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Abstract. In this paper, non-standard tight closure is proposed as an alternative for classical
tight closure on finitely generated algebras overC. It has the advantage that it admits a
functional definition, similar to the characteristicp definition of tight closure, where instead
of the characteristicp Frobenius, its ultraproduct, the non-standard Frobenius,is used. This
new closure operationcl(·) has the same properties as classical tight closure, to wit, (1)
if A is regular, thena = cl(a); (2) if A ⊂ B is an integral extension of domains, then
cl(aB) ∩ A ⊂ cl(a); (3) if A is local and(x1, . . . , xn) is a system of parameters, then
((x1, . . . , xi) : xi+1) ⊂ cl(x1, . . . , xi) (Colon-Capturing); (4) if a is generated bym
elements, thencl(a) contains the integral closure ofam and is contained in the integral
closure ofa (Briançon-Skoda).
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1. Introduction

For A a ring of characteristicp > 0, HOCHSTERand HUNEKE have defined a
closure operation on ideals ofA, calledtight closure. To be more precise, an ele-
mentz ∈ A belongs to the tight closurea∗ of an ideala = (f1, . . . , fs)A, if there
exists somec ∈ A not contained in any minimal prime ideal ofA, such that for all
sufficiently high powersq of p, we have that

czq ∈ (f q1 , . . . , f
q
s )A.

This closure operation admits all four properties listed inthe abstract above; see
for instance [7] or the excellent survey article [23]. The same authors have also ex-
tended the notion of tight closure to many rings containing afield of characteristic
zero, including all finitely generated algebras over a field,and the same four prop-
erties still hold. However, even the very definition in characteristic zero is more
complicated, involving some reduction process to characteristic p (see for instance
[7, Appendix 1] or [4]). Moreover, to prove these propertiesin characteristic zero,
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one needs some strong form of Artin Approximation. More precisely, the Artin-
Rotthaus Theorem [2] is used to descend properties from complete local rings to
arbitrary excellent rings.

In this paper, I propose an alternative closure operation (and several variants)
for finitely generatedC-algebras, using the non-standard Frobenius, that is to say,
the ultraproduct of the characteristicp Frobenii. To emphasize this, I termed the
closure operationnon-standard tight closure. The main goal of the present paper
is to establish the four fundamental properties above for this new closure oper-
ation and its variants. Originally, I had also included in this paper a proof for a
fifth fundamental property, to wit,persistenceof non-standard tight closure (that
is to say, the fact that for every homomorphismA → B, the non-standard tight
closure of an ideala of A is contained in the non-standard tight closure of its ex-
tensionaB in B). However, since the argument requires a substantial amount of
non-Noetherian or non-standard commutative algebra, I decided to publish these
results in a separate paper. In particular, I have made an attempt to prove the four
properties using as little as possible, relying chiefly on some basic facts from tight
closure theory in positive characteristic, and often, in fact, mimicking the elemen-
tary proofs these properties admit in positive characteristic.1 After establishing the
four main properties, I list in the last section a few applications. Further properties
and applications can be found in [14,18–22]. There is also some work in progress
([15,16]) on extending the present ideas to mixed characteristic.

In the first part of this paper,§2–§4, some material from [12,13] is reviewed
and then used to describe exactly how the transfer from positive to zero charac-
teristic is carried out using non-standard methods. Upon request of the referee of
an earlier version of this paper, I will do this in considerable detail. Many of the
other papers listed above also make extensive use of this method and therefore I
have included several results which are not actually neededin the present paper,
but only in the later papers. From§5 on, the theory of non-standard tight closure
is then developed.

In the remainder of this introduction, I will briefly explainthe main ideas and
definitions. LetC be a finitely generatedC-algebra. Leta be an ideal ofC and
z ∈ C. I will now explain what it means forz to belong to thenon-standard tight
closureof a. We can writeC as a quotient of some polynomial ringC[X1, . . . , Xn]
by an idealI. Rather than descending these data to a finitely generatedZ-algebra
and then taking reductions modulop as in the Hochster-Huneke tight closure case,
we will invoke a different method of transfer. Namely, we observe thatC can be
viewed as a ‘limit’ of the fieldsFalg

p (the algebraic closure of thep-element field).
To make this ‘limit’ idea precise, we need some non-standardformalism, to wit,
the notion of ultraproduct. I will not explain this at this point, but refer the reader
to the next section for more details. Suffices to say here thatthere is a process
that attaches, albeit not uniquely, to any complex numberc a sequencecp with
eachcp ∈ F

alg
p . Choose some generatorsf1, . . . , fm of I and apply this to every

coefficient of eachfi. We obtain polynomialsfip defined overFalg
p . Let Cp be

1 At present, there is one exception: to prove that non-standard tight closure is contained
in integral closure, I need Néronp-desingularization.
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the quotient ofFalg
p [X1, . . . , Xn] modulo the ideal generated by thefip. These

characteristicp ringsCp will play a role similar to the reductions modulop in
classical characteristic zero tight closure. Namely, on eachCp we have an action
of Frobenius. As we could take the ‘limit’ (in the sense of ultraproducts) of the
fieldsF

alg
p , so can we similarly take the limit of theCp. This ring, denotedC∞,

will be called thenon-standard hullof C, and as such, it is uniquely defined up
to C-algebra isomorphism (whereas theCp were not). It containsC as a subring
andC ⊂ C∞ is faithfully flat. Moreover, the action of the Frobenius on eachCp
(being entirely algebraic) extends to an action of an endomorphismF∞ onC∞,
the ‘limit’ or non-standard FrobeniusonC∞. Nonetheless, we have to face the
following serious obstructions: the non-standard hull is far from Noetherian and
the action ofF∞ on it does not preserve the subringC. Notwithstanding, we say,
in accordance with the characteristicp definition, thatz lies in the non-standard
tight closure ofa, if there existsc ∈ C, not contained in any minimal prime ideal
of C, such that for allm, we have

cFm
∞

(z) ∈ F
m
∞

(a)C∞ (1.1)

whereFm
∞

(a)C∞ simply means the ideal inC∞ generated by allFm
∞

(g) for g ∈ a.
A variant of this definition is obtained as follows. Apply the‘downwards pro-

cess’ to the data given byz and a = (g1, . . . , gs)C and thus obtain elements
zp, gip ∈ Cp whose coefficients have limits corresponding to the coefficients of
z andgi respectively. Then require thatzp lies in the (classical) tight closure of
(g1p, . . . , gsp)Cp. I will call this generic tight closure. It contains equational char-
acteristic zero tight closure and is contained in non-standard tight closure; see
Theorems 8.5 and 10.4.

The main advantage of non-standard tight closure is its functional definition
in terms of the initial data. This is reflected by the ease withwhich the four main
properties can be derived. That in practice non-standard tight closure is impossible
to be calculated explicitly (as it depends on the knowledge of an ultrafilter) should
not be held against it, for its cousin, classical tight closure, itself is hard to com-
pute, even in positive characteristic. The final and weakestvariant,non-standard
closure, is obtained by only requiring (1.1) form = 1. Surprising as it might be,
the more since its characteristicp counterpart would be utterly useless, this still
gives a closure operation for which the four fundamental properties hold. For an
application of this weaker version, see [14].

2. Ultraproducts

In this section,W always denotes an infinite set.

2.1. Non-principal Ultrafilters

With a non-principal ultrafilterU onW , we mean a collection of infinite subsets
of W closed under intersection, with the property that for any subsetF of W ,
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eitherF or its complement−F belongs toU . In particular, the empty-set does not
belong toU and ifD ∈ U andE is an arbitrary set containingD, then alsoE ∈ U ,
for otherwise−E ∈ U , whence∅ = D ∩ −E ∈ U , contradiction. Since every set
in U must be infinite, it follows that any cofinite set belongs toU . The existence
of non-principal ultrafilters is equivalent with the Axiom of Choice, and we make
this set-theoretic assumption henceforth. It follows thatfor any infinite subset of
W , we can find a non-principal ultrafilter containing this set.

In the remainder of this section, we also fix a non-principal ultrafilter onW ,
and omit reference to this fixed ultrafilter from our notation. Non-principal ultra-
filters play the role of a decision procedure on the collection of subsets ofW by
declaring some subsets ’large’ (those belonging toU) and declaring the remaining
ones ’small’. More precisely, letow be elements indexed byw ∈ W , and letP
be a property. We will use the expressionsalmost allow satisfy propertyP or ow
satisfies propertyP for almost allw as an abbreviation of the statement that there
exists a setD in the ultrafilterU , such that propertyP holds for the elementow,
wheneverw ∈ D. Note that this is also equivalent with the statement that the set
of all w ∈ W for whichow has propertyP , lies in the ultrafilter.

2.2. Ultraproducts

Let Ow be sets, forw ∈ W . We define an equivalence relation on the Cartesian
product

∏
Ow, by calling two sequences(aw|w ∈ W ) and(bw|w ∈ W ) equiva-

lent, if aw andbw are equal for almost allw. In other words, if the set of indices
w ∈ W for which aw = bw belongs to the ultrafilter. We will denote the equiva-
lence class of a sequence(aw|w ∈ W ) by

ulim
w→∞

aw or a∞.

The set of all equivalence classes on
∏
Ow is called theultraproductof theOw

and is denoted
ulim
w→∞

Ow or O∞.

Note that the element-wise and set-wise notations are reconciled by the fact
that

ulim
w→∞

{ow} = {ulim
w→∞

ow}.

2.3. Ultraproducts of Sets

For the following properties, the easy proofs of which are omitted, letOw be sets
with ultraproductO∞.

2.3.1. If Qw is a subset ofOw for eachw, thenulimw→∞Qw is a subset of
ulimw→∞Ow.

In fact,ulimw→∞Qw consists of all elements of the formulimw→∞ ow, with
almost allow in Qw.
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2.3.2. If eachOw is the graph of a functionfw : Aw → Bw, thenO∞

is the graph of a functionA∞ → B∞, whereA∞ andB∞ are the
respective ultraproducts ofAw andBw. We will denote this function
by

ulim
w→∞

fw or f∞.

Moreover, we have an equality

ulim
w→∞

(fw(aw)) = (ulim
w→∞

fw)(ulim
w→∞

aw),

for aw ∈ Aw.

2.3.3. If eachOw comes with an operation∗w : Ow ×Ow → Ow, then

∗∞ := ulim
w→∞

∗w

is an operation onO∞. If all (or, almost all)Ow are groups with
multiplication∗w and unit element1w, thenO∞ is a group with mul-
tiplication ∗∞ and unit element1∞ := ulimw→∞ 1w. If almost all
Ow are Abelian groups, then so isO∞.

2.3.4. If eachOw is a (commutative) ring with addition+w and multipli-
cation ·w, thenO∞ is a (commutative) ring with addition+∞ and
multiplication·∞.

In fact, in that case,O∞ is just the quotient of the product
∏
Ow modulo the

ideal consisting of all sequences(ow |w ∈ W ) for which almost allow are zero.
From now on, we will drop subscripts on the operations and just write + and· for
the ring operations on theOw and onO∞.

2.3.5. If almost allOw are fields, then so isO∞.

Just to give an example of how to work with ultraproducts, letme give the
proof: if a ∈ O∞ is non-zero, then by the previous description of the ring structure
onO∞, almost allaw will be non-zero, for some (any) choice ofaw ∈ Ow for
whichulimw→∞ aw = a. Therefore, lettingbw be the inverse ofaw whenever this
makes sense, and zero otherwise, one verifies thatulimw→∞ bw is the inverse of
a.

2.3.6. If Cw are rings andOw is an ideal inCw, thenO∞ is an ideal in
C∞ := ulimw→∞Cw. In fact,O∞ is equal to the subset of all ele-
ments of the formulimw→∞ ow with almost allow ∈ Ow. Moreover,
the ultraproduct of theCw/Ow is isomorphic toC∞/O∞.
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2.3.7. If fw : Aw → Bw are ring homomorphisms, then the ultraproduct
f∞ is again a ring homomorphism. In particular, ifσw is an endo-
morphism onAw, then the ultraproductσ∞ is a ring endomorphism
onA∞ := ulimw→∞Aw.

These examples are just instances of the general principle that ‘algebraic struc-
ture’ carries over to the ultraproduct. The precise formulation of this principle is
called Łos’ Theorem and requires some terminology from model-theory. Since we
will only apply the ultraproduct construction to rings, we do not need to introduce
the formal language of model-theory and we can get by with thefollowing ad hoc
definition.

2.4. Formulae

With a quantifier free formula without parametersin the free variablesX =
(X1, . . . , Xn), we will mean in this paper an expression of the form

ϕ(X) :=

m∨

j=1

f1j = 0 ∧ . . . ∧ fsj = 0 ∧ g1j 6= 0 ∧ . . . ∧ gtj 6= 0, (2.1)

where eachfij andgij is a polynomial with integer coefficients in the variables
X , and where∧ and∨ are the logical connectivesandandor. If instead we allow
the fij andgij to have coefficients in a ringC, then we callϕ(X) a quantifier
free formula with parameters inC. We allow all possible degenerate cases as well:
there might be no variables at all (so that the formula simplydeclares that certain
elements inZ or inC are zero and others are non-zero) or there might be no equa-
tions or no negations or perhaps no conditions at all. Put succinctly, a quantifier
free formula is a Boolean combination of polynomial equations using the connec-
tives∧, ∨ and¬ (negation), with the understanding that we use distributivity and
De Morgan’s Laws to rewrite this Boolean expression in the (disjunctive normal)
form (2.1).

With a formula without parametersin the free variablesX , we mean an ex-
pression of the form

ϕ(X) := (Q1 Y1) · · · (Qp Yp)ψ(X,Y ),

whereψ(X,Y ) is a quantifier free formula without parameters in the free variables
X andY = (Y1, . . . , Yp) and whereQi is either the universal quantifier∀ or the
existential quantifier∃. If insteadψ(X,Y ) has parameters fromC, then we call
ϕ(X) a formula with parameters inC. A formula with no free variables is called
a sentence.

2.5. Satisfaction

Let ϕ(X) be a formula in the free variablesX = (X1, . . . , Xn) with parameters
fromC (this includes the case that there are no parameters by taking C = Z and
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the case that there are no free variables by takingn = 0). LetA be aC-algebra
and leta = (a1, . . . , an) be a tuple with entries fromA. We will give meaning to
the expressiona satisfies the formulaϕ(X) in A (sometimes abbreviated toϕ(a)
holds inA or is true inA) by induction on the number of quantifiers. Suppose first
thatϕ(X) is quantifier free, given by the Boolean expression (2.1). Thenϕ(a)
holds inA, if for somej0, we have that allfij0(a) = 0 and all gij0(a) 6= 0.
For the general case, supposeϕ(X) is of the form(∃Y )ψ(X,Y ) (respectively,
(∀Y )ψ(X,Y )), where the satisfaction relation is already defined for theformula
ψ(X,Y ). Thenϕ(a) holds inA, if there is someb ∈ A such thatψ(a, b) holds in
A (respectively, ifψ(a, b) holds inA, for all b ∈ A). The subset ofAn consisting
of all tuples satisfyingϕ(X) will be called thesubset defined byϕ, and any subset
that arises in such way will be called adefinable subsetof An.

Note that ifn = 0, then there is no mention of tuples inA. In other words, a
sentence is either true or false inA. By convention, we setA0 equal to the singleton
{∅} (that is to say,A0 consists of the empty tuple∅). If ϕ is a sentence, then the
set defined by it is either{∅} or ∅, according to whetherϕ is true or false inA.

There is a connection between definable sets and Zariski-constructible sets,
where the relationship is the most transparent over algebraically closed fields, as
we will explain below. In general, we can make the following observations.

2.6. Constructible Sets

LetC be a ring. Letϕ(X) a quantifier free formula with parameters fromC, given
as in (2.1). LetΣϕ(X) denote theC-constructible subset ofAnC consisting of all
prime idealsp of SpecC[X ] which for somej0 contain allfij0 and do not contain
any gij0 . In particular, ifn = 0, so thatA0

C is by definitionSpecC, then the
C-constructible subsetΣϕ associated toϕ is a subset ofSpecC.

LetA be aC-algebra and assume moreover thatA is a domain (we will never
use constructible sets associated to formulae ifA is not a domain). For ann-tuple
a overA, we have thatϕ(a) holds inA if, and only if, the prime idealpa of A[X ]
generated by theXi − ai lies in the constructible setΣϕ(X) (strictly speaking, we
should say that it lies in the base changeΣϕ(X) ×SpecC SpecA, but for notational
clarity, we will omit any reference to base changes). We willexpress the latter
fact by saying thatpa is anA-rational point ofΣϕ(X). If ϕ is a sentence, then
Σϕ is a constructible subset ofSpecC and hence its base change toSpecA is
a constructible subset ofSpecA. SinceA is a domain,SpecA has a uniqueA-
rational point (corresponding to the zero-ideal) and henceϕ holds inA if, and
only if, this point belongs toΣϕ.

Conversely, ifΣ is aC-constructible subset ofAnC , then we can associate to it a
quantifier free formulaϕΣ(X) with parameters fromC as follows. However, here
there is some ambiguity, as a constructible set is more intrinsically defined than
a formula. Suppose first thatΣ is the Zariski closed subsetV(I), whereI is an
ideal inC[X ]. Choose a system of generators, so thatI = (f1, . . . , fs)C[X ] and
setϕΣ(X) equal to the quantifier free formulaf1(X) = · · · = fs(X) = 0. LetA
be aC-algebra without zero-divisors. It follows that ann-tuplea is anA-rational
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point of Σ if, and only if, a satisfies the formulaϕΣ . Therefore, if we make a
different choice of generatorsI = (f ′

1, . . . , f
′

s)C[X ], although we get a different
formulaϕ′, it defines in anyC-algebraA without zero-divisors the same definable
set, to wit, the collection ofA-rational points ofΣ. To associate a formula to an
arbitrary constructible set, we do this recursively by letting ϕΣ ∧ ϕΨ , ϕΣ ∨ ϕΨ
and¬ϕΣ correspond to the constructible setsΣ ∩ Ψ ,Σ ∪ Ψ and−Σ respectively.

We say that two formulaeϕ(X) andψ(X) in the same free variablesX =
(X1, . . . , Xn) areequivalent over a ringA, if they hold on exactly the same tuples
fromA (that is to say, if they define the same subsets inAn). In particular, ifϕ and
ψ are sentences, then they are equivalent inA if they are both true or both false
in A. If ϕ(X) andψ(X) are equivalent for all ringsA in a certain classK, then
we say thatϕ(X) andψ(X) areequivalent modulo the classK. In particular, ifΣ
is a constructible set inAnC , then any two formulae associated to it are equivalent
modulo the class of allC-algebras without zero-divisors. In this sense, there is a
one-one correspondence between constructible subsets ofAnC and quantifier free
formulae with parameters fromC modulo the above equivalence relation.

2.7. Quantifier Elimination

For certain rings (or classes of rings), every formula is equivalent to a quantifier
free formula; this phenomenon is known under the nameQuantifier Elimination.
We will only encounter it for the following class.

Theorem 2.1 (Quantifier Elimination for algebraically closed fields). If K is
the class of all algebraically closed fields, then any formula without parameters is
equivalent moduloK to a quantifier free formula without parameters.

More generally, ifF is a field andK(F ) the class of all algebraically closed
fields containingF , then any formula with parameters fromF is equivalent mod-
uloK(F ) to a quantifier free formula with parameters fromF .

Proof (Sketch of proof).These statements can be seen as translations in model-
theoretic terms of Chevalley’s Theorem which says that the projection of a con-
structible set is again constructible. I will only explain this for the first asser-
tion. As already observed, a quantifier free formulaϕ(X) (without parameters)
corresponds to a constructible setΣϕ(X) in An

Z
and the tuples inKn satisfying

ϕ(X) are precisely theK-rational pointsΣϕ(X)(K) of Σϕ(X). The key obser-
vation is now the following. Letψ(X,Y ) be a quantifier free formula and put
ξ(X) := (∃Y )ψ(X,Y ), whereX = (X1, . . . , Xn) andY = (Y1, . . . , Ym). Let
Ψ be the subset ofKn+m defined byψ(X,Y ) and letΞ be the subset ofKn de-
fined byξ(X). Therefore, if we identifyKn+m with the collection ofK-rational
points ofAn+m

K , then
Ψ = Σψ(X,Y )(K).

Moreover, if p : A
n+m
K → AnK is the projection on the firstn coordinates then

p(Ψ) = Ξ. By Chevalley’s Theorem,p(Σψ(X,Y )) (as a subset inAn
Z
) is again con-

structible, say of the formΣχ(X), for some quantifier free formulaχ(X). Hence
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Ξ = Σχ(X)(K), showing thatξ(X) is equivalent moduloK toχ(X). Sinceχ(X)
does not depend onK, we have in fact an equivalence of formulae modulo the class
K. To get rid of an arbitrary chain of quantifiers, we use induction on the number
of quantifiers, noting that the complement of a set defined by(∀Y )ψ(X,Y ) is the
set defined by(∃Y )¬ψ(X,Y ), where¬(·) denotes negation.

For some alternative proofs, see [5, Corollary A.5.2] or [9,Theorem 1.6]. ⊓⊔

Therefore, when dealing with algebraically closed fields, we may forget alto-
gether about formulae and use constructible sets instead. However, we will not
always be able to work just in algebraically closed fields andso we need to for-
mulate a general transfer principle for ultraproducts. Recall that a sentence is a
formula without free variables.

Theorem 2.2 (Łos’ Theorem).LetC be a ring and letAw beC-algebras. Ifϕ is
a sentence with parameters fromC, thenϕ holds in almost allAw if, and only if,
ϕ holds in the ultraproductA∞.

More generally, letϕ(X1, . . . , Xn) be a formula with parameters fromC and
let aw be ann-tuple inAw with ultraproducta∞. Thenϕ(aw) holds in almost all
Aw if, and only if,ϕ(a∞) holds inA∞.

The proof is tedious but not hard; one simply has to unwind thedefinition of
formula (see [5, Theorem 9.5.1] for a more general treatment). Note thatA∞ is
naturally aC-algebra, so that it makes sense to assert thatϕ is true or false in
A∞. Applying Łos’ Theorem to a quantifier free formula, we get the following
equational version.

Theorem 2.3 (Equational Łos’ Theorem).Suppose eachAw is aC-algebra and
letA∞ denote their ultraproduct. LetX be ann-tuple of variables, letf ∈ C[X ]
and letaw be ann-tuple inAw. Thenf(a∞) = 0 inA∞ if, and only if,f(aw) = 0
in Aw for almost allw.

Moreover, instead of a single equationf = 0, we may take in the above state-
ment any system of equations and negations of equations overC.

Let us list some applications of Łos’ Theorem that are relevant for the present
paper.

2.8. Ultraproducts of Fields

LetKw be a collection of fields andK∞ their ultraproduct, which is again a field
by Assertion 2.3.5 (or by an application of Łos’ Theorem). Note that the converse
also holds: if an ultraproduct of rings is a field, then almostall of these rings are
fields themselves.

2.8.1. If for each prime numberp, only finitely manyKw have characteris-
tic p, thenK∞ has characteristic zero.

Indeed, for every prime numberp, the equationpX − 1 = 0 has a solution in
all but finitely many of theKw and hence it has a solution inK∞, by Theorem 2.3.
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2.8.2. If almost allKw are algebraically closed fields, then so isK∞, and
conversely.

Indeed, for eachn ≥ 2, consider the sentence

σn := (∀Y0, . . . , Yn) (∃X)Yn = 0 ∨ YnX
n + · · · + Y1X + Y0 = 0.

This sentence is true in any algebraically closed field, whence in almost allKw,
and therefore, by Łos’ Theorem, inK∞. However, a field in which everyσn holds
is algebraically closed. The converse is proven in the same way.

We have the following important corollary which can be thought of as a model
theoretic Lefschetz Principle (hereFalg

p denotes the algebraic closure of thep-
element field).

Theorem 2.4 (Lefschetz Principle).LetW be the set of prime numbers, endowed
with some non-principal ultrafilter. The ultraproduct of the fieldsFalg

p is isomorphic
with the fieldC of complex numbers, that is to say, we have an isomorphism

ulim
p→∞

F
alg
p

∼= C.

Proof. Let F∞ denote the ultraproduct of the fieldsF
alg
p . By Assertion 2.8.2, the

field F∞ is algebraically closed, and by Assertion 2.8.1, its characteristic is zero.
Using elementary set theory, one calculates that the cardinality of F∞ is equal
to that of the continuum. The theorem now follows since any two algebraically
closed fields of the same uncountable cardinality are (non-canonically) isomorphic
by Steinitz’s Theorem (see [5]).⊓⊔

Remark 2.5.We can extend the above result as follows: every uncountablealge-
braically closed fieldK of characteristic zero is the ultraproduct of algebraically
closed fields of prime characteristic. More precisely, any ultraproduct of alge-
braically closed fields of different prime characteristic,but of the same uncount-
able cardinality asK, is isomorphic toK (in particular, we may do this for any
choice of non-principal ultrafilter). So, if we would want to, we may viewC also as
an ultraproduct of algebraically closed fields of prime characteristic of cardinality
the continuum, instead of the (countable) algebraically closed fieldsFalg

p .

In the sequel, we will fix once and for all one such isomorphismbetweenC
andF∞. Although some of the constructions will depend on the choice of this
isomorphism (as well as on the choice of the non-principal ultrafilter), we will
always obtain isomorphic objects (in the appropriate category), regardless of the
particular choices made.

2.9. Ultraproducts of Rings

LetAw be a collection of rings and letA∞ be their ultraproduct.
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2.9.1. If eachAw is local with maximal idealmw and residue fieldkw :=
Aw/mw, thenA∞ is local with maximal idealm∞ := ulimw→∞ mw

and residue fieldk∞ := ulimw→∞ kw.

Indeed, a ring is local if, and only if, the sum of any two non-units is again
a non-unit. This statement is clearly expressible by means of a sentence, so that
by Łos’ Theorem,A∞ is local. The remaining assertions now follow easily from
Assertion 2.3.6. In fact, the same argument shows that the converse is also true: if
A∞ is local, then so are almost allAw.

2.9.2. If Aw are local rings of embedding dimensione, then so isA∞.

Indeed, by assumption almost allmw are generated bye elementsxiw. It fol-
lows thatm∞ is generated by thee ultraproductsxi∞.

2.9.3. Almost all Aw are domains (respectively, reduced) if, and only if,
A∞ is a domain (respectively, reduced).

Indeed, being a domain is captured by the formula(∀X,Y )X = 0 ∨ Y =
0 ∨ XY 6= 0 and being reduced by the formula(∀X)X = 0 ∨ X2 6= 0. In
particular, using Assertion 2.3.6, we see that an ultraproduct of ideals is a prime
(respectively, radical, maximal) ideal if, and only if, almost all ideals are prime
(respectively, reduced, maximal).

2.9.4. If almost allAw are Artinian local rings of lengthl, then so isA∞.

This follows from [11]. If we do not restrict the length of theArtinian rings
Aw, thenA∞ will no longer be Artinian (nor even Noetherian). In fact, apart from
the above example, Noetherianity is never preserved in ultraproducts (for it cannot
be expressed in general by means of formulae). This also shows that in general
the ultraproduct of primary ideals need not be primary. Nonetheless, we still have
the following unidirectional version: ifA∞ is Artinian, then so are almost allAw.
This yields:

2.9.5. If Iw are ideals in the local rings(Aw,mw), such that in(A∞,m∞),
their ultraproductI∞ is m∞-primary, then almost allIw aremw-
primary.

2.9.6. SupposeAw andBw are rings with respective ultraproductsA∞ and
B∞. ThenAw ∼= Bw for almost allw if, and only if,A∞

∼= B∞.
Moreover, ifSw are rings such thatAw andBw areSw-algebras,
then almost allAw andBw are isomorphic asSw-algebras if, and
only if, A∞ andB∞ are isomorphic asS∞-algebras, whereS∞ is
the ultraproduct of theSw.
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This follows from Assertion 2.3.7 and Łos’ Theorem, since wecan express by
means of formulae that a homomorphism is injective and surjective.

2.9.7. For elementsx1w, . . . , xdw in Aw with ultraproductxi∞, the se-
quence(x1∞, . . . , xd∞) is A∞-regular if, and only if, the sequence
(x1w, . . . , xdw) isAw-regular for almost allw.

Let me illustrate the argument by takingd = 2. We want to write down a
formula in two free variablesX andY expressing thatX is not a zero-divisor and
Y is not a zero-divisor moduloX . The following formulaϕ(X,Y ) does exactly
this

(∀Z1, Z2) (∃Z3) (Z1 = 0 ∨ Z1X 6= 0) ∧ (Z1 = Z3X ∨ Z1Y 6= Z2X).

By Łos’ Theorem,ϕ(x1∞, x2∞) holds inA∞ if, and only if,ϕ(x1w, x2w) holds
in almost allAw.

I conclude this section, with discussing an example of an ultraproduct of rings
that will play a crucial role in the sequel. For eachw, letKw be a field and put
Aw := Kw[X ], whereX is a finite fixed tuple of variables. LetA∞ denote the
ultraproductulimw→∞Aw. It follows from Assertion 2.3.1 thatA∞ contains the
ultraproductK∞ := ulimw→∞Kw. Since eachAw is aZ[X ]-algebra, so isA∞

by Łos’ Theorem. Moreover, by that same theorem, the image ofthe variables
Xi in A∞ are algebraically independent overK∞. Therefore, we have a canon-
ical embedding ofK∞[X ] into A∞. The main property of this embedding was
discovered byVAN DEN DRIES in [24].

Theorem 2.6 (VAN DEN DRIES). If all Kw are fields with ultraproductK∞, then
the canonical embedding

K∞[X ] → ulim
w→∞

Kw[X ]

is faithfully flat, for every finite tuple of variablesX .

Proof. See [10, Theorem 1.7]; for an alternative proof, see [17, A.2]. ⊓⊔

SetA := K∞[X ] andA∞ := ulimw→∞Kw[X ]. We have the following
immediate corollary.

Corollary 2.7. For every idealI ofA, we have thatIA∞ ∩A = I.

Another useful property of this embedding is that an idealI is prime inA if,
and only if,IA∞ is prime inA∞; see Corollary 4.2 below.
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3. Approximations and Non-standard Hulls

As observed in Assertion 2.9.4, in most cases, an ultraproduct is not Noetherian.
In particular, no positive dimensional finitely generatedC-algebra arises as an ul-
traproduct. Nonetheless, these are the algebras on which wewant to define a tight
closure operation. The idea therefore is to embed such an algebra in an ultraproduct
of rings of prime characteristic, where tight closure is already defined. Of course,
this embedding should be canonical and there should be enough transfer between
the algebra and the ultraproduct.

3.1. Notations

To treat a more general situation, we fix some fieldK of characteristic zero which
arises as an ultraproduct of fields of prime characteristic.By Remark 2.5, this in-
cludes the case of an uncountable algebraically closed fieldof characteristic zero,
and in particular, the case thatK = C. The underlying index setW will always
be the set of prime numbers and we will no longer write it. Instead, we express
this notationally by using for index the letterp, which always stands for an ar-
bitrary prime number (there will never be need to specializethe particular prime
number). Moreover, we fix some (unnamed) non-principal ultrafilter on the set of
prime numbers. For eachp, fix a fieldKp of characteristicp, so that the ultra-
productulimp→∞Kp is isomorphic toK. Fix also an isomorphism betweenK
andulimp→∞Kp. Finally, fix a tuple of variablesX , setAp := Kp[X ] and let
A∞ be their ultraproduct. By the discussion at the end of the previous section, we
may viewK[X ] as a subring ofA∞ (after identification via the fixed isomorphism
betweenK andulimp→∞Kp), and we will denote this subring byA.

3.2. Approximations and Codes

By the isomorphism we just fixed, every elementc ∈ K can be written as an
ultraproductulimp→∞ cp, wherecp ∈ Kp. If c′p is a second choice of elements
in Kp for which c = ulimp→∞ c′p, then almost allcp = c′p. We refer to any such
choice ofcp as anapproximationof c. If c is a tuple(c1, . . . , cn), then taking
an approximationcip for everyci, yields a tuplecp := (c1p, . . . , cnp), called an
approximationof c, and any two choices of approximations will be the same for
almost allp. We want to extend the notion of approximation to other algebraic
objects as well. At the same time, we will define the notion of family and fiber,
which will be used in carrying out the transfer in the next section.

3.2.1. Polynomials. Let f ∈ K[X ]. Write f =
∑

ν aνX
ν with aν ∈ K. Choose

for eachaν an approximationaνp and put

fp :=
∑

ν

aνpX
ν .
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If we make different choices of approximations for theaν , the resulting polyno-
mials will still be equal for almost allp (since only finitely many coefficients are
involved). We will call any such choice of polynomialsfp anapproximationof f .
It follows that the elementulimp→∞ fp in A∞ lies in the subringA and is equal
to f .

More generally, letf ∈ Z[U,X ], whereU is another tuple of (parametric)
variables. With afiberof f over a fieldF , we mean a polynomialf(u, X) in F [X ],
obtained by substituting forU some tupleu overF . For instance, iff =

∑
UνX

ν

anda is the tuple overK of the coefficients(aν) of f (as above), thenf = f(a, X).
For this reason, we callf a family of polynomialsand we calla a code off with
respect to the familyf. It follows that ifap is an approximation ofa, thenf(ap, X)
is an approximation off .

3.2.2. Ideals. Let I be an ideal inA, say of the form(f1, . . . , fs)A. Choose for
eachfi an approximationfip and letIp be the ideal inAp generated by thesefip.
Again, one checks that if we make a different choice of approximations of thefi,
then for almost allp, the ideal obtained in this way is equal toIp. In fact, by Łos’
Theorem more is true: if thegi are a different set of generators ofI and ifgip is an
approximation for eachgi, then the idealsIp and(g1p, . . . , gtp)Ap are equal for
almost allp. We call any choice ofIp anapproximationof I.

This time, the ultraproductI∞ := ulimp→∞ Ip of the Ip is no longer the
original idealI. Instead, we have thatI∞ = IA∞. In particular, we can retrieveI
from the approximationIp, sinceI = I∞ ∩A by Corollary 2.7.

To rephrase this in terms of families and fibers, letI be an ideal inZ[U,X ],
whereU is another tuple of (parametric) variables; we call any suchan ideal a
family of ideals. With a fiber of the familyI over a fieldF , we mean the image
I(u) of I under the homomorphismZ[U,X ] → F [X ] given by the substitution
U = u. In other words, ifI is generated by polynomialsfi, thenI(u) is generated
by the fibersfi(u, X). As for polynomials, we can find an approximation of an
idealI inA as follows. Choose some idealI in some polynomial ringZ[U,X ] and
choose a tuplea overK, such thatI = I(a). It is clear that we can always find
such data. We call any such choice of tuplea acode ofI with respect to the family
I. If we take an approximationap of the codea, thenI(ap) is an approximation
of I.

3.2.3. Algebras. Let B be a finitely generatedK-algebra of the formA/I, for
some idealI. Let Ip be an approximation ofI and putBp := Ap/Ip. I claim
that taking a different presentationB ∼= K[Y ]/J and a choice of approximation
Jp yields algebrasKp[Y ]/Jp which are isomorphic asKp-algebras to theBp, for
almost allp. It is therefore justified to call any choice ofBp anapproximationof
B. To prove the claim, let the assignmentXi 7→ Pi(Y ), with Pi ∈ K[Y ], induce
aK-algebra isomorphism betweenK[X ]/I andK[Y ]/J . Let Pip be an approx-
imation of Pi. It follows that for almost allp, theKp-algebra homomorphism
φp : Kp[X ] → Kp[Y ] given byXi 7→ Pip maps the idealIp into the idealJp.
Moreover, by applying the same reasoning to an inverse of thegiven isomorphism,
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we see thatφp induces an isomorphism betweenKp[X ]/Ip andKp[Y ]/Jp, for
almost allp (see also§3.2.4 below).

The ultraproductB∞ of theBp is in general bigger thanB, and will be called
thenon-standard hullof B. See§3.4 below for more details.

A finitely generatedZ-algebraA of the formZ[U,X ]/I with U some variables
andI an ideal inZ[U,X ] (that is to say, a family of ideals), is called afamily of
algebras. A fiber of this familyA over a fieldF , is the algebra

A(u) := F [X ]/I(u)

for some fiberI(u) overF of I (that is to say, for some tupleu overF ). If B is a
finitely generatedK-algebra of the formA/I and ifa is a code forI with respect
to some familyI, then we calla also acodefor B with respect to the family
A := Z[U,X ]/I. If ap is an approximation ofa, thenA(ap) is an approximation
of B = A(a).

3.2.4. Homomorphisms.Let B andC be finitely generatedK-algebras of the
formB = A/I andC = A/J , for some idealsI andJ , and letφ : B → C be a
K-algebra homomorphism given by the ruleXi 7→ Fi, for someFi ∈ A. Let Ip,
Jp andFip be approximations ofI, J andFi respectively. It is an easy exercise to
show, using Łos’ Theorem, that withBp := Ap/Ip andCp := Ap/Jp (so that they
are approximations ofB andC respectively), theKp-algebra endomorphism of
Ap given byXi 7→ Fip induces a homomorphismφp : Bp → Cp, for almost allp.
We callφp anapproximationof φ. Its ultraproductφ∞ then gives a homomorphism
B∞ → C∞ giving rise to a commutative diagram

?

-

?

-

CB

C∞.B∞

φ∞

φ

(3.1)

We could similarly define the notions of family, fiber and codefor homomor-
phisms; we leave the details to the reader.

3.3. Summary

In all of the above cases, we have the following underlying principle at work. Let
O be an algebraic object defined overK (such as a polynomial, an ideal inK[X ],
a finitely generatedK-algebra or aK-algebra homomorphism). We can find a
family O (defined overZ[U,X ]) and a tupleu overK, such that the fiberO(u)
is precisely the original objectO. Moreover, to obtain an approximationOp of O,
we then simply have to take an approximationup of u and take forOp the fiber
O(up). Put succinctly, an object is encoded by a tuple overK, that is to say, a code;
an approximation is then encoded by an approximation of the code. Moreover, all
the families discussed so far are made up from families of ideals.
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3.4. Non-standard Hulls

LetB be a finitely generatedK-algebra and letBp be an approximation ofB. We
call the ultraproductB∞ := ulimp→∞Bp thenon-standard hullof B.

Since any two approximations ofB are isomorphic asKp-algebras by the ar-
gument in§3.2.3, it follows from Assertion 2.9.6 thatB∞ is uniquely defined up to
K-algebra isomorphism. As we are only interested in objects up to isomorphism,
it does not matter which approximation we take to calculate anon-standard hull.

Corollary 3.1. The canonical homomorphismB → B∞ is faithfully flat.

Proof. SupposeB is of the formA/I, for some idealI of A. We showed that
IA∞ = I∞ and from Assertion 2.3.6, after taking some approximation,we get
thatB∞ is equal toA∞/I∞. Therefore, the homomorphismB → B∞ is just
the base change of the embeddingA → A∞ and hence is faithfully flat by Theo-
rem 2.6. ⊓⊔

The next result explains somehow the terminologynon-standard.

Proposition 3.2.For eachp, take somefp in Ap. Then thefp are an approxima-
tion of an elementf ∈ A if, and only if, there is a uniform boundN on the degree
of eachfp.

The proof is left as an exercise to the reader. As a corollary,one might say
thatA consist of all elements offinite degreein its non-standard hullA∞, or,
formulated differently, thatA consists of thestandard elementsof A∞.

4. Transfer

In this section, we keep the notations introduced in§3.1. In particular,K is the
ultraproduct of characteristicp fieldsKp, X is a fixed tuple of variables,A :=
K[X ] andAp := Kp[X ], andA∞ is the ultraproduct of theAp (whence the non-
standard hull ofA).

Recall that for a finitely generatedK-algebraB = A/I, we called the charac-
teristicp ringsBp := Ap/Ip an approximation ofB, whereIp was obtained from
I by replacing each coefficientc ∈ K in each member of a generating set ofI, by
somecp ∈ Kp with the property thatulimp→∞ cp = c (after identification ofK
with ulimp→∞Kp). Although neitherIp norBp is uniquely defined, any different
choice of this data will be isomorphic for almost allp.

The objective of this section is to show how many algebraic properties pass
fromB to any of its approximations and vice versa. We will also dealwith local-
izations of finitely generatedK-algebras. Therefore, let us call a ringB aK-affine
algebra if it is either a finitely generatedK-algebra or a localization at a prime
ideal of a finitely generatedK-algebra (we express the latter fact by callingB a
localK-affine algebra).
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4.1. Definability in families

Let P be a property oft polynomials in a polynomial ring over a field in the
variablesX . We say thatP is definable in families2, if for each choice oft families
of polynomialsf1, . . . , ft (in some parametric variablesU ; see§3.2), we can find
a formula without parametersϕ(U), such that for each fieldF , a tupleu overF
satisfiesϕ(U) if, and only if, thet fibersfi(u) have propertyP .

If we would allow only algebraically closed fieldsF in the above definition,
then we could replace the formulaϕ by a Z-constructible subsetΣ by Theo-
rem 2.1. This would suffice for treating the case of main interest,K = C. However,
in the current generality, whereK is allowed to be non-algebraically closed, we
need the formalism of formulae.

Since properties of ideals can be translated into properties of polynomials by
considering a generating set of the ideal, we may include in the above definition
properties abouts ideals andt polynomials in a polynomial ring over a field. More
precisely, if we are givens families of idealsI1, . . . , Is andt families of polyno-
mialsf1, . . . , ft, then a property of thes fibersIi(u) and thet fibersfi(u), can be
viewed as a property of thesm + t fibersfi(u), whereIi is generated by them
polynomialsft+(i−1)m+1, . . . , ft+im. Since this allows for less cumbersome nota-
tion, we will in the sequel consider properties of polynomials and ideals. A similar
convention can be made for families of algebras and elementsand ideals in these
algebras. We will leave it up to the reader to translate everything back to properties
of polynomials (see also§4.4 below).

4.2. Properties which are definable in families

In the following, each given property (involving idealsI, J, J1, . . . and/or ele-
mentsf, g, g1, . . . ), is definable in families.

4.2.1. The ideal membership propertyexpressing that “f ∈ I”.

This is definable in families for the following reason. Thereexists for each pair
of natural numbers(d, n), a boundd′ such that iff0, . . . , fs are polynomials inn
variables of degree at mostd over a field and iff0 lies in the ideal generated by
the remainingfi, then there exist polynomialsgi of degree at mostd′, such that
f0 = g1f1 + · · · + gsfs (see for instance [10], where this is shown to follow from
Theorem 2.6). Now, letf0 be a family of polynomials and letI be a family of
ideals, say generated byf1, . . . , fs. Let n be the number ofX-variables andd be
the maximum of theX-degree of allfi. For a tupleu over a fieldF , we have that
f0(u, X) belongs to the fiberI(u), if there exist polynomialsgi overF of degree
at mostd′, such that

f0(u, X) = g1f1(u, X) + · · · + gsfs(u, X). (4.1)

2 Note that in [12,13], to be definable in families was called there to beasymptotically
definable.
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Letci be the tuple of all coefficients ofgi (so that it is the code ofgi with respect to
some appropriate choice of family of ideals of degreed′). The existence of thegi
satisfying (4.1) is then equivalent with the existence of tuplesci overF satisfying
the equations obtained by expanding the right hand side of (4.1) and comparing
coefficients with the left hand side. Note that the latter setof equations involve the
u. Therefore,f0(u, X) belongs toI(u) if, and only if, this system has a solution
in F for the ci. This latter statement, as a statement about the tupleu, can be
expressed by a formula (with only equations and existentialquantifiers), showing
that ideal membership is definable in families.

4.2.2. The ideal containment propertyexpressing that “I ⊂ J”. Also, the
properties expressing that one ideal is the sum, the productor the
intersection of two (or some other fixed number of) ideals andthe
property that “I = (J1 : J2)”.

4.2.3. The primality property expressing that “I is prime”.

As for the previous cases and for most cases that we will encounter, this prop-
erty is definable in families due to the existence of certain bounds. More precisely,
for each pair(d, n), we can find a boundd′′, such that ifI is an ideal generated by
polynomials inn variables over a field of degree at mostd and if for all polynomi-
alsf andg of degree at mostd′′, we have thatfg ∈ I implies that eitherf or g
belongs toI, then in factI is prime (see [10]). From this and the fact that the ideal
membership problem is definable in families, it follows thatprimality is definable
in families.

4.2.4. The property expressing that “J is a prime ideal containingI”.

This is immediate from Assertions 4.2.2 and 4.2.3.

4.2.5. The properties expressing that an ideal is radical, primaryor maxi-
mal. Also, the properties expressing that one ideal is the radical of
another, or that one ideal is an associated prime ideal of another, or
that one ideal has a primary decomposition given by some other fixed
number of ideals.

Again this follows from the corresponding existence of bounds, proven in [10].
Note that there is also a bound on the possible number of associated primes of an
ideal in terms of the degrees of its generators.

4.2.6. For any fixedl, the property expressing that “J is a prime ideal con-
tainingI such thatAJ/IAJ has lengthl”.

Immediate from Assertion 4.2.4 and the bounds proven in [12,Theorem 2.4].
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4.2.7. For any fixedl, the property expressing that “J is a prime ideal with
I ⊂ J1 ⊂ J such thatJ1(AJ/IAJ) has height (respectively, depth)
l”. Also, the property expressing that “(x1, . . . , xd) is (part of) a sys-
tem of parameters of(AJ/IAJ )”.

Follows from the bounds proven in [12, Proposition 5.1].

4.2.8. The property expressing that “J is a prime ideal containingI such
that the sequence(g1, . . . , gd) isAJ/IAJ -regular”.

Follows from the bound proven in [12, Corollary 5.2].

4.2.9. The property expressing that “theK-algebra endomorphismϕ onA
given byXi 7→ gi maps the idealI inside the idealJ”. Also the
property expressing that the “induced homomorphismA/I → A/J
is injective.”

If I = (f1, . . . , fs)A, then the statementϕ(I) ⊂ J amounts to the ideal
membership inJ of the compositionsfi(g1, . . . , gn) and, therefore, is definable
in families by Assertion 4.2.1. It follows from [12, Theorem2.7] that the prop-
erty expressing that “the kernel of the induced homomorphismφ : A/I → A/J is
equal to an idealJ1(A/I)” is definable in families. From this the definability in
families of the injectivity ofφ is clear.

Shortly, we will discuss properties of affine algebras and their ideals, but let us
first indicate the main application of definability in families to the transfer problem.
We keep the notations and definitions from§3.1.

Proposition 4.1.LetP be a property abouts ideals andt polynomials in a poly-
nomial ring over a field. Assume thatP is definable in families. Leta1, . . . , as and
g1, . . . , gt be ideals and polynomials inA. Choose approximationsaip and gjp
of ai andgj respectively. The idealsa1, . . . , as and the elementsg1, . . . , gt satisfy
propertyP if, and only if, the idealsa1p, . . . , asp and the polynomialsg1p, . . . , gtp
satisfy propertyP for almost allp.

Proof. Choose families of idealsIi and families of polynomialsgi and choose a
tuplea overK such thatIi(a) = ai andgj(a, X) = gj(X) (this is always possible
by the observations made in§3.3). Letap be an approximation ofa. As explained
in §3.2, we can useIi(ap) and gj(ap, X) as approximations ofai and gj(X)
respectively, so that we may assume thataip = Ii(ap) andgjp = gj(ap, X). Let
ϕ(U) be the formula witnessing thatP is definable in families for the familiesIi
andgj.

Assume that the idealsaip and the polynomialsgjp satisfy propertyP for
almost allp. Therefore,ϕ(ap) is true inKp for almost allp. By Łos’ Theorem,
ϕ(a) holds inK. This in turn means that the idealsai and the polynomialsgj have
propertyP . The converse holds by reversing the arguments.⊓⊔
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Although we will not need this, the converse of Proposition 4.1 also holds: if
a propertyP as above has the property that it holds on idealsai and polynomials
gi if, and only if, it holds on almost all approximationsaip andgip, thenP is
definable in families.

Applying Proposition 4.1 to Assertions 4.2.2 and 4.2.3, we get the following
corollary.

Corollary 4.2. Let I and J be ideals inA with approximationsIp and Jp. Let
I∞ andJ∞ be their respective ultraproducts, viewed as ideals inA∞. Then the
following are true.

1. Almost allIp ⊂ Jp if, and only if,I ⊂ J if, and only if,I∞ ⊂ J∞.
2. Almost allIp are prime if, and only if,I is prime if, and only if,I∞ is.

We will shortly obtain more transfer results of this kind, but first we extend our
definition of approximation to incorporate local affine algebras.

4.3. Approximations and non-standard hulls–local case

Let R be a localK-affine algebra given asAJ/IAJ with I ⊂ J andJ prime.
By Corollary 4.2, almost allJp are prime ideals containingIp. In particular, for
almost allp, the ring

Rp := (Ap)Jp
/Ip(Ap)Jp

is well-defined (in the remaining case, we can putRp := 0). It follows from Corol-
lary 4.2 that

ulim
p→∞

Rp = (A∞)J∞
/I∞(A∞)J∞

, (4.2)

We call the ultraproduct of theRp thenon-standard hullof R and denote itR∞.
This is well-defined up toK-algebra isomorphism. Indeed, if we take a different
presentation ofR as a localization of a finitely generatedK-algebra, then the re-
sulting localKp-algebras will almost all be isomorphic toRp, since both choices
have the same ultraproduct equal to the right hand side of (4.2). Any such choice
of Rp will therefore be called anapproximationof R.

Corollary 4.3. For R a C-affine algebraR, the canonical homomorphismR →
R∞ is faithfully flat.

Proof. Follows immediately from Theorem 2.6 (or from Corollary 3.1) by base
change. ⊓⊔

Terminology.LetR be a localK-affine algebra with approximationRp. Suppose
R = AJ/IAJ and letIp andJp be approximations ofI andJ respectively. For
x an element ofR, choosef, g ∈ A with g /∈ J , such thatx is equal to the image
in R of the fractionf/g. Let fp andgp be approximations off andg respectively.
It follows that almost allgp /∈ Jp. The collection of elementsxp := fp/gp ∈ Rp
is called anapproximationof x. Similarly, fora an ideal inR, choose an idealJ1

in A such thatI ⊂ J1 ⊂ J anda = J1R, and letJ1p be an approximation ofJ1.
The collection of idealsap := J1pRp is called anapproximationof a. A similar
convention is in place ifR is just of the formA/I. In other words, we extend the
notion of an approximation of an element or an ideal to arbitrary affine algebras.
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4.4. Transfer for affine algebras

LetP be a property ofs idealsa1, . . . , as andt elementsu1, . . . , ut in an arbitrary
affine algebraR. Associated toP , we define a propertyP ′ on ideals and polyno-
mials in a polynomial ringA as follows. Consider first the case thatR is finitely
generated, that is to say, of the formA/I with I an ideal inA. LetP ′ be the prop-
erty of thes + 1 idealsI, I1, . . . , Is and thet elementsf1, . . . , ft expressing that
I ⊂ Ii, for all i, and thatP holds on the idealsIiR and the elementsfi viewed
as ideals and elements inR = A/I. If R is local, say of the formAJ/IAJ with
I ⊂ J andJ prime, then we letP ′ be the property ons+ 2 idealsI, J, J1, . . . , Jt
and2t elementsf1, g1, . . . , ft, gt expressing thatI ⊂ J with J a prime ideal, that
I ⊂ Ji ⊂ J andgi /∈ J , for all i, and that propertyP holds for the idealsai and
the elementsui in R given byai := JiR andui := fi/gi.

We will say that a propertyP of s ideals andt elements in an affine algebra
is definable in families, if the corresponding propertyP ′ is definable in families.
In particular, it follows that any of the properties listed in §4.2 when extended to
affine algebras, remain definable in families. The followinglist of theorems are all
proved using Proposition 4.1 and the fact that the pertinentproperties are defin-
able in families. For instance, from Assertions 4.2.2–4.2.5, we get the following
generalization of Corollary 4.2 for arbitraryK-affine algebras.

Theorem 4.4.LetR be aK-affine algebra with approximationRp and non-stan-
dard hullR∞. Leta, b, b1, . . . be ideals inR with approximationsap, bp, b1p, . . .
respectively. Leta∞, b∞, b1∞, . . . be their respective ultraproducts, viewed as
ideals inR∞. Then the following are true.

1. Almost allap are equal tob1p ∩b2p (respectively, tob1pb2p, b1p+ b2p, (b1p :
b2p)) if, and only if, a is equal tob1 ∩ b2 (respectively, tob1b2, b1 + b2,
(b1 : b2)) if, and only if,a∞ is equal tob1∞ ∩ b2∞ (respectively, tob1∞b2∞,
b1∞ + b2∞, (b1∞ : b2∞)).

2. Almost allap are prime (respectively, radical, maximal or primary) if, and only
if, a is prime (respectively, radical, maximal or primary) if, and only if,a∞ is
prime (respectively, radical, maximal or primary).

3. For almost allp, the idealsb1p, . . . , bsp are the minimal prime ideals (re-
spectively, the associated prime ideals, the primary ideals in an irredundant
primary decomposition) ofap if, and only if,b1, . . . , bs are the minimal prime
ideals (respectively, the associated prime ideals, the primary ideals in an irre-
dundant primary decomposition) ofa.

Applying Łos’ Theorem and Proposition 4.1 to Assertions 4.2.6– 4.2.8, we
obtain:

Theorem 4.5.LetR be aK-affine algebra with approximationRp and non-stan-
dard hullR∞. Let xi be elements inR with approximationxip and leta be an
ideal inR with approximationap. Then the following are true (where for the last
property, we assumeR to be local).

1. For some fixedl, almost allap have height (respectively, depth)l if, and only
if, a has height (respectively, depth)l.
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2. For some fixedl, almost allRp have dimension (respectively, depth, length)l
if, and only if,R has dimension (respectively, depth, length)l.

3. For almost allp, the sequence(x1p, . . . , xdp) is Rp-regular if, and only if,
(x1, . . . , xd) isR-regular if, and only if,(x1, . . . , xd) isR∞-regular.

4. For almost allp, the sequence(x1p, . . . , xdp) is (part of) a system of param-
eters ofRp if, and only if,(x1, . . . , xd) is (part of) a system of parameters of
R.

Using the results from [12, Theorem 5.2], we get by a similar argument on the
existence of bounds together with Proposition 4.1 the following theorem.

Theorem 4.6.LetR be a localK-affine algebra with approximationRp. If P is
any of the following properties of local rings

1. regular;
2. complete intersection;
3. Gorenstein;
4. Cohen-Macaulay;
5. normal;

thenR has propertyP if, and only if, almost allRp have.

Sometimes, transfer only goes in one direction, namely fromzero to positive
characteristic–the right direction as far as we are concerned–as the next result
shows.

Theorem 4.7.LetR → S be a homomorphism ofK-affine algebras with approx-
imationRp → Sp. If R→ S is finite (respectively, injective, surjective, bijective),
then so are almost allRp → Sp. Moreover,R∞ → S∞ then also has this property.

Proof. If u1, . . . , us generateS as anR-module, thenu1p, . . . , usp generateSp as
anRp-module, for almost allp, by Łos’ Theorem, whereuip is an approximation
of ui. Taking ultraproducts then shows thatu1, . . . , us generateS∞ as anR∞-
module, so that we proved the assertion for the property ofR → S to be finite,
and in particular, to be surjective (s = 1). For injectivity, use Assertion 4.2.9.⊓⊔

Note the converse of the above result might fail, since ifu1p, . . . , usp are gen-
erators forSp as anRp-module, their ultraproduct might not lie inS when their
degree is not bounded.

5. Non-standard Tight Closure

In this section, we change notation slightly:A will always denote aC-affine alge-
bra (not just the polynomial ring), with approximationAp and non-standard hull
A∞. All homomorphisms betweenC-affine algebras are tacitly assumed to beC-
algebra homomorphisms which are essentially of finite type.Nonetheless, in all
what follows, we could have worked in the same generality as in §3.1, that is to
say, replacingC by any field of characteristic zero which is an ultraproduct of
fields of positive characteristic.
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5.1. Non-standard Frobenius

On eachAp we have an action of the Frobenius endomorphismFp given bya 7→
ap. This defines an endomorphismF∞ onA∞ given by the rule

F∞(a∞) := ulim
p→∞

Fp(ap)(= ulim
p→∞

(ap)
p)

where theap are chosen inAp such that their ultraproduct isa∞ (note that we
reserved the termapproximationonly for elements inA). We callF∞ the non-
standard Frobenius.

In particular,F∞ is an automorphism ofC (takeA = C). Its properties on
C are extensively studied by HRUSHOVSKI, MACINTYRE and others; see for in-
stance [6] and [8], where it is shown that these are generic automorphisms, satis-
fying some twisted form of the Lang-Weil Estimates. However, we will not need
any of these results here.

AlthoughF∞ is no longer algebraic, some vestige remains: for any idealI of
A∞, we have thatF∞(I) ⊂ I, and in fact,F∞(I) is contained in the intersection
of all powersIn. In particular,F∞ commutes with any homomorphism which is
essentially of finite type. This justifies the omission of theringA∞ in the notation
of F∞. Of course, in general,F∞(A) is no longer contained inA. In fact, sinceA
can be thought of the elements ofA∞ of finite degree, it is clear thatA∩F∞(A) =
C, wheneverA is reduced.

We have finally come to the key definition of this article. Notethe following
notation that will be in effect henceforth.

Notation. For an idealI in A or inA∞, we letF∞(I)A∞ denote the ideal inA∞

generated by allF∞(f) with f ∈ I.

Definition 5.1 (Non-standard tight closure).Let a be an ideal ofA andz ∈ A.
We say thatz lies in thenon-standard closureof a, if there exists somec ∈ A, not
contained in any minimal prime ofA, such that

cF∞(z) ∈ F∞(a)A∞. (5.1)

We writeclns(a) for the non-standard closure ofa.
Similarly, we say thatz lies in thenon-standard tight closureclnst(a) of a, if

there exists somec ∈ A, not contained in any minimal prime ofA, such that

cFm
∞

(z) ∈ F
m
∞

(a)A∞ (5.2)

for all m ∈ N.

There are also stable versions of these two notions, defined as follows. We say
thatz lies in thestable non-standard closureof a, if instead of (5.1), we have for
somem ≥ 1 thatFm−1

∞
(c)Fm

∞
(z) ∈ F

m
∞

(a)A∞, and thatz lies in thestable non-
standard tight closureof a, if (5.2) holds only for sufficiently largem. We denote
these closures respectively byclstab

ns (a) andclstab
nst(a).
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We say that an ideal isnon-standard closed(respectively,stably non-standard
closed, non-standard tightly closedor stably non-standard tightly closed) if a is
equal to its own respective closure. We leave it to the readerto verify that the
closure of an ideal is again an ideal, containing the original one, for any of the four
variants. Moreover, these ideals are then closed with respect to that closure.

The following inclusions are easily verified

clns(a) ⊂ clstab
ns (a)

clnst(a) ⊂ clstab
nst(a)

clnst(a) ⊂ clns(a)

clstab
nst(a) ⊂ clstab

ns (a),

where in order to prove the last inclusion, we use thatF∞(c) is a multiple ofc.
Translated in terms of approximations the definitions become the following

(I leave the stable versions to the reader). Fora = (f1, . . . , fs)A, we have that
z ∈ clns(a) if, and only if, there existhi,p ∈ Ap, such that

cp(zp)
p = h1,p(f1p)

p + · · · + hs,p(fsp)
p (5.3)

for almost allp, wherecp, zp andfip are approximations ofc, z andfi respec-
tively. Note that thehi,p will in general not have bounded degree whence their
ultraproducts are no longer inA.

We have thatz ∈ clnst(a) if, and only if, for eachm ∈ N, there exists a set of
rational primesDm in the ultrafilterU and there existhi,p,m ∈ Ap, such that

cp(zp)
pm

= h1,p,m(f1p)
pm

+ · · · + hs,p,m(fsp)
pm

(5.4)

for all p ∈ Dm. However, in general the intersection of allDm will no longer
belong toU , so that it might very well be that for no primep, the elementzp lies
in the characteristicp tight closure ofap. This calls for one further notion.

Definition 5.2 (Generic Tight Closure).We say thatz ∈ A lies in thegeneric
tight closureof a, if zp lies in the tight closure(ap)∗ of ap, for almost allp.

In other words, we may choose allDm to be equal in the above discussion. Put
differently, the generic tight closure ofa is the contraction toA of the ultraproduct
of the(ap)

∗. We will show in Theorem 8.5 below, that the generic tight closure of
an ideal is contained in its non-standard tight closure.

In the remainder of this paper, we prove the main properties of these closure
operations. Since the proofs for the stable versions require only minor modifi-
cations, I have not included them here. Notwithstanding, see [22, Theorem 3.4],
where stable non-standard closure (called therenon-standard difference closure)
is used, since it has some additional good properties. At present, it is not clear
whether the stable versions coincide with their non-stablecounterparts, or, for that
matter, whether all these closure operations coincide. Therefore, it is probably bet-
ter practice to always work with the stable versions.



Non-standard tight closure for affineC-algebras 25

6. Regular Rings

One of the most important predecessors of tight closure theory is Kunz’s Theorem
that the FrobeniusFp is a flat endomorphism on a regular ringR of characteristic
p. A word of caution: what is meant here is that the inclusionFp(R) ⊂ R is flat,
whereFp(R) denotes the subring of allp-th powers of elements inR. Frobenius
also induces an isomorphismR ∼= Fp(R), which, of course, is therefore flat, but
this is not special to regular rings: it holds for all reducedringsR of characteristic
p. In characteristic zero, a minor obstacle arises in that fora positive dimensional
regularC-affine algebraA, the non-standard FrobeniusF∞ is (probably) no longer
a flat endomorphism on the non-standard hullA∞. However, its restriction toA is.

Proposition 6.1.LetA be aC-affine algebra. IfA is regular, then the extension
F∞(A) ⊂ A∞ is faithfully flat.

Proof. It is clear that any proper ideal ofF∞(A), extends to a proper ideal inA∞.
So we only need to show that the inclusionF∞(A) ⊂ A∞ is flat. I will provide
a proof by direct verification. Another proof is given in [19,Corollary 3.8] by
showing thatA∞ viewed as anA-module via the non-standard FrobeniusF∞ is a
balanced big Cohen-Macaulay module, from which it follows that it is flat overA.
This then amounts to the flatness ofA∞ overF∞(A).

To show that the inclusionF∞(A) ⊂ A∞ is flat, we need to show that any
solutionx∞ overA∞ of the linear homogeneous equation

F∞(a1)X1 + · · · + F∞(an)Xn = 0 (6.1)

with ai ∈ A, can be written as a linear combination

x∞ = b1∞F∞(z1) + · · · + bM∞F∞(zM )

with bi∞ ∈ A∞ and eachzj a solution inA of the linear equation

a1X1 + · · · + anXn = 0. (6.2)

Choose some approximationaip of eachai and choose tuplesxp in Ap, such that
ulimp→∞ xp = x∞. It follows from (6.1) and Łos’ Theorem thatxp is a solution
in Ap of the linear equation

Fp(a1p)X1 + · · · + Fp(anp)Xn = 0 (6.3)

for almost allp. LetKp ⊂ (Ap)
n be theAp-submodule consisting of all solutions

of
a1pX1 + · · · + anpXn = 0.

By Theorem 4.6 almost allAp are regular, so that by Kunz’s Theorem, the inclu-
sionFp(Ap) ⊂ Ap is flat. Therefore, (6.3) implies thatxp lies in the submodule
of (Ap)

n generated byFp(Kp).
Let N be the maximum of the degrees of theaj . Hence almost allajp have

degree at mostN as well. It follows from [10] or [12], that there is anN ′ ∈ N

only depending onN , such that eachKp is generated by at mostN ′ elements,
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each of degree at mostN ′. Let zip, for i = 1, . . . , N ′ be these generators. Put
zi∞ := ulimp→∞ zip. Using Proposition 3.2, we see thatzi∞ lies already inA.
Moreover, by Łos’ Theorem, eachzi∞ is a solution of the linear equation (6.2).
Sincexp is a linear combination of theFp(zip), it follows thatx∞ is a linear
combination of theF∞(zi∞), as required. ⊓⊔

Theorem 6.2.LetA be aC-affine algebra. IfA is regular, then any ideal is non-
standard closed.

Proof. Let a = (f1, . . . , fs)A be an ideal inA and letz be an element in its non-
standard closure. Therefore, we can find ac ∈ A not contained in any minimal
prime ofA, such that

cF∞(z) = h1F∞(f1) + · · · + hsF∞(fs),

for somehi ∈ A∞. In other words,c belongs to(F∞(a)A∞ :A∞
F∞(z)). By

Proposition 6.1, the extensionF∞(A) ⊂ A∞ is flat, which implies that

(F∞(a)A∞ :A∞
F∞(z)) = F∞(a :A z)A∞.

If z /∈ a, thenJ := (a :A z) is a proper ideal ofA. In particular, we get that
c ∈ F∞(J)A∞. SinceF∞(J)A∞ ∩A ⊂ C andJ is a proper ideal, we must have
thatF∞(J)A∞ ∩A = 0, implying thatc = 0, contradiction. ⊓⊔

Remark 6.3.The same holds true for non-standard tight closure, since itis con-
tained in the non-standard closure, and an easy adaptation of the proof then gives
the result for the stable versions as well.

7. Contractions under Finite Extensions

Theorem 7.1.Let A ⊂ B a finite (or, more generally, an integral) extension of
C-affine domains. Leta be an ideal inA. Thenclns(aB) ∩A ⊂ clns(a).

Proof. It suffices to prove the theorem for finite extensions (since any relation in
B already holds in a finiteA-subalgebra ofB). Let z ∈ clns(aB) ∩A, so that for
some non-zerob ∈ B, we have that

bF∞(z) ∈ F∞(aB)B∞. (7.1)

By a well-known argument (reason with the field of fractions), there exists anA-
module homomorphismφ : B → A, sendingb to some non-zero elementa of A.
Let φ∞ : B∞ → A∞ be its extension to the non-standard hullsB∞ andA∞ of B
andA respectively (see Theorem 4.7). Applyingφ∞ to (7.1), we obtain

aF∞(z) ∈ F∞(a)A∞,

showing thatz lies in the non-standard closure ofa. ⊓⊔
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Remark 7.2.Alternatively, we can make the observation thatb in (7.1) can be taken
in A (namely, replaceb by the constant term of an integral equation ofb overA
of minimal degree). Therefore,bF∞(z) lies in F∞(a)B∞ ∩ A∞. SinceA∞ ⊂
B∞ is finite by Theorem 4.7 and since any finite extension of integral domains
in characteristic zero is split (by taking traces), we get that F∞(a)B∞ ∩ A∞ =
F∞(a)A∞, showing thatz lies in the non-standard closure ofa.

By either of these arguments we an also show that the Theorem is true with
non-standard closure replaced by generic tight closure or non-standard tight clo-
sure.

8. Colon Capturing

Theorem 8.1 (Colon Capturing).LetA be a localC-affine algebra with system
of parameters(x1, . . . , xn). For eachi, the colon ideal((x1, . . . , xi)A : xi+1) is
contained in the non-standard tight closure of(x1, . . . , xi)A.

Proof. I will only give the argument in caseA is equidimensional–for the gen-
eral case, see Remark 8.3 below. WriteA = B/I with B some localization of a
polynomial ring overC. Consider thexi already as elements ofB. SupposeI has
heighte. By an easy prime avoidance argument, we can findf1, . . . , fe ∈ I, such
that

ht(f1, . . . , fe, x1, . . . , xi)B = e+ i

for eachi. In particular,J := (f1, . . . , fe)B has heighte. SinceB is regular,J
has no embedded associated primes. SinceJ ⊂ I both have heighte and since
all minimal primes ofI have heighte by equidimensionality, we see that every
minimal prime ofI is also a minimal prime ofJ . Let p1, . . . , pm be the minimal
primes ofJ , so thatp1, . . . , pl are the minimal primes ofI, for somel ≤ m.
Let Jk be the primary component ofJ belonging to the minimal primepk, for
k = 1, . . . , l, and letJ̃ be the intersection of the remaining primary components,
so that

J = J1 ∩ · · · ∩ Jl ∩ J̃ .

Let Ik be thepk-primary component ofI andĨ be the intersection of the embedded
primary components (this is not uniquely defined, but this does not matter here),
so that

I = I1 ∩ · · · ∩ Il ∩ Ĩ .

There is someN , such thatpNk ⊂ Jk, for all k. Choosec ∈ J̃ , but not in anypk,
for k = 1, . . . , l. It follows that

cIN ⊂ J̃ ∩
l⋂

k=1

pNk ⊂ J1 ∩ · · · ∩ Jl ∩ J̃ = J. (8.1)

Moreover, the image ofc in A is not contained in any minimal prime ideal ofA.
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Let z ∈ B so that its image inA lies in ((x1, . . . , xi)A :A xi+1). Therefore,
we can findbi ∈ B, such thatzxi+1 + b1x1 + · · ·+ bixi ∈ I. Take approximations
of everything in sight, so that for almost allp, we have a relation

zpxi+1p + b1px1p + · · · + bipxip ∈ Ip

for almost allp. Let q denote any powerpm bigger thanN , then by (8.1) we have

cp [(zp)
q(xi+1p)

q + (b1p)
q(x1p)

q + · · · + (bip)
q(xip)

q] ∈ Jp. (8.2)

By Theorem 4.5, almost allJp+(x1p, . . . , xdp)Bp have heightd+e. Since almost
all Bp are regular by Theorem 4.6, it follows that

(f1p, . . . , fep, (x1p)
q, . . . , (xdp)

q)

is a regular sequence. Therefore, from (8.2), we get that

cp(zp)
q ∈ (f1p, . . . , fep, (x1p)

q, . . . , (xip)
q)Bp.

Taking reduction moduloIp and then ultraproducts, we get that

cFm
∞

(z) ∈ (Fm
∞

(x1), . . . ,F
m
∞

(xi))A∞,

for all m ∈ N. Since we already observed thatc is not contained in any minimal
prime ofA, we get thatz lies in the non-standard tight closure of(x1, . . . , xi)A,
as required. ⊓⊔

Remark 8.2.Colon Capturing then also holds for non-standard closure, as this con-
tains non-standard tight closure.

One can avoid taking approximations in the above proof, using the fact that
since(f1, . . . , fe, x1, . . . , xd) isB-regular,(f1, . . . , fe,Fm∞(x1), . . . ,F

m
∞

(xd)) is
B∞-regular, and then carry out the above proof directly inB∞. To prove the latter
fact, use an argument similar to the one proving Assertion 2.9.7; see [19, Theorem
5.1] for details.

Remark 8.3.Colon Capturing also holds for generic tight closure. Indeed, z ∈
((x1, . . . , xi)A : xi+1) leads to a similar relation for approximations. Since al-
most all(x1p, . . . , xip) are a system of parameters ofAp by Theorem 4.5, tight
closure Colon Capturing ([7, Theorem 3.1]) yields thatzp lies in the tight clo-
sure of (x1p, . . . , xip)Ap, that is to say,z lies in the generic tight closure of
(x1, . . . , xi)A. Using this, we can give an alternative proof of Theorem 8.1,by
showing that generic tight closure is contained in non-standard tight closure. This
argument does not require us to assume equidimensionality.However, it relies on
a non-trivial result from tight closure theory: the existence of test elements; more-
over, we need the following uniform version.

Proposition 8.4.For eachC-affine algebraA, we can find an elementc ∈ A with
the property thatcp is a test element for almost allAp, wherecp andAp are
approximations ofc andA respectively.
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Proof. We use [3, Theorem 7.1 and 7.2] to generate test elements. First assume that
A is a domain with field of fractionsL. Take a Noether NormalizationC[X ] →֒ A
(that is to say, a finite injective homomorphism). SinceC[X ] →֒ A is generically
smooth,L is a finite separable extension ofC(X). Chooseu1, . . . , uN ∈ A, such
that they form a basis ofL overC(X). Putc equal to the determinant of the matrix
with entries the traces of all possible productsuiuj (where the trace is taken with
aid of the Galois group ofL overC(X)). I claim that almost all approximations
cp are test elements. Indeed, letF

alg
p [X ] → Ap anduip be approximations of

C[X ] → A and of theui respectively. By Theorem 4.7, almost allF
alg
p [X ] →

Ap are Noether Normalizations, and forp sufficiently large, they are generically
smooth. By Łos’ Theorem, almost allcp are given as the determinant of the matrix
with entries the traces of all possible productsuipujp and hence are test elements
by [3, Theorem 7.1 and 7.2].

ForA arbitrary, a simple argument explained in [7, Exercise 2.10] shows that
if we can find for eachA/p, with p a minimal prime ofA, an elementc with the
desired properties, then we can also find such an element inA, taking into account
that by Theorem 4.4, the minimal primes ofAp are just the approximations of the
minimal primes ofA, for almost allp. Details are left to the reader.⊓⊔

Theorem 8.5.Generic tight closure is contained in non-standard tight closure.

Proof. LetA be aC-affine algebra. Letz ∈ A and leta be an ideal ofA. LetAp
be an approximation ofA and choose approximationszp andap in Ap of z anda

respectively. We have to show that ifzp belongs to the tight closure of almost all
ap, thenz lies in the non-standard tight closure ofa. By Proposition 8.4, there is
a c ∈ A whose approximationcp is a test element in almost allAp. Therefore, for
almost allp, we have that

cpF
m
p (zp) ∈ F

m
p (ap)Ap

for all m ≥ 1. Taking ultraproducts, we get that

cFm
∞

(z) ∈ F
m
∞

(a)A∞,

for all m ≥ 1, showing thatz lies in the non-standard tight closure ofa. ⊓⊔

As an immediate consequence we derive from Theorem 6.2 the following:

Corollary 8.6. Any ideal in a regularC-affine algebra is equal to its generic tight
closure.

9. Integral Closure and the Briançon-Skoda Theorem

The next result is easy to proof for classical tight closure,but seems to require
something like Néronp-desingularization in the non-standard case.

Theorem 9.1.In anyC-affine algebraA, the non-standard closure of an arbitrary
ideal is contained in its integral closure.
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Proof. Let z be in the non-standard closure of an ideala. This means that we can
find c ∈ A, not contained in any minimal prime ofA, such that

cF∞(z) ∈ F∞(a)A∞, (9.1)

withA∞ the non-standard hull ofA. In order to show thatz lies in the integral clo-
surea of a, it suffices to show that for each discrete valuation ringV and any homo-
morphismφ : A→ V with kernel a minimal prime ofA, we have thatφ(z) ∈ aV .
Fix one such homomorphismφ and letp be its kernel. After taking completion
and using Cohen’s Structure Theorem, we may assume thatV = K[[t]] for some
extension fieldK of C andt a single variable. The image ofφ in V lives already
insidek[[t]] for some algebraically closed subfieldk of cardinality the continuum.
Sincek ∼= C, we may takeV = C[[t]] from the start. By (9.1) and the fact that
c /∈ p, the image ofz in A/p will still lie in the non-standard closure ofa(A/p).
So we may as well assume thatφ is injective, whence thatA is a subalgebra ofV .
Next, we may replaceA by theA-subalgebra ofV generated byt and then localize
A so that it containsV0 := C[t](t). By Néronp-desingularization (see for instance
[1, §4]), there exists a smoothV0-algebraB and there existV0-algebra homomor-
phismss : A → B andψ : B → V , such thatψs is equal to the inclusionφ. In
particular,B is a regularC-affine domain. Applyings to (9.1) and observing that
s(c) 6= 0, lestψs(c) = c would vanish, we get thats(z) lies in the non-standard
closure ofaB. By Theorem 6.2,s(z) lies in aB sinceB is regular. Applyingψ
yields thatz = ψ(s(z)) lies inaV , as required. ⊓⊔

Theorem 9.2 (Briançon-Skoda).LetA be aC-affine algebra and leta be an ideal
ofA. If a can be generated bym elements, then the integral closuream of am lies
inside the non-standard tight closure ofa.

Proof. Let z ∈ am. This means that we can findgj ∈ ajm and an integral equation

zd + g1z
d−1 + · · · + gd = 0.

LetAp be an approximation ofA and choose approximationszp, gjp andap inAp
of z, gj anda respectively. For almost allp, we have an equation

(zp)
d + g1p(zp)

d−1 + · · · + gdp = 0 (9.2)

in Ap and, moreover,gjp ∈ (ap)
im. In other words, for thosep, we have that

zp belongs to the integral closure of(ap)
m. By the tight closure Briançon-Skoda

Theorem ([7, Theorem 5.7]), we have thatzp belongs to the tight closure ofap, for
almost allp. In other words,z belongs to the generic tight closure ofa, whence to
its non-standard tight closure, by Theorem 8.5.

In fact, if a has positive height, we can altogether avoid the use of Theorem 8.5
(which relies on a non-trivial result about test elements incharacteristicp), by
repeating the (elementary) argument in [7, Theorem 5.7] foreachzp. Firstly, from
(9.2), we get that

(ap)
m(d−1)(zp)

N ⊂ (ap)
Nm
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for all N . If N = q = pl is a power ofp, then(ap)
qm ⊂ Fq(ap)Ap, sinceap is

generated bym elements. Therefore,(ap)m(d−1)
Fq(zp) ⊂ Fq(ap)Ap, for almost

all p. Taking ultraproducts, we get that

am(d−1)
F
l
∞

(z) ⊂ F
l
∞

(a)A∞,

for all l ≥ 1, showing thatz ∈ clnst(a). ⊓⊔

10. Applications

The first application is an easy proof of the following Theorem of HOCHSTERand
ROBERTS.

Theorem 10.1.LetA be a regularC-affine algebra. LetG be a reductive linear
algebraic group (so thatG is the complexification of a compact real Lie group). If
G actsC-rationally onA by C-algebra automorphisms, then the fixed ringAG is
Cohen-Macaulay.

Proof. Since the problem is local, we may localize and assume from the start that
A is a local. Let(x1, . . . , xd) be a system of parameters inAG. We need to show
that(Ij : xj) = Ij in AG, for everyj = 1, . . . , d, whereIj = (x1, . . . , xj−1)A.
Let z ∈ AG, so thatzxj ∈ Ij . By Colon-Capturing (Theorem 8.1), we get that
z ∈ clns(Ij). SinceAG ⊂ A, it follows thatz lies in the non-standard closure of
IjA. SinceA is regular, it follows from Theorem 6.2 thatz ∈ IjA.

From Lie theory or a general argument about linearly reductive groups, it fol-
lows that there exists a so-calledReynolds operatorρG : A→ AG, that is to say, a
homomorphism ofAG-modules. Therefore, applyingρG to z ∈ IjA givesz ∈ Ij ,
as required. ⊓⊔

The above proof shows the following more general result, since all we needed
of the embeddingAG ⊂ A is its cyclic purity (recall that in general a homomor-
phismR→ A is calledcyclically pureif aA ∩R = a, for every ideala in R).

Corollary 10.2. LetR→ A be a cyclically pure extension ofC-affine algebras. If
A is regular, thenR is Cohen-Macaulay.

In [19, Theorem B], this result is generalized to hold for anycyclically pure
homomorphism of Noetherian local rings containing a field, by extending the def-
inition of non-standard tight closure to an arbitrary complete Noetherian algebra
over a field. Using deeper results from tight closure theory and singularity theory,
but staying within the category ofC-affine algebras, further generalizations can be
found in [18] and [22].

The classical Briançon-Skoda Theorem for affine algebras is a formal conse-
quence of the properties of any of the three closure operations defined in this paper.
In particular, by combining Theorem 6.2 and Theorem 9.2, we get the following
result.
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Theorem 10.3.Let A be aC-affine algebra and leta be an ideal ofA. If A is
regular anda can be generated bym elements, thenam ⊂ a.

In particular, if f is a polynomial inn variables overC, without constant term,
then there exists a polynomials with s(0) 6= 0, such thatsfn lies in theJacobian
idealof f , that is to say, the ideal generated by the partial derivatives off .

See [7, Chapter 5] or [21] for an argument why the last assertion follows from
the first. In [21], using some non-standard methods as well, this is extended to
power series rings overC, thus recovering the original Briançon-Skoda Theorem.
Conceivably, one could as well give an argument for this latter result via non-
standard tight closure, using its extension to power seriesrings discussed in [19,
§6].

Classical tight closure is contained in non-standard tightclosure

Recall the definition made by HOCHSTERand HUNEKE of the (equational) tight
closurea∗ of an ideala in a C-affine algebraA (see for instance [7, Appendix
1, Definition 3.1]). An elementz ∈ A lies in a∗, if there exists some finitely
generatedZ-subalgebraD of A containingz, such that, withd := a ∩ D, the
image ofz modulop lies in the characteristicp tight closure ofd(D/pD), for
all but finitely manyp. SetDp := D/pD and letzp anddp be the respective
image ofz andd in Dp. Observe that there is a canonical embedding ofZ into
ulimp→∞ Fp. To be more precise, fors ∈ Z, if sp denotes the image ofs in
Fp = Z/pZ, thenulimp→∞ sp is equal tos viewed as an element inC via any
isomorphism given by the Lefschetz Principle (Theorem 2.4). We now may choose
approximationsAp andap of A anda respectively, such thatDp ⊂ Ap anddp =
ap ∩Dp. It follows from our above observation thatzp, viewed as an element of
Ap, is an approximation ofz (see [18, Corollary 4.9] for a more precise result). By
assumption,zp lies in the tight closure ofdp, whence in the tight closure ofap in
Ap. By definition, this means thatz lies in the generic tight closure ofa, whence
also in its non-standard (tight) closure by Theorem 8.5. In conclusion, we showed
the following.

Theorem 10.4.For C-affine algebras, equational tight closure is contained in any
of the three closure operations ‘generic tight closure’, ‘non-standard tight closure’
and ‘non-standard closure’.

Some Questions

1. At present there is no counterexample for any of the closure operations to be
different. It is quite possible that they all coincide with equational tight closure
(as it is possible that all classical tight closure operations in characteristic zero
coincide). Nor is it clear whether a different choice of non-principal ultrafilter,
or a different choice of an isomorphism in Theorem 2.4, yields a different
closure operation. There is some evidence that the choice ofultrafilter should
not matter, at least not in the definition of non-standard tight closure.
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2. There is not yet a satisfactory theory of non-standard tight closure in the non-
affine setup. The best results so far are obtained in [19], where a closure op-
eration, calledtight difference closure, is defined for complete algebras over
an uncountable algebraically closed field. It will come as nosurprise that there
one needs Artin Approximation (although it is plausible that something weaker
than the Artin-Rotthaus Theorem suffices; see [19, Theorem 6.12]). Neither is
there yet any concrete notion of tight closure in mixed characteristic, although
I have some hope to develop some asymptotical version, usingthe Ax-Kochen-
Ershov Theorem. For some positive results in this directionsee [15,16].

3. Although Proposition 8.4 seems to indicate that test elements exist in the non-
standard world, it is not yet clear whether this is actually so. In other words,
given aC-affine algebraA, can we find an elementc not contained in any
minimal prime ofA, such thatcFm

∞
(z) lies always inFm

∞
(a)A∞, for every

m and everyz in the non-standard tight closure ofa? Notwithstanding our
ignorance on this aspect, it is possible to show that non-standard tight closure
persists (although it is not yet clear whether the same is true for non-standard
closure). This will be the content of a future paper.

4. Our new closure operations prompt for a study of the analogues of F-regularity
and F-rationality. Some work in this direction has been donein the papers [18–
20,22], but the general theory still needs development.
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