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PURE SUBRINGS OF REGULAR RINGS ARE PSEUDO-RATIONAL

HANS SCHOUTENS

ABSTRACT. We prove a generalization of the Hochster-Roberts-Boutot-Kawamata The-
orem conjectured in [1]: leR — S be a pure homomorphism of equicharacteristic zero
Noetherian local rings. IF is regular, thenR is pseudo-rational, and i is moreover
Q-Gorenstein, then it is pseudo-log-terminal.

1. INTRODUCTION

Hochster and Roberts showed in [13], using finite characteristic methods, that quotient
singularities in characteristic zero are Cohen-Macaulay. This was improved by Boutot in
[2] where he shows, using deep vanishing theorems, that they are rational. More precisely,
if G is the complexification of a compact Lie group which acts algebraically on an affine
smooth schem& of finite type overC, then the quotienk /G has rational singularities.

In algebraic terms, wittk = Spec B, this means that the ring of invariants:= B has
rational singularities whenevé? is regular. (In fact, it suffices thd® has at most rational
singularities, and there is also a similar result in the analytic category.) Wheriinite,
Kawamata in [16] showed moreover th&fG has at most log-terminal singularities, and
the author showed in [27], using non-standard tight closure, that this remains true for non-
finite G, providedX /G is moreoveQ-Gorenstein (a condition that holds automatically if

G is finite).

The goal of the present paper is to extend all these results by removing the finite type
condition. However, since the notion of rational singularities is defined in terms of a reso-
lution of singularities, which might not be available in such generality, we need to replace
it by the notion of pseudo-rationality.

Main Theorem A. Let A — B be a cyclically pure homomorphism of Noetherian rings
containingQ. If B is regular, thenA is pseudo-rational.

Recall that a homomorphis — B is cyclically pureif a = aBN A for each ideah in
A; examples are split, pure or faithfully flat homomorphisms. Since the inclugfox B
is split (via the so-called Reynolds operator), Boutot's result is therefore just a special case
of our first main theorem. Theorem A was conjectured in [1] and proven for algebras of
finite type over an algebraically closed field in [26] using canonical big Cohen-Macaulay
algebras. The analogue in prime characteristic was proven by Smith in [28], but unlike
most applications of tight closure, this proof did not carry over to characteristic zero, the
reason being that cyclic purity is not preserved under reduction mgdulo formulate a
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corresponding generalization in tiieGorenstein case, we need to make a definition. Call
a Noetherian local)-Gorenstein ringk pseudo-log-terminalf its canonical covel? (see

§7.2) is pseudo-rational. In particular, if we are in a category of local algebras in which
‘pseudo-rational’ is equivalent with ‘rational’ (e.g., the category of local algebras essen-
tially of finite type over a field), then ‘pseudo-log-terminal’ is the same as ‘log-terminal’
by a result of Kawamata (Theorem 7.3). With this terminology, we get the following gen-
eralization, conjectured in [1] and proven for algebras of finite type over an algebraically
closed field in [27].

Main Theorem B. Let R — S be a cyclically pure homomorphism of equicharacteristic
zero Noetherian local rings witl§' regular. If R is Q-Gorenstein, then it is pseudo-log-
terminal.

To prove both theorems, we will transform the argument for finitely generated algebras
given in [27] by means of the machinery of faithfully flat Lefschetz hulls introduced in [1].
In that paper, we show that given an equicharacteristic zero Noetherian loc&), nivegcan
find a faithfully flat localR-algebra® (R) which is an ultraproduct of rings of prime char-
acteristic (these latter rings are callggproximation®f R and their ultraproduct is called
a Lefschetz hulbf R). These results enabled us in [1] to generalize the alternative con-
structions of tight closure and big Cohen-Macaulay algebras from the papers [23, 26, 27]
to arbitrary equicharacteristic zero Noetherian local rings. Similar applications, although
only implicitly using Lefschetz hulls, can be found in [22, 24].

In the present paper, we will concentrate on one variant coming out of this work, to wit,
generic tight closure: an element is in tieneric tight closuref an ideal if almost all of
its approximations belong to the tight closure of the corresponding approximation of the
ideal; se€;3 for exact definitions. Theorem A will follow from the fact that a generically
F-rational ring is pseudo-rational (see Theorem 6.2), where we call agang(ically
F-rational if some ideal generated by a system of parameters is equal to its (generic) tight
closure. Smith observes in [28] that F-rationality in prime characteristic is equivalent with
the top local cohomology of the ring being Frobenius simple. This enables her to prove
that an excellent F-rational Noetherian local ring of prime characteristic is pseudo-regular.
We will not use this result directly, but rather the method used to prove it. To this end,
we also need Lefschetz hulls for finitely generated algebras over a Noetherian local ring,
as such rings appear in ti@ech complex that calculates the local cohomology. This is
carried out in§2. Therefore, the present proof is entirely self-contained, apart from some
material taken from [1].

As for Theorem B, we generalize the notion ofw@tra-F-regularlocal ring introduced
in [27] as a Noetherian local domaiR with the property that for each non-zetpwe
can find an ultra-FrobeniuB® such that the morphism — c¢F¢(x) is pure (an ultra-
Frobeniusis an ultraproduct of powers of Frobenii; s&&2 below). We then show that
the property of being ultra-F-regular descends under cyclically pure local homomorphisms
(Proposition 7.9) and is preserved under finite extensions whichtale in codimension
one (Proposition 7.8). Moreover, we show that an ultra-F-regular local ring is pseudo-
rational.

Open Questions.

(1) Does the converse of Theorem 6.2 also hold, that is to say, is pseudo-rational
equivalent with generically F-rational? In [26, Theorem 5.11], | gave a proof of
this in the finitely generated case which relies on a deep theorem due to Hara:
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a local C-algebra R of finite type has rational singularities if and only if it is of
F-rational type; see [6].

(2) Does the stronger analogue of Boutot’s result also hold, that is to say, can we
weaken the assumption in Theorem A tHatis only pseudo-rational? In the
finitely generated case, a tight closure proof is available i§ moreover Goren-
stein ([26,55.14]), but this again depends on Hara’s result.

(3) In [27], using once more Hara’s result, it was shown that@eGorenstein local
domains of finite type over an algebraically closed field, the notions ultra-F-regular
and log-terminal are equivalent. Is ultra-F-regular and pseudo-log-terminal the
same forQ-Gorenstein local domains?

(4) Again, we can weaken in the finite type case [27] the assumptiotstisategular
to the assumption that it is (pseudo-)log-terminal. Does this also hold in general?

(5) For local algebras of finite type over a field of characteristic zero, rational and
pseudo-rational are the same notions, and so are log-terminal and pseudo-log-
terminal. For which other categories of equicharacteristic zero Noetherian local
rings is this the case?

2. LEFSCHETZHULLS

Let S, be a sequence of rings, wheteruns over some infinite set endowed with
a non-principal ultrafilter. Thaltraproductof this sequence is a rin§., given as the
homomorphic image of the produff,, S., modulo the ideal of all sequences which are
almost equal to the zero sequence (two sequefacgsand(b,,) in the product are said to
bealmost equaif a,, = b,, for almost allw, that is to say, for allv in some member of the
ultrafilter). When we want to emphasize the index, we denote the ultraprSduetso by

ulim S,
w

and similarly, the image of a sequeneg,) in S, is denotedilim,, a,, or sSimplya... In
case all rings are equal, sy, := S, their ultraproduct is called amtrapowerof S. For
more details, see [149.5] or [5], or the brief review in [2352].

2.1. Lefschetz hulls. Let K be an uncountable algebraically closed field of characteristic
zero. In [1], we associate to every Noetherian local fihghose residue field is contained

in K, a faithfully flat Lefschetz hull, that is to say, a faithfully flat extensiBnC ©(R)

such tha(R) is an ultraproduct of prime characteristic (complete) Noetherian local rings
R,. Any sequence of prime characteristic complete Noetherian local fitygsvhose
ultraproduct is equal t®(R) is called anapproximationof R. For the extent to which
the assignmenk — D(R) is functorial, we refer to the cited paper. All we need in the
present paper is that 8 — S is a local homomorphism of Noetherian local rings whose
residue field is contained i, then there is a homomorphist( R) — ©(.S) making the
following diagram commute

R ~ D(R)

)
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For the remainder of this sectioR,is an equicharacteristic zero Noetherian local ring,
R,, an approximation oR and® (R) its Lefschetz hull. We always choosélarge enough
so that it contains all pertinent residue fields and hence from now on, no further reference
is made to it. For each, let F,, denote the Frobenius aR,,, that is to say the homo-
morphism given by: — zP(*), wherep(w) is the characteristic aR,,. Given a positive
integere, let R, denote theR,,-algebra structure o®,, given byF¢ . It follows that
F¢: R, — °R, is R,-linear.

2.2. Ultra-Frobenius. A non-standard integeis an element of the ultrapowefZ., of
Z, that is to say, an ultraproduct of integets. If almost alle,, are positive, then we cadl
positive For each positive non-standard integelet F°: R — ©(R) be the ultraproduct

of theFy,", that is to say, for € R with approximationz,,, we have
Fe(z) := ulim F.* (x,) € D(R).

As in [27], we will call any homomorphisnkR — D (R) of the formF¢ for somee an
ultra-Frobenius If £ = 1, then the corresponding ultra-Frobenius is justrtba-standard
Frobeniusintroduced in [1].

For each positive non-standard integewe may view®(R) as anR-algebra via the
homomorphisn¥<. To denote this algebra structure, we will writ® (R) (in [27], the
alternative notation(F<),.©(R) was used). In other words, the-algebra structure on
¢D(R) is given byx - o := F¢(z)q, forz € Randa € D(R).

One of the major drawbacks of the functris its local nature. In particular, since a
localizationR — R, is not a local homomorphism, there is no obvious map (k) to
D(R,). Below we will have to deal with localizations of the forR),, and hence we need
a notion of Lefschetz hull for such (non-local) rings as well.

2.3. R-approximations. LetY be a tuple of indeterminates and jee R[Y], say of the
form f = ZUEN a,Y" with a,, € R andN a finite index set. It ,, is an approximation
of a,, for eachw € IV, then we call the sequence of polynomigls := > .y a,.,Y"” an
R-approximationof f.

One checks that any twR-approximations of a polynomigl are almost equal. Simi-
larly, if I := (f1,...,fs)isanideal inR[Y] andf;,, is anR-approximation off;, for each
i, then we call the sequenég, := (f1w,- - -, fsw)Rw[Y] @an R-approximationof I, and if
S = R[Y]/I, then we call the sequené, := R,,[Y]/I,, an R-approximatiorof S.

2.4. Relative hulls. If S is a finitely generate®-algebra andb,,, is an R-approximation
of S, then the ultraproduct of thg,, is called the(relative) R-hull of S and is denoted
Dr(S).

If R[Z]/J is another presentation §fas anR-algebra, then we have substitution maps
Y — aandZ — b which induce isomorphisms modulband J respectively, where
a andb are tuples of polynomials in thg and Y -variables respectively. Let, and
b, be R-approximations of these respective tuples andJlgtbe an R-approximation
of J. By tos’ Theorem the substitutions — a,, andZ — b, induce for almost all
w isomorphisms moduld,, and J,, respectively. It follows that the ultraproduct of the
R,[Y]/1, is isomorphic to the ultraproduct of the,[Z]/J.,, showing thatDr(S) is
independent from the particular presentationSoénd from the particular choice dt-
approximations.

Since® z(.5) is naturally a0 (R)-algebra and since by tos’ Theorem the tuplés al-
gebraically independent ove¥(R), we get a naturaD (R)[Y]-algebra structure, whence
anR[Y]-algebra structure, 08z (.S). Under the natural homomorphisRiY] — D r(S5),
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we get/D i (S) = 0, so that this induces a homomorphishm- © i (.5), endowing® r(.5)
with a canonicab-algebra structure. We can now extend the notioR-@fpproximation of
an element or an ideah in a finitely generate®-algebras as follows. LetS := R[Y]/I
and choose a polynomigl € R[Y] and an ideaRl in R[Y] so that their images i%
are respectively: anda. Let f,,, 2, andS,, be R-approximations off, 2 and S re-
spectively. We call the image,, of f,, in S, (respectively, the ideal,, := 2,,5,,) an
R-approximationof « (respectively, ofa). Note that the ultraproduct of the, (respec-
tively, of the a,,) is equal to the image af in D (.S) (respectively, equal to the ideal
a®(9)), showing that any twdz-approximations are almost equal.

If S — T is an R-algebra homomorphism of finite type, then this extends tdRan
algebra homomorphis® z(S) — D (T) giving rise to a commutative diagram

S - Dgr(5)

&)

T ~ Dr(T).

In particular,Dr(-) is a functor on the category of finitely generatBealgebras. The
argument is the same as in [33.2.4] and we leave the details to the reader.

3. GENERICTIGHT CLOSURE

One of the tight closure notions introduced in [1] is generic tight closure. In this section,
we review the definition and (re)prove some of its main properties. Throughout this section,
(R, m) will denote an equicharacteristic Noetherian local ring &Rd,, m,,) one of its
approximations. For generalities on (characterig}itight closure, see [15].

3.1.Definition. An elementz € R lies in thegeneric tight closuref an ideala C R, if
almost allz,, lie in the tight closures}, of a,,, wherez,, anda,, are approximations of
anda respectively.

We denote the generic tight closure of an idedl clgen(a). One easily checks that
where the contraction is with respect to the canonical embed@ling ©(R). It follows
thatclgen(a) is an ideal, containing, with the property thatlgen(clgen(a)) = clgen(a). We

say that an ideal is generically tightly closedf a = clgen(a). The proof of the following
easy fact is left to the reader.

3.2.Lemma. If a C R is a generically tightly closed ideal, then so is any colon ideal
(Cl:R b),fOI’bgR O

3.3.Theorem. If R is regular, then every ideal is generically tightly closed.

Proof. By [1, Theorem 5.2], almost alk,, are regular, and hence all ideals i), are
tightly closed by [15, Theorem 1.3]. The assertion then follows from (3) and faithful
flatness. O

3.4.Theorem (Persistence)lf R — S is a local homomorphism andan ideal inR, then
Clgen(a)s g Clgen(as)-
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Proof. Immediate from (3) and the fact that persistence holds for éagch- S.,, where
Sy is an approximation of (note thatR,, is complete, so that [15, Theorem 2.3] applies).
O

3.5.Theorem (Strong Colon Capturing)Let (z1, ..., x4) be part of a system of parame-
ters of R. For eachi, the element; is a non-zero divisor moduldgen((x1, . .., z;—1)R).

Proof. By downward induction on, it suffices to prove the assertion for= d. To this
end, supposez, € clgen(I) With I := (z1,...,z4-1)R. Let R, 2z, andz;, be ap-
proximations ofR, z andx; respectively and puf,, := (Z14w,...,Zd—1w)Rw. By [1,
Corollary 5.3], almost al(z1.,, ..., z4.,) are part of a system of parametersAy, and
zwTdw € I%,. Since eachR, is complete, Strong Colon Capturing holds for it, that is
to say,zq4,, IS @ non-zero divisor moduld;, (see [15, Theorem 3.1A and Lemma 4.1]).
Thereforez,, € I}, whencez € clyen(I), as we needed to show. O

3.6.Remark. In particular, the usual Colon Capturing holds, that is to say, for easle

have an inclusiof(z1,...,z;—1)R : z;) C clgen((21,...,2;—1)R). The same proof can
also be used to prove the following stronger version (compare with [15, Theorem 9.2]): let
Z|X] — R be given byX; — xz; and letl, J C Z[X] be ideals. We have an inclusion

4) (clgen(IR) : JR) C clgen(({ : J)R).

3.7.Corollary. If (z1,...,x4) is part of a system of parametersiband if (z1,...,2zq4)R
is generically tightly closed, then sois each, ..., z;)R, fori =1,...,d. In particular,
(z1,...,24) IS aregular sequence.

Proof. The last assertion is clear from Colon Capturing and the first assertion. For the
first assertion, it suffices to treat the case d — 1, by downwards induction on Let

I := (z1,...,24-1)R and letz € clgen(I). Clearly,z € clgen(I + z4R) and this latter
ideal is justl + 24 R by hypothesis. Write = a + rx4, with a € I andr € R. Therefore,

z —a =rxq € clgen(I). Sincezy is a non-zero divisor moduldgen(Z) by Theorem 3.5,

we getr € clgen(I). So, we proved thatlgen(/) = I + x4clgen(/). Nakayama’'s Lemma
then yields thaf = clgen(I). O

3.8.Theorem (Briangon-Skoda) The generic tight closure of an idealC R is contained
in its integral closure. lfa is generated by at mostelements, then the integral closure of
a™*" is contained inclgen(a™*!), for eachm.

Proof. Letz € clgen(a). In order to show that is integral ovem, it suffices by [11, Lemma
2.3] to show that € aV/, for each discrete valuation rifig such thatR — V' is a local

homomorphism. Now, persistence (Theorem 3.4) yields 4Hi&fs in clgen(aV’), whence,

by Theorem 3.3, imV/.

Assume next that lies in the integral closure of™*”, for somem and forn the
number of generators af Taking an integral equation witnessing this fact and considering
approximations, we see that almost gl lie in the integral closure of”*™, wherez,,
anda,, are approximations of anda respectively. By the tight closure Brian¢con-Skoda
Theorem (see for instance [15, Theorem 5.7] for an easy proof), almost, i in the
tight closure ofa*1 and the result follows. O

3.9. Comparison with other tight closure operations. By [1, Theorem 6.21], the generic
tight closure of an ideal is contained in its non-standard tight closure, provideis an-
alytically unramified. This latter condition is imposed to insure the existence of uniform
test elements ([1, Proposition 6.20]).
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If R is moreover equidimensional and universally catenary, then by [1, Proposition
7.13], theB-closureaB(R) N R of a is contained in its generic tight closure, with equality
if a is generated by a system of parameters. Fg{&) denotes the canonical big Cohen-
Macaulay algebra associated®ofrom [1, §7]. (In the special case thd@ is a complete
domain with algebraically closed residue fiell( R) is obtained as the ultraproduct of the
absolute integral closures;.)

4. GENERIC F-RATIONALITY

As before,R is an equicharacteristic zero Noetherian local ring &)dis an approxi-
mation of R.

4.1.Definition. We say thafR is generically F-rationa] if there exists a system of param-
etersx in R such thai R is generically tightly closed.

Let us say thatR is B-rational, if there exists a system of parametersuch that
xR = xB(R) N R. We will prove below that a ring is generically F-rational if and only
if its completionﬁ is. We leave it as an exercise to prove that the same property With *
rational’ instead of ‘generically F-rational’ also holds. Therefore, in view of our discussion
in §3.9, aring is generically F-rational if and only if it 8-rational.

4.2.Theorem. If R is generically F-rational, then it is Cohen-Macaulay.

Proof. Letx be a system of parametersfihsuch that R is generically tightly closed. By
Corollary 3.7, the sequeneeis regular and hencg is Cohen-Macaulay. O

4.3.Theorem. If R is generically F-rational, then any ideal generated by part of a system
of parameters is generically tightly closed. In particul&rjs normal.

Proof. By Theorem 4.2, we know thdt is Cohen-Macaulay. By Corollary 3.7, it suffices
to show that any ideal generated by a system of paraméers. ., yq) is generically
tightly closed. Reasoning on the top local cohomology, we canifind anda € R such
that (y1,...,y4)R = ((z},...,2%)R :r a) (see for instance the proof of [15, Lemma
4.1]). Therefore, if we can show thét!, ..., z%)R is generically tightly closed, then so
will (y1,...,y4)R be by Lemma 3.2. Hence we have reduced to the casgthat:!, for
somet > 1.

Let z € clgen((2},...,2%)R). We need to show that € (zf,...,z4)R. If some
zx; does not lie in(z, ..., z%)R, we may replace our original by this new element.
Therefore, we may assume that

2(w1,...,2q)RC (2, ... 2)R.
Since(x1,...,x4) is R-regular, we have
(@, .. )R (z1,...,2q)R) = (24, ... 2y DR,

wherey := z; - - - 24. In summary, we may assume that uy*~!, for someu € R. By
(4), we then get

u € (clgen((x, ..., 25 R) : y'™1) C clgen(((zh, ..., zh)R: y'™1))

= clgen((z1,...,24)R) = (z1,...,zq)R.

Thereforez = uy'~! liesin (x%,...,z%) R, as we wanted to show.

In order to prove that? is normal, if suffices to show that any height one principal
idealaR is integrally closed. Since the integral closurea®f is contained irtlgen(aR) by
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Theorem 3.8, and sinceis part of a system of parameters, the conclusion follows from
the first assertion. O

4.4.Proposition. A local ring R is generically F-rational if and only if its completioﬁ
is. In particular, a generically F-rational ring is analytically unramified.

Proof. Let x be a system of parameters i such thatn := xR is generically tightly
closed. | claim thah R is generically tightly closed, from which it follows thatis gener-
ically F-rational. To this end, let € R be in the generic tight closure ofR. Write
Z =2+ @ with € R and® € nR. It follows thatz € clgen(nﬁ). Let J be the ultraprod-
uct of then? , wheren,, is an approximation ofi. SinceR,, is also an approximation for

w
R, we getclgen(nﬁ) = J N Rby (3). Hence: € J, and since/ N R = clgen(n) = n, we
get? =z + @ € nR.

Conversely, suppos§ is generically F-rational. Lekx be a system of parameters in
R. Leta be in the generic tight closure afR?, whence by persistence (Theorem 3.4), in
the generic tight closure of R. Sincex is a system of parameters i, the idealx 2
is generically tightly closed by Theorem 4.3. Henees xR, and therefore, by faithful
flatnessa € xR, proving thatR is generically F-rational.

To prove the last assertion, assuiés generically F-rational. Hence soj%by what
we just proved. Therefore} is normal by Theorem 4.3, whence a domain, showing that
R is analytically unramified. |

4.5.Corollary. If R is generically F-rational, then almost alR,, are Cohen-Macaulay
and normal.

Proof. SinceR and R have the same approximations, we may assume by Proposition 4.4
that R is complete. Theorems 4.2 and 4.3 yield that normal and Cohen-Macaulay. By

[1, Theorem 5.2], almost alk,, are Cohen-Macaulay. Sinde satisfies Serre’s condition
(R41), so do almost allR,, by [1, Theorem 5.6]. Together with the fact that almost all
R,, are Cohen-Macaulay, we get from Serre’s criterion for normality (see for instance [19,
Theorem 23.8]) that almost alt,, are normal. O

4.6.Proposition. If almost all R,, are F-rational, thenR is generically F-rational. The
converse holds iRk is moreover Gorenstein.

Proof. Let x be a system of parameters it) with approximationx,,, and letz be in the
generic tight closure atR. By [1, Corollary 5.4], almost alk,, are systems of parameters
in R,,. Hence, by definition of F-rationalitk,, R, is tightly closed. Therefore, #,, is an
approximation ofz, thenz,, € x,,R,,. Taking ultraproducts, we see thaties in xD(R)
and hence by faithful flatness, ¥R, showing thatR is generically F-rational.

Suppose next thak is Gorenstein and generically F-rational. Towards a contradiction,
assume almost eadhy, is not F-rational. IfJ is the ultraproduct of théx,, R, )*, then this
means thak® (R) & J. On the other hand, by (3) and our assumptiém R = xR. Put
S := R/xR. By [1, §4.9], we have an isomorphis@(S) = D(R)/xD(R) andD(S) is
an ultrapower of5 ®;, K, wherek is the residue field of? and K™ the algebraically closed
field used in the definition of Lefschetz hull. Sin6ds Gorenstein, so i§ ®; K, whence
also®(S), since the Gorenstein property is first order definable (see for instance [21]). Let
a € R be such that its image ifi generates the socle of this ring. By faithful flatness,
is a non-zero element in the socle®fS), whence must generate it. Sinéé # 0, we
must haver € J whencea € J N R = xR, contradiction. a
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4.7.Remark. Note that by Smith’s result [28, Theorem 3.1], an F-rational excellent local
ring is pseudo-rational; the converse holds by [6]. It follows that if almost all approxima-
tions of R are pseudo-rational, thedis generically F-rational, whence pseudo-rational by
Theorem 6.2 below. | do not know whether the converse also holds.

Let us callR weakly generically F-regularif each ideala C R is generically tightly
closed. By Theorem 3.3, any regular local ring is weakly generically F-regular. By a simi-
lar argument as in the proof of Proposition 4.4, one can showRhsatweakly generically
F-regular if and only if its completion is. If a ring is weakly generically F-regular, then it
is generically F-rational; the converse is true for Gorenstein rings, as we now prove.

4.8.Theorem. If R is Gorenstein and generically F-rational, then it is weakly generically
F-regular.

Proof. Given an arbitrary ideal C R, we need to show that = clgen(a). Sincea is the

intersection ofn-primary ideals, we easily reduce to the case thiatm-primary. Choose
a system of parametexssuch thatc R C a. By Theorem 4.3, the ide&lR is generically
tightly closed. SinceR is Gorenstein,

a=(xR: (xR :a))
which is a generically tightly closed ideal by Lemma 3.2. O

4.9.Proposition. LetR — S be a cyclically pure, local homomorphism between equichar-
acteristic zero Noetherian local rings. # is weakly generically F-regular, then soi&

Proof. Letz € clgen(a), for a anideal inR. By Theorem 3.4, the image ofin S lies in the
generic tight closure af.S, which by assumption is justS. Hencez e aSNR=a. O

4.10.Remark.lt is well-known that the localization of an F-rational ring is again F-rational
(see [15, Theorem 4.2]; the same property for weakly F-regular rings though is still open).
However, since Lefschetz hulls are not compatible with localization, | do not know whether
the localization of a generically F-rational ring is again generically F-rational.

The next Briangcon-Skoda type theorem was proven first in [18] for pseudo-rational
local rings. Since we will show in the next section that a generically F-rational local ring
is pseudo-rational, this version generalizes their result.

4.11.Theorem. If Ris ad-dimensional generically F-rational local ring, then the integral
closure ofa™*+4 is contained im™*!, for all m and all idealsa C R.

Proof. We follow the argument in [26, Theorem 6.4], where the special casaabf
finite type over an algebraically closed field is proven. L& an element of the integral
closure ofa™*?. Assume first that is generated by a system of parameters. Therefore,
a lies in clgen(a™*1), by Theorem 3.8, whence " !, by Lemma 4.12 below. This
proves the assertion for parameter ideals. Assume next ieaherelym-primary, where

m is the maximal ideal of?. In that casea admits a reductiod generated by a system
of parameters. SincE™*+? is then a reduction oi™ 9, we get that lies in the integral
closure ofI™+¢, whence inf™*!, by the first case, and, therefore, ultimatelyaii™?,

also establishing this case. For arbitraryvrite a as the intersection of adl+ m™ and use

the previous case. O

4.12.Lemma. If (R, m) is a generically F-rational local ring(z1, ..., z4) a system of
parameters and’ anm-primary ideal generated by monomials in thg then.J is generi-
cally tightly closed.
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Proof. By [4], we can writeJ as the intersection of ideals of the fofa*, . .., ") R, for
some non-zere;. Each such ideal is generically tightly closed by Theorem 4.3, whence
soisJ. (]

5. LocAL COHOMOLOGY

Before we turn to pseudo-rationality, we must say something about local and sheaf
cohomology and their respective ultraproducts. For our purposes, local cohomology is
most conveniently approached vzech cohomology, which we quickly review. Lete

an ideal in a Noetherian rin§ and choose a tupke := (x4, ..., z4) S0 thata andxS have
the same radical. For ea¢k d, define
Ci(x§ S) = @ S$11$12"'11i

1<lhi<lza<-<l; <d

(with the convention tha€’(x; S) = S). TheC'(x;S) are the modules appearing in a

complexC*®(x; S), called thealgebraic Cech complexvith respect tax, where the dif-

ferential C’(x; S) — C"*(x; S) is given by the inclusion maps among the localizations,

with the choice of an appropriate sign to mak¥x; S) a complex (see [33.5] for more

details). The cohomology of this complex is called kheal cohomologwf S with respect

to a and is denoted? (S). One shows thall}(S) only depends on the radical afand,

in particular, is independent from the choicedstuplex. We will be mainly interested in

the top cohomology grouH‘j(S) and we use the following notation. SinHé(S) is a ho-

momorphic image oCd(x; S) = S,,..z,, an arbitrary element is the image of a fraction
o and we will denote this image t{yﬁm)n]s.

(ml...Id

Local cohomology and sheaf cohomologyLet Y be a scheme and a closed subset

of Y. The collection of those global sectionsif (Y, Oy) whose support is contained

in Z is denotedd(Y") and is called thelobal sections with support i#. The derived
functorsHY, (Y) of the left-exact functoHY, are called theohomology with support i#.

The cohomology groups with support are connected to the usual sheaf cohomology via an
exact sequence

G) - — H (Y, 00) L HY(Y = 2,0y )2 HL (V) — H(Y, Oy) — ...

whered? are the connecting morphisms (see for instance [7, Corollary 1.9]).

For (quasi-)projective schemes, we also have a relationship between local cohomology
and sheaf cohomology as follows. LBtbe a Noetherian ring. Atandard gradedr-
algebrais a Noetherian graded ring

S=Isl,

n>0

such thatk = [S], and S is (finitely) generated as aR-algebra by{S],. The irrelevant
ideal of S will be denoted by5™ := &,,5 [S],,. LetY := Proj S be the projective scheme
overSpec R defined byS and letZ be a closed subset &f, defined by some homogeneous
ideala C S. For each > 2, we have

(6) H™NY — Z,0y_z) = [HL(9)], -
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Local ultracohomology. For the remainder of this sectioR,is an equicharacteristic zero
Noetherian local ring and is a finitely generatedk-algebra. Let be an ideal in5 and let
x be ad-tuple in.S such thatr andxS have the same radical. Note that each module in the
algebraicCech complexC*(x; S) is a finitely generated-algebra, whence admits d+
hull. Thenon-standard algebrai€ech complex:?_(x; S) over.S with respect ta is by
definition the complex whosih module isD (C’(x; S)) and for which the differentials
are induced by the differentials @f (x; S). Thelocal ultracohomologyf S with respect
to ais by definition the cohomology of the non-standard algekfmm complexs, (x; 5)
and is denotedH; (.5).

Without proof, we state thdt/H;(.5) is independent from the choice ofdatuple x.
By (2), the canonical homomorphisnig(x; S) — Dx(C'(x; S)) give rise to a map of
complexe<C*(x;.5) — C2 (x;.5), and hence for each< d, we get a natural morphism

ji: HY(S) — UHL(S).

LetS,, a,, andx,, be R-approximations of, a andx respvectively. Since we can calculate
the local conomolog#l; (S.,) with aid of the algebrai€ech complex ok,, and since
taking ultraproducts commutes with cohomology, we get

(7 UH}(S) = ulimH{, (S.,)

for eachi. In particular, ifp: S — T is an R-algebra homomorphism of finite type, then
the diagram

)

Ja

H,(S) - UHL(S)
®) H; () UH} ()
H(T) - UH(T)
JuT

commutes for each where the vertical arrows are the natural maps.

Sheaf ultracohomology. Assume moreover that is a standard grade@-algebra and is
homogeneous. By an argument similar to the one in §2A], almost allS,, are standard
gradedR,,-algebras and almost all, are homogeneous. For each non-standard integer
Neoo := ulim,, n,, we define thelegreen., part of Dz (S) as

Dr(S)),.. = ulim[Sy],,
If we apply this to each term in the algebreﬁech complex fon and take cohomology,
we get the degree,, part of the non-standard local cohomology groum;g(S), and by
(7) this is also equal to the ultraproduct of the degugeparts of the local cohomology
of the approximations. In view of isomorphism (6), we defineifer 2,.. ., d the sheaf
ultracohomologyf Y — Z as

UH" (Y — Z,0y_z) = [UHL(S)]
It follows from (6) and (7) that
UH"NY — Z,0y_z) =ulimB"Y(Y,, — Z,,,0y, _z.),

0"
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%
a

whereZ,, := V(a,,). The natural mag: H(S) — UH.(S) induces in degree zero a
map ' _ _
ub !t BN Y — Z,0y _z) = UH"HY — Z,0y_z).

The restriction maps induce a diagram

i—1
H~L(Y, Oy) P - HUY = Z,0y_2)
(9) ui,_l “g/_—lz
UH"Y(Y, Oy) s UH"YY — Z,0y_3)

wherepi 1! is the ultraproduct of the restriction maps
pju_l: Hi_l(yun OYU,) - Hi_l(yw — Loy, OY —Z )

w w

Making the appropriate identifications between local cohomology and sheaf cohomology
given by (6), diagram (9) is the degree zero part of

,],.Z

5+(9) - H(9)
(10) G i
UHj. (S) ; UH;(S)

Tso

wherert_ is the ultraproduct of the natural maps
i 2‘:5 (Sw) — Hi (Sw).

w

It is easy to check that (10) commutes, whence so does (9).

6. PSEUDO-RATIONALITY

The notion of pseudo-rationality was introduced by Lipman and Teissier to extend the
notion of rational singularities to a situation where there is not necessarily a resolution of
singularities available.

6.1. Pseudo-rationality. A Noetherian local ring R, m) is calledpseudo-rationalif it
is analytically unramified, normal, Cohen-Macaulay and for any projective birational map
f:Y — Spec R with Y normal, the canonical epimorphism between the top cohomology
groupsd: HE(R) — HZ(Y) is injective, whereZ is the closed fibef ~!(m) andd the
dimension ofR (see (11) below for the definition @f). Moreover, if Spec R admits a
desingularizatior” — Spec R, then it suffices to check the above condition for just this
oneY (see [18§2, Remark (a) and Example (b)]). From this, one can show using Matlis
duality, that if R is essentially of finite type over a field of characteristic zero, tRes
pseudo-rational if and only if it has rational singularities. A Noetherian rnig called
pseudo-rationalif A, is pseudo-rational for every prime idgain A.

The key ingredient in proving Theorems A and B is the following result linking generic
tight closure with pseudo-rationality, analogous to Smith’s characterization [28] in prime
characteristic.
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6.2. Theorem. If an equicharacteristic zero Noetherian local ring is generically F-
rational, then it is pseudo-rational.

Proof. By Theorems 4.2 and 4.3 and Proposition 4.4, we know khit analytically un-
ramified, Cohen-Macaulay and normal. L€t:= Spec R and letf: Y = Proj S — X

be a projective birational map withh normal. In particularS is a standard gradeR-
algebra. Let: R — S be the embedding identifying with [S],, let m be the maximal
ideal of R and letZ := V(m.S) be the closed fiber of. The image of the canonical map
HY (i): HE(R) — HY4(S) lies entirely in degree zero whence in view of (6), induces
a morphismy?: H%(R) — H*Y(Y — Z,0y_z). Combining this with the tail of the
exact sequence (5) and with (9) gives a commutative diagram

H{ (R)

|

HY™Y (Y - 2,0y _z) T HE(Y)

11) HH(Y, Oy) i1

UH" (Y, Oy) —— UH"{(Y — Z,0y _z)
Poo

in which the middle row is exact.

Let x be a system of parameters ihsuch thatx R is generically tightly closed. Note
that the algebrai€ech complex ofk over R (respectively, ovelS) calculates the local
cohomology ofm (respectively, ofnS). We need to show that the kernel dfis zero,
hence suppose the contrary. In particular, it must contain a non-zero element of the form
[%]R, with ¢ € R and wherey is the product of the entries . From the exactness of

(11), we see thai([¢]r) = 0 means that([¢]r) lies in the image op?~". Under the

isomorphismHY" (Y — Z,0y_y) = [H&S(S)} from (6), we may identifyy*([4])
0

with [2]s. Since the square in (11) commute%,‘_lz([%]s) lies in the image op? L.

Let (R, m,) be an approximation ¢fR, m). By Corollary 4.5, almost alR,, are Coh-
en-Macaulay and normal, whence in particular domains.Slebe anR-approximation of
S, putX,, := Spec(R,,) andY,, := Proj(Sy), and letZ,, := V(m,,S,,) be the closed
fiber ofY,, — X,,. Leta,, andx,, be approximations af andx respectively, and put,,

equal to the product of all the entriessiy,. By definition,udyjlz([g]s) is the ultraproduct
of the[7*]s, . Hence by tos’ Theorem, almost &ff“ |5, lie in the image of

pit HYN(Y Oy ,) = HY N (Y — Z4, Oy 2,)

sincepd> ! is the ultraproduct of the?~!. By the same argument as above, we have for
eachw, an exact diagram
Hy, (Ru)

My

duw
(12) Vil \

H Y (Y, 0y,) —=H" (Y — Z4, Oy, _z,) —=H% (Yy).

w d —1 w w d w
w w
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By reversing the above arguments, this diagram then shows that almos{lggéigg lies
in the kernelL,, of §,,. Let us briefly recall the argument from [28] how for a fixedhis
implies thata,, lies in the tight closure of,, R,,. Namely, since the Frobenilg, acts on
the local cohomology groups, the kerrg), is invariant under its action by functoriality.
Hence

oy w ()
(13) Fm v " — w
SinceL,, is a proper subgroup dﬁiw(Rw) (note thats? is non-zero), the Matlis dual
of L,, is a proper homomorphic image of the canonical modyje. Since the canonical
module has rank one, the Matlis dualiof, has torsion, whence so dogsg, itself. Hence
for some non-zero,, € R,, we havec,, L,, = 0. Together with (13), this yields

[chZ]}(aw)
Fi (Yuw)

for eachm. Since almost eacR,, is Cohen-Macaulay, we get,F7 (a,) € Fi'(xy) Ry,
for all m, proving our claim that.,, lies in the tight closure ok, R,,. Since this holds
for almost allw, we conclude that lies in the generic tight closure ofR, which, by
assumption, is just R. However, this means th{a%]R is zero, contradiction. |

]Rw € L.

Jr, =0

Proof of Theorem A. Since all properties localize, we may assume thadand B are
moreover local and that — B is a local homomorphism. Sindg is weakly generically
F-regular by Theorem 3.3, so i, by Proposition 4.9. Thereforel is pseudo-rational by
Theorem 6.2. O

7. ULTRA-F-REGULAR RINGS AND LOG TERMINAL SINGULARITIES

In this section, we extend the argument from [27] in order to prove Theorem B.

7.1. Q-Gorenstein Singularities. Let R be an equicharacteristic zero Noetherian local
domain and pufX := Spec R. We say thatR is QQ-Gorensteinif it is normal and some
positive multiple of the canonical divisdt x is Cartier; the least such positive multiple is
called theindexof R. If R is the homomorphic image of an excellent regular local ring
(which is for instance the case i is complete), thenX admits anembedded resolution
of singularitiesf: Y — X by [9]. If E; are the irreducible components of the exceptional
locus of f, then the canonical divisdty- is numerically equivalent t¢* (K x) + > a; E;
(asQ-divisors), for some:; € Q. The rational numbed; is called thediscrepancyof X
alongF;; see [17, Definition 2.22]. If all; > —1, we call R log-terminal(in case we only
have a weak inequality, we cdll log-canonica).

7.2. Canonical cover. Recall the construction of the canonical cover dpdsorenstein
local ring R due to Kawamata. If is the index ofR, thenOx (rKx) = Ox, where
X := Spec R andK x the canonical divisor ok . This isomorphism induces dtralgebra
structure on

R:= H'(X,0x @ Ox(Kx)®--- @ Ox((r — 1)Kx)),

which is called theanonical coveof ; see [16]. Animportant property for our purposes
is thatR — R is étale in codimension one (see for instance [29, 4.12]). We also use the
following result proven by Kawamata in [16, Proposition 1.7]:
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7.3. Theorem. Let R be a homomorphic image of an equicharacteristic zero, excellent
regular local ring. If R is Q-Gorenstein, then it has log-terminal singularities if and only
if its canonical cover is rational.

7.4.Definition. Inspired by Kawamata’s result, we can now give a resolution-free variant
of log-terminal singularities. We call a Noetherian local domaseudo-log-terminai it
is Q-Gorenstein and its canonical cover is pseudo-rational.

In the remainder of this sectio® is an equicharacteristic zero Noetherian local ring
andR,, is an approximation oR.

7.5. Ultra-F-regularity. We say thatR is ultra-F-regular, if it is a domain and for each
non-zerac € R, we can find an ultra-Frobenil& such that theR-module morphism

(14) R—°*®D(R): z — cF*(x)
is pure. Note that in order for (14) to e linear, we need to vie# (R) as anR-algebra
viaF¢, thatis to say, the target must be taken t6D¢R) (se€§2.2). SinceD(R) = D(R),
an analytically unramified local ring is ultra-F-regular if and only if its completioR is.
Over normal domains, purity and cyclical purity are the same by [10, Theorem 2.6].

Hence forR normal, the purity of (14) is equivalent to the weaker condition that for every
x € R and every ideal C R, we have

(15) cF(z) e F*(I)D(R) implies z € 1.

One can show that iR is moreover analytically unramified, then either condition entails
normality, and hence in that case, they are equivalent (this follows for instance from the
discussion below and the Briangon-Skoda property of generic tight closure).

7.6.Proposition. If R is regular, then it is ultra-F-regular.

Proof. By the above discussion, we need only verify the weaker condition (15). In fact, we
will show that for anyc, we may take = 1 in (15). Indeed, assumé& (z) € F(I)D(R).
SinceF preserves regular sequence®| R) is a balanced big Cohen-Macaul&yalgebra
whence is flat by [25, Theorem IV.1] or [12, Lemma 2.1(d)]. Hence

ce (F(HD(R):F(x)) =F({ : 2)D(R).
Supposer ¢ I. Since(I : z) then lies in the maximal ideal @&, its image undeF lies

in the ideal of infinitesimals oD (R). HenceF (I : )©(R) N R = (0), contradicting that
c#0. O

7.7.Theorem. If Ris analytically unramified and ultra-F-regular, then it is weakly gener-
ically F-regular, whence in particular pseudo-rational.

Proof. The last assertion follows from the first by Theorem 6.2. Since all properties are
invariant under completion, we may assume tRas complete. Lef be an ideal inR and

x € clgen(I). We want to show that € I. By [1, Proposition 6.24], there existse R

such that almost att,, are test elements iR,,, wherec,, and R,, are approximations of

¢ and R respectively. Lets,, andl,, be approximations of and respectively, so that
almost allz,, € I7,. Hence, for almost al and alle, we have

(16) cwFo (2y) € Fo (1) Ry

By assumption, there is an ultra-FrobenEsso thatr — ¢F¢(x) is pure whence cycli-
cally pure, that is to say, so that (15) holds. lebe the ultraproduct of integess, .
Taking e equal toe,, in (16) and taking ultraproducts shows th#t (z) € F(I)D(R).
Therefore, from (15) we get € I, as we wanted to show. O
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7.8.Proposition. Let R C S be a finite extension of Noetherian local domains which is
étale in codimension one. Lebe a non-zero element & andF¢ an ultra-Frobenius. If
R —®D(R): x — cF(x) is pure, then so is its base chanfe— D (5): z — cF¢(z).

In particular, if R is ultra-F-regular, then so iss.

Proof. Let R C S be an arbitrary finite extension dfdimensional Noetherian local do-
mains and fix a non-zero element R and an ultra-FrobeniuB®. Letn be the maximal
ideal of S andwg its canonical module. | claim that & C S is étale, then

(17) “D(S) =2 S®r“D(R).
Assuming the claim, lekR C S now only beétale in codimension one. It follows from the

claim that the supports of the kernel and the cokernel of the naturalShtap <O (R) —
¢®(S) have codimension at least two. Hence the same is true for the base change

ws ®r “D(R) — ws ®s “D(9).

Applying the top local cohomology funct(Hﬁ, we get from the long exact sequence of
local cohomology and Grothendieck Vanishing, an isomorphism

(18) H(ws @k “D(R)) = Hi(ws ®s “D(S)).

Recall that by Grothendieck dualitﬁﬁ(wg) is the injective hullE' of the residue field of
S.

Let ¢, r denote theR-linear morphismk — *®(R): x — cF*(z). For an arbitrary
R-moduleM, letc. py: M — M ®g “®(R) be the base change of p over M. In
particular, we have a commutative diagram

ws —5 wg @R “D(R)

H l

wg — ws Qg 8@(5)
Ce,S,wg

Taking top local cohomology yields the outer square in the following commutative diagram

Ce,R,E

E =Hj(ws) E®g“D(R) —— Hj(ws ©r “D(R))

a9 | | |=

E = Hj(ws) — Bes®(S) —— H{(ws ®5 °D(9))

where the isomorphism at the right comes from (18). Sincg is pure, so is its base
changec, r .. Purity is preserved when taking cohomology, so that the top composite
map in (19) is pure, whence so is the bottom composite map, since it is isomorphic to it.
Sincec, s g is a factor of this map, it is itself pure, whence in particular injective. By [12,
Lemma 2.1(e)], to verify the purity of, g, one only needs to show that its base change
¢e,s, ¢ OVer E is injective, and this is exactly what we just showed.

To prove the claim (17), observe thathf — S is étale with approximatio®,, — S,
then almost all of these aretale. Indeed, by [20, Corollary 3.16], we can wrieas
R[X]/I, with X = (Xy,...,X,) andI = (f1,..., fn)R[X], such that the Jacobian
J(f1,..., fn)is aunitinR, and by tos’ Theorem, this property is preserved for almost
all approximations. Quite generally, @ — D is anétale extension of characteristic
domains, then we have for eaehan isomorphisnfD = D ®c ¢C (see for instance
[15, p. 50] or the proof of [29, Theorem 4.15]). Applied to the current situation, we get
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°Sw = Sy ®r,, Ry (see [15, p. 50]). Therefore, applied with=: e,,, wheree,, is an
approximation ok, we get after taking ultraproducts,

D(S) =2 D(5) @p(r) “D(R) = SR “D(R)

as required, where we used the isomorph®ft) = S ®@g D(R), which holds by [1,
§4.10.4], sinceR — S is finite.

To prove the last assertion, we have to show that we can find for each non-zefo
an ultra-Frobeniu&* such thatc. s is pure. However, if we can do this for some non-
zero multiple ofe, then we can also do this fer and hence, sinc§ is finite overR, we
may assume without loss of generality that R. SinceR is ultra-F-regular, we can find
therefore an ultra-Frobenid®® such that. r is pure, and hence by the first assertion, so
is thenc, g, proving thatS is ultra-F-regular. O

7.9. Proposition. Let R — S be a cyclically pure homomorphism of equicharacteristic
zero Noetherian local rings. If is ultra-F-regular and analytically unramified, then so is
R.

Proof. SinceR — S is again cyclically pure by [1, Lemma 6.7], we may assume without
loss of generality thab' is complete. Lett € R be non-zero and leF< be an ultra-
Frobenius for which thé&-module morphism

(20) Ce,g: S — D(S): . +— cF°(x)

is pure. We want to show that the same is true upon replaSibhy R, that is to say,
thatc.  is pure. SinceS is weakly generically F-regular by Theorem 7.7, sdiisy
Proposition 4.9. Hence is in particular normal by Theorem 4.3, so that it suffices to
verify (15). Letx € R andI C R be such thatF¢(z) € F*(I)D(R). Therefore,x
belongs tal S by (20), whence tdS N R = I by cyclical purity. |

Note that in the proof, the condition thétis analytically unramified was only used to
get the normality ofR.

Proof of Theorem B. Proposition 7.6 yields thaf is ultra-F-regular, whence so Is by
Proposition 7.9. LeRR be the canonical cover d?. By Proposition 7.8, als& is ultra-F-
regular, whence pseudo-rational by Theorem 7.7. O
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