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Abstract. Let K be an algebraically closed field endowed with a complete non-

archimedean norm with valuation ring R. Let f : Y → X be a map of K-affinoid
varieties. In this paper we study the analytic structure of the image f(Y ) ⊂ X; such

an image is a typical example of a subanalytic set. We show that the subanalytic

sets are precisely the D-semianalytic sets, where D is the truncated division function
first introduced by Denef and van den Dries. This result is most conveniently

stated as a Quantifier Elimination result for the valuation ring R in an analytic
expansion of the language of valued fields.

To prove this we establish a Flattening Theorem for affinoid varieties in the style

of Hironaka, which allows a reduction to the study of subanalytic sets arising
from flat maps, i.e., we show that a map of affinoid varieties can be rendered flat

by using only finitely many local blowing ups. The case of a flat map is then dealt

with by a small extension of a result of Raynaud and Gruson showing that the
image of a flat map of affinoid varieties is open in the Grothendieck topology.

Using Embedded Resolution of Singularities, we derive in the zero characteristic

case a Uniformization Theorem for subanalytic sets: a subanalytic set can be rendered
semianalytic using only finitely many local blowing ups with smooth centres. As a

corollary we obtain that any subanalytic set in the plane R2 is semianalytic.

0.Introduction

Subanalytic sets arise naturally in real analytic geometry as images of proper
analytic maps. The structure of such an image can be quite complicated: it is
not necessarily definable by means of inequalities between analytic functions, i.e.,
it is not in general semianalytic. Therefore, a compact subset of a real analytic
manifold is called subanalytic, if it is (at least locally) the projection of a relatively
compact semianalytic set. It is then a non-trivial fact that the complement of a
subanalytic set is again subanalytic. Nevertheless, subanalytic sets share the same
tameness properties as for instance semialgebraic or analytic sets: local finiteness
of the number of connected components (which are subanalytic again); the distance
between two disjoint closed subanalytic sets is strictly positive; various  Lojasiewicz
inequalities hold. Real subanalytic sets were first introduced by  Lojasiewicz and
subsequently studied by Gabrielov [Gab] and Hironaka [Hi 2-4] by complex
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analytic methods (flattening, Voûte Etoilée) and by geometric techniques (Resolu-
tion of Singularities). A new approach appeared in a paper [DvdD] by Denef
and van den Dries, where a model-theoretic point of view was taken, resulting in
a much more concise form and having the enormous advantage to be applicable to
the p-adic case as well. In this seminal paper, all of the old results in the real case
were reproven together with their p-adic analogs.

Motivated by problems of elliptic curves, Tate constructed a theory of rigid
analytic geometry over complete non-archimedean algebraically closed fields. This
theory was further developed by Kiehl, Grauert et al., largely in analogy with
complex analysis. A little later Raynaud gave an alternative treatment through
formal schemes and more recently still, Berkovich approached the subject from
the viewpoint of spectral theory.

From the point of view of model theory, non-archimedean fields provide a very
fruitful study. After the work of Ax and Kochen, the theory of Qp (the p-adics)
has been exhaustively studied by Macintyre and for algebracially closed valued
fields long before by Abraham Robinson. With the recent massive application
of model theory to real analytic geometry through the work of van den Dries,
Wilkie et al., the time seemed right to add analytic structure to the complete
algebraically closed valued fields.

Such a study was initiated by Lipshitz, later on joined by Robinson, who
developed in [Lip] and [LR 1-2] a theory, allowing more general functions than
rigid analytic ones in the description of semi- and subanalytic sets, thus obtaining
a theory of weak rigid subanalytic sets. This yielded some important results on
rigid subanalytic sets as well (see (2.4-2.6) for a further discussion). At the same
time the second author obtained a different theory in [Sch 1-3] , were he used a
restricted class of analytic functions, yielding the theory of strong rigid subanalytic
sets. Both of these theories were based on the model-theoretic approach introduced
by [DvdD] , but the method seemed to resist treatment for the general case of a
rigid subanalytic set.

It was the insight of Denef that the methods of Hironaka might be used
in the rigid case as well. The key observation is a result due to Raynaud and
Gruson describing the image of a flat map between affinoid varieties; this serves
as a replacement for the Fibre Cutting Lemma of flat maps in Hironaka’s work.
To make the reduction to the flat case, one needs a good theory of rigid analytic
flatificators (to be used as centres of local blowing ups) and the construction of
the Voûte Etoilée (a compact Hausdorff space encoding finite sequences of local
blowing ups). The former is carried out by the second author in [Sch 7] and the
latter by the first author in [Gar] . However, in order to make the construction
of the Voûte Etoilée, it seems necessary to add extra points to the rigid analytic
variety, following Berkovich. The present paper will put all these results together
to obtain the sought for theory of rigid subanalytic sets. Our main theorem states
that any rigid subanalytic set can be described by inequalities among functions
which are obtained by composition and division of analytic functions (see Section
2 for details). Using the theorem of the complement [LR 2] , it is enough to show
this for images of rigid analytic maps. Therefore, we need to flatten an arbitrary
analytic map by means of local blowing ups. Blowing ups are the cause for having
to introduce division in the description of a subanalytic set.

The first Section contains this flattening procedure. A local form in the Berkovich
category is derived first from which then a global rigid analytic flattening theorem
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is deduced. In the proof of the former result, we briefly recall some concepts and
results from [Gar] and [Sch 7] . The next Section then contains our main
result, preceded by a discussion of the link between blowing ups and the truncated
division operator D. In Section 3 we show how using our main result together with
Embedded Resolution of Singularities, one derives a uniformization theorem for
rigid subanalytic sets. This is then used to show that subanalytic sets of the plane
are in fact semianalytic. The treatment here is analogous to the one in [DvdD] or
[Sch 2-3] . In an appendix we have gathered some material on the forementioned
result of Raynaud and Gruson. Most of this is well-known, but we needed a small
extension of the result, which required an adaptation in the proof as it appeared in
[Meh] . For this reason, it has been added here.

Remark 1. Rigid analytic geometry works over any complete non-archimedean or-
dered field, but it is most convenient to take the field to be algebraically closed as
well, so that all points are rational. Since it seems easier to make such an extra
assumption, we will do so in this paper, so that the unit disk can be identified
with the maximal spectrum of K〈S〉. However, all the results of the first section
remain true for arbitrary complete non-archimedean fields. To conveniently formu-
late Quantifier Elimination one does need the base field to be algebraically closed.
The authors do not know whether the result of [DvdD] over the p-adics can be
deduced from the present theory.

Remark 2. The authors have restricted their attention only to the rigid analytic
case, but a treatment of Berkovich subanalytic sets seems now to be accessible,
using the same methods.1 Such a theory would be desirable since then topological
properties of subanalytic sets can be studied, such as the finiteness of connected
components or other homotopic invariants, triangularization, . . .

Remark 3. As far as the characteristic of the base field is concerned, no assump-
tion is needed, except in Section 3 where an application of Embedded Resolution
of Singularities is used. If one would have a version of Embedded Resolution of
Singularities in positive characteristic, or, at least of its corollary mentioned in the
proof of (3.1), the assumption on the characteristic could be removed.

Acknowledgment. The authors want to thank Jan Denef, for sharing with
them his idea that Raynaud’s Theorem could be used in conjunction with a rigid
analog of Hironaka’s work. They are also very grateful to Gabriel Carlyle for
his minute proof reading.

1. Rigid Analytic Flattening

1.1. Blowing Ups. Let X be a rigid analytic variety. We will be concerned in
this section with local blowing up maps and their compositions. For the definition
and elementary properties of rigid analytic blowing up maps, we refer to [Sch 5] .
Suffice it to say here that they are characterised by the familiar property whereby
a coherent sheaf of ideals is made invertible. Any blowing up map is proper and

1To this end, a uniform version of the model-completeness result of Lipshitz and Robinson
is required.
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an isomorphism away from the centre. If its centre is nowhere dense, then it is
also surjective. A local blowing up π of X is a composition of a blowing up map
π′ : X̃ → U and an open immersion U ↪→ X. We will always assume that U is
affinoid.2

If Z is the centre of the blowing up π′ (and hence in particular a closed analytic
subvariety of U), then we call Z also the centre of π and we will say that π is the
local blowing up of X with locally closed centre Z.

Let f : Y → X be a map of rigid analytic varieties and let π : X̃ → U ↪→ X be
a local blowing up with centre Z ⊂ U . If θ : Ỹ → f−1(u) ↪→ Y denotes the local
blowing up of Y with (locally closed) centre f−1(Z), then by universality of the
blowing up, there exists a unique map f̃ : Ỹ → X̃, making the following diagram
commute

(1)

Ỹ
θ−−−−→ Y

f̃

y yf
X̃ −−−−→

π
X.

This unique map f̃ is called the strict transform of f under π and the above diagram
will be referred to as the diagram of the strict transform.

In general, we will not be able to work with just a single local blowing up,
but we will make use of maps which are finite compositions of local blowing up
maps. Therefore, if π : X̃ → X is the composite map ψ1 ◦ · · · ◦ ψm, with each
ψi+1 : Xi+1 → Ui ↪→ Xi a local blowing up map with centre Zi, for i < m, (with
X = X0 and X̃ = Xm), then we define recursively fi : Yi → Xi as the strict
transform of fi−1 under ψi where f0 = f and Y0 = Y . The last strict transform fm
is called the (final) strict transform of f under π and the other strict transforms
fi, for i < m, will be referred to as the intermediate strict transforms.

For us, the following three possible properties of a map π as above, will be
crucial.

(i) The centres Zi are nowhere dense.
(ii) The intermediate strict transforms are flat over their centre, i.e., the restric-

tion f−1
i (Zi) → Zi is flat, for i < m.

(iii) The final strict transform f̃ of f under π is flat.
Our Flattening Theorem states that given a map of affinoid varieties f : Y → X, we
can find finitely many maps π1, . . . , πs as above with these three properties (i)-(iii),
such that, furthermore, the union of their images contains Im f .

Hironaka’s proof of the complex analytic Flattening Theorem, heavily exploits
the fact that complex spaces are Hausdorff and locally compact. Rigid analytic
spaces do not admit a genuine topology and hence the original proofs do not carry
over to this situation. However, the work of Berkovich provides us with new
analytic spaces, equivalent to rigid analytic spaces as far as their sheaf theory is
concerned, but admitting a locally compact Hausdorff topology. We briefly recall
their construction. Let A be an affinoid algebra and X = SpA the corresponding
affinoid variety. We fix once and for all a complete normed field Ω extending K and

2One can always make such an assumption by perhaps shrinking the admissible open, since
whenever we use local blowing ups, we will only be interested in a local situation.
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of cardinality big enough so that it contains any completion of any normed extension
field of K which is topologically of finite type over K. An analytic point x of X is
defined to be a continuous K-algebra morphism x : A → Ω. Let U = SpC be an
affinoid subdomain of X containing x, then U is called an affinoid neighbourhood
of x, if the map x : A → Ω factors through a map C → Ω. Two analytic points
are said to be congruent if they admit the same system of neighbourhoods. The
affinoid Berkovich space X associated to X is then the collection of all congruence
classes of analytic points of X. Put the weakest topology on X making all maps
x 7→ |x(f)| continuous, for f ∈ A. This turns the space X into a compact space,
which is Hausdorff, if, moreover, if X is reduced. As a special case of an analytic
point, take any x ∈ X (i.e., some maximal ideal m of A), then the composite map
A � A/m = K ↪→ Ω yields an analytic point, called a geometric point of X. Any
affinoid subdomain containing a geometric point is a neighbourhood of that point,
and hence X viewed as the set of geometric points can be identified with a subspace
of X, and as such is everywhere dense in it.

Finally, one can put aK-analytic structure on X, by defining a structure sheaf OX
on it. The category of coherent sheaves on X is then equivalent with the category
of coherent sheaves on X. So far we have only introduced the local models of the
category of Berkovich analytic spaces, but with some care certain global models
and their morphisms can be defined. This leads to a satisfactory theory of analytic
spaces which are Hausdorff, paracompact strictly K-analytic in the sense of [Ber
2] . We refer the reader for further details to [Ber 1] , [Ber 2] or [SvdP] .

1.2. Local Flattening of Berkovich Spaces. Let f : Y → X be a map of
Hausdorff, paracompact strictly K-analytic Berkovich spaces with X reduced. Pick
x ∈ Im(f) and let L be a non-empty compact subset of f−1(x). There exists a finite
collection E of maps π : Xπ → X, with each Xπ affinoid, such that the following
four properties hold, where we put X0 = X, Y0 = Y and f0 = f and where π ∈ E
is arbitrary in the first three conditions.

(i) The map π is a composition ψ0 ◦ · · · ◦ ψm of finitely many local blowing up
maps ψi : Xi → Xi−1 with locally closed nowhere dense centre Zi ⊂ Xi, for
i = 1, . . . ,m.

(ii) Let fi be defined inductively as the strict transform of fi−1 under the local
blowing up ψi. Then f−1

i (Zi) → Zi is flat, for i = 1, . . . ,m.
(iii) The final strict transform fm : Ym → Xm of f under the whole map π given

by the strict transform diagram

Ym
θ−−−−→ Y

fm

y yf
Xm −−−−→

π
X,

is flat at each point of Ym lying above a point of L.
(iv) The union of all the Imπ, for π ∈ E, is a neighbourhood of x.

Proof. For the duration of this proof, spaces will be Hausdorff, paracompact strictly
K-analytic Berkovich spaces and maps between them will be analytic maps in
the Berkovich sense. Topological notions are taken with respect to the Berkovich
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topology. In particular, a local blowing up will be the composition of a blowing up
followed by an open immersion of an affinoid Berkovich space. We use black board
bold letters X,Y, . . . to denote Berkovich spaces.

Step 1. Our first task is to define the Voûte Etoilée of an arbitrary space X. The
details of this process are in [Gar] , but the method is wholly due to Hironaka who
makes the construction for complex analytic spaces. Let E(X) denote the collection
of all maps π : X′ → X which are finitely many compositions of local blowing up
maps. One can define a partial order relation on E(X) by calling ψ : X′′ → X
smaller than π, if ψ factors as πq, for some q : X′′ → X′. We denote this by ψ ≤ π.
Such a q is then necessarily unique and must belong to E(X′) ( [Gar, Proposition
3.2] ). If, moreover, the image q(X′′) of q is relatively compact (i.e., its closure
is compact), then we denote this by ψ�π. Any two maps π1, π2 ∈ E(X) admit a
unique minimum or meet π3 ∈ E(X) with respect to the order ≤ ( [Gar, Lemma
3.3] ), denoted by π1 ∧ π2. This meet π3 is just the strict transform of π2 under
π1 (or vice versa). The set E(X) then becomes a semi-lattice with smallest element
the empty map ∅ : ∅ → X. A subset e of E(X) is called a filter, if it does not contain
∅, if its closed under meets, and, if for any ψ ∈ e and π ∈ E(X), with ψ ≤ π, we
have that also π ∈ e. An étoile e on X is now defined as a maximal filter on the
semi-lattice E(X) subject to the extra condition that for any π ∈ e we can find
ψ ∈ e, with ψ�π.

The collection of all étoiles on X is called the Voûte Etoilée of X and is denoted
by EX. This space is topologised by taking for opens the sets of the form Eπ given
as the collection of all étoiles on X containing π : X′ → X, for some π ∈ E(X).
In fact, Eπ is isomorphic with EX′ via the map Jπ : EX′ → EX, sending e′ to the
collection of all θ ∈ E(X) for which there exists some ψ ∈ e′ such that π ◦ ψ ≤ θ (
[Gar, Proposition 3.6] ). The Voûte Etoilée is Hausdorff in this topology ( [Gar,
Theorem 3.11] ). Moreover, for any étoile e ∈ EX, the intersection of all Imπ,
where π runs through the maps in e, is a singleton {x} and any open immersion
1| U : U ↪→ X with x ∈ U, belongs to e ( [Gar, Proposition 3.9] ). We denote the
thus defined map e 7→ x by pX : EX → X. It is a continuous and surjective map (see
remark in loc. cit.). It is a highly non-trivial result that this map is also proper in
the sense that the inverse image of a compact is compact ( [Gar, Theorem 3.13] ).

Step 2. Next we will introduce the concept of a flatificator. Let f : Y→ X be a map
and let x ∈ X. A flatificator of f at x is a locally closed subspace Z of X containing
x, such that f is flat over it (i.e., the restriction f−1(Z) → Z is flat), and such
that, whenever V is a second locally closed subspace containing x over which f is
also flat, at least locally around x, then V is a subspace of Z locally around x. In
other words, a flatificator is a largest locally closed subspace over which f becomes
flat in a neighbourhood of x. Such a flatificator is called universal, if it is stable
under base change (i.e., if g : X′ → X is arbitrary, then g−1(Z) is the flatificator of
the base change Y ×X X′ → X′ at x′, for any x′ in the fibre above x). In [Sch 7,
Theorem A.2] it is shown that any map f : Y → X admits a universal flatificator
Z in each point x of Im f . If X is moreover reduced then we can detect flatness
via the flatificator: blowing up the flatificator exhibits some non-trivial portion of
non-flatness as torsion. More precisely, it is shown in ( [Sch 7, Theorem A.6] )
that whenever f is not flat in some point of the fibre f−1(x), then there exists a
nowhere dense subspace Z0 of Z, such that the local blowing up ψ1 : X1 → X with
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centre Z0 renders the fibre above x smaller. With this we mean the following. Let

Y1
ζ1−−−−→ Y

f1

y yf
X1 −−−−→

ψ1

X

denote the strict transform diagram induced by ψ1. Then, for every y ∈ X1 lying
above x, we have a non-trivial embedding of closed subspaces

(†) f−1
1 (y)×K Ω  f−1(x)×K Ω,

where Ω is our universal domain. (Note the extension of scalars is necessary in
order to compare these two fibres as subspaces of Y×K Ω.) We refer to this result
as the Fibre Lemma.
Step 3. Fix an étoile e on X such that pX(e) = x. Put x0 = x, e0 = e and put
f0 : Y0 → X0 equal to the original map f : Y→ X. The Fibre Lemma will enable us
to define, by induction, points xi ∈ Xi and étoiles ei ∈ EXi

with pXi
(ei) = xi, local

blowing up maps ψi : Xi → Xi−1 with nowhere dense centre Zi−1, maps fi : Yi → Xi
and non-empty compact subsets Li of the fibre f−1

i (xi), at least as long as fi is not
flat in some point of Li. Each fi will be the strict transform

Yi
ζi−−−−→ Yi−1

fi

y yfi−1

Xi −−−−→
ψi

Xi−1.

of the previous map fi−1 under the local blowing up ψi. Moreover, each fi will be
flat above the centre Zi and have the property on the fibres (†) in the point xi−1.
Let us show how to define from the point xi−1 ∈ Xi−1 a new point xi ∈ Xi and
a new étoile ei on Xi. Since Zi−1 is nowhere dense and contains xi−1, we deduce
that ψi ∈ ei−1 (i.e., ei−1 ∈ Eψi

) from [Gar, Corollary 3.10] . The isomorphism
Jψi

: EXi
→ Eψi

then yields a uniquely determined étoile ei on Xi and this in turns
uniquely determines the point xi = pXi

(ei) of Xi. By diagram chasing, one checks
that this implies ψi(xi) = xi−1. Finally, we define a compact subset of f−1

i (xi) by

Li = Yi ∩ ({xi} ×Xi−1 Li−1).

Let Ii denote the coherent ideal of Y×K Ω defining the fibre f−1
i (xi)×K Ω, so that

by (†) the chain
I0  I1  I2  . . .

is strictly increasing on the compact set L×K Ω. Therefore this chain must become
stationary, say at level m, meaning that fm is flat in each point of Lm.

Flatness is an open condition in the source,3 so that we can find an open V of
Ym containing Lm, such that fm| V : V→ Xm is flat. Let M = θ−1(L) \V, where θ

3This is for instance proven in [Sch 7, Corollary A.3] as a consequence of the existence of a
flatificator.
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is the compositum ζm◦· · ·◦ζ1. Note that M is compact, since θ is proper. We claim
that after some further local blowing up (in fact, an open immersion will suffice),
we may assume that M is empty, so that the new strict transform will be flat at
each point lying above a point of L. To this end, suppose M is non-empty and pick
some y ∈ M. Since fm(y) 6= xm, we can find a compact neighbourhood Ky of xm
in Xm, such that y /∈ f−1

m (Ky). Hence

(1) ∅ =
⋂
y∈M

(f−1
m (Ky) ∩M).

The compactness of each f−1
m (Ky)∩M means that already a finite number of them,

say f−1
m (Kyi

) ∩M, for i < t, have empty intersection. Let K be the intersection of
these finitely many Kyi

, which is then still a compact neighbourhood of xm, with
the property that

f−1
m (K) ∩ θ−1(L) ⊂ V.

Let Xe be an open of Xm containing xm and contained in K. Then the restriction
of fm above Xe has now the property that it is flat in each point lying above a
point of L.
Step 4. Summarising, we found for each étoile e on X with pX(e) = x a local blowing
up map πe : Xe → X, such that the strict transform

Ye
θe−−−−→ Y

fe

y yf
Xe −−−−→

πe

X

has the property that it is flat in each point lying above a point of L. Moreover,
there is a canonically defined point xe on Xe lying above x. Let Ce be a relatively
compact open neighbourhood of xe and set

De = Jπe
(p−1

Xe
(Ce)).

Then, for each e ∈ p−1
X (x), the set De is an open neighbourhood of e and the union

of all the De is a neighbourhood of p−1
X (x). Let {Hλ}λ∈Λ, be the collection of

all non-empty relatively compact open neighbourhoods of x in X. Pick arbitrary
λ0, λ1 ∈ Λ with Hλ1 ⊂ Hλ0 , where, in general, Hλ denotes the topological closure
of Hλ. Consider the the open covering of p−1

X (Hλ1) given by the sets

(2)
{
p−1

X (Hλ0) ∩ De | e ∈ p−1
X (x)

}
∪

{
p−1

X (Hλ0 \Hλ) | λ ∈ Λ
}
.

This is indeed a covering, since by the Hausdorff property, we can find for each
y 6= x a λ ∈ Λ for which y /∈ Hλ. Since pX is proper, we have that p−1

X (Hλ1)
is compact and hence there exists a finite subset E ⊂ p−1

X (x) and a finite subset
Γ ⊂ Λ, such that the collection of all sets of (2) with e ∈ E and λ ∈ Γ remains a
covering of p−1

X (Hλ1). Putting H equal to the intersection of the Hλ, for λ ∈ Γ, this
is still a neighbourhood of x and

p−1
X (H) ⊂

⋃
e∈E

De.
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Observing that pX(De) = πe(Ce) and using that pX and pXe
are surjective, we

deduce that
H ⊂

⋃
e∈E

πe(Ce),

as required. �

We will work in the more familiar category of rigid analytic varieties and conse-
quently we must translate this flattening theorem into a version appropiate for the
context. This also calls for a more global result.

1.3. Flattening Theorem. Let f : Y → X be a map of affinoid varieties with X
reduced. Then there exists a finite collection E of maps π : Xπ → X, with each Xπ

again affinoid such that the following properties hold.
(i) Each π ∈ E is the composition ψ1 ◦ · · · ◦ ψm of finitely many local blowing

up maps ψi with locally closed nowhere dense centre Zi−1, for i = 1, . . . ,m.
(ii) For each π ∈ E, let fi be inductively defined as the strict transform of fi−1

under the local blowing up ψi. Then f−1
i (Zi) → Zi is flat, for i = 1, . . . ,m.

The diagram of strict transform is

Yi
ζi−−−−→ Yi−1

fi

y yfi−1

Xi −−−−→
ψi

Xi−1.

(iii) The strict transform fπ : Yπ → Xπ of f under the whole map π (which is
fm according to our enumeration) is flat. The diagram of strict transform
is

(1)

Yπ
θ−−−−→ Y

fπ

y yf
Xπ −−−−→

π
X.

(iv) The union of all the Im(π), for π ∈ E, contains the image Im f .

Proof. Let X and Y be the corresponding Berkovich spaces of X and Y respectively
and let us continue to write f for the corresponding map Y → X. Fix an analytic
point x of X (i.e., a point of X), contained in the image of f . Let L = f−1(x), which
is closed in Y whence compact since Y is. By (1.2), we can find a finite collection
Ex of maps π : Xπ → X with Xπ affinoid, such that the conditions (i)-(iv) hold.
For each π ∈ Ex, let

Yπ
θ−−−−→ Y

fπ

y yf
Xπ −−−−→

π
X

be the corresponding strict transform diagram.
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By (iii) of (1.2) we have that the strict transform fπ is flat in each point of
θ−1(f−1(x)) = f−1

π (π−1(x)). Let us first show that we can modify the data in such
way that fπ becomes flat everywhere. Since flatness is open in the source by [Sch
7, Theorem 3.8] , we can find an open neighbourhood V′ of f−1

π (π−1(x)) in Yπ over
which fπ is flat. Since Xπ and Yπ are compact Hausdorff spaces, we can find an
open neighbourhood U′ of π−1(x), such that f−1

π (U′) ⊂ V′. Similarly, we can find
an open neighbourhood U of x in X, such that π−1(U) ⊂ U′. The neighbourhood
U can be taken inside the union of all the Im(π), for all π ∈ Ex. Set Uπ = π−1(U).
Note that Uπ ↪→ Xπ is the strict transform of the open immersion U ↪→ X under π.
Let ψ be the restriction of π to Uπ. The strict transform of f under ψ is the map

f−1
π (Uπ) → Uπ,

which by construction is flat, since

f−1
π (Uπ) ⊂ f−1

π (U′) ⊂ V′.

This establishes our claim upon replacing π by ψ.
Hence we may assume that fπ is flat. Note also that in the above process, we

have not violated condition (iv) of (1.2), so that the π(Xπ), for all π ∈ Ex, form
a covering of an affinoid neighbourhood Wx of x in X. We can translate all these
diagrams to the rigid analytic setup and assume that the same diagrams hold with
the spaces now rigid analytic varieties (see Remark 1 below), where we keep the
same names for our spaces and maps, but just replace any blackboard letter, such
as X, . . . , by its corresponding roman equivalent X, . . . , denoting the corresponding
rigid analytic variety. In particular, (i)-(iii) hold and we show how to obtain (iv).

Let us now vary the analytic point x over Im f , so that the Wx cover all analytic
points of Im f . Since Y is compact in the Berkovich topology so is f(Y). Therefore,
by [Ber 2, Lemma 1.6.2] , already finitely many of the Wx cover all analytic points
of Im f . In particular, there is a finite collection S of analytic points, such that the
union of all Im(π), for all π ∈ Ex and all x ∈ S, cover Im f , i.e., condition (iv) is
now verified as well. �

Remark 1. In this translation process from Berkovich data to rigid analytic data,
one needs the following. Let us denote byM(M) the corresponding Berkovich space
of a quasi-compact (i.e., quasi-separated with a finite admissible affinoid covering)
rigid analytic variety M . Let X = M(X) and suppose π : X̃ → U ↪→ X is a local
blowing up with centre Z, where the latter is a closed subspace of the open U. We
can find a wide affinoid V ofX, such that its closureM(V ) in X is contained inside U.
Hence there exists a closed analytic subvariety Z of V , such thatM(Z) = Z∩M(V ).
Let p : X̃ → V be the blowing up of V with this centre Z, then M(X̃) ⊂ X̃ (see
[Gar, Lemma 2.2] for the details). So in our translation we will replace π by the
(rigid analytic) local blowing up X̃ → V ↪→ X. Moreover, if W is an open inside
U such that its closure W is still contained in U, then we can take V such that
W ⊂M(V ) and hence

π−1(W) ⊂M(X̃) ⊂ X̃.

Note that the local blowing up W̃→W ↪→ X of X with centre Z∩W coincides with
the restriction π−1(W) → X, so that the rigid analytic local blowing up X̃ → X
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is sandwiched by the Berkovich local blowing ups π−1(W) → X and X̃ → X. The
picture is

W̃ −−−−→ W −−−−→ Xy y ∥∥∥
M(X̃) −−−−→ M(V ) −−−−→ Xy y ∥∥∥
X̃ −−−−→ U −−−−→ X,

where the composite vertical maps are open immersions and the outer composite
horizontal maps are local blowing ups.

Moreover, in this way we can maintain in the rigid analytic version all covering
properties which were already satisfied in the Berkovich version.

Remark 2. Note that we proved something stronger than condition (iv), namely
the union of the images of all π ∈ E covers not only all geometric points of Im f ,
but also all analytic points.

2. Subanalytic Sets

2.1. Definition. We now introduce the notion of semianalytic and subanalytic
sets in rigid analytic geometry. There are essentially two different ways of viewing
these objects, one is geometrical in nature and the other is model-theoretic. We give
both point of views and leave it to the reader to pick his favourite. In what follows,
let X = SpA be a reduced affinoid variety (i.e., A has no non-trivial nilpotent
elements), although the assumption that X is reduced is not always necessary.

2.1.1. The Geometric Point of View.
A subset Σ of X is called globally (rigid) semianalytic in X, if Σ is the union of

finitely many basic subsets, where the latter are of the form

(1) {x ∈ X | |pi(x)| ≤ |qi(x)| , for i < n and |pi(x)| < |qi(x)| , for n ≤ i < m } ,

with the pi, qi ∈ A. The set Σ is just called (rigid) semianalytic in X, if there exists
a finite admissible affinoid covering {Xj}j<t of X, such that Σ ∩ Xj is globally
semianalytic in Xj , for each j < t.

The set Σ is called (rigid) subanalytic in X, if there exists a globally semianalytic
subset Ω of X×RN , for some N , such that Σ = π(Ω), where π : X×RN → X is the
projection on the first factor. Whereas the collection of all (globally) semianalytic
subsets of X is easily seen to be a Boolean algebra, this is no longer obvious at all
for the class of subanalytic sets. Recently, Lipshitz and Robinson gave a proof of
this result in [LR 2, Corollary 1.6] . Below, we give a short review of their results,
since we will make use of them in the proof of our Quantifier Elimination (2.7).

The reader might wonder whether one should not introduce more local versions of
subanalyticity, for instance, what about the projection of a semianalytic set which
is not globally semianalytic? A moments reflection shows quite easily that we
would not enlarge the class of sets at all. We extend the notion of semianalytic and
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subanalytic to an arbitrary quasi-compact rigid analytic variety X as follows: let
Σ ⊂ X then Σ is semianalytic (respectively, subanalytic) in X, if there exists a finite
admissible affinoid covering {Xi}i<s of X, such that each Σ ∩ Xi is semianalytic
(respectively, subanalytic) in Xi.

In order to give a neat description of a subanalytic set, it is convenient to intro-
duce a special function D, first introduced by Denef and van den Dries in their
paper [DvdD] , in which they describe p-adic subanalytic sets. Put

D : R2 → R : (a, b) 7→
{
a/b if |a| ≤ |b| 6= 0

0 otherwise.

We define the algebra AD of D-functions on X, as the smallest K-algebra of K-
valued functions on X containing A and closed under the following two operations.

(i) If p, q ∈ AD, then also D(p, q) ∈ AD.
(ii) If p ∈ A〈T1, . . . , TN 〉 and qi ∈ AD with |qi| ≤ 1, for i = 1, . . . , N , then also

p(q1, . . . , qN ) ∈ AD.
Here, the function D(p, q) is to be considered as a pointwise division, i.e., defined by
x 7→ D(p(x), q(x)). Note also that if p ∈ AD then p defines a bounded function on X
and hence it makes sense to define |p| = supx∈X |p(x)|. If we allow in the definition
of (globally) semianalytic sets also D-functions rather than just elements of A, we
may now formulate the definition of (globally) D-semianalytic sets: the functions
appearing in (1) may be elements of AD. The class of globally D-semianalytic sets
coincides with the class of D-semianalytic sets. Our main result now will be that
a set is D-semianalytic, if and only if, it is subanalytic.

2.1.2. The Model-Theoretic Point of View.
If one wants to initiate the model-theoretic study of the field K with its analytic

structure, it is more convenient to consider the valuation ring R instead. This is
because the unit ball, which is a domain of convergence for the ring of strictly
convergent power series, may be identified with a Cartesian product of R. We
propose the following language.

The analytic language Lan for R consists of two 2-ary relation symbols P≤ and
P< and an n-ary function symbol Ff , for every strictly convergent power series
f in n-variables of norm at most one, i.e., for every f ∈ R〈X1, . . . , Xn〉, where
n = 0, 1, . . . . The interpretation of R as an Lan-structure is as follows. Each n-ary
function symbol Ff is interpreted as the corresponding function f : Rn → R, defined
by the strictly convergent power series f (note that |f | ≤ 1, so that f is indeed
R-valued). The relation symbol P≤ interprets the subset

{
(x, y) ∈ R2 | |x| ≤ |y|

}
of R2, and likewise, P< describes the subset

{
(x, y) ∈ R2 | |x| < |y|

}
. Hence, the

atomic formulae in this language (or rather, their interpretation in R) are of the
following three types

f(x) = g(x),(1)

|f(x)| ≤ |g(x)| ,(2)

|f(x)| < |g(x)| .(3)

Note that the first type can be rewritten as |f(x)− g(x)| ≤ 0, so that we actually
only have to deal with types (2) and (3). One can of course define P<(x, y) as
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¬P≤(y, x), but the advantage of not doing so is that all formulae can now be made
equivalent with positive ones, i.e., without using the negation symbol. One cannot
expect R to have elimination of quantifiers in this language, as it has neither in
the real or the p-adic case (basically the same counterexample, in essence due to
Osgood, can be used in all three cases).

In an attempt to remedy this, we introduce an expansion LD
an of Lan with one new

2-ary function symbol D, which we will interpret in our structure as the function
D of above. If K were the p-adic field (and hence R = Zp), then by a theorem of
Denef and van den Dries [DvdD] , R admits Elimination of Quantifiers in an
expansion of this language where one needs to add extra predicates, one for each
n = 2, 3, . . . , to express that an element is an n-th power; a similar expansion occurs
in Macintyre’s algebraic Quantifier Elimination for Zp. In the algebraically closed
case these predicates are clearly obsolete. Hence the following is the natural rigid
analytic analogue: the valuation ring R of K admits Elimination of Quantifiers in
the language LD

an.
Let us see how this ties in with the above notion of subanalyticity. A subset of

RN which is definable in the language Lan by a quantifier free formula, is precisely
a globally semianalytic set whereas an existentially definable set is a projection of
a globally semianalytic set, so consequently subanalytic. It is not too hard to see
that the function D is existentially definable and whence also every D-function
on RN , so that any D-semianalytic subset of RN is subanalytic. The claim that
every subanalytic set is D-semianalytic is then equivalent with the aforementioned
Quantifier Elimination in the language LD

an.4

We remark that any affinoid variety X is quantifier-free definable in Lan since
there is a closed immersion X ↪→ RN for some N ∈ N. More generally any quasi-
compact rigid analytic variety is also quantifier-free definable in Lan. Also note that
semianalytic sets (respectively, subanalytic sets) in such a variety X correspond to
quantifier-free definable (respectively, existentially definable) subsets of X.

We will be adopting from now on the geometric point of view. Certain theorems
hold also in case K is not algebraically closed. However, for sake of simplicity we
will maintain this assumption in what follows. In particular, one can and we will
identify Sp(K〈S1, . . . , Sn〉) with Rn.

2.1.3. Example. If f : Y → X is a map of affinoid varieties, then the image f(Y )
is a typical subanalytic subset of X (not necessarily semianalytic!). Subanalyticity
follows from projecting the graph of f (which is analytic, whence semianalytic) onto
X. More generally, it follows that f(Σ) ⊂ X is subanalytic whenever Σ ⊂ Y is
subanalytic. This example shows that even when one is merely interested in closed
analytic subsets, one needs to study subanalytic sets as well. However, there are
some particular kind of maps which have better understood image. For instance,
Kiehl’s Proper Mapping Theorem [Ki] (or [BGR, 9.6.3. Proposition 3] ) states
that the image of a proper map is closed analytic. However, this does not tell
us anything on the image of a semianalytic set under a proper map. In fact, in
[Sch 1] and [Sch 2] the second author shows that if Σ ⊂ Y is semianalytic and
f : Y → X is proper, then f(Σ) is D-semianalytic in X; he carries out a systematic
study of the sets arising in this way–the strongly subanalytic sets. One might hope

4By an easy logic argument, it is enough to eliminate only existential quantifiers to obtain
Quantifier Elimination.
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though that certain proper maps, viz. blowing up maps, nevertheless behave better
with respect to semianalyticity. It is the contents of (2.3) below that this is true
provided one replaces semianalytic by D-semianalytic and then, unfortunately, this
is only true generically, i.e., away from the centre. It is because of this (rather
straightforward) result that D-functions are needed. Noteworthy here is that in
case of the blowing up of the plane in a single (reduced) point, the image of a
semianalytic set is nevertheless semianalytic again. This (much harder) result will
be used implicitly in the proof of (3.2).

A second class of affinoid maps with well-understood images are the flat maps:
their images are finite unions of rational domains and hence in particular semiana-
lytic. This highly non-trivial result is due to Raynaud and Gruson (a full account
by Mehlmann appeared in [Meh] ). Because of its crucial role in our argument
and since we need a slight improvement of their original result in the form (2.2)
below, we will provide most of the details in an Appendix.

2.2. Theorem (Raynaud-Gruson-Mehlmann). Let f : Y → X be a flat map
of affinoid varieties. Let Σ be a semianalytic subset of Y defined by finitely many
inequalities of the form |h(y)| < 1 or |h(y)| ≥ 1, where each h belongs to the affinoid
algebra of Y and has supremum norm at most one. Then f(Σ) is semianalytic in
X.

Proof. See the Appendix. �

2.3. Proposition. Let π : X̃ → X be a map of rigid analytic varieties and let Σ
be a D-semianalytic subset of X̃. If π is a locally closed immersion, then π(Σ) is
D-semianalytic in X. If π is a local blowing up map with centre Z, then π(Σ) \ Z
is D-semianalytic in X.

Proof. For closed immersions the statement is trivial. If U = SpC ↪→ X = SpA
is a rational affinoid subdomain, then C = A〈f/g〉, where f = (f1, . . . , fn) with
fi, g ∈ A having no common zero. Hence any function h ∈ C defined on U is D-
definable on X (just replace any occurrence of fi/g by D(fi, g)). Now, any affinoid
subdomain is a finite union of rational subdomains by [BGR, 7.3.5. Corollary 3]
and hence we proved the proposition for any affinoid open immersion as well. From
this the general locally closed immersion case follows easily.

This leaves us with the case of a blowing up. Without loss of generality, we may
assume X to be affinoid. Let us briefly recall the construction of a blowing up map
as described in [Sch 5] . Let X = SpA and let Z be a closed analytic subvariety
of X defined by the ideal (g1, . . . , gn) of A. We can represent A as a quotient of
some K〈S〉, with S = (S1, . . . , Sm), so that X becomes a closed analytic subvariety
of Rm. However, in order to construct the blowing up of X with centre Z, we need
a different embedding, given by the surjective algebra morphism

K〈S, T 〉 � A : Tj 7→ gj ,

for j = 1, . . . , n, extending the surjection K〈S〉 � A and where T = (T1, . . . , Tn).
This gives us a closed immersion i : X ↪→ Rm × Rn and after identifying X with
its image i(X), we see that Z = X ∩ (Rm × 0). Now, the blowing up π : X̃ → X is
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given by a strict transform diagram

X̃
π−−−−→ X

ı̃

y yi
W −−−−→

γ
Rm ×Rn

where γ denotes the blowing up of Rm × Rn with centre the linear space Rm × 0.
There is a standard finite admissible affinoid covering {W1, . . . ,Wn} of W where
each Wj has affinoid algebra

Cj =
K〈S, T, U〉

(TjU1 − T1, . . . , TjUn − Tn)
,

so that γ(s, t, u) = (s, t) for any point (s, t, u) ∈Wj , where the latter is considered
as a closed analytic subset of Rm × Rn × Rn via the above representation of Cj .
Moreover, X̃ is a closed analytic subvariety of X ×(Rm×Rn)W . Therefore, if we set
X̃j = ı̃−1(Wj), then {X̃1, . . . , X̃n} is a finite admissible affinoid covering of X̃ with
the affinoid algebra Ãj of each X̃j some quotient of the affinoid algebra

(1)
A〈Ûj〉

(gjU1 − g1, . . . , gjUn − gn)

of Wj ×(Rm×Rn) X, where Ûj means all variables Uk save Uj .
With this notation, let us return to the proof of the proposition. We are given

some D-semianalytic set Σ of X̃ and we seek to describe the image π(Σ) \ Z. Let
us focus for the time being at one Σ ∩ X̃j , where j ∈ {1, . . . , n}. Since Σ ∩ X̃j is
D-semianalytic, we can find a quantifier free LD

an-formula ϕ(s̄ss, ūuu), such that (s, u) ∈
Rm × Rn belongs to Σ ∩ X̃j , if and only if, ϕ(s, u) holds. Hence, for s ∈ Rm, we
have that s ∈ π(Σ ∩ X̃j), if and only if,

(2) (∃ūuu)ϕ(s, ūuu).

Note that by (1), if ϕ(s, u) holds, then in particular (s, u) ∈ X̃j and hence gj(s)uk =
gk(s), for all k = 1, . . . , n. Now, a point s ∈ Rm does not belong to Z, precisely
when one of the gk(s) does not vanish. Therefore, as j ranges through the set
{1, . . . , n} and using (2), it is not too hard to see that s ∈ Rm belongs to π(Σ) \Z,
if and only if, s ∈ X and

n∨
j=1

n∧
k=1

|gk(s)| ≤ |gj(s)| ∧ gj(s) 6= 0 ∧ ϕ(s,D(g1(s), gj(s)), . . . ,D(gn(s), gj(s))),

which is indeed a D-semianalytic description of π(Σ) \ Z. �

Remark. The above result is unsatisfactory in so far as it does not tell us anything
about π(Σ) restricted to the centre Z of the blowing up. If we could prove that also
π(Σ)∩Z were D-semianalytic, then the whole image π(Σ) would be D-semianalytic,
as we would very much like to show. But, above Z, the map π looks like a projection
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map, so that we can’t say much more about π(Σ∩π−1(Z)) = π(Σ)∩Z except that it
is a subanalytic set. If Z would be zero dimensional and whence finite, then clearly
also π(Σ) ∩ Z is D-semianalytic. This suggests that we might be able to use the
above result in order to prove Quantifier Elimination by an induction argument on
the dimension of X, as soon as we can arrange that Z has strictly smaller dimension
than X. This will be the case, if Z is nowhere dense; a condition we ensure will
always be fulfilled.

Another point ought to be mentioned here: although a blowing up π : X̃ → X
is an isomorphism outside its centre Z, this does not automatically imply that one
can deduce from the D-semianalyticity of Σ \ π−1(Z) the same property for its
(isomorphic) image π(Σ)\Z. What is going on here is that being (D-)semianalytic
is not an intrinsic property of a set, but of its embedding in a larger space. In other
words, being isomorphic as point sets is not enough and thus the above statement
is not a void one.

Before we turn to the proof of our main theorem, let us give a brief review
on the model-completeness result of Lipshitz and Robinson. Geometrically, this
amounts to the fact that the complement of a subanalytic set is again subanalytic.
This is by no means a straightforward result. In the real case it was shown by
Gabrielov using quite involved arguments and it was only since the appearance of
the paper [DvdD] of Denef and van den Dries that one has a conceptual proof
through a much stronger result, namely, the class of subanalytic sets is equal to the
class of D-semianalytic sets. Closure under complementation is now immediate.
Using the result of [LR 2] we exploit their dimension theory to prove our main
Quantifier Elimination Theorem.

2.4. Theorem (Lipshitz-Robinson). The complement X \ Σ and the closure
Σ (in the canonical topology) of a subanalytic set Σ in X, where X is a reduced
quasi-compact rigid analytic variety, is again subanalytic.

2.5. Theorem (Lipshitz-Robinson). Let X be a reduced quasi-compact rigid
analytic variety and let Σ be a subanalytic set in X. Then there exists a finite
partition of Σ by pairwise disjoint rigid analytic submanifolds Xi of X such that
their underlying set is subanalytic in X.

The proofs of both Theorems rely on a certain Quantifier Elimination result in
some appropriate language and we refer the reader to the paper [LR 2, Corollary
1.2 and 1.3] by Lipshitz and Robinson. Let us just show how one can derive a
good dimension theory for subanalytic sets from these results. First of all, there
is the notion of the dimension of a quasi-compact rigid analytic variety. This is
defined as the maximum of the (Krull) dimension of all its local rings (we give
the empty space dimension −∞). In case X = SpA is affinoid, this is just the
dimension of A. Next, we define the dimension of a subanalytic set Σ in X as the
maximum of all dimY , where Y ⊂ Σ is a submanifold of X. If Σ carries already the
structure of a manifold, then clearly its subanalytic dimension equals its manifold
dimension.

The relevant properties for this dimension function are now summarised by the
following proposition.



FLATTENING AND SUBANALYTIC SETS 17

2.6. Proposition. Let X be a quasi-compact rigid analytic variety and let Σ and
Σ′ be (non-empty) subanalytic sets in X. Then the following holds.

(i) If Σ ⊂ Σ′, then the dimension of Σ is at most the dimension of Σ′.
(ii) The dimension of Σ is zero, if and only if, Σ is finite.
(iii) The dimension of Σ equals the dimension of its closure (in the canonical

topology) Σ.
(iv) The dimension of the boundary Σ\Σ is strictly smaller than the dimension

of Σ.
(v) If f : X → Y is a map of quasi-compact rigid analytic varieties, then the

dimension of f(Σ) is at most the dimension of Σ, with equality in case f is
injective.

(vi) If Σ is semianalytic, then the dimension of Σ is equal to the (usual) dimen-
sion of its Zariski closure.

Remark. Note that by (2.4) both the closure Σ and the boundary Σ\Σ are indeed
subanalytic.

Proof. The first two statements follow from the fact that the dimension of a subana-
lytic set is the maximum of the dimensions of each manifold in any finite subanalytic
manifold partitioning (as in (2.5)). The other statements require more work. See
[Lip] and also [DvdD, 3.15-3.26] for the p-adic analogues–the proofs just carry
over to our present situation, once one has (2.5). �

2.7. Theorem (Quantifier Elimination). Let X be a reduced affinoid variety,
then the subanalytic subsets of X are precisely the D-semianalytic subsets of X.

Proof. We have already seen that D-semianalytic sets are subanalytic. To prove
the converse, let Σ be a subanalytic set of X. We will induct on the dimension of
Σ and then on the dimension of X. The zero-dimensional case follows immediately
from (ii) in (2.6). Hence fix dim Σ = k > 0 and dimX = d > 0.
Step 1. It suffices to take Σ closed in the canonical topology (i.e., the induced topol-
ogy coming from the norm). Indeed, assume the theorem proven for all subanalytic
sets which are closed in the canonical topology. Let Σ be the closure of Σ with
respect to the canonical topology. By (2.4) and (iii) of (2.6), also Σ is subanalytic
and of dimension equal to the dimension of Σ. Hence by our assumption Σ is even
D-semianalytic. Let Γ be the boundary Σ\Σ, which is again subanalytic by (2.4).
Moreover, by (iv) of (2.6), Γ has strictly smaller dimension than Σ. Hence, by our
induction hypothesis on the dimension of a subanalytic set, we have that also Γ is
D-semianalytic. Therefore also Σ = Σ \ Γ, as required.
Step 2. Hence we may assume that Σ is closed in the canonical topology. There ex-
ists a globally semianalytic subset Ω′ ⊂ X×RN , for some N , such that Σ = f ′(Ω′),
where f ′ : X ×RN → X is the projection on the first factor. The union of finitely
many D-semianalytic sets is again such. Therefore, without loss of generality, we
may even take Ω′ to be a basic set, i.e., of the form{

(x, t) ∈ X ×RN |
∧
i<m

|pi(x, t)| ≤ |qi(x, t)| ∧
∧

m≤i<n

|pi(x, t)| < |qi(x, t)|
}
,

where the pi and qi are in A〈T 〉, with X = SpA and T = (T1, . . . , TN ). Introduce n
new variables Zi and consider the following closed analytic subset Y of X ×RN+n

given by the equations pi − Ziqi = 0, for i < n. Let Ω be the basic subset of Y
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given by (x, t, z) ∈ Y belongs to Ω whenever |zi| < 1, for m ≤ i < n. Let q be
the product of all the qi, for m ≤ i < n, and we obviously can assume that q 6= 0
lest Σ is non-empty. If f : Y → X denotes the composition of the closed immersion
Y ↪→ X × RN+n followed by the projection X × RN+n → X, then f(Ω ∩ U) = Σ,
where U is the complement in Y of the zero-set of q. Using [Sch 6, Corollary 2.2] ,
we may, after perhaps modifying some of the equations defining Y , assume that
the closure of U in the canonical topology equals the whole of Y and hence the
closure (in the canonical topology) of Ω ∩ U is Ω. Now Ω ∩ U ⊂ f−1(Σ) and so
Ω = Ω ∩ U ⊂ f−1(Σ), since Σ is closed and f is continuous. Hence f(Ω) = Σ.
Step 3. Before giving the details of the proof, let’s pause to give a brief outline of
how we will go about. According to our Flattening Theorem, we can find finitely
many diagrams

(†)π

Yπ
θπ−−−−→ Y

fπ

y yf
Xπ −−−−→

π
X

indexed by maps π, where each such π is a finite composition of local blowing up
maps with the properties (i)-(iii) and such that Im f is contained in the union of
all the Im(π). Now, in order to study Σ = f(Ω), we will chase Ω around these
diagrams (†)π. There are only finitely many π to consider; it will suffice to do
this for one such π since the analysis for the others is identical. First we take the
preimage θ−1

π (Ω), which is again a semianalytic set defined by inequalities of the
form |h| < 1 where the h are functions on Yπ of supremum norm at most one. Next
we take the image of the latter set under fπ. Our extension of Raynaud’s Theorem
(2.2) guarantees that this image is semianalytic. Finally we push this set back to
X via π and denote this set temporarily by Σ′. If we had the full version of (2.3),
i.e., a local blowing up map preserves D-semianalyticity, then this last set would
be indeed D-semianalytic.

Of course, in chasing Ω around the diagram, we might have lost some points, i.e.,
it may well be the case that Σ′ 6= Σ. But this could happen only for points coming
from one of the centres of the local blowing ups that make up π (since outside
its centre, a blowing up map is an isomorphism). Above each of these centres the
strict transform is flat so we account for those missing points using (2.2) once more.
Hence the only problem in the above reasoning lies in the application of (2.3): it is
not the whole image that we can account for by means of that proposition, but only
for the part outside the centre. However, the latter has dimension strictly smaller
and by an induction argument on the dimension, we could also deal with this part.
Step 4. Our second induction hypothesis says that any subanalytic set in an affinoid
variety of dimension strictly smaller than d is D-semianalytic. Let us first draw the
following strengthening of (2.3):

(2.3)′ Let π : W̃ →W be any local blowing up of a quasi-compact rigid analytic

variety W of dimension at most d whose centre Z is nowhere dense. If Γ ⊂ W̃ is
D-semianalytic, then π(Γ) ⊂W is also D-semianalytic.

The key point is that Z has dimension strictly smaller than the dimension d of
W , which is also the dimension of W̃ . Now

π(Γ) = (π(Γ) \ Z) ∪ (Z ∩ π(Γ)).
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By (2.3) we know that π(Γ)\Z is D-semianalytic and by our induction hypothesis
on the dimension we have that also Z ∩ π(Γ) is (take a finite affinoid covering to
reduce to the affinoid case).
Step 5. Now, according to (1.3), there exists a finite collection E of maps π : Xπ →
X, such that each π ∈ E induces a strict transform diagram (†)π with properties
(i)-(iv) of loc. cit. (The intermediate strict transform diagrams are given by (†)i
below). By (iv), if we could show that each Im(π) ∩ Σ is D-semianalytic in X,
then the same would hold for Σ, since there are only finitely many π. Therefore,
let us concentrate on one such π = π1 ◦ . . . ◦ πm and adopt the notation from (1.1)
for this map, so that in particular, (i)-(iii) of loc. cit. holds. Let each πi+1 be the
blowing up of the admissible affinoid Ui ⊂ Xi with nowhere dense centre Zi ⊂ Ui.
The diagram of strict transform is given by

(†)i

Yi+1
θi+1−−−−→ Yi

fi+1

y yfi

Xi+1 −−−−→
πi+1

Xi.

Define inductively Ωi ⊂ Yi as θ−1
i (Ωi−1) starting from Ω0 = Ω. Note that each

Ωi is a semianalytic set of Yi defined by several inequalities of the type |h| < 1,
where each h ∈ O(Yi) is of supremum norm at most one. Define also inductively,
but this time by downwards induction, the sets Wi−1 = πi(Wi) ⊂ Ui ⊂ Xi where
we start with Wm = Xm = Xπ. In particular, we have that W0 = Im(π). By (2.3)′

each Wi is D-semianalytic in Xi. In order to describe Σ, we will furthermore make
use of the sets Γi defined as fi(Ωi) ∩Wi, for i ≤ m. In particular, note that Γ0 is
nothing else than f(Ω)∩W0 = Σ∩ Im(π), which we aim to show is D-semianalytic.

The next claim shows how two successive members in the chain of commutative
diagrams (†)i relate the Γi: for each i < m, we have an equality

(‡)i Γi = πi+1(Γi+1) ∪ (Γi ∩ Zi).

Assume we have established already (‡)i, for each i < m. We will prove, by down-
wards induction on i ≤ m, that each Γi is D-semianalytic in Xi, so that in particular
Γ0 would be D-semianalytic in X, as required. First of all, since fπ = fm is assumed
to be flat, we can apply (2.2) to Ωm to conclude that Γm = fm(Ωm) is semianalytic
whence D-semianalytic in Xm. Assume now that we have already proven that Γi+1

is D-semianalytic in Xi+1 and we want to obtain the same conclusion for Γi in Xi.
Using (‡)i, it is enough to establish this for both sets in the right hand side of that
equality. The first of these, πi+1(Γi+1), is D-semianalytic since we have now the
strong version (2.3)′ of (2.3) at our disposal. As for the second set, Γi ∩ Zi, also
this one is D-semianalytic, since fi restricted to f−1

i (Zi) is flat and since

Γi ∩ Zi = fi(Ωi ∩ f−1
i (Zi)) ∩Wi,

so that (2.2) applies. Note that we already established that Wi is D-semianalytic.
Therefore, it only remains to prove (‡)i. The inclusion ⊃ is straightforward

and we omit the details. To prove ⊂, let xi ∈ Γi. That means that there exists
yi ∈ Ωi and wi+1 ∈ Wi+1 such that fi(yi) = xi = πi+1(wi+1). If xi ∈ Zi, we
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are done. Hence assume that xi /∈ Zi so that yi /∈ f−1
i (Zi). However, since

Wi ⊂ Ui we have that yi ∈ f−1
i (Ui). Since θi+1 is the blowing up of f−1

i (Ui) with
centre f−1

i (Zi) and whence an isomorphism outside this centre, we can even find
yi+1 ∈ Yi+1, such that θi+1(yi+1) = yi. From yi ∈ Ωi it then follows that yi+1 ∈
Ωi+1. Put xi+1 = fi+1(yi+1). Commutativity of the strict transform diagram
implies that πi+1(xi+1) = xi = πi+1(wi+1). Since xi /∈ Zi, the blowing up πi+1

is an isomorphism in that point, so that wi+1 = xi+1 which therefore belongs to
fi+1(Ωi+1) ∩Wi+1 = Γi+1, proving our claim, and hence also our main theorem.

�

Remark. We can derive from the above proof also a weak uniformization as follows.
Define Σi inductively as the inverse image of Σi−1 under πi, for 1 ≤ i ≤ m, with
Σ0 = Σ. With notations as in the above proof, we can derive, for i < m, from (‡)i
the following identity

Σi+1 ∩Wi+1 = Γi+1 ∪
(
π−1
i+1(Γi ∩Wi) ∩Wi+1

)
.

For i = m− 1, this takes the simplified form Σm = Γm ∪π−1
m (Γm−1 ∩ Zm−1). Now,

as already observed, Γm is semianalytic in Xm = Xπ and similarly Γm−1 ∩ Zm−1

is semianalytic in Xm−1 and whence also its preimage under πm. In other words,
we showed the following proposition.

2.8. Corollary. Let X be a reduced affinoid variety and let Σ be a subanalytic set
in X. There exists a finite collection of compositions of finitely many local blowing
up maps π1, . . . , πn with nowhere dense centre, such that the union of the Im(πi)
contains Σ, and such that each preimage π−1

i (Σ) has become semianalytic.

Proof. This follows from the above discussion in the case where Σ is closed in the
canonical topology. The reduction to this case uses an induction argument similar
to the one in the proof of the theorem. �

Note also that to prove the corollary, we do not make use of (2.3) but only of
(2.2). For an improvement of (2.8), at least in the zero characteristic case, see the
Uniformization Theorem (3.1) below, where we will be able to take smooth centres
for the blowing ups involved.

3. Uniformization

In [Sch 2, Theorem 4.4] it was proved that for any strongly subanalytic set
Σ in an affinoid manifold X, there exists a finite covering family of compositions
π of finitely many local blowing ups with smooth and nowhere dense centre, such
that the preimage π−1(Σ) is semianalytic, provided the characteristic of K is zero.
The restriction to zero characteristic is entirely due to the lack of an Embedded
Resolution of Singularities in positive characteristic. A proof of this rigid analytic
Embedded Resolution of Singularities for zero characteristic can be found in [Sch
4, Theorem 3.2.5] . In the present paper, we will extend the above Uniformization
Theorem to the class of all subanalytic sets. The proof is entirely the same as for
the strong subanalytic case, in that we only make use of the fact that a subanalytic
set is D-semianalytic. For the convenience of the reader we give below an outline
of the argument.
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3.1. Uniformization Theorem. Let X be an affinoid manifold (i.e., all its local
rings are regular) and assume K has characteristic zero. Let Σ be a subanalytic
subset of X. Then there exists a finite collection E of maps π : Xπ → X, with each
Xπ again affinoid, such that the following properties hold.

(i) Each π ∈ E is the composition ψ1 ◦ · · · ◦ ψm of finitely many local blowing
up maps ψi with nowhere dense and smooth centre, for i < m.

(ii) The union of all the Im(π), for π ∈ E, equals X.
(iii) For each π ∈ E, we have that π−1(Σ) is semianalytic in Xπ.

Proof. Let X = SpA. As already mentioned, we will use Embedded Resolution
of Singularities on X and more particularly the following corollary to it: given
p, q ∈ A, then there exists a finite collection E′ of maps, such that (i) and (ii) hold,
for each π : Xπ → X in E′, and furthermore either p ◦π divides q ◦π, or vice versa,
q ◦ π divides p ◦ π, in the affinoid algebra of Xπ. See for instance [Sch 2, Lemma
4.2] for a proof.

From our Quantifier Elimination (2.7), we know that Σ is D-semianalytic. By
a (not too difficult) argument, involving an induction on the number of times the
function D appears in one of the describing functions of Σ (for details see [Sch 2,
Theorem 4.4] ), we can reduce to the case that there is only one such occurrence.
In other words, we may assume that there exist a quantifier free formula ψ(x̄xx,yyy) in
the language Lan and functions p, q ∈ A, such that x ∈ Σ, if and only if,

(1) ψ(x,D(p(x), q(x))) holds.

After an appeal to the aforementioned corollary of Embedded Resolution of Sin-
gularities to p and q, and since we only seek to prove our result modulo finite
collections of maps for which (i) and (ii) holds, we may already assume that either
p divides q or q divides p. In the former case, there is some h ∈ A, such that q = hp
in A. Therefore, D(p(x), q(x)) = 0, unless q(x) 6= 0 and |h(x)| = 1, in which case it
is equal to 1/h(x). Let U1 be the affinoid subdomain defined by |h(x)| ≤ 1/2 and
U2 by |h(x)| ≥ 1/2, so that {U1, U2} is an admissible affinoid covering of X. Hence
x ∈ U1 belongs to Σ, if and only if, ψ(x, 0) holds and x ∈ U2 belongs to Σ, if and
only if,

[|h(x)| ≥ 1 ∧ q(x) 6= 0 ∧ ψ(x, 1/h(x))] ∨ [(|h(x)| < 1 ∨ q(x) = 0) ∧ ψ(x, 0)]

holds. Observe that 1/h belongs to the affinoid algebra of U2, since h does not
vanish on U2. In other words, Σ is semianalytic on both sets and whence on the
whole of X.

In the remaining case that q divides p, i.e. there is some h ∈ A, such that qh = p
in A, we have an even simpler description of Σ, namely x ∈ Σ, if and only if,

[p(x) 6= 0 ∧ ψ(x, h(x))] ∨ [p(x) = 0 ∧ ψ(x, 0)]

holds, again showing that Σ is semianalytic. �

3.2. Corollary. Suppose K has characteristic zero and let Σ ⊂ R2. If Σ is
subanalytic, then in fact it is semianalytic.

Proof. In [Sch 3, Theorem 3.2] this is proved for the subclass of strongly sub-
analytic sets. However, in its proof, nowhere we have made essential use of the
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strongness (=overconvergency), and hence the same proof applies verbatim (see
also the final remark in the introduction of loc. cit.). �

Remark. Using Abhyankar’s Embedded Resolution of Singularities in positive
characteristic for excellent local rings of dimension two, one can remove the as-
sumption on the characteristic in the above Corollary.

Appendix: Elimination along Flat Maps

A.1. Definition. This section will be devoted to a proof of (2.2). In it, we
will need some properties of the reduction functor applied to an affinoid algebra.
However, for our purposes, we do not need to introduce the whole machinery of
reductions but can do with an ad hoc construction to be presented below. First of
all, let us fix some notation. As before, R denotes the valuation ring of K, i.e., all
r ∈ K with |r| ≤ 1, and ℘ will denote the maximal ideal of R, i.e., all r ∈ K, such
that |r| < 1. Note that R is a rank-one valuation ring, i.e., the only prime ideals
are (0) and ℘. The residue field R/℘ will be denoted by K̄. Notice that it is also
an algebraically closed field.

We will call an R-algebra A◦ an admissible algebra, if A◦ is flat as an R-algebra
and topologically of finite type, meaning of the form R〈S〉/I◦, for some finitely
generated ideal I◦ and some variables S = (S1, . . . , SN ). From a given admissible
algebra A◦, we can construct an affinoid algebra by tensoring over K, namely let
A = A◦ ⊗R K. Flatness now guarantees that A◦ ⊂ A. If we start with an affinoid
algebra A = K〈S〉/I and define A◦ as R〈S〉/I◦ with I◦ = I ∩R〈S〉 as above, then
I◦ is finitely generated and A◦ is torsion-free whence flat over R, that is to say,
A◦ is admissible. By tensoring over K we recover our original affinoid algebra, i.e.,
A = A◦ ⊗R K. However, A◦ depends on the particular choice of representing A as
a quotient of some K〈S〉.

For the sake of simplicity, let us assume that K is algebraically closed.5 Let A◦

be an admissible R-algebra and let A = A◦ ⊗R K be the corresponding affinoid
algebra. With respect to the structure map R → A◦, any prime ideal of A◦ lies
either above (0) or above ℘. The former prime ideals are in one-one correspondence
with the prime ideals of A. Hence, in particular, we will consider SpA as a subset
of Spec(A◦). Let us call a map x◦ : SpecR→ Spec(A◦) an R-rational point. Then
to give a point x ∈ SpA (i.e., a maximal ideal m of A) is the same as to give an R-
rational point x◦ (given by the ideal m ∩A◦). The reduction of x is the restriction
of x◦ to the closed immersion Spec K̄ ↪→ SpecR and is denoted by x̄. In other
words, x̄ is given by the maximal ideal (m∩A◦) +℘A◦. Let us denote the maximal
spectrum of A◦ by Max(A◦). The reduction map ξ : SpA → Max(A◦) is the map
given by sending x to its reduction x̄. A word of caution: the reduction map is not
induced by any algebra morphism.

The reduction map ξ is functorial in the following sense. Let ϕ◦ : A◦ → B◦ be
an R-algebra morphism of admissible algebras and let ϕ : A→ B be the morphism
of affinoid algebras obtained by tensoring ϕ◦ with K. Then we have a commutative

5This assumption is not essential, although the proofs would require some modifications for
the general case.
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diagram

(�)

SpB
f−−−−→ SpA

ξ

y yξ
Max(B◦) −−−−→

f◦
Max(A◦)

where f and f◦ are the respective maps on the maximal spectra induced by ϕ and
ϕ◦.

It is well-known (see for instance [Meh] ) that the reduction map is surjec-
tive (regardless whether K is algebraically closed or not). This is an immediate
consequence of the Flat Lifting Lemma below.

A.2. Lemma. Let A◦ → B◦ be a flat R-algebra morphism of admissible R-
algebras and let f : Y ◦ = Spec(B◦) → X◦ = Spec(A◦) denote the corresponding
map of affine schemes. Let x◦ : SpecR → X◦, be an R-rational point of X◦ and
let x̄ denote its reduction Spec K̄ → X◦. Suppose there exists a K̄-rational point
ȳ : Spec K̄ → Y ◦, such that

(1)

Spec K̄
ȳ−−−−→ Y ◦∥∥∥ yf

Spec K̄ −−−−→
x̄

X◦

commutes. Then there exists an R-rational point y◦ of Y ◦, which has reduction ȳ,
and is such that

(2)

SpecR
y◦−−−−→ Y ◦∥∥∥ yf

SpecR −−−−→
x◦

X◦

commutes. We call y◦ a factorisation of x◦ lifting ȳ.

Proof. Let p◦ be the prime ideal of A◦ associated to x◦ (i.e., the image of the
generic point under x◦). Let p̄ = p◦ + ℘A◦, so that it is the maximal ideal of A◦

associated to x̄. Finally, let q̄ be the maximal ideal of B◦ associated to ȳ, so that
the commutativity of (1) translates into

(3) p̄ = q̄ ∩A◦.

Since A◦ → B◦ is flat, the Going Down Theorem (see for instance [Mats, Theorem
9.5] ) guarantees the existence of a prime ideal n◦ of B◦, such that n◦ ⊂ q̄ and

(4) p◦ = n◦ ∩A◦.

Let q◦ be an ideal of B◦, maximal with respect to the following two conditions

n◦ ⊂ q◦ ⊂ q̄(5)

q◦ ∩R = (0).(6)
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The reader easily verifies that such an ideal is necessarily a prime ideal. Moreover,
by (3), (4) and (5), we must have inclusions

p◦ ⊂ q◦ ∩A◦ ⊂ p̄.

In view of (6), the latter of these must be strict. Since A◦/p◦ ∼= R, the only two
prime ideals of A◦ containing p◦ are p◦ itself and p̄. Therefore, we conclude that

(7) q◦ ∩A◦ = p◦.

Let B = B◦ ⊗R K be the associated affinoid algebra. We claim that q◦B is a
maximal ideal of B. Assuming the claim, we have an inclusion of R-algebras

R ↪→ B◦/q◦ ↪→ B/q◦B ∼= K.

Again the last inclusion must be strict and since R is a rank-one valuation ring,
the first inclusion is in fact an isomorphism. In other words, if y◦ is the point of
Y ◦ corresponding to q◦, then it is an R-rational point. Moreover, q◦ +℘B◦ is then
a maximal ideal, containing q◦ and contained in q̄ by (5), and hence equal to the
latter. This shows that y◦ is a lifting of ȳ, as required.

It remains to prove the claim. To this end, let b ∈ B not belonging to q◦B. We
can find 0 6= π ∈ ℘, such that πb belongs to B◦ and even to ℘B◦. In particular, it
belongs to q̄. By the maximality of q◦, we must have that

(q◦ + πbB◦) ∩R 6= (0).

From this it follows that

q◦B + bB = (1),

showing that B/q◦B is a field, as wanted. �

Let A◦ be an admissible algebra with corresponding affinoid algebra A = A◦⊗R
K. Applying this lemma to the flat map R → A◦ and the R-rational point given
by the identity morphism, shows the surjectivity of the reduction map ξ.

The following observation will be constantly used below in the proof of (2.2).
Let h1, . . . , hs ∈ A◦ and let Σ denote the semianalytic set of all y ∈ SpA, such that
|hi(y)| < 1, for i < r and |hi(y)| ≥ 1, for r ≤ i < s. Call such a set special. Let
Σ◦ denote the locally closed subset of Max(A◦) consisting of all maximal ideals m̄,
such that hi ∈ m̄, for i < r, and hi /∈ m̄, for r ≤ i < s. Using the surjectivity of the
reduction map, one easily verifies that these two sets are related to one other by

(1) ξ−1(Σ◦) = Σ and Σ◦ = ξ(Σ).

In other words, ξ induces a bijection between the class of finite Boolean combi-
nations of special subsets of SpA and the class of constructible subsets of Spec Ā,
where Ā = A◦/℘A◦.
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A.3. Proof of Theorem (2.2). So we are given a flat map f : SpB → SpA of
affinoid varieties and a special set Σ of SpB, given as

(1) { y ∈ SpB | |hi(y)| �i 1 for i < s } ,

where hi ∈ B are of supremum norm at most one and �i is either < or ≥. We want
to prove that f(Σ) is semianalytic.

Using (A.4) below, we may reduce to the case that there exist admissible al-
gebras A◦ and B◦ with hi ∈ B◦, for all i < t, such that A = A◦ ⊗R K and
B = B◦ ⊗R K, and there exists a flat morphism of R-algebras A◦ → B◦ which
induces the map f (after tensoring with K). By our observation above, there exists
a locally closed set Σ◦ of Max(B◦) such that ξ−1(Σ◦) = Σ. Since Max(B◦) can be
identified with Max(B̄), where B̄ = B◦/℘B◦, we can view Σ◦ as a locally closed
subset of the latter space as well. If we also put Ā = A◦/℘A◦, then since both
rings are finitely generated K̄-algebras, we can invoke Chevalley’s Theorem to
conclude that the image of Σ◦ under the induced map f̄ : Max(B̄) → Max(Ā) is a
constructible set Ω◦. Identifying Max(A◦) with Max(Ā), we may consider Ω◦ as a
constructible set of the former space as well and as such it is the image of Σ◦ under
the map f◦ induced by f . Let Ω = ξ−1(Ω◦), so that by our above observation Ω is
semianalytic in SpA. Hence we proved our theorem once we showed that

(2) f(Σ) = Ω.

The commutative diagram (�) of (A.1) expressing the functoriality of ξ, provides
the inclusion f(Σ) ⊂ Ω, so we only need to deal with the opposite inclusion.

Hence let x ∈ Ω. Let x◦ be the corresponding R-rational point and let x̄ be the
reduction ξ(x) of x. By assumption, x̄ ∈ Ω◦ and hence it is the image under f◦ of
some point ȳ ∈ Σ◦. We can apply (A.2) to this situation to obtain an R-rational
point y◦ factoring through x◦ and lifting ȳ. In other words, if y ∈ SpB denotes the
point corresponding to y◦, then this translates into f(y) = x and ξ(y) = ȳ. Since
ȳ ∈ Σ◦, the latter implies that y ∈ Σ, as required. �

A.4. Proposition. Let f : Y = SpB → X = SpA be a flat map of affinoid
varieties and let hj ∈ B, for j < t, be of supremum norm at most one. There
exist finite coverings {Ui = SpAi}i<s of X and {Vi = SpBi}i<s of Y by rational
subdomains and R-algebra morphisms ϕ◦i : A◦i → B◦

i of admissible algebras, such
that, for all i < s, we have that

(1) Ai = A◦i ⊗R K and Bi = B◦
i ⊗R K,

(2) the morphism ϕ◦i is flat and induces the map f | Vi
: Vi → Ui,

(3) hj ∈ B◦
i , for all j < t.

Proof. Since the hj are of norm at most one and using [BGR, 6.4.3. Theorem 1] ,
we can find an admissible algebra B◦ containing all hj with B◦ ⊗R K = B, an
admissible algebra A◦ with A◦⊗RK = A and an R-algebra morphism ϕ◦ : A◦ → B◦

inducing the map f . In general, ϕ◦ will not be flat. To remedy this, we use [Meh,
3.4.8] , in order to find admissible coverings as asserted, for which (1) and (2) holds.
Moreover, from the proof in loc. cit., it follows that B◦

i is a quotient of A◦i ⊗A◦ B◦.
Therefore also (3) is satisfied. �

Remark. The result in Mehlmann’s paper is quite an intricate matter, using Ray-
naud’s approach on rigid analysis through formal schemes and admissible formal
blowing ups; an alternative proof can be found in [BL] .
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440.

[Ki] R. Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen
Funktionentheorie, Inventiones Math. 2 (1967), 191–214.

[Lip] L. Lipshitz, Rigid subanalytic sets, Am. J. Math. 115 (1993), 77-108.
[LR 1] L. Lipshitz and Z. Robinson, Rigid subanalytic subsets of the line and the plane, Am.

J. Math. (1992).

[LR 2] , Rigid subanalytic sets II, Am. J. Math. (1996).
[Mac] A. Macintyre, [qe for p-adics].

[Mats] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge,

1986.
[Meh] F. Mehlmann, Ein Beweis für einen Satz von Raynaud über flache Homomorphismen

affinoider Algebren, 2 Serie, vol. Heft 7, Schriftenreihe Math. Inst. Univ. Münster, 1981.

[RG] M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Inventiones Math.
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