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Abstract

These notes1 are intended to be a short course in rigid analytic geome-
try, without, however, providing always proofs. The excellent book [4] by
Bosch, Güntzer and Remmert is an extensive introduction into rigid
analytic geometry, and includes all the proofs I have omitted here.
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Part I

Rigid Analytic Geometry

1 Introduction

We fix an algebraically closed, complete, non-archimedean normed field K, for
short, an ultrametric field. Following [4], I start in Section 5 with the alge-
braic theory of the Tate rings K〈S〉. These Tate rings consist of all strictly
convergent power series , that is to say, all formal power series

∑
i aiS

i in sev-
eral variables S, for which the general coefficient ai tends in norm to 0. The
key algebraic fact about K〈S〉 is the Weierstrass Preparation Theorem 5.2.
From Weierstrass Preparation, in conjunction with the Preparation Trick 5.4,
all other algebraic properties, such as Noetherianity (Theorem 5.11), Nullstel-
lensatz (Theorem 6.6) and Noether Normalization (Theorem 5.6), follow. An
affinoid algebra A is then defined as a homomorphic image of a Tate ring. The
K-algebra A acts as a function algebra on its maximal spectrum and the re-
sulting space X is called an affinoid variety. These affinoid varieties will serve
as the local models for our rigid analytic varieties. However, to even define a
structure sheaf (or, equivalently, local analytic functions) on them, we have to
bring in the notion of Grothendieck topology (see Definition 8.1); the canonical
topology (or norm topology) is insufficient since it is totally disconnected. The
basic admissible open sets are then the rational subdomains , given as all points
x ∈ X satisfying |pi(x)| ≤ |p0(x)| for strictly convergent power series p0, . . . , pn

with no common zero on X ; the admissible coverings are the finite coverings by
rational subdomains.

2 Terminology and notations

2.1. Definition (Ultrametric Field). Throughout the text, we will fix an
algebraically closed field K, endowed with a non-archimedean absolute value
(or, loosely speaking, norm) |·|, which is complete but non-trivial. Such a field
will be called ultrametric.

Recall that an absolute value or multiplicative norm on a ring A is a map
|·| : A → R+, such that for any a, b ∈ A, we have that

2.1.1. |a| = 0 if, and only if, a = 0,

2.1.2. |a − b| ≤ max{|a| , |b|},

2.1.3. |a · b| = |a| · |b|.

If Condition 2.1.3 is weakened to an ≤-inequality, together with |1| = 1,
then we call |·| just a norm and A is correspondingly called a normed ring . An
element a ∈ A is then called multiplicative, if for every b ∈ A, Condition 2.1.3
holds (with equality). In other words, a norm is multiplicative, if each element
is. If, on the contrary, Condition 2.1.1 is weakened to |0| = 0, then the
resulting function is called a semi-norm. In this book, a norm on a field will
always be assumed to be multiplicative, but no so on an arbitrary ring.
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A (semi-)norm is called complete, if for any Cauchy sequence (xn)n in
A (meaning that, for any ε > 0, there exists an N , such that for any two
n,m ≥ N , we have that |xn − xm| < ε), we can find an element x ∈ A,
such that xn converges to x (meaning that for any ε > 0, there exists an N ,
such that for any n ≥ N , we have that |x− xn| < ε). This x is called a limit
of the sequence (xn) and when |·| is a norm, this limit is unique, if it exists.

The reader might be puzzled by Condition 2.1.2, which is called the non-
archimedean inequality. This is stronger than the usual inequality for the abso-
lute value on the reals; a fact often to our advantage. For instance, the following
fact is elementary, but extremely useful and certainly not true in the reals.

2.2. Lemma. Let K be an ultrametric field. If an, for n ∈ N, is a sequence of
elements in K, then their sum

∑
an exists if, and only if, an converges to zero.

Proof. The implication from left to right is always true. To prove the other
implication, recall that a series an converges if, and only if, the sequence of
its partial sums sn converges, where the n-th partial sum is defined as sn =
a0 + · · · + an. Since K is complete, we only need to show that the sequence sn

is a Cauchy sequence. However, by Condition 2.1.2,

|sn − sm| = |am+1 + · · · + an| (1)

is at most the maximum of |am+1| , . . . , |an|, for m < n. Since the an form a
zero sequence, this maximum can be made arbitrary small, by taking m (and
whence also n) big enough.

2.3. Example. The field of the p-adic numbers Qp, with its natural norm is a
complete non-archimedean normed field, as is the field of formal Laurent series
k((S)) in one variable S over an arbitrary field k with the norm given by the
order valuation.

The p-adics are defined as follows (see for instance [18]). Let p be a
prime. On Z we define a norm by putting |a|p = p−e, for a non-zero integer,
where e is the unique natural number such that a is a multiple of pe but
not of pe+1. Of course we put |0|p = 0. We extend this norm to Q, by
putting |a/b|p = |a|p / |b|p, for a, b ∈ Z and b 6= 0 and one checks that
this is independent of the representation of a/b as a fraction of two integers.
By a theorem of Ostrowski, the |·|p, for p prime together with the usual
absolute value |·|∞ are the only (non-equivalent) norms on Q. However, Q is
not complete with respect to any of these norms. The completion of Q with
respect to the |·|p-norm is the p-adic field Qp (and of course, the completion
of Q with respect to the usual absolute value is R).

In the definition of the p-adic norm |a|p of an integer a, twice the number
p is used, once in a relevant way and once in a non-relevant one. The non-
relevant instance is where we take |a|p to be the e-th power of the rational
number 1/p. We might have replaced 1/p here by any real number strictly
smaller than 1 to obtain a norm equivalent to the original one. However,
there is a good explanation for sticking to this convention of taking 1/p as
the base of the exponential, since we then have the following cute result.

2.4. Theorem (Product Formula). Let a be an integer, then

1 =
Y

p∈P∪{∞}

|a|p , (2)

where P is the set of all primes.
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2.5. Remark. Although we made the assumption that K is algebraically closed,
as far as the development of rigid analytic geometry goes, this is not necessary.
The main disadvantage of not taking K algebraically closed is then that not
every maximal ideal is rational, see Remark 5.9. This would require some no-
tational adjustments (notation will be introduced below), such as identifying
SpK〈S1, . . . , Sm〉 with the unit ball Rm

Kalg modulo the action of the absolute
Galois group of K, where RKalg denotes the valuation ring of the algebraic
closure Kalg of K. Since we will be mainly concerned in this book with the
algebraically closed case (except for Section C), I avoid these complications by
making this assumption from the start. For a development of rigid analytic
geometry without the algebraically closedness assumption, see for instance [4].

2.6. Remark. There is a general procedure to extend an arbitrary non-
archimedean normed field K to an ultrametric one, by first taking its com-
pletion, then its algebraic closure and then again completion. Note at that
each stage, the norm uniquely extends, so that there is no ambivalence about
which norm to use. The resulting field remains algebraically closed (see [4,
3.4.1. Proposition 3]) whence is ultrametric.

2.7. Example. The completion of the algebraic closure of Qp is an ultrametric
field and will be denoted by Cp. It is often called the field of complex p-adic
numbers.

2.8. Definition (Ball). Let A be a (semi-)normed ring. We can extend this
norm to any Cartesian power of A as follows. Let a = (a1, . . . , an) ∈ Am, then
we define |a| as the maximum of the |ai|. This is not a canonical choice, for
we could instead have defined |a| as the sum of all |ai|. However, the induced
topology on Am is the same, which is what really matters.

We define a closed ball or (poly-)disk in Am as a set of the form

BAm(a ; ε) = {x ∈ Am | |x − a| ≤ ǫ } , (3)

where a ∈ Am (the centre of the disk) and ε > 0 (the radius). If the context is
clear, we might simply write B(a ; ε) for BAm(a ; ε).

When we take a strict inequality in Formula (3), then we get the definition
of an open disk. This terminology is a bit misleading. Namely, due to the
non-archimedean property, each closed disk is also topologically open (and vice
versa). In particular, the spaces Am are totally disconnected.

In case A is the ultrametric field K, then we write R for BK(0 ; 1). It is the
valuation ring of K. Its maximal ideal will be denoted by ℘; it is the open unit
disk consisting of all elements of norm strictly less than 1. The residue field
R/℘ is denoted by R̄.

A valuation ring A is a domain with field of fractions F , such that for
any non-zero element x ∈ F either x or its inverse x−1 lies in A. Such a ring
A is necessarily local, that is to say, has a unique maximal ideal. The set of
all ideals in a valuation ring is totally ordered (with respect to inclusion).

An example of a valuation ring is a discrete valuation ring . Its maximal
ideal is principal and induces a natural norm on the ring (and its fraction
field). However, if the maximal ideal of a valuation ring is not principal, the
ring is non-Noetherian. This is the case with the ring R as defined above,
since K is algebraically closed. Take any non-zero element π ∈ ℘, then

(π1/2, π1/3, . . . , π1/n, . . . ) = ℘, (4)
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but no finite collection of n-th roots of π can generate ℘. From this it follows
immediately that R has no other prime ideals than (0) and ℘ (for if p is a
prime ideal containing a non-zero element π, then equality (4) shows that
℘ ⊂ p).

A valuation ring A is called a rank-one valuation ring, if for any two non-
zero elements a and b in the maximal ideal of A, we can find some n ∈ N,
such that an ∈ bR. In view of (4), we see that R is a rank-one valuation
ring. A valuation ring A is a rank-one valuation ring if, and only if, its Krull
dimension is 1, that is to say if, and only if, the only two prime ideals of A are
the zero-ideal and the maximal ideal ([22, Theorem 10.7]; for the definition
of Krull dimension, see the remarks following 5.6).

An important algebraic fact about R is the following.

2.9. Proposition. Let A be a ring containing R and contained in K. Then
either A = R or A = K.

Proof. It is easy to check that A is again a valuation ring. Let p be its
maximal ideal. Suppose R  A, so that we seek to prove that A = K.
Choose any a in A − R. Since R is a valuation ring, a−1 ∈ R. However,
it cannot be a unit in R, so a−1 ∈ ℘. Moreover, since a−1 ∈ R ⊂ A, it
follows that a is a unit in A. Therefore, p, since it is the set of non-units in
A, must lie inside R. In other words, p = R∩ p, so that p is a prime ideal of
R, whence contained in ℘. As p does not contain a−1, it follows that p  ℘.
Since the only other possibility for a prime ideal in R is the zero ideal, we
conclude that p = (0), so that A is a field, whence equal to K, as claimed.

In fact this property characterizes rank-one valuation rings (see for in-
stance [22, Theorem 10.1 and 10.7]).

2.10. Definition (Truncated Division). Note that R has the pleasant prop-
erty that whenever a an b are two non-zero elements of R, then one divides the
other. More precisely, if |a| ≤ |b| 6= 0, then a/b ∈ R. This enables us to de-
fine the following function D, which used in the main Quantifier Elimination
Theorem of [10, 11, 29].

D : R2 → R : (a, b) 7→

{
a/b if |a| ≤ |b| 6= 0
0 otherwise.

(5)

3 Goal

3.1 (Analytic Geometry). We want to develop an analytic geometry over
the base field K. Due to the total disconnectedness of the metric topology, to
mimic the usual definition of an analytic function in the complex case (in other
words, to call a K-valued function f on a open subset U ⊂ Kn analytic if we
can find around each point x ∈ U a small neighborhood W and a power series
F such that F converges on W and coincides with f on each point of W ), would
cause the existence of too many analytic functions, so that no Identity Theorem
can hold. For instance, the (continuous) function

f : K → K : x 7→

{
1 if |x| ≤ 1
0 if |x| > 1,

(6)
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would be analytic according to our tentative definition, agreeing on R with the
constant function 1, but not identical to the latter on K.

Hence we will require for a function to be analytic, that it converges on a
bigger set. For instance on R, we would call a K-valued function f analytic, if
there exists a power series F , converging on the whole unit disk R and coinciding
in each point with f . Clearly, this would provide us with too few analytic
functions. So we could cover R with some smaller domains and require the same
thing for f on each of these domains in order to call f analytic on R. Hence
a first question is, which will be admissible domains to this end, and equally
important, which coverings by these domains are admissible (to avoid getting
into the same problems as before, we can clearly not allow any covering). On
the other hand, just working on disks as our analytic spaces is also too coarse.
Hence a second question is, which will be our analytic spaces? I will postpone
their description until Section 7.

3.2. Definition (Supremum Norm). Let X be an arbitrary set. A K-valued
function f : X → K is called bounded , if there is an M ∈ N, such that, for all
x ∈ X , we have that |f(x)| ≤ M . Denote the collection of all bounded K-valued
functions on X by FuncK(X). This becomes a K-algebra by pointwise addition
and multiplication. On FuncK(X), we consider the following norm

|f |sup = sup
x∈X

{|f(x)|}, (7)

where f : X → K and call it the supremum norm of f on X .

More generally, if G is a K-algebra of bounded K-valued functions on X,
then we associate to any f ∈ G the quantity |f |

sup
given by the same formula

as in Formula (7). The thus constructed function |·|
sup

is in general only a
semi-norm. More precisely, the natural map G → FuncK(X) is injective if,
and only if, |·|

sup
is a norm.

4 Strictly Convergent Power Series

4.1. Definition (Strictly Convergent Power Series). For now, the main
space of interest will be the unit disk Rm. I first want to describe all those
power series p over K which converge on the whole disk Rm. These are the
so called strictly convergent power series . Their definition is as follows. Let
S = (S1, . . . , Sm) be a set of n variables and let

p =
∑

ν∈Nm

aνSν (8)

with aν ∈ K, so that p is a formal power series over K. We say that p is strictly
convergent if |aν | converges to 0 when |ν| goes to ∞. This condition enables us
to define the value of p on a tuple x = (x1, . . . , xm) ∈ Rm by putting p(x) equal
to

∑

ν∈Nn

aνxν . (9)

The latter sum does indeed converge by Lemma 2.2, since its general term has
norm going to zero.
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Convention 4.2. Here and elsewhere, I take up the following notational conven-
tions. Given a multi-index ν = (ν1, . . . , νm) and an m-tuple (of variables or of
elements in a ring) S = (S1, . . . , Sm), I will denote by Sν the monomial

Sν1
1 · Sν2

2 · · ·Sνm

m . (10)

By |ν|, I will mean the total degree ν1 + ν2 + · · · + νm of this monomial. The
ordering on the set of multi-indices is always the lexicographical ordering.

Whenever we have a finite set of variables S = (S1, . . . , Sm), we will let S′

stand for (S1, . . . , Sm−1).

4.3. Definition (Free Tate Algebra). The ring of strictly convergent power
series is denoted by K〈S〉, and is called the free Tate algebra (or often just the
Tate algebra) over K in the variables S = (S1, . . . , Sm).

Of course there is no real reason why we couldn’t define strictly convergent
power series over any normed ring A, and so we will encounter rings A〈S〉 as
well, which are defined likewise (although they are of minor use as long as the
ring is not complete).

4.4. Definition (Gauss Norm). We define a norm on K〈S〉, called the Gauss
norm, by

|p|Gauss = max
ν∈Nm

{|aν |}, (11)

where p =
∑

ν aνSν . It is easy to see that |p(x)| ≤ |p|Gauss, for any x ∈ Rm, so
that K〈S〉 is a K-algebra of bounded K-valued functions on Rm. Therefore, it
inherits also the supremum semi-norm as defined in Definition 3.2 and we have
the following facts.

4.5 (Normalization Trick). Given p ∈ K〈S〉, we see that |p|Gauss ∈ |K|. In
other words, there is some π ∈ K, such that |p|Gauss = |π|. This enables us
to normalize p, by dividing out π. In other words,

∣∣π−1p
∣∣
Gauss

= 1 and often
there will be no harm by first adjusting the norm to one in this way before
proceeding. The same holds over any normed ring A instead of K if there is
some multiplicative unit u (in A or in A〈S〉) of the same norm as the Gauss
norm of p.

4.6. Theorem. On each Tate algebra K〈S〉, the Gauss norm is complete and
multiplicative and coincides with the supremum norm.

4.7. Theorem (Maximum Modulus Principle). For any p ∈ K〈S〉, there
exists an x ∈ Rm with |p| = |p(x)|.

Proofs. By the Normalization Trick 4.5, we may assume in the statement of
Theorem 4.7 that p has Gauss norm one. Let R̄ denote the residue field of R
(that is to say, R̄ = R/℘) and let p̄ denote the reduction of p, so that p̄ ∈ R̄[S]
(recall that all but finitely many coefficients of p have small norm, whence are
zero in the reduction). Since R̄ is algebraically closed whence in particular
infinite, we can find a tuple x̄ in R̄m such that p̄(x̄) 6= 0. If x ∈ Rm is a lifting
of x̄, then this means that |p(x)| = 1, proving Theorem 4.7.

Since always |p(x)| ≤ |p|Gauss, for any x ∈ Rm, we get from the previous
result that supremum norm and Gauss norm coincide. To show that this norm
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is complete, just observe that if (pn | n) is a Cauchy sequence in K〈S〉, and if
we denote by an,ν the coefficient of Sν in pn, for a fixed multi-index ν, then
(an,ν | n) is a Cauchy sequence in K whence admits a limit aν . The reader
can then easily check that |aν | tends to zero, so that

∑
ν aνSν is a strictly

convergent power series, and that it is the limit of the sequence (pn | n). That
the Gauss norm is multiplicative, is left as an exercise (see [4, 5.1.2. Proposition
1]; for more details, see [4, 5.1.4. Corollary 6] for Theorem 4.6 and [4, 5.1.4.
Proposition 3] for Theorem 4.7).

In particular, K〈S〉 is a subalgebra of FuncK(Rm). Henceforth, I will there-
fore drop the subscripts in the norm symbols and just write |p| for this norm.
An immediate corollary of Theorem 4.6 is the Identity Theorem.

4.8. Theorem (Identity Theorem). For any two series of K〈S〉, if they
take the same values on each point of the unit disk Rm, then they are iden-
tical (as elements of K〈S〉).

Proof. If p, q ∈ K〈S〉, such that for each x ∈ Rm, we have that p(x) = q(x),
then by the definition of supremum norm, we have that |p − q| = 0. By the
definition of the Gauss norm, this means that each coefficient in p− q has norm
zero, whence p = q.

4.9. Lemma. A strictly convergent power series p =
∑

ν aνSν ∈ K〈S〉 is a
unit in K〈S〉 if, and only if, |a0| = |p|, and for all ν 6= 0, we have |aν | < |p|.

Proof. In order to prove the direct implication, we may assume that a0 = 1
and |aν | < 1, for all non-zero ν, after dividing by a0 (in other words, by the
Normalization Trick). Therefore, we can find π ∈ K with |π| < 1 and q ∈ K〈S〉,
such that p = 1 − πq. The series 1 + πq + π2q2 + . . . converges by Lemma 2.2
and is clearly the inverse of p, as required.

Conversely, again we may assume that a0 = 1. Let q be the inverse of p.
If |p| > 1, then |q| < 1, since pq = 1. However, the constant term of q has
also to be 1, which contradicts that q has Gauss norm less than 1. Therefore,
|p| = 1 = |q|, so that p, q ∈ R〈S〉. Let R̄ = R/℘R. Taking reduction modulo
the valuation ideal ℘, we get that (the image of) p is an invertible polynomial
in R̄[S] (it is a polynomial, since all but finitely many aν have norm strictly
smaller than 1). The only invertible polynomials over a field are the constant
ones, so that all |aν |, for ν 6= 0, must have norm less than 1, as required.

4.10. Definition (Rational Supremum Norm). There is a third candidate
for a norm. Let m be a K-rational maximal ideal of K〈S〉. By this we mean
that K〈S〉/m ∼= K. Let πm : K〈S〉 → K be the canonical surjection. Then we
can define the norm at m of p as

|p|m = |πm(p)| . (12)

We could do this for any K-rational maximal ideal of K〈S〉 and take the supre-
mum over all possible values in order to define the K-rational supremum norm
of p, denoted (just for the time being) by |p|ratsup.

One way to get a K-rational maximal ideal is to take a point x = (x1, . . . , xm)
in Rm and to consider the ideal mx generated by all the Si−xi. More explicitly,
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let

πx : K〈S〉 → K : Si 7→ xi. (13)

Then πx is surjective with kernel mx, so that mx is a K-rational maximal ideal.
In fact, the next Lemma shows that this is the only way.

4.11. Lemma. There is a one-one correspondence between K-rational maximal
ideals of K〈S〉, with S = (S1, . . . , Sm), and points in Rm.

Proof. We have seen already above how to associate a K-rational maximal ideal
mx to a point x ∈ Rm. Conversely, let m be a K-rational maximal ideal of K〈S〉
and consider the canonical homomorphism

πm : K〈S〉 → K〈S〉/m ∼= K. (14)

Let xm
i = πm(Si). Since Si − xm

i lies in the kernel of πm, it cannot be a
unit. Therefore, by Lemma 4.9, we must have that |xm

i | ≤ 1. In other words,
xm = (xm

1 , . . . , xm
m) ∈ Rm. It is easy to see that this correspondence m 7→ xm is

the inverse of the correspondence x 7→ mx.

By the Weak Nullstellensatz (Theorem 5.8) below, any maximal ideal of
K〈S〉 is K-rational (under the assumption that K is algebraically closed–an
assumption always made in this book), so that there will be a one-one corre-
spondence between maximal ideals of K〈S〉 and points in Rm.

Now, returning to the K-rational supremum norm, the following equalities
are immediate

|p|mx
= |πx(p)| = |p(x)| . (15)

Yet again we see that |p|ratsup = |p|. I brought up this third norm because it
has a more intrinsic flavour to it. Rather than to refer to points (as for the
supremum norm) or to power series expansions (as for the Gauss norm), we use
(K-rational) maximal ideals of K〈S〉. This third definition therefore could be
extended to any K-algebra in order to provide us with a (semi-)norm. It also
hints to a solution of our second problem. Which spaces might be appropriate
candidates? We could take any K-algebra and take as a space the set of its
K-rational maximal ideals. Of course, in this generality, one cannot expect
good properties of these spaces so that some finiteness conditions will have to
be imposed. First, however, we need to investigate more closely the algebra
structure of K〈S〉.

5 The algebra structure of K〈S〉

At the base of the whole theory lies this one important theorem, the Weierstrass
Preparation Theorem (Theorem 5.2). From it, many algebraic properties of the
Tate rings and their homomorphic images are derived, such as Noether Normal-
ization (Theorem 5.6) and the Nullstellensatz (Theorem 6.6). However, in order
to formulate Weierstrass Preparation, I need some preliminary definitions.

5.1. Definition (Regular Series). We call a strictly convergent series p reg-
ular in Sm of degree d, if the following two conditions hold
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5.1.1. |p| = |pd| > |pk| for all k > d,

5.1.2. pd is a unit in K〈S′〉,

where p =
∑

k pk(S′)Sk
m is the decomposition of p as a series in Sm with coeffi-

cients pk in K〈S′〉 (recall our convention of writing S′ for (S1, . . . , Sm−1)).
A monic polynomial P in Sm over K〈S′〉 (that is to say, the highest degree

coefficient of P is 1, when expanded as a polynomial in Sm) which has (Gauss)
norm one, will be called a Weierstrass polynomial . It is an example of a regular
series.

These definitions could be generalized by replacing K by an arbitrary
normed ring A. The one adjustment that has to be made is that in Condi-
tion 5.1.2, we need to require that pd is a multiplicative unit in A〈S′〉. This,
of course, is no restriction when the norm happens to be multiplicative (as
the supremum norm on a free Tate algebra is by Theorem 4.6).

5.2. Theorem (Weierstrass Preparation). Let p, q ∈ K〈S〉 and suppose
that p is regular in Sm of degree d, where S = (S1, . . . , Sm). Then there ex-
ist unique Q ∈ K〈S〉 and r ∈ K〈S′〉[Sm], such that

q = pQ + r (16)

with degSm
(r) < d (with the understanding that the zero polynomial has degree

−1). Moreover, there exist a unique unit u ∈ K〈S〉 and a unique Weierstrass
polynomial P in Sm of degree d, such that

p = uP. (17)

Proof. See [4, 5.2.1. Theorem 2 and 5.2.2. Theorem 1]. But just to explain why
it works, I will prove the first statement. Without loss of generality, we may
assume that |p| = 1 and |q| = 1 using the Normalization Trick 4.5. Write p as∑

i piS
i
m with pi strictly convergent power series in S′. By assumption, pd is a

unit and there is no harm in dividing out the unit pd, so that we may as well
assume that the coefficient of Sd

m is one. Since |p| = 1, we have actually that
p ∈ R〈S〉. Let ǫ be the supremum of all |pi| with i > d, so that in particular
ǫ < 1. We will take residues modulo the ideal

℘ǫ = { x ∈ R | |x| ≤ ǫ } . (18)

In other words, ℘ǫ = BR(0 ; ǫ). It is easy to see that R〈S〉/℘ǫR〈S〉 ∼= R̄ǫ[S],
where R̄ǫ = R/℘ǫ. Moreover, the regularity of p implies that its image in
R̄ǫ[S] is a monic polynomial in Sm (of degree d). Now, the key idea is to use
the Euclidean Division Algorithm for monic polynomials in the polynomial ring
R̄ǫ[S]. More precisely, let q̄ denote the image of q in R̄ǫ[S]. Since p̄ is monic in
Sm, we can find Q̄0 and r̄0 in R̄ǫ[S], such that

q̄ = p̄Q̄0 + r̄0 (19)

with degSm
(r̄0) < d. Let Q0 and r0 be respective liftings in R〈S〉 of Q̄0 and r̄0

with degSm
(r0) < d. Put q′1 = q − Q0p − r0, so that |q′1| ≤ ǫ. Hence we can

write q′1 = λ1q1 with λ1 ∈ ℘ǫ and q1 a strictly convergent power series of norm
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1. Repeating the same process, but this time with q1 instead of q, we can find
strictly convergent power series Q1 and r1 with degSm

(r1) < d, such that

q′2 = q1 − pQ1 − r1 ∈ ℘ǫ. (20)

Therefore, we get that

q = (Q0 + λ1Q1)p + (r0 + λ1r1) + λ1λ2q2, (21)

where q′2 = λ2q2 with λ2 ∈ ℘ǫ. Continuing in this way, we obtain series

Q = Q0 + λ1Q1 + λ1λ2Q2 + . . .

r = r0 + λ1r1 + λ1λ2r2 + . . .
(22)

with each λi ∈ ℘ǫ. By Lemma 2.2, it is clear that these infinite sums converge, so
that Q and r are strictly convergent power series with degSm

(r) < d. Moreover
q − Qp − r lies in arbitrary high powers of ℘ǫ, whence must be zero, so that
q = Qp + r, as required.

This theorem has numerous applications. In fact, most algebraic properties
of K〈S〉 will be derived from it. It is clear that the Weierstrass Preparation
Theorem will also enable us to say something about the homomorphic images
of a free Tate algebra, so that they should not remain nameless.

5.3. Definition (Affinoid Algebra). A K-algebra A is called an affinoid al-
gebra, if it is a homomorphic image of some free Tate algebra K〈S〉. In other
words, A ∼= K〈S〉/a, for some ideal a.

From now on, we will always be working in the category of K-algebras; mor-
phisms will be homomorphisms of K-algebras, etc., without always mentioning
this. Before discussing some applications of Weierstrass Preparation, I first give
a recipe for converting an arbitrary strictly convergent series into a regular one.
(Some people insist that it is actually this trick one should term ’Weierstrass
Preparation Theorem’ and what I have been calling here Weierstrass Prepara-
tion, should be called the ’Weierstrass Division Theorem’).

5.4. Proposition (Preparation Trick). Let p =
∑

ν aνSν ∈ K〈S〉 be a non-
zero strictly convergent power series in the variables S = (S1, . . . , Sm). Then
we can find a K-algebra automorphism σ of K〈S〉, such that σ(p) has become
regular in Sm (of some degree).

In other words, we can often assume, after applying some automorphism,
that our series is regular, whence by the Weierstrass Preparation Theorem equal
to the product of a unit and a monic polynomial in the last variable.

5.5. Remark. A similar trick exists if we work over an arbitrary normed
ring A, instead of K. There is, however, a condition that needs to be fulfilled,
namely the coefficient aµ of p, of lexicographically largest index µ with the
property that |aµ| = |p|, has to be a multiplicative unit. Note that this
condition is vacuous over K.

Proof of Preparation Trick. After applying the Normalization Trick 4.5, we
can assume that p has Gauss norm one. Let aµ be the coefficient of norm one

12



with lexicographically maximal index (so that all coefficients of lexicograph-
ically bigger index than µ = (µ1, . . . , µn) are of norm strictly smaller than
one). Let d be bigger than |ν| for all indices ν such that |aν | = 1 (which are
finite in number by definition of strictly convergent power series). Consider
the following K-algebra automorphism of K〈S〉 given by

σ : Si 7→ Si + Sd
m−i

m for i < m (23)

Sm 7→ Sm. (24)

It is an exercise to see that σ is an automorphism and that σ(p) is regular in
Sm of degree s = µm + µm−1d + · · · + µ1d

m−1 (see for instance [4, 5.2.4.
Proposition 1]).

Let me now give some corollaries to the Weierstrass Preparation Theorem.

5.6. Theorem (Noether Normalization). Let A be an affinoid algebra, then
there exists a free Tate algebra K〈T 〉 and a finite injective homomorphism

ϕ : K〈T 〉 →֒ A. (25)

Moreover, if T = (T1, . . . , Td), then d = dim A, where dim means the Krull
dimension of a ring.

A ring homomorphism A → B is called finite, if B becomes a finite A-
module under it. Hence to be finite as an algebra means the same as to be
finite as a module, whereas we will reserve the terminology finitely generated
algebra to express that B is a homomorphic image of some polynomial ring
(in a finite number of variables) over A. Note that surjective homomorphisms
are clearly finite.

The Krull dimension of a ring A is defined as the combinatorial dimension
of SpecA. Or, equivalently, as the maximum of the heights of all prime ideals
of A, where the height of a prime ideal p is the maximal length l of a chain

p0  p1  · · ·  pl = p (26)

where all the pi are prime ideals of A (we allow l = ∞ in this definition). A
Noetherian local ring has always finite Krull dimension (this is an immediate
consequence of Krull’s Principal Ideal Theorem, see for instance [22, Theo-
rem 13.5]). The Krull dimension of the valuation ring R is one (as ℘ and (0)
are the only prime ideals). The Krull dimension of K〈S〉 equals the number
m of variables S = (S1, . . . , Sm). Indeed, the chain of prime ideals

0 ⊂ (S1) ⊂ (S1, S2) ⊂ · · · ⊂ (S1, . . . , Sm) (27)

shows that K〈S〉 has Krull dimension at least m. Conversely, in [4, 7.1.1.
Proposition 3], it is shown that every maximal ideal is generated by m el-
ements, so that its height is at most m, again by Krull’s Principal Ideal
Theorem. In Corollary 5.10, I will in fact show that every maximal ideal is of
the from (S1 − r1, . . . , Sm − rm) with ri ∈ R; this is under the assumption
that K is algebraically closed. However, [4, 7.1.1. Proposition 3] holds true
for non algebraically closed ground fields as well.

Proof of Noether Normalization. We will prove by induction on m, the num-
ber of variables S = (S1, . . . , Sm), the following statement.

5.7. Claim. The theorem holds true for any affinoid algebra A which is finite
over K〈S〉.
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Note that any affinoid algebra is a finite K〈S〉-algebra over some free
Tate algebra, since it is a homomorphic image of one.

To prove the claim, first assume that m = 0. But then A is a finite
K-algebra and clearly K embeds in it. Hence, let m > 0 and assume that
the claim has been proved for smaller values of m. Let ψ : K〈S〉 → A be
the finite map, where S = (S1, . . . , Sm). If the kernel of ψ is trivial, there is
nothing to prove, so take any non-zero p in the kernel of ψ. Then A is still a
finite B = K〈S〉/(p)-algebra. By the Preparation Trick 5.4, we may assume
that p is already regular and hence by the Weierstrass Preparation Theorem,
a product of a unit times a monic polynomial in Sm (since automorphisms
clearly preserve finiteness). We can forget the unit. So B is actually a residue
ring of K〈S〉 modulo a monic polynomial in Sm, and hence a finite K〈S′〉-
algebra. Therefore our original A is already finite over K〈S′〉. Induction now
finishes the proof.

5.8. Theorem (Weak Nullstellensatz). Every maximal ideal m of an affi-
noid algebra A is K-rational, that is to say, A/m ∼= K.

Proof. By Noether Normalization 5.6, we can find a free Tate algebra
K〈S〉 (in m variables) and a finite injective map, such that K〈S〉 →֒ A/m
(since the latter is clearly also affinoid) and such that m = dimA/m. Since
A/m is a field, it dimension is zero. Therefore, m = 0 and A/m is a finite
K-algebra. Since K is algebraically closed whence has no non-trivial finite
field extensions, we must have that K ∼= A/m.

5.9. Remark. If one drops the requirement that K be algebraically closed,
then the above results says that for any maximal ideal m of A, the residue
field A/m is a finite field extension of K.

In combination with Lemma 4.11, we therefore get the following.

5.10. Corollary. There is a one-one correspondence between maximal ideals
of K〈S1, . . . , Sm〉 and points in Rm. Under this correspondence, a point x =
(x1, . . . , xm) determines the maximal ideal (S1 − x1, . . . , Sm − xm).

5.11. Theorem (Hilbert’s Basis Theorem). An affinoid algebra A is Noe-
therian.

Proof. We prove this by induction on the Krull dimension m = dimA,
for A an affinoid algebra. If m = 0, then A is a finite K-module, by Noether
Normalization 5.6, whence Noetherian. So assume m > 0. Let us first
prove the theorem for A = K〈S〉, where S = (S1, . . . , Sm). Let a be a
non-zero ideal of K〈S〉 and take a non-zero p ∈ a. By induction, K〈S〉/(p)
is Noetherian (note that K〈S〉/(p) has dimension less than m). Therefore,
the image of a in K〈S〉/(p) is finitely generated, say, by (the images of)
p2, . . . , ps ∈ K〈S〉. Then a = (p, p2, . . . , ps). This establishes the case
A = K〈S〉. For general A of dimension m, by Noether Normalization, A is
a finite K〈S〉-module, whence also Noetherian.

6 Maximal Spectra

The Weak Nullstellensatz 5.8 and its Corollary 5.10 suggest that the maximal
spectrum of an affinoid algebra might have various nice properties. In this
section, I will explore a little these maximal spectra, with as final result, the
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Nullstellensatz (Theorem 6.6). Various topologies can be put on these maximal
spectra. In this and the next section, we will introduce the Zariski topology
and the canonical topology. However, the ’correct’ topology for doing analytic
geometry, will turn out to be a Grothendieck topology and will only appear in
Section 8.

6.1. Definition (Maximal Spectrum). Let us denote by Max(A) the col-
lection of all maximal ideals of a ring A, called the maximal spectrum of A. We
could put a topology on this ’space’, by taking the induced topology from the
Zariski topology on Spec A. In case A is an affinoid algebra, the (Zariski) closed
subsets of Max(A) will be called closed analytic subsets of Max(A).

Let me give an alternative description of the maximal spectrum of an affinoid
algebra A. First, take A = K〈S〉 to be a free Tate algebra in the variables
S = (S1, . . . , Sm). By Corollary 5.10, there is a one-one correspondence between
the points of the unit disk Rm and Max(K〈S〉). For a general affinoid algebra
A, take a representation A = K〈S〉/a. Then by the same correspondence,
the maximal ideals of A correspond to the points of the zero-locus of a in Rm

(that is to say, to the closed analytic subset {x ∈ Rm | p(x) = 0 for all p ∈ a }).
Thus these maximal spectra have a geometric interpretation. However, this
interpretation depends on the chosen representation of A as a homomorphic
image of a free Tate algebra. Nevertheless, the following lemma shows that
maximal ideals behave nicely under homomorphisms between affinoid algebras.

6.2. Lemma. Let ϕ : A → B be an arbitrary (K-algebra) homomorphism be-
tween affinoid algebras. Then each maximal ideal m of B contracts to a maximal
ideal of A.

Proof. It is standard practice in algebra to write the contraction in A of an
arbitrary ideal b of B, as b ∩ A. In other words, b ∩ A consists of all elements
in A whose image in B lies in b. Now, put p = m∩A. Consider the sequence of
K-algebra homomorphisms

K ⊂ A/p →֒ B/m ∼= K, (28)

where the latter isomorphism is provided by the Weak Nullstellensatz 5.8. Hence
the composite map must be an isomorphism, proving the claim.

6.3 (Affinoid Algebras as Function Algebras). Lemma 6.2 shows that any
homomorphism (for the last time, we always mean K-algebra homomorphism
by this) between affinoid algebras induces a map between their maximal spec-
tra (in the reverse order, of course—this functor is contravariant) by sending
a maximal ideal to its contraction. Hence the Max(A) seem to get better and
better candidates for our wanted analytic spaces. What is still missing is a
refined notion of an analytic function. To this end, observe that an element
p ∈ A can be viewed as a function on Max(A), by letting p(m) be the image of
p under the canonical projection onto K ∼= A/m. In other words, with notation
from Definition 4.10, we define p(m) as πm(p). Functions arising in this way
will play the role of our global analytic functions on Max(A). However, we need
some more local functions as well. Put differently, we need to define a sheaf of
functions on Max(A). This brings us back to our first problem, what should
the ’admissible’ opens and coverings of Max(A) be? In any case, before we can
even speak of ’analytic’ functions, we should have some complete norm on A.
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6.4 (Norms on Affinoid Algebras). By the previous argument, we can con-
sider an affinoid algebra A as a function algebra on Max(A). However, we need
to be careful when doing so. It is not clear that two different elements p and q
of A remain distinct as functions on Max(A). And, indeed, this is not always
the case. Namely, an element p ∈ A induces the zero-map on Max(A) if, and
only if, it is contained in every maximal ideal of A, in other words if, and only
if, it is contained in the Jacobson radical of A (that is, the intersection of all
maximal ideals). Below in Theorem 6.6, I will prove the Nullstellensatz for affi-
noid algebras, which says that the Jacobson radical and the nilradical (that is,
the collection of all nilpotent elements) of an affinoid algebra coincide.

Hence A will be truly a subalgebra of FuncK(Max(A)) if, and only if, A is
reduced (that is to say, without nilpotent elements). When I will introduce later
semianalytic and subanalytic sets, I always will make the assumption that A is
reduced. For the remainder of this paragraph, I will also make this assumption.
By means of Definition 3.2, since A is a function algebra on MaxA, we can
talk about the supremum norm on A, which we will denote again just by |·|.
Recall that |p| is by definition the supremum of all πm(p), where m runs over all
maximal ideals of A. One checks that A is complete for this norm. However,
this norm is in general not multiplicative (that is to say, in general we only have
an inequality |pq| ≤ |p| · |q|), though it is power-multiplicative (meaning that for
any p ∈ A and for any n, we have that |pn| = |p|

n
). Moreover, the Maximum

Modulus Principle holds for this norm (see [4, 6.2.1. Proposition 4]).
There are other possibilities for defining a norm on A. Namely, choose

a representation K〈S〉/a ∼= A induced by the surjection α : K〈S〉 → A and
consider the residue norm |p|α on A defined as

|p|α = inf
P∈α−1(p)

|P | . (29)

Since each ideal a of K〈S〉 is closed in the canonical topology ([4, 6.1.1. Propo-
sition 3)]; see the definition preceding Proposition 7.7 for the definition of canon-
ical topology), we get a complete norm on A (which is in general neither multi-
plicative nor power-multiplicative). For each representation we have a (possible
different) residue norm, but all these norms are equivalent (meaning that they
induce the same topology on A; see [4, 6.1.1]). In the reduced case they are even
all equivalent to the supremum norm as defined above ([4, 6.2.4. Theorem 1]).
These residue norms are not as intrinsic as the supremum norm, and we will
therefore mainly use the supremum norm (well understood only for reduced affi-
noid algebras, although even for non-reduced the definition of supremum norm
still makes sense, but the resulting norm is only a semi-norm).

6.5. Remark. Several constructions originally made over the base field K, can
now be extended to work over any affinoid algebra A. In particular, we can
define the ring of strictly convergent power series A〈S〉 over A. Since for a
reduced affinoid algebra all norms (either residue or supremum) are equivalent,
we get the same collection of strictly convergent power series, regardless of the
norm we start with. However, since these norms need not to be multiplicative, it
does depend on the chosen norm whether a series is regular (in the sense of 5.1)
or not. Nonetheless, once the norm is chosen, it is then an easy exercise to prove
the Weierstrass Preparation Theorem over an arbitrary affinoid algebra (see for
instance [4, 7.3.5. Proposition 8]). Note that we also have a version of the
Preparation Trick over arbitrary affinoid algebras as explained in Remark 5.5.
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I want to mention the following fact, for a proof of which I refer to
[4, 6.4.3. Theorem 1]. If A is reduced, then there exists an epimorphism
α : K〈S〉 → A, such that |·|

sup
= |·|α. Since kerα is closed, this implies

that any function p ∈ A of norm at most one, can be lifted to a function
P ∈ R〈S〉.

I conclude with the promised Nullstellensatz (see [4, 7.1.2] for the case where
one does not assume K to be algebraically closed). Recall that the radical of
an ideal a is by definition the collection of all elements a power of which lies in
a. One writes rad a for this radical.

6.6. Theorem (Nullstellensatz). Let A be an affinoid algebra and a an ideal
of A. The radical rad a equals the intersection of all maximal ideals containing
a.

Proof. One immediately reduces (by taking reduction modulo a) to the
statement that the nilradical of an affinoid algebra A equals its Jacobson
radical (=intersection of all maximal ideals). Let us prove this statement by
induction on m = dimA. If m = 0, then by Noether Normalization, A is
a finite K-algebra, whence an Artinian ring. By Nakayama’s Lemma, if n

denotes its Jacobson radical, we have that nk  nk−1, as long as nk−1 6= 0.
By the descending chain condition, these powers of n cannot infinitely grow
smaller, whence some power is zero.

For m > 0, consider first the case A = K〈S〉, for S = (S1, . . . , Sm).
Let p be an element in the Jacobson radical of K〈S〉. Hence its norm is
zero (consider the (rational) supremum norm), whence p itself is zero. For
the general case, let p be an element of A lying in the Jacobson radical, but
suppose it is not nilpotent. Hence there exists a prime ideal p not containing
p. If p has height strictly bigger than zero, we are done by induction on A/p.
So we can assume that p is a minimal prime of A.

By Noether Normalization 5.6, there exists a finite and injective homo-
morphism

ϕ : K〈S〉 →֒ A, (30)

with S = (S1, . . . , Sm). Since the contraction of p has to be the zero ideal
(K〈S〉 is clearly a domain), we may as well work in A/p and hence assume
without loss of generality that A is a domain and that p is a non-zero element
of the Jacobson radical of A. By the finiteness of ϕ, we can find elements
qi ∈ K〈S〉, such that

pd + ϕ(q1)p
d−1 + · · · + ϕ(qd) = 0. (31)

Take d to be the minimal degree of any such equation, so that in particular
ϕ(qd) 6= 0 (since A is a domain). Hence also ϕ(qd) lies in the Jacobson
radical of A, and therefore qd lies in the Jacobson radical of K〈S〉, whence
is zero by the above observation, contradiction.

7 Affinoid Varieties

I now will define and discuss the category of affinoid varieties. I will postpone the
formal definition of a structure sheaf on an affinoid variety, to the next section.
However, the main ingredients, the rational subdomains and their associated
affinoid algebras, will be already introduced here.
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7.1. Definition (Affinoid Variety). Given an affinoid algebra A, we call the
pair (Max(A), A) the affinoid variety associated to A, and we denote it by SpA.

Hence the maximal ideals are to be considered as the points of this space,
whereas the elements of A act as functions on these maximal ideals, as explained
in 6.3. We already mentioned there that, when viewing a maximal ideal m of A
as a point x of SpA, then the value of p ∈ A at m will be denoted by p(x). In
the notation of Definition 4.10, this means that p(x) = πm(p). This is in perfect
accordance with the notation used when we view SpA as a closed analytic subset
of some Rm. Namely, we then think of x as an m-tuple (x1, . . . , xm) and p(x)
has the usual meaning of substituting the xi for the variables Si.

7.2. Definition (Map of Affinoid Varieties). A map of affinoid varieties is
a pair (f, ϕ), where the map f : Sp B → SpA is induced by the homomorphism
ϕ : A → B.

In other words, the image of a maximal ideal m of B is given by its contrac-
tion ϕ−1(m) to A (written as m ∩ A), which is again maximal by Lemma 6.2.
Moreover, if y is the point of Sp B corresponding to the maximal ideal m and x
its image under f (corresponding to the maximal ideal m ∩ A), then we have a
commutative diagram

?

-

?
-

BA

B/mA/m ∩ A

ϕ

(32)

where the vertical maps are the canonical surjections and the bottom horizontal
map is an isomorphism (since both fields are equal to K by the Weak Nullstel-
lensatz, Theorem 5.8). Therefore, we have, for every p ∈ A, an equality

p(x) = ϕ(p)(y) (33)

exhibiting the compatibility between the action of p on SpA and the action of
its image ϕ(p) on SpB.

Most of the time we will be a bit careless and just write f for the map,
rather than the pair. The thus defined objects and maps give the category of
affinoid varieties (see [4, 7.1.4] for more details).

7.3 (Fibre Products). The category of affinoid varieties admits fibre prod-
ucts, see [4, 7.1.4. Proposition 4]. Let me start with an important special case.
Recall from 6.1 that Rn can be viewed as an affinoid variety corresponding to
the affinoid algebra K〈S〉, with S = (S1, . . . , Sn). Let A be an arbitrary affinoid
algebra. Then

SpA × Rn (34)

is again an affinoid variety corresponding to the affinoid algebra A〈S〉. This
last affinoid algebra is equal to K〈S, T 〉/IK〈S, T 〉, where A = K〈T 〉/I is some
representation of A as a homomorphic image of a Tate ring.
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In general, if f : X = SpA → Z = SpC and g : Y = SpB → Z are maps of
affinoid varieties, then the fibre product X ×Z Y exists and is again an affinoid
variety, with affinoid algebra given by the complete tensor product A⊗̂CB. Let
me briefly discuss the latter algebra. On each affinoid algebra, we choose some
residue norm. We have already observed in 6.4, that all possible choices yield
equivalent norms. Corresponding to the maps f and g, we have algebra homo-
morphisms C → A and C → B. So we can form the (usual) tensor product
D = A⊗C B (see for instance [7, A2.2] for the construction of the tensor prod-
uct). One defines from the norms on A, B and C a norm on D as follows. Let
d ∈ D, so that it can be written as

d =

n∑

i=1

ai ⊗ bi, (35)

with ai ∈ A and bi ∈ B. Let δ be the maximum of all |ai| · |bi|, for i = 1, . . . , n.
We put |d| equal to the infimum of all δ for all possible representations (35). One
shows that this yields indeed a norm on D (see [4, 2.1.7] for details). Finally, we
let A⊗̂CB be the completion of D with respect to this norm. This is independent
from the particular choice of a norm on A, B or C. Moreover, A⊗̂CB is again
an affinoid algebra ([4, 6.1.1. Proposition 10]).

When we take C = K in the above construction, we get an affinoid algebra
A⊗̂KB corresponding to the affinoid variety X × Y . The example above is of
this type. Indeed, if Y = Rn so that B = K〈S〉, then

A⊗̂KK〈S〉 ∼= A〈S〉, (36)

as affinoid algebras; see [4, 6.1.1. Proposition 7].

One can generalize the construction of complete tensor product to arbitrary
complete normed K-algebras. Usually, this is done via a universal property. I
will formulate it only for K-affinoid algebras; the modifications for the general
case are obvious.

7.4. Theorem (Universal Property of Complete Tensor Products). If
α : C → A and β : C → B are two homomorphisms of affinoid algebras for
which there exist an affinoid algebra E and two homomorphisms a : A → E and
b : B → E which agree on C, meaning that the diagram

?

-

?
-

AC

EB

β a

b

α

(37)

commutes, then there exists a unique homomorphism A⊗̂CB → E extending the
original homomorphisms. In other words, the homomorphism a : A → E equals
the composition A → A⊗̂CB → E, and a similar statement for b.

I conclude with a useful example of the more general construction. Let L
be an ultrametric field extending K, so that the norm on L is an extension of
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the norm on K. Let A be a K-affinoid algebra, then A⊗̂KL is an L-affinoid
algebra. In other words, if X = SpA, then X ×K L is an affinoid variety over
L with affinoid algebra SpA⊗̂KL.

In Proposition 7.6 below, a third important type of fibre product is discussed,
the construction of an inverse image.

The above definition of the space SpA is not quite satisfactory, since we
would like to have a sheaf of functions rather than just an algebra of global
functions (namely, A). So our next project is to define the admissible opens.

7.5. Definition (Rational Subdomain). Let X = SpA be an affinoid vari-
ety (when saying this, our notation implicitly expresses that A is an affinoid
algebra). A subset U ⊂ X is called a rational subdomain of X , if there exist
elements p0, p1, . . . , pm ∈ A, generating the unit ideal, such that

U = {x ∈ X | |pi(x)| ≤ |p0(x)| for all i = 1, . . . , m } . (38)

Saying that the pi generate the unit ideal is the same, by the Nullstellen-
satz 6.6, as saying that they have no common zero on X . In particular, p0

cannot have a zero on U .
Let me now explain why a rational subdomain is itself an affinoid variety.

Set

C = A〈p/p0〉 = A〈T 〉/(p1 − p0T1, . . . , pm − p0Tm) (39)

where T = (T1, . . . , Tm) and p = (p1, . . . , pm). I claim that we have an commu-
tative diagram

?

-

?
-

USpC

XX × Rm

π

θ

(40)

where π is the canonical projection map (induced by the embedding A ⊂ A〈T 〉),
θ = π|Sp C is the restriction of π and the vertical maps are just inclusions. The
only thing that needs to be checked is that π maps Sp C inside U . So let
(x, t) ∈ X × Rm be a point in SpC. This means that pi(x) = tip0(x). Since
|ti| ≤ 1, we see that |pi(x)| ≤ |p0(x)|, so that x lies indeed in U .

Next, I claim that θ is actually a bijection. Indeed, this is clear, since the
ti are uniquely defined from the point x ∈ U as the quotients pi(x)/p0(x) (note
that p0(x) cannot be zero). In conclusion, we can view U as an affinoid variety
(although, strictly speaking, it is only in bijection with one).

We do need something here, though, to ensure the uniqueness of C and
hence of the affinoid variety structure on U . Consider the following state-
ment: if a map f : SpB → SpA between affinoid varieties induced by the
homomorphism ϕ : A→ B, is bijective on the set of maximal ideals, then ϕ is
a bijection. If this would hold, then we can put a unique affinoid variety struc-
ture on U given by the affinoid algebra C. Unfortunately, the above statement
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is in general false. Consider for instance the homomorphism K ⊂ K〈S〉/(S2),
where S is a single variable. The maximal spectrum of both affinoid algebras
is the one-point space consisting of the origin (in R). Nevertheless this inclu-
sion is clearly not an isomorphism (and hence a one-point space cannot be
rational).

So remains the problem of associating a unique affinoid algebra to U . The
solution is provided by a universal property. A subset U ⊂ X = SpA is called
an affinoid subdomain, if there exists an affinoid algebra C and a homomor-
phism ϕ : A→ C, such that the image of the associated map f : SpC → X
lies inside U , and such that the pair (C, f) is universal with respect to this
property. Here universality means that given any map g : SpB → SpA the
image of which lies inside U , there is then a unique map h : SpB → SpC,
with g = f ◦ h. By universality, C is uniquely defined by U . So we are out
of trouble if we can show that a rational subdomain is in fact an affinoid
subdomain. See [4, 7.2.3. Proposition 4] for a proof.

Since p0 does not vanish on U , it must be a unit in C. Applying the Maxi-
mum Modulus Principle, to 1/p0, we can find a x0 ∈ U , such that |1/p0(x)| ≤
|1/p0(x0)|, for all x ∈ U . Putting 0 6= δ = |p0(x0)|, we get that δ ≤ |p0(x)|, for
all x ∈ U .

Some important properties of rational subdomains are the following, for
proofs of which I have to refer to [4, 7.2. and 7.3]. The map A → C is injective
and flat. In particular, this implies that if X is reduced (meaning that A is
reduced), then so is U . This latter fact will justify our future restriction to
work only over reduced varieties. The intersection of two rational subdomains
is again a rational subdomain. A rational subdomain of an affinoid variety which
itself is a rational subdomain in some bigger affinoid variety, is also a rational
subdomain in the bigger variety. The following property should be thought of
as the continuity of affinoid maps; this will be explained more in Definition 8.1.

7.6. Proposition. The inverse image of a rational subdomain under a map of
affinoid varieties is again a rational subdomain. More precisely, if U is a rational
subdomain of X = SpA with affinoid algebra C and if f : Y = SpB → X is a
map of affinoid varieties, then f−1(U) is equal to the fibre product Y ×X U and
hence has affinoid algebra B⊗̂AC.

Proof. See [4, 7.2.2. Proposition 6] for rational subdomains and [4, 7.2.2. Propo-
sition 4] for arbitrary affinoid subdomains; for the last statement, see 7.3.

In the next Proposition, an affinoid variety X is viewed with the topology
induced by the norm. More precisely, consider X as a closed analytic subset of
Rn via a representation K〈S〉/a ∼= A. If we take two different closed immersions,
then the resulting topologies are nonetheless the same. This uniquely defined
topology is therefore called the canonical topology on X . In the next section, we
will replace this topology with one more suitable for defining a structure sheaf,
albeit a Grothendieck topology.

7.7. Proposition. Let X be an affinoid variety. Any rational subdomain in X
is open in the canonical topology on X.

Proof. See [4, 7.2.5. Theorem 3].

I conclude this section with some discussion on rational subdomains in R
and in R2.
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Local Structure of Rational Domains

A closed disk in X = SpA is clearly a rational subdomain and likewise, so is
the complement of an open disk. There is a converse, in case X = R. Namely,
every rational subdomain U of R is a finite union of finite intersections of closed
disks and complements of open disks, see [4, 9.7.2. Theorem 2].

I now turn to rational subdomains in R2. Their description is no longer as
neat as in the one-dimensional case, however, their local structure is. Let me
be more precise (and a bit more general).

7.8. Proposition. Let X = SpA be an affinoid variety and U a rational sub-
domain of X × Rn. There exists an ε > 0 and a rational subdomain V of X,
such that

U ∩
(
X × BRn(0 ; ε)

)
= V × BRn(0 ; ε). (41)

In particular, if we apply this to a rational subdomain U of R2, then there
is an ε > 0, such that

{ (x, y) ∈ U | |y| ≤ ε } = D × BR(0 ; ε), (42)

where D, by our above discussion, is a finite union of sets of the form

{ x ∈ R | |x − a0| ≤ |c0| and |x − ai| ≥ |ci| , for i = 1, . . . , r } , (43)

for some suitable ai and ci in R.

Proof of Proposition 7.8. See [20] or [26, Proposition 2.2]. The proof
uses the following observation. Let p(T ) ∈ A〈T 〉 be of norm smaller than
or equal to one. (Recall that A〈T 〉 is the affinoid algebra of X ×Rn, where
T = (T1, . . . , Tn)). Let a ∈ A be the constant term of p, then we have, for
all (x, y) with |y| ≤ ε, that

|a(x)| > ε implies |p(x, y)| = |a(x)| , (44)

|a(x)| ≤ ε implies |p(x, y)| ≤ ε. (45)

Now, there exist pi ∈ A〈T 〉 generating the unit ideal, such that U is given as
in Formula (38). We also remarked there that there exists a δ > 0, such that
for all (x, y) ∈ U , we have that |p0(x, y)| ≥ δ. Take now ε strictly smaller
than δ and use the above mentioned fact on the constant terms ai of all the
pi, to prove that we can take

{x ∈ X | |ai(x)| ≤ |a0(x)| for all i = 1, . . . , s } (46)

for V in the statement of the proposition.

8 Rigid Analytic Varieties

In the previous section, I introduced affinoid varieties, which will be the local
models for developing rigid analytic geometry. The aim of this section is to
define a structure sheaf on them and then to define the global models, the rigid
analytic varieties. First, though, I need to discuss Grothendieck topologies.
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8.1 (Grothendieck Topologies). We have now our candidates for the ’ad-
missible’ open subsets of an affinoid variety X = SpA, namely the rational
subdomains U of X . Note that by Proposition 7.7, they are, in some sense, re-
ally ’open’. By Formula (39) (and the discussion following it), to each rational
subdomain is uniquely associated an affinoid algebra C, such that U carries the
structure of the affinoid variety Sp C. We denote this by

OX(U) = C. (47)

In particular, X itself is a rational subdomain of X (by taking p0 = p1 = 1
for instance) and clearly OX(X) = A. The notation very much suggests that
this new object might well be a sheaf. If this is the case, then we have to
take the rational subdomains as the opens of a topology on X . However, any
disk is a rational subdomain of Rn and by considering the topology with opens
all rational subdomains, the functor OX cannot be a sheaf, as the example in
3.1 showed. So we have to restrict somewhere. But we don’t want to restrict
further our class of opens. The only other option we have is to restrict the
class of possible (read, admissible) coverings. This will obviously no longer give
us a topology, but it will be a Grothendieck topology, and that is more than
sufficient for defining sheaves (and their cohomology).

Grothendieck topologies also appear in algebraic geometry, for instance
to define the etale topology on a scheme; see for instance [6].

For the specialists, here is a precise (though not fully general) definition
of a Grothendieck topology on a set X. First, by a covering of a subset U of
X, we mean a collection of subsets of U the union of which equals U . Now,
a Grothendieck topology G on X consists of

• a system S of subsets U of X, (called admissible open subsets), and

• for each U ∈ S , a system Cov U of coverings of U (called admissible
coverings), where each covering has all its members in S ,

and such that the following five conditions are satisfied.

8.1.1. The empty set ∅ and the whole space X are in S .

8.1.2. If U and V are in S , then so is U ∩ V .

8.1.3. For every U ∈ S , we have that the singleton {U} ∈ Cov U .

8.1.4. For every U ∈ S , if U ∈ Cov U and for every V ∈ U, we have a covering
VV ∈ Cov V , then their union

[

V ∈U

VV (48)

is a covering belonging to Cov U .

8.1.5. If U and V are in S with V ⊂ U and if U ∈ Cov U , then V ∩U ∈ Cov V
(where V ∩U is the collection of all intersections V ∩W , with W ∈ U).

A set X endowed with a Grothendieck topology G will be called a G-topologi-
cal space.

Any ordinary topology is a Grothendieck topology by letting all opens be
admissible opens and all coverings by opens be admissible coverings. Many
notions of ordinary topology have their counterpart in Grothendieck topolo-
gies. However, apart from conditions on opens, we often have to impose
conditions on coverings as well. Let me just give one typical example.
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8.2. Definition (G-continuity). A map f : X → Y between twoG-topologi-
cal spaces is called G-continuous if the following two conditions are satisfied.

8.2.1. The inverse image f−1(V ) under f of an admissible open V in Y , is
an admissible open of X.

8.2.2. The inverse image f−1(V) under f of an admissible covering V of an
admissible open V in Y , is an admissible covering of f−1(V ) in X.

Another notion we will come across is that of a quasi-compact G-topolo-
gical space X. This is a space such that each admissible covering U has a
refinement V (that is, any set out of V is contained in some set of U) which
is finite and admissible.

8.3. Definition (Admissible Open). We call a subset U of X admissible
(or, an admissible open), if it is a rational subdomain of X . We will call a
covering of X admissible (or, an admissible covering), if it is a finite covering by
rational subdomains. This constitutes a Grothendieck topology on X , so that
an affinoid variety now becomes a G-topological space (which by construction
is quasi-compact). We call the functor OX the structure sheaf of X . This is
indeed a sheaf by Tate’s Acyclicity Theorem (see [4, 8.2.1. Theorem 1 and
Corollary 2]).

8.4. Proposition. Any map of affinoid varieties is G-continuous.

Proof. Condition 8.2.1 is just a restatement of Proposition 7.6 for general
affinoid subdomains. Condition 8.2.2 is immediate by the definition of the
Grothendieck topology on affinoid varieties.

If one were to take all affinoid subdomains as the admissible opens and
all finite coverings by them as the admissible coverings, we would get another
Grothendieck topology on X. However, the two are hardly any different, since
by a theorem of Gerritzen en Grauert, any affinoid subdomain is a finite
union of rational subdomains (see [4, 7.3.5. Theorem 1]).

And here’s the definition of a sheaf on a G-topological space X.

8.5. Definition (Sheaf). A presheaf F of abelian groups or rings, etc., on
X is a contravariant functor from the category of admissible opens S (where
the only morphisms are the inclusions) to the category of abelian groups or
rings, etc. A presheaf F is a sheaf if, for all admissible opens U of X and all
admissible coverings U = {Ui}i∈I of U , the following diagram is exact

0 → F(U)
σ

−−→
Y

i∈I

F(Ui)
σ′

−−−−→

−−−−→
σ′′

Y

i,j∈I

F(Ui ∩ Uj), (49)

where σ is induced by the restriction maps F(U) → F(Ui) and where σ′

(respectively, σ′′) is induced by the restriction maps F(Ui) → F(Ui ∩ Uj)
(respectively, F(Uj) → F(Ui ∩ Uj)). In other words, if two functions in
F(U) agree on each open Ui of U then they are equal, and, if there is given,
for each open Ui, a function in F(Ui), with the extra property that these
functions agree on intersections of any two opens in U, then there exists (a
unique) function in F(U) agreeing on each Ui with the given functions. In
other words, the definition is the same as in the classical case, except for the
fact that we only consider admissible coverings. The stalk of a (pre-)sheaf
F in a point x ∈ X is the direct limit of all F(U), where U runs over all
admissible opens containing x, and is denoted by Fx.
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The pair (X,OX) consisting of an affinoid variety X and its structure sheaf
OX is a locally G-ringed space (see Definition 8.7 below) over K. These spaces
are the local models of rigid analytic geometry. The global models, the rigid
analytic varieties, are constructed from these local models by means of a glueing
process. This can be more succinctly stated as follows.

8.6. Definition (Rigid Analytic Variety). An arbitrary locally G-ringed
space (X,OX) over K is called a rigid analytic variety (over K), if X admits
an admissible covering U, such that each pair (U, OX |U ), with U ∈ U, is an
affinoid variety (or, more accurately, is isomorphic with one as locally G-ringed
spaces). Such a covering will be called an admissible affinoid covering. A map
f : X → Y of rigid analytic varieties is a morphism of locally G-ringed spaces
over K.

In particular, affinoid varieties are rigid analytic varieties and a map of rigid
analytic varieties between two affinoid varieties is a map of affinoid varieties
as defined in Definition 7.1. Often, we will therefore suppress the clause ’of
rigid analytic varieties’ when referring to maps between them. It goes without
saying that the above defined concepts constitute a category, the category of
rigid analytic varieties.

8.7. Definition (G-Ringed Space). A pair (X,OX) consisting of a G-
topological space X together with a sheaf OX of K-algebras on X, is called
a G-ringed space over K. It is called a locally G-ringed space (over K), if
moreover, for every x ∈ X, the stalk OX,x is a local ring. A morphism of
G-ringed spaces over K between two G-ringed spaces (X,OX) and (Y,OY )
is a pair (ψ,ψ∗), where ψ : X → Y is a continuous map and where ψ∗ is a
collection of K-algebra homomorphisms

ψ∗
V : OY (V ) → OX(ψ−1(V )), (50)

for each admissible open V of Y , such that this family is compatible with
restriction homomorphisms induced by inclusions W ⊂ V . In other words,
we have a commutative diagram

?

-

?
-

OX(ψ−1(V ))OY (V )

OX(ψ−1(W ))OY (W )
ψ∗
W

ψ∗
V

(51)

in which the vertical homomorphisms are induced by restricting the functions
to the smaller subset.

If both spaces are moreover locally G-ringed spaces, then the morphism
is called a morphism of locally G-ringed spaces, if each ψ∗

x is local (meaning
that the maximal ideal of the former is mapped into the maximal ideal of
the latter), for each x ∈ X, where ψ∗

x : OY,ψ(x) → OX,x is the natural
homomorphism between these two direct limits.

8.8 (Strong Grothendieck Topologies). Although I did not mention it, the
Grothendieck topology on a rigid analytic variety X is required to satisfy also
the following two conditions, for any admissible open U of X.
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8.8.1. Let V ⊂ U . If there exists an admissible covering U of U , such that for
each W ∈ U, the intersection V ∩W is an admissible open of X, then
V has to be already an admissible open.

8.8.2. Let U be a covering of U by admissible opens ofX. If U has a refinement
V which is admissible, then already U is admissible.

Unfortunately, the Grothendieck topology of an affinoid variety X, as defined
before, does not satisfy these two requirements. But there exists a refinement
of this Grothendieck topology, called the strong Grothendieck topology on
X, which does satisfy these two conditions and remains quasi-compact (see
Theorem 8.10 below). The structure sheaf OX can be extended to a sheaf of
K-algebras, still denoted by OX for this new Grothendieck topology, making
X now into a G-ringed space for which these two conditions do hold. See
[4, 9.1.2. Proposition 2] for a general construction and [4, 9.1.4. Proposition
1 and 2] for the case of an affinoid variety. We will not be concerned too
much with these two different Grothendieck topologies, although, as a rule,
one should always take the strong one. The latter Grothendieck topology has
obviously more admissible opens and coverings. For instance, the collection
of all x in an affinoid variety X = SpA for which |f(x)| < 1, with f ∈ A,
is an admissible open in this Grothendieck topology (whereas it is neither a
rational nor an affinoid subdomain). See [4, 9.1.4. Proposition 5] for some
examples. Noteworthy here is also the following result concerning Zariski
open sets. Recall that a Zariski open subset is by definition the complement
of a closed analytic subset.

8.9. Theorem. Any Zariski open subset of X is admissible and any (finite or
infinite) covering by Zariski opens is admissible (in the strong topology).

Proof. See [4, 9.1.4. Corollary 7].

Moreover, as already mentioned, affinoid varieties are still quasi-compact in
this strong topology.

8.10. Theorem. Any admissible affinoid covering (in the strong topology) of
an affinoid variety X admits a finite subcovering.

Proof. Apply the second statement of [4, 9.1.4. Proposition 2] to V = X
and ϕ the identity map. Note that in the terminology of [4], an affinoid
covering is automatically finite.

8.11. Example. Rigid analytic varieties can be glued together in order to
obtain new ones. Details can be found in [4, 9.3.2. and 9.3.3], but see A.2
for a worked out example. We mention just some rigid analytic varieties that
can be obtained in this way (see [4, 9.3.4] for more details).

• The affine n-space AnK , which could be identified with the set of points
in ordinary affine n-space Kn and which is not quasi-compact (hence
in particular not affinoid).

• The projective n-space PnK , which could be identified with the set of
points in ordinary projective n-space and which is quasi-compact, but
not affinoid.

• Any (algebraic) scheme of finite type over K carries the structure of
a rigid analytic variety. By [27], this can even be extended to any
scheme of finite type over an arbitrary affinoid algebra A. The functor
which associates a rigid analytic variety with such a scheme, is called
an analytization. I will elaborate further on this in the next section.
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8.12. Definition (Quasi-Compact Variety). A rigid analytic variety X is
called quasi-compact , if it admits a finite admissible affinoid covering. There-
fore, the assertion in Theorem 8.10 also holds for quasi-compact rigid analytic
varieties, whence the name. We call X separated , if the intersection of any
two admissible affinoid varieties is again affinoid. Note that by the properties
mentioned at the end of Definition 7.5, an affinoid variety is separated.

In [4, 9.6.1], a rigid analytic variety X is called separated, if the natural
map X → SpK is separated, which means that the diagonal embedding
X → X × X is a closed immersion. More generally, a map f : Y → X of
rigid analytic varieties is called separated, if the diagonal map Y → Y ×X Y
is a closed immersion. By [4, 9.6.1. Proposition 6], a separated rigid analytic
variety has the property that the intersection of any two admissible affinoids
is again affinoid, justifying our previous terminology.
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Part II

Berkovich Analytic Spaces

In this part, I will give a quick primer to Berkovich’s treatment of rigid an-
alytic geometry. Given an affinoid variety X , he compactifies X by adding an-
alytic points to it, thus obtaining the affinoid Berkovich space M(X). He puts
a Hausdorff topology on M(X), so that the resulting analytic space is compact
(Proposition 9.6). As a consequence, we get a new characterization for a covering
of the original affinoid variety to be admissible (Proposition 9.17). I explain how
to define a structure sheaf on M(X). The category of affinoid Berkovich spaces
is then equivalent with the category of affinoid varieties (Proposition 9.9). I also
briefly discuss how to obtain a Berkovich space M(X) associated to a separated
quasi-compact rigid analytic variety X and then define an arbitrary Berkovich
space as an open inside such aM(X). There then follows a section on Berkovich
blowing ups and proper maps.

9 Berkovich Spaces

Although rigid analytic geometry provides a satisfactory analytic theory in the
non-archimedean case, with rigid counterparts for all the fundamental theorems
in the complex case, there is nevertheless a severe drawback in that topological
arguments tend to fail in view of the absence of a Hausdorff topology. In-
deed, as we have seen in the previous chapter, the analytic topology is only a
Grothendieck topology, whereas the norm-topology is totally disconnected and
hence even more unsuitable. To restore this, Berkovich developed his theory
of K-analytic spaces. To an affinoid variety X he associates a compact Haus-
dorff space M(X), so that the function theory on X can be carried over to a
function theory on M(X). More precisely, there is an equivalence between the
category of coherent OX -modules and the category of coherent OM(X)-modules
(Theorem 9.12). The following works will be used as sources of reference. Most
of what we need on Berkovich spaces in this book can be found in Gardener’s
paper [9] on the Voûte Etoilée, (a more extensive survey can be found in his
D.Phil. thesis [8]). For an introduction to the general theory of Berkovich spaces,
see Berkovich’s own work [1, 2] or the more accessible renderings by Schnei-

der [23] and Schneider and van der Put [24]. Below I will follow mostly
Schneider’s exposition, so that [23] will be the most quoted reference, although
most results should be attributed to Berkovich.

Before I start with some more rigorous definitions, let me first motivate the
definition of a Berkovich space. At least since the times of Weil, algebraic
geometers have felt the need to work over fields larger than just the base field.
To be more precise, let there be given an algebraic zero-set V ⊂ An

k , where k
is some (most of the time algebraically closed) field and V is given by some
equations p1 = · · · = ps = 0. Apart from the rational points of V, that is to say,
those with coordinates over k, one should also pay attention to solutions of the
system p1 = · · · = ps = 0 in extension fields l of k. Let x = (x1, . . . , xn) ∈ An

l be
such a point. Then this induces a homomorphism ϕx : A → l given by sending
the image of Si in A to xi, where A = k[S]/(p1, . . . , ps) is the coordinate ring of
V and where S = (S1, . . . , Sn). This does not only justify the association of the
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k-algebra A to the set V, but also the custom of looking at the prime spectrum
of A, since the kernel px of any such ϕx is a prime ideal of A (and any prime
ideal arises in such way).

Perhaps more mysterious is the reason that it suffices to study just the prime
spectrum; for all that matters, both π and e induce the zero ideal on Q[S],
since they are transcendental over Q, but why should we discard any differences
between these two elements? Model theory provides an answer to this question.
Indeed, the type of a tuple x ∈ An

l over k is entirely determined by the prime
ideal px (this is a direct consequence of Algebraic Quantifier Elimination; see the
end of 9.2 for more details). By the type of x over k, the model theorist means
everything in the language of fields with parameters from the field k, that can
be said about x (see for instance [15, §6.3]. The model theorist will also avoid
the cumbersome keeping track of extension fields by taking a huge extension
field Υ in which everything takes place; such a field is called a universal domain
by geometers, or a big model by model theorists.

A big model Υ is a κ-saturated model (see [15, 10.1] for a definition),
where κ is some large cardinal, exceeding the cardinality of all models one
wants to study, the so-called small models. This exactly means that any type
over such a small model is realized in Υ, meaning that there is a tuple x over
Υ satisfying all the formulae in the type.

Let us mimic this procedure in our present situation. So we should take a
’big’ ultrametric field Υ extending K and then look at all homomorphisms from
the affinoid algebra A = K〈S〉/(p1, . . . , ps) into Υ. ’Big’ should be taken here
to mean the following.

9.1. Theorem. Let K be an ultrametric field. There exists an ultrametric
field extension K ⊂ Υ (that is to say, the restriction of the norm on Υ to K,
coincides with the norm on K) with the following property. Each K-affinoid
integral domain A together with a choice of some multiplicative norm on it, can
be embedded, as a normed ring, in Υ.

Moreover, if A and A′ are two isomorphic K-affinoid integral domains em-
bedded in Υ, then there is a K-isometry of Υ mapping A onto A′.

With a K-isometry (or, simply isometry), we mean a norm preserving iso-
morphism of K-algebras. Whenever we talk about embeddings in the context
of normed rings, we always tacitly assume that the norm is also preserved.

Proof. To construct Υ, it suffices, by transfinite induction, to show that
if L is an ultrametric field strictly extending K (recall that this terminology
implicitly means that the norm on L extends the one on K) and if A is
an affinoid integral domain with a multiplicative norm, then we can find an
ultrametric field extension L1 of L and a norm preserving embeddingA →֒ L1.
Since L is transcendental over K, we can always choose a copy of L which is
linearly disjoint from the field of fractions of A. Hence the complete tensor
product Lb⊗KA is a domain (see [22, p. 200]). Moreover, one verifies that
the norm defined on this complete tensor product (see Definition 7.3) is again
multiplicative. Therefore, Lb⊗KA can be extended to an ultrametric field L1

with the required properties.
To ensure also the final property, we take Υ uncountable and of cardinality

strictly bigger than the cardinality of K. In order to verify the last assertion,
we may then replace A and A′ by their fraction fields and prove the following
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more general statement. Let L and L′ be subfields of Υ (with the induced
norms) and let σ : L → L′ be a K-isometry between them. I claim that for
any α ∈ Υ, there exist α′ ∈ Υ and an isometry τ : L(α) → L′(α′) extending
σ and sending α to α′. Given the claim, the assertion follows by transfinite
induction and a back-and-forth argument, so that we only need to verify this
claim.

If α is algebraic over L, with minimal polynomial P (T ), then we can take
for α′ any root of P σ in Υ, where P σ is the polynomial obtained by applying
σ to its coefficients. The observation to make is that there is a unique way
in which the norm of L extends to (the finite extension) L(α). Since

L(α) ∼= L[T ]/(P ) ∼= L′[T ]/(P σ) ∼= L′(α′) (52)

there is a unique isomorphism τ extending σ and sending α to α′. Since the
norms and the isomorphism τ are all uniquely determined, it follows that τ is
an isometry.

So remains the case that α is transcendental over L. If L is not alge-
braically closed, then by the previous procedure we can first extend σ to the
algebraic closure of L, and then adjoin α. In other words, we may assume
that L is algebraically closed. In particular, the multiplicative subgroup H(L)
of R consisting of all |a|, with a a non-zero element in L, is divisible. There
are two cases to consider.
Case 1. Assume that |α| does not belong to H(L). Since we took Υ of
cardinality big enough, we can find α′ ∈ Υ which is transcendental over L′

and such that |α| = |α′|. Let τ be the isomorphism between L(α) and L′(α′)
extending σ and sending α to α′. We need to check that this is an isometry.
It suffices to check that if β = P (α), where P =

Pn
i=0 aiT

i is a polynomial
in a single variable T with ai ∈ L, then |β| = |τ (β)|. Now, if for some i < j
with ai and aj both non-zero, we would have that

˛̨
aiα

i
˛̨
=

˛̨
ajα

j
˛̨
, then |α|

is the (j − i)-th root of |ai/aj | ∈ H(L) and therefore also belongs to H(L),
contradiction (recall that the norm on an ultrametric field is always assumed
to be multiplicative). Therefore, all non-zero terms in

P
aiα

i have different
norm, so that by the non-archimedean equality, we have that |β| =

˛̨
aiα

i
˛̨
, for

some unique i ∈ {0, . . . , n}, and |β| <
˛̨
ajα

j
˛̨

for all j 6= i. Since |α| = |α′|,
these identities remain the same after applying τ . In particular,

|τ (β)| =
˛̨
˛σ(ai)(α

′)i
˛̨
˛ =

˛̨
˛aiαi

˛̨
˛ = |β| , (53)

as required.
Case 2. Assume next that |α| ∈ H(L). After dividing by some element of
the same norm in L, we may even assume that |α| = 1. As before, we can
find α′ ∈ Υ transcendental over L′ and of norm 1 (below, we will restrict the
choice of α′ even further). We define τ as before and we need to verify again
that it is an isometry. It suffices to prove that |β| = |τ (β)|, for β = P (α)
with P as before. Moreover, we may assume that the maximum of |ai| equals
1, that is to say, that the Gauss norm of P is 1. Let us write RL, RL′ and
RΥ for the valuation rings of L, L′ and Υ respectively, and R̄L, R̄L′ and
R̄Υ for their residue fields (we will also write bars over elements to indicate
their image in these residue fields). Since R̄L is also algebraically closed, we
either have that ᾱ lies in R̄L or is transcendental over it. We treat these two
subcases differently.
Subcase 2a. Assume that ᾱ is transcendental over R̄L. Choose α′ in such
way that its residue in R̄Υ is transcendental over R̄L′ . Assume that |β| < 1.
This means that P̄ (ᾱ) = 0. Since ᾱ is transcendental over R̄L, we must
have that P̄ = 0 and whence that P has Gauss norm strictly less than 1,
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contradiction. Therefore, |β| = 1 and exactly the same argument then gives
that |τ (β)| = 1, since P σ has also Gauss norm 1.
Subcase 2b. Finally, assume that ᾱ belongs to R̄L. Therefore, we can find
b1 ∈ RL, such that α − b1 has norm strictly less than 1. Let π1 be in the
valuation ideal of RL such that |α− b1| = |π1|. Let α1 = (α−b1)/π, so that
it belongs to L(α) and its norm is 1. If ᾱ1 does not belong to R̄L, then by
Subcase 2a, we can construct an isometry extending σ between L(α1) and
L′(α′

1), for some α′
1 ∈ Υ. Since L(α) = L(α1), we are done also in this case.

Therefore, we may assume that ᾱ1 is again in R̄L and we can find b2, π2 ∈ L
with |π2| < 1, so that |α1 − b2| = |π2|. Again, if α2 = (α1 − b2)/π2,
then either ᾱ2 is transcendental over R̄L, so that we are done by Subcase
2a, or it belongs to it, and we can continue the above process. If after
infinitely many steps, the process has not stopped because all intermediate
αi = (αi−1 − bi)/πi have residue inside R̄L, then we showed in fact that α
can be written as a convergent series

α = b1 + π1b2 + π1π2b3 + . . . (54)

and whence belongs to L̂, the completion of L. However, there is a unique
extension of the norm to L̂ and L̂′ and a unique isometry σ̂ between these
completions, as required.

9.2 (Universal Domains). We fix once and for all an ultrametric extension
field Υ of K satisfying the statement of Theorem 9.1. Of particular interest
to us therefore will be (K-algebra) homomorphisms x : A → Υ. Unfortunately,
even if we require that x is continuous, the type of the tuple x(S) over K is
not entirely determined by the kernel px of x but also by the norm induced
on the residue ring A/px. Another way of saying this is that there might be
non-equivalent ways in which the norm of K can be extended to a multiplicative
norm on A/px.

A note of caution on the ’big’ ultrametric field Υ. There is no cardinal κ
for which Υ is κ-saturated, since we took the convention that norms take their
values in the reals, and this latter set is not sufficiently saturated. Formulated
differently, the concept of a norm is not first order; there is no first order way
of restricting the value group of a norm to be a subgroup of the reals.

As a result, the collection of all analytic points (to be defined below) does
not yet constitute a realization of the type space. This is in contrast with the
algebraic geometric case, where the prime spectrum realizes the type space
in the following sense. Let p be a prime ideal in k[S] with S = (S1, . . . , Sn).
Let pp be the collection of all formulae ϕ(S) with parameters from k which
are a consequence (modulo the theory of fields) of the formulae f(S) = 0,
for f ∈ p, and the formulae g(S) 6= 0, for g /∈ p. Then pp is a complete
n-type over k (of the tuple S viewed as an element in the field of fractions
of k[S]/p). Moreover, the correspondence p 7→ pp is a continuous bijection
from Spec k[S] to the Stone space of all n-types over k.

Although the analytic points as defined below will not realize the type
space, they will nonetheless suffice for our purposes, but see [16] for a more
general approach.

9.3 (Algebraic Quantifier Elimination). Let me briefly comment on Alge-
braic Quantifier Elimination. This states that every formula in the language
of rings is equivalent with a quantifier free formula modulo the theory of alge-
braically closed fields (that is to say, both formulae define the same set over
an arbitrary algebraically closed field). In fact, given an algebraically closed
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field k and a formula ϕ with parameters from k (that is using polynomials over
k), then we can find a quantifier free formula ψ, also with parameters from
k, so that ϕ and ψ are equivalent modulo the theory of k. In other words, ϕ
and ψ define the same set over any algebraically closed field l extending k.
This last formulation can be rephrased in more geometric terms as follows.
A quantifier free definable set in kn, is just a constructible set in the Zariski
sense (that is to say, a Boolean combination–see below–of zero-sets). A fa-
mous Theorem of Chevalley, states that the image of a constructible set
under a polynomial map is again constructible (see for instance [7, Corollary
14.7 and Exercise 14.7]). In particular, the projection of a constructible set is
constructible, which means that every existential formula is equivalent with a
quantifier free one (modulo the theory of k) and this suffices to conclude the
previous Quantifier Elimination statement.

Let V be an arbitrary set. If W is a subset of V , then we will denote
the complement of W in V , by V − W , or simply by −W whenever the
surrounding space is clear from the context. In other words, V −W consists
of all x in V not in W . Let V be a collection of subsets of V . The Boolean
algebra generated by V is the collection of all finite unions of sets of the
form V1 ∩ · · · ∩ Vm ∩ −Vm+1 · · · ∩ −Vn, with all Vi ∈ V. In other words,
all sets obtainable from V by taking complements, finite unions and finite
intersections. A member of the Boolean algebra generated by V is called a
Boolean combination of subsets in V.

For the remainder of this section, let X = SpA be an affinoid variety.

9.4. Definition (Analytic Point). An analytic point x on X is a continuous
K-algebra homomorphism x : A → Υ. Recall that Υ is a ’big’ ultrametric field
extending K, that is to say, an ultrametric field satisfying the statement of
Theorem 9.1. Note that the kernel of an analytic point is a prime ideal p of A,
but different analytic points might have the same prime ideal for kernel. An
ordinary point of X corresponds to a maximal ideal of A and hence induces a
surjective homomorphism A → K. If we compose this with the inclusion K ⊂ Υ
we get an analytic point. We will call the analytic point corresponding to an
ordinary point a geometric point .

A rational (affinoid) subdomain U = SpC of X is called an affinoid neigh-
borhood of an analytic point x, if the homomorphism x : A → Υ extends to a
homomorphism C → Υ, still denoted x (which is then necessarily unique). In
other words we have a commutative diagram

�
�

�
�

�
��

A
A
A
A
A
AU-

A

C Υx

j x
(55)

where j : A → C is the canonical homomorphism corresponding to the inclusion
U ⊂ X . Put differently, U is an affinoid neighborhood of x if, and only if, x is
also an analytic point on U .

In [23], Schneider defines an analytic point more generally as a continu-
ous K-algebra homomorphism x : A→ F , where F is some complete normed
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field extending K (this also means that the norm |·|F on F restricts to the
norm on K). Of course, when F = Υ, we recover our previous definition.
Affinoid neighborhoods are defined similarly (replacing Υ by F ). Two ana-
lytic points x : A→ F and x′ : A→ F ′ are called congruent, if they have the
same system of affinoid neighborhoods. By [23, Corollary 10], this is equiva-
lent with |x(f)|F = |x′(f)|F ′ , for all f ∈ A. To consolidate his definition with
ours, observe the following. Suppose we have an analytic point x : A→ F in
his sense. Let F ′ be the completion of the subfield generated by x(A). Then
the restriction x′ : A→ F ′ is an analytic point, which is congruent to x. By
our assumption on Υ, we may embed x(A) into Υ (preserving norms). As a
consequence, also F ′ embeds in Υ, since Υ is complete. Let x′′ : A→ Υ be
the resulting analytic point. It is again congruent to x and is now an analytic
point in our sense as well. Moreover, by the already mentioned [23, Corollary
10], two analytic points x and x′ in our sense, are congruent if, and only if,
there is an isometry (see below) σ of Υ, such that x = σ ◦ x′.

The following observation will be useful in the sequel.

9.5. Lemma. Let x : A → Υ be an analytic point. If f is an element of A of
norm at most one, then x(f) has also norm at most one.

Proof. Suppose not, say |x(f)| > |π|
−1

> 1 for some π ∈ R. In A, the se-
quence πnfn converges to zero, so by continuity, the same should hold for its
image under x in Υ. However, x(πnfn) = πnx(f)n, and this diverges in norm,
contradiction.

As a set, the K-affinoid Berkovich space associated to X (or to A) is defined
to be the setM(X) of all analytic points on X up to isometry. In other words, we
identify two analytic points x and x′, if there is an isometry (=homeomorphism
preserving norms) σ : Υ → Υ such that x = σx′. We put the weakest topology
on M(X) for which, for each f ∈ A, the map

M(X) → R : x 7→ |x(f)| (56)

is continuous. In other words, a basis of open sets is given by the sets of the
form

{x ∈M(X) | |x(pi)| < ri, |x(qj)| > sj , for i < n and j < m } (57)

where pi, qj ∈ A and ri and sj are real numbers.

9.6. Proposition. If X is an affinoid variety, then M(X) is a compact Haus-
dorff space. If we view X with its canonical topology, then the map X →M(X)
sending a (closed) point to the corresponding geometric point, is a homeomor-
phism of X onto an everywhere dense subset.

Proof. For a definition of compactness, see Definition 10.2 below. For a proof,
see [23, Lemma 11].

Nonetheless, something strange goes on with the embedding X →֒ M(X). If
U is a rational (affinoid) subdomain of X , that is to say, an admissible open of
X , then M(U) is a closed subset of M(X). In fact,

M(U) = U (58)
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where U denotes the closure of U in M(X), and, moreover, X ∩M(U) = U . Let
me just show that M(U) is closed. Suppose U consist of all x ∈ X such that

|pi(x)| ≤ |p0(x)| , for i = 1, . . . , n (59)

where the pi ∈ A generate the unit ideal. Then M(U) consist of all analytic
points of X which satisfy the same inequalities (59). To be more precise, an
analytic point x : A → Υ belongs to M(U), if it extends to a continuous K-
algebra homomorphism x′ : C → Υ, where C is the affinoid algebra of U . Since
C is the homomorphic image of A〈S〉 modulo the ideal generated by the pi−p0Si,
for i = 1, . . . , n, this means that x(pi) = x′(Si)x(p0), for all i. Since Si has
norm at most one in C, so does x′(Si) in Υ by Lemma 9.5. Therefore, we have
inequalities |x(pi)| ≤ |x(p0)|. It is standard practice to write x(p) as p(x), to
emphasize that x is a point and A operates as an algebra on M(X). With this
convention, x ∈ M(U) if, and only if, inequalities (59) hold. Since these are
weak inequalities, the set defined in this way is closed.

Indeed, if x0 is an analytic point not satisfying the inequalities (59), then
for some i, say i = 1, we have that |p0(x0)| < |p1(x0)|. Choose r ∈ R with
|p0(x0)| < r < |p1(x0)|. Then the basic open of M(X) consisting of all x for
which |p0(x)| < r < |p1(x)| is disjoint from M(U) and contains x0, showing
that the complement of M(U) is open.

9.7. Definition (Wide Affinoid Neighborhood). We call an affinoid neigh-
borhood U of an analytic point x a wide affinoid neighborhood of x, if x lies in
the (topological) interior of M(U).

If x is geometric, then any rational subdomain containing x is wide. Indeed,
a rational (or affinoid) subdomain U is open in the canonical topology by Propo-
sition 7.7. Therefore, we can find ǫ > 0, such that the open ball BX(x ; ǫ) is
contained in U . Now, the open in M(X) consisting of all analytic points y, such
that all |y(Si − xi)| < ǫ/2 is therefore contained in M(U), where xi ∈ K are
the coordinates of the geometric point x (in some embedding of X as a closed
analytic subvariety of Rm), showing that x is an interior point of M(U).

It is perhaps more instructive to give an example of an affinoid neighborhood
of an analytic point which is not wide. Let X = R and U = BR(0 ; |π|), with
π ∈ K a non-zero element of norm less than one. The affinoid algebra of U is
C = K〈S, T 〉/(S − πT ). The supremum norm on C is a multiplicative norm,
by Proposition 4.6 and the fact that C ∼= K〈T 〉. Therefore, by Theorem 9.1,
C with its supremum norm can be embedded in Υ. Let x be the thus defined
analytic point x : C → Υ (note that its kernel is the zero ideal). Since the
supremum norm of S ∈ C equals |π|, it follows that |x(S)| = |π|. Without
showing in detail that x is not an interior point of M(U), let me just show that
every basic open of the form B = { y ∈ M(X) | r < |y(S)| < s } with r < |π| < s
(an annulus around x so to speak), contains at least one point not belonging to
M(U). In fact, any analytic point y for which |π| < |y(S)| < s does not belong
to M(U). Indeed, since S = πT in C, we get that

|y(T )| = |y(S)| / |π| > 1 (60)

whereas |T | = 1 in C, contradicting Lemma 9.5.
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This example also shows how to construct new analytic points. For instance,
let us denote the analytic point x defined above by xπ, to emphasize that it
comes from the supremum norm on C = K〈S, T 〉/(S − πT ). One can show
that, if |π| 6= |π′|, then xπ and xπ′ are different analytic points. Nonetheless,
the kernel of both analytic points is the zero ideal. In [1, Example 1.4.4] this
technique is generalized slightly, to yield a complete list of all possible analytic
points on R. See also Lemma 9.11 below, for the existence of sufficiently many
’generic points’.

Next we want to define a K-analytic structure onM(X). In order to do this,
we need a structure sheaf OM(X). We will work a bit more general. Let F be
an arbitrary sheaf on X . We want to define a sheaf M(F) on M(X). So let U
be an open of M(X). Let Γ(M(F),U) be the inverse limit of all Γ(F , U), where
U is a finite union of rational subdomains, such that the closure of U in M(X)
is contained in U.

Strictly speaking F is not defined on arbitrary finite unions of affinoid (or
rational) subdomains, since these need not be affinoid subdomains anymore.
In other words, we have to first give meaning to Γ(F , U) = F(U), for U
a finite union of affinoid subdomains Ui. This is done by requiring that
diagram (49) of Chapter 1 be exact.

For x ∈ M(X), the stalk Fx of an arbitrary sheaf F is, as usual, defined
as the direct limit of all F(U), where U runs over all opens containing x. In
[23, Lemma 14], it is shown that M(F)x is isomorphic with the direct limit
of all F(U), where U runs over all wide affinoid neighborhoods of x.

9.8. Definition (Affinoid Berkovich Space). For structure sheaf onM(X),
we then take M(OX), and we denote this sheaf by OM(X). In this way, M(X)
becomes a locally ringed space. An easy calculation shows that the ring of global
sections of the sheaf OM(X) is precisely the affinoid algebra A. In general, a
locally ringed space (X,OX) (see the commentary remarks in Definition 8.6 for
a definition) is called an affinoid Berkovich space, if it is isomorphic as locally
ringed space with a space (M(X),OM(X)), for some affinoid variety X . The ring
of global sections of X is then necessarily the affinoid algebra of X .

A map Y→ X between affinoid Berkovich spaces is by definition a morphism
of locally ringed spaces (Y,OY) → (X,OX). In this way, we get the category of
affinoid Berkovich spaces.

9.9. Proposition. There is an equivalence of categories between the category
of affinoid varieties and the category of affinoid Berkovich spaces.

Proof. Let X be an affinoid Berkovich space. Let A = OX(X) be its
ring of global sections. Recall that then M(X) ∼= X, where X is the affinoid
variety SpA. Therefore, the functor M(·) is bijective. We need to show that
it is an equivalence of categories.

So let there be given a map f : Y → X of affinoid Berkovich spaces.
Taking global sections, we then get a homomorphism A → B, where A
and X are as above, and B is the affinoid algebra of the affinoid variety
Y for which M(Y ) = Y. In particular, we get a map of affinoid vari-
eties Y → X. Conversely, given a map of affinoid varieties f : Y → X,
we get a K-algebra homomorphism OX(U) → OY (f−1(U)), for each ra-
tional subdomain U of X. Putting U = X, we get a homomorphism
ϕ : A → B. This induces a map M(Y ) → M(X) given by y 7→ y ◦ ϕ,
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for y : B → Υ an analytic point. Moreover, taking inverse limits of the ho-
momorphisms OX(U) → OY (f−1(U)) yields a morphism of locally ringed
spaces (M(Y ),OM(Y )) → (M(X),OM(X)). All these calculations show that
both categories are equivalent.

Under this equivalence, local properties are well preserved, as the following
Proposition indicates.

9.10. Proposition. Let X = SpA be an affinoid variety and x : A → Υ an
analytic point on X with kernel p. The natural local homomorphism Ap →
OM(X),x is faithfully flat. Each local ring of M(X) is Noetherian and Henselian.
The structure sheaf OM(X) is coherent.

Proof. See [2, Theorems 2.1.4 and 2.1.5]. In fact, by [1, §2.3], we have an
isomorphism OX,x

∼= OM(X),x, for x a geometric point (where we write x for the
point of X as well as for the geometric point in M(X) it determines). Using [4,
7.3.2], it follows that all local rings are Noetherian. For a definition of flat and
faithfully flat homomorphisms.

In particular, if X is an affinoid manifold, then all local rings of M(X) are
regular (so that we will call M(X) an affinoid Berkovich manifold). Indeed, in
B.1 we said that X is a manifold, if A is regular, which means that all its local-
izations are regular. But a faithfully flat homomorphism preserves regularity,
so that also all OM(X),x are regular. This is just one application of faithfully
flatness for showing that X and M(X) have many local properties in common.
For instance, one can also prove that a coherent OX -ideal I is invertible if, and
only if, M(I) is.

In fact, the morphism of locally ringed spaces (M(X),OM(X)) → (X,OX)
sending an analytic point to its kernel, where X = SpecA, induces an equiv-
alence on the category of coherent modules by [1, p. 33].

Another advantage of affinoid Berkovich spaces over affinoid varieties, is the
existence of generic points. For our purpose, these are points satisfying the
conclusion of the following statement.

9.11. Lemma (Generic Point Lemma). Let X be an affinoid variety and
U a non-empty open in M(X). Then there exists x ∈ U, such that OM(X),x is
Artinian (that is to say, has Krull dimension 0).

Proof. We can always find a rational subdomain U of X , such that M(U) ⊂ U.
Let C be the affinoid algebra of U . Let p be a minimal prime of C. Choose
some multiplicative norm on the residue ring C/p (this is always possible by
[1, Theorem 1.2.1]) and embed the resulting normed ring in Υ. This yields an
analytic point x on U . In other words, x ∈ M(U) ⊂ U. From [1, Proposition
2.3.3], it follows that OU,x has the same dimension as Cp, that is to say, OU,x is
Artinian. However, this finishes the proof, since OU is the restriction of OM(X)

to U, so that OU,x
∼= OM(X),x.

Let me now elaborate a bit more on how well the function theories on X
and on M(X) correspond. Given a sheaf F on M(X), associate a sheaf F̃ on X
as follows. For U a rational subdomain, we let Γ(F̃, U) be the direct limit of
all F(U) where U runs over all opens containing M(U). By [23, Lemma 16], we
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always have an isomorphism between F andM(F̃). Unfortunately, in most cases,

we do not have an isomorphism between F and M̃(F), even not for F = OX .
However, this can easily be repaired as follows. Set

F◦ = F̃ ⊗
ÕM(X)

OX . (61)

I can now state the close correspondence between X and M(X) more precisely.

9.12. Theorem. The functors F 7→ F◦ and F 7→ M(F) induce an equivalence
of categories of coherent sheaves. Moreover, under this equivalence, sheaf coho-
mology of coherent sheaves is preserved.

Proof. The first statement reduces to showing that

F ∼=M(F◦) and F ∼= (M(F))◦,

for F and F coherent sheaves on M(X) and X respectively. See [23, Lemma 16]
and [1, p. 58] for details. The last statement is proved in [1, Theorem 3.3.4].

9.13. Definition (Berkovich Space). I will not say much about the Berko-
vich space associated to an arbitrary rigid analytic variety. For the purposes
of this book, we only need to associate a Berkovich space to a separated quasi-
compact rigid analytic variety X . Recall that quasi-compactness means that X
admits a finite affinoid covering {Xi}. We can glue together the affinoid Berko-
vich spaces M(Xi) along their common affinoid Berkovich spaces M(Xi ∩ Xj)
into a space denoted M(X). Note that since X is separated, the intersections
Xi∩Xj are again affinoid. It follows from Proposition 9.6, that the spaceM(X)
is compact and Hausdorff. Similarly, the structure sheaves of the M(Xi) glue
to obtain a structure sheaf OM(X). The spaces so far obtained yield too small
a category, as an arbitrary open in X is not necessarily obtained from glueing
finitely many affinoid Berkovich spaces. Therefore, we call a locally ringed space
a K-analytic Berkovich space (for short, Berkovich space), if it is isomorphic (as
a locally ringed space) with some (U,OU), where U is an open in a space of the
form (M(X),OM(X)) with X a separated, quasi-compact rigid analytic variety,

and where OU = OM(X)

∣∣
U
.

In the literature larger, and perhaps more natural, classes of analytic
spaces are introduced and still called K-analytic. However, since the intro-
duction of these larger classes requires extra care, I decided to restrict the
present exposition to a class sufficient for our purposes.

9.14. Definition (Berkovich Subdomain). Let X be an arbitrary Berko-
vich space. We call a closed subset of the form M(V ), with V an affinoid
variety, a rational (respectively, affinoid) Berkovich subdomain of X, if X is an
open subspace of some M(Y ), with Y a separated, quasi-compact rigid analytic
variety, such that V is a rational (respectively, affinoid) subdomain of Y , via
the map V → Y induced by the map M(V ) →֒ X →֒M(Y ).

More generally, we call a closed subset M(V ), with V a separated, quasi-
compact rigid analytic variety, a Berkovich subdomain of X, if X is an open
subspace of some M(Y ), with Y a separated, quasi-compact rigid analytic vari-
ety, such that V is an admissible open of Y .
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In [1, Proposition 2.2.3], it is shown that an (affinoid) Berkovich domain
satisfies a universal property similar to the one for affinoid subdomains (see
the commentary remarks following Definition 7.5).

Although a (rational) Berkovich subdomain is a closed subset, it has many
features of an open immersion (since it comes from an open immersion of rigid
analytic varieties), as the following lemma shows.

9.15. Lemma. Let M(V ) be a Berkovich subdomain of X and let x ∈ M(V ).
Then the local rings OM(V ),x and OX,x are isomorphic.

Proof. In view of the local nature of the problem, we may assume without
loss of generality, that M(V ) is affinoid. By definition, X is an open subspace
of some M(Y ), with Y a separated, quasi-compact rigid analytic variety,
such that V is an affinoid subdomain of Y . In particular, since X is an open
subspace, OX,x

∼= OM(Y ),x. We already quoted the result from [23, Lemma
14], that OM(Y ),x is isomorphic to the direct limit of all OY (U), where U ⊂ Y
runs over all wide affinoid neighborhoods of x. Since V ⊂ Y is an affinoid
subdomain and since the intersection of a wide affinoid neighborhood with
an affinoid subdomain is again wide (use that M(U ∩ V ) = M(U) ∩M(V );
see [23, Lemma 12]), it follows that the local ring OM(V ),x is the direct limit
of all OV (U), where U ⊂ V runs over all wide affinoid neighborhoods of x in
V . Therefore, since OV = OY |V , both rings are the same, as required.

All what we have said for affinoid Berkovich spaces generalizes with little
effort to these more general Berkovich spaces. In particular, any map f : Y → X
between separated quasi-compact rigid analytic varieties uniquely determines a
map M(f) : M(Y ) →M(X) between the corresponding Berkovich spaces.

9.16. Proposition. Let f : Y → X be a map between separated quasi-compact
rigid analytic varieties. Then f is flat if, and only if, M(f) is.

Proof. The map f is called flat in a point y ∈ Y if the homomorphism of
local rings OX,f(y) → OY,y is flat. Similarly, M(f)) is flat in y ∈ M(Y )), if
OM(X),M(f)(y) → OM(Y ),y is flat. The result now follows easily from either [1,
§2.3] and the fact that we only need to check flatness for geometric points,
or from [4, 7.3.2] and Proposition 9.10.

The following rigid analytic consequence of the compactness of Berkovich
spaces will be useful.

9.17. Proposition. Let X be an affinoid variety. If {Ui}i is a collection of
affinoid subdomains of X, such that, for each analytic point x on X, one of the
Ui is a wide affinoid neighborhood of x, then the covering is admissible (in the
Grothendieck topology on X) whence, by Theorem 8.10, already finitely many
Ui cover X.

Proof. See [2, Lemma 1.6.2].

Beware that the above condition is stronger than just requiring {Ui}i to be
a covering of X , for this would only mean that the geometric points are covered.

Convention 9.18. Sometimes I will drop the name Berkovich when referring to
a Berkovich space. For instance, a closed analytic subset carrying the structure
of a Berkovich space (defined by a coherent ideal), will simply be called a closed
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analytic subspace. I reserve the designation variety for objects in the rigid
analytic category and space for objects in the Berkovich category. Throughout
the whole book the notational distinction between rigid analytic varieties and
Berkovich spaces will be maintained, where the former are denoted by capital
letters X, Y, Z, . . . and the latter by blackboard capital letters X,Y,Z, . . . .

10 Blowing Ups and Proper Maps

This section continues with expanding on the similarity between the category
of rigid analytic varieties and Berkovich spaces. In particular, blowing ups are
defined in a similar way and have similar properties (see Appendix A for more
details on blowing ups in rigid analytic geometry). I also discuss the connection
between the seemingly unrelated notions of properness in both categories.

10.1. Theorem. Let X be a Berkovich space and Z a closed analytic subspace.
Then the blowing up π : X̃ → X of X with centre Z exists. This blowing up
induces an isomorphism between X̃− π−1(Z) and X− Z.

Proof. To say that the blowing up of X with centre Z (given by a coherent ideal
I) exists, means that there exists a map π : X̃ → X of Berkovich spaces such
that the following universal property holds. The inverse image IOX̃ is invertible
and, moreover, if f : Y → X is any other map of Berkovich spaces such that
IOY is invertible, then there exists a unique map g : Y→ X̃ such that f factors
as π ◦ g.

I claim that it suffices to show the theorem for X affinoid, that is to say,
X = M(X), with X = SpA an affinoid variety. Indeed, for the general case, X
is some open in a Berkovich space of the form M(Y ), with Y a separated, quasi-
compact rigid analytic variety. If F is a closed analytic subspace of M(Y ), such
that F∩X = Z, then, in view of the local nature of blowing ups, the blowing up
of X with centre Z exists, if the blowing up of M(Y ) with centre F exists. More
precisely, if θ : Ỹ→ M(Y ) is this latter blowing up, then the restriction of θ to
θ−1(X) is the required blowing up π : X̃ → X (this follows from the Berkovich
analog of the last statement in Proposition A.8). In particular, X̃ is the open
θ−1(X) in Ỹ, whence is itself a Berkovich space. Finally, since Y is a finite union
of affinoid varieties Yi, we then reduce the existence of the blowing up θ to the
existence of the blowing up of M(Yi) with centre F ∩M(Yi), for each i. This
follows from the Berkovich equivalent of [25, Proposition 1.4.4], which admits
an almost identical proof.

So, we may assume that X = M(X), with X = SpA an affinoid variety. If
Z is the closed analytic subvariety of X defined by I◦, then M(Z) = Z (see
Theorem 9.12). Let π : X̃ → X be the blowing up of X with centre Z, which
exists by Theorem A.4. I claim that M(π) : M(X̃) →M(X) is the blowing up of
X = M(X) with centre Z. The claim follows easily from Theorem 9.12; see [9,
Lemma 2.1] for details. The last assertion follows easily from its rigid analytic
analogue Proposition A.5

Before I discuss further properties of these blowing ups, I need to recall the
topological notions of compactness and properness.

10.2. Definition (Compact Set). Let W be an arbitrary Hausdorff topolog-
ical space. A subset V of W is called compact , if any open covering of V admits
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a finite subcovering, that is to say, if the Ui, for i in some index set I, are opens
of W such that V lies in their union, then V lies already in the union of finitely
many of the Ui. We say that V is relatively compact , if its closure is compact. In
other words, V is relatively compact if, and only if, it is contained in a compact
set.

Any compact set is necessarily closed. Indeed, let V be compact subset
of W and x ∈ −V . Since W is assumed to be Hausdorff, we can find for
each v ∈ V disjoint open sets Vv and Wv, such that v ∈ Vv and x ∈ Wv.
The Vv cover V , when v runs over all points of V , whence already finitely
many Vv1 , . . . , Vvs

do so. Then Wv1 ∩· · ·∩Wvs
is an open containing x and

disjoint from V , proving that V is closed.

10.3. Proposition. A Berkovich space is locally compact and Hausdorff.

A Hausdorff topological space is called locally compact, if each point
admits a system of compact neighborhoods (a neighborhood of a point x is
a set containing an open U with x ∈ U).

Proof. By Proposition 9.6, any affinoid Berkovich space is compact. Since an
arbitrary Berkovich space (according to our definition) is an open inside a finite
union of affinoid Berkovich spaces, the statement follows.

We will often invoke compactness through the following property. Recall
that a collection of subsets V of a set W is said to have the finite intersection
property, if every intersection of finitely many members of V is non-empty.

10.4. Theorem (Intersection Property). Let W be a Hausdorff topological
space and V a closed subset of W . Then V is compact if, and only if, for every
collection V of closed subsets among which is V and having the finite intersection
property, we have that the intersection of all members of V is non-empty.

Proof. Let V ′ be the set of all V ∩W , where W runs over all members of
V. Clearly, also V ′ has the finite intersection property and if the conclusion
of the theorem holds for the collection V ′ in the space V , then it also holds
for collection V in the space W . In other words, replacing W and V by V
and V ′ respectively, we may assume that V = W .

Assume first that all collections V of closed subsets of W with the finite
intersection property have non-empty intersection. We need to prove that
W is compact. Towards a contradiction, assume that there exists an open
covering U of W , which admits no finite subcovering. Let V be the collection
of all complements of members of U . Since no finite number of opens in
U cover W , the collection V has the finite intersection property. Therefore
the intersection of all members of V is non-empty, contradicting that their
complements cover W .

Conversely, assume that W is compact and that V is a collection of closed
subsets with empty intersection. We need to show that already finitely many
members of V have empty intersection. Let U consist of the complements of
all members of V. Our assumption implies that U is an open covering of W .
By compactness already finitely many cover W , proving that the intersection
of their complements is empty.

10.5. Definition (Proper Map). A continuous map f : V → W of Hausdorff
topological spaces is called proper , if the inverse image of an arbitrary compact
set is again compact.
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Normally, an arbitrary continuous map f : V → W of topological spaces
is called proper if it satisfies the above condition and is moreover separated,
meaning that the image of V via the diagonal embedding ∆: V →֒ V ×W V
is closed. However, if V is a Hausdorff space, then any continuous map with
source V is separated. Indeed, take any pair (x, x′) in V ×W V outside
∆(V ). Since then x 6= x′ and using the Hausdorff assumption, we can
find disjoint opens U and U ′ containing x and x′ respectively. The open
(U×U ′)∩ (V ×W V ) contains (x, x′) and is disjoint from ∆(V ), as required.

Since we will always deal with Hausdorff spaces, there is no need for
including the separatedness condition.

Note that the notion of a proper map in rigid analytic geometry or in al-
gebraic geometry is different from the above characterization. In the algebraic
geometric case a map is called proper, if it is separated and universally closed
(with respect to the Zariski topology). Recall that a map is called closed , if the
image of a closed set is again closed, and universally closed, if any base change
is closed. In the rigid analytic case a more complicated definition is used ([4,
9.6.2]) and it is then a non-trivial theorem due to Kiehl ([4, 9.6.3. Proposition
3]) that the image of a closed analytic subset under a proper map is again a
closed analytic subset.

10.6. Definition (Rigid Analytic Proper Map). Let Y = SpB → X =
SpA be a map of affinoid varieties and let U be a rational subdomain of Y .
We say that U is relatively compact in Y with respect to X, if we can find
gi ∈ B of supremum norm at most one, such that the A-algebra homomor-
phism A〈S1, . . . , Sn〉 → B given by Si 7→ gi is surjective and such that the
supremum norm of each gi on U is strictly less than 1. We denote this by
U ⋐X Y . An arbitrary map f : Y → X of rigid analytic varieties is called
proper , if it is separated (see Definition 8.12) and there exists an admissible
affinoid covering {Xi} of X, and, for each i, admissible affinoid coverings
{Ui,j} and {Yi,j} of f−1(Xi), such that Ui,j ⋐Xi

Yi,j , for all i and j.

Some further links between these different notions of properness are provided
by the following two results.

10.7. Theorem. If f : Y → X is a proper map of separated quasi-compact rigid
analytic varieties, then the corresponding Berkovich map M(f) is (topologically)
proper.

Proof. See [1, Proposition 3.3.2]. In fact, Berkovich has a slightly less general
definition of proper map, for which the converse to the theorem also holds.

It follows that closed immersions, or more generally, finite maps in the Ber-
kovich category are proper (as they are in the rigid analytic or the algebraic
geometric case). Recall the definition of a separated map of rigid analytic vari-
eties from Definition 8.12. In particular, if X is separated (and quasi-compact),
then M(X) is Hausdorff, as we already observed in Proposition 10.3.

10.8. Theorem. If f : V → W is a proper map of locally compact Hausdorff
spaces, then it is closed.

Proof. Let F be a closed subset of V . We need to show that f(F ) is
closed. To this end, let x be a point in the closure of f(F ). Let K be the
collection of all compact neighborhoods of x. By local compactness and the
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Hausdorff property, their intersection is the singleton {x}. Furthermore, since
x lies in the closure of f(F ), every K ∈ K has a non-empty intersection with
f(F ). Hence all the f−1(K) ∩ F are non-empty and the finite intersection
property holds for them. By properness, each f−1(K)∩F is compact. There-
fore, by Theorem 10.4, the intersection of all f−1(K)∩F is non-empty. Pick
some point y inside all the f−1(K) ∩ F . In particular, f(y) ∈ K ∩ f(F ), for
all K ∈ K. Therefore, f(y) = x so that x ∈ f(F ), as required.

Returning to our Berkovich blowing ups, the fact that they are obtained from
their rigid analytic counterparts, implies that they share similar properties. For
sake of reference, I state the following Berkovich analogue of Proposition A.6.

10.9. Proposition. Let π : X̃→ X be the blowing up of the Berkovich space X
with centre Z. Then the following holds.

10.9.1. The map π is proper.

10.9.2. If Z is nowhere dense, then π is surjective and π−1(Z) is also nowhere
dense.

10.9.3. If X is reduced, then so is X̃. Similarly, if X is irreducible, then so is X̃
provided Z as a set is strictly smaller than X.

Proof. The proof is basically an application of the equivalence of categories given
in Theorem 9.12 and the analog properties listed in Proposition A.6. To prove
10.9.1, use Theorem 10.7. We call X reduced, if all its local rings are reduced,
and irreducible, if it is not the union of two proper closed analytic subspaces.
For the reduced case of 10.9.3, use also Proposition 9.10.
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Part III

Appendix

A Blowing Up

For the discussion on Embedded Resolution of Singularities in Appendix B
below, we need to introduce first blowing up maps. This section is meant as a
brief review of their elementary theory in the rigid analytic category. A detailed
treatment of rigid analytic blowing up can be found in [25].

A.1. Definition (Invertible Ideal). Let X = SpA be an affinoid variety.
The purpose of blowing up is to make an arbitrary ideal principal. Let me be
a bit more specific. Let a be an ideal of A. We say that a is principal , if it
is generated by a single element and locally principal , if it is principal in each
localization Ap, for p a prime in A. The ideal a is called invertible, if it is locally
principal and, moreover, the generator in each localization is not a zero divisor.
Another way of saying this is that a is locally principal with AnnA(a) = 0 (recall
that AnnA(a) is the ideal of all x ∈ A for which xa = 0).

More generally, let X be a rigid analytic variety and let I be a coherent OX -
ideal. We say that I is invertible, if there exists an admissible affinoid covering
{Xi = SpAi}i of X , such that IAi is generated by a single non-zero divisor.
(By taking a small enough covering, we may indeed assume that the ideal is
principal on each admissible affinoid).

LetX be a rigid analytic variety. A sheaf F onX is called coherent (often,
also called a coherent OX -module), if there exists an admissible affinoid
covering {Xi = SpAi} and exact sequences

Om
Xi

→ On
Xi

→ F|Xi
→ 0. (62)

Another way to express this is by claiming the existence of finite Ai-modules
Mi, such that for each f ∈ Ai, we have compatible isomorphisms

F(Xi,f ) ∼= (Mi)f , (63)

where Xi,f is the admissible open in Xi given by f 6= 0. Compatible means
that for any f, g ∈ Ai, these isomorphisms localize to the isomorphism de-
termined by the element fg on Xi,fg = Xi,f ∩ Xi,g. If, moreover, F is
a subsheaf of OX , then we call it a coherent OX -ideal . In particular, if
X = SpA is an affinoid variety then there is a one-one correspondence (in
fact, an equivalence of categories) between the category of finite A-modules
and the category of coherent OX -modules, on the one hand, and between the
set of ideals and the set of coherent OX -ideals, on the other. Moreover, to
any ideal a of A corresponds an affinoid algebra A/a, and whence an affinoid
variety Z = SpA/a. There is a natural map ı : Z → X which is in fact
injective and any such map is called a closed immersion. It is easy to verify
that the image of ı is a closed analytic subset of X, whence the terminology.
Another frequently used terminology is to call Z a closed analytic subvariety
of X; here the intention is to ’forget’ the map ı and view Z as a subspace
of X. Again, we can extend this notion to an arbitrary rigid analytic variety
X, and hence establish a one-one correspondence between the closed analytic
subvarieties of X and the coherent OX -ideals.
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A.2 Blowing Up of the Plane

The blowing up of A with respect to a will be a rigid analytic variety X̃ with
the property that a becomes an invertible ideal on X̃ and X̃ is in some sense the
smallest rigid analytic variety for which this happens. Before I give the precise
definition, here is an example of what a blowing up might look like. Consider
A = K〈S1, S2〉 the free Tate algebra in two variables and let a = (S1, S2) be
the maximal ideal defining the origin. This ideal is clearly not principal. In
order for it to be principal, we would need, for instance, that there exists some
element t1 (in an extension of A) such that S2 = t1S1. Moreover, we want to
do this in such way that any other ring extension factors through this. Put
differently, we want to construct a generic extension of A in which S1 divides
S2. Of course, we want to stay within the rigid analytic category and hence the
natural candidate for such an extension is

Ã1 = K〈S1, S2, T1〉/(S2 − T1S1). (64)

Clearly Ã1 is isomorphic with K〈S1, T1〉 and the extension A ⊂ Ã1 is given by
the homomorphism S1 7→ S1 and S2 7→ S1T1. Under this homomorphism a has
indeed become invertible, namely, aÃ = S1Ã1. However, we could instead have
opted to make S2 our single generator of a, by finding a t2 so that S1 = t2S2.
In other words, the homomorphism

K〈S1, S2〉 → Ã2 = K〈S2, T2〉 : S1 7→ S2T2, S2 7→ S2 (65)

is a second solution to our problem. Apparently this is not an extension of the
first example. So somehow we have to combine these two examples to obtain the
’right’ blowing up. In other words, we will glue together two copies of R2, one,
X̃1 = Sp Ã1, with coordinates (S1, T1), the other, X̃2 = SpA2 with coordinates
(S2, T2), as follows. We have from our above discussion two maps πi : X̃i → R2,
for i = 1, 2, given by (s1, t1) 7→ (s1, s1t1) and (s2, t2) 7→ (s2t2, s2). Consider the
rational subdomain

Ỹi =
{

(si, ti) ∈ X̃i | |ti| = 1
}

(66)

of X̃i, for i = 1, 2. The map θ given by

(s1, t1) 7→ (s1t1, 1/t1) (67)

is an isomorphism between Ỹ1 → Ỹ2, compatible with the maps πi to R2. In
other words, we have a commutative diagram

�
�

�
�

�
��

A
A
A
A
A
AU-

Ỹ1

Ỹ2 R2
π2

θ π1 (68)

This enables us to glue X̃1 and X̃2 along the isomorphic rational subdomains Ỹ1

and Ỹ2, to obtain a rigid analytic variety X̃ (containing both X̃i as an admissible
open). This glueing process also provides us with a map π : X̃ → X , agreeing
with πi on X̃i. This map will be the blowing up at the origin.
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One can describe the above rigid analytic variety X̃ as the closed analytic
subvariety of R2 × P1 given by s1ξ2 = s2ξ1, where (s1, s2; ξ1 : ξ2) are the
coordinates on R2 × P1 and where X̃1 corresponds to the subset given by
|ξ2| ≤ |ξ1|, by letting t1 = ξ2/ξ1, and similar for the second chart. Note
that π is simply the canonical projection R2 × P1 → R2 restricted to X̃.
Consequently, π is an isomorphism above each point of R2 except above the
origin. In fact, the fibre at the origin is isomorphic to projective 1-space.
This is typical for a blowing up map, as we will see shortly. This last form
allows us to define more generally the blowing up of Rn with respect to the
maximal ideal corresponding to the origin as follows. It is the closed analytic
subvariety X̃ of Rn×Pn−1, given by siξj = sjξi, for all i, j = 1, . . . , n, where
(s1, . . . , sn; ξ1 : · · · : ξn) are the coordinates on Rn × Pn−1. The associated
blowing up map π : X̃ → Rn is just projection on the first n-coordinates.

Now that I have constructed an example, let me give the precise definition.

A.3. Definition (Blowing Up). Let X be a rigid analytic variety and let I
be a coherent OX -ideal. Such an ideal uniquely defines and is defined by a closed
analytic subvariety Z of X . A map π : X̃ → X of rigid analytic varieties is called
the blowing up of X with centre Z, or, with respect to I, if IOX̃ is invertible
and π is universal with respect to this property. With the latter condition we
mean that, given any map f : Y → X of rigid analytic varieties, such that IOY

is invertible, then there exists a unique map g : Y → X̃ which factors through
f , that is to say, such that the following diagram is commutative

�
�

�
�

�
��

A
A
A
A
A
AU-

Y

X̃ Xπ

g f (69)

Since a blowing up map is defined by a universal property, it is unique, if it
exists.

Given an arbitrary map f : Y → X of rigid analytic varieties and an OX -
ideal I, we define the inverse image of I on Y , denoted by IOY as the
image of the canonical morphism of sheaves f∗I → OY . In other words, if
X = SpA and Y = SpB are affinoid and I is given by the ideal a of A, then
IOY is given by aB. Moreover, if Z is the closed analytic subvariety defined
by I, then by f−1(Z) we will mean the closed analytic subvariety of Y given
by IOY . In particular, f−1(Z) is isomorphic with Y ×X Z (compare with
Proposition 7.6).

Let us verify that the universal property is satisfied in the above example
of the blowing up of R2 with centre the origin. Therefore, let f : Y → R2 be
a map of rigid analytic varieties so that (S1, S2) becomes an invertible ideal
on Y . Since this is a local question, we may assume that Y = SpB is affine.
Let bi ∈ B be the image of Si under the homomorphism K〈S1, S2〉 → B
corresponding to f . Hence by assumption the ideal generated by b1 and b2
is invertible. Replacing Y by one of its rational subdomains, we may already
assume that the latter ideal is generated by a single non-zero divisor and
without loss of generality we may assume that this is b1. Therefore, there is
some c ∈ B, such that b2 = cb1. Moreover, c is unique, since b1 is a non-zero
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divisor. Define a homomorphism K〈S1, T1〉 → B by sending S1 to b1 and T1

to c. This gives a map Y → X̃1 which composed with π gives the original f .
Hence let g just be this map followed by the open immersion X̃1 →֒ X̃. This
is indeed the only possible map due to the fact that c is uniquely defined.
This shows that π : X̃ → R2 is the blowing up of R2 with centre the origin.

Exactly the same proof shows that the blowing up of Rn with centre the
origin, constructed above, satisfies the defining universal property of blowing
up maps. This is the point of departure for proving that a general blowing
up always exists.

A.4. Theorem. Let X be a rigid analytic variety and let Z be a closed analytic
subvariety, then the blowing up π : X̃ → X with centre Z exists.

Sketch of proof. We already observed that the blowing up of Rn with
centre the origin exists. One then shows that the blowing up of Rn+m with
centre Rm exists, as the base change of the former blowing up with {0}×Rm.
Next, we treat the affinoid case X = SpA. We can embed X in some Rn+m

in such way that Z = X ∩ ({0}×Rm) in this embedding. So one needs only
to show that given a blowing up π as in the statement and a closed analytic
subvariety F of X, then the strict transform of F under π exists (as a closed
analytic subvariety of X̃) and equals the blowing up of F with centre F ∩Z.
See A.7 below for the definition of strict transform and Proposition A.9 for
the construction of the strict transform of F . This finishes the affinoid case
and the general case now follows by glueing together; for a detailed proof,
see [25, Theorem 2.2.2].

A.5. Proposition. Let π : X̃ → X be the blowing up of the rigid analytic
variety X with centre Z. Then away from the centre Z, the map π is an iso-
morphism. In other words, π induces an isomorphism between X̃ −π−1(Z) and
X − Z.

On the other hand, π−1(Z) is a closed analytic subvariety of Z × Pn, for
some n, and the restriction of π to π−1(Z) is just the projection onto Z.

Proof. We already observed this for the blowing up of the plane at the
origin. For the general case, see [25, Corollary 1.4.5].

For the last statement, this is clear for the blowing up π of Rn with centre
the origin from its description at the end of A.2, since then π−1(0) ∼= Pn−1.
On the other hand, if π is the blowing up of Rn+m with centre {0} × Rm,
then after taking base change, we get that

π−1({0} ×Rm) ∼= Pn−1 ×Rm. (70)

The general case is given as some strict transform of this last blowing up
(see the proof of Theorem A.4), so that the assertion holds in general by
Proposition A.9.

The following properties of a blowing up in the rigid analytic category are
just the analogues of their algebraic-geometric counterparts–see for instance [13,
Chapter II, Section 7].

A.6. Proposition. Let π : X̃ → X be the blowing up of the rigid analytic
variety X with centre Z. Then the following holds.

A.6.1. The map π is proper.
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A.6.2. If Z is nowhere dense (in the Zariski topology), then π is surjective and
π−1(Z) is also nowhere dense.

A.6.3. If X is reduced, then so is X̃. Similarly, if X is irreducible, then so is X̃
provided Z as a set is strictly smaller than X.

A.6.4. If both X and Z are manifolds, then so is X̃.

Proof. For Properties A.6.1 and A.6.2, see [25, Theorem 3.2.1 and Corollaries
3.2.2. and 3.2.3]. For Property A.6.3, the irreducible case is proved in [25,
Corollary 3.2.3] and the reduced case in [28, Corollary 5.6]. The last property
is proved in [27, Corollary 2.2.3].

A subset Z in a topological space X is called dense, if any non-empty
open subset of X has non-empty intersection with Z. A point z ∈ Z is called
an interior point, if there exists an open U containing z and contained in Z.
A subset Z is called nowhere dense, if its closure has no interior points. An
affinoid variety X = SpA is called reduced , if A is reduced, that is to say,
has no non-trivial nilpotent elements; it is called a manifold , if A is a regular
domain (for a definition of a regular ring, see Definition B.1 below). A rigid
analytic variety X is called reduced or a manifold if it admits an admissible
affinoid covering each of its members is reduced or a manifold respectively.

The least obvious of the properties listed in Proposition A.6 is perhaps the
first, since properness has a different definition in the rigid analytic category;
see 10.5 below.

Let me just show that our example of the blowing up of the plane with
centre the origin is proper. This follows immediately from its description as
a closed analytic subvariety in R2 ×P1 followed by the projection on the first
two coordinates. The latter projection is proper, since it is the base change of
the proper map P1 → {0} (any map with source a projective space is proper).
Therefore its composition with a closed immersion is still proper, as desired.

A.7. Definition (Strict Transform). Let π : X̃ → X be a blowing up map
with centre Z and let f : Y → X be an arbitrary map of rigid analytic varieties.
The strict transform of f under π is defined as follows. Let θ : Ỹ → Y be the
blowing up of Y with centre f−1(Z). In other words, if I is the coherent OX -
ideal defining Z, then IOY defines f−1(Z). Hence, by definition of blowing up,
the coherent ideal IOỸ is invertible and therefore there must be a unique map

f̃ : Ỹ → X̃ making the following diagram commute

?

-

?
-

YỸ

XX̃

f̃ f

π

θ

(71)

The map f̃ is called the strict transform of f under π and Diagram (71) is
referred to as the diagram of strict transform.
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A.8. Proposition. Let π : X̃ → X be the blowing up of X with centre Z and
let f : Y → X be an arbitrary map of rigid analytic varieties. Let

?

-

?
-

YỸ

XX̃

f̃ f

π

θ

(72)

be the diagram of the strict transform of f under π. Then Ỹ is a closed analytic
subvariety of the fibre product X̃ ×X Y . If f is a closed, locally closed or open
immersion, then so is f̃ . In fact, if f is an open immersion, then Ỹ = π−1(Y )
and θ is just the restriction of π.

Proof. See [25, Proposition 3.1.1]. For the discussion of fibre products, see 7.3.
For future reference, I formulate the case that f is a closed immersion in a
separate proposition and give a more detailed proof.

A.9. Proposition. Let π : X̃ → X be the blowing up of X with centre Z and let
Y ⊂ X be a closed analytic subvariety. Let I be the coherent OX-ideal defining
Z and let J be the coherent OX-ideal defining Y . Then the strict transform
Ỹ of Y under π is the closed analytic subvariety of X̃ given by the coherent
OX̃-ideal

H =
∞∑

m=1

(JOX̃ : ImOX̃). (73)

Proof. Recall, that the colon ideal (a : b) of two ideals a, b in a ring B, is the
ideal of all x ∈ B for which xb ⊂ a.

As observed in A.7, the coherent ideal defining π−1(Y ) in X̃ is JOX̃ . Let
us put T = π−1(Y ), so that OT = OX̃/JOX̃ . Therefore, HOT is the same as

∞∑

m=1

AnnOT
(ImOT ). (74)

In [25, Proposition 2.2.1] it is shown that the latter ideal is indeed coherent
whence so is H. Let Ỹ be the closed analytic variety defined by H (which is
then also a closed analytic variety of T = π−1(Y )). I claim that

AnnO
Ỹ
(IOỸ ) = 0. (75)

Indeed, we need to check this only on stalks. So let x̃ be a point in Ỹ and let
p ∈ OỸ ,x̃ such that

pIOỸ ,x̃ = 0. (76)

Since OỸ ,x̃ = OX̃,x̃/HOX̃,x̃, this means that there is some m ≥ 1, such that

pIOX̃,x̃ ⊂ (JOX̃,x̃ : ImOX̃,x̃). (77)
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But then

pIOm+1

X̃,x̃
⊂ JOX̃,x̃ (78)

so that in fact p belongs to HOX̃,x̃ whence is zero in OỸ ,x̃, proving the claim.
Since IOX̃ is by construction invertible, its image under the surjection

OX̃ → OỸ is locally principal. Together with (75), it follows that IOỸ is
invertible as well. Note that the coherent OX -ideal defining Y ∩Z is I +J . In
other words, IOY is the coherent OY -ideal defining Y ∩ Z, viewed as a closed
analytic subvariety of Y , since OY = OX/J . To conclude that Ỹ is indeed the
blowing up of Y with respect to Y ∩ Z, we therefore only need to show that
the universal property holds for the restriction π′ : Ỹ → Y . This is explained
in more detail in [25, Proposition 2.2.1]; I will repeat here just the main points.
Let g : W → Y be an arbitrary map of rigid analytic varieties such that IOW is
invertible. By the universal property of blowing up applied to the blowing up π

and the composition W
g

−→Y →֒ X , we can find a map h : W → X̃ making the
following diagram commute

?

-

?
-

YW

XX̃

h

π

g

(79)

From the commutativity of this diagram, it follows that h(W ) ⊂ T = π−1(Y ), as
sets. Moreover, h will factor over Ỹ (that is to say, h induces a map h′ : W → Ỹ ),
provided HOW = 0 (reason on stalks or take an admissible affinoid covering
and work with the affinoid algebras). The latter condition is easily seen to be
fulfilled, since IOW is invertible and since HOT is given by (74). The uniqueness
of h′ follows easily from the uniqueness of h, so that we have indeed verified the
universal property for π′.

A.10. Definition (Local Blowing Up). A map π : X̃ → X is called a local
blowing up, if it is the composition of a blowing up X̃ → U (with a certain centre
Z in U) followed by the open immersion U →֒ X , where U is an admissible
affinoid U in X . Hence Z is then a locally closed analytic subvariety of X
and we will often say that π is the local blowing up with centre Z, without
reference to U , (in spite of the fact that different choices for U give clearly rise
to different local blowing up maps; this is justified in part by the last assertion
of Proposition A.8).

The reader should check that the strict transform of a map under a local
blowing up map is equally well-defined and, moreover, the same holds true for
any composition of local blowing up maps. Compositions of local blowing ups
will play a crucial role in the next Chapter, when I define the Voûte Etoilée.
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B Embedded Resolution of Singularities

The aim of this section is to present a rigid analytic analogue of Hironaka’s
famous Embedded Resolution of Singularities. Since this latter theorem is
presently only known to hold for zero characteristic, we will assume in this
section that the characteristic of K is zero. But once somebody is able to
prove Embedded Resolution of Singularities for positive characteristic as well,
the techniques described here will enable us to extend the rigid version to gen-
eral characteristic. (In fact, Embedded Resolution of Singularities for surfaces in
positive characteristic is known, due to a result of Abhyankar, and accordingly
we can obtain this also in the rigid case. It should also be mentioned that De

Jong’s result on alterations is apparently too weak to derive the Uniformization
Theorem.) The details of what I present below can be found in [27].

B.1. Definition (Normal Crossing). Let us call X = Sp A an affinoid man-
ifold , if A is a regular ring. Alternatively, we may call X smooth. A non-zero
element p of A will said to have normal crossings , if in each point we can find
a local coordinate system such that p is (locally) a unit times a monomial in
that coordinate system. Note that p determines a closed analytic subvariety H
of X (namely, SpA/pA), of codimension one. Such a closed analytic subvariety
of codimension one, will be called a hypersurface.

Likewise, we call a rigid analytic variety X a manifold, if it admits an ad-
missible covering by affinoid manifolds. We say that a hypersurface H of X is
said to have normal crossings, if it has so locally. Note that since X is assumed
to be a manifold, any hypersurface of X is locally given by a single equation p,
so that the above definition makes sense.

A Noetherian local ring A with maximal ideal m, is called regular , if m

can be generated by d elements, where d is the Krull dimension of A. Such
a set x = (x1, . . . , xd) of generators is called a regular system of parameters
or local coordinate system. A non-zero element p ∈ A is said to have normal
crossings, if there exists a regular system of parameters x, such that p = uxν ,
for some multi-index ν ∈ Nd and some unit u of A.

An arbitrary Noetherian ring A is called regular, if all its localizations at
maximal ideals are. If this is the case, then each localization at an arbitrary
prime ideal is a regular local ring ([22, Theorem 19.3]). Let A be a regular
ring. A non-zero element p of A is said to have normal crossings at a prime
ideal p, if its image in the local ring Ap has. It is said to have normal crossings,
if it has so at each maximal ideal of A, and if this holds, then it has normal
crossings at any prime ideal. The locus of maximal ideals m, such that p
has normal crossings at m is Zariski open (see for instance [3]). Applying
the above definitions to an affinoid algebra, gives the corresponding notions
of regularity and normal crossings for an affinoid variety. One might object
that it is rather artificial to define local concepts such as these for an affinoid
variety X = SpA by defining them through the localizations Am rather than
through the local rings OX,x. However, since the maps A → C are flat, for
SpC a rational subdomain of X, we obtain that the natural map of local
rings Am → OX,x (where m is the maximal ideal corresponding to x ∈ X),
is faithfully flat (see [4, 7.3.2. Proposition 3 and Corollary 6]). Therefore, by
faithfully flat descent (see for instance [22, §23]), many local properties can
equally well be defined on either local ring.

Here is the main theorem of this section.
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B.2. Theorem (Embedded Resolution of Singularities). Let X = SpA
be an affinoid manifold. Assume that the characteristic of K is zero. Let p
be a non-zero element of A and H the hypersurface determined by it. Then
there exist an admissible covering {Xi}i of X, and, for each i, a rigid analytic
manifold X̃i and a map hi : X̃i → Xi of rigid analytic varieties, such that

B.2.1. hi is a composition of finitely many blowing up maps with smooth centres
of codimension at least two,

B.2.2. h−1
i (H ∩ Xi) has normal crossings in X̃i.

For the notions of dimension and codimension.

This is definitely an important result which has a highly non-trivial proof
since it is based on Theorem B.3 below. As the latter is formulated for
schemes (which will appear sporadically on other occasions throughout the
text as well) I reserve a special script (X, Y, . . . ) to distinguish them from rigid
analytic varieties.

B.3. Theorem (Hironaka’s Embedded Resolution of Singularities). Let
A be an excellent regular local ring which contains a field of characteristic
zero, X a regular integral scheme of finite type over SpecA and H a hyper-
surface of X. Then there exist a regular integral scheme X̃ of finite type over
SpecA and a map h : X̃ → X, such that

B.3.1. h is a composition of finitely many blowing up maps with smooth centres
of codimension at least two,

B.3.2. h
−1(H) has normal crossings.

Proof. See [14, p.146 Corollary 3 and p.161 Remark].

B.4. Remark. For a definition of an excellent ring see for instance [22, p.
260] or, for a more detailed treatment, including proofs, see [21, §34] or [12,
Chap. IV, §7.8]. Complete local rings are excellent. Any localization and
any homomorphic image of an excellent ring is again excellent, and so is any
finitely generated algebra over an excellent ring.

An affinoid algebra A is excellent. By the above, it suffices to prove
this for A a Tate algebra K〈S〉. In characteristic zero this follows from an
application of the Jacobi Criterium, see [21, Theorem 102] and in positive
characteristic (assuming that K is algebraically closed) from a theorem of
Kunz, see [21, Theorem 108]. In fact, Kiehl proved excellence of affinoids
in [17] without assuming K to be algebraically closed. The local rings OX,x

of an affinoid variety X are also excellent; see [5, Theorem 1.1.3].

Sketch of proof of Theorem B.2. I will not give all the details of the proof of
the rigid analytic Embedded Resolution of Singularities, but merely provide a
sketch. For a full proof see [27].

We call a scheme X analytic, if it is of finite type over an affinoid algebra. In
[27] or [19], it is shown that there exists a functor F from the full subcategory of
analytic schemes to the category of rigid analytic varieties, called the analytiza-
tion functor. If X is an analytic scheme, then there is a one-one correspondence
between the closed points of X and the points of F(X). Moreover, X is regular
or reduced if, and only if, F(X) is. If H is a hypersurface in X, then F(H) is a
hypersurface in F(X) and the former has normal crossings if, and only if, the
latter has. One particular preservation property of F is that it commutes with
blowing up maps.
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Here is the full definition of an analytization. Let X be a scheme over K
and X a rigid analytic variety. We call X an analytization of X, if there exists
a morphism of locally G-ringed spaces

(η, η∗) : (X,OX) → (X,OX) (80)

such that, given any rigid analytic variety Y , and any morphism

(θ, θ∗) : (Y,OY ) → (X,OX), (81)

of locally G-ringed spaces over K, there exists a unique map of rigid analytic
varieties f : Y → X making following diagram commute

�
�

�
�

�
��

A
A
A
A
A
AU-

Y

X Xη

f θ (82)

The Grothendieck topology on X is nothing else than the Zariski topology,
whereas we have to take the strong topology on X, in order to make η con-
tinuous. Note that, since an analytization is defined by a universal problem,
we have that, if an analytization exists, it must be unique (up to a unique
isomorphism). Hence if X is analytic, then F(X) = X.

Now, let there be given a regular affinoid algebra A and a non-zero element
p in it. Let H denote the hypersurface defined by p. Take a point x ∈ X = SpA
and let m be the corresponding maximal ideal of A. Consider the localization
Am. Note that X = Spec(Am) is not an analytic scheme (in general), since Am is
not finitely generated over A. We can apply Hironaka’s Embedded Resolution
of Singularities to X, in order to obtain a regular integral scheme X̃ of finite type
over X and a map h : X̃ → X, such that

B.4.1. h is a composition of finitely many blowing up maps with smooth centres
of codimension at least two,

B.4.2. h−1(H) has normal crossings,

where H denotes the hypersurface given by p = 0 in X. We can take a small
(Zariski) neighborhood Y of x in X, such that Y is an analytic scheme. Indeed,
take any s /∈ m, then Y = Spec(As) will be such a neighborhood. We can also
extend all the blowing up maps occurring in h, in order to obtain a composition
of finitely many blowing up maps g : Ỹ → Y. Since both the regular locus and
the locus of normal crossings are open, we can take Y small enough, such that
Conditions B.4.1 and B.4.2 still hold. Let g : Ỹ → Y be the analytization of g,
then Y and Ỹ are rigid analytic manifolds and Conditions B.4.1 and B.4.2 hold
for g and H .

Note that Y is an admissible open (in the strong topology) of X containing
x by Theorem 8.9. Moreover, this theorem also tells us that the collection of all
these Y , for all points x, is an admissible covering of X . Hence we have found the
desired blowing up, at least locally in the strong topology on X . To conclude,
we choose, for each point x, an admissible covering by rational subdomains
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of the corresponding Y . Note that the restriction of g to each such rational
subdomain satisfies again Conditions B.4.1 and B.4.2. By Condition 8.1.4 in
Definition 8.1, we get an admissible covering of X by putting together all these
rational subdomains for all points x. Since X is quasi-compact by Theorem 8.10,
already finitely many of these rational subdomains cover X , so that we get the
desired finite covering.

The reader might wonder why these theorems are called resolutions of
singularities. Let me comment a little on this. Assume that H is moreover
irreducible. If we were to blow up only H ∩ Xi, though with the same
centres as used in hi, the resulting space is a closed analytic subvariety of
X̃i, called the strict transform of H under hi (see Definition A.7). The normal
crossings condition implies that this strict transform is regular. Namely, its
equation is given locally by a divisor of the equation of the inverse image of
H . By assumption, the equation of the inverse image of H is a unit times
a monomial. But the strict transform must also be irreducible and reduced
(since it is obtained by blowing up the irreducible and reduced space H ; use
Proposition A.6). Therefore, the equation of the strict transform is given by
a monomial of degree one, that is to say, a regular equation.

By using this desingularization result for the codimension one case, one
can give a proof of a general desingularization theorem, see [27] for more
details.

Let us have a closer look at the maps that occur in the statement of the
Embedded Resolution of Singularities. First we have an open immersion (that
is, the inclusion map of the admissible open Xi in X), followed by hi, which is a
composition of finitely many blowing up maps. Therefore, we will be dealing in
the sequel with maps h : X̃ → X of rigid analytic varieties which are composi-
tions of (finitely many) local blowing up maps. Such a map h is called affinoid ,
if X̃ is affinoid.

By Proposition A.6, the blowing up of an admissible open in an affinoid
manifold with centre of codimension at least two (whence nowhere dense), is
surjective. In other words, the hi in Theorem B.2 are surjective (onto Xi) and
the collection of all of them constitutes a surjective family onto X . This suggests
to make the following definition.

B.5. Definition (Blowing Up Tree). A blowing up tree (for short, bu-tree)
on X is a finite collection e = {h1, . . . , hs}, with each hi a composition of
finitely many local blowing up maps, which forms a surjective family onto X .
If all centres involved in a bu-tree e are smooth and nowhere dense, we call e a
smooth bu-tree. If, on the other hand, all h ∈ e are affinoid (that is to say, the
source space of h is affinoid), then we call the bu-tree e affinoid .

Here is the precise definition in the more general situation of a quasi-
compact rigid analytic variety X (recall from Definition 8.12 that this means
that X admits a finite admissible affinoid covering). A finite collection e of
compositions of (finitely many) local blowing up maps is a bu-tree, if it can
be obtained by successive applications of the following two rules.

B.5.1. The singleton consisting of the identity map 1X is a bu-tree on X.

B.5.2. Suppose e = {h1, . . . , hs} is a bu-tree. Hence each hi : Xi → X is
a composition of blowing up maps with nowhere dense centre. Let Ui
be a finite admissible affinoid covering of Xi (which exists by quasi-
compactness) and, for each V ∈ Ui, let π′

V : Ṽ → V be a blowing up
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map with nowhere dense centre and let πV denote the composite map
Ṽ → Xi, so that πV is a local blowing up. Then the collection of all
local blowing up maps {πV ◦ hi} for all i = 1, . . . , s and V ∈ Ui, is a
bu-tree on X.

Note that an open immersion U ⊂ X can be viewed as the local blowing up
with empty centre. In particular, a finite affinoid covering is a bu-tree and
therefore any bu-tree can easily be turned into an affinoid one.

We can now rephrase Embedded Resolution of Singularities as follows. Given
an affinoid manifold X and a hypersurface H in it, then there exists a smooth
bu-tree e on X , such that for each h ∈ e, the inverse image h−1(H) has normal
crossings. We can even take e to be affinoid, by the above remarks.

The next theorem shows how Embedded Resolution of Singularities can be
used to obtain nice division properties.

B.6. Theorem. Assume that the characteristic of K is zero. Let X = SpA
be an affinoid manifold and let p, q ∈ A. Then there exists a smooth affinoid
bu-tree e on X, such that for each map h : Y → X belonging to e, either p ◦ h
divides q ◦ h, or vice versa, q ◦ h divides p ◦ h in O(Y ).

Proof. Here is how it works. There is not much to prove if either p or q is zero
or if both are equal. So we may assume that pq(p−q) is non-zero. Let H be the
hypersurface defined by pq(p−q). By Embedded Resolution of Singularities, we
can find a smooth affinoid bu-tree e on X , such that for each h ∈ e, the inverse
image h−1(H) has normal crossings. Since we are proving things modulo such
bu-trees, we may already assume that pq(p − q) has normal crossings in X .
Take a point x ∈ X and let m be the corresponding maximal ideal of A. By
assumption, there exists a regular system of parameters ξ = (ξ1, . . . , ξd) of Am,
where d is the dimension of X , such that pq(p − q) is a unit times a monomial
in Am. Hence the same holds true for its three factors p, q and p− q. Therefore,
we get an equation in Am of the form

p − q = uξα − vξβ = wξγ , (83)

where u, v, w are units in the local ring Am. Since a regular local ring is a
unique factorization domain, both sides of Equation (83) must have the same
irreducible factors. But all the ξi are irreducible, so ξγ must divide both ξα and
ξβ . Therefore Equation (83) reduces to

uξα−γ − vξβ−γ = w, (84)

with α − γ and β − γ in Nd. For the left hand side to be a unit, at least one of
α or β must be equal to γ, implying that either p divides q or vice versa.

So we proved the statement of the theorem, at least locally at each point.
However, in view of the local nature of the properties involved, we can find,
for each point x with maximal ideal m, a Zariski open Ux containing x, such
that the relative division of p and q holding in Am remains valid in O(Ux). We
then finish in the same way as in the proof of Theorem B.2. Namely, for each
point x, we choose an admissible covering of Ux by rational subdomains. Note
that the relative division still holds on each of these affinoid subdomains. By
Theorem 8.9 and Condition 8.1.4 in Definition 8.1, we get an admissible covering
of X by putting together all these rational subdomains for all points x. Since
X is quasi-compact by Theorem 8.10, already finitely many of these rational
subdomains cover X , so that we get the desired finite covering.
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C Non Algebraically Closed Fields

In this section, I briefly discuss how one can develop rigid analytic geometry if
one drops the requirement on K to be algebraically closed.

Convention C.1. In the remainder of this section K is an arbitrary non-archime-
dean complete normed field. We keep denoting its valuation ring by R and the
valuation ideal by ℘. The residue field is still denoted by R̄; it is in general no
longer algebraically closed. More generally, if L is any normed field extending
K (and its norm), then we denote the valuation ring of L by RL, its valuation
ideal by ℘L and its residue field RL/℘L by RL. In other words, R ⊂ RL is a
local homomorphism and R̄ ⊂ RL an extension of fields.

We fix once and for all an algebraic closure Kalg of K. Note that Kalg carries
a canonically defined norm, but in general it is no longer complete with respect
to this norm (see Remark 2.6).

If K is algebraically closed, then the maximal spectrum of K〈S〉 with S =
(S1, . . . , Sm), can be identified with Rm by Corollary 5.10. This is no longer
true for arbitrary K. We still have a Weak Nullstellensatz (Theorem 5.8), but
its formulation should be adjusted thus: any maximal ideal m of K〈S〉 has

residue field a finite extension L of K. In particular, we may choose L inside
Kalg. Writing xi for the image of Si in K〈S〉/m →֒ L, we get an m-tuple
x = (x1, . . . , xm) ∈ Rm

L , such that

m = (S1 − x1, . . . , Sm − xm)L〈S〉 ∩ K〈S〉. (85)

In other words, p ∈ K〈S〉 belongs to m if, and only if, p(x) = 0. However,
if σ is an element of the absolute Galois group G(K) of K (consisting of all
K-algebra automorphisms of Kalg), then the tuple σ(x) = (σ(x1), . . . , σ(xm))
also determines m as in (85). If L1 is a finite Galois extension of K containing
L, then σ(x) belongs again to L1. In particular, this shows that there are only
finitely many possibilities for the point σ(x). In other words, the orbits of the
action of the absolute Galois group on Rm

Kalg are all finite. In conclusion, we
have a one-one correspondence between Sp K〈S〉 and the orbits of G(K) on
Rm

Kalg . Noteworthy is also that any σ ∈ G(K) preserves the norm, whence in
particular is an automorphism of RKalg . All this easily extends to arbitrary
affinoid varieties, so that we have shown basically the following result.

C.2. Proposition. Let A be a K-affinoid algebra and let m be a maximal
ideal of A. If we write A as a homomorphic image of K〈S〉 modulo an ideal
(f1, . . . , fs), with S = (S1, . . . , Sm), then there exists x ∈ Rm

Kalg such that all
fi(x) = 0, and such that m consists of all p ∈ A, such that p(x) = 0.

If x′ is another m-tuple characterizing m in the same way, then x′ is a
conjugate of x under the action of the absolute Galois group G(K) on Rm

Kalg .
Moreover, there are only finitely many possibilities for a tuple x′ characterizing
m.

Let us denote the unit ball SpK〈T 〉, for T a single variable, by B. We denote
the origin simply by 0; it is the point corresponding to the maximal ideal (T ).
As far as the development of rigid analytic geometry over K is concerned, the
one adjustment to make is to replace everywhere the affinoid variety Rm by
Bm = SpK〈S1, . . . , Sm〉). The main observation to make is that everything in
Part 1 is, or at least, can be, expressed in terms of maximal ideals rather than in
terms of R-tuples. A similar assertion holds for the theory of Berkovich spaces.
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|f |α (residue norm of f), 16
|f |Gauss (Gauss norm of f), 8
|f |sup (supremum norm of f), 7
OX(U) (structure sheaf on X), 23
OX (structure sheaf on X), 35
℘ (valuation ideal of K), 5, 8
PnK (projective n-space over K), 26
Qp (field of p-adics), 4
R (valuation ring of K), 5
RL (valuation ring of L), 30
rad a (radical of ideal a), 17
R̄ (residue field of K), 5, 8
R̄L (residue field of L), 30
S′

(first n − 1 variables of S), 8
Sν (monomial in S), 8
SpA (affinoid variety asssociated to A), 18

U ⋐X Y (relatively compact with respect

to X), 41
Υ (universal domain), 31
V −W (complement of W in V ), 32
−W (complement of W ), 32
W (topological closure of W ), 34
X × Y (fibre product of rigid analytic va-

rieties), 18
X ×K L (extension of scalars of X to L),

20
X ×Z Y (fibre product of rigid analytic

varieties over Z), 19

absolute Galois group, 5, 55
absolute value, see norm
Acyclicity Theorem, 24
admissible

∼ algebra, see algebra
∼ covering, see covering
∼ open, see subset

affinoid
∼ algebra, see algebra
∼ map, see map
∼ subdomain, see subdomain
∼ variety, see variety

algebra
affinoid ∼, 3, 12
Boolean ∼, 32
finitely generated ∼, 13
Tate ∼, 3, 8

analytic point, see point

ball, 5
Berkovich, 28

∼ space, 28, 37
affinoid ∼ space, 33
affinoid ∼ spaces are compact, 38,

40
blowing up, 43–49

∼ and immersions, 47
∼ at the origin, 44, 45
∼ of the plane, 44
∼ tree, 53
affinoid ∼ tree, 53
centre of a ∼, 45
local ∼, 49
properness of the ∼, 42, 46
smooth centre of a ∼, 51, 52
smooth ∼ tree, 53
universal property of the ∼, 45,

49
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Boolean combination, 32
bu-tree, see blowing up

Cauchy sequence, 4
centre, see blowing up
Chevalley’s Theorem, 32
closed analytic subvariety, see variety
closed immersion, see immersion
compact, 28, 33, 37, 39

locally ∼, 40
quasi-∼, 24
relatively ∼, 40
relatively ∼ with respect to X, 41

convergence, 4, 7, 12, 31, 33
covering, 23

admissible affinoid ∼, 25
admissible ∼, 3, 23–25
refinement of a ∼, 24

dense, see subset
D-function, see function
dimension

∼ of a variety, 51
co∼, 51
Krull ∼, 6, 13

disk, 5
closed ∼s are open, 5

D-semianalytic, see semianalytic

Embedded Resolution of Singularities,
see Resolution of Singulari-
ties

excellent, see ring
existentially definable, see subset

faithfully flat, see map
fibre

∼ product, 18, 21
field

∼ of p-adic complex numbers, 5
∼ of the p-adics, 4
algebraic closure of a complete ∼,

5
ultrametric ∼, 3

flat, see map
faithfully ∼, see map

flatificator
Berkovich ∼, see Berkovich

formula
existential ∼, 32
quantifier free ∼, 31

founded, see module
free Tate algebra, see algebra
function

D-∼, 6

analytic ∼, 15
bounded ∼, 7

G-continuous map, see map
geometric point, see point
glueing, see variety
G-ringed space, see space
Grothendieck topology, see topology
G-topological space, see space

height, 13
Hilbert’s Basis Theorem, 3, 14
Hironaka, 50
homomorphism

finite ∼, 13
hypersurface, 50

ideal
K-rational ∼, 9, 14
colon ∼, 48
contraction of an ∼, 15, 18
invertible ∼, 43
locally principal ∼, 43
OX -∼, see OX -ideal
principal ∼, 43

Identity Theorem, 6, 9
immersion

closed ∼, 41, 43, 47, 48
locally closed ∼, 48
open ∼, 38, 48, 53

Intersection Property, 40, 42
finite ∼, 40

inverse image, see OX -ideal
isometry, 29, 33

Jacobson radical, see radical

Krull dimension, see dimension

manifold, 47
affinoid ∼, 36, 50

map
∼ of affinoid varieties, 18
∼ of Berkovich spaces, 35
∼ of rigid analytic varieties, 25
affinoid ∼, 53
closed ∼, 41
faithfully flat ∼, 50
flat ∼, 21, 38, 50
G-continuous ∼, 24
proper ∼, 40, 41, 47
separated ∼, 27, 41
universally closed ∼, 41

Maximum Modulus Principle, 8, 16, 21
model
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big ∼, 29
model theory, 29
morphism

∼ of G-ringed spaces, 25
∼ of locally G-ringed spaces, 25
∼ of locally ringed spaces, 36

neighborhood, 40
affinoid ∼, 32
wide affinoid ∼, 34

nilradical, see radical
Noether Normalization, 3, 10, 13, 14,

17
non-archimedean inequality, 4
norm, 3

∼ on a Cartesian power, 5
complete ∼, 4
equivalent ∼, 4, 16
Gauss ∼, 8
Gauss ∼ equals supremum ∼, 8
multiplicative ∼, 3, 8, 16, 29, 30,

34
power-multiplicative ∼, 16
rational supremum ∼, 9
residue ∼, 16, 19
supremum ∼, 7, 16, 17

normal crossings, 50
∼ at a prime ideal, 50

Normalization Trick, 8, 11, 12
nowhere dense, see subset
nuclear, see filter
Nullstellensatz, 3, 10, 15–17, 20

Weak ∼, 10, 14, 15, 18, 55

open immersion, see immersion
OX -ideal, 43, 45

coherent ∼, 43
inverse image of an ∼, 45
invertible ∼, 36, 43

p-adic, see field
p-component, see function
point

analytic ∼, 28, 32
congruence of analytic ∼s, 33
generic ∼, 36
geometric ∼, 32
interior ∼, 47

polynomial
monic ∼, 11
Weierstrass ∼, 11

power series
formal ∼, 7
regular ∼, 10, 12, 16

strictly convergent ∼, 3, 7, 8, 16
Preparation Trick, 3, 12, 14, 16
presheaf, see sheaf
Product Formula, 4
proper, see map

Quantifier Elimination, 6

radical
∼ of an ideal, 17
Jacobson ∼, 16, 17
nil∼, 16, 17

rank-one valuation, see ring
rational subdomain, see subdomain
reduct, see language
regular power series, see power series
regular system of parameters, 50, 54
Resolution of Singularities, 53

Embedded ∼, 50–53
rigid analytic geometry, 1, 25, 28
rigid analytic variety, see variety
ring

discrete valuation ∼, 5
excellent ∼, 51
Henselian ∼, 36
local ∼, 5
Noetherian ∼, 14, 36
normed ∼, 3
rank-one valuation ∼, 6
reduced ∼, 16
regular ∼, 50
valuation ∼, 5

scheme, 51
analytic ∼, 51
analytization of a ∼, 26, 52

separated power series, see power se-
ries

sheaf, 23, 24
∼ cohomology, 23
coherent ∼, 43
pre∼, 24
stalk of a ∼, 24, 35
structure ∼, 24

smooth, see variety
space, 39

affine ∼, 26
Berkovich ∼, see Berkovich
closed analytic sub∼, 39
G-ringed ∼, 25
G-topological ∼, 23, 24
locally G-ringed ∼, 25
projective ∼, 26
quasi-compact ∼, 24, 26, 53, 54
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spectrum
maximal ∼, 14, 15
prime ∼, 13, 15, 29

Stone space, 31
strict transform, 47, 53

∼ of a closed analytic subvariety,
46

∼ of a map, 47
∼ under local blowing up, 49
diagram of ∼, 47

subanalytic
dimension of a ∼ set, see dimen-

sion
subdomain

a rational ∼ is open in the canon-
ical topology, 21

affinoid Berkovich ∼, 37
affinoid ∼, 21
an affinoid ∼ is a finite union of

rational ∼s, 24
Berkovich ∼, 37
intersection of rational ∼s is a ra-

tional ∼, 21
local structure of a rational ∼, 22
rational Berkovich ∼, 37
rational ∼, 3, 20–24

subset
admissible open ∼, 3, 23
closed analytic ∼, 15
constructible ∼, 32
dense ∼, 47
nowhere dense ∼, 47, 53
Zariski closed ∼, 15
Zariski open ∼, 26

surjective family, 53

Tate algebra, see algebra
tensor product, 19

complete ∼, 19
universal property of complete ∼,

19
topology

canonical ∼, 3, 15, 16, 21
every ∼ is a Grothendieck ∼, 23
Grothendieck ∼, 3, 15, 23–25, 28
refinement of a Grothendieck ∼,

26
strong Grothendieck ∼, 26
strong Grothendieck ∼ and Zaris-

ki open subsets, 26, 52
strong Grothendieck ∼ is quasi-

compact, 26, 38, 53, 54
totally disconnected ∼, 5, 6, 28
Zariski ∼, 15

Truncated Division, see function
type

n-∼, 31
∼ of an element, 29
∼ of an element and prime ideals,

29
realizing a ∼, 29
realizing the ∼ space, 31

unique factorization domain, 54
unit

multiplicative ∼, 8
universal domain, 29

valuation, see ring
variety, 39

affinoid ∼, 3, 18
closed analytic sub∼, 43
coherent OX -ideal of a closed an-

alytic sub∼, 43
glueing together ∼s, 26, 37, 44
locally closed analytic sub∼, 49
quasi-compact ∼, 27, 53
reduced ∼, 47
rigid analytic ∼, 3, 25
separated ∼, 27, 37
smooth ∼, 50

Voûte Etoilée, 49

Weierstrass Division, see Weierstrass
Preparation

Weierstrass Preparation
∼ Theorem, 3, 10–13, 16
Euclidean Division and ∼, 11

Zariski topology, see topology
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