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Abstract. Inthis paper, non-standard tight closure is proposed akemative for classical
tight closure on finitely generated algebras oerlt has the advantage that it admits a
functional definition, similar to the characteristiclefinition of tight closure, where instead
of the characteristip Frobenius, its ultraproduct, the non-standard Frobermsussed. This
new closure operationl(-) has the same properties as classical tight closure, to Wit, (
if A is regular, themm = cl(a); (2) if A C B is an integral extension of domains, then
cl(aB) N A C cl(a); (3) if Aislocal and(z1,...,zx) is a system of parameters, then
((z1,..., i) : wiy1) C cl(z,...,z;) (Colon-Capturing; (4) if a is generated byn
elements, therl(a) contains the integral closure af* and is contained in the integral
closure ofa (Briangon-Skoda
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1. Introduction

For A a ring of characteristip > 0, HocHsTERand HUNEKE have defined a
closure operation on ideals df, calledtight closure To be more precise, an ele-
mentz € A belongs to the tight closure of an ideala = (fi, ..., fs)A, if there
exists some € A not contained in any minimal prime ideal df such that for all
sufficiently high powerg of p, we have that

cz?e (ff,..., fHA.

This closure operation admits all four properties listedhia abstract above; see
for instance [7] or the excellent survey article [23]. Thenseauthors have also ex-
tended the notion of tight closure to many rings containifigld of characteristic
zero, including all finitely generated algebras over a fiatd the same four prop-
erties still hold. However, even the very definition in clwdeaistic zero is more
complicated, involving some reduction process to charatip (see for instance
[7, Appendix 1] or [4]). Moreover, to prove these properiiesharacteristic zero,
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one needs some strong form of Artin Approximation. More &y, the Artin-
Rotthaus Theorem [2] is used to descend properties from etenjpcal rings to
arbitrary excellent rings.

In this paper, | propose an alternative closure operatiod &everal variants)
for finitely generatedC-algebras, using the non-standard Frobenius, that is to say
the ultraproduct of the characterisgidcrobenii. To emphasize this, | termed the
closure operatiomon-standard tight closurélThe main goal of the present paper
is to establish the four fundamental properties above figr ilew closure oper-
ation and its variants. Originally, | had also included ifsthaper a proof for a
fifth fundamental property, to wipersistencef non-standard tight closure (that
is to say, the fact that for every homomorphism— B, the non-standard tight
closure of an ideat of A is contained in the non-standard tight closure of its ex-
tensionaB in B). However, since the argument requires a substantial anadun
non-Noetherian or non-standard commutative algebra, iddddo publish these
results in a separate paper. In particular, | have made ampttto prove the four
properties using as little as possible, relying chiefly omedasic facts from tight
closure theory in positive characteristic, and often, ot,fenimicking the elemen-
tary proofs these properties admit in positive charadterisAfter establishing the
four main properties, | list in the last section a few apglmas. Further properties
and applications can be found in [14,18-22]. There is alsoes@ork in progress
([15,16]) on extending the present ideas to mixed chariatiter

In the first part of this papef2—54, some material from [12,13] is reviewed
and then used to describe exactly how the transfer fromipedi zero charac-
teristic is carried out using non-standard methods. Upguoest of the referee of
an earlier version of this paper, | will do this in considdeattetail. Many of the
other papers listed above also make extensive use of thisocheind therefore |
have included several results which are not actually neadéte present paper,
but only in the later papers. Frof on, the theory of non-standard tight closure
is then developed.

In the remainder of this introduction, | will briefly explaihe main ideas and
definitions. LetC be a finitely generate@-algebra. Letn be an ideal ofC and
z € C. I will now explain what it means fot to belong to thenon-standard tight
closureof a. We can writeC' as a quotient of some polynomial riij X1, . . . , X,,]
by an ideall. Rather than descending these data to a finitely geneZatdgebra
and then taking reductions moduyl@s in the Hochster-Huneke tight closure case,
we will invoke a different method of transfer. Namely, we eb& thatC can be
viewed as a ‘limit’ of the fieldi?Z'gJ (the algebraic closure of theelement field).
To make this ‘limit’ idea precise, we need some non-stanftanmalism, to wit,
the notion of ultraproduct. | will not explain this at thisipt but refer the reader
to the next section for more details. Suffices to say herethieat is a process
that attaches, albeit not uniquely, to any complex numbarsequence, with

eachc, € Fg'g. Choose some generatofs . .., f,, of I and apply this to every
coefficient of eachf;. We obtain polynomialg;, defined overIFZ'g. Let C), be

1 At present, there is one exception: to prove that non-staritght closure is contained
in integral closure, | need Nérgrdesingularization.



Non-standard tight closure for affif&algebras 3

the quotient oﬂFZ'g[Xl, ..., X,] modulo the ideal generated by tlfg,. These
characteristigp rings C',, will play a role similar to the reductions moduoin
classical characteristic zero tight closure. Namely, arh€s, we have an action
of Frobenius. As we could take the ‘limit’ (in the sense ofaftroducts) of the
fieldsF29, so can we similarly take the limit of th@,,. This ring, denoted”.,
will be called thenon-standard hulbf C, and as such, it is uniquely defined up
to C-algebra isomorphism (whereas thg were not). It containg’ as a subring
andC C C is faithfully flat. Moreover, the action of the Frobenius ackC),
(being entirely algebraic) extends to an action of an endphiemF ., on C,
the ‘limit’ or non-standard Frobeniusn C.,. Nonetheless, we have to face the
following serious obstructions: the non-standard hullaisffom Noetherian and
the action off', on it does not preserve the subri6g Notwithstanding, we say,
in accordance with the characteristidefinition, thatz lies in the non-standard
tight closure ofa, if there exists: € C, not contained in any minimal prime ideal
of C, such that for alin, we have

cFl(2) e F22(a)Coo (1.2)

whereF (a)C« simply means the ideal ifi ., generated by aF? (¢) forg € a.

A variant of this definition is obtained as follows. Apply tliwnwards pro-
cess’ to the data given by anda = (g1,...,9s)C and thus obtain elements
zp, gip € Cp Whose coefficients have limits corresponding to the coefiiisi of
z andg; respectively. Then require thaj, lies in the (classical) tight closure of
(91p,-- -, 9sp)Cp. 1 Will call this generic tight closurelt contains equational char-
acteristic zero tight closure and is contained in non-sathdight closure; see
Theorems 8.5 and 10.4.

The main advantage of non-standard tight closure is itstiomal definition
in terms of the initial data. This is reflected by the ease wittich the four main
properties can be derived. That in practice non-standgintl¢iosure is impossible
to be calculated explicitly (as it depends on the knowledgmaultrafilter) should
not be held against it, for its cousin, classical tight ctesitself is hard to com-
pute, even in positive characteristic. The final and weakasant,non-standard
closure is obtained by only requiring (1.1) fon, = 1. Surprising as it might be,
the more since its characterisgiccounterpart would be utterly useless, this still
gives a closure operation for which the four fundamentapprties hold. For an
application of this weaker version, see [14].

2. Ultraproducts

In this section}V always denotes an infinite set.

2.1. Non-principal Ultrafilters

With a non-principal ultrafiltere/ on W, we mean a collection of infinite subsets
of W closed under intersection, with the property that for anyssti/’ of W,
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either F" or its complement- F’ belongs td/{. In particular, the empty-set does not
belong ta/ and if D € U/ andFE is an arbitrary set containing, then alsa? € U,
for otherwise— F € U, whence) = D N —F € U, contradiction. Since every set
in U must be infinite, it follows that any cofinite set belongg£oThe existence
of non-principal ultrafilters is equivalent with the AxionfiGhoice, and we make
this set-theoretic assumption henceforth. It follows fleatany infinite subset of
W, we can find a non-principal ultrafilter containing this set.

In the remainder of this section, we also fix a non-princigahfilter on W,
and omit reference to this fixed ultrafilter from our notatidlon-principal ultra-
filters play the role of a decision procedure on the collectbsubsets ofV by
declaring some subsets 'large’ (those belonging}and declaring the remaining
ones 'small’. More precisely, let,, be elements indexed hy € W, and letP
be a property. We will use the expressia@isost allo,, satisfy propertyP or o,,
satisfies propertyP for almost allw as an abbreviation of the statement that there
exists a seD in the ultrafilteri/, such that propert¥ holds for the element,,,
wheneverv € D. Note that this is also equivalent with the statement thatstt
of all w € W for whicho,, has propertyP, lies in the ultrafilter.

2.2. Ultraproducts

Let O, be sets, forv € W. We define an equivalence relation on the Cartesian
product] [ O, by calling two sequencedg,,|w € W) and (b, |w € W) equiva-
lent, if a,, andb,, are equal for almost alb. In other words, if the set of indices
w € W for whicha,, = b, belongs to the ultrafilter. We will denote the equiva-
lence class of a sequenge,|w € W) by

ulim a,, OF Qoo
The set of all equivalence classes |drO,, is called theultraproductof the O,,
and is denoted

ulim O, Or O4.

w—00
Note that the element-wise and set-wise notations are cdedrby the fact
that

ulim {0, } = {ulim o0,}.
2.3. Ultraproducts of Sets

For the following properties, the easy proofs of which aretted, letO,, be sets
with ultraproducO .

2.3.1. IfQ, isasubsetad,, for eachw, thenulim,, .., Q., IS a subset of
ulim o0 Oy .

In fact, ulim,, .. @, consists of all elements of the foratim,, ., 0,,, with
almost allo,, in Q.
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2.3.2. IfeachO, is the graph of a functiotf ,: A, — By, thenO
is the graph of a functiod ., — B, whereA, andB, are the
respective ultraproducts df,, andB,,. We will denote this function
by

ulim f, Or f.

w—00

Moreover, we have an equality

ulim (f(ayw)) = (ulim f,)(ulim a,),

w—00 w—00 w—00

fora,, € A,.

2.3.3. IfeachO,, comes with an operation, : O,, x O,, — O,,, then

*oo 1= ulim %,
is an operation ol),. If all (or, almost all)O,, are groups with
multiplicationx,, and unit element,,, thenO, is a group with mul-
tiplication x, and unit element ., := ulim,,_,, 1,,. If almost all
O,, are Abelian groups, then so(k,. .

2.3.4. IfeachO, is a (commutative) ring with additios,, and multipli-
cation-,,, thenO, is a (commutative) ring with additio# ., and
multiplication- .

In fact, in that case) is just the quotient of the produ§{ O., modulo the
ideal consisting of all sequencés,|w € W) for which almost allo,, are zero.
From now on, we will drop subscripts on the operations antjuige + and- for
the ring operations on the,, and onO ..

2.3.5. IfalmostallO,, are fields, then so i9 .

Just to give an example of how to work with ultraproducts,nhet give the
proof:if a € O is non-zero, then by the previous description of the ringcstire
on O, almost alla,, will be non-zero, for some (any) choice of, € O,, for
whichulim,,_,, a,, = a. Therefore, letting,, be the inverse of,, whenever this
makes sense, and zero otherwise, one verifiesdlat, . b,, is the inverse of
a.

2.3.6. If C, arerings and)., is an ideal inC,,, thenO., is an ideal in
Cy = ulim,,_,, Cy. In fact,0 is equal to the subset of all ele-
ments of the formilim,,_, - 0, With almost all,, € O,,. Moreover,
the ultraproduct of th€',, / O, is isomorphic taC », / O .
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23.7. If fu,: A, — By are ring homomorphisms, then the ultraproduct
f~ Is again a ring homomorphism. In particulargif, is an endo-
morphism onA,,, then the ultraproduet., is a ring endomorphism
ONA. := ulimy_ oo Ay

These examples are just instances of the general prinbigéaigebraic struc-
ture’ carries over to the ultraproduct. The precise formiafaeof this principle is
called Los’ Theorem and requires some terminology from ritu=ory. Since we
will only apply the ultraproduct construction to rings, we ot need to introduce
the formal language of model-theory and we can get by wittidhewing ad hoc
definition.

2.4. Formulae

With a quantifier free formula without parameteis the free variablesX =
(X1,...,X,), we will mean in this paper an expression of the form

Pp(X) =\ fi; =0N - Afij =0Ag; 0N ... A gy #0, (2.1)
j=1

where eacly;; andg;; is a polynomial with integer coefficients in the variables
X, and where\ andV are the logical connectivesdandor. If instead we allow
the f;; andg;; to have coefficients in a ring’, then we callkp(X') a quantifier
free formula with parameters i@. We allow all possible degenerate cases as well:
there might be no variables at all (so that the formula singiglglares that certain
elementsir¥Z or in C are zero and others are non-zero) or there might be no equa-
tions or no negations or perhaps no conditions at all. Putisotty, a quantifier
free formula is a Boolean combination of polynomial equagiasing the connec-
tives A, vV and— (negation), with the understanding that we use distriliytand
De Morgan’s Laws to rewrite this Boolean expression in thisj(dctive normal)
form (2.1).

With a formula without parameters the free variables(, we mean an ex-
pression of the form

P(X) = (Q Y1)+ (Q, V) ¥(X,Y),

wherey (X, Y) is a quantifier free formula without parameters in the fraéaides
X andY = (Y4,...,Y,) and where)), is either the universal quantifigror the
existential quantified. If insteady(X,Y’) has parameters frot, then we call
»(X) aformula with parameters ii©”. A formula with no free variables is called
asentence

2.5. Satisfaction

Let o(X) be a formula in the free variable$§ = (X, ..., X,,) with parameters
from C (this includes the case that there are no parameters bygtékia Z and
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the case that there are no free variables by taking 0). Let A be aC-algebra
and leta = (a4, ..., a,) be a tuple with entries from. We will give meaning to
the expression satisfies the formula(X) in A (sometimes abbreviated ig(a)
holds inA oris true in A) by induction on the number of quantifiers. Suppose first
that o(X) is quantifier free, given by the Boolean expression (2.1enTh(a)
holds in 4, if for some jy, we have that allf;;,(a) = 0 and all g;;,(a) # 0.
For the general case, suppasgX) is of the form(3Y) 4 (X,Y) (respectively,
(VY) (X, Y)), where the satisfaction relation is already defined forftmmula
¥(X,Y). Thenp(a) holds inA, if there is somé € A such that)(a, b) holds in
A (respectively, ifiy(a, b) holds inA4, for all b € A). The subset ofA™ consisting
of all tuples satisfyingo(X) will be called thesubset defined hy, and any subset
that arises in such way will be callediafinable subsedf A™.

Note that ifn = 0, then there is no mention of tuples ih In other words, a
sentence is either true or falsedn By convention, we set equal to the singleton
{0} (that is to sayA° consists of the empty tupl®. If ¢ is a sentence, then the
set defined by it is eitheff)} or (), according to whethep is true or false inA.

There is a connection between definable sets and Zarisktwmtible sets,
where the relationship is the most transparent over algebhaclosed fields, as
we will explain below. In general, we can make the followirgservations.

2.6. Constructible Sets

LetC be aring. Letp(X) a quantifier free formula with parameters framgiven

as in (2.1). LetY,x) denote theC'-constructible subset o7, consisting of all
prime ideals of Spec C[X] which for somej, contain allf;;, and do not contain
any g;j,. In particular, ifn = 0, so thatA?, is by definitionSpec C, then the
C-constructible subseX', associated t@ is a subset ofpec C.

Let A be aC-algebra and assume moreover tHat a domain (we will never
use constructible sets associated to formulakig not a domain). For an-tuple
a over A, we have thap(a) holds in A if, and only if, the prime ideap, of A[X]
generated by thé&(; — a; lies in the constructible sef, x) (strictly speaking, we
should say that it lies in the base chargg x) Xspec o Spec A, but for notational
clarity, we will omit any reference to base changes). We eilpress the latter
fact by saying thap, is an A-rational point of¥, x). If ¢ is a sentence, then
X, is a constructible subset &pec C and hence its base changeSpec A is
a constructible subset &pec A. SinceA is a domainSpec A has a uniqued-
rational point (corresponding to the zero-ideal) and hepdelds in A if, and
only if, this point belongs ta’,,.

Conversely, it is aC-constructible subset &%, then we can associate to it a
quantifier free formulag s (X) with parameters frond' as follows. However, here
there is some ambiguity, as a constructible set is morensitidlly defined than
a formula. Suppose first that is the Zariski closed subs&t(7), wherel is an
ideal inC[X]. Choose a system of generators, so that (f1,..., fs)C[X] and
sety s (X) equal to the quantifier free formufa(X) = --- = f(X) = 0. Let A
be aC-algebra without zero-divisors. It follows that artuple a is an A-rational
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point of X if, and only if, a satisfies the formule . Therefore, if we make a
different choice of generatods= (fi,..., f.)C[X], although we get a different
formulay’, it defines in any”-algebraA without zero-divisors the same definable
set, to wit, the collection ofi-rational points of¥. To associate a formula to an
arbitrary constructible set, we do this recursively byitgttos; A g, o5 V @
and— 5 correspond to the constructible séis ¥, ¥ U ¥ and—X respectively.
We say that two formulag(X) and(X) in the same free variable¥ =
(X1,...,X,) areequivalent over a ringd, if they hold on exactly the same tuples
from A (that is to say, if they define the same subsetd™). In particular, ifp and
1) are sentences, then they are equivale iifi they are both true or both false
in A. If p(X) andy(X) are equivalent for all ringsl in a certain clas¥’, then
we say thatp(X') andy (X ) areequivalent modulo the clags. In particular, ifX
is a constructible set iAg, then any two formulae associated to it are equivalent
modulo the class of all’-algebras without zero-divisors. In this sense, there is a
one-one correspondence between constructible subsgf$ ahd quantifier free
formulae with parameters frod modulo the above equivalence relation.

2.7. Quantifier Elimination

For certain rings (or classes of rings), every formula isheajant to a quantifier
free formula; this phenomenon is known under the n&mantifier Elimination
We will only encounter it for the following class.

Theorem 2.1 (Quantifier Elimination for algebraically closed fields).If K is
the class of all algebraically closed fields, then any fomwithout parameters is
equivalent moduld to a quantifier free formula without parameters.

More generally, ifF is a field andiC(F) the class of all algebraically closed
fields containingF’, then any formula with parameters frofmis equivalent mod-
ulo K(F') to a quantifier free formula with parameters frafh

Proof (Sketch of proofjThese statements can be seen as translations in model-
theoretic terms of Chevalley’s Theorem which says that ttogeption of a con-
structible set is again constructible. | will only explainig for the first asser-
tion. As already observed, a quantifier free formulaX’) (without parameters)
corresponds to a constructible S8t x) in A7 and the tuples iK™ satisfying
©(X) are precisely thes-rational points¥, x(K) of ¥ x). The key obser-
vation is now the following. Let)(X,Y’) be a quantifier free formula and put
E&X) = (FY)Y(X,Y), whereX = (X;,...,X,) andY = (Y1,...,Y,,). Let
¥ be the subset ok ™™ defined byy(X,Y) and let= be the subset oK™ de-
fined by¢(X). Therefore, if we identifyk+™ with the collection ofK -rational
points of A%, then

¥ = Yyx,y)(K).

Moreover, ifp: A%™™ — A% is the projection on the first coordinates then
p(¥) = Z. By Chevalley’s Theorenp( Xy, x,v)) (as a subsetiAy) is again con-
structible, say of the fornd’, ), for some quantifier free formulg(X'). Hence
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Z = X\ (x)(K), showing thag (X) is equivalent moduld to x (X ). Sincex (X)
does not depend di, we have in fact an equivalence of formulae modulo the class
K. To get rid of an arbitrary chain of quantifiers, we use inghrcbn the number
of quantifiers, noting that the complement of a set define@/hy) ¢(X,Y) is the
set defined by3Y) —¢(X,Y"), where—(-) denotes negation.

For some alternative proofs, see [5, Corollary A.5.2] of[Beorem 1.6]. O

Therefore, when dealing with algebraically closed fields,may forget alto-
gether about formulae and use constructible sets insteagever, we will not
always be able to work just in algebraically closed fields andve need to for-
mulate a general transfer principle for ultraproducts.dRebat a sentence is a
formula without free variables.

Theorem 2.2 (Los’ Theorem).LetC be aring and letd,, be C-algebras. Ify is
a sentence with parameters frath thenyp holds in almost all4,, if, and only if,
© holds in the ultraproductl ..

More generally, leto(X1, ..., X,,) be a formula with parameters frofi and
leta,, be ann-tuple in A,, with ultraproducta.,. Theny(a,,) holds in almost all
A, if, and only if,p(a ) holds inA.

The proof is tedious but not hard; one simply has to unwinddisfinition of
formula (see [5, Theorem 9.5.1] for a more general treatnéldte thatA . is
naturally aC-algebra, so that it makes sense to assert ¢hist true or false in
A Applying Los’ Theorem to a quantifier free formula, we get flollowing
equational version.

Theorem 2.3 (Equational Los’ Theorem).Suppose eacH,, is aC-algebra and
let A denote their ultraproduct. LeX be ann-tuple of variables, lef € C[X]
and leta,, be ann-tuple inA,,. Thenf(ax) = 0in A if, and only if, f(a,,) =0
in A,, for almost allw.

Moreover, instead of a single equatign= 0, we may take in the above state-
ment any system of equations and negations of equationgover

Let us list some applications of £os’ Theorem that are reiét@r the present
paper.

2.8. Ultraproducts of Fields

Let K, be a collection of fields an#t ., their ultraproduct, which is again a field
by Assertion 2.3.5 (or by an application of £os’ Theorem)téihat the converse
also holds: if an ultraproduct of rings is a field, then almalkbf these rings are

fields themselves.

2.8.1. Iffor each prime numbep, only finitely manyK ,, have characteris-
tic p, thenK ., has characteristic zero.

Indeed, for every prime number the equatiopX — 1 = 0 has a solution in
all but finitely many of thei(,, and hence it has a solution i, by Theorem 2.3.
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2.8.2. Ifalmost allK,, are algebraically closed fields, then sdss,, and
conversely.

Indeed, for each > 2, consider the sentence
oni=WYy,... . Y,)3BX)Y, =0V YV, X"+ -+ V1 X +Y;=0.

This sentence is true in any algebraically closed field, wken almost allK ,,
and therefore, by Los’ Theorem, i .. However, a field in which every,, holds
is algebraically closed. The converse is proven in the saaye w

We have the following important corollary which can be thbuaf as a model
theoretic Lefschetz Principle (heiiéIg denotes the algebraic closure of the
element field).

Theorem 2.4 (Lefschetz Principle)LetW be the set of prime numbers, endowed
with some non-principal ultrafilter. The ultraproduct oﬂﬁeIdQFZ'g isisomorphic
with the fieldC of complex numbers, that is to say, we have an isomorphism

ulim leg ~C.

p—00

Proof. Let F, denote the ultraproduct of the fielﬁ’gg. By Assertion 2.8.2, the
field F, is algebraically closed, and by Assertion 2.8.1, its chiaréstic is zero.

Using elementary set theory, one calculates that the aigyirof ., is equal

to that of the continuum. The theorem now follows since any dlgebraically
closed fields of the same uncountable cardinality are (ramogically) isomorphic
by Steinitz’'s Theorem (see [5]).0

Remark 2.5We can extend the above result as follows: every uncountdgée
braically closed fieldK of characteristic zero is the ultraproduct of algebrayjcall
closed fields of prime characteristic. More precisely, attyaproduct of alge-
braically closed fields of different prime characterisbat of the same uncount-
able cardinality ady, is isomorphic toK (in particular, we may do this for any
choice of non-principal ultrafilter). So, if we would want tee may viewC also as
an ultraproduct of algebraically closed fields of prime duteristic of cardinality

the continuum, instead of the (countable) algebraicatiget! fieIdSFZ'g.

In the sequel, we will fix once and for all one such isomorphistweenC
andF . Although some of the constructions will depend on the chaitthis
isomorphism (as well as on the choice of the non-principhfilter), we will
always obtain isomorphic objects (in the appropriate aatggregardless of the
particular choices made.

2.9. Ultraproducts of Rings

Let A, be a collection of rings and let, be their ultraproduct.
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2.9.1. IfeachA, is local with maximal ideakh,, and residue field,, :=
Ay, /my,, thenA, is local with maximal ideah o := ulim,,—, o My,
and residue field .. := ulim, o kv -

Indeed, a ring is local if, and only if, the sum of any two namits is again
a non-unit. This statement is clearly expressible by meémssentence, so that
by tos’ Theorem A, is local. The remaining assertions now follow easily from
Assertion 2.3.6. In fact, the same argument shows that theecse is also true: if
A, is local, then so are almost all,,,.

2.9.2. If A, arelocal rings of embedding dimensienthen so isA .

Indeed, by assumption almost alil, are generated by elementse;,,. It fol-
lows thatm, is generated by the ultraproducts:; ...

2.9.3. Almost all A,, are domains (respectively, reduced) if, and only if,
A, is a domain (respectively, reduced).

Indeed, being a domain is captured by the formW&,Y)X = 0VY =
0V XY # 0 and being reduced by the formu(&X) X = 0V X2 # 0. In
particular, using Assertion 2.3.6, we see that an ultrapecbdf ideals is a prime
(respectively, radical, maximal) ideal if, and only if, ast all ideals are prime
(respectively, reduced, maximal).

2.9.4. IfalmostallA,, are Artinian local rings of length then so isA .

This follows from [11]. If we do not restrict the length of tiatinian rings
Ay, thenA,, will no longer be Artinian (nor even Noetherian). In factaajfrom
the above example, Noetherianity is never preserved iapridducts (for it cannot
be expressed in general by means of formulae). This alsoshmat in general
the ultraproduct of primary ideals need not be primary. Nbealkess, we still have
the following unidirectional version: ifi , is Artinian, then so are almost adl,,.
This yields:

2.9.5. If I, areideals in the local ringsA,,, m,,), such that i As, mso),
their ultraproductl ., is m,-primary, then almost all , arem,,-
primary.

2.9.6. Supposel,, andB,, are rings with respective ultraproducts, and
Bs. ThenA,, = B, for almost allw if, and only if, A = B.
Moreover, ifS,, are rings such that,, and B, are S, -algebras,
then almost allA,, and B,, are isomorphic a$ ,,-algebras if, and
only if, A, andB, are isomorphic a$ .,-algebras, wheré , is
the ultraproduct of thé .
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This follows from Assertion 2.3.7 and Los’ Theorem, sincecaa express by
means of formulae that a homomorphism is injective and stivie

2.9.7. For elements:y ., ..., xq, N Ay, with ultraproductz; ., the se-
quUeNCex1 oo, - - -, Tdoo) IS Aco-regular if, and only if, the sequence
(X1, - -+ Taw) IS Ay -regular for almost al.

Let me illustrate the argument by takiny= 2. We want to write down a
formula in two free variableX andY expressing thak is not a zero-divisor and
Y is not a zero-divisor modul& . The following formulap(X,Y") does exactly
this

(VZl, ZQ) (323) (Zl =0V 41X # 0) A\ (Zl =7Z3XV Z1Y # ZQX)

By tos’ Theoremp(z1 00, T200) holds in A if, and only if, p(z14,, 22.,) holds
in almost allA4,,.

I conclude this section, with discussing an example of ampibduct of rings
that will play a crucial role in the sequel. For eaehlet K, be a field and put
Ay = K, [X], whereX is a finite fixed tuple of variables. Led, denote the
ultraproductulim,, .., A,,. It follows from Assertion 2.3.1 thatl, contains the
ultraproductK ., := ulim,, . K. Since eact,, is aZ[X]-algebra, so isA
by tos’ Theorem. Moreover, by that same theorem, the imagthefvariables
X, in A, are algebraically independent ov&r,,. Therefore, we have a canon-
ical embedding of . [X] into A... The main property of this embedding was
discovered byaN DEN DRIESIn [24].

Theorem 2.6 (/AN DEN DRIES). If all K, are fields with ultraproduck .., then
the canonical embedding

K [X] — ulim K, [X]

w—00

is faithfully flat, for every finite tuple of variables.
Proof. See [10, Theorem 1.7]; for an alternative proof, see [17].A.2

SetA = K [X] and Ay := ulim,_,o K, [X]. We have the following
immediate corollary.

Corollary 2.7. For every ideall of A, we havethafA,,NA = 1.

Another useful property of this embedding is that an idegl prime in A if,
and only if, I A, is prime in A.; see Corollary 4.2 below.
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3. Approximations and Non-standard Hulls

As observed in Assertion 2.9.4, in most cases, an ultrajtddunot Noetherian.
In particular, no positive dimensional finitely generaté@lgebra arises as an ul-
traproduct. Nonetheless, these are the algebras on whiglaweto define a tight
closure operation. The idea therefore is to embed such abi@gn an ultraproduct
of rings of prime characteristic, where tight closure igalty defined. Of course,
this embedding should be canonical and there should be arcagsfer between
the algebra and the ultraproduct.

3.1. Notations

To treat a more general situation, we fix some figlebf characteristic zero which
arises as an ultraproduct of fields of prime characteriBifcRemark 2.5, this in-
cludes the case of an uncountable algebraically closeddfaiiaracteristic zero,
and in particular, the case that = C. The underlying index sét’ will always
be the set of prime numbers and we will no longer write it. ¢éast, we express
this notationally by using for index the lettgr which always stands for an ar-
bitrary prime number (there will never be need to specidlieeparticular prime
number). Moreover, we fix some (unnamed) non-principaéfilter on the set of
prime numbers. For eagh fix a field K, of characteristigp, so that the ultra-
productulim,_. K, is isomorphic toX . Fix also an isomorphism betweén
andulim,_., K,. Finally, fix a tuple of variables(, set4, := K,[X] and let
A, be their ultraproduct. By the discussion at the end of theipus section, we
may viewK [ X] as a subring o, (after identification via the fixed isomorphism
betweenk andulim,_,, K), and we will denote this subring by.

3.2. Approximations and Codes

By the isomorphism we just fixed, every element K can be written as an
ultraproductulim,, . ¢,, Wherec, € K. If ¢, is a second choice of elements
in K, for which ¢ = ulim,, ., c,,, then almost alt, = ¢,. We refer to any such
choice of¢, as anapproximationof c. If c is a tuple(c, ..., ¢,), then taking

an approximatio;,, for everyc;, yields a tuplec, := (cip,...,cnp), called an
approximationof ¢, and any two choices of approximations will be the same for
almost allp. We want to extend the notion of approximation to other algib
objects as well. At the same time, we will define the notionashily and fiber,

which will be used in carrying out the transfer in the nextigec

3.2.1. Polynomials. Let f € K[X]. Write f =" a, X" with a,, € K. Choose
for eacha, an approximatiom,, and put

fpi= Z aypX"”.
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If we make different choices of approximations for the the resulting polyno-
mials will still be equal for almost alp (since only finitely many coefficients are
involved). We will call any such choice of polynomigfg anapproximatiorof f.

It follows that the elementlim,_. f, in A lies in the subringd and is equal
to f.

More generally, lef € Z[U, X], whereU is another tuple of (parametric)
variables. With diber of  over a fieldF', we mean a polynomig{u, X) in F[X],
obtained by substituting fd¥ some tuplea over F'. For instance, if = > U, X"
anda is the tuple ovels of the coefficientsa, ) of f (as above), thefi = f(a, X).
For this reason, we cafla family of polynomialsand we calla a code off with
respect to the family. It follows that if a,, is an approximation o4, thenf(a,, X)
is an approximation of .

3.2.2. Ideals. LetI be anideal in4, say of the form(f1,..., fs;)A. Choose for
eachf; an approximatiory;, and let/,, be the ideal ir4,, generated by thesg,,.
Again, one checks that if we make a different choice of apipnaxions of thef;,
then for almost alp, the ideal obtained in this way is equalfg. In fact, by tos’
Theorem more is true: if thg are a different set of generatorsioénd if g;,, is an
approximation for each;, then the ideald, and(g1p, ..., g:p)A, are equal for
almost allp. We call any choice of , anapproximatiorof /.

This time, the ultraproduct, := ulim,_.., I, of the I,, is no longer the
original ideall. Instead, we have thdt, = I A,. In particular, we can retrieve
from the approximatiot,, sincel/ = I, N A by Corollary 2.7.

To rephrase this in terms of families and fibers,Jdie an ideal IZ[U, X],
whereU is another tuple of (parametric) variables; we call any sactideal a
family of ideals With afiber of the family J over a field7', we mean the image
J(u) of 3 under the homomorphis@[U, X] — F[X] given by the substitution
U = u. In other words, ifJ is generated by polynomiajs thenJ(u) is generated
by the fibersf;(u, X). As for polynomials, we can find an approximation of an
ideall in A as follows. Choose some ideéain some polynomial rin@.[U, X] and
choose a tuple over K, such thatl = J(a). It is clear that we can always find
such data. We call any such choice of tuplacode ofl with respect to the family
J. If we take an approximatioa, of the codea, thenJ(a,) is an approximation
of I.

3.2.3. Algebras. Let B be a finitely generated -algebra of the formd /I, for
some ideall. Let I,, be an approximation of and putB, := A,/I,. | claim
that taking a different presentatidh =~ K[Y]/J and a choice of approximation
J, yields algebrad(,[Y]/J, which are isomorphic a& ,-algebras to thé,,, for
almost allp. It is therefore justified to call any choice &, anapproximationof
B. To prove the claim, let the assignmeXit — P;(Y'), with P, € K[Y], induce
a K -algebra isomorphism betweédn[X]/I andK[Y]/J. Let P;, be an approx-
imation of P;. It follows that for almost allp, the K ,-algebra homomorphism
op: Kp[X] — K,|Y] given by X; — P;, maps the ideal, into the idealJ,.
Moreover, by applying the same reasoning to an inverse dfitles isomorphism,
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we see thatp, induces an isomorphism betweéf,[X]/I, and K ,[Y]/J,, for
almost allp (see als@3.2.4 below).

The ultraproducB, of the B,, is in general bigger thaf?, and will be called
thenon-standard hulbf B. See$3.4 below for more details.

Afinitely generated.-algebrall of the formZ[U, X]/J with U some variables
andJ an ideal inZ[U, X] (that is to say, a family of ideals), is calledamily of
algebras A fiber of this family 2 over a fieldF', is the algebra

A(u) := F[X]/3(u)

for some fibefi(u) over F' of J (that is to say, for some tupieoverF). If Bis a
finitely generated<-algebra of the fornd /I and ifa is a code forl with respect
to some familyJ, then we calla also acodefor B with respect to the family
A := Z[U, X]/3. If a, is an approximation o4, then2((a,,) is an approximation
of B = 2(a).

3.2.4. Homomorphisms.Let B and C' be finitely generated{-algebras of the
form B = A/I andC = A/J, for some ideald and.J, and lety: B — C be a
K-algebra homomorphism given by the ru{g — F;, for someF; € A. Let I,

Jp andF;, be approximations of, J andF; respectively. It is an easy exercise to
show, using tos’ Theorem, that wiB,, := A,/I,, andC,, :== A, /J, (so thatthey
are approximations aB andC respectively), the<,-algebra endomorphism of
A, given by X, — F;, induces a homomorphisd),: B, — C), for almost allp.
We callg,, anapproximatiorof ¢. Its ultraproduct ., then gives a homomorphism
B, — C giving rise to a commutative diagram

B 0 C

(3.1)

Boo Coo.
Poo
We could similarly define the notions of family, fiber and cddehomomor-
phisms; we leave the details to the reader.

3.3. Summary

In all of the above cases, we have the following underlyiriggple at work. Let

O be an algebraic object defined ov€r(such as a polynomial, an ideal K[ X],

a finitely generated{-algebra or aK -algebra homomorphism). We can find a
family O (defined ovelZ[U, X]) and a tupleu over K, such that the fibeD(u)

is precisely the original objec?. Moreover, to obtain an approximatidh, of O,
we then simply have to take an approximationof u and take forO,, the fiber
O(uy,). Put succinctly, an objectis encoded by a tuple dvethat is to say, a code;
an approximation is then encoded by an approximation of dide cMoreover, all
the families discussed so far are made up from families cflide
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3.4. Non-standard Hulls

Let B be a finitely generatefl -algebra and leB3,, be an approximation aB. We
call the ultraproducB, := ulim,_,, B, thenon-standard hulbf B.

Since any two approximations @f are isomorphic ag(,-algebras by the ar-
gumenting3.2.3, it follows from Assertion 2.9.6 th&t,. is uniquely defined up to
K-algebra isomorphism. As we are only interested in objegt®usomorphism,
it does not matter which approximation we take to calculaiemstandard hull.

Corollary 3.1. The canonical homomorphisB — B is faithfully flat.

Proof. SupposeB is of the form A/I, for some ideall of A. We showed that
1A = I and from Assertion 2.3.6, after taking some approximaties get
that B, is equal t0A,/I~. Therefore, the homomorphis® — B is just
the base change of the embedditig— A, and hence is faithfully flat by Theo-
rem2.6. O

The next result explains somehow the terminolagy-standard

Proposition 3.2.For eachp, take somef, in A,. Then thef, are an approxima-
tion of an element € A if, and only if, there is a uniform bound on the degree
of eachf .

The proof is left as an exercise to the reader. As a coroltarg, might say
that A consist of all elements dinite degreein its non-standard huld,, or,
formulated differently, thatl consists of thestandard elementsf A..

4. Transfer

In this section, we keep the notations introduced3ril. In particular,K is the
ultraproduct of characteristie fields K ,, X is a fixed tuple of variablesd :=
K[X]andA, := K,[X], andA. is the ultraproduct of thel,, (whence the non-
standard hull ofd).

Recall that for a finitely generatdd-algebraB = A/I, we called the charac-
teristicp rings B,, := A, /I,, an approximation oB, wherel,, was obtained from
I by replacing each coefficiente K in each member of a generating set/pby
somec, € K, with the property thatillim, ... ¢, = ¢ (after identification ofi’
with ulim,,_, . K ). Although neithet , nor B,, is uniquely defined, any different
choice of this data will be isomorphic for almost all

The objective of this section is to show how many algebra@pprties pass
from B to any of its approximations and vice versa. We will also deh local-
izations of finitely generateff -algebras. Therefore, let us call a ribga K -affine
algebralif it is either a finitely generated-algebra or a localization at a prime
ideal of a finitely generated -algebra (we express the latter fact by calliBca
local K -affine algebrd.
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4.1. Definability in families

Let P be a property of polynomials in a polynomial ring over a field in the
variablesX . We say tha® is definable in familie5 if for each choice of families
of polynomialsfy, . . ., f; (in some parametric variablés, see§3.2), we can find
a formula without parameters(U), such that for each field, a tupleu over F'
satisfiesp(U) if, and only if, thet fibersf;(u) have propertyP.

If we would allow only algebraically closed fields in the above definition,
then we could replace the formula by a Z-constructible subsel’ by Theo-
rem 2.1. This would suffice for treating the case of main iegefk’ = C. However,
in the current generality, wherk is allowed to be non-algebraically closed, we
need the formalism of formulae.

Since properties of ideals can be translated into proesfipolynomials by
considering a generating set of the ideal, we may includaeénabove definition
properties about ideals and polynomials in a polynomial ring over a field. More
precisely, if we are giver families of idealsJy, . .., J, andt families of polyno-
mialsfy, ..., f:, then a property of the fibersJ;(u) and thet fibersf;(u), can be
viewed as a property of then + ¢ fibersf;(u), wherel; is generated by thex
polynomialsf,4 (;—1ym+1, - - - » fe-+im- Since this allows for less cumbersome nota-
tion, we will in the sequel consider properties of polynolsiand ideals. A similar
convention can be made for families of algebras and elenzemtsdeals in these
algebras. We will leave it up to the reader to translate @térg back to properties
of polynomials (see als$4.4 below).

4.2. Properties which are definable in families

In the following, each given property (involving ideals.J, J;,... and/or ele-
mentsf, g, g1, . . . ), is definable in families.

4.2.1. Theideal membership propergxpressing thatf' € I”.

This is definable in families for the following reason. Thexasts for each pair
of natural numberéd, n), a bound?’ such that iffy, . .., fs are polynomials im
variables of degree at mogtover a field and iff; lies in the ideal generated by
the remainingf;, then there exist polynomialg of degree at mosf’, such that
fo=g1f1 + -+ gsfs (see for instance [10], where this is shown to follow from
Theorem 2.6). Now, lef, be a family of polynomials and let be a family of
ideals, say generated By, . .., fs. Letn be the number of -variables andl be
the maximum of theX -degree of alf;. For a tupleu over a fieldF', we have that
fo(u, X) belongs to the fibed(u), if there exist polynomialg; over F' of degree
at mostd’, such that

fO(uaX):glfl(qu)+"'+gsfs(u7X)' (41)

2 Note that in [12,13], to be definable in families was calleerénto beasymptotically
definable
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Letc; be the tuple of all coefficients @f (so that it is the code af; with respect to
some appropriate choice of family of ideals of degiBe The existence of the;
satisfying (4.1) is then equivalent with the existence plésc; over F' satisfying
the equations obtained by expanding the right hand side.aj &hd comparing
coefficients with the left hand side. Note that the latterdetquations involve the
u. Thereforefy(u, X') belongs taJ(u) if, and only if, this system has a solution
in I for the c;. This latter statement, as a statement about the tupkan be
expressed by a formula (with only equations and existeqtiahtifiers), showing
that ideal membership is definable in families.

4.2.2. Theideal containment propertgxpressing thatl“ C J”. Also, the
properties expressing that one ideal is the sum, the prazfuttte
intersection of two (or some other fixed number of) ideals dred
property that T = (Jy : Jo)"

4.2.3. Theprimality property expressing that ‘is prime”.

As for the previous cases and for most cases that we will erteguhis prop-
erty is definable in families due to the existence of certaiarus. More precisely,
for each pair(d, n), we can find a bound”, such that ifl is an ideal generated by
polynomials inn variables over a field of degree at mdsind if for all polynomi-
als f andg of degree at mosi’, we have thaffg € I implies that eitherf or g
belongs tal, then in factl is prime (see [10]). From this and the fact that the ideal
membership problem is definable in families, it follows tpeimality is definable
in families.

4.2.4. The property expressing thal ‘is a prime ideal containingy’".
This is immediate from Assertions 4.2.2 and 4.2.3.

4.2.5. The properties expressing that an ideal is radical, prinoamnaxi-
mal. Also, the properties expressing that one ideal is théea of
another, or that one ideal is an associated prime ideal ahanwr
that one ideal has a primary decomposition given by some €ixteel
number of ideals.

Again this follows from the corresponding existence of bagiprovenin [10].

Note that there is also a bound on the possible number of iassd@rimes of an
ideal in terms of the degrees of its generators.

4.2.6. For any fixed, the property expressing thaf fs a prime ideal con-
tainingI such thatd ;/IA; has length”.

Immediate from Assertion 4.2.4 and the bounds proven inTh2prem 2.4].
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4.2.7. For any fixed, the property expressing thaf s a prime ideal with
I c J; C Jsuchthatl;(A;/IA;) has height (respectively, depth)
1”. Also, the property expressing thaty, . .., xq) is (part of) a sys-
tem of parameters @fA; /T A ;)"

Follows from the bounds proven in [12, Proposition 5.1].

4.2.8. The property expressing thaf ‘is a prime ideal containing such
that the sequend@, . .., gq) is Ay /1A -regular”.

Follows from the bound proven in [12, Corollary 5.2].

4.2.9. The property expressing that “thé-algebra endomorphism on A
given by X; — g; maps the ideal inside the ideall”. Also the
property expressing that the “induced homomorphishi — A/J
is injective.”

If I = (f1,...,fs)A, then the statement(/) C J amounts to the ideal
membership inJ of the compositiond; (g1, - . ., g.) and, therefore, is definable
in families by Assertion 4.2.1. It follows from [12, Theoren/] that the prop-
erty expressing that “the kernel of the induced homomorplgis A/I — A/J is
equal to an ideall; (A/I)" is definable in families. From this the definability in
families of the injectivity of¢ is clear.

Shortly, we will discuss properties of affine algebras amdrtidleals, but let us
firstindicate the main application of definability in faneiito the transfer problem.
We keep the notations and definitions frg1.

Proposition 4.1.Let P be a property about ideals and: polynomials in a poly-
nomial ring over a field. Assume thRtis definable in families. Lety, ..., a, and
g1, - --,g: be ideals and polynomials id. Choose approximations;, and g,
of a; and g, respectively. The ideals, ..., a; and the elements,, . . ., g; satisfy
propertyP if, and only if, the ideals,, . . ., as, and the polynomialg, ,, . . ., g:p
satisfy propertyP for almost allp.

Proof. Choose families of ideal3; and families of polynomialg; and choose a
tuplea overK such thafi;(a) = a; andg;(a, X) = g;(X) (thisis always possible
by the observations made §8.3). Leta,, be an approximation af. As explained
in §3.2, we can usé;(a,) andg;(a,, X) as approximations of; and g;(X)
respectively, so that we may assume thgt= J;(a,) andg;, = g;(a,, X). Let
»(U) be the formula witnessing th@ is definable in families for the familie®;
andg;.

Assume that the ideals;, and the polynomialg;, satisfy propertyP for
almost allp. Thereforeyp(a,) is true in K, for aimost allp. By £os’ Theorem,
p(a) holds inK. This in turn means that the idealsand the polynomialg; have
propertyP. The converse holds by reversing the arguments.
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Although we will not need this, the converse of Propositioh dso holds: if
a propertyP as above has the property that it holds on ideaksnd polynomials
g: if, and only if, it holds on almost all approximations, andg;,, thenP is
definable in families.

Applying Proposition 4.1 to Assertions 4.2.2 and 4.2.3, wethe following
corollary.

Corollary 4.2. Let I and J be ideals inA with approximations/,, and .J,,. Let
I, andJ., be their respective ultraproducts, viewed as idealslin. Then the
following are true.

1. Almost alli,, C J, if, and only if,I C Jif, and only if, /o C Jo.

2. Almost alll,, are prime if, and only if] is prime if, and only if/ . is.

We will shortly obtain more transfer results of this kindt Etst we extend our
definition of approximation to incorporate local affine diges.

4.3. Approximations and non-standard hulls—local case

Let R be a localK -affine algebra given ad ;/TA; with I € J andJ prime.
By Corollary 4.2, almost all/,, are prime ideals containing,. In particular, for
almost allp, the ring

Ry = (AP)JP/IP(AP)JP
is well-defined (in the remaining case, we can gyt:= 0). It follows from Corol-
lary 4.2 that

ulime = (AOO)JDC/IOO(AOO)]OO’ (42)
p—00

We call the ultraproduct of th&, the non-standard hulbf R and denote iR .
This is well-defined up td<-algebra isomorphism. Indeed, if we take a different
presentation oR? as a localization of a finitely generatéd-algebra, then the re-
sulting local K ,-algebras will almost all be isomorphic #®,, since both choices
have the same ultraproduct equal to the right hand side 8f.(Any such choice
of R, will therefore be called ampproximatiorof R.

Corollary 4.3. For R a C-affine algebraR, the canonical homomorphisi —
R, is faithfully flat.

Proof. Follows immediately from Theorem 2.6 (or from Corollary By base
change. O

Terminology. Let R be a localK -affine algebra with approximatioR,. Suppose
R = A;/IA;and letl, and.J, be approximations of and.J respectively. For
z an element of?, choosef, g € A with g ¢ J, such that: is equal to the image
in R of the fractionf /g. Let f,, andg,, be approximations of andg respectively.
It follows that almost ally,, ¢ J,,. The collection of elements, := f,/g, € R,

is called arapproximationof z. Similarly, for a an ideal inR, choose an ideal;

in A suchthat/ C J; C J anda = J; R, and letJ;,, be an approximation of;.
The collection of ideals, := J;, R, is called anapproximationof a. A similar
convention is in place iR is just of the formA/I. In other words, we extend the
notion of an approximation of an element or an ideal to aabjtaffine algebras.
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4.4. Transfer for affine algebras

LetP be a property of idealsay, . .., a; andt elements.y, ..., u; in an arbitrary
affine algebrak. Associated tdP, we define a propert$’ on ideals and polyno-
mials in a polynomial ring4 as follows. Consider first the case thais finitely
generated, that is to say, of the for{ I with T an ideal inA. LetP’ be the prop-
erty of thes + 1 idealsl, I, ..., I, and thet elementsfy, ..., f; expressing that
I C I, for all 4, and thatP holds on the ideal$; R and the element$; viewed
as ideals and elements R = A/I. If R is local, say of the fornd ; /I A; with
I C J andJ prime, then we leP’ be the property o + 2 idealsI, J, J1, ..., J;
and2t elementsfy, g1, .. ., fi, g: €xpressing that C J with J a prime ideal, that
I c J; C Jandg; ¢ J, for all 4, and that propertf holds for the ideals; and
the elements; in R given bya; := J; R andu, := f;/g;.

We will say that a propertP of s ideals andt elements in an affine algebra
is definable in familiesif the corresponding propert)’ is definable in families.
In particular, it follows that any of the properties listad$4.2 when extended to
affine algebras, remain definable in families. The followliagof theorems are all
proved using Proposition 4.1 and the fact that the pertipesperties are defin-
able in families. For instance, from Assertions 4.2.2-5l.%e get the following
generalization of Corollary 4.2 for arbitrady-affine algebras.

Theorem 4.4.Let R be aK-affine algebra with approximatioR,, and non-stan-
dard hull R. Leta, b, by, ... be ideals ink with approximationsi,, b, b1, . ..
respectively. Leti, boo, b1, ... be their respective ultraproducts, viewed as
ideals inR.. Then the following are true.

1. Almost alla,, are equal toby, N by, (respectively, tdi,ba,, b1y, + bap, (b1 :
bsp)) if, and only if, a is equal tob, N by (respectively, th,1bs, b1 + bg,
(b1 : b2)) if, and only if,a.. is equal tob o N bas (respectively, th oob2oo,
bloo + b200| (bloo : b200))

2. Almost alla,, are prime (respectively, radical, maximal or primary) ifidonly
if, a is prime (respectively, radical, maximal or primary) if, donly if, a is
prime (respectively, radical, maximal or primary).

3. For almost allp, the idealsby,, ..., bs, are the minimal prime ideals (re-
spectively, the associated prime ideals, the primary islé@lan irredundant
primary decomposition) af,, if, and only if,by, .. ., b, are the minimal prime
ideals (respectively, the associated prime ideals, theary ideals in an irre-
dundant primary decomposition) of

Applying tos’ Theorem and Proposition 4.1 to Assertions.@-24.2.8, we
obtain:

Theorem 4.5.Let R be aK-affine algebra with approximatioR,, and non-stan-
dard hull R. Letz; be elements iR with approximationz;, and leta be an
ideal in R with approximation,,. Then the following are true (where for the last
property, we assumg to be local).

1. For some fixed, almost alla,, have height (respectively, depthif, and only
if, a has height (respectively, depth)
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2. For some fixed, almost allR, have dimension (respectively, depth, length)
if, and only if, R has dimension (respectively, depth, lendth)

3. For almost allp, the sequenceéxy,,...,zqp,) is R,-regular if, and only if,
(x1,...,2q) is R-regular if, and only if(x1, ..., zq) IS Reo-regular.

4. For almost allp, the sequencériy, ..., zqp) is (part of) a system of param-
eters ofR,, if, and only if,(x1, ..., z4) is (part of) a system of parameters of
R.

Using the results from [12, Theorem 5.2], we get by a simitguanent on the
existence of bounds together with Proposition 4.1 the ¥ahg theorem.

Theorem 4.6.Let R be a local K -affine algebra with approximatioR,,. If P is
any of the following properties of local rings

1. regular;

2. complete intersection;
3. Gorenstein;

4. Cohen-Macaulay;

5. normal,

thenR has propertypP if, and only if, almost allR,, have.

Sometimes, transfer only goes in one direction, namely fzeno to positive
characteristic—the right direction as far as we are corezkras the next result
shows.

Theorem 4.7.Let R — S be a homomorphism df -affine algebras with approx-
imationR, — S,. If R — S is finite (respectively, injective, surjective, bijec)ive
then so are almost alk, — .S,,. Moreover,R., — S then also has this property.

Proof. If ui, ..., us generate as ank-module, theru;,, . . . , us, generates, as
an R,-module, for almost alp, by tos’ Theorem, where;, is an approximation
of u;. Taking ultraproducts then shows that, . .., us generateS,, as anR .-
module, so that we proved the assertion for the propert® of: S to be finite,
and in particular, to be surjective & 1). For injectivity, use Assertion 4.2.9.0

Note the converse of the above result might fail, sinea jf, . . . , us, are gen-
erators forS, as anR,-module, their ultraproduct might not lie ifi when their
degree is not bounded.

5. Non-standard Tight Closure

In this section, we change notation slightlwill always denote &-affine alge-
bra (not just the polynomial ring), with approximatiot), and non-standard hull
Aoo. All homomorphisms betwee@-affine algebras are tacitly assumed tobe
algebra homomorphisms which are essentially of finite tinetheless, in all
what follows, we could have worked in the same generalitynd8il, that is to
say, replacingC by any field of characteristic zero which is an ultraproduct o
fields of positive characteristic.
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5.1. Non-standard Frobenius

On eachd4, we have an action of the Frobenius endomorpHisgiven bya —
aP. This defines an endomorphidfy, on A, given by the rule

Foo(ac0) := ulim Fy(ap)(= ulim (a,)")
where theq, are chosen 4, such that their ultraproduct is,, (note that we
reserved the terrapproximationonly for elements ind). We call F, the non-
standard Frobenius

In particular,F, is an automorphism of (take A = C). Its properties on
C are extensively studied by #AUSHOVSKI, MACINTYRE and others; see for in-
stance [6] and [8], where it is shown that these are genetanaorphisms, satis-
fying some twisted form of the Lang-Weil Estimates. Howewvez will not need
any of these results here.

AlthoughF ., is no longer algebraic, some vestige remains: for any idedl
A, We have thaF . (I) C I, and in factF . (I) is contained in the intersection
of all powersI™. In particular,F ., commutes with any homomorphism which is
essentially of finite type. This justifies the omission of thmg A, in the notation
of F. Of course, in generak ., (A4) is no longer contained id. In fact, sinceA
can be thought of the elementsf, of finite degree, itis clear thatNF , (A) =
C, wheneverA is reduced.

We have finally come to the key definition of this article. Ndte following
notation that will be in effect henceforth.

Notation. For anideall in A orin A, we letF () A denote the ideal inl
generated by alF . (f) with f € T.

Definition 5.1 (Non-standard tight closure).Leta be an ideal ofA andz € A.
We say that lies in thenon-standard closure a, if there exists some e A, not
contained in any minimal prime of, such that

cFoo(z) € Foo(a) Ao (5.1)

We writecl,,s(a) for the non-standard closure af
Similarly, we say that lies in thenon-standard tight closukg,s;(a) of a, if
there exists somec A, not contained in any minimal prime df, such that

cFl(2) e F(a) Ao (5.2)
forall m € N.

There are also stable versions of these two notions, defsédlaws. We say
that z lies in thestable non-standard closu «, if instead of (5.1), we have for
somem > 1thatF7 1(c) F7(z) € F7 (a) A, and that lies in thestable non-
standard tight closuref q, if (5.2) holds only for sufficiently largen. We denote
these closures respectively 8§%(a) andc1s®(a).

nst
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We say that an ideal ison-standard close(tespectivelystably non-standard
closed non-standard tightly closedr stably non-standard tightly closgdf a is
equal to its own respective closure. We leave it to the retaleerify that the
closure of an ideal is again an ideal, containing the origina, for any of the four
variants. Moreover, these ideals are then closed with ot$pé¢hat closure.

The following inclusions are easily verified

Ls(a) C c1589q)

(a)
clnst(a) C cl¥¥(q)
(a)
(a) C

nst

C clys(a)
1stab( )

Clnst a

1stab
nst

a

where in order to prove the last inclusion, we use faf(c) is a multiple ofe.

Translated in terms of approximations the definitions bezdine following
(I leave the stable versions to the reader). &ot (f1,..., fs)A, we have that
z € clys(a) if, and only if, there exish; , € A,, such that

CP(ZP)p = hl,p(flp)p +oeeet hS,p(fSP)p (5-3)

for almost allp, wherec,, z, and f;, are approximations of, z and f; respec-
tively. Note that theh; , will in general not have bounded degree whence their
ultraproducts are no longer is.

We have that € cl,,.:(a) if, and only if, for eachn € N, there exists a set of
rational primesD,, in the ultrafilter/ and there exisk; ,, ., € A,, such that

CP(Zp)pm = hl,p,m(flp)pm + 4+ hs,p,m(fsp)pm (5.4)

for all p € D,,. However, in general the intersection of &l,, will no longer
belong tol{, so that it might very well be that for no prime the element,, lies
in the characteristip tight closure ofa,. This calls for one further notion.

Definition 5.2 (Generic Tight Closure). We say that € A lies in thegeneric
tight closureof g, if z,, lies in the tight closurga,)* of a,, for almost allp.

In other words, we may choose all,, to be equal in the above discussion. Put
differently, the generic tight closure afis the contraction tol of the ultraproduct
of the(a,)*. We will show in Theorem 8.5 below, that the generic tightsciee of
an ideal is contained in its non-standard tight closure.

In the remainder of this paper, we prove the main propertiegsese closure
operations. Since the proofs for the stable versions requity minor modifi-
cations, | have not included them here. Notwithstanding,[28, Theorem 3.4],
where stable non-standard closure (called timene-standard difference closyre
is used, since it has some additional good properties. Agepite it is not clear
whether the stable versions coincide with their non-stabieterparts, or, for that
matter, whether all these closure operations coinciderefbie, it is probably bet-
ter practice to always work with the stable versions.
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6. Regular Rings

One of the most important predecessors of tight closuraytis&unz’s Theorem
that the FrobeniuF', is a flat endomorphism on a regular riRgof characteristic
p. A word of caution: what is meant here is that the inclusy{R) C R is flat,
whereF,(R) denotes the subring of gltth powers of elements iR. Frobenius
also induces an isomorphis® = F,(R), which, of course, is therefore flat, but
this is not special to regular rings: it holds for all reducedjs R of characteristic
p. In characteristic zero, a minor obstacle arises in thaafpositive dimensional
regularC-affine algebra4, the non-standard Frobenils, is (probably) no longer
a flat endomorphism on the non-standard kyll. However, its restriction tal is.

Proposition 6.1.Let A be aC-affine algebra. IfA is regular, then the extension
F(A) C A is faithfully flat.

Proof. Itis clear that any proper ideal &, (A), extends to a proper ideal i, .
So we only need to show that the inclusiPp,(A) C A is flat. | will provide

a proof by direct verification. Another proof is given in [18prollary 3.8] by
showing thatd ., viewed as am-module via the non-standard Frobenlg is a
balanced big Cohen-Macaulay module, from which it follohattit is flat overA.
This then amounts to the flatnessAf, overF .. (A).

To show that the inclusiolf',(4A) C A is flat, we need to show that any

solutionx, over A, of the linear homogeneous equation

Fo(a))X1 4+ -+ Ful(an)X, =0 (6.1)
with a; € A, can be written as a linear combination
Xoo = b1ocFoc(z1) + - + byroc Foo (z1)
with b;00 € A and eaclz; a solution inA of the linear equation
a1 X1+ +a, X, =0. (6.2)

Choose some approximatiar, of eacha; and choose tuples, in A,, such that
ulim, o0 Xp = Xoo. It follows from (6.1) and tos’ Theorem thai, is a solution
in A, of the linear equation

Fp(alp)Xl + -+ Fp(anp)Xn =0 (63)

for almost allp. Let K, C (A4,)" be theA,-submodule consisting of all solutions
of
alel + -+ (Iann =0.

By Theorem 4.6 almost alll,, are regular, so that by Kunz's Theorem, the inclu-
sionF,(A4,) C A, is flat. Therefore, (6.3) implies that, lies in the submodule
of (A,)" generated b¥, (K ,).

Let N be the maximum of the degrees of the Hence almost all;,, have
degree at mosN as well. It follows from [10] or [12], that there is aN’ € N
only depending onV, such that eacli(, is generated by at mog{’ elements,
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each of degree at mod{’. Letz;,, fori = 1,..., N’ be these generators. Put
Zio = ulim,_. zi. Using Proposition 3.2, we see that, lies already inA.
Moreover, by £os’ Theorem, ead), is a solution of the linear equation (6.2).
Sincex, is a linear combination of th#,(z;,), it follows thatx., is a linear
combination of th& .. (z; - ), as required. O

Theorem 6.2.Let A be aC-affine algebra. IfA is regular, then any ideal is non-
standard closed.

Proof. Leta = (f1,..., fs)A be an ideal ind and letz be an element in its non-
standard closure. Therefore, we can find & A not contained in any minimal
prime of A, such that

CFOO(Z) - thoo(fl) + -+ hsFoo(fs)v

for someh; € Aw. In other words¢ belongs to(F(a)As 4. Foo(2)). By
Proposition 6.1, the extensid.. (A) C A is flat, which implies that

(Foo(@)Aso 14, Fo(2)) =Foo(a 14 2)Ace.

If 2 ¢ a,thenJ := (a :4 z) is a proper ideal ofd. In particular, we get that
¢ € Foo(J)Aw. SinceF o (J)Asx N A C CandJ is a proper ideal, we must have
thatF ., (J)A. N A = 0, implying thatc = 0, contradiction. O

Remark 6.3The same holds true for non-standard tight closure, sinsedbn-
tained in the non-standard closure, and an easy adaptdtiba proof then gives
the result for the stable versions as well.

7. Contractions under Finite Extensions

Theorem 7.1.Let A C B a finite (or, more generally, an integral) extension of
C-affine domains. Leat be an ideal inA. Thencl,s(aB) N A C cl,s(a).

Proof. It suffices to prove the theorem for finite extensions (sinogralation in
B already holds in a finitel-subalgebra oB). Let z € cl,,;(aB) N A4, so that for
some non-zeré € B, we have that

bFoo(2) € Foo (aB)Boo. (7.1)

By a well-known argument (reason with the field of fractiqribgre exists ani-
module homomorphism: B — A, sendingh to some non-zero elemeatof A.
Let ¢ : Boo — A be its extension to the non-standard hiillg, and A, of B
and A respectively (see Theorem 4.7). Applyidg, to (7.1), we obtain

aFo(2) € Foo(a) A,

showing that lies in the non-standard closureaf O
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Remark 7.2Alternatively, we can make the observation that (7.1) can be taken
in A (namely, replacé by the constant term of an integral equatiorbaiver A
of minimal degree). Thereforé,F..(z) lies in F,(a)Bo N A SinceAy, C
B is finite by Theorem 4.7 and since any finite extension of iredomains
in characteristic zero is split (by taking traces), we get i, (a)Bo N Axe =
F(a)A~, showing that lies in the non-standard closure of

By either of these arguments we an also show that the Thearémd with
non-standard closure replaced by generic tight closurenfstandard tight clo-
sure.

8. Colon Capturing

Theorem 8.1 (Colon Capturing).Let A be a localC-affine algebra with system
of parametergz, ..., z,). For eachi, the colon ideal (x1,...,2;)A : 2;11) IS
contained in the non-standard tight closure(of, . . ., z;) A.

Proof. | will only give the argument in casd is equidimensional—for the gen-
eral case, see Remark 8.3 below. Wrte= B/I with B some localization of a
polynomial ring overC. Consider ther; already as elements &f. Supposd has
heighte. By an easy prime avoidance argument, we can find. ., f. € I, such
that

ht(f1,..., fe,x1,...,z)B=e+i

for eachi. In particular,J := (fi,..., f.)B has height. SinceB is regular,J

has no embedded associated primes. Sihce I both have height and since

all minimal primes ofl have height by equidimensionality, we see that every
minimal prime of! is also a minimal prime ofl. Letpy,...,p,, be the minimal
primes of J, so thatp,...,p; are the minimal primes of, for somel < m.

Let Ji be the primary component of belonging to the minimal prime,, for

k =1,...,1,and letJ be the intersection of the remaining primary components,
so that

J=Jin---nJnJ.
Let I;, be thep,,-primary component of andI be the intersection of the embedded

primary components (this is not uniquely defined, but thissdeot matter here),
so that

I=hLn---NnLNI.

There is someV, such thap? C Jy, for all k. Choose: € J, but not in anypy,
fork=1,...,1 Itfollows that

l
cNcJn(\ed chn-nand = (8.1)
k=1

Moreover, the image af in A is not contained in any minimal prime ideal df
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Let z € B so that its image iM lies in ((z1,...,z;)A :4 x;41). Therefore,
we can findh; € B, suchthatz;; +bix1 +- - -+ b;z; € 1. Take approximations
of everything in sight, so that for almost allwe have a relation

ZpTit+lp + blpxlp + -+ bipxip € Ip
for almost allp. Let g denote any power™ bigger thanV, then by (8.1) we have
¢p [(2p) ! (@ig1p)? + (b1p)*(x1p)* + -+ + (bip) (i) ] € Tp. (8.2)

By Theorem 4.5, almost all, + (z1,, - - ., z4p) B, have heightl+e. Since almost
all B, are regular by Theorem 4.6, it follows that

(flp’ ceey fepv (xlp)qv SRR (mdp)q)

is a regular sequence. Therefore, from (8.2), we get that

cp(2p)? € (fip, .-, feps (T1p)?, - - -, (®ip)?) Bp.
Taking reduction moduld,, and then ultraproducts, we get that
cF(z) € (FZ(x1),...,F () Aco,

for all m € N. Since we already observed thais not contained in any minimal
prime of A, we get that: lies in the non-standard tight closure (@f, ..., z;) A4,
as required. O

Remark 8.2Colon Capturing then also holds for non-standard clossrthia con-
tains non-standard tight closure.

One can avoid taking approximations in the above proof,qutre fact that
since(f1,..., fe,x1,...,2q) IS B-regular,(f1,..., fe, FZ(x1),...,F2(z4)) is
B.-regular, and then carry out the above proof directlyin . To prove the latter
fact, use an argument similar to the one proving Assertiérv2see [19, Theorem
5.1] for details.

Remark 8.3Colon Capturing also holds for generic tight closure. Itjee €
((x1,...,2;)A : x;11) leads to a similar relation for approximations. Since al-
most all (z1p, ..., z;p) are a system of parameters_4f by Theorem 4.5, tight
closure Colon Capturing ([7, Theorem 3.1]) yields thgtlies in the tight clo-
sure of (z1p,...,%ip)Ap, that is to sayz lies in the generic tight closure of
(21,...,x;)A. Using this, we can give an alternative proof of Theorem Byl,
showing that generic tight closure is contained in non¢at tight closure. This
argument does not require us to assume equidimensiorddityever, it relies on

a non-trivial result from tight closure theory: the existerof test elements; more-
over, we need the following uniform version.

Proposition 8.4.For eachC-affine algebrad, we can find an elemente A with
the property thatc, is a test element for almost all,,, wherec, and A,, are
approximations of and A respectively.
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Proof. We use [3, Theorem 7.1 and 7.2] to generate test elemergsaBgume that
A is a domain with field of fraction&. Take a Noether Normalizatidb[ X | — A
(that is to say, a finite injective homomorphism). SideX| — A is generically
smooth,L is a finite separable extension@fX ). Chooseuy,...,uy € A, such
that they form a basis df overC(X). Putc equal to the determinant of the matrix
with entries the traces of all possible produets; (where the trace is taken with
aid of the Galois group of overC(X)). | claim that almost all approximations
cp are test elements. Indeed, @g'g[X] — A, andu;, be approximations of
C[X] — A and of theu; respectively. By Theorem 4.7, almost &} X] —
A, are Noether Normalizations, and fprsufficiently large, they are generically
smooth. By tos’ Theorem, almost al} are given as the determinant of the matrix
with entries the traces of all possible produetsu;, and hence are test elements
by [3, Theorem 7.1 and 7.2].

For A arbitrary, a simple argument explained in [7, Exercise Psh@ws that
if we can find for eactd/p, with p a minimal prime of4, an element with the
desired properties, then we can also find such an elemehttaking into account
that by Theorem 4.4, the minimal primes.4f are just the approximations of the
minimal primes ofA, for almost allp. Details are left to the readerQ]

Theorem 8.5.Generic tight closure is contained in non-standard tiglustire.

Proof. Let A be aC-affine algebra. Let € A and leta be an ideal ofA. Let A,
be an approximation aft and choose approximationg anda, in A, of z anda
respectively. We have to show that:if belongs to the tight closure of almost all
a,, thenz lies in the non-standard tight closure @fBy Proposition 8.4, there is
ac € A whose approximation, is a test element in almost all,. Therefore, for
almost allp, we have that

¢y B (2,) € FJ () A,
for all m > 1. Taking ultraproducts, we get that
cF7(2) € FT2(a) Anc,
for all m > 1, showing that lies in the non-standard tight closurecof O
As an immediate consequence we derive from Theorem 6.2 togvfog:

Corollary 8.6. Any ideal in a regularC-affine algebra is equal to its generic tight
closure.

9. Integral Closure and the Brian¢gon-Skoda Theorem

The next result is easy to proof for classical tight closimg, seems to require
something like Nérop-desingularization in the non-standard case.

Theorem 9.1.In anyC-affine algebrad, the non-standard closure of an arbitrary
ideal is contained in its integral closure.
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Proof. Let z be in the non-standard closure of an ideal' his means that we can
find ¢ € A, not contained in any minimal prime ¢f, such that

cFoo(2) € Foo(0) Ace, (9.1)

with A, the non-standard hull of. In order to show that lies in the integral clo-
surea of a, it suffices to show that for each discrete valuation fihgnd any homo-
morphismg: A — V with kernel a minimal prime o, we have thap(z) € aV'.
Fix one such homomorphism and letp be its kernel. After taking completion
and using Cohen’s Structure Theorem, we may assuméthatK[[¢]] for some
extension fieldK of C andt¢ a single variable. The image gfin V' lives already
insidek[[t]] for some algebraically closed subfidldf cardinality the continuum.
Sincek = C, we may takel’ = CJ[t]] from the start. By (9.1) and the fact that
¢ ¢ p, the image of in A/p will still lie in the non-standard closure of A/p).
So we may as well assume thais injective, whence that is a subalgebra df'.
Next, we may replacd by the A-subalgebra o¥” generated by and then localize
A so that it containd; := C[t],). By Néronp-desingularization (see for instance
[1, §4]), there exists a smooflh-algebraB and there exist;-algebra homomor-
phismss: A — B andiy: B — V, such that)s is equal to the inclusiog. In
particular,B is a regulartC-affine domain. Applying to (9.1) and observing that
s(c) # 0, lestys(c) = ¢ would vanish, we get tha{(z) lies in the non-standard
closure ofaB. By Theorem 6.2s(z) lies in aB since B is regular. Applyingy
yields thatz = ¢(s(z)) lies inaV/, as required. O

Theorem 9.2 (Briangon-Skoda)Let A be aC-affine algebra and lai be an ideal
of A. If a can be generated by, elements, then the integral closw® of a™ lies
inside the non-standard tight closure af

Proof. Letz € a™. This means that we can find € o™ and an integral equation
2 g2 4 g =0

Let A, be an approximation ofl and choose approximations, g;, anda, in A,
of z, g; anda respectively. For almost gll, we have an equation

(Zp)d + glp(zp)UFl + 4+ gap =0 (9.2)

in 4, and, moreoverg;, € (a,)"™. In other words, for thosg, we have that
zp belongs to the integral closure @f,)™. By the tight closure Briangon-Skoda
Theorem ([7, Theorem 5.7]), we have thgtbelongs to the tight closure af, for
almost allp. In other words;z belongs to the generic tight closureqfwhence to
its non-standard tight closure, by Theorem 8.5.

In fact, if a has positive height, we can altogether avoid the use of Eme@&r5
(which relies on a non-trivial result about test elementsharacteristip), by
repeating the (elementary) argumentin [7, Theorem 5.7 &mhz,,. Firstly, from
(9.2), we get that

(ap)m(dil) (ZP)N C (ap)Nm
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forall N. If N = ¢ = p' is a power ofp, then(a,)?™ C F,(a,)A,, sincea, is
generated byn elements. Thereforég, )~ YF,(z,) C F,(a,)A,, for almost
all p. Taking ultraproducts, we get that

a™d=DE (2) Cc FL_(a)As,

foralll > 1, showing that € cl,s(a). O

10. Applications

The first application is an easy proof of the following Theuoref HOCHSTERand
ROBERTS

Theorem 10.1.Let A be a regularC-affine algebra. Letz be a reductive linear
algebraic group (so thatr is the complexification of a compact real Lie group). If
G actsC-rationally on A by C-algebra automorphisms, then the fixed riA§ is
Cohen-Macaulay.

Proof. Since the problem is local, we may localize and assume frenstért that
Ais alocal. Let(xy, ..., z4) be a system of parameters¥’. We need to show
that(Z; : x;) = I; in A, foreveryj = 1,...,d, wherel; = (z1,...,2;_1)A.
Letz € A%, so thatzx; € I;. By Colon-Capturing (Theorem 8.1), we get that
z € clps(I;). SinceA ¢ A, it follows thatz lies in the non-standard closure of
1;A. SinceA is regular, it follows from Theorem 6.2 thate I; A.

From Lie theory or a general argument about linearly restaaioups, it fol-
lows that there exists a so-callB&ynolds operatop;: A — A, thatis to say, a
homomorphism ofA“-modules. Therefore, applying; to z € I; A givesz € I,
as required. O

The above proof shows the following more general resultesall we needed
of the embeddingd® C A is its cyclic purity (recall that in general a homomor-
phismR — A is calledcyclically pureif aA N R = a, for every ideah in R).

Corollary 10.2. Let R — A be a cyclically pure extension GFaffine algebras. If
Ais regular, thenR is Cohen-Macaulay.

In [19, Theorem B], this result is generalized to hold for ayglically pure
homomorphism of Noetherian local rings containing a fieldektending the def-
inition of non-standard tight closure to an arbitrary coetplNoetherian algebra
over a field. Using deeper results from tight closure theay singularity theory,
but staying within the category @f-affine algebras, further generalizations can be
found in [18] and [22].

The classical Briancon-Skoda Theorem for affine algelwasformal conse-
guence of the properties of any of the three closure op@&atiefined in this paper.

In particular, by combining Theorem 6.2 and Theorem 9.2, eifetlge following
result.
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Theorem 10.3.Let A be aC-affine algebra and lett be an ideal ofA. If A is
regular anda can be generated by, elements, thea™ C a.

In particular, if f is a polynomial inn variables overC, without constant term,
then there exists a polynomialwith s(0) # 0, such thats /™ lies in theJacobian
idealof f, that is to say, the ideal generated by the partial derivedioff.

See [7, Chapter 5] or [21] for an argument why the last agseftillows from
the first. In [21], using some non-standard methods as wed,is extended to
power series rings ovét, thus recovering the original Briangcon-Skoda Theorem.
Conceivably, one could as well give an argument for thisfatésult via non-
standard tight closure, using its extension to power seimgs discussed in [19,

§6].

Classical tight closure is contained in non-standard tighisure

Recall the definition made by détHsTERand HUNEKE of the (equational) tight
closurea* of an ideala in a C-affine algebraA (see for instance [7, Appendix
1, Definition 3.1]). An element € A lies in a*, if there exists some finitely
generatedZ-subalgebraD of A containingz, such that, witho := a N D, the
image ofz modulop lies in the characteristip tight closure ofo(D/pD), for
all but finitely manyp. SetD,, := D/pD and letz, andd, be the respective
image ofz andd in D,. Observe that there is a canonical embedding afto
ulim,,_,, F,,. To be more precise, fos € Z, if s, denotes the image of in
F, = Z/pZ, thenulim,_. s, is equal tos viewed as an element i@ via any
isomorphism given by the Lefschetz Principle (Theorem.2¥8 now may choose
approximationsi,, anda,, of A anda respectively, such tha?, c A, ando, =
a, N D,. It follows from our above observation thaf, viewed as an element of
Ap, is an approximation of (see [18, Corollary 4.9] for a more precise result). By
assumptionz, lies in the tight closure o, whence in the tight closure af, in
A,. By definition, this means thatlies in the generic tight closure af whence
also in its non-standard (tight) closure by Theorem 8.5oimctusion, we showed
the following.

Theorem 10.4.For C-affine algebras, equational tight closure is containedriry a
of the three closure operations ‘generic tight closuregfmstandard tight closure’
and ‘non-standard closure’.

Some Questions

1. At present there is no counterexample for any of the cosperations to be
different. It is quite possible that they all coincide wittpational tight closure
(as itis possible that all classical tight closure opersim characteristic zero
coincide). Nor is it clear whether a different choice of nanmncipal ultrafilter,
or a different choice of an isomorphism in Theorem 2.4, ydedddifferent
closure operation. There is some evidence that the choiakrafilter should
not matter, at least not in the definition of non-standarattidosure.
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2.

There is not yet a satisfactory theory of non-standait titpsure in the non-
affine setup. The best results so far are obtained in [19]revaelosure op-
eration, calledight difference closureis defined for complete algebras over
an uncountable algebraically closed field. It will come asuprise that there
one needs Artin Approximation (although it is plausiblet@mething weaker
than the Artin-Rotthaus Theorem suffices; see [19, Theord2]6 Neither is
there yet any concrete notion of tight closure in mixed cb@nrastic, although

| have some hope to develop some asymptotical version, tistngx-Kochen-
Ershov Theorem. For some positive results in this directem[15, 16].

. Although Proposition 8.4 seems to indicate that test efeémexist in the non-

standard world, it is not yet clear whether this is actuatlyls other words,
given aC-affine algebrad, can we find an element not contained in any
minimal prime of 4, such thatF?(z) lies always inF (a) A, for every

m and everyz in the non-standard tight closure e? Notwithstanding our
ignorance on this aspect, it is possible to show that nomdstal tight closure
persists (although it is not yet clear whether the same esfsunon-standard
closure). This will be the content of a future paper.

. Our new closure operations prompt for a study of the aneds@f F-regularity

and F-rationality. Some work in this direction has been dartke papers [18—
20,22], but the general theory still needs development.
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