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PURE SUBRINGS OF REGULAR RINGS ARE PSEUDO-RATIONAL

HANS SCHOUTENS

ABSTRACT. We prove a generalization of the Hochster-Roberts-Boutot-Kawamata The-
orem conjectured in [1]: letR → S be a pure homomorphism of equicharacteristic zero
Noetherian local rings. IfS is regular, thenR is pseudo-rational, and ifR is moreover
Q-Gorenstein, then it is pseudo-log-terminal.

1. INTRODUCTION

Hochster and Roberts showed in [13], using finite characteristic methods, that quotient
singularities in characteristic zero are Cohen-Macaulay. This was improved by Boutot in
[2] where he shows, using deep vanishing theorems, that they are rational. More precisely,
if G is the complexification of a compact Lie group which acts algebraically on an affine
smooth schemeX of finite type overC, then the quotientX/G has rational singularities.
In algebraic terms, withX = Spec B, this means that the ring of invariantsA := BG has
rational singularities wheneverB is regular. (In fact, it suffices thatB has at most rational
singularities, and there is also a similar result in the analytic category.) WhenG is finite,
Kawamata in [16] showed moreover thatX/G has at most log-terminal singularities, and
the author showed in [27], using non-standard tight closure, that this remains true for non-
finite G, providedX/G is moreoverQ-Gorenstein (a condition that holds automatically if
G is finite).

The goal of the present paper is to extend all these results by removing the finite type
condition. However, since the notion of rational singularities is defined in terms of a reso-
lution of singularities, which might not be available in such generality, we need to replace
it by the notion of pseudo-rationality.

Main Theorem A. Let A → B be a cyclically pure homomorphism of Noetherian rings
containingQ. If B is regular, thenA is pseudo-rational.

Recall that a homomorphismA → B is cyclically pureif a = aB∩A for each ideala in
A; examples are split, pure or faithfully flat homomorphisms. Since the inclusionBG ⊆ B
is split (via the so-called Reynolds operator), Boutot’s result is therefore just a special case
of our first main theorem. Theorem A was conjectured in [1] and proven for algebras of
finite type over an algebraically closed field in [26] using canonical big Cohen-Macaulay
algebras. The analogue in prime characteristic was proven by Smith in [28], but unlike
most applications of tight closure, this proof did not carry over to characteristic zero, the
reason being that cyclic purity is not preserved under reduction modulop. To formulate a
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corresponding generalization in theQ-Gorenstein case, we need to make a definition. Call
a Noetherian localQ-Gorenstein ringR pseudo-log-terminal, if its canonical cover̃R (see
§7.2) is pseudo-rational. In particular, if we are in a category of local algebras in which
‘pseudo-rational’ is equivalent with ‘rational’ (e.g., the category of local algebras essen-
tially of finite type over a field), then ‘pseudo-log-terminal’ is the same as ‘log-terminal’
by a result of Kawamata (Theorem 7.3). With this terminology, we get the following gen-
eralization, conjectured in [1] and proven for algebras of finite type over an algebraically
closed field in [27].

Main Theorem B. Let R → S be a cyclically pure homomorphism of equicharacteristic
zero Noetherian local rings withS regular. If R is Q-Gorenstein, then it is pseudo-log-
terminal.

To prove both theorems, we will transform the argument for finitely generated algebras
given in [27] by means of the machinery of faithfully flat Lefschetz hulls introduced in [1].
In that paper, we show that given an equicharacteristic zero Noetherian local ringR, we can
find a faithfully flat localR-algebraD(R) which is an ultraproduct of rings of prime char-
acteristic (these latter rings are calledapproximationsof R and their ultraproduct is called
a Lefschetz hullof R). These results enabled us in [1] to generalize the alternative con-
structions of tight closure and big Cohen-Macaulay algebras from the papers [23, 26, 27]
to arbitrary equicharacteristic zero Noetherian local rings. Similar applications, although
only implicitly using Lefschetz hulls, can be found in [22, 24].

In the present paper, we will concentrate on one variant coming out of this work, to wit,
generic tight closure: an element is in thegeneric tight closureof an ideal if almost all of
its approximations belong to the tight closure of the corresponding approximation of the
ideal; see§3 for exact definitions. Theorem A will follow from the fact that a generically
F-rational ring is pseudo-rational (see Theorem 6.2), where we call a ring (generically)
F-rational if some ideal generated by a system of parameters is equal to its (generic) tight
closure. Smith observes in [28] that F-rationality in prime characteristic is equivalent with
the top local cohomology of the ring being Frobenius simple. This enables her to prove
that an excellent F-rational Noetherian local ring of prime characteristic is pseudo-regular.
We will not use this result directly, but rather the method used to prove it. To this end,
we also need Lefschetz hulls for finitely generated algebras over a Noetherian local ring,
as such rings appear in thěCech complex that calculates the local cohomology. This is
carried out in§2. Therefore, the present proof is entirely self-contained, apart from some
material taken from [1].

As for Theorem B, we generalize the notion of anultra-F-regular local ring introduced
in [27] as a Noetherian local domainR with the property that for each non-zeroc, we
can find an ultra-FrobeniusFε such that the morphismx 7→ cFε(x) is pure (an ultra-
Frobeniusis an ultraproduct of powers of Frobenii; see§2.2 below). We then show that
the property of being ultra-F-regular descends under cyclically pure local homomorphisms
(Proposition 7.9) and is preserved under finite extensions which areétale in codimension
one (Proposition 7.8). Moreover, we show that an ultra-F-regular local ring is pseudo-
rational.

Open Questions.

(1) Does the converse of Theorem 6.2 also hold, that is to say, is pseudo-rational
equivalent with generically F-rational? In [26, Theorem 5.11], I gave a proof of
this in the finitely generated case which relies on a deep theorem due to Hara:
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a local C-algebra R of finite type has rational singularities if and only if it is of
F-rational type; see [6].

(2) Does the stronger analogue of Boutot’s result also hold, that is to say, can we
weaken the assumption in Theorem A thatB is only pseudo-rational? In the
finitely generated case, a tight closure proof is available ifB is moreover Goren-
stein ([26,§5.14]), but this again depends on Hara’s result.

(3) In [27], using once more Hara’s result, it was shown that forQ-Gorenstein local
domains of finite type over an algebraically closed field, the notions ultra-F-regular
and log-terminal are equivalent. Is ultra-F-regular and pseudo-log-terminal the
same forQ-Gorenstein local domains?

(4) Again, we can weaken in the finite type case [27] the assumption thatS is regular
to the assumption that it is (pseudo-)log-terminal. Does this also hold in general?

(5) For local algebras of finite type over a field of characteristic zero, rational and
pseudo-rational are the same notions, and so are log-terminal and pseudo-log-
terminal. For which other categories of equicharacteristic zero Noetherian local
rings is this the case?

2. LEFSCHETZHULLS

Let Sw be a sequence of rings, wherew runs over some infinite set endowed with
a non-principal ultrafilter. Theultraproduct of this sequence is a ringS∞ given as the
homomorphic image of the product

∏
w Sw modulo the ideal of all sequences which are

almost equal to the zero sequence (two sequences(aw) and(bw) in the product are said to
bealmost equalif aw = bw for almost allw, that is to say, for allw in some member of the
ultrafilter). When we want to emphasize the index, we denote the ultraproductS∞ also by

ulim
w

Sw

and similarly, the image of a sequence(aw) in S∞ is denotedulimw aw or simplya∞. In
case all rings are equal, saySw := S, their ultraproduct is called anultrapowerof S. For
more details, see [14,§9.5] or [5], or the brief review in [23,§2].

2.1. Lefschetz hulls. Let K be an uncountable algebraically closed field of characteristic
zero. In [1], we associate to every Noetherian local ringR whose residue field is contained
in K, a faithfully flat Lefschetz hull, that is to say, a faithfully flat extensionR ⊆ D(R)
such thatD(R) is an ultraproduct of prime characteristic (complete) Noetherian local rings
Rw. Any sequence of prime characteristic complete Noetherian local ringsRw whose
ultraproduct is equal toD(R) is called anapproximationof R. For the extent to which
the assignmentR 7→ D(R) is functorial, we refer to the cited paper. All we need in the
present paper is that ifR → S is a local homomorphism of Noetherian local rings whose
residue field is contained inK, then there is a homomorphismD(R) → D(S) making the
following diagram commute

(1)

?

-

?
-

D(R)R

D(S).S
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For the remainder of this section,R is an equicharacteristic zero Noetherian local ring,
Rw an approximation ofR andD(R) its Lefschetz hull. We always chooseK large enough
so that it contains all pertinent residue fields and hence from now on, no further reference
is made to it. For eachw, let Fw denote the Frobenius onRw, that is to say the homo-
morphism given byx 7→ xp(w), wherep(w) is the characteristic ofRw. Given a positive
integere, let eRw denote theRw-algebra structure onRw given byFe

w. It follows that
Fe

w : Rw → eRw is Rw-linear.

2.2. Ultra-Frobenius. A non-standard integeris an elementε of the ultrapowerZ∞ of
Z, that is to say, an ultraproduct of integersew. If almost allew are positive, then we callε
positive. For each positive non-standard integerε, let Fε : R → D(R) be the ultraproduct
of theFew

w , that is to say, forx ∈ R with approximationxw, we have

Fε(x) := ulim
w

Few
w (xw) ∈ D(R).

As in [27], we will call any homomorphismR → D(R) of the formFε for someε an
ultra-Frobenius. If ε = 1, then the corresponding ultra-Frobenius is just thenon-standard
Frobeniusintroduced in [1].

For each positive non-standard integerε, we may viewD(R) as anR-algebra via the
homomorphismFε. To denote this algebra structure, we will writeεD(R) (in [27], the
alternative notation(Fε)∗D(R) was used). In other words, theR-algebra structure on
εD(R) is given byx · α := Fε(x)α, for x ∈ R andα ∈ D(R).

One of the major drawbacks of the functorD is its local nature. In particular, since a
localizationR → Rp is not a local homomorphism, there is no obvious map fromD(R) to
D(Rp). Below we will have to deal with localizations of the formRy, and hence we need
a notion of Lefschetz hull for such (non-local) rings as well.

2.3. R-approximations. Let Y be a tuple of indeterminates and letf ∈ R[Y ], say of the
form f =

∑
ν∈N aνY ν with aν ∈ R andN a finite index set. Ifaνw is an approximation

of aν , for eachν ∈ N , then we call the sequence of polynomialsfw :=
∑

ν∈N aνwY ν an
R-approximationof f .

One checks that any twoR-approximations of a polynomialf are almost equal. Simi-
larly, if I := (f1, . . . , fs) is an ideal inR[Y ] andfiw is anR-approximation offi, for each
i, then we call the sequenceIw := (f1w, . . . , fsw)Rw[Y ] anR-approximationof I, and if
S = R[Y ]/I, then we call the sequenceSw := Rw[Y ]/Iw anR-approximationof S.

2.4. Relative hulls. If S is a finitely generatedR-algebra andSw is anR-approximation
of S, then the ultraproduct of theSw is called the(relative) R-hull of S and is denoted
DR(S).

If R[Z]/J is another presentation ofS as anR-algebra, then we have substitution maps
Y 7→ a andZ 7→ b which induce isomorphisms moduloI andJ respectively, where
a andb are tuples of polynomials in theZ and Y -variables respectively. Letaw and
bw be R-approximations of these respective tuples and letJw be anR-approximation
of J . By Łos’ Theorem the substitutionsY 7→ aw andZ 7→ bw induce for almost all
w isomorphisms moduloIw andJw respectively. It follows that the ultraproduct of the
Rw[Y ]/Iw is isomorphic to the ultraproduct of theRw[Z]/Jw, showing thatDR(S) is
independent from the particular presentation ofS and from the particular choice ofR-
approximations.

SinceDR(S) is naturally aD(R)-algebra and since by Łos’ Theorem the tupleY is al-
gebraically independent overD(R), we get a naturalD(R)[Y ]-algebra structure, whence
anR[Y ]-algebra structure, onDR(S). Under the natural homomorphismR[Y ] → DR(S),
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we getIDR(S) = 0, so that this induces a homomorphismS → DR(S), endowingDR(S)
with a canonicalS-algebra structure. We can now extend the notion ofR-approximation of
an elementa or an ideala in a finitely generatedR-algebraS as follows. LetS := R[Y ]/I
and choose a polynomialf ∈ R[Y ] and an idealA in R[Y ] so that their images inS
are respectivelya anda. Let fw, Aw andSw be R-approximations off , A andS re-
spectively. We call the imageaw of fw in Sw (respectively, the idealaw := AwSw) an
R-approximationof a (respectively, ofa). Note that the ultraproduct of theaw (respec-
tively, of the aw) is equal to the image ofa in DR(S) (respectively, equal to the ideal
aDR(S)), showing that any twoR-approximations are almost equal.

If S → T is anR-algebra homomorphism of finite type, then this extends to anR-
algebra homomorphismDR(S) → DR(T ) giving rise to a commutative diagram

(2)

?

-

?
-

DR(S)S

DR(T ).T

In particular,DR(·) is a functor on the category of finitely generatedR-algebras. The
argument is the same as in [23,§3.2.4] and we leave the details to the reader.

3. GENERIC TIGHT CLOSURE

One of the tight closure notions introduced in [1] is generic tight closure. In this section,
we review the definition and (re)prove some of its main properties. Throughout this section,
(R,m) will denote an equicharacteristic Noetherian local ring and(Rw,mw) one of its
approximations. For generalities on (characteristicp) tight closure, see [15].

3.1.Definition. An elementz ∈ R lies in thegeneric tight closureof an ideala ⊆ R, if
almost allzw lie in the tight closurea∗w of aw, wherezw andaw are approximations ofz
anda respectively.

We denote the generic tight closure of an ideala by clgen(a). One easily checks that

(3) clgen(a) = (ulim
w

a∗w) ∩R

where the contraction is with respect to the canonical embeddingR → D(R). It follows
thatclgen(a) is an ideal, containinga, with the property thatclgen(clgen(a)) = clgen(a). We
say that an ideala is generically tightly closedif a = clgen(a). The proof of the following
easy fact is left to the reader.

3.2. Lemma. If a ⊆ R is a generically tightly closed ideal, then so is any colon ideal
(a :R b), for b ⊆ R. �

3.3.Theorem. If R is regular, then every ideal is generically tightly closed.

Proof. By [1, Theorem 5.2], almost allRw are regular, and hence all ideals inRw are
tightly closed by [15, Theorem 1.3]. The assertion then follows from (3) and faithful
flatness. �

3.4.Theorem (Persistence). If R → S is a local homomorphism anda an ideal inR, then
clgen(a)S ⊆ clgen(aS).
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Proof. Immediate from (3) and the fact that persistence holds for eachRw → Sw, where
Sw is an approximation ofS (note thatRw is complete, so that [15, Theorem 2.3] applies).

�

3.5.Theorem (Strong Colon Capturing). Let (x1, . . . , xd) be part of a system of parame-
ters ofR. For eachi, the elementxi is a non-zero divisor moduloclgen((x1, . . . , xi−1)R).

Proof. By downward induction oni, it suffices to prove the assertion fori = d. To this
end, supposezxd ∈ clgen(I) with I := (x1, . . . , xd−1)R. Let Rw, zw andxiw be ap-
proximations ofR, z andxi respectively and putIw := (x1w, . . . , xd−1w)Rw. By [1,
Corollary 5.3], almost all(x1w, . . . , xdw) are part of a system of parameters inRw and
zwxdw ∈ I∗w. Since eachRw is complete, Strong Colon Capturing holds for it, that is
to say,xdw is a non-zero divisor moduloI∗w (see [15, Theorem 3.1A and Lemma 4.1]).
Therefore,zw ∈ I∗w, whencez ∈ clgen(I), as we needed to show. �

3.6.Remark. In particular, the usual Colon Capturing holds, that is to say, for eachi, we
have an inclusion((x1, . . . , xi−1)R : xi) ⊆ clgen((x1, . . . , xi−1)R). The same proof can
also be used to prove the following stronger version (compare with [15, Theorem 9.2]): let
Z[X] → R be given byXi 7→ xi and letI, J ⊆ Z[X] be ideals. We have an inclusion

(4) (clgen(IR) : JR) ⊆ clgen((I : J)R).

3.7.Corollary. If (x1, . . . , xd) is part of a system of parameters inR and if(x1, . . . , xd)R
is generically tightly closed, then so is each(x1, . . . , xi)R, for i = 1, . . . , d. In particular,
(x1, . . . , xd) is a regular sequence.

Proof. The last assertion is clear from Colon Capturing and the first assertion. For the
first assertion, it suffices to treat the casei = d − 1, by downwards induction oni. Let
I := (x1, . . . , xd−1)R and letz ∈ clgen(I). Clearly,z ∈ clgen(I + xdR) and this latter
ideal is justI + xdR by hypothesis. Writez = a + rxd, with a ∈ I andr ∈ R. Therefore,
z − a = rxd ∈ clgen(I). Sincexd is a non-zero divisor moduloclgen(I) by Theorem 3.5,
we getr ∈ clgen(I). So, we proved thatclgen(I) = I + xd clgen(I). Nakayama’s Lemma
then yields thatI = clgen(I). �

3.8.Theorem (Briançon-Skoda). The generic tight closure of an ideala ⊆ R is contained
in its integral closure. Ifa is generated by at mostn elements, then the integral closure of
am+n is contained inclgen(am+1), for eachm.

Proof. Let z ∈ clgen(a). In order to show thatz is integral overa, it suffices by [11, Lemma
2.3] to show thatz ∈ aV , for each discrete valuation ringV such thatR → V is a local
homomorphism. Now, persistence (Theorem 3.4) yields thatz lies in clgen(aV ), whence,
by Theorem 3.3, inaV .

Assume next thatz lies in the integral closure ofam+n, for somem and for n the
number of generators ofa. Taking an integral equation witnessing this fact and considering
approximations, we see that almost allzw lie in the integral closure ofam+n

w , wherezw

andaw are approximations ofz anda respectively. By the tight closure Briançon-Skoda
Theorem (see for instance [15, Theorem 5.7] for an easy proof), almost allzw lie in the
tight closure ofam+1

w and the result follows. �

3.9. Comparison with other tight closure operations. By [1, Theorem 6.21], the generic
tight closure of an ideala is contained in its non-standard tight closure, providedR is an-
alytically unramified. This latter condition is imposed to insure the existence of uniform
test elements ([1, Proposition 6.20]).
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If R is moreover equidimensional and universally catenary, then by [1, Proposition
7.13], theB-closureaB(R)∩R of a is contained in its generic tight closure, with equality
if a is generated by a system of parameters. HereB(R) denotes the canonical big Cohen-
Macaulay algebra associated toR from [1, §7]. (In the special case thatR is a complete
domain with algebraically closed residue field,B(R) is obtained as the ultraproduct of the
absolute integral closuresR+

w .)

4. GENERIC F-RATIONALITY

As before,R is an equicharacteristic zero Noetherian local ring andRw is an approxi-
mation ofR.

4.1.Definition. We say thatR is generically F-rational, if there exists a system of param-
etersx in R such thatxR is generically tightly closed.

Let us say thatR is B-rational, if there exists a system of parametersx such that
xR = xB(R) ∩ R. We will prove below that a ring is generically F-rational if and only
if its completionR̂ is. We leave it as an exercise to prove that the same property with ‘B-
rational’ instead of ‘generically F-rational’ also holds. Therefore, in view of our discussion
in §3.9, a ring is generically F-rational if and only if it isB-rational.

4.2.Theorem. If R is generically F-rational, then it is Cohen-Macaulay.

Proof. Let x be a system of parameters inR such thatxR is generically tightly closed. By
Corollary 3.7, the sequencex is regular and henceR is Cohen-Macaulay. �

4.3.Theorem. If R is generically F-rational, then any ideal generated by part of a system
of parameters is generically tightly closed. In particular,R is normal.

Proof. By Theorem 4.2, we know thatR is Cohen-Macaulay. By Corollary 3.7, it suffices
to show that any ideal generated by a system of parameters(y1, . . . , yd) is generically
tightly closed. Reasoning on the top local cohomology, we can findt ≥ 1 anda ∈ R such
that (y1, . . . , yd)R = ((xt

1, . . . , x
t
d)R :R a) (see for instance the proof of [15, Lemma

4.1]). Therefore, if we can show that(xt
1, . . . , x

t
d)R is generically tightly closed, then so

will (y1, . . . , yd)R be by Lemma 3.2. Hence we have reduced to the case thatyi = xt
i, for

somet ≥ 1.
Let z ∈ clgen((xt

1, . . . , x
t
d)R). We need to show thatz ∈ (xt

1, . . . , x
t
d)R. If some

zxi does not lie in(xt
1, . . . , x

t
d)R, we may replace our originalz by this new element.

Therefore, we may assume that

z(x1, . . . , xd)R ⊆ (xt
1, . . . , x

t
d)R.

Since(x1, . . . , xd) is R-regular, we have

((xt
1, . . . , x

t
d)R : (x1, . . . , xd)R) = (xt

1, . . . , x
t
d, y

t−1)R,

wherey := x1 · · ·xd. In summary, we may assume thatz = uyt−1, for someu ∈ R. By
(4), we then get

u ∈ (clgen((xt
1, . . . , x

t
d)R) : yt−1) ⊆ clgen(((xt

1, . . . , x
t
d)R : yt−1))

= clgen((x1, . . . , xd)R) = (x1, . . . , xd)R.

Therefore,z = uyt−1 lies in (xt
1, . . . , x

t
d)R, as we wanted to show.

In order to prove thatR is normal, if suffices to show that any height one principal
idealaR is integrally closed. Since the integral closure ofaR is contained inclgen(aR) by
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Theorem 3.8, and sincea is part of a system of parameters, the conclusion follows from
the first assertion. �

4.4.Proposition. A local ring R is generically F-rational if and only if its completion̂R
is. In particular, a generically F-rational ring is analytically unramified.

Proof. Let x be a system of parameters inR such thatn := xR is generically tightly
closed. I claim thatnR̂ is generically tightly closed, from which it follows that̂R is gener-
ically F-rational. To this end, let̂z ∈ R̂ be in the generic tight closure ofnR̂. Write
ẑ = z + ŵ with z ∈ R andŵ ∈ nR̂. It follows thatz ∈ clgen(nR̂). Let J be the ultraprod-
uct of then∗w, wherenw is an approximation ofn. SinceRw is also an approximation for
R̂, we getclgen(nR̂) = J ∩ R̂ by (3). Hencez ∈ J , and sinceJ ∩ R = clgen(n) = n, we
get ẑ = z + ŵ ∈ nR̂.

Conversely, supposêR is generically F-rational. Letx be a system of parameters in
R. Let a be in the generic tight closure ofxR, whence by persistence (Theorem 3.4), in
the generic tight closure ofxR̂. Sincex is a system of parameters in̂R, the idealxR̂

is generically tightly closed by Theorem 4.3. Hence,a ∈ xR̂, and therefore, by faithful
flatness,a ∈ xR, proving thatR is generically F-rational.

To prove the last assertion, assumeR is generically F-rational. Hence so iŝR by what
we just proved. Therefore,̂R is normal by Theorem 4.3, whence a domain, showing that
R is analytically unramified. �

4.5. Corollary. If R is generically F-rational, then almost allRw are Cohen-Macaulay
and normal.

Proof. SinceR̂ andR have the same approximations, we may assume by Proposition 4.4
thatR is complete. Theorems 4.2 and 4.3 yield thatR is normal and Cohen-Macaulay. By
[1, Theorem 5.2], almost allRw are Cohen-Macaulay. SinceR satisfies Serre’s condition
(R1), so do almost allRw by [1, Theorem 5.6]. Together with the fact that almost all
Rw are Cohen-Macaulay, we get from Serre’s criterion for normality (see for instance [19,
Theorem 23.8]) that almost allRw are normal. �

4.6.Proposition. If almost allRw are F-rational, thenR is generically F-rational. The
converse holds ifR is moreover Gorenstein.

Proof. Let x be a system of parameters inR, with approximationxw, and letz be in the
generic tight closure ofxR. By [1, Corollary 5.4], almost allxw are systems of parameters
in Rw. Hence, by definition of F-rationality,xwRw is tightly closed. Therefore, ifzw is an
approximation ofz, thenzw ∈ xwRw. Taking ultraproducts, we see thatz lies inxD(R)
and hence by faithful flatness, inxR, showing thatR is generically F-rational.

Suppose next thatR is Gorenstein and generically F-rational. Towards a contradiction,
assume almost eachRw is not F-rational. IfJ is the ultraproduct of the(xwRw)∗, then this
means thatxD(R)  J . On the other hand, by (3) and our assumption,J ∩R = xR. Put
S := R/xR. By [1, §4.9], we have an isomorphismD(S) ∼= D(R)/xD(R) andD(S) is
an ultrapower ofS ⊗k K, wherek is the residue field ofR andK the algebraically closed
field used in the definition of Lefschetz hull. SinceS is Gorenstein, so isS ⊗k K, whence
alsoD(S), since the Gorenstein property is first order definable (see for instance [21]). Let
a ∈ R be such that its image inS generates the socle of this ring. By faithful flatness,a
is a non-zero element in the socle ofD(S), whence must generate it. SinceJS 6= 0, we
must havea ∈ J whencea ∈ J ∩R = xR, contradiction. �
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4.7.Remark.Note that by Smith’s result [28, Theorem 3.1], an F-rational excellent local
ring is pseudo-rational; the converse holds by [6]. It follows that if almost all approxima-
tions ofR are pseudo-rational, thenR is generically F-rational, whence pseudo-rational by
Theorem 6.2 below. I do not know whether the converse also holds.

Let us callR weakly generically F-regular, if each ideala ⊆ R is generically tightly
closed. By Theorem 3.3, any regular local ring is weakly generically F-regular. By a simi-
lar argument as in the proof of Proposition 4.4, one can show thatR is weakly generically
F-regular if and only if its completion is. If a ring is weakly generically F-regular, then it
is generically F-rational; the converse is true for Gorenstein rings, as we now prove.

4.8.Theorem. If R is Gorenstein and generically F-rational, then it is weakly generically
F-regular.

Proof. Given an arbitrary ideala ⊆ R, we need to show thata = clgen(a). Sincea is the
intersection ofm-primary ideals, we easily reduce to the case thata is m-primary. Choose
a system of parametersx such thatxR ⊆ a. By Theorem 4.3, the idealxR is generically
tightly closed. SinceR is Gorenstein,

a = (xR : (xR : a))

which is a generically tightly closed ideal by Lemma 3.2. �

4.9.Proposition. LetR → S be a cyclically pure, local homomorphism between equichar-
acteristic zero Noetherian local rings. IfS is weakly generically F-regular, then so isR.

Proof. Let z ∈ clgen(a), for a an ideal inR. By Theorem 3.4, the image ofz in S lies in the
generic tight closure ofaS, which by assumption is justaS. Hencez ∈ aS ∩R = a. �

4.10.Remark.It is well-known that the localization of an F-rational ring is again F-rational
(see [15, Theorem 4.2]; the same property for weakly F-regular rings though is still open).
However, since Lefschetz hulls are not compatible with localization, I do not know whether
the localization of a generically F-rational ring is again generically F-rational.

The next Briançon-Skoda type theorem was proven first in [18] for pseudo-rational
local rings. Since we will show in the next section that a generically F-rational local ring
is pseudo-rational, this version generalizes their result.

4.11.Theorem. If R is ad-dimensional generically F-rational local ring, then the integral
closure ofam+d is contained inam+1, for all m and all idealsa ⊆ R.

Proof. We follow the argument in [26, Theorem 6.4], where the special case thatR is of
finite type over an algebraically closed field is proven. Leta be an element of the integral
closure ofam+d. Assume first thata is generated by a system of parameters. Therefore,
a lies in clgen(am+1), by Theorem 3.8, whence inam+1, by Lemma 4.12 below. This
proves the assertion for parameter ideals. Assume next thata is merelym-primary, where
m is the maximal ideal ofR. In that case,a admits a reductionI generated by a system
of parameters. SinceIm+d is then a reduction ofam+d, we get thata lies in the integral
closure ofIm+d, whence inIm+1, by the first case, and, therefore, ultimately inam+1,
also establishing this case. For arbitrarya, write a as the intersection of alla+mn and use
the previous case. �

4.12.Lemma. If (R,m) is a generically F-rational local ring,(x1, . . . , xd) a system of
parameters andJ anm-primary ideal generated by monomials in thexi, thenJ is generi-
cally tightly closed.
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Proof. By [4], we can writeJ as the intersection of ideals of the form(xe1
1 , . . . , xed

d )R, for
some non-zeroei. Each such ideal is generically tightly closed by Theorem 4.3, whence
so isJ . �

5. LOCAL COHOMOLOGY

Before we turn to pseudo-rationality, we must say something about local and sheaf
cohomology and their respective ultraproducts. For our purposes, local cohomology is
most conveniently approached viaČech cohomology, which we quickly review. Leta be
an ideal in a Noetherian ringS and choose a tuplex := (x1, . . . , xd) so thata andxS have
the same radical. For eachi ≤ d, define

Ci(x;S) :=
⊕

1≤l1<l2<···<li≤d

Sxl1xl2 ···xli

(with the convention thatC0(x;S) = S). TheCi(x;S) are the modules appearing in a
complexC•(x;S), called thealgebraicČech complexwith respect tox, where the dif-
ferentialCi(x;S) → Ci+1(x;S) is given by the inclusion maps among the localizations,
with the choice of an appropriate sign to makeC•(x;S) a complex (see [3,§3.5] for more
details). The cohomology of this complex is called thelocal cohomologyof S with respect
to a and is denotedH•a(S). One shows thatH•a(S) only depends on the radical ofa and,
in particular, is independent from the choice ofd-tuplex. We will be mainly interested in
the top cohomology groupHd

a(S) and we use the following notation. SinceHd
a(S) is a ho-

momorphic image ofCd(x;S) = Sx1...xd
, an arbitrary element is the image of a fraction

a
(x1...xd)n and we will denote this image by[ a

(x1...xd)n ]S .

Local cohomology and sheaf cohomology.Let Y be a scheme andZ a closed subset
of Y . The collection of those global sections inH0(Y,OY ) whose support is contained
in Z is denotedH0

Z(Y ) and is called theglobal sections with support inZ. The derived
functorsHi

Z(Y ) of the left-exact functorH0
Z are called thecohomology with support inZ.

The cohomology groups with support are connected to the usual sheaf cohomology via an
exact sequence

(5) · · · → Hi−1(Y,OY )
ρi−1

−−−−→Hi−1(Y − Z,OY−Z) ∂i

−−→Hi
Z(Y ) → Hi(Y,OY ) → . . .

where∂i are the connecting morphisms (see for instance [7, Corollary 1.9]).
For (quasi-)projective schemes, we also have a relationship between local cohomology

and sheaf cohomology as follows. LetR be a Noetherian ring. Astandard gradedR-
algebrais a Noetherian graded ring

S =
⊕
n≥0

[S]n

such thatR = [S]0 andS is (finitely) generated as anR-algebra by[S]1. The irrelevant
ideal ofS will be denoted byS+ := ⊕n>0 [S]n. LetY := ProjS be the projective scheme
overSpec R defined byS and letZ be a closed subset ofY , defined by some homogeneous
ideala ⊆ S. For eachi ≥ 2, we have

(6) Hi−1(Y − Z,OY−Z) ∼=
[
Hi

a(S)
]
0
.
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Local ultracohomology. For the remainder of this section,R is an equicharacteristic zero
Noetherian local ring andS is a finitely generatedR-algebra. Leta be an ideal inS and let
x be ad-tuple inS such thata andxS have the same radical. Note that each module in the
algebraicČech complexC•(x;S) is a finitely generatedR-algebra, whence admits anR-
hull. Thenon-standard algebraičCech complexC•∞(x;S) overS with respect tox is by
definition the complex whoseith module isDR(Ci(x;S)) and for which the differentials
are induced by the differentials onC•(x;S). Thelocal ultracohomologyof S with respect
toa is by definition the cohomology of the non-standard algebraicČech complexC•∞(x;S)
and is denotedUH•a(S).

Without proof, we state thatUH•a(S) is independent from the choice of ad-tuple x.
By (2), the canonical homomorphismsCi(x;S) → DR(Ci(x;S)) give rise to a map of
complexesC•(x;S) → C•∞(x;S), and hence for eachi ≤ d, we get a natural morphism

ji
a : Hi

a(S) → UHi
a(S).

LetSw, aw andxw beR-approximations ofS, a andx respectively. Since we can calculate
the local cohomologyH•aw

(Sw) with aid of the algebraičCech complex ofxw and since
taking ultraproducts commutes with cohomology, we get

(7) UHi
a(S) ∼= ulim

w
Hi

aw
(Sw)

for eachi. In particular, ifϕ : S → T is anR-algebra homomorphism of finite type, then
the diagram

(8)

?

-

?
-

UHi
a(S)Hi

a(S)

UHi
a(T )Hi

a(T )

Hi
a(ϕ) UHi

a(ϕ)

ji
aT

ji
a

commutes for eachi, where the vertical arrows are the natural maps.

Sheaf ultracohomology.Assume moreover thatS is a standard gradedR-algebra anda is
homogeneous. By an argument similar to the one in [27,§2.9], almost allSw are standard
gradedRw-algebras and almost allaw are homogeneous. For each non-standard integer
n∞ := ulimw nw we define thedegreen∞ part of DR(S) as

[DR(S)]n∞ := ulim
w

[Sw]nw

If we apply this to each term in the algebraicČech complex fora and take cohomology,
we get the degreen∞ part of the non-standard local cohomology groupsUHi

a(S), and by
(7) this is also equal to the ultraproduct of the degreenw parts of the local cohomology
of the approximations. In view of isomorphism (6), we define fori = 2, . . . , d thesheaf
ultracohomologyof Y − Z as

UHi−1(Y − Z,OY−Z) :=
[
UHi

a(S)
]
0
.

It follows from (6) and (7) that

UHi−1(Y − Z,OY−Z) = ulim
w

Hi−1(Y w − Zw,OY w−Zw
),
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whereZw := V(aw). The natural mapji
a : Hi

a(S) → UHi
a(S) induces in degree zero a

map
ui−1

Y−Z : Hi−1(Y − Z,OY−Z) → UHi−1(Y − Z,OY−Z).
The restriction maps induce a diagram

(9)

?

-

?
-

Hi−1(Y − Z,OY−Z)Hi−1(Y,OY )

UHi−1(Y − Z,OY−Z)UHi−1(Y,OY )

ui−1
Y ui−1

Y−Z

ρi−1
∞

ρi−1

whereρi−1
∞ is the ultraproduct of the restriction maps

ρi−1
w : Hi−1(Y w,OY w

) → Hi−1(Y w − Zw,OY w−Zw
).

Making the appropriate identifications between local cohomology and sheaf cohomology
given by (6), diagram (9) is the degree zero part of

(10)

?

-

?
-

Hi
a(S)Hi

S+(S)

UHi
a(S)UHi

S+(S)

ji
S+ ji

a

ri
∞

ri

whereri
∞ is the ultraproduct of the natural maps

ri
w : Hi

S+
w
(Sw) → Hi

aw
(Sw).

It is easy to check that (10) commutes, whence so does (9).

6. PSEUDO-RATIONALITY

The notion of pseudo-rationality was introduced by Lipman and Teissier to extend the
notion of rational singularities to a situation where there is not necessarily a resolution of
singularities available.

6.1. Pseudo-rationality. A Noetherian local ring(R,m) is calledpseudo-rational, if it
is analytically unramified, normal, Cohen-Macaulay and for any projective birational map
f : Y → Spec R with Y normal, the canonical epimorphism between the top cohomology
groupsδ : Hd

m(R) → Hd
Z(Y ) is injective, whereZ is the closed fiberf−1(m) andd the

dimension ofR (see (11) below for the definition ofδ). Moreover, ifSpec R admits a
desingularizationY → Spec R, then it suffices to check the above condition for just this
oneY (see [18,§2, Remark (a) and Example (b)]). From this, one can show using Matlis
duality, that ifR is essentially of finite type over a field of characteristic zero, thenR is
pseudo-rational if and only if it has rational singularities. A Noetherian ringA is called
pseudo-rational, if Ap is pseudo-rational for every prime idealp in A.

The key ingredient in proving Theorems A and B is the following result linking generic
tight closure with pseudo-rationality, analogous to Smith’s characterization [28] in prime
characteristic.
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6.2. Theorem. If an equicharacteristic zero Noetherian local ringR is generically F-
rational, then it is pseudo-rational.

Proof. By Theorems 4.2 and 4.3 and Proposition 4.4, we know thatR is analytically un-
ramified, Cohen-Macaulay and normal. LetX := Spec R and letf : Y = ProjS → X
be a projective birational map withY normal. In particular,S is a standard gradedR-
algebra. Leti : R → S be the embedding identifyingR with [S]0, let m be the maximal
ideal ofR and letZ := V(mS) be the closed fiber off . The image of the canonical map
Hd

m(i) : Hd
m(R) → Hd

mS(S) lies entirely in degree zero whence in view of (6), induces
a morphismγd : Hd

m(R) → Hd−1(Y − Z,OY−Z). Combining this with the tail of the
exact sequence (5) and with (9) gives a commutative diagram

(11)

Hd
m(R)

γd

��

δ

((QQQQQQQQQQQQQ

Hd−1(Y,OY )
ρd−1

//

ud−1
Y

��

Hd−1(Y − Z,OY−Z)

ud−1
Y−Z

��

∂d
// Hd

Z(Y )

UHd−1(Y,OY )
ρd−1
∞

// UHd−1(Y − Z,OY−Z)

in which the middle row is exact.
Let x be a system of parameters inR such thatxR is generically tightly closed. Note

that the algebraičCech complex ofx over R (respectively, overS) calculates the local
cohomology ofm (respectively, ofmS). We need to show that the kernel ofδ is zero,
hence suppose the contrary. In particular, it must contain a non-zero element of the form
[a
y ]R, with a ∈ R and wherey is the product of the entries inx. From the exactness of

(11), we see thatδ([a
y ]R) = 0 means thatγd([a

y ]R) lies in the image ofρd−1. Under the

isomorphismHd−1(Y − Z,OY−Z) ∼=
[
Hd

mS(S)
]
0

from (6), we may identifyγd([a
y ]R)

with [a
y ]S . Since the square in (11) commutes,ud−1

Y−Z([a
y ]S) lies in the image ofρd−1

∞ .
Let (Rw,mw) be an approximation of(R,m). By Corollary 4.5, almost allRw are Coh-

en-Macaulay and normal, whence in particular domains. LetSw be anR-approximation of
S, putXw := Spec(Rw) andY w := Proj(Sw), and letZw := V(mwSw) be the closed
fiber ofY w → Xw. Letaw andxw be approximations ofa andx respectively, and putyw

equal to the product of all the entries inxw. By definition,ud−1
Y−Z([a

y ]S) is the ultraproduct

of the[aw

yw
]Sw

. Hence by Łos’ Theorem, almost all[aw

yw
]Sw

lie in the image of

ρd−1
w : Hd−1(Y w,OY w

) → Hd−1(Y w − Zw,OY w−Zw
)

sinceρd−1
∞ is the ultraproduct of theρd−1

w . By the same argument as above, we have for
eachw, an exact diagram

(12)

Hd
mw

(Rw)

γd
w

��

δw

))RRRRRRRRRRRRRR

Hd−1(Y w,OY w
)

ρd−1
w

// Hd−1(Y w − Zw,OY w−Zw
)

∂d
w

// Hd
Zw

(Y w).
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By reversing the above arguments, this diagram then shows that almost each[aw

yw
]Rw

lies
in the kernelLw of δw. Let us briefly recall the argument from [28] how for a fixedw this
implies thataw lies in the tight closure ofxwRw. Namely, since the FrobeniusFw acts on
the local cohomology groups, the kernelLw is invariant under its action by functoriality.
Hence

(13) Fm
w ([

aw

yw
]Rw

) = [
Fm

w (aw)
Fm

w (yw)
]Rw

∈ Lw.

SinceLw is a proper subgroup ofHd
mw

(Rw) (note thatδd
w is non-zero), the Matlis dual

of Lw is a proper homomorphic image of the canonical moduleωRw
. Since the canonical

module has rank one, the Matlis dual ofLw has torsion, whence so doesLw itself. Hence
for some non-zerocw ∈ Rw we havecwLw = 0. Together with (13), this yields

[
cwFm

w (aw)
Fm

w (yw)
]Rw

= 0

for eachm. Since almost eachRw is Cohen-Macaulay, we getcwFm
w (aw) ∈ Fm

w (xw)Rw,
for all m, proving our claim thataw lies in the tight closure ofxwRw. Since this holds
for almost allw, we conclude thata lies in the generic tight closure ofxR, which, by
assumption, is justxR. However, this means that[a

y ]R is zero, contradiction. �

Proof of Theorem A. Since all properties localize, we may assume thatA and B are
moreover local and thatA → B is a local homomorphism. SinceB is weakly generically
F-regular by Theorem 3.3, so isA, by Proposition 4.9. Therefore,A is pseudo-rational by
Theorem 6.2. �

7. ULTRA-F-REGULAR RINGS AND LOG-TERMINAL SINGULARITIES

In this section, we extend the argument from [27] in order to prove Theorem B.

7.1. Q-Gorenstein Singularities. Let R be an equicharacteristic zero Noetherian local
domain and putX := Spec R. We say thatR is Q-Gorensteinif it is normal and some
positive multiple of the canonical divisorKX is Cartier; the least such positive multiple is
called theindexof R. If R is the homomorphic image of an excellent regular local ring
(which is for instance the case ifR is complete), thenX admits anembedded resolution
of singularitiesf : Y → X by [9]. If Ei are the irreducible components of the exceptional
locus off , then the canonical divisorKY is numerically equivalent tof∗(KX) +

∑
aiEi

(asQ-divisors), for someai ∈ Q. The rational numberai is called thediscrepancyof X
alongEi; see [17, Definition 2.22]. If allai > −1, we callR log-terminal(in case we only
have a weak inequality, we callR log-canonical).

7.2. Canonical cover. Recall the construction of the canonical cover of aQ-Gorenstein
local ring R due to Kawamata. Ifr is the index ofR, thenOX(rKX) ∼= OX , where
X := Spec R andKX the canonical divisor ofX. This isomorphism induces anR-algebra
structure on

R̃ := H0(X,OX ⊕OX(KX)⊕ · · · ⊕ OX((r − 1)KX)),

which is called thecanonical coverof R; see [16]. An important property for our purposes
is thatR → R̃ is étale in codimension one (see for instance [29, 4.12]). We also use the
following result proven by Kawamata in [16, Proposition 1.7]:
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7.3. Theorem. Let R be a homomorphic image of an equicharacteristic zero, excellent
regular local ring. IfR isQ-Gorenstein, then it has log-terminal singularities if and only
if its canonical cover is rational.

7.4.Definition. Inspired by Kawamata’s result, we can now give a resolution-free variant
of log-terminal singularities. We call a Noetherian local domainpseudo-log-terminalif it
isQ-Gorenstein and its canonical cover is pseudo-rational.

In the remainder of this section,R is an equicharacteristic zero Noetherian local ring
andRw is an approximation ofR.

7.5. Ultra-F-regularity. We say thatR is ultra-F-regular, if it is a domain and for each
non-zeroc ∈ R, we can find an ultra-FrobeniusFε such that theR-module morphism

(14) R → εD(R) : x 7→ cFε(x)

is pure. Note that in order for (14) to beR-linear, we need to viewD(R) as anR-algebra
viaFε, that is to say, the target must be taken to beεD(R) (see§2.2). SinceD(R) = D(R̂),
an analytically unramified local ringR is ultra-F-regular if and only if its completion̂R is.

Over normal domains, purity and cyclical purity are the same by [10, Theorem 2.6].
Hence forR normal, the purity of (14) is equivalent to the weaker condition that for every
x ∈ R and every idealI ⊆ R, we have

(15) cFε(x) ∈ Fε(I)D(R) implies x ∈ I.

One can show that ifR is moreover analytically unramified, then either condition entails
normality, and hence in that case, they are equivalent (this follows for instance from the
discussion below and the Briançon-Skoda property of generic tight closure).

7.6.Proposition. If R is regular, then it is ultra-F-regular.

Proof. By the above discussion, we need only verify the weaker condition (15). In fact, we
will show that for anyc, we may takeε = 1 in (15). Indeed, assumecF(x) ∈ F(I)D(R).
SinceF preserves regular sequences,1D(R) is a balanced big Cohen-MacaulayR-algebra
whence is flat by [25, Theorem IV.1] or [12, Lemma 2.1(d)]. Hence

c ∈ (F(I)D(R) : F(x)) = F(I : x)D(R).

Supposex /∈ I. Since(I : x) then lies in the maximal ideal ofR, its image underF lies
in the ideal of infinitesimals ofD(R). HenceF(I : x)D(R)∩R = (0), contradicting that
c 6= 0. �

7.7.Theorem. If R is analytically unramified and ultra-F-regular, then it is weakly gener-
ically F-regular, whence in particular pseudo-rational.

Proof. The last assertion follows from the first by Theorem 6.2. Since all properties are
invariant under completion, we may assume thatR is complete. LetI be an ideal inR and
x ∈ clgen(I). We want to show thatx ∈ I. By [1, Proposition 6.24], there existsc ∈ R
such that almost allcw are test elements inRw, wherecw andRw are approximations of
c andR respectively. Letxw andIw be approximations ofx andI respectively, so that
almost allxw ∈ I∗w. Hence, for almost allw and alle, we have

(16) cwFe
w(xw) ∈ Fe

w(Iw)Rw.

By assumption, there is an ultra-FrobeniusFε so thatx 7→ cFε(x) is pure whence cycli-
cally pure, that is to say, so that (15) holds. Letε be the ultraproduct of integersew.
Takinge equal toew in (16) and taking ultraproducts shows thatcFε(x) ∈ Fε(I)D(R).
Therefore, from (15) we getx ∈ I, as we wanted to show. �
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7.8.Proposition. Let R ⊆ S be a finite extension of Noetherian local domains which is
étale in codimension one. Letc be a non-zero element ofR andFε an ultra-Frobenius. If
R → εD(R) : x 7→ cFε(x) is pure, then so is its base changeS → εD(S) : x 7→ cFε(x).

In particular, if R is ultra-F-regular, then so isS.

Proof. Let R ⊆ S be an arbitrary finite extension ofd-dimensional Noetherian local do-
mains and fix a non-zero elementc ∈ R and an ultra-FrobeniusFε. Let n be the maximal
ideal ofS andωS its canonical module. I claim that ifR ⊆ S is étale, then

(17) εD(S) ∼= S ⊗R
εD(R).

Assuming the claim, letR ⊆ S now only beétale in codimension one. It follows from the
claim that the supports of the kernel and the cokernel of the natural mapS ⊗R

εD(R) →
εD(S) have codimension at least two. Hence the same is true for the base change

ωS ⊗R
εD(R) → ωS ⊗S

εD(S).

Applying the top local cohomology functorHd
n, we get from the long exact sequence of

local cohomology and Grothendieck Vanishing, an isomorphism

(18) Hd
n(ωS ⊗R

εD(R)) ∼= Hd
n(ωS ⊗S

εD(S)).

Recall that by Grothendieck duality,Hd
n(ωS) is the injective hullE of the residue field of

S.
Let cε,R denote theR-linear morphismR → εD(R) : x 7→ cFε(x). For an arbitrary

R-moduleM , let cε,R,M : M → M ⊗R
εD(R) be the base change ofcε,R overM . In

particular, we have a commutative diagram

ωS

cε,R,ωS−−−−−→ ωS ⊗R
εD(R)∥∥∥ y

ωS −−−−−→
cε,S,ωS

ωS ⊗S
εD(S).

Taking top local cohomology yields the outer square in the following commutative diagram

(19)

E = Hd
n(ωS)

cε,R,E−−−−→ E ⊗R
εD(R) −−−−→ Hd

n(ωS ⊗R
εD(R))∥∥∥ y y∼=

E = Hd
n(ωS) −−−−→

cε,S,E

E ⊗S
εD(S) −−−−→ Hd

n(ωS ⊗S
εD(S))

where the isomorphism at the right comes from (18). Sincecε,R is pure, so is its base
changecε,R,ωS

. Purity is preserved when taking cohomology, so that the top composite
map in (19) is pure, whence so is the bottom composite map, since it is isomorphic to it.
Sincecε,S,E is a factor of this map, it is itself pure, whence in particular injective. By [12,
Lemma 2.1(e)], to verify the purity ofcε,S , one only needs to show that its base change
cε,S,E overE is injective, and this is exactly what we just showed.

To prove the claim (17), observe that ifR → S is étale with approximationRw → Sw,
then almost all of these aréetale. Indeed, by [20, Corollary 3.16], we can writeS as
R[X]/I, with X = (X1, . . . , Xn) and I = (f1, . . . , fn)R[X], such that the Jacobian
J(f1, . . . , fn) is a unit inR, and by Łos’ Theorem, this property is preserved for almost
all approximations. Quite generally, ifC → D is anétale extension of characteristicp
domains, then we have for eache an isomorphismeD ∼= D ⊗C

eC (see for instance
[15, p. 50] or the proof of [29, Theorem 4.15]). Applied to the current situation, we get
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eSw
∼= Sw ⊗Rw

eRw (see [15, p. 50]). Therefore, applied withe =: ew, whereew is an
approximation ofε, we get after taking ultraproducts,

εD(S) ∼= D(S)⊗D(R)
εD(R) ∼= S ⊗R

εD(R)

as required, where we used the isomorphismD(S) ∼= S ⊗R D(R), which holds by [1,
§4.10.4], sinceR → S is finite.

To prove the last assertion, we have to show that we can find for each non-zeroc ∈ S
an ultra-FrobeniusFε such thatcε,S is pure. However, if we can do this for some non-
zero multiple ofc, then we can also do this forc, and hence, sinceS is finite overR, we
may assume without loss of generality thatc ∈ R. SinceR is ultra-F-regular, we can find
therefore an ultra-FrobeniusFε such thatcε,R is pure, and hence by the first assertion, so
is thencε,S , proving thatS is ultra-F-regular. �

7.9. Proposition. Let R → S be a cyclically pure homomorphism of equicharacteristic
zero Noetherian local rings. IfS is ultra-F-regular and analytically unramified, then so is
R.

Proof. SinceR̂ → Ŝ is again cyclically pure by [1, Lemma 6.7], we may assume without
loss of generality thatS is complete. Letc ∈ R be non-zero and letFε be an ultra-
Frobenius for which theS-module morphism

(20) cε,S : S → εD(S) : x 7→ cFε(x)

is pure. We want to show that the same is true upon replacingS by R, that is to say,
that cε,R is pure. SinceS is weakly generically F-regular by Theorem 7.7, so isR by
Proposition 4.9. HenceR is in particular normal by Theorem 4.3, so that it suffices to
verify (15). Letx ∈ R andI ⊆ R be such thatcFε(x) ∈ Fε(I)D(R). Therefore,x
belongs toIS by (20), whence toIS ∩R = I by cyclical purity. �

Note that in the proof, the condition thatS is analytically unramified was only used to
get the normality ofR.

Proof of Theorem B. Proposition 7.6 yields thatS is ultra-F-regular, whence so isR by
Proposition 7.9. Let̃R be the canonical cover ofR. By Proposition 7.8, alsõR is ultra-F-
regular, whence pseudo-rational by Theorem 7.7. �
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