o, for all n.

Proof. The same argument that deduces [31, Theorem 3.4] from its positive char-
acteristic counterpart [15, Theorem 1.1(c)], can be used to obtain the zero charac-
teristic counterpart of [15, Theorem 1.1(b)], to wit, the fact th&) lies in the
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generic tight closure of™ (use [30, Proposition 6.3] in conjunction with the tech-
nigues from [32,54]). By Theorem 1 and Theorem 3.5, each ideal is equal to its
generic tight closure, proving the assertion. O

5. Polarizations

In this section,X denotes a projective scheme of finite type over some alge-
braically closed field<. Given an ample invertibl® x-moduleP, we will call the
pair (X, P) apolarized schemand we callP apolarizationof X.

Fix a polarized schemgX, P). For eachOx-moduleF, we define itgolariza-
tion to be the sheaf

7= P F o, P".
nez

In particular, for eaclf#, we have an isomorphism

~ |
FP' > F o, OF.

Definition 5.1. Thesection ringS of (X, P) is the ring of global sections «ﬁagf',
that is to say,

(23) S:=PH"(X,P").

neZ

Note thatS is a finitely generated graded algebra ot X, Ox) = K by let-
ting[S],, := H°(X, P") (ampleness is used to guarantee hitfinitely generated).
In fact, S is positively graded, sinc™ has no global sections far < 0.

The polarization can be completely recovered from the sectionSimgthe rules

X 2 Proj S and P =S5(1).

In fact, P = g@z/) for anyn € Z. Global properties oX can now be studied via
local properties of5 (or more accurately, af,,, wherem is the irrelevant maximal
ideal generated by all homogeneous elements of positive degree).

Definition 5.2. The section modulef an Ox-module F (with respect to the
polarizationP) is the module of global section$® (X, F?°) of F?° and is denoted
Mp(F), or justM (F), if the polarization is clear.

In particular, the section module (Ox ) of Ox is justS itself. LetF' := M (F).
We makeF into aZ-gradedS-module by[F], := H°(X,F @ P"), forn € Z. In-
deed, for eaclm, n € Z, we havelS], - [F], € [F],,,,, because we have canonical
isomorphismsP™ @ (F ® P") = F @ P™*". If F is coherent, then there is some
ng such thatF ® P is generated by its global sections for all> ng, sinceP is
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ample. Therefore, ifF is coherent} is finitely generated as at#tmodule. For each
n € Z, we have an isomorphism

(24) M(F)(n) =2 F o P".

Indeed, it suffices to prove that both sheaves have the same sections on each open
D, (x) (:= the set of all homogeneous prime ideals not containing the homogeneous
elementz), and this is straightforward. Note that we can in particular recdver

from its section modul@/(F) sinceF = M(F).

5.3. Cech Cohomology and Polarizations.Let (X, P) be a polarized scheme
with section ringS := M(Ox). Letm be the maximal irrelevant ideal ¢f and let
x := (z1,...,2s) be a homogeneous system of parameterS (do thatxS is in
particularm-primary). For each tuplé of indices given byl < i; < is < -+ <
i < S, Set

Xj 1= T, Ty o X, and U;:=Dy(x5)
Let 8l be the affine open covering of given by theU; := D, (z;).

5.3.1. Cech complex of a sheaflLet F be a quasi-coherer®x-module. We
generalize the discussion §2.13 to polarizations as follows. Th&ech complexf
the polarization ofF with respect to the covering, is the complexC® (U,; FP°)
given as

0—Cli= P HWU,F) — - ™= P HOU, FP) -

where inC™ the indexi runs over allm-tuples of indiced < i1 < iy < -+ <1y, <

s and where the morphisms are, up to sign, given by restriction (see [10, Chapt. III.
§4] for more details). Using (24), we see thdf (U;, F ® P") is isomorphic to
[M(F)x,],,- Therefore, we have a (degree preserving) isomorphism

(25) HO(U;, FPOY 22 M(F)y,-

5.3.2. Cech complex of a module.More generally, we associate to an arbitrary
S-moduleF aCech complex* (x; F') given as

(26) 0—>C1::@Fmi—>-~-—>C7”::@in—>...

(with notation as above) where the morphisms are, up to sign, the natural inclusions
(in fact, this construction can also be made in the non-graded casex aiithrbitrary

tuple of elements irb; see [3, p. 129] for more details). For &h¢-moduleF, we

get using (25), an isomorphism of complexes

(27) C® (8hy; FPO = C* (x; M(F)).

In particular, the cohomology of either complex can be used to compute the sheaf
cohomology ofF.
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5.3.3. Local cohomology.On the other hand, for an arbitra8tmodule F’, the
complexC*®(x; F') can also be used to calculate local cohomology. Recall that
HY(F) is equal to them-torsionT',,(F) of F, that is to say, equal to the (homo-
geneous) submodule of all elementsfofwvhich are annihilated by some power of
m; the derived functors df ,,(-) are then the local conomology modul®g, (-). By
[3, Theorem 3.5.6], the local cohomology of &mmoduleF' can be computed as the
cohomology of the augmented compléx- F' — C*(x; F') (that is, we inserted an
additional termC® := F in (26)). Hence fot > 1, we have an isomorphism

(28) H'(C*(x; F)) = Hy (F),

whereas fol = 1, we have a short exact sequence

(29) 0— H2(F)— F — HY(C*(x; F)) — HL(F) — 0.

Since all local cohomology modules are Artiniafi,and H!(C*®(x; F)) have the
same localizations at the various. If F' is a finitely generated gradetimodule,

thenH'(C*(x; F')) = M(F), whereF is theO x-module associated t8 (use (33)
below). In conclusion, we have an equality of complexes

(30) C*(x; F) = C*(x; M(F))

and (29) becomes the exact sequence (see also [5, Theorem A4.1])

(31) 0— HY(F) — F — M(F) — HL(F) — 0.

5.3.4. Comparison of cohomologyLet us summarize some of these observa-
tions. By (8) and (27), we have for eatk 0, isomorphisms of gradel-modules
(32) HY(X, FPY = HTL(C® (8Uy; FPOY) =2 HTL(C® (x; M(F))).

Moreover, fori > 1, these modules are also isomorphidif™ (M (F)) by (28). In
particular, withi = 0, isomorphism (32) becomes

(33) M(F) = H(X, FP) = H'(C*(8y; F*)).

Using that the isomorphisms in (32) preserve degree, we have forieach and
eachn € Z, isomorphisms

(34) H'(X,F@P")= HHC(x; M(F))],) = [HyH (M(F))],

(where the final isomorphism only holds foe 1).

Lemma 5.4. Let (X, P) be a polarized scheme with section risgand let
and G be two coheren® x-modules. IfP is very ample, then there is a short exact
sequence (of degree preserving morphisms)

(35) 0 — Huy(M(F)®s M(G)) — M(F) ®s M(G) —
M(F ®0x G) — Hyn(M(F) @5 M(G)) — 0.
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Proof. Let F := M(F) andG := M(G) be the respective section modules of

F andg. By (31), it suffices to show that th@X-moduIeFig?;G associated to

F ®g G is isomorphic with7 ®,, G. SinceP is very ample,S is generated by its
linear forms and it suffices to check that both sheaves agree over eactbqpeh

with 2 homogeneous of degree one. To this end, we get, using (24), isomorphisms

(F ®ox G)(D1(2)) = F(D1(2)) @0 (D (2)) 9(D+(2))
[Fz]o ®[Sm](J [Gz]o
= [(F ®s G)w]o

= (F®s G)(D4(x))

1

where the penultimate isomorphism follows from [7, II. Proposition 2.5.13] (to apply
this, it is necessary thathas degree one). O

The main application of Frobenius is through the following easy fact.

Lemma 5.5. If (X, P) is a polarized scheme of characteristic> 0 and F an
invertible sheaf onX, then for any powey of p, we have

(36) (pq (M(F))) = F1.

Proof. Let S := M(Ox) be the section ring of the given polarization. Since
(36) can be checked locally, one easily reduces to the caséttsthe ideal-sheaf
associated to a principal idea$, with a a non-zero divisor irt. Moreover, the zero-
th and first local cohomology @fS vanish, so thal/(F) = aS by (31). Therefore,
0q, (M(F)) = ¢q,(aS) = a8, from which (36) follows by taking associated
sheaves. O

We also want to remind the reader of the following observation made in [40].

Proposition 5.6. The section ring of a polarized scherfi¥, P) is Cohen-Mac-
aulay if, and only if H*(X,P™) = 0 for all n and all0 < i < dim X.

Under the additional assumption thaf is Cohen-Macaulay, some section ring
of X is Cohen-Macaulay if, and only if/*(X,Ox) = 0 for all 0 < i < dim X.

Proof. Let S be the section ring of X, P) and letm be its maximal irrelevant
ideal. As explained in [18, Proposition 2.1], the local cohomology graif$s)
andH} (S) always vanish. By a theorem of Grothendieck ([3, Theorem 3.5578,
Cohen-Macaulay if, and only if7:7(S) = 0, for alli < dim X. By (32) in§5.3.4,
this in turn is equivalent with/(X,P") = 0, for all 0 < i < dim X and alln,
proving the first assertion.

SupposeX is moreover Cohen-Macaulay. SinPeis invertible, H: (X, P") = 0
forall0 < i < dim X andn < 0 by Serre duality ([10, Ill. Theorem 7.6]). The same
is true forn > 0, since’P is ample ([10, Ill. Proposition 5.3]). Therefore polarizing
X with respect to a sufficiently large pow®?® instead ofP, we may even assume
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that H(X,P") = 0 forall n # 0 and0 < i < dim X. The second assertion then
follows from this and the first assertion (applied to the new polarization). [

6. Vanishing Theorems

In [40], Smith introduces the notion of a globally-regular type variety and
shows that it admits several vanishing theorems. She moreover conjectures that any
GIT quotient by a reductive group of a smooth Fano variety satisfies these vanishing
theorems. We will establish this conjecture using similar arguments as in loc. cit.,
but substituting ultra-F-regularity for F-regularity.

Let X be a connected projective scheme of finite type @éaprojective variety
for short).

Definition 6.1. We say thatX is globally ultra-F-regular, if some section ring
of X is ultra-F-regular at its vertex, that is to s&, is ultra-F-regular wheren is
the maximal irrelevant ideal of.

Remark 6.2. In [40], Smith callsX globally F-regularif some section rings
is strongly F-regular type (note that sinSeis positively graded, this is equivalent
by [23] with S being weakly F-regular type). By Theorem 3.5, this implies thiat
is ultra-F-regular and hence that is globally ultra-F-regular. In particular, .,
is (Q-)Gorenstein, wheren is the maximal irrelevant ideal, then globally F-regular
type and globally ultra-F-regular are equivalent in view of Theorem 1.

So we could deduce the desired vanishing theorems from Theorem 1 and the work
of Smith in [40], if we are willing to use Hara’s characterization of F-regular type.
However, using a non-standard version of her arguments, we can as easily derive the
vanishing theorems directly, without any appeal to Hara’s work (and hence without
using Kodaira Vanishing).

Remark 6.3. As in [40], one can prove directly that iX is globally ultra-F-
regular, then every section ring is locally ultra-F-regular at its vertex. Alternatively,
this follows from [40, Theorem 3.10] (even without localizing at the irrelevant max-
imal ideal), if we use Theorem 1 as in the previous remark.

In that respect, note that if the section rifgwith respect to the polarizatioR
is ultra-F-regular at its vertex, then so is any Veronese sulsify:= @, [S],., by
Proposition 3.11, as it is a pure subring. In particular, any section ring corresponding
to a positive power ofP is ultra-F-regular at its vertex. In particular, we may al-
ways assume, without relying on the results from [40], that a globally ultra-F-regular
variety admits avery amplepolarization whose section ring is ultra-F-regular at its
vertex.
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As already mentioned, the main advantage of using ultra-F-regularity instead of F-
regular type is the fact that it descends under pure homomorphism (Proposition 3.11).
In particular, we get the following descent property for quotient singularities.

Theorem 6.4. Let X be a connected projective variety owér LetG be a reduc-
tive group acting algebraically oiX and letX//G be an arbitrary GIT quotient of
X. If X is globally ultra-F-regular, then so iX//G.

Proof. Any GIT quotient of X is obtained by taking some polarizatighof X,
extending the&-action toP, taking the section ring with the induced>-action and
letting X //G := Proj S¢, whereS¢ is the ring of invariants of. In particular,S¢
is a section ring ofX//G. SincesS is ultra-F-regular by Remark 6.3, so %’ by
Proposition 3.11 a§“ C S is pure (even split). O

We now proceed with the main technical result in this section, which will be used
to derive the Kawamata-Viehweg vanishing stated in Theorem 4.

Theorem 6.5. Let X be a globally ultra-F-regular connected projective variety
overC and letF be an invertibleD x-module. If for some > 0 and some effective
Cartier divisor D, all H!(X, F"(D)) vanish forn > 0, thenH!(X, F) vanishes.

Proof. Choose a polarizatio? of X with section ringS, so thatS,, is ultra-
F-regular, wheren is the maximal irrelevant ideal . By Remark 6.3, we may
assume without loss of generality tlfatis very ample. Lef be the section module
of Z := Ox (D). Letx be a homogeneous system of parameters ahd letil, be
the open affine covering given by the, (x;)(= Proj([S:,],)). SinceD is Cartier,

1 is a fractional ideal, that is to say, a finitely generated rank#sabmodule of the
field of fractionsK of S. Clearing denominators in the inclusiérC K, we can find
anS-module morphisng: I — S. SinceD is effective,l admits a canonical section
s € [I], = H°(X, ) (see for instance [6, B.4.5]). In particular, the morphiSm-

I: 1+ sisdegree preserving. Put= ¢(s). By ultra-F-regularity, there is an ultra-
Frobeniusp such thatyg_ is pure. The compositio§ — I4.8: 1 s cis
equal to multiplication withe on S (where we disregard the grading). Tensoring this
composite homomorphism with..S ., gives

iS00 7 I @ YuSoo = PuS: 1= s®1 ¢

which composed with the inclusio$ — ¢,.S, therefore gives the morphisap.
By assumption, the base change;_ is pure. Since

Sm— S @1 Q@ ¢S

is a factor of the pure morphisapg , itis also pure. Lef" := M(F) be the section
module of F. Tensoring with7’ yields a pureS,,,-module morphism

Fo = (FRI® piSoo)m-

Using the isomorphism, F' = F' Q.S+ (se€§3.2), we can identiffF @ I @ p,.S oo
with I ® ¢, F. Taking Cech complexes with respect to the tuglgjields a pure
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homomorphism ofech complexes
C*'(x;Fn) = C*(x;(I @ 0 F)n)-

It is well-known that purity is preserved after taking cohomology, so that we have a
pure morphism

HHC (x5 F)) = HTHC (x5 (I @ 04 F)m))-

Since at a maximal ideal, the cohomology of a localigsth complex is the same
as the cohomology of the non-localiz€&ch complex (see for instance [3, Remark
3.6.18]), we get an injective morphism

37) H™HC (%, F)) — HTH(C* (x5 T © . F))

By a similar argument as 2.9, each module i€°*(x; I ® ¢.F), although not
graded, has a graded piece in each (standard or non-standard) degree. This property
is inherited by the cohomology groups and (37) preserves degrees. Hence in degree
zero, we get an injective morphism

(38) [ (€ (o F))] = [HH(C (51 © 0. F))] -

| claim that the right hand side of (38) is zero, whence by injectivity, so is the left
hand side. Since the latter is julit (X, F) by (34), the theorem follows from the
claim.

To prove the claim, letX ,, P,), S;, x,,, F, andZ,, be approximations dfX, P),
S, x, F andZ respectively, and suppose the ultra-Frobegius given as the ultra-
product of the Frobenip, (for ¢ := p*» some power op). By §2.11, almost all
(Xp,P,) are polarized. Using Theorem 2.15, the section modalgs= M(F,)
andI, := M(Z,) are approximations of respectivelyand.. In particular, the ul-
traproduct of thep, ', = F,®¢,, S, is equal tap, F' and we have an isomorphism
of Cech complexes

C*(x;I ® @, F) = ulim C*(xp; I, ® @4, F)p).

p—oo

Since cohomology commutes with ultraproducts, we get an isomorphism
HTHC (i I @ 9. F)) = ulim HYHC® (%3 1 @ g, Fp))-

Therefore, the claim follows if we can show that almost all

(39) [HH(C (xp3 1 ® g, Fp))], = 0.

Let i, be the affine covering ok, given by theD, (z;,,). By Lemma 5.5, we
have isomorphisms @y -modules

(g Fp) = F}

p
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Applying Lemma 5.4 twice shows thaf (7, ® 7)) andl, ® p,, I, are isomorphic
up tom-torsion. In particular, this yields an isomorphisrrfc:fﬁch complexes
C*(xpi I © g, Fp) = C* (8, (T, ® F)PY).

Taking cohomology, we get

HH_l(C.(Xp; I, ® ‘Pq*Fp>) = HH‘l(C.(pr; Zp® 7%)‘)0'))-
By (34) in§5.3.4, the zero-th homogeneous part of the right hand side is isomorphic
to H(X,,Z, ® F3), and this is zero for large enougtby Corollary 2.16 and our
assumption. Thus, we showed (39) and hence completed the proof. O

As in [40], we immediately obtain the following corollaries; we include their
proofs for the reader’'s convenience. Together with Remark 1.2, they prove Theo-
rem 4 from the introduction.

Corollary 6.6. Let X be a globally ultra-F-regular connected projective variety
overC and let£ be an invertibleO x-module. If£ is numerically effective (NEF),
then H'(X, £) vanishes, for ali > 0.

Proof. Suppose first thaf is ample. By Serre Vanishing/*(X, £") = 0 for
n > 0andi > 0. HenceH*(X,L) = 0 by Theorem 6.5. Suppose now that
is merely NEF. This means hat we can find an ample effective Cartier difisor
such thatC™ (D) is ample, for alln > 0. Since we already proved the ample case,
HY(X,L"(D)) =0, foralln > 0 andi > 0. Therefore, H!(X, £) = 0 by another
application of Theorem 6.5. O

Corollary 6.7 (Kawamata-Viehweg Vanishing).et X be a connected projective
variety overC and let £ be an invertibleOx-module. IfX is globally ultra-F-
regular and if£ is big and NEF, therd/(X, £~1) = 0, for all i < dim X.

Proof. Fix somei < dim X. BecauseC is big and NEF, we can find an effective
Cartier divisorD such thatC™(—D) is ample for allm > 0, by [20, Proposition
2.61]. LetS be a section ring o which is ultra-F-regular. Sinc#'is therefore
Cohen-Macaulay, so iX. Given an ample invertible she®, Serre duality yields
HY(X,Pm™) = 0, for all n of sufficiently large absolute value (see the argument in
the proof of Proposition 5.6). Applied 8 := L™ (—D), this gives

H'(X,(L7™(D))") = H'(X, (L™(=D))™") =0

for all sufficiently largem andn. Hence, for fixedn, Theorem 6.5 yields the van-
ishing of H(X, L~™(D)). Since this holds for all large:, another application of
Theorem 6.5 then gived (X, £71) = 0. O
Remark 6.8. Call a C-affine domainR ultra-F-pure if R — ¢, R, iS pure
for some ultra-Frobeniug. Call a connected projective variefy over C globally
ultra-F-pure, if some section ring oX is ultra-F-pure. Inspecting the proof of Theo-
rem 6.5, we get the following weaker versiab & 0): if X is globally ultra-F-pure
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and L invertible with H* (X, L™) = 0 for alln > 0, then H*(X, £) = 0. In particu-
lar, the argument in the proof of Corollary 6.6 shows that on a globally ultra-F-pure
variety, an ample invertible sheaf has no higher cohomology.

In fact, we can even prove Kodaira Vanishing for this class of variefieX: is
globally ultra-F-pure and Cohen-Macaulay, then H*(X, L~1) = 0 foralli < dim X
and all ample invertible sheaves £ on X . Indeed, by Serre duality ([10, IIl. Corollary
7.7]), the dual of (X, £7") is HY{(X,wx ® L™) whered is the dimension o
andwyx the dualizing sheaf oX'. BecauseC is ample, the latter cohomology group
vanishes for large, and hence so does the first. Applying the weaker version of the
vanishing theorem to this, we get thidt (X, £~1) vanishes.

Because of the analogy with the notionfebbenius split(see [40, Proposition
3.1]) and the fact that a Schubert variety has this property ([25, Theorem 2]), it is
reasonable to expect that a Schubert variety is globally ultra-F-pure. The referee
has pointed out to me that the analogue of this in positive characteristic has recently
been proven in the preprint [21]. In particular, if this result on Schubert varieties also
holds in characteristic zero, then we get Kodaira Vanishing for any GIT quotient of a
Schubert variety, since ultra-F-purity descends under pure homomorphisms (by the
same argument as for Proposition 3.11).

7. Fano Varieties

Let X be a connected, normal projective variety oerThe canonical (orlu-
alizing) sheafwx of X is the unique reflexive sheaf which agrees with the sheaf
/\dQX/C on the smooth locus oX'. We call X Fang, if its anti-canonical shea‘ﬁ)‘(1
is ample (we do not requir& to be smooth).

Theorem 7.1. A Fano variety with rational singularities is globally ultra-F-
regular.

Proof. Let X be a Fano variety with rational singularities. L&tbe the anti-
canonical section ring ok, that is to say, the section ring with respect to the po-
larization given by the ample sheazf)‘(l. It is well-known (see for instance [40,
Proposition 6.2]), that' is Gorenstein and has again rational singularities. Since ra-
tional Gorenstein singularities are log-terminal, we obtain from Theorem 1Sthat
is ultra-F-regular, showing tha is globally ultra-F-regular. O

Remark 7.2. In proving that a Fano variety with rational singularities is globally
ultra-F-regular, we have used Kodaira Vanishing twice: via Hara’s result in Theo-
rem 1 and via [40, Proposition 6.2]. Combining Theorems 4 and 6.4 with the previ-
ous theorem yields Theorem 5 from the introduction.
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