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ABSTRACT. Ideal theory for local rings of finite embedding dimension.

1. FINITE EMBEDDING DIMENSION

By a local ring (R,m), we mean a (not necessarily Noetherian) commutative ring R
with a unique maximal ideal m. The minimal number of generators of m is called the
embedding dimension of R. We studied the local algebra of local rings of finite embedding
dimension in [3]. In this paper, we study their ideal theory.

A local ring (R,m) comes with a canonically defined topology given by the maximal
ideal (called the m-adic topology). All topological terminology therefore refers to this
topology. In particular, R is called separated if it is Hausdorff in its m-adic topology.
This is equivalent with IR = 0, where IR is the ideal of infinitesimals, defined as the
intersection of all powers mn. We call the residue ring R/IR therefore the separated
quotient of R. Similarly, an ideal I is called closed, if it is so in the m-adic topology,
or, equivalently, if the corresponding residue ring R/I is separated. The completion R̂
of R is its m-adic completion, given as the inverse limit of all R/mn. If R has finite
embedding dimension, the completion R̂ is again a local ring with maximal ideal mR̂,
which is moreover complete, by [3, ?]. In fact, this implies:

Theorem A. The completion of local ring of finite embedding dimension is Noetherian.
�

1.1. Corollary. Let (R,m) be a local ring of finite embedding dimension and let I be an
arbitrary ideal in R. The completion of R/I is R̂/IR̂. In particular, the closure of I is
IR̂ ∩R.

Proof. Let R̄ := R/I and let S := R̂/IR̂ = R̂⊗R R̄. The isomorphism R/mn ∼= R̂/mnR̂
induces by base change an isomorphism R̄/mnR̄ ∼= S/mnS. Hence R̄ and S have the
same completion. However, since R̂ is complete, so is S, showing that it is the completion
of R̄.

Applied with I an m-primary ideal, we get an isomorphism R/I ∼= R̂/IR̂ showing that
IR̂∩R = I , that is to say, that I is contracted from R̂. Since this property is preseved under
arbitrary intersections, every closed ideal I is contracted from R̂, as it is the intersection of
the m-primary ideals I + mn. Conversely, if IR̂∩R = I , then R/I embeds in R̂/IR̂, and
by the first assertion, this is its completion. In particular, R/I is separated, that is to say, I
is closed. �

In particular, Cl(R) satisfies the ascending chain condition. Indeed, if I1 ⊆ I2 ⊆ . . .

is an increasing chain of closed ideals in R, then, since R̂ is Noetherian, their extension to
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R̂ must become stationary, say InR̂ = In+kR̂, for all k, and hence contracting back to R
gives In = In+k, for all k.

1.2. Corollary. If (R,m) is a local ring of finite embedding dimension, then the image of
the map Spec(R̂) → Spec(R) is ClSpec(R).

Proof. By Corollary 1.1, the image of the map consists of closed prime ideals. To prove
the converse, let p be an arbitrary closed prime ideal of R. By Corollary 1.1, we have
p = pR̂ ∩ R. Let N be maximal in R̂ with the property that p = N ∩ R. I claim that N

is a prime ideal, showing that p lies in the image of Spec(R̂) → Spec(R). To prove the
claim, suppose fg ∈ N but f, g /∈ N. By maximality, there exist a, b ∈ R \ p such that
a ∈ N + fR̂ and b ∈ N + gR̂. Hence ab ∈ N + fgR̂ = N and since ab ∈ R, we get
ab ∈ N ∩R = p, contradicting that p is prime. �

1.3. Lemma. If the completion of a local ring (R,m) of finite embedding dimension is
Artinian, then so is R.

Proof. By assumption, mnR̂ = 0, for some n. Since R/mn+1 ∼= R̂/mn+1R̂ = R̂, we
get mn/mn+1 = 0. Since m is finitely generated, we may apply Nakayama’s Lemma and
conclude that mn = 0, which implies that R is Artinian. �

Ultra-Noetherian rings. In [3], the most important class of local rings of finite embedding
dimension was the class of all ultra-Noetherian local rings, defined as any ultraproduct
of Noetherian local rings of bounded embedding dimension. More precisely, let m be
some positive integer, let W be an infinite index set, and for each w ∈ W , let (Rw,mw)
be a Noetherian local ring of embedding dimension at most m. Choose a non-principal
ultrafilter on W and let uR be the ultraproduct of the Rw. It follows that uR is a local
ring whose maximal ideal is given by the ultraproduct of the mw, and hence is generated
by at most m elements. The Rw are called components of uR (inspite of the fact that they
are not uniquely determined by uR). Moreover, if W is countable or if the ultrafilter is
countably incomplete, then by [3, ? and ?], we have:

Theorem B. Let uR be an ultra-Noetherian local ring with components Rw. The sepa-
rated quotient cR := uR/IuR, called the cataproduct of the Rw, is equal to completion
of uR and hence in particular is Noetherian. The closure of an ideal I ⊆ uR is equal to
I + IR.

Moreover, if uR is the ultrapower of a Noetherian local ring R, that is to say, if all Rw

are equal to R, then there is a canonical embedding R → cR, which is moreover faithfully
flat. �

2. PRIMARY DECOMPOSITION FOR CLOSED IDEALS

Let I ⊆ A be an ideal and p a prime ideal containing I . We say that p belongs to I , if
there is some x such that p is the radical of (I : x). In case p can actually be made equal
to (I : x), we call p an associated prime of I . We say that I has a primary decomposition,
if it can be written as a finite intersection of primary ideals, say I = g1 ∩ · · · ∩ gs. We call
such a decomposition minimal, if any two gi have distinct radical and are incomparable
(with respect to inclusion).

2.1. Theorem (Primary decomposition). Let R be a local ring of finite embedding dimen-
sion and let I ⊆ R be a closed ideal.
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(2.1.1) I has a primary decomposition

(1) I = g1 ∩ · · · ∩ gs;

(2.1.2) we may choose (1) so that it is minimal and all gi are closed;
(2.1.3) if (1) is minimal and all gi are closed, then the associated primes of I are

precisely the radicals of the gi and they are all closed;
(2.1.4) the radical of I is also closed and some power of the radical lies inside I;
(2.1.5) V(I) has finitely many irreducible components.

Proof. Since R̂ is Noetherian by Theorem A, we have a primary decomposition

IR̂ = G1 ∩ · · · ∩Gs

with Gi primary ideals in R̂. Let Pi be the radical of Gi. Let gi and pi be the respective
contraction of Gi and Pi to R. One easily checks that gi is primary with radical equal
to pi. Moreover, by Corollary 1.1, both gi and pi are closed. By taking the intersection
of all gi with the same radical, we may arrange for all pi to be distinct. After further
omitting redundant terms, we can assume therefore that (1) is a minimal decomposition.
The radical J := rad(I) is the intersection of all pi (and in fact, of the minimal primes
only) and therefore is again closed. Choose m large enough such that Pm

i ⊆ Gi for all
i. Hence Jm ⊆ pm

i ⊆ Gi ∩ R = gi and it follows therefore from (1) that Jm ⊆ I .
Assertion (2.1.5) is then clear since V(I) = V(J) = V(p1) ∪ · · · ∪ V(ps).

By [1, Theorem 4.5], the prime ideals belonging to I are precisely the pi. So remains to
show that each pi is in fact an associated prime. By passing to R/I , we may assume that I
is the zero ideal and R is separated. Let (1) be a minimal decomposition of the zero ideal
and let a := g2 ∩ · · · ∩ gs. By minimality, a is not contained in g1, so that any non-zero
x ∈ a does not belong to g1. If xy = 0, then xy ∈ g1 and hence y ∈ p1 since x /∈ g1. This
shows that Ann(x) ⊆ p1. Since pm

1 ⊆ g1, we have pm
1 a = 0. Choose k minimal such that

pk
1a = 0 and let x be a non-zero element in pk−1

1 a. Hence xp1 = 0 and p1 ⊆ Ann(x). By
our previous argument, the converse inclusion also holds, showing that p1 is an associated
prime. �

By the general theory of minimal primary decompositions (see for instance [1, Theorem
4.10]), the gi in (1) belonging to the minimal prime ideals of I are uniquely determined as
gi = IRpi

∩R.

2.2. Corollary. If R is a separated local ring of finite embedding dimension, then its depth
is positive if and only if it contains an R-regular element.

Proof. Note that in general, a local ring (R,m) can have positive depth without admitting
an R-regular element (the converse always holds). Assume R has positive depth, so that m
is not an associated prime. If R is moreover separated, then it has only finitely associated
primes by Theorem 2.1. Hence by prime avoidance, we can find x ∈ m outside these
finitely many ideals, which is therefore an R-regular element. �

3. NOETHERIAN IDEALS

Let A be a ring and I ⊆ A an ideal. If blue is a property of rings, then by abuse of ter-
minology, we often will say that the ideal I is blue when we mean to say that its residue
ring A/I has that property (inspite of the potential confusion this can cause by viewing
the ideal as a module having this property; this latter perspective is never intended). The
collection of all ideals of A will be denoted Gr(A) (the Grassmanian of A), viewed as a
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set ordered by inclusion. Note that we have three operations on Gr(A), to wit, sum, prod-
uct and intersection. In fact, sum and intersection turn Gr(A) into a lattice with smallest
element the zero ideal and greatest element the unit ideal. Let Spec(A) denote the collec-
tion of all prime ideals of A and let Specd(A) be the subcollection of all d-dimensional
prime ideals of A, that is to say, all prime ideals p such that A/p has (Krull) dimension d.
Let Fg(A) denote the collection of all finitely generated ideals of A; let Noe(A) be the
collection of all Noetherian ideals of A, that is to say, all ideals I ⊆ A such that A/I is
Noetherian; and let FgNoe(A) be the intersection of Fg(A) and Noe(A), the collection
of all finitely generated Noetherian ideals. If (R,m) is a local ring, then we also define
Cl(R), the collection of all closed ideals. By Krull’s Intersection Theorem (see for in-
stance [2, Theorem 8.10]), we have Noe(R) ⊆ Cl(R). By Theorem B, this is an equality
for ultra-Noetherian local rings, but no so in general.

Clearly, Fg(A), Noe(A) and FgNoe(A) are all closed under sums. As far as the two
other operations are concerned: Fg(A) is closed under products, but not necessarily under
intersections, whereas conversely, Noe(A) is closed under intersections (Corollary 3.2
below) but not necessarily under products. In particular, Noe(A) is a sub-lattice of Gr(A)
(with the same greatest element, the unit ideal, but possibly without a smallest element).
Combining both conditions yields an ever better behaved lattice:

3.1. Proposition. For any ring A, the collection of ideals FgNoe(A) is closed under
(finite) products, sums and intersections. If I ⊆ J is an inclusion of ideals in A with
I ∈ FgNoe(A), then also J ∈ FgNoe(A). If an ideal I belongs to FgNoe(A), then so
does any ideal with the same radical as I .

Proof. We start with proving the second assertion: let I ⊆ J and I ∈ FgNoe(A). Hence
A/I is Noetherian, showing J is finitely generated modulo I . It follows that J itself is
finitely generated, and clearly A/J is again Noetherian, proving the second assertion.

Next, we show that FgNoe(A) is closed under products. To this end, let I, J ∈
FgNoe(A). Clearly IJ is finitely generated, so remains to show that A/IJ is Noethe-
rian. Let I := (a1, . . . , am)A and J := (b1, . . . , bn)A. We will induct on the sum m + n,
starting at the first non-trivial case m + n = 2, that is to say, when m = n = 1, so that
I := aA and J := bA. Let a be an arbitrary ideal containing ab. We need to show that a
is finitely generated. By assumption, both a + aA and J ′ := (a : a) are finitely generated
(since they contain respectively a and b). Choose a finitely generated ideal I ′ ⊆ a such
that a + aA = I ′ + aA. It is now easy to see that a = I ′ + aJ ′, whence finitely generated.

For the general case, that is to say, m+n > 2, we may assume by symmetry that n > 1.
Put B := A/bnA. Clearly IB, JB ∈ FgNoe(B) and our induction hypothesis applies,
yielding that IJB ∈ FgNoe(B). This means that IJ + bnA lies in FgNoe(A). Now put
C := A/IJ . It follows that (IJ + bnA)C = bnC and IC both belong to FgNoe(C),
whence so does their product by induction. Hence bnI + IJ = IJ ∈ FgNoe(A), as we
wanted to show.

Since IJ ⊆ I ∩ J , it follows that FgNoe(A) is closed under intersections as well. To
prove the final assertion, let I ∈ FgNoe(A) and let J be such that rad I = rad J . Since
then also radJ belongs to FgNoe(A), it is finitely generated, and hence (radJ)n ⊆ J for
some n. Hence In ⊆ J and since In ∈ FgNoe(A) by the result on products, we also get
J ∈ FgNoe(A). �

3.2. Corollary. Let A be an arbitrary ring. The collection Noe(A) is closed under finite
intersections.
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Proof. Let a, b ∈ Noe(A). By assumption, A/a is Noetherian and hence we can find a
finitely generated ideal J ⊆ b such that a + b = a + J . I claim that (a ∩ b) + J = b.
Indeed, one direction is obvious, so let b ∈ b. Hence we can find a ∈ a and j ∈ J such
that b = a + j. Our claim is now clear since b− j = a lies in a ∩ b. Put B := A/(a ∩ b).
We showed that bB ∈ FgNoe(B), and by the same argument, also aB ∈ FgNoe(B).
Hence by Proposition 3.1, the intersection aB ∩ bB lies in FgNoe(B). However, since
this intersection is just the zero ideal, we showed that B is Noetherian. �

3.3. Theorem. A ring A is Noetherian if and only if every Noetherian prime ideal is finitely
generated.

More precisely, if A is not Noetherian and p is maximal among all the ideals not in
FgNoe(A), then p is a non-finitely generated, Noetherian prime ideal.

Proof. Let us prove the second assertion first. Assume A is not Noetherian. It is easy to
see that any ascending chain of non-finitely generated ideals has a union which is neither
finitely generated. Hence, by Zorn’s Lemma, there exist a maximal non-finitely generated
ideal, say p. Any ideal strictly containing p is therefore finitely generated. In particular,
A/p is Noetherian. In fact, if p  I then I ∈ FgNoe(A). Hence remains to show that p is
a prime ideal. Suppose a, b /∈ p. By what we just proved, p + aA and p + bA both belong
to FgNoe(A), whence so does their product by Proposition 3.1. Since p + abA contains
this product, p + abA also belongs to FgNoe(A), again by Proposition 3.1, showing that
ab /∈ p.

To prove the first assertion, one direction is clear, so assume every Noetherian prime
ideal is finitely generated. However, if A were not Noetherian, then the above prime ideal
p violates our assumption. �

3.4. Corollary (Cohen). A ring is Noetherian if and only if all its prime ideals are finitely
generated. �

In fact we get the following sharper result in the local case (note that a Noetherian ideal
is closed by Krull’s Intersection theorem).

3.5. Corollary. A local ring (R,m) is Noetherian if and only if all its closed prime ideals
are finitely generated. �

From Proposition 3.1 we also get immediately:

3.6. Corollary. If a local ring (R,m) has finite embedding dimension, then each m-
primary ideal is finitely generated.

4. GEOMETRIC DIMENSION

When dealing with rings of finite embedding dimension, the following invariant has
proven to be a good substitute for Krull dimension ([3]): the geometric dimension of a
local ring (R,m) of finite embedding dimension is defined recursively as follows. We
say that R has geometric dimension zero, and we write geodim(R) = 0, if and only if
R is Artinian. In general, we say that geodim(R) ≤ d, if there exists x ∈ R such that
geodim(R/xR) ≤ d − 1. Finally, we say that R has geometric dimension equal to d if
geodim(R) ≤ d but not geodim(R) ≤ d − 1, and we simply write geodim(R) := d.
It follows that geodim(R) ≤ embdim(R). We recall the following characterization [3,
Theorem ? and Theorem ?] of geometric dimension.

Theorem C. Let (R,m) be a local ring of finite embedding dimension. The following
numbers are all equal.
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• the geometric dimension d of R;
• the least possible number of elements d′ generating an m-primary ideal;
• the dimension d̂ of the completion R̂ of R;
• the geometric dimension dsep of the separated quotient Rsep;
• the combinatorial dimension d̄ of ClSpec(R).

�

From this and Corollary 1.1, we get for each ideal I ⊆ R an equality

(2) geodim(I) = dim(IR̂).

Generic tuples. A tuple x in R is called generic, if it generates an m-primary ideal and
has length equal to the geometric dimension of R. We call an element x generic, if it is
the first (or for that matter, any) entry of a generic tuple. By [3, Proposition ?], a tuple in
R is generic if and only if its image in R̂ is a system of parameters. An element x ∈ R is
generic if and only if geodim(R/xR) = geodim(R)− 1.

Threshold primes. Let d be the geometric dimension of R and let q1, . . . , qs be the d-
dimensional prime ideals of R̂. Note that R̂ itself has dimension d by Theorem C, so that
all its d-dimensional primes are minimal (but there may be other minimal prime ideals, of
lower dimension). We call the pi := qi∩R the threshold primes of R. By Corollary 1.2, the
threshold primes are closed and contain no proper closed primes. In fact, by (2), a prime
ideal p of R is a threshold prime if and only if it is closed and has the same geometric
dimension as R. Moreover, an element x ∈ R is generic if and only if it is not contained
in any threshold prime of R.

5. FINITE KRULL DIMENSION

Let (R,m) be a local ring of finite embedding dimension. The dimension of R is zero
if and only if R is Artinian if and only if its geometric dimension is zero. This is a trivial
instance in which dimension and geometric dimension coincide. In this section, we will
investigate the relationship between geometric dimension and dimension in case both are
finite.

5.1. Theorem. Let R be a local ring of geometric dimension one. If R is separated, then
it has dimension one and all radical ideals are Noetherian.

Proof. Since R is separated, Theorem 2.1 yields that R has finitely many minimal prime
ideals p1, . . . , ps, all of which are closed. Since ClSpec(R) has dimension one by The-
orem C, the only closed prime ideals are therefore the pi together with m. Hence, the
only closed prime ideals of R/pi are the zero ideal and the maximal ideal. Since both are
finitely generated, R/pi is Noetherian by Corollary 3.5. Since the nilradical nil(R) is equal
to the intersection p1 ∩ · · · ∩ ps, it is a Noetherian ideal by Corollary 3.2. In particular,
Rred := R/ nil(R) is a one-dimensional Noetherian local ring, and p1, . . . , ps,m are there-
fore its only prime ideals. But these are then also the only prime ideals of R itself, proving
that R is one-dimensional and all its prime ideals are Noetherian. By Corollary 3.2, every
radical ideal, being an intersection of some of these prime ideals, is also Noetherian. �

5.2. Corollary. A separated local ring of geometric dimension one is Noetherian if and
only if nil(R) is finitely generated.



IDEALS IN LOCAL RINGS OF FINITE EMBEDDING DIMENSION 7

Proof. By Theorem 5.1, the reduction Rred := R/n is Noetherian, where n := nil(R).
Hence, if n is finitely generated, it belongs to FgNoe(R). Since n is nilpotent (as it is so
in R̂), Proposition 3.1 yields that (0) ∈ FgNoe(R), that is to say, R is Noetherian. �

Non-separated local rings of geometric dimension one have in general infinitely many
prime ideals and are therefore far from being Noetherian (even if they are reduced). We
investigate now other conditions implying that Krull dimension and geometric dimension
agree. A one-dimensional local ring of finite geometric dimension must have geometric
dimension equal to one as well, for its geometric dimension is at most one by Theorem C,
and it cannot be zero, lest R be Artinian. In higher dimensions, equality fails in general,
and so we make the following definition: the geometric defect of a local ring R is the
difference dim R − geodim(R) whenever both are finite; otherwise we put its geometric
defect equal to∞. By the theorem, the geometric defect is always non-negative or infinite.
We say that R is geometric, if its geometric defect is zero. Theorem C yields that R is
geometric if and only if it has the same (Krull) dimension as its completion. In particular,
Noetherian ideals are geometric.

5.3. Proposition. Let R be a local ring of finite embedding dimension.
(5.3.1) Any two ideals with the same radical have the same dimension and the same

geometric dimension. In particular, R is geometric if and only if Rred is.
(5.3.2) If I ⊆ J are two ideals with the same closure and if I is geometric, then so is

J .
(5.3.3) A radical, geometric ideal is closed.
(5.3.4) If I is geometric, then it has only finitely many minimal primes, all of which

are closed; the maximal dimensional ones are the threshold primes and they
are geometric. In particular, V(I) has finitely many irreducible components.

Proof. In order to prove (5.3.1), it suffices to show that an ideal I and its radical J :=
rad(I) have the same dimension and the same geometric dimension. Since VR(I) =
VR(J), both ideals have the same dimension. Moreover, one easily verifies that also
V bR(IR̂) = V bR(JR̂), so that also IR̂ and JR̂ have the same dimension. Hence I and
J have the same geometric dimension by (2).

To prove (5.3.2), let J be any ideal between I and its closure. It follows from Theorem C
that I and J have the same geometric dimension. Hence the inequalities

geodim(J) ≤ dim(J) ≤ dim(I) = geodim(I)

must be equalities, showing that J is geometric.
To prove (5.3.3), let I be a radical and geometric ideal. Since I is an intersection of

prime ideals and since being closed is preserved under intersections, we may moreover
assume that I is a prime ideal. However, if I is not closed, then its closure must have
strictly smaller dimension, violating (5.3.2).

To prove (5.3.4), let I be a geometric ideal, say, of dimension d, and let Ī and rad(I)
be respectively its closure and radical. It follows from (5.3.1) that rad(I) is geometric,
whence from (5.3.3) that it is closed. In particular, Ī ⊆ rad(I). By Theorem 2.1, the
minimal primes of Ī are all closed and there are only finitely many of them. Hence the first
and last assertion of (5.3.4) follows since V(I) = V(rad(I)) = V(Ī). Let p be a threshold
prime of R/I . By (2), the geometric dimension of p is d, and since its dimension is at most
d, p is geometric. �

Before we give a general criterium for being geometric, we study some low dimen-
sional cases first. Since Spec(A) is in general not well-ordered, there might very well
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be no prime ideals of finite dimension other than the maximal ideals (which always have
dimension zero). For rings of finite embedding dimension we do have:

5.4. Lemma. If (R,m) is a local ring of finite embedding dimension, then Spec1(R) is
non-empty.

Proof. Let (pi)i be a chain in Spec(R) \ {m} and let p be their union p. If p = m then
m ⊆ pi for some i, since m is finitely generated, contradiction. Hence the conditions of
Zorn’s lemma are met, and Spec(R) \ {m} has a maximal element, say p. It follows that
p has dimension one. �

5.5. Theorem. If (R,m) is a one-dimensional local ring of finite embedding dimension,
then it is geometric, Spec(R) is finite, every radical ideal is Noetherian and every infini-
tesimal is nilpotent.

In particular, any one-dimensional radical ideal in a local ring of finite embedding
dimension is Noetherian.

Proof. We already argued that the geometric dimension of R has to be one too. Let p
be a prime ideal other than m. The only two prime ideals of R/p are finitely generated,
showing that R/p is Noetherian by Corollary 3.4. Hence p is Noetherian whence closed,
and therefore of the form P ∩R for some prime ideal P of R̂ by Corollary 1.2. It follows
that P must have dimension one as well and hence p is a threshold prime. In particular,
Spec(R) is finite. Since nil R is the intersection of these finitely many prime ideals, it
also belongs to Noe(R) by Corollary 3.2. In particular, IR ⊆ nil(R). �

5.6. Theorem (Dichotomy for two-dimensional primes). Let (R,m) be a local ring of
finite embedding dimension and let p ⊆ R be a two-dimensional prime ideal. Exactly one
of the the following two cases holds:

(5.6.1) p is closed and geometric, and V(p) is infinite;
(5.6.2) p is not closed and has geometric defect one, and V(p) is finite.

Proof. Let S := R/p. By assumption, S has dimension two and hence its geometric
dimension d is at most two by Theorem C. Since S is not Artinian, d = 1 or d = 2. Suppose
S admits a prime ideal q other than (0), mS and its threshold primes. For dimension
reasons, q cannot be contained in any threshold prime. Hence, by prime avoidance, we can
find an element x ∈ q outside each threshold prime. Hence x is generic in S and S/xS
has geometric dimension d− 1. On the other hand, S/xS being a homomorphic image of
a two-dimensional domain, has dimension at most one, and the chain q  mS then shows
that its dimension is exactly one. By Theorem 5.5, its geometric dimension is then also
one, showing that d = 2.

Therefore, if S has geometric dimension one, then VR(p) (which we identify with
Spec(S)) consists of the finitely many threshold primes of S together with p and m, and
hence in particular is finite. To prove the converse, assume VR(p) is finite. By prime avoid-
ance, we may choose x ∈ m outside any other prime ideal of S. It follows that S/xS has
dimension zero whence also geometric dimension zero, so that S has geometric dimension
one, as we wanted to show. Moreover, since S has only two possibilities for its geometric
dimension, we also showed that S is geometric if and only if VR(p) is infinite. To complete
the proof, it remains to show that the latter two conditions are also equivalent with p being
closed.

Let q ⊆ S be a non-zero prime ideal of S. It follows that q has dimension at most one,
whence is closed by Theorem 5.5. Hence IS is contained in the intersection a of all non-
zero prime ideals of S. If a is non-zero, then since S is a domain, a must have dimension
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one, and therefore is Noetherian by Theorem 5.5. Therefore, VS(a) is finite, and hence so
is VR(p) = VS(a)∪ {p}, contradicting our assumption. Hence a is the zero ideal, whence
so is IS .

Conversely, assume S is separated. If q is a non-zero prime of S, then its dimension
is at most one, whence is closed by Theorem 5.5. Therefore, every prime ideal of S is
closed, that is to say, ClSpec(S) = Spec(S), and since the latter has dimension two by
assumption, so has the former. Hence S also has geometric dimension two by Theorem C.

�

5.7. Corollary. A two-dimensional local ring of finite embedding dimension is geometric
if and only if Spec1(R) is infinite if and only if there exists a one-dimensional prime which
is not a threshold prime.

Proof. Let R be a two-dimensional local ring of finite geometric dimension. Suppose first
that itis geometric and let q be a threshold prime. Since R/q has geometric dimension
two too, R/q has dimension two by Theorem C, whence is geometric. Theorem 5.6 then
shows that Spec1(R/q) is infinite, whence afortiori, so is Spec1(R) and hence there
are one-dimensional non-threshold primes. Conversely, assume p is a one-dimensional
prime which is not a threshold prime. Let P be a minimal prime of pR̂. Since R/p has
dimension one, p = P ∩R. If R has geometric dimension one, then R̂ has dimension one
by Theorem C and hence p would be a threshold prime, contradiction. �

5.8. Corollary. A three-dimensional separated local domain of finite embedding dimension
has geometric defect at most one. It is geometric if and only if some two-dimensional prime
ideal is closed.

Proof. By assumption and Theorem 5.5, the only prime ideals that can be non-closed must
have dimension two. If there exists a closed two-dimensional prime, then ClSpec(R) has
combinatorial dimension three, whence R has geometric dimension three by Theorem C. If
there is no closed two-dimensional prime, then ClSpec(R) has combinatorial dimension
two, so R has geometric dimension two, whence geometric defect one. �

The previous results already hint at some combinatorial properties of the prime spec-
trum distinguishing geometric local rings. The precise phenomenon is coined by the fol-
lowing definition. We say that the spectrum of R has a bottleneck, if for some i > 0,
there exists an (i + 1)-dimensional prime ideal p which is contained only in finitely many
i-dimensional prime ideals (in other words, Speci(R/p) is finite).

5.9. Theorem. Let R be a local ring of finite dimension and finite embedding dimension.
The following are equivalent:

(5.9.1) R is geometric;
(5.9.2) the spectrum of R has no bottlenecks;
(5.9.3) every ideal of R is geometric;
(5.9.4) every prime ideal of R is geometric;
(5.9.5) every prime ideal of R is closed;
(5.9.6) the natural map Spec(R̂) → Spec(R) is surjective.

Proof. Let us first prove by induction on the geometric dimension d of R, that if R is not
geometric, then Spec(R) has a bottleneck. If Specd(R) is finite, then clearly any d + 1-
dimensional prime gives rise to a bottleneck in Spec(R) (and by assumption, such primes
exist, since R has dimension at least d + 1). Hence we may assume that Specd(R) is infi-
nite, so that there exists in particular a d-dimensional prime ideal p which is not a threshold
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prime. Hence p contains a generic element x and R/xR has geometric dimension d − 1.
By construction, however, R/xR has dimension at least d, so that R/xR is not geometric.
By our induction hypothesis, the spectrum of R/xR contains a bottleneck, and it is easy
to see that this implies that also Spec(R) contains a bottleneck. In fact, if Spec(R) has
no bottleneck, then neither does Spec(R/I), for every ideal I in R. This observation,
together with what we just proved, establishes the implication (5.9.2) ⇒ (5.9.3).

Implication (5.9.3)⇒ (5.9.4) holds trivially. To show (5.9.4)⇒ (5.9.2), suppose (5.9.4)
holds but Spec(R) has a bottleneck, that is to say, an (i + 1)-dimensional prime ideal p
which lies in only finitely many i-dimensional prime ideals, for some i > 0. Let x ∈ m be
outside each of these i-dimensional prime ideals and put S := R/p. It follows that S/xS
has dimension at most i − 1. However, since S has dimension i + 1 and is geometric, its
geometric dimension is also i + 1. Hence S/xS must have geometric dimension at least i,
whence dimension at least i by Theorem C, contradiction.

The equivalence of (5.9.5) and (5.9.6) follows from Corollary 1.2. If (5.9.5) holds, so
that ClSpec(R) = Spec(R), then R is geometric by Theorem C. Since (5.9.5) passes to
any homomorphic image of R, we get (5.9.3). As for (5.9.4) ⇒ (5.9.5), this follows from
(5.3.3) in Proposition 5.3.

Remains to show the equivalence of (5.9.1) with the rest. Since it is trivially implied
by (5.9.3), we only need to prove the converse and so we assume R is geometric. We will
prove by induction on the geometric dimension d of R that all its prime ideals are closed.
Let p be an arbitrary prime ideal of R. By (5.3.4), we are done if p is a minimal prime,
so assume it is not. In particular, we can find some x ∈ p outside all minimal primes
of R. Since the latter include all the threshold primes, x is generic and hence R/xR has
geometric dimension d − 1. Moreover, since by construction V(xR) = Spec(R/xR)
contains no minimal, whence no d-dimensional prime of R, the dimension of R/xR is at
most d − 1. Hence R/xR must have dimension d − 1, and therefore is geometric. By
induction, all prime ideals of R/xR are closed, whence, in particular, so is p. �

We have the following version of Krull’s Principal Ideal Theorem.

5.10. Corollary. Let A be a ring of finite Krull dimension and assume the spectrum of
each localization of A is without bottlenecks. If p is a minimal prime of (a1, . . . , an)A, for
some ai ∈ A, and p is finitely generated, then p has height at most n.

Proof. Let R := Ap. By assumption, R has finite embedding dimension, whence finite
geometric dimension, say d. By Theorem 5.9, the dimension of R is also d, and hence p
has height d. On the other hand, since (a1, . . . , an)R is pRp-primary, Theorem C implies
that d ≤ n. �

6. COHERENCE

Recall that a ring A is called coherent if and only if the kernel of any linear map between
finite free A-modules is finitely generated.

6.1. Lemma. If A is coherent ring and uA is an ultrapower of A, then the diagonal
embedding A → uA is flat.

Proof. By the equational characterization of flatness, we need to show that if b is a tuple
with entries in uA which is a solution to a linear homogeneous equation L = 0 with
coefficients in A, then b is a linear combination of solutions of L = 0 with entries in A.
Let V be the kernel of the linear map An → A induced by L. By coherence, V is finitely
generated, say, by tuples a1, . . . , am. Choose tuples bw in An such that their ultraproduct is
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b. By Łos’ Theorem, almost each bw is a solution of L = 0 and hence there exist siw ∈ A
such that

bw = s1wa1 + · · ·+ smwam.

If we let si be the ultraproduct of the siw, then b = s1a1 + · · ·+ smam by Łos’ Theorem,
as required. �

6.2. Lemma. Let A → B be a flat map of rings and let I be an ideal of B. Then the
following are equivalent.

(6.2.1) The map A → B/I is flat.
(6.2.2) For every finitely generated ideal a of A, we have aB ∩ I = aI .

Proof. From the exact sequence

0 → I → B → B/I → 0

we get, after tensoring with A/a, an exact sequence

0 = TorA
1 (B,A/a) → TorA

1 (B/I,A/a) → I/aI → B/aB

The kernel of the last arrow is equal to (aB ∩ I)/aI , showing that

aB ∩ I = aI if and only if TorA
1 (B/I,A/a) = 0.

Hence the direction (6.2.1)⇒ (6.2.2) is clear, and the converse follows from a well-known
Tor-criterion for flatness (see for instance [2, Theorem 7.8]). �

6.3. Theorem. Let (R,m) be a local ring of finite embedding dimension. If R is coherent,
then the following are equivalent:

(6.3.1) R is Noetherian;
(6.3.2) every finitely generated ideal is closed;
(6.3.3) for every finitely generated ideal a and every n, there exists some c := c(a;n)

such that a ∩mc ⊆ amn;
(6.3.3’) for every finitely generated ideal a, the m-adic topology on a coincides with

its induced topology as a subspace a ⊆ R.

Proof. The equivalence of (6.3.3) and (6.3.3’) is immediate from the definitions. The im-
plication (6.3.1) ⇒ (6.3.2) is trivial and (6.3.1) ⇒ (6.3.3) follows from the Artin-Rees
Lemma, since we may choose c(a;n) equal to c + n for some c only depending on a. We
will simulatenously prove both converses. Let uR and cR be respectively the ultrapower
and catapower of R. Since uR has finite embedding dimension, cR = uR/IuR is Noe-
therian by Theorem B. By Lemma 6.1, the natural map R → uR is faithfully flat. We want
to show that R → cR is faithfully flat, for if this holds, then R is Noetherian, since cR
is. In view of Lemma 6.2, it suffices to show that a(uR) ∩ IuR = aIuR, for every finitely
generated ideal a := (f1, . . . , fs)R. To this end, let a ∈ a(uR) ∩ IuR. Choose aw ∈ R so
that their ultraproduct equals a. By Łos’ Theorem, aw ∈ a for almost all w. Let n(w) be
maximal such that aw ∈ amn(w). Choose aiw ∈ mn(w) so that

aw = a1wf1 + · · ·+ aswfs.

Let ai be the ultraproduct of the aiw. Since a = a1f1 + · · · + asfs, we are done once
we showed that each ai belongs to IuR. By way of contradiction, suppose the latter does
not hold, so that after renumbering, we may assume that a1 6∈ mN (uR), for some N . I
claim that aw ∈ amN , for almost all w. By maximality of n(w), this then implies that
N ≤ n(w) and hence a1w ∈ mN . By Łos’ Theorem, a1 ∈ mN (uR), yielding the desired
contradiction.
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So remains to prove that almost all aw belong to amN . In case (6.3.3) holds, we can
choose c := c(a;N) such that a ∩ mc ⊆ amN . Since a ∈ IuR ⊆ mc(uR), almost
all aw belong to mc whence to amN , so that we are done in this case. Hence assume
condition (6.3.2) holds. Let uS and cS be respectively the ultrapower and catapower of
S := R̂. Since S is Noetherian by Theorem A, the natural map S → cS is faithfully flat
by Theorem B. By Lemma 6.1, so is the map S → uS. Hence by Lemma 6.2, we have
a(uS) ∩ IuS = aIuS . In particular, a ∈ aIuS . By Łos’ Theorem, almost each aw lies in
amNS. Since amN is finitely generated, it is closed, and hence amNS ∩ R = amN by
Corollary 1.1. Therefore, almost each aw lies in amN , as we wanted to show. �

In fact, without assuming R to be coherent, (6.3.3) ⇒ (6.3.2) always holds. Indeed, let
a be a finitely generated ideal and b an element in its closure. By assumption, there is some
c such that

(3) (a + Rb) ∩mc ⊆ m(a + Rb).

Write b = a + m with a ∈ a and m ∈ mc. Hence m = b − a belongs to m(a + Rb)
by (3) and therefore, can be written as m = a′ + bm′ with a′ ∈ a and m′ ∈ m. Hence
b(1−m′) = a + a′ ∈ a and since 1−m′ is a unit, we get b ∈ a, showing that a is closed.
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