
RIGID ANALYTIC FLATIFICATORS

Hans Schoutens

Abstract. Let K be an algebraically closed field endowed with a complete non-ar-
chimedean norm. Let f : Y → X be a map of K-affinoid varieties. We prove that

for each point x ∈ X, either f is flat at x, or there exists, at least locally around
x, a maximal locally closed analytic subvariety Z ⊂ X containing x, such that the

base change f−1(Z) → Z is flat at x, and, moreover, g−1(Z) has again this property

in any point of the fibre of x after base change over an arbitrary map g : X′ → X
of affinoid varieties. If we take the local blowing up π : X̃ → X with this centre Z,

then the fibre with respect to the strict transform f̃ of f under π, of any point of X̃
lying above x, has grown strictly smaller. Among the corollaries to these results we

quote, that flatness in rigid analytic geometry is local in the source; that flatness over

a reduced quasi-compact rigid analytic variety can be tested by surjective families;
that an inclusion of affinoid domains is flat in a point, if it is unramified in that point.

0. Introduction

The goal of this article is to prove the existence of universal flatificators in the
setting of rigid analytic geometry and to investigate the behaviour of fibres when
we blow up with centre such a universal flatificator. Let us be more precise.

We fix once and for all an algebraically closed field K endowed with a complete
non-archimedean norm. The analytic-geometric objects we will be interested in are
the rigid analytic varieties. These are locally ringed spaces which look locally like
an affinoid variety SpA, the latter being the collection of all maximal ideals of an
affinoid algebra A on which A acts as a function algebra. Recall that an affinoid
algebra is a quotient of some free Tate algebra K〈X〉, where the latter is defined
as the collection of all formal power series over K in the variables X for which the
general coefficient tends to zero. For more details, we refer to [3] .

We define a rigid analytic flatificator of a map f : Y → X of rigid analytic
varieties at a point x ∈ X for which the fibre f−1(x) 6= ∅, as a locally closed
immersion i : Z ↪→ X containing x for which the base-change Y ×XZ → Z becomes
flat and such that if j : V ↪→ X is any locally closed immersion containing x for
which Y ×X V → V is flat at x, then j factors through i at x, i.e., V ↪→ Z at x.
Here we will say that a map is flat at a point of the target space, if it is flat in each
point of the fibre over this point.

We call such a flatificator universal at x, if, for any map X ′ → X of rigid
analytic varieties, the locally closed immersion X ′ ×X Z ↪→ X ′ obtained from i by
base change, is a rigid analytic flatificator of the base change X ′ ×X Y → X ′ of f
at any point of X ′ lying above x. Our first main theorem guarantees the existence
of such a universal flatificator at each point, for an arbitrary map of quasi-compact
rigid analytic varieties.
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Theorem. Let f : Y → X be a map of quasi-compact rigid analytic varieties and
let x ∈ X be an arbitrary point of X with non-empty fibre. Then there exists an
admissible affinoid U of X containing x, such that the restriction f−1(U) → U has
a universal rigid analytic flatificator at x.

Proof. See (3.7).

As a corollary to this theorem, we show that flatness is an open condition in
the source: given a map Y → X of rigid analytic varieties which is flat in a point
y of Y , then there exists an admissible affinoid U of Y containing y, such that
the restriction U → X is flat. See (3.8). A second corollary asserts that one can
use surjective families to test flatness over reduced quasi-compact rigid analytic
varieties: let πi : Xi → X be maps of rigid analytic spaces, with X reduced and
quasi-compact, such that the images {Im(πi)} of the πi cover X (point set wise),
then any map f : Y → X of quasi-compact rigid analytic varieties is flat, if and
only if, all the base changes Y ×X Xi → Xi are flat. See (3.9).

The existence of flatificators in the complex analytic case had been proven al-
ready by Hironaka in [9] , using Weierstrass Preparation. Our proof is based on
his arguments, but uses a very general construction to prove the existence of a flat-
ificator (reviewed in the first two sections), which has enabled us to prove similar
results in an algebraic-geometric setting in [17] . In his paper, Hironaka further
investigates the behaviour of a blowing up map with centre a universal flatificator.
We obtain in the same fashion the analogous Fibre Lemma, which roughly says
that if one blows up X with centre a universal rigid analytic flatificator Z at a
point x of a map f : Y → X, then the fibre of f over x is strictly bigger than the
corresponding fibre of the strict transform of f over a point in the blowing up lying
above x. Using that one can always modify the centre locally in such way that
it becomes nowhere dense, without disturbing the fibres, we obtain the following
theorem.

Theorem. Let f : Y → X be a map of quasi-compact rigid analytic varieties and
let x ∈ X be an arbitrary point. If X is reduced and f is not flat at x, then there
exists a local blowing up π : X̃ → X with nowhere dense centre Z containing x,
such that the restriction f−1(Z) → Z is flat and such that, if

Ỹ
θ−−−−→ Y

f̃

y yf
X̃ −−−−→

π
X

denotes the diagram of the strict transform of f under π, then we have, for every
x̃ ∈ π−1(x), a non-trivial closed immersion of fibres

f̃−1(x̃)  f−1(x).

Proof. See (5.3).

As a corollary we want to mention the following theorem (see (5.5)): given an
inclusion A ↪→ B of affinoid domains and a maximal ideal m of A which extends
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to a maximal ideal mB in B, then A → B is flat at m. In other words, in this
situation, unramified is the same as etale.

However, the main application of this theorem will appear in a future paper [7]
with Gardener on Quantifier Elimination for the rigid analytic language expanded
with a truncated division function, where we will combine his work on the Voûte
Etoilée in [6] and our present results on rigid analytic flatificators. Let me give a
brief review of the contents of this paper in which we study the structure of rigid
subanalytic sets. We reduce this to the study of images of affinoid maps. In the flat
case, one knows, due to a result of Raynaud that they are semianalytic. Hence
the goal is to flatten an arbitrary map of affinoid varieties f : Y → X by means
of local blowing up maps. This is first done locally in some point x ∈ X where
f is not flat: take its flatificator and use this as centre of a local blowing up. If
the strict transform of f is flat at any point above x, then we are done, otherwise
continue. However, by our second main Theorem (5.3), the fibre has grown strictly
smaller and hence the tree of local blowing ups used to render f flat has finite depth.
Exploiting the compactness properties of the Voûte Etoilée one can then show that
a finite tree already suffices and by another compactness argument the global case
follows.

However, for all this to work we need to carry out the above flattening procedure
in the Berkovich spaces associated to the affinoid varieties rather than in the affinoid
varieties themselves. So we will need the Berkovich counterpart of the theory of rigid
analytic flatificators. A brief outline of how various of our results translate to this
setting is given in an appendix. Berkovich spaces were introduced by Berkovich in
[1] and [2] to reestablish a genuine Hausdorff topology on a rigid analytic space.
This characteristic was exploited by Gardener to define the aforementioned Voûte
Etoilée. The appendix shows basically that all results carry over to this new setup
modulo some minor modifications. In the proofs we give merely an outline of these
modifications, more details can be found in Gardener’s D.Phil. thesis [5] .

0.2. Remark. A note on the base field K. Although we have taken K to be
algebraically closed, this is not necessary for any of the results of this paper. The
reader can check that we have virtually nowhere used this assumption. We have
used it in (3.8), where we used that K is equal to the residue field A/m, for m
a maximal ideal in an affinoid algebra, where in the general case this is a finite
field extension. But since any extension of fields is faithfully flat, one can easily
reduce to the algebraic closed case for this theorem. The only other difference upon
dropping the algebraic closedness condition is a notational one. The affinoid space
associated to a free Tate algebra K〈S〉, with S = (S1, . . . , SN ), can no longer be
identified with the Cartesian product RN , but instead one has to take the closed
unit ball BN = BN (K̄), modulo the action of the absolute Galois group Gal(K̄/K),
where K̄ is the algebraic closure of K. This amounts in replacing RN or R by BN
or B1, wherever the former occur, such as in (3.4-6)).

0.3. Remark. In response to a question posed by the referee, we would like to briefly
address the issue of an axiomatic treatment of flatificators in an analytic setup. It
seems to us at present not feasible to give such a treatment which would cover the
rigid analytic, Berkovich and/or complex analytic case simultaneously. The reason
is that so far no model theoretic axiomatisation of analytic spaces exists. Such an
axiomatisation would have to overcome the following difficulties.

(a) The concept of a normed space is not first order definable, since the reals
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have non-standard models.
(b) The different nature of the topology in the complex archimedean case and

the non-archimedean case forces different notions of analyticity. In fact, to
obtain an adequate sheaf theory for rigid analytic spaces, a Grothendieck
topology rather than a genuine topology is required.

(c) The formulation of the Weierstrass Preparation Theorem is different, since
it is only local in the complex case but affinoid in the rigid case. Similarly
there is no uniform formulation of a Noether Normalisation Theorem.

(d) Berkovich spaces are different from rigid and complex spaces since they
contain non-closed points and in fact, a point is determined by a prime
ideal plus a norm on its residue field.

However, when comparing the various cases, there seems to be a metamathe-
matical principle involved in showing the existence of a universal flatificator. In
the proof of (3.3), we are using the following relative Noether Normalisation: if
A is affinoid, m a maximal ideal of A corresponding to a point x ∈ SpA and
s ∈ A〈S〉 \mA〈S〉 where S = (S1, . . . , Sn), then there exists an affinoid subdomain
U = SpC containing x, such that (up to some automorphism) C〈S〉/(s) is finite as
an C〈S1, . . . , Sn−1〉-module. Translating such a result to a corresponding result in
either the complex or the Berkovich case suffices to show the existence of a flatifi-
cator and hence, using the general argument of (3.8), that a flat map is open in its
source. The existence of a universal flatificator then follows by a general argument,
provided one has some vanishing property at hand similar to (3.5).

In [17] the existence of a universal flatificator over a Noetherian complete local
ring is shown. The method is again through the construction of a founded and
flat representation. However, this is as far as a general axiomatic treatment of
flatificators can go, since in such a general setup, the result becomes too local for
analytic applications. The lack of a Weierstrass Preparation Theorem forces one to
perform an infinitesimal study, which only works for complete local rings.1

0.4. Notation and Terminology. All rigid analytic varieties will be over K.
The valuation ring of K will be denoted by R, which sometimes will be identified
with the unit disk, i.e., with Sp(K〈T 〉), where T is one variable. We call a separated
rigid analytic variety admitting a finite admissible affinoid covering, quasi-compact.

We will freely interchange the terms closed immersion and closed analytic subva-
riety of a rigid analytic variety X. Any such Z is uniquely defined by and uniquely
defines a coherent OX -ideal. If we are only interested in the underlying point set
of Z, then we will write |Z| and refer to the latter as a closed analytic subset of
X. When Z and Z ′ are closed analytic subvarieties of X, defined respectively by I
and I ′, then Z ∩Z ′ stands for the closed analytic subvariety Z ×X Z ′, i.e., defined
by the sum I + I ′. Likewise, if f : Y → X is a map of rigid analytic varieties,
then f−1(Z) stands for the closed analytic variety Y ×X Z, i.e., defined by IOY .
Whenever, however, we take unions, direct images or complements (except for the
notion of an analytic complement, introduced in Section 4), we will disregard any

1It should be noted that the local rings in analytic geometry are in general not complete.

Noteworthy in this context is also the following counterexample, which is due to Raynaud
and is explained in more detail in [17, Example 3.6] . Let A be the collection of all algebraic
power series over Q in the variables S and T . This local ring is Henselian but not complete. Let

f = T + eS − 1 be the formal power series in bA = Q[[S, T ]]. Then bA/f bA has no flatificator over A.
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analytic structure and consider only the underlying point sets. A locally closed an-
alytic subvariety of a rigid analytic variety X is a closed analytic subvariety of an
admissible affinoid open of X. Similarly defined are locally closed analytic subsets.

Blowing up maps are defined in full generality in rigid analytic geometry; for a
reference, see our paper [18] . By a local blowing up map we mean the composition
of a blowing up map and an affinoid open immersion, i.e., if U is an admissible
affinoid of X and θ : X̃ → U is a blowing up map, then the composition X̃ → U ↪→
X is a local blowing up map.

The topological notions of closure, openness and nowhere density are always
taken with respect to the Zariski-topology.

0.5. Acknowledgment. We want to thank Tim Gardener for the useful and
stimulating conversations on the subject.

1. General Flatificators

1.1. Definition. Let us briefly recall the definition of the flatificator of a module
over a local ring, as studied in [17] . In what follows, let (S, p) be a Noetherian
local ring and let M be an S-module. The flatness filter FlS(M) of M over S is
defined as the collection of all ideals I of S, such that M/IM becomes a flat S/I-
module. When this flatness filter happens to be principal, i.e., has a least element,
say f, then we call f the flatificator of M over S.

From [17, Proposition 2.3] , it follows that, if M has a founded and flat p-re-
presentation, then it has a flatificator. Here, for an arbitrary (not necessarily local)
ring A, an A-module F is called founded, if for any submodule H of F , we have
that H ⊂ fHF , where fH is the intersection of all ideals I of A, for which H ⊂ IF .
An A-module M is said to have a blue p-representation, where blue stands for any
property of modules and where p is a prime ideal of A, if there exists an exact
sequence of A-modules

(1) 0 → H−→F−→M → 0,

such that F is blue and H ⊂ pF . In loc. cit., it has been proven that if (1) is such a
founded and flat p-representation for S and M as above, then fH is the flatificator
of M .2

We will be mainly concerned in this paper with modules over an affinoid algebra.
Let us therefore introduce the following definition. Let X = SpA be an affinoid
variety and let F be an OX -module. We will say that F is strongly founded, if F(X)
is a founded A-module and, moreover, for all x ∈ X, the module Fx is founded as
an OX,x-module. It is not too hard to prove that a finite direct sum of (strongly)
founded modules is again such a module.

2The proof goes roughly as follows. One needs to show that I ∈ FlS(M), if and only if,

H ⊂ IF . One direction is immediate and for the other direction one shows, using the Local

Flatness Criterion [10, Theorem 22.3] , that if M̄ = M/IM is flat over S/I, then

pnF̄

pn+1F̄
∼=

pnM̄

pn+1M̄

for all n, where F̄ = F/IF . Since a founded module is separated, it follows that H ⊂ IF .



6 HANS SCHOUTENS

1.2. Proposition. Let A be an affinoid algebra and let T = (T1, . . . , Tn) be a
finite number of variables. Then A〈T 〉 is a strongly founded A-module.

Proof. Let us first show that A〈T 〉 is founded. Let H be an A-submodule of A〈T 〉
and define fH as above. Let f =

∑
i aiT

i ∈ H. Then for any ideal I of A such
that H ⊂ IA〈T 〉, we have that f ∈ IA〈T 〉 and hence each ai ∈ I. Therefore each
ai ∈ fH and hence f ∈ fHA〈T 〉.

We now show that the same holds true in the stalk over a point x of X = SpA.
Let F denote the OX -module associated to A〈T 〉. One easily verifies that Fx =
A〈T 〉 ⊗A OX,x. Let H ⊂ Fx be an OX,x-submodule and, as always, let f = fH be
the intersection of all OX,x-ideals I such that H ⊂ IFx. Let I be such an ideal
and let h ∈ H. After passing to a small enough affinoid subdomain U = SpC ⊂ X
containing x over which I and h are still defined, we can write

(1) h =
∑
i<d

∑
α∈Nn

hiαT
α ⊗ si,

in A〈T 〉 ⊗A C, with hiα ∈ A and si ∈ C, for α ∈ Nn and i < d. Via the canonical
injection F(U) = A〈T 〉 ⊗A C ↪→ C〈T 〉, we obtain that∑

i,α

hiαsiT
α ∈ IC〈T 〉,

and whence that
∑
i hiαsi ∈ I, for all α. Since this holds for all ideals I such that

H ⊂ IFx, we must have that
∑
i hiαsi ∈ f. After possibly further shrinking U ,

we may assume that also f is defined over U , so that using (1) we see that h = 0
as an element of (C/fC)〈T 〉 whence also in A〈T 〉 ⊗A C/fC, since the latter ring is
embedded in the former. In other words, that h ∈ fFx, as wanted. �

1.3. Definition. Let S be a ring, M an S-module and a an ideal in S. We say
that an S-submodule N of M is a-closed if

N ∩ aM = aN.

This is equivalent with the statement that

0 → N−→M−→C → 0

remains exact after tensoring it up with S/a, that is,

0 → N/aN−→M/aM−→C/aC → 0

is exact.

We call a chain of S-submodules Mi of M ,

M0 ⊂M1 ⊂ · · · ⊂Ms = M

an a-series, if each Mi−1 is a-closed in Mi, for i = 1, . . . , s.
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1.4. Lemma. Let S be a ring, a an ideal of S and M an S-module. Let N ⊂
W ⊂M be S-submodules and suppose that

(1) N ⊂M is a-closed,
(2) W/N ⊂M/N is a-closed.

Then W ⊂M is a-closed.

Proof. Let q ∈ aM ∩W . If q denotes the residue of q in M/N , then we have that
q ∈ aM/N ∩W/N and hence by (2) that q ∈ aW/N . In other words, there exist
w ∈ aW and n ∈ N with q = w + n. But then we have that n ∈ aM ∩N , so that
by (1) n ∈ aN and hence q ∈ aW . �

1.5. Lemma. Let S be a ring, M a finitely generated S-module and let p be
a prime ideal of S belonging to Supp(M). Then there exists a non-zero cyclic,
p-closed submodule N of M .

Proof. Since Mp 6= 0, we get by Nakayama’s Lemma that

pMp 6= Mp,

meaning that p ∈ Supp(M/pM). But then p is a minimal prime in the support of
M/pM and hence an associated prime of M/pM . So there exists an ω ∈ M/pM
such that

AnnS(ω) = p.

Let ω ∈ M be a lifting of ω and set N = Sω. We claim that N is p-closed. For
let α ∈ N ∩ pM , then there exists an r ∈ S such that α = rω. From rω ∈ pM , we
have that rω = 0 and hence r ∈ AnnS(ω) = p, which implies that α ∈ pN . �

1.6. Proposition. Let S be a Noetherian ring, M a finitely generated S-module
and p a prime ideal of S. Then there exists a p-series of M ,

(1) 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nt ⊂M,

where for each i = 1, . . . , t we have that Ni/Ni−1 is a cyclic S-module and

(M/Nt)p = 0.

Proof. Set N0 = 0. If Mp = 0, then 0 ⊂ M is such a series, hence we may assume
that Mp 6= 0, that is, p ∈ Supp(M). By (1.5), we can find a non-zero cyclic,
p-closed submodule N1 of M . Let Q1 = M/N1. In case (Q1)p = 0, the inclusions
0 ⊂ N1 ⊂ M form a p-series. In the remaining case, we have that p ∈ Supp(Q1)
and by the same reasoning as above, we can find a submodule N2 of M , such that
N1  N2 and N2/N1 is cyclic and p-closed in Q1. From (1.4) we get then that N2

is p-closed in M . Let Q2 = M/N2, then again, either (Q2)p = 0 and hence

0  N1  N2 ⊂M,

is a p-series of the required type, or p ∈ Supp(Q2) and then we continue as above.
However, since M is Noetherian, this process has to stop and we end up with a
p-series as proclaimed. �



8 HANS SCHOUTENS

2. Analytically Projective Modules

2.1. Definition. Let A be a normed ring and M a normed A-module. If M is a
normed A-module which is complete, then we will call M an analytic A-module.

If M and N are two analytic A-modules, then we will say that a morphism
ϕ : M → N is a morphism of analytic A-modules, if ϕ is a continuous and bounded
A-module morphism. Here, a morphism ϕ is called bounded, if there exists a real
positive constant C, such that, for all m ∈ M , we have that |ϕ(m)| ≤ C · |m|.
The morphism is called strict , if the quotient topology on ϕ(M) coincides with the
topology on ϕ(M) inherited from the topology on N . Moreover, if ϕ is a surjective
strict morphism, then using [3, 1.1.9. Lemma 2] , we can show that, for any
bounded sequence (νk)k in N , we can find a bounded sequence (µk)k in M , such
that ϕ(µk) = νk.

2.2. Proposition. Let A be a normed ring and M and N two finite analytic
A-modules. If M and N are pseudo-Cartesian, then any continuous A-module
morphism ϕ : M → N is bounded. Moreover, if ϕ is surjective, then it is strict.

Remark. Recall that a finite normed A-module M is called pseudo-Cartesian, if
there exists a finite system of generators {µ1, . . . , µs} of M , such that any element
µ ∈M , can be written as µ = a1µ1 + · · ·+ asµs, for some ai ∈ A, such that

(†) |µ| = max
1≤i≤s

{|ai| · |µi|}.

Such a system of generators is then called a pseudo-Cartesian system of generators.
From [3, 5.2.7] it follows that any finitely generated module over an affinoid

algebra A is pseudo-Cartesian and analytic, where we consider A as a normed
ring by taking any residue norm on it. Note that any such norm defines the same
topology on A, and hence, for our purposes, can be chosen arbitrarily. In particular,
any morphism between finitely generated modules over an affinoid algebra is a
morphism of analytic A-modules, which is strict whenever it is surjective.

Proof. Let {µ1, . . . , µs} be a pseudo-Cartesian system of generators for M . Obvi-
ously, we can always throw out any µi = 0, and hence we may assume that none
of the µi are zero. Let µ ∈ M and let ai ∈ A, be such that µ = a1µ1 + · · · + asµs
and such that (†) holds. Let C be the maximum of all the |ϕ(µi)| / |µi|. Hence, we
obtain that

|ϕ(µ)| ≤ max
i
|ai| · |ϕ(µi)|

≤ C ·max
i
|ai| · |µi| = C |µ| ,

where the last equality comes from (†). This proves the boundedness.
Assume now that ϕ is moreover surjective. Let ε > 0. According to [3, 1.1.9.

Lemma 2] , we need to find a δ > 0, such that we can find, for any µ ∈ M with
|ϕ(µ)| ≤ δ, an element κ ∈ kerϕ, such that |µ+ κ| ≤ ε. Let {ν1, . . . , νt} be a
pseudo-Cartesian system of (non-zero) generators for N . Choose γi ∈M such that
ϕ(γi) = νi. Let D be the maximum of all |γi| / |νi|. We claim that δ = ε/D will
do the job. Indeed, take any µ ∈ M with |ϕ(µ)| ≤ ε/D. Write ϕ(µ) =

∑
i biνi, so
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that |ϕ(µ)| = maxi |bi| · |νi|. Let γ =
∑
i biγi. Then γ − µ ∈ kerϕ. Hence we are

done if we can show that |γ| ≤ ε. But we have that

|γ| ≤ max
i
|bi| · |γi|

≤ D ·max
i
|bi| · |νi|

= D |ϕ(µ)| ≤ ε.

�

2.3. Definition. Let A be a normed ring and P an analytic A-module. We will say
that P is analytically projective, if for any strict surjective morphism ε : M → N
of analytic A-modules and for any morphism θ : P → N of analytic A-modules,
we can find a morphism σ : P → M of analytic A-modules, making the following
diagram commutative

M
ε−−−−→ N −−−−→ 0

σ

x xθ
P P.

It is an easy exercise to prove that a finite direct sum is analytically projective,
if and only if, each of its summands is such.

2.4. Proposition. If A is an affinoid algebra, then A〈T 〉 is an analytically pro-
jective A-module.

Proof. Let ε : M � N be a strict surjective morphism of analytic A-modules and
let θ : A〈T 〉 → N be an arbitrary morphism of analytic A-modules. Let νi = θ(T i).
By boundedness and

∣∣T i∣∣ = 1, we have that the |νi| are bounded. Since ε is strict,
we can find µi ∈M , such that |µi| are bounded and ϕ(µi) = νi (see the final remark
in (2.1)). Let us therefore define σ : A〈T 〉 →M as follows. If f =

∑
i aiT

i ∈ A〈T 〉,
then we set

σ(f) def=
∑
i

aiµi,

where this sum does converge since |ai| → 0 and the |µi| are bounded. It is now
a straightforward computation to verify the requirements of the statement for this
morphism σ. �

2.5. Proposition. Let A be a normed ring and p a prime ideal in A. Let

0 →M1 →M
θ−→M2 → 0

be a short exact sequence of analytic A-modules. If M1 is p-closed in M , θ is strict
and both M1 and M2 have an analytically projective p-representation, then also M
has an analytically projective p-representation.

Moreover, if the two former representations are blue, where blue is a property
of A-modules which is closed under taking finite direct sums, then also the latter
representation is blue.

Proof. Let πi : Fi � Mi be an analytically projective p-representation of Mi, for
i = 1, 2. In other words, Fi is an analytically projective A-module and ker(πi) ⊂
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pFi. Now, since F2 is analytically projective and θ is strict, we can find a morphism
ψ2 making the following diagram commutative

F2
ψ2−−−−→ M∥∥∥ yθ

F2 −−−−→
π2

M2.

Let F = F1 ⊕ F2, so that F is analytically projective again. Define

π : F →M : (f1, f2) 7→ π1(f1) + ψ2(f2).

It is an easy exercise in diagram chasing to show that π is surjective. We claim
that π−1(pM) = pF , so that in particular kerπ ⊂ pF , proving that π induces
an analytically projective p-representation of M . So, to prove our claim, let f =
(f1, f2) ∈ F be such that π(f) ∈ pM . Hence

θ(π(f)) = θ(π1(f1) + ψ2(f2))

= θψ2(f2)

= π2(f2) ∈ pM2,

which implies, since π2 is an p-representation, that f2 ∈ pF2 and therefore that
ψ2(f2) ∈ pM . But since π(f) ∈ pM , we have that π1(f1) ∈ pM ∩M1. We now use
that M1 is p-closed in M , to obtain that π1(f1) ∈ pM1 and using that also π1 is an
p-representation, we finally obtain that f1 ∈ pF1.

Now, the last statement is clear from the above construction. �

3. Rigid Analytic Flatificators

3.1. Definition. Let X be a rigid analytic variety. Given two locally closed
analytic subvarieties Z and Z ′ of X, then we say that Z ⊂ Z ′ (respectively, Z = Z ′)
at a point x of X, if there exists an affinoid admissible open U containing x, such
that Z ∩ U ⊂ Z ′ ∩ U (respectively, Z ∩ U = Z ′ ∩ U), or, more correctly, if the
closed immersion Z ∩ U ↪→ U factors through (respectively, coincides with) the
closed immersion Z ′ ∩ U ↪→ U . Equivalently, if I and I ′ denote the coherent OU -
ideals defining Z and Z ′, where U is some admissible affinoid on which both closed
analytic subvarieties are defined, then this is equivalent with I ′x ⊂ Ix (respectively,
I ′x = Ix).

A map of rigid analytic varieties f : Y → X is said to be flat in a point y ∈ Y ,
if the corresponding morphism of local rings OX,f(y) → OY,y is flat and f is called
flat, if it is so in each point of Y . This is the standard way of viewing flatness as a
property in the source (see for instance (3.8) below). However, we will also need to
talk about flatness at a point of the target space X. Namely, we will say that f is
flat at x ∈ X, if, for any y ∈ Y in the fibre of x (i.e., such that f(y) = x), we have
that the corresponding morphism of local rings OX,x → OY,y is flat. The reader
should check that this is equivalent with OX,x → (f∗OY )x being flat, where f∗OY
denotes the OX -module obtained from OY by taking its direct image. In other
words, for a map of affinoid varieties f : SpB → SpA = X to be flat at x ∈ X is
equivalent with the morphism OX,x → B ⊗A OX,x to be flat.
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Let f : Y → X be a map of rigid analytic varieties and let x ∈ X with non-empty
fibre f−1(x). We will say that f has a rigid analytic flatificator at x, if there exists
a locally closed analytic subvariety Z of X containing x, for which the following
two conditions hold.

(1) The restriction map f−1(Z) → Z is flat.
(2) For any locally closed analytic subvariety V of X containing x, such that

the restriction f−1(V ) → V is flat at x, we have that V ⊂ Z at x.

In other words, Z is maximal (among all affinoid locally closed immersions) with re-
spect to (1) at x. Even if a rigid analytic flatificator Z exists, it need not be unique,
but it is so at x: namely, any locally closed analytic subvariety Z ′ containing x such
that (1) holds for it and such that Z = Z ′ at x will also be a flatificator of f at x.
Note also that we ask for more in (1) than only flatness in the point x. Therefore, if
f : Y = SpB → X = SpA is a map of affinoid varieties, then our definition of flati-
ficator translates to the ring morphism OX,x → (f∗OY )x having a flatificator f plus
the additional condition that OX(U)/fOX(U) → OY (f−1(U))/fOY (f−1(U)) must
be flat, for some affinoid subdomain U of X containing x over which f is defined.
A rigid analytic flatificator at x is then given by the closed analytic subvariety of
U defined by this ideal f.

We will say that Z is a universal rigid analytic flatificator at x, if, for any map
π : X̃ → X of rigid analytic varieties and any x̃ ∈ π−1(x), we have that π−1(Z) is
a rigid analytic flatificator at x̃ of the base change map Y ×X X̃ → X̃.

The theory of rigid analytic flatificators behaves only well for quasi-compact rigid
analytic varieties, i.e., separated rigid analytic varieties admitting a finite admissible
affinoid covering.

The following facts are easy to prove.

3.2. Observation. If Z is a rigid analytic flatificator at x of a map f : Y → X
of affinoid varieties, where x ∈ X has non-empty fibre and if W is a locally closed
analytic subvariety of X containing x, then Z ∩W is a rigid analytic flatificator at
x of the restriction f−1(W ) →W .

If f : Y → X is a map of rigid analytic varieties, x ∈ X with non-empty fibre
and {Yi}i<n a finite admissible covering of Y , such that fi : Yi ⊂ Y → X has a
flatificator Zi at x, for all i < n, then Z = Z0 ∩ · · · ∩ Zn−1 is a flatificator of f at
x.

As a corollary to the second observation, we see that in order to prove the
existence of a universal rigid analytic flatificator when dealing with quasi-compact
rigid analytic varieties, we can always reduce to the affinoid case. Furthermore,
since any map π : X̃ → X of affinoid varieties factors as a closed immersion
X̃ ↪→ X×Rn and a projection X×Rn � X, for some n, we can, after applying the
first observation, restrict ourselves in checking universality, to base changes over
projections π : X̃ = X ×Rn � X.

3.3. Theorem. Let X = SpA be an affinoid variety and x ∈ X an arbitrary
point. Let M be a finitely generated A〈T 〉-module. Then there exists an affinoid
subdomain SpC = U of X containing x, such that M ⊗A〈T 〉 C〈T 〉 has a strongly
founded, analytically projective and flat m-representation over C, where m is the
maximal ideal in C corresponding to x.
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Proof. Since M is a finite A〈T 〉-module, it is an analytic A-module. We will prove
the theorem by induction on n, the number of variables T = (T1, . . . , Tn). Let us
first prove the case n = 0. Write m as well for the maximal ideal in A corresponding
to x and let

(1) 0 → H ′−→Adm
π′−→Mm → 0

be a minimal free resolution (and hence, in particular, a free mAm-representation)
of Mm. (The existence of such a representation for a finite module over a local ring
is a well-known consequence of Nakayama’s Lemma). In fact, there exists an A-
module morphism π : Ad →M which localizes to π′. Let Z denote the cokernel of π
and H its kernel. By (1), there exists s ∈ A \m, such that sZ = 0 and sH ⊂ mAd.
Let α = |s(x)| > 0 and let U = SpC ⊂ X be defined by z ∈ U , if and only if,
α ≤ |s(z)|. Note that x ∈ U . Since s is a unit in C, we see that Z ⊗A C = 0. Since
A→ C is flat, H ⊗A C is the kernel of the map Cd � M ⊗A C obtained from π by
base change. Using once more that s is a unit, we conclude that H ⊗A C ⊂ mCd,
in other words, that

0 → H ⊗A C−→Cd−→M ⊗A C → 0

is a free m-representation of the latter module.
So, assume n > 0 and the theorem proven for n− 1 and for all affinoid algebras.

Let P = mA〈T 〉, so that P is a prime ideal of A〈T 〉. Using now (1.6) and (2.5)
on the prime ideal P of A〈T 〉, we can reduce to the following two cases that either
M is cyclic or MP = 0. Just use that any P-series given as in (1.6) remains of the
same type after a flat base change A→ C, that is, after restricting it to an affinoid
subdomain. Note also that any surjection appearing here is automatically strict,
due to (2.2).

Case 1. Suppose that M is cyclic, hence, as an A〈T 〉-module, isomorphic with
A〈T 〉/I, where I is an ideal in A〈T 〉. If I ⊂ P, then the short exact sequence

0 → I−→A〈T 〉−→M → 0

is an m-representation of the desired type by (1.2) and (2.4). If I 6⊂ P, then
MP = 0 and we are in case two.

Case 2. Suppose that MP = 0. So there exists an s /∈ P, such that sM = 0.
Hence M is an A〈T 〉/(s)-module. Write s as

∑
aiT

i, with ai ∈ A. Since s /∈ P =
mA〈T 〉, there is some coefficient ai which does not vanish at x. In particular, the
maximum α of all |ai(x)| is non-zero. Let ν be the lexicographically largest index
i for which |aν(x)| = α. Since |ai| goes to zero when i goes to infinity, we can find
an ε > 0, such that, for all i > ν, we have that |ai(x)| ≤ α − ε. Let U = SpC be
the affinoid subdomain of X given by z ∈ U , if and only if,

(2)
|aν(z)| ≥ α

|ai(z)| ≤ α− ε for i > ν.

Then x ∈ U and aν is a unit in C (since it vanishes nowhere). Moreover, for any
z ∈ U , we have that |ai(z)/aν(z)| < 1, whenever i > ν. Therefore, we may assume
after applying a (Weierstrass) automorphism that s as an element of C〈T 〉 is regular
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in Tn. By the Weierstrass Preparation Theorem, we then have that C〈T 〉/(s) is
a finitely generated C〈T ′〉-module, where T ′ = (T1, . . . , Tn−1). So, M ⊗A〈T 〉 C〈T 〉
is a finitely generated C〈T ′〉-module and by induction we have that M ⊗A〈T 〉 C〈T 〉
has an m-representation as desired. �

Remark. Note that by [3, 3.7.3. Proposition 6] , we have that

M ⊗A〈T 〉 C〈T 〉 = M⊗̂A〈T 〉C〈T 〉.
Note also that nowhere we made use of the fact that m was a maximal ideal, but
only that it was prime. This will be all what is needed in the Berkovich equivalent
of this proposition as discussed in the Appendix.

3.4. Lemma. Let A be an affinoid algebra and a an ideal of A. Let g ∈ A〈S〉,
with S a single variable. If there exists a sequence (rm)m∈N of non-zero elements
of R converging to zero such that g(rm) ∈ a, for all m, then g ∈ aA〈S〉.
Proof. By considering A/a instead of A, we may reduce to the case a = 0. Endow
A with some residue norm. Suppose g 6= 0, but all g(rm) = 0. Write

g(S) =
∞∑
d=i

aiS
i,

where ai ∈ A with ad 6= 0. Let

α = max
i>d

|ai| .

There is nothing to prove if α = 0 (since a polynomial cannot have infinitely many
roots unless it is the zero polynomial), so assume α > 0. Choose m� 0, such that
|rm| < |ad| /α. Since g(rm) = 0 and rm 6= 0, it follows that |ad| =

∣∣∑
i>d air

i−d
m

∣∣.
On the other hand, for i > d, we have that∣∣airi−dm

∣∣ ≤ |ai| · |rm| ≤ α |rm| < |ad| ,
contradiction. �

3.5. Lemma. Let A be an affinoid algebra and p a prime ideal of A. Let f ∈ A〈S〉,
with S a single variable. If there exists a sequence (rm)m∈N of non-zero elements of
R converging to zero such that f(rm) = 0 in Ap, then f = 0 in A〈S〉p = A〈S〉⊗AAp

(i.e., the localization at p of the A-module A〈S〉, which in general is smaller than
the localization of A〈S〉 at its prime ideal pA〈S〉).
Proof. By induction, we will show that f ∈ pnA〈S〉p, for all n ∈ N, from which the
lemma then follows immediately by Krull’s Intersection Theorem, since p lies in
the radical of A〈S〉p.

Let Q denote the ring A〈S〉p. Suppose that f ∈ pnQ, so that we can write

(1) f(S) =
∑
i<t

µifi(S),

in Q, where the µi form a minimal set of generators of pn in Ap and fi(S) ∈ A〈S〉.
By assumption, we have, for each m, that

0 = f(rm) =
∑
i<t

µifi(rm)

in Ap. Since the µi minimally generate pnAp, we must have that each fi(rm) ∈ pAp

and whence fi(rm) ∈ p. Our claim now follows after applying (3.4) with g = fi
and a = p. �
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3.6. Proposition. Let X be an affinoid variety and x ∈ X. Let V ⊂ X × R be
a closed analytic subvariety, containing (x, 0). Let (rm)m be a sequence of non-
zero elements of R tending to zero and let σm be the automorphism (translation)
of X × R given by (y, a) 7→ (y, a+ rm). If, for all m, we have that σm(V ) ⊂ V at
(x, 0), then there exists a locally closed analytic subvariety W of X containing x,
such that V = W ×R at (x, 0).

Proof. Let X = SpA and let m be the maximal ideal of A associated to x. Hence
A〈S〉 is the associated affinoid algebra of X × R, where S is a single variable. Let
G be the ideal of A〈S〉 defining V and put B = A〈S〉/G. Let M = (m, S) be
the maximal ideal of A〈S〉 corresponding to (x, 0). Let (G1, . . . , Gs) = G, with
Gi ∈ A〈S〉. Introduce a new variable T and let Pi(S, T ) = Gi(S − T ). In order to
obtain a proof, we will exploit the fact that Pi has a Taylor expansion with respect
to the variable T , and whence with coefficients functions of S (corresponding in
characteristic zero to the derivatives of Gi). That is to say, we can write

(1) Pi(S, T ) = Gi(S − T ) =
∑
j

hij(S)T j ,

with hij ∈ A〈S〉. By assumption, we have, for each m, that

σm(Gi) = Gi(S − rm) = Pi(S, rm) ∈ GA〈S〉M.

In other words, we see that Pi(S, rm) = 0 when considered as an element of BMB .
Applying (3.5), we obtain that all Pi ∈ B〈T 〉MB . Therefore, there exists some
Q(S) ∈ A〈S〉 not contained in M, such that Q(S)Gi(S − T ) ∈ GA〈S, T 〉, for
i = 1, . . . , s. Hence, by considering the coefficients of the T j using (1), we have
that Q(S)hij(S) ∈ G, for all the relevant i and j. Since Q(x, 0) 6= 0 by assumption,
we can find an admissible affinoid U ′ = Sp(C ′) of X×R containing (x, 0), such that
all hij ∈ GC ′. By shrinking U ′ further (we are only seeking to prove something
locally around (x, 0)), we can assume that U ′ is of the form U ×B, where U = SpC
is an affinoid subdomain of X containing x and B a disk of small radius around
0. The latter is isomorphic to R by a map of the form S 7→ πS. Since the image
of the sequence (rm)m remains a zero sequence under such a map, we may assume
without loss of generality that U ′ = U × R. Hence hij ∈ GC〈S〉, for all i and j.
Substituting S − rm for T in (1), we have, using [3, 5.2.7. Corollary 2] that

(2) Gi(rm) =
∑
j

hij(S)(S − rm)j ∈ GC〈S〉.

Let g = GC〈S〉 ∩ C, so that actually Gi(rm) ∈ g, for all i and m. Applying
(3.4), we conclude that Gi ∈ gC〈S〉, proving that gC〈S〉 = GC〈S〉, from which
the proposition now follows readily. �

3.7. Theorem. Let f : Y → X be a map of quasi-compact rigid analytic varieties
and let x be an arbitrary point of X with non-empty fibre f−1(x). Then there exists
an admissible affinoid U of X containing x, such that the restriction f−1(U) → U
has a universal rigid analytic flatificator at x.

Proof. Since this is a local question, we may already assume, by our remarks in
(3.2), that X = SpA and Y = SpB are affinoid. From the induced algebra
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morphism A → B, we can construct a surjective algebra morphism A〈T 〉 → B,
turning B into a finite A〈T 〉-module, for some variables T = (T1, . . . , Tn). Applying
(3.3) to this situation, gives the existence of an affinoid subdomain U = SpC
around x, such that

D = OY (f−1(U)) = B⊗̂AC = B ⊗A〈T 〉 C〈T 〉

has a strongly founded and flat m-representation

(1) 0 → H−→F−→D → 0,

where m is the maximal ideal of C corresponding to x. Taking stalks at the point
x, we obtain a mOX,x-representation

0 → Hx−→Fx−→Dx → 0,

where we have written Dx for (f∗OY )x. From (1.1) it then follows that Cx =
OX,x → Dx has a flatificator f. By shrinking U further if necessary, we can assume
that f is actually an ideal of C and that H ⊂ fF . Therefore, it follows immedi-
ately from (1) that D/fD is flat. As observed in (3.1), the locally closed analytic
subvariety given by f is then a rigid analytic flatificator of f at x.

Hence the theorem will be proven, if we can show that any rigid analytic flatifica-
tor is universal. To this end, let f : Y → X be a map of affinoid varieties with rigid
analytic flatificator Z and let π : X × Rn → X be the canonical projection map.
We need to show that, for each r ∈ Rn, we have that Z × Rn is a rigid analytic
flatificator of f ×1: Y ×Rn → X×Rn in (x, r). By an inductive argument we may
reduce to the case n = 1 and after a translation, we can assume that r = 0.

First of all, since f−1(Z) → Z is flat, also its base change

(2) f−1(Z)×R→ Z ×R is flat.

By above we know that there exists an affinoid subdomain U of X×R and a closed
analytic subvariety V of U , both containing (x, 0), such that V is a rigid analytic
flatificator of (f × 1)−1(U) → U at (x, 0). Since a flatificator is only locally defined,
it follows from (2) that we only need to show that Z = V at (x, 0). Hence without
loss of generality we may assume that V is a closed analytic subvariety of X × R
(i.e., is globally defined). From (2) and the definition of V , it follows that Z×R ⊂ V
at (x, 0) and we seek to prove the opposite inclusion.

From the latter inclusion it also follows that we can find a sequence (rm)m of
non-zero elements in R converging to zero, such that the associated translation
σm : (y, a) 7→ (y, a + rm) has the property that (x, 0) ∈ σm(V ). Since σm is an
automorphism and since (f × 1)−1(V ) → V by definition is flat, we have that the
map

(f × 1)−1(σm(V )) → σm(V )

is also flat. By definition of rigid analytic flatificator, this implies that σm(V ) ↪→ V
at (x, 0).

We can now invoke (3.6), to find a locally closed analytic subvariety W of X
containing x, such that V = W ×R at (x, 0). In particular, the map

(3) f−1(W )×R→W ×R
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is then flat at (x, 0). Since the map W ×R→ W is faithfully flat, we obtain from
(3) that then also the map f−1(W ) → W must be flat at x. Hence, by definition
of Z, we have that W ⊂ Z at x, proving that V = W ×R ⊂ Z ×R at (x, 0). �

Next we list some corollaries to the existence of (universal) rigid analytic flatifi-
cators. The first is the rigid analytic analogue of [4, OIII 11.1.1] .

3.8. Theorem. Let f : Y → X be a map of rigid analytic varieties and let y ∈ Y .
If f is flat at y, then there exists an admissible affinoid open U of Y containing y,
such that the restriction f | U : U → X is flat.

Proof. Since this is a local question, we may already assume that X = SpA and
Y = SpB are affinoid. Let n be the maximal ideal of B corresponding to the point y
and let m = n∩A, which then corresponds to the point x. View the field K as an A-
module via the isomorphism K ∼= A/m. Let F be the coherent OY -module defined
by the finite B-module TorA1 (B,K). (Note that the latter module is indeed finite,
since it is the kernel of the morphism m⊗AB → B.) Since Bn is flat over A, we have
that Fy = 0. Hence there exists an admissible affinoid U = SpC of Y containing
y, such that F(U) = 0. In other words, we obtained that TorA1 (C,K) = 0.

Applying (3.3) to the morphism A → C, we can find an admissible open W =
SpA′ of X containing x, such that C ′ = C⊗̂AA′ = OY (f−1(W )) has a founded
and flat mA′-representation

(1) 0 → H−→F−→C ′ → 0,

where H ⊂ mF and F is a flat and founded A′-module. Since TorA1 (C,K) = 0
and A→ A′ is flat, we also have that TorA

′

1 (C ′,K) = 0.3 After tensoring (1) with
K over A′, we then conclude that H ⊗A′ K = 0, i.e., that H = mH. Hence, by
induction, we see that H ⊂ mnF , for all n. Let

F (∞) =
⋂
n

mnF,

so that H ⊂ F (∞). Since F is A′-founded, we must have that

F (∞) ⊂

(⋂
n

mnA′

)
F.

3To see this, let P• be a finitely generated projective resolution of K as an A-module. Since

A → A′ is flat, we obtain that P• ⊗A A′ is a projective resolution of K as an A′-module. Hence

(a) TorA′
i (C′, K) ∼= Hi((P• ⊗A A′)⊗A′ C′).

Considering C as some quotient of A〈T 〉, we see that C′ = C ⊗A〈T 〉 A′〈T 〉. Therefore, the right

hand side of (a) equals
Hi((P• ⊗A C)⊗A〈T 〉 A′〈T 〉)

which by flatness equals

Hi(P• ⊗A C)⊗A〈T 〉 A′〈T 〉 ∼= TorA
i (C, K)⊗A〈T 〉 A′〈T 〉.



RIGID ANALYTIC FLATIFICATORS 17

But the stalk at x of the latter module is zero, since x ∈ W , so that OW,x = OX,x
is m-adically separated. Hence also Hx = 0 so that after shrinking W even further
we may already assume that H = 0. Therefore we proved that C ′ = F is A′-flat
whence A-flat, proving that f−1(W ) = SpC ′ is the required admissible affinoid.

�

3.9. Theorem. Let f : Y → X be a map of quasi-compact rigid analytic varieties.
Suppose that there exist maps of rigid analytic varieties πi : Xi → X with the
following two properties.

(1) For each i, the base change Y ×X Xi → Xi is flat.
(2) The {πi}i form a surjective family, i.e.,⋃

i

πi(Xi) = |X|.

If X is reduced, then f is flat.

Proof. Let x ∈ X and let U be an admissible affinoid of X containing x, such that
the restriction f−1(U) → U has a universal rigid analytic flatificator Z at x, the
existence of which is assured by (3.7). If Ui denotes π−1

i (U), then the base change
f−1(U)×U Ui → Ui is also flat, by (1), so that by universality of Z, we must have
that π−1

i (Z) = Ui at any point of the fibre of x. Hence, by (2), we therefore have
that |Z| = |X| at x. Since X is reduced, we even have that X = Z at x and whence
that f is flat at x. Since this holds for any point x ∈ X, we proved that f is flat.

�

4. Analytic Complements

4.1. Definition. Let A be a ring and a an ideal of A. We introduce the following
ideal

HA(a) =
∞∑
n=1

AnnA(an).

Note that if A is Noetherian, then there exists some n, depending on the ideal a,
such that HA(a) = AnnA(an). If A is reduced, then HA(a) = AnnA(a). Let X be
a rigid analytic variety and let I be a coherent OX -ideal. We define similarly

HX(I) =
∞∑
n=1

AnnOX
(In).

As observed in the proof of [18, Proposition 2.2.1] , this is again a coherent OX -
ideal and, moreover, if U = SpA is an admissible affinoid of X and a = I(U), then
HX(I)(U) = HA(a).

Let X be a rigid analytic variety and let Z be a closed analytic subvariety, given
by the coherent ideal I. We define the analytic complement of Z as the closed
analytic subvariety defined by HX(I) and denote it {X(Z).



18 HANS SCHOUTENS

4.2. Lemma. Let X be a rigid analytic variety and let Z be a closed analytic
subvariety of X. Then, as point sets,

(1) cl(X \ Z) =
∣∣{X(Z)

∣∣.
Remark. The (Zariski-)closure cl(U) of a subset U of X is defined as the smallest
closed analytic subset containing U .

Proof. Let I be the coherent OX -ideal defining Z and let H = HX(I). We claim
that I · H is nilpotent and hence that |Z| ∪

∣∣{X(Z)
∣∣ = |X|, i.e., the ⊂-inclusion in

(1) holds. It is enough to verify our claim in each stalk. Hence let x ∈ X, so that
Hx = AnnOX,x

(Inx ), for some n. But then clearly (IxHx)n = 0.
The opposite inclusion will follow, if we can show that any closed analytic subset

V containing X \ Z, contains also
∣∣{X(Z)

∣∣. Therefore, using that |Z| ∪ V = |X|
we obtain that I · J is nilpotent, where J denotes the (radical) coherent OX -ideal
defining V . Hence, at each point x ∈ X there is some n, such that J n

x ⊂ Hx. But
then J is contained in the radical of H, which is equivalent with

∣∣{X(Z)
∣∣ ⊂ V , as

we wanted to show. �

4.3. Lemma. Let X = SpA be an affinoid variety and let a, f1, f2 be ideals of A.
Let πi : Ỹi → Y be the blowing up of Y with respect to fi, for i = 1, 2. Let V be the
closed analytic subvariety of X defined by a. If

f1 +HA(a) = f2 +HA(a),

then
{Ỹ1

(π−1
1 (V )) ∼= {Ỹ2

(π−1
2 (V )).

Moreover, if fi ⊂ rad(a), then {Ỹi
(π−1
i (V )) = Ỹi.

Proof. Let us denote W̃i = {Ỹi
(π−1
i (V )), which, by definition is the closed analytic

subvariety of Ỹi defined by Hi = HỸi
(aOỸi

). We claim that f2OW̃1
is invertible.

To see this, let U1 = SpB1 be an admissible affinoid of Ỹ1. Hence, if we put
C1 = B1/HB1(aB1), then C1 = OW̃1

(U1 ∩ W̃1). Since HA(a) C1 = 0, we see
that f1C1 = f2C1. Since f1B1 is invertible, by definition of a blowing up, we have
that f1C1 is locally principal. So, in order to prove our claim, we have to verify
that AnnC1(f1C1) = 0. Hence let b ∈ B1, such that bf1C1 = 0. This means that
bf1 ⊂ HB1(aB1) and hence that bf1anB1 = 0, for some n. But f1 is invertible in
B1, so that banB1 = 0, from which it follows that b = 0 as an element of C1.

Therefore, we proved that f2OW̃1
is invertible and hence, there exists a unique

map of rigid analytic varieties i1 : W̃1 → Ỹ2 making the following diagram commute

(1)

W̃1

π1|W̃1−−−−→ Y

i1

y ∥∥∥
Ỹ2 −−−−→

π2

Y

.

We claim that i1 factors through W̃2, i.e., that i1(W̃1) ⊂ W̃2. In order to prove
this, we must show that H2OW̃1

= 0. Since this is a local question, we may take an
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admissible affinoid U2 = SpB2, such that i1(U1 ∩ W̃1) ⊂ U2 and we need to show
that HB2(aB2)C1 = 0, under the induced morphism B2 → C1 of affinoid algebras.
Hence let b2 ∈ HB2(aB2), so that there exists some n, for which b2anB2 = 0. Hence
also b2anC1 = 0, which implies that, for some m, we have that b2am+nB1 = 0. But
the latter means that b2 ∈ HB1(aB1), i.e., that b2 = 0 as an element of C1, as we
needed to show.

By symmetry, we find a unique map i2 : W̃2 → Ỹ1, making a similar diagram
as (1) commute in which the indices 1 and 2 are interchanged, and such that
i2(W̃2) ⊂ W̃1. Uniqueness of both maps then implies that they must be each others
inverse, providing the required isomorphism.

To prove the last assertion, we need to show that Hi = 0 under the additional
assumption that fi ⊂ rad(a). Let m be such that fmi ⊂ a. By symmetry, we only
have to deal with the case i = 1. We can calculate this locally, so that with the
notation of above, we need to show that HB1(aB1) = 0. Hence let s lie in the latter
ideal, so that sanB1 = 0, for some n. But this implies by our assumption that also
sfmn1 B1 = 0 and hence that s = 0 in B1, since f1B1 is invertible. �

4.4. Corollary. Let X = SpA be an affinoid variety and let V and Z1 be two
closed analytic subvarieties of X, such that |V | ⊂ |Z|1. Let Z2 be another closed
analytic subvariety of X, such that we have closed immersions Z1 ∩ {X(V ) ⊂ Z2 ⊂
Z1. Let πi : X̃i → X be the blowing up of X with centre Zi, for i = 1, 2. Then

π−1
1 ({X(V )) ∼= π−1

2 ({X(V )).

Proof. Let a be the ideal defining V , so that {X(V ) is defined by the ideal HA(a).
From our assumptions it follows that Z1∩{X(V ) = Z2∩{X(V ), so that f1+HA(a) =
f2 +HA(a), where fi is the ideal defining Zi, for i = 1, 2. Moreover, we have that
f1 ⊂ rad(a). Hence from (4.3) we deduce the existence of an isomorphism

X̃1
∼= {X̃2

(π−1
2 (V )).

As is easily seen, we have that π−1
2 ({X(V )) lies in the latter space, from which the

required isomorphism follows readily. �

4.5. Proposition. Let X = SpA be an affinoid variety and let Z be a closed
analytic subvariety of X. Then the following are equivalent.

(i) Z is nowhere dense in X.
(ii)

∣∣{X(Z)
∣∣ = |X|.

(iii) The pair (X,Z) satisfies the minimality condition.
(iv) The kernel of the restriction map A→ OX(X \ Z) is nilpotent.
(v) |Z| does not contain an irreducible component of X.

Remark. Here we say that a subset Γ is nowhere dense in X, if X \ Γ is dense in
X with respect to the Zariski topology on X, i.e., each non-empty Zariski-open U
of X intersects X \Γ non trivially. Clearly any subset of a nowhere dense subset is
nowhere dense. Recall also that the pair (X,Z) satisfies the minimality condition,
if for any closed analytic subset V of X for which X \ Z = V \ Z, we must have
that V = |X|. Strictly speaking, this is the set-theoretical version of the concept;
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for the more general notion, we require an equality of spaces V = X instead. See
[6, Proposition 3.8] for an analogous proposition using this more general notion.

Proof. Let a be the ideal defining Z. By definition, {X(Z) is then defined by the
ideal HA(a).

(i) =⇒ (ii). Immediate from (4.2).
(ii) =⇒ (iii). Let V be a closed analytic subset of X such that V \Z = X \Z.

Taking the Zariski closure, together with (4.2), we obtain that

|X| =
∣∣{X(Z)

∣∣ = cl(X \ Z) = cl(V \ Z) ⊂ V.

(iii) =⇒ (iv). Let f ∈ A be in the kernel of the restriction map A→ OX(X\Z).
Let V = V(f), then one verifies easily that X \ Z = V \ Z. By assumption, this
implies that V = |X| and hence that f is nilpotent.

(iv) =⇒ (i). Suppose Z is not nowhere dense, so that there exists a proper
closed analytic subset V = V(n) of X, such that X \ V ⊂ Z. This implies that
X \ Z = V \ Z. But the restriction map ρ : A → OX(X \ Z) factors then through
OV (V ) = A/n, so that n (which is not nilpotent) is contained in the kernel of ρ,
contradiction.

(iii) =⇒ (v). Suppose that Σ is an irreducible component of X such that
Σ ⊂ |Z|. Let X0 denote the union of all irreducible components of X other than
Σ. Hence we have that X0  |X| and |X| = Σ ∪X0. But |Z| contains Σ, so that
|X| = |Z| ∪X0. Hence by our assumption, we must have |X| = X0, contradiction.

(v) =⇒ (ii). Suppose that (ii) does not hold. This means that HA(a) is not
nilpotent. Hence there exists a minimal prime p of A, such that HA(a) 6⊂ p. Let
t ∈ HA(a) with t /∈ p. Hence, for some n, we have that tan = 0, from which it
follows that an ⊂ p and hence a ⊂ p. This means that V(p) ⊂ |Z|, contradicting
our assumption, since V(p) is an irreducible component of X. �

4.6. Corollary. Let π : X̃ → X be a blowing up map of a rigid analytic variety
X with a nowhere dense centre. If X is reduced, then also X̃ is. Moreover, π is
surjective.

Proof. Let Z denote the centre of the blowing up π. Let G̃ = nil(OX̃). By [18,
Theorem 3.2.1] , the map π is proper. Hence by [3, 9.6.3. Theorem 1] , π∗(G̃) is
coherent and by the left exactness of π∗ it is an OX -ideal. We claim that π∗(G̃)(X \
Z) = 0, so that by (4.5.iv), using that X is reduced, we have that π∗(G̃) = 0, from
which it follows immediately that then also G̃ = 0, as we wanted to show. To prove
our claim, observe that

π∗(G̃)(X \ Z) = G̃(X̃ \ π−1(Z)).

But by [18, Corollary 1.4.5] , we have that

(1) X \ Z ∼= X̃ \ π−1(Z).

Since X is reduced, we must have that OX̃,x̃ is also reduced, for any point x̃ /∈
π−1(Z). In other words, that G̃(X̃ \ π−1(Z)) = 0, as claimed.

To prove surjectivity, note that V = Im(π) is a closed analytic subset of X, since
π is proper. On the other hand, by (1), it also contains the dense subset X \ Z,
implying that X = V , since the former is reduced. �
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4.7. Definition. Let f : Y → X be a map of affinoid varieties. We call f gener-
ically dense, if the Zariski-closure cl(f(Σ)) of the image f(Σ) of any irreducible
component Σ of Y , is an irreducible component of X. In terms of the correspond-
ing morphism of affinoid algebras A → B, this translates into any minimal prime
of B contracting to a minimal prime of A. For a map f : Y → X of quasi-compact
rigid analytic varieties, we say that f is generically dense, if there exist finite ad-
missible affinoid coverings {Yi}i<n of Y and {Xi}i<n of X, such that f(Yi) ⊂ Xi

and each of the maps fi = f | Yi
: Yi → Xi is generically dense. For a point x ∈ X,

we will say that f is locally generically dense at x, if there exists an admissible affi-
noid U of X containing x, such that the restriction map f−1(U) → U is generically
dense.

4.8. Lemma. Let A ↪→ B be an inclusion of affinoid algebras. Then dimA ≤
dimB.

Proof. Since A is finite over a free Tate ring (necessarily of the same dimension),
by Noether Normalization [3, 6.1.2. Corollary 2] , we may already assume
that A = K〈S〉, where S = (S1, . . . , Sd) are variables. Let T = (T1, . . . , Tn) be
more variables, such that B = K〈S, T 〉/n. We will prove by induction on n, that
dimB ≥ d. There is nothing to prove if n = 0, so that in particular the case n = 0 is
trivial. Hence let f ∈ n be a non-zero element. By the Weierstrass Preparation
Theorem, we can find a finite and injective map K〈S, T ′〉 ↪→ K〈S, T 〉/(f), where
T ′ = (T1, . . . , Tn−1). Let n′ = n ∩K〈S, T ′〉 and let B′ = K〈S, T ′〉/n′. We therefore
have injective maps K〈S〉 ↪→ B′ ↪→ B, where the latter map is finite, so that
dimB′ = dimB. We are now done by our induction hypothesis on n. �

4.9. Lemma. Let A → C be a map of affinoid varieties turning SpC into an
affinoid subdomain of SpA. If P ∈ Spec(C) such that its contraction p = P ∩A is
a minimal prime of A, then also P is a minimal prime of C.

Proof. It is an easy exercise to see that it is enough to prove that P is a minimal
prime of C/pC. So we may already assume that A is a domain and that A ↪→
C/P. From (4.8) it follows that dimA ≤ dimC/P. If P were not minimal, then
dimC/P < dimC. But since SpC is an affinoid subdomain in SpA, we have that
dimA = dimC, which would contradict the first inequality. Hence P must be
minimal, as we wanted to show. �

4.10. Lemma. Let f : Y → X be a map of quasi-compact rigid analytic varieties
and let U be an admissible open of X. If f is generically dense, then also the
restriction f−1(U) → U .

Proof. Since the question is local, we may assume that X = SpA, Y = SpB and
U = SpC are affinoid. Hence the affinoid algebra of f−1(U) is C⊗̂AB. Consider
the following commutative diagram

A
ϕ−−−−→ B

δ

y yε
C −−−−→

ϕ0

C⊗̂AB.
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Let Q be a minimal prime of C⊗̂AB. Let P (respectively, q) denote its contraction
in C (respectively, in B). Hence, since ε is flat by [3, 7.3.2. Corollary 6] , we have
by [10, Theorem 15.1] that q is a minimal prime of B. Since, by assumption f
is generically dense, we have that p = q ∩ A is then also minimal. But P ∩ A also
equals p, so that P must be minimal as well, by (4.9). �

4.11. Proposition. Let f : Y → X be a map of quasi-compact rigid analytic
varieties. Then f is generically dense, if and only if, the inverse image of any
nowhere dense locally closed analytic subvariety of X is nowhere dense in Y . In
particular, Zariski-open maps (i.e., maps sending Zariski-opens to Zariski-opens)
are generically dense.

Proof. =⇒ . We claim that it is enough to prove this implication under the
additional assumption that X and Y are affinoid. Indeed, for the general case, let
{Yi}i and {Xi}i be finite admissible affinoid coverings of Y and X respectively,
such that each f(Yi) ⊂ Xi and fi = f | Yi

is generically dense. Let V be a nowhere
dense locally closed analytic subvariety of X. Hence V ∩ Xi is nowhere dense in
Xi and hence by the affinoid case, f−1

i (V ∩Xi) = f−1(V )∩ Yi is nowhere dense in
Yi. Since the Yi form an admissible covering, it follows that then also f−1(V ) is
nowhere dense.

Therefore, we may assume that X = SpA and Y = SpB are affinoid. Let Z
be a nowhere dense locally closed analytic subvariety of X defined over an affinoid
subdomain U = SpC of X by an ideal a of C. By (4.10), f−1(U) → U is also
generically dense, so that without loss of generality, we may assume that Z is even
a closed analytic subvariety of X, i.e., a is an ideal of A.

According to (4.5), we have that HA(a) is nilpotent and we need to show that
the same holds for HB(aB). Suppose the contrary, so that there exists a minimal
prime P of B not containing HB(aB). Let n be such that HB(aB) = AnnB(anB).
Hence we can find some s /∈ P such that sanB = 0. This implies that aB ⊂ P. Let
p = P ∩A, so that then a ⊂ p. In particular, we have that

AnnA(p) ⊂ AnnA(a) ⊂ HA(a) ⊂ nil(A) ⊂ p

implying that p2 = 0. But then also a2 = 0, implying that HA(a) = A, contradic-
tion.

⇐= . We can always find finite admissible affinoid coverings {Yi}i and {Xi}i
of Y and X respectively, such that each f(Yi) ⊂ Xi. We seek to show that the
maps fi = f | Yi

: Yi → Xi are generically dense. Therefore, let Σ be an irreducible
component of Yi and let V = clXi

(f(Σ)), which necessarily has to be irreducible
in Xi. Suppose that V is not an irreducible component of Xi, so that by (4.5)
V must be nowhere dense in Xi. Since V is then a nowhere dense locally closed
analytic subset of X, it then follows, by our assumption, that f−1(V ) is nowhere
dense and whence also f−1

i (V ). However, the latter set contains Σ and hence is not
nowhere dense by (4.5), contradiction.

To prove the last statement, we only need to show that the inverse image f−1(Z)
of a nowhere dense closed subset Z of X is nowhere dense in Y , if f is Zariski-open.
Suppose the contrary, so that there exists a non-empty Zariski-open subset U of Y
contained in f−1(Z). Hence f(U) ⊂ Z and, by assumption, f(U) is a non-empty
Zariski-open subset of X, contradicting the nowhere density of Z. �
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Remark. From the proof of ⇐= , it follows that a map f : Y → X of quasi-compact
rigid analytic varieties is nowhere dense, if and only if, for every pair of admissible
affinoid coverings {Yi}i and {Xi}i of Y andX respectively such that f(Yi) ⊂ Xi, for
each i, we have that each f | Yi

is generically dense. In other words, in the definition
of generically density, we may replace the phrase there exist finite admissible affinoid
coverings such that . . . by the phrase for every pair of admissible coverings such
that . . . .

5. Fibre Lemma

5.1. Lemma. Let S be a Noetherian ring, a a proper ideal in S for which the
a-adic topology on S is separated and let S → A be a morphism of rings. Suppose
that A has a founded and flat a-representation

0 → H−→F
π−→A→ 0

By foundedness, there exists a smallest ideal f for which H ⊂ fF . Suppose that
f is invertible, i.e., f = (x) with x ∈ S a non zero-divisor. Then there exists an
h ∈ A \ aA, such that xh = 0 in A.

Proof. We must have that
H 6⊂ (x)aF,

since otherwise f = (x) ⊂ (x)a, which would imply that (x) ⊂ an, for every n and
hence that x = 0 by the separatedness condition. So, we can find an element k ∈ H,
with k = xf and f /∈ aF . Since π is an a-representation, the latter implies that
π(f) /∈ aA. Hence if we set h = π(f), we get the desired element, since

0 = π(k) = xh.

�

5.2. Theorem (Fibre lemma). Let f : Y → X be a map of affinoid varieties and
let x be a point of X. Suppose that f has a globally defined universal rigid analytic
flatificator Z at x (i.e., Z is a closed analytic subvariety of X). Let π : X̃ → X
denote the blowing-up map with centre Z and let

Ỹ
θ−−−−→ Y

f̃

y yf
X̃ −−−−→

π
X

be the commutative diagram of the strict transform.
Then we have, for each point x̃ ∈ π−1(x), a strict closed immersion (i.e., a

closed immersion which is not an isomorphism)

(1) f̃−1(x̃)  f−1(x)
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of closed analytic subvarieties.

Remark. Note that there is always a closed immersion

f̃−1(x̃) ⊂ f−1(x).

Indeed, Ỹ , by definition of strict transform, is the blowing up of Y with centre
f−1(Z). By [18, Proposition 3.1.2] , we have a closed immersion

(2) i : Ỹ ↪→ Y ×X X̃,

which induces a closed immersion of fibres

f̃−1(x̃) ↪→ γ−1(x̃) ∼= f−1(x),

where γ : Y ×X X̃ → X̃ denotes the canonical projection. See also below in the
proof, for some more explicit calculations. We emphasize that we will prove (1), for
the fibres considered as subvarieties rather than as subsets (i.e., it may be that the
underlying closed analytic sets are equal but they differ in their analytic structure).

Proof. Let A (respectively, B) be the affinoid algebras of X (respectively, Y ). Let
m be the maximal ideal of A corresponding to the point x. Then the fibre of x over
f is given as Sp(B/mB). Let f be the ideal defining Z. Let Ũ = Sp C̃ be an affinoid
admissible open of X̃ containing x̃. From (2), we then obtain that there is a closed
immersion

(3) f̃−1(Ũ) ↪→ Y ×X Ũ .

The latter space is affinoid, with affinoid algebra D = B⊗̂AC̃. Let I be the ideal in
D giving this closed immersion (3), so that f̃−1(Ũ) is affinoid with affinoid algebra
D̃ = D/I. Let us calculate the various fibres. Let m̃ be the maximal ideal in C̃

defining x̃. Hence, via the map f̃−1(Ũ) = Sp D̃ → Ũ = Sp C̃, we see that

f̃−1(x̃) = Sp(D̃/m̃D̃).

On the other hand, we have that

γ−1(x̃) = Sp(D/m̃D).

But
D/m̃D ∼= (B/mB)⊗̂A/m(C̃/m̃) ∼= B/mB

where the latter algebra is the affinoid algebra of f−1(x). This proves that γ−1(x̃) ∼=
f−1(x) and that f̃−1(x̃) is a closed subvariety of f−1(x) given by the (image of the)
ideal I in D/m̃D. So we proved (1), if we can show that I 6= 0 in D/m̃D.

By definition of blowing up, we have that the ideal fOX̃ has become invertible.
By shrinking Ũ if necessary, we may already assume that fC̃ is generated by a non
zero-divisor of C̃. Moreover, since f is universal, we have that fC̃ is a flatificator
of the base change morphism C̃ → D = B⊗̂AC̃. Hence from (5.1) it follows that
there exists an h ∈ D \ m̃D, for which hf = 0 in D, since f ⊂ m̃ and since we always
may assume that C̃ → D has a founded and flat m̃-representation by (3.3), after
perhaps some further shrinking of Ũ . By the definition of strict transform, also fD̃
is invertible. Since hf = 0 in D whence in D̃, we conclude that h = 0 in D̃ and
therefore h ∈ I. But h 6= 0 in D/m̃D, proving that I 6= 0 in D/m̃D. �
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5.3. Theorem. Let f : Y → X be a map of quasi-compact rigid analytic varieties
and let x ∈ X be an arbitrary point. Suppose that X is reduced. If f is not flat
at x, then there exists a local blowing up π : X̃ → X with nowhere dense centre F
containing x, such that f−1(F ) → F is flat and such that, if

Ỹ
θ−−−−→ Y

f̃

y yf
X̃ −−−−→

π
X

denotes the diagram of the strict transform of f under π, we have, for every x̃ ∈
π−1(x), a non-trivial closed immersion of fibres

(1) f̃−1(x̃)  f−1(x).

Proof. Since the question is local, we may assume that X and Y are affinoid.
According to (3.7), we can find an affinoid subdomain U of X containing x, such
that the restriction map f−1(U) → U has a universal rigid analytic flatificator Z
at x, which we can assume to be globally defined. Apply (5.2) to this situation
to obtain the required strict inclusion of fibres. Note also that by definition of a
flatificator the condition that f−1(Z) → Z be flat, is automatically met (and hence
also for any closed analytic subvariety of Z).

Therefore, the only thing that remains to be shown, is that we can replace Z
by a smaller centre F which is nowhere dense without violating (1). Without loss
of generality, we can always, after shrinking U if necessary, assume that x lies on
each irreducible component of U . Suppose that V is an irreducible component
of U contained in |Z|. Let X0 denote the analytic complement {U (V ) and Z0 =
Z ∩X0. Note that since |Z|  U , where the latter is reduced, and since x lies on
all irreducible components of U , we must have that x ∈ X0. Let π0 : X̃0 → U be
the blowing up of U with centre Z0. By (4.4), we have an isomorphism

π−1(X0) ∼= π−1
0 (X0).

In particular, since x ∈ X0, we see that the fibre of x under π is isomorphic with
the fibre of x under π0.

Let us now look at the strict transform of Y under π0, i.e., the blowing up of
f−1(U) with centre f−1(Z0). Put Y0 = {f−1(U)(f−1(V )). Then we have closed
immersions4

f−1(Z) ∩ Y0 ↪→ f−1(Z0) ↪→ f−1(Z).

Again, by applying (4.4) and the same reasoning as above, we see that the fibre
above any x̃ ∈ π−1(x) has not changed. In other words, the closed immersion (1)
of the fibres remains the same when we replace the local blowing up π by the local

4We have used here the following preservation property of analytic complements under mor-

phisms: let f : Y → X be a map of rigid analytic varieties and let V be a closed analytic subvariety

of X, then
f({Y (f−1(V ))) ⊂ {X(V ).
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blowing up π0. Proceeding in this way, we can eliminate all irreducible components
of U that are lying in the centre of blowing up, to obtain a centre which is nowhere
dense by (4.5). �

Remark. We can even be more precise in the above statement. Suppose y ∈ Y is a
point lying above x in which f is not flat. Then there exists an admissible affinoid
U ⊂ Y containing y, such that

f̃−1(x̃) ∩ θ−1(U)  f−1(x) ∩ U.

Indeed, just observe that the flatificator of the restriction f | U : U → X at x is
contained in the flatificator of f at x and apply now the theorem to this new map
f | U .

5.4. Theorem. Let f : Y → X be a map of rigid analytic varieties with X reduced
and let x ∈ X. If the following two conditions hold

(1) f is locally generically dense at x,
(2) The fibre f−1(x) is a single point {y} with its reduced closed subspace struc-

ture,
then f is flat at x (or, equivalently, flat in y).

Proof. Suppose that f is not flat at x. Using (5.3), we can find an admissible
affinoid U around x and a nowhere dense closed analytic subvariety Z of U such
that the following holds. Let π : X̃ → U denote the blowing up of U with centre
Z. Let

(1)

Ỹ
θ−−−−→ f−1(U)

f̃

y yf
X̃ −−−−→

π
U

be the diagram of the strict transform. Then, for each point x̃ ∈ π−1(x), the fibre
f̃−1(x̃) is strictly contained in f−1(x) = {y}, where the latter has the reduced
subspace structure. In other words, we must have that each of these fibres f̃−1(x̃)
is empty. Therefore, we showed that

(2) π−1(x) ∩ f̃(Ỹ ) = ∅.

By (4.10) and our first assumption, we can even assume that the map f−1(U) →
U is generically dense. Using (4.11) we obtain that then f−1(Z) is nowhere dense
in f−1(U). By (4.6), θ, being the blowing up of f−1(U) with centre f−1(Z), is
surjective, so that there exists a ỹ ∈ Ỹ , such that θ(ỹ) = y. This implies, by the
commutativity of (1), that f̃(ỹ) lies in the fibre π−1(x). But this clearly contradicts
(2), so that f must be flat at x. �

5.5. Corollary. Let ϕ : A ↪→ B be an injective morphism of affinoid domains. Let
m be a maximal ideal of A. If mB is a maximal ideal in B, then B is flat over A
at m (meaning that Am → BmB is flat).

Proof. We only have to verify the conditions of (5.4). Since both algebras are
domains and since ϕ is injective, ϕ is generically dense at any point, by (4.10).
The fibre at m equals Sp(B/mB) = SpK, so that (2) of (5.4) also holds. �
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Appendix: Flatificators in Berkovich Spaces

A.1. Definition. We will not give a complete account on Berkovich spaces, but
just give a brief outline, so that the reader will convince himself that a theory of
flatificators, analogous to the above, can be developed in this new setup. For a
more detailed description, we have to refer to Gardener’s D.Phil. thesis [5] . For
an introduction to the general theory of Berkovich spaces, see also Berkovich’s
own work [1] and [2] or the more accessible renderings by Schneider [14] and
Schneider and van der Put [15] .

Let X = SpA be an affinoid variety. An analytic point x of X is a continuous
K-algebra morphism x : A→ F to a complete extension field F of K (i.e., such that
F comes with a complete norm, extending the one on K). For technical reasons,
we will require also that x(A) generates a dense subfield of F .5 An ordinary point
of X corresponds to a maximal ideal of A and hence induces a morphism A→ K,
thus becoming an analytic point. These are called geometric points. An affinoid
subdomain U = SpC is called an affinoid neighbourhood of an analytic point x,
if the morphism x : A → F factors through a morphism C → F , still denoted x
(which is then necessarily unique). Two analytic points are said to be congruent if
they have the same system of affinoid neighbourhoods. The K-affinoid Berkovich
space associated to X (or to A) is defined to be the set M(X) of all congruence
classes of analytic points of X. The latter set is topologized by putting the weakest
topology on it rendering each map

f̃ : M(X) → R : x 7→ |x(f)|

continuous, where f ∈ A and x : A → F (the norm is the one in F ). This turns
M(X) into a compact space and X embeds inM(X) as an everywhere dense subset.
Finally, to define the K-analytic structure, we make M(X) into a locally ringed K-
space by defining a structure sheaf OM(X).

If U ⊂ X is an affinoid neighbourhood of an analytic point x of X, then M(U) is
the closure of U in M(X). It is called a wide affinoid neighbourhood of x, if M(U)
contains an open neighbourhood of x in M(X). If x is geometric, any affinoid
subdomain is wide. The compactness of the Berkovich space translates into the
following property of the associated affinoid variety (see [2, Lemma 1.6.2] ): if
{Ui}i is a collection of affinoid subdomains of X, such that, for each analytic point
x of X, one of the Ui is a wide affinoid neighbourhood of x, then the covering is
admissible (in the Grothendieck topology on X) and whence already finitely many
Ui cover X. Beware that the above condition is stronger than just requiring {Ui}i
to be a covering, since the latter only means that the geometric points are ’covered’.

There exist global versions of the Berkovich space defined for general rigid an-
alytic varieties. To our purposes, we will only be concerned with separated quasi-
compact rigid analytic varieties. To any quasi-compact rigid analytic variety X,
one can associate a K-analytic Berkovich space M(X) (the latter space is then lo-
cally compact, paracompact and Hausdorff). In this paper a Berkovich space will
always be of the latter form, contrary to the more general usage of the terminology
in the aforesaid sources, where the interested reader can find the details. Let us
just mention the following facts: any map f : Y → X between quasi-compact rigid

5The reader should convince himself that this is a harmless extra condition, because we will
only be interested in congruence classes of analytic points, as to be defined below.
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analytic varieties uniquely determines a map M(f) : M(Y ) → M(X) between the
corresponding Berkovich spaces. The former is flat if the latter is, where M(f) is
called flat at a point y ∈ M(Y ) if the map of local rings OM(X),M(f)(y) → OM(Y ),y

is flat.

The definition of flatificator and universal flatificator are now similar. Let
f : Y → X be a map of Berkovich spaces, let x be a point of X and let Z be a
locally closed analytic subspace of X containing x. Then we say that Z is the
Berkovich flatificator of f at x, if f−1(Z) → Z is flat, and for every locally closed
analytic subspace V of X containing x such that f−1(V) → V is flat at x, we have
that V ⊂ Z at x. It is called a universal Berkovich flatificator of f at x, if it
remains the flatificator at all points of the fibre of x over any base change. As
in the rigid analytic case, for a map to have a Berkovich flatificator is equivalent
with the corresponding morphism OX,x → (f∗OY)x having a flatificator A such that
OX(U)/A → OY(f−1(U))/AOY(f−1(U)) is flat, where U is an open neighbourhood
of x on which A is defined. We can now formulate the Berkovich analogue of our
Theorem (3.7).

A.2. Theorem. Let f : X → Y be a map of Berkovich spaces and let x be a
point of X. Then there exists a wide affinoid neighbourhood U of x, such that the
restriction f−1(U) → U has a universal Berkovich flatificator.

Proof ( [5, Proposition 5.8] ). First we need to prove the Berkovich-analogue of
(3.3), i.e., replacing, in the statement of loc. cit., the geometric point x by an
arbitrary analytic point and the affinoid subdomain U containing x by a wide
affinoid neighbourhood of x. Note that an analytic point x is a morphism A→ F ,
where F is a complete extension field of K and hence its kernel is a prime ideal p
of A. Therefore, replace in the proof of loc. cit., the maximal ideal m by the prime
ideal p. Similarly, the affinoid subdomain U defined by (2) has to be modified by
replacing the first condition in (2) by |aν(z)| ≥ α−ε/2 (and a similar adaptation for
the case n = 0), thus ensuring that it becomes a wide affinoid neighbourhood of x.
One should also extend the definition of a strongly OX -module F to all (geometric
or analytic) fibres being founded and observe that (1.2) remains valid. The rest
of the proof can now be copied verbatim to entail the Berkovich-analogue of (3.3).
To complete the proof of the theorem, we can now use the same proof as for (3.7),
since nowhere we have exploited that the ideal corresponding to a point is maximal,
but only that it is prime. �

A.3. Corollary. Flatness for Berkovich maps is an open condition in the source.

Proof ( [5, Proposition 5.7] ). Same proof as for (3.8). �

In order to formulate the Berkovich variant of (5.3), we need to say a bit more
about fibres.

A.4. Definition. Let A → B be a map of K-affinoid algebras, let X = M(SpA)
and Y =M(SpB) be the corresponding K-affinoid Berkovich spaces and let f : Y→
X be the corresponding map. Let x : A→ F be a point of X, i.e., an analytic point
of X = SpA. Let y ∈ f−1(x) with y : B → G a point of Y, then the additional
requirement that x(A) generates a dense subfield of F , ensures that there is a
continuous embedding F ↪→ G. Therefore, y can be viewed as an analytic point
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of Yx = Sp(B⊗̂AF ) and, conversely, any analytic point of Yx induces an analytic
point of Y = SpB. We will call the F -affinoid Berkovich spaceM(Yx) the fibre over
x and we denote it as Yx. Note that Yx is naturally homeomorphic with f−1(x).
However, in general, it will no longer be K-analytic anymore, but F -analytic, for
some complete extension field F of K (although for geometric points K = F , so
that in that case the above definition agrees with the one used in Section 5). It is
this fact that has to be taken into account when considering the Fibre Lemma. We
have the following easy to prove result.

A.5. Fact. Let f : Y→ X and g : Z→ X be maps of K-affinoid Berkovich spaces.
Let x : A→ F (respectively, z : C → G) be a point of X (respectively, of Z), where
A (respectively, C) is the affinoid algebra associated to X (respectively, to Z). If
g(z) = x and if f ′ denotes the base change W = Z ×X Y → Z of f , then we have
an isomorphism

Wz
∼= Yx ×F G

of G-analytic Berkovich spaces (where the above fibre product just means extension
of scalars).

It will come as no surprise that one can define blowing up maps and local blowing
up maps in the category of Berkovich spaces as well and that the functorM(·) maps
rigid analytic blowing up maps to Berkovich blowing up maps, whenever this makes
sense. We finally come to the last Berkovich variant, where (5.3) gets translated
into the following theorem.

A.6. Theorem. Let f : Y → X be a map of K-analytic Berkovich spaces and let
x : A → F be an arbitrary point of X. Suppose that X is reduced and take some
compact subset L of the fibre f−1(x). If f is not flat in each point of L, then there
exists a local blowing up π : X̃→ X with nowhere dense centre Z containing x, such
that f−1(Z) → Z is flat and such that, if

Ỹ θ−−−−→ Y

f̃

y yf
X̃ −−−−→

π
X

denotes the diagram of the strict transform of f under π, we have, for every
x̃ : Ã→ F̃ in Xx (where Sp(Ã) is some wide affinoid neighbourhood of x̃), a closed
immersion of fibres

Ỹx̃ ↪→ Yx ×F F̃ = (X̃×X Y)x̃

which is strict at some point in {x̃} ×X L. In fact, this inclusion remains strict
after extension of scalars to an arbitrary complete extension field G of F̃ .

Proof. Apart from extending the scalars, we can copy the rigid analytic Fibre
Lemma (5.2) verbatim to the Berkovich setup (just replace the maximal ideals
corresponding to geometric points by the prime ideals corresponding to analytic
points). Likewise for (5.3), since the whole machinery on analytic complements
in Section 4 can be transformed to its Berkovich equivalent by applying the fully
faithful functor M(·). (For instance, the analytic Berkovich complement of a closed
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analytic subspace F of the K-affinoid Berkovich space X is defined as M({X(F )),
where F and X are the affinoid varieties associated to F and X, etc.). Finally, use
the remark after (5.3) to show that the strict inclusion (1) already holds in a point
above L. �

References

[1] V. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathe-

matical Surveys and Monographs 33, American Mathematical Society, 1990.
[2] , Etale cohomology for non-Archimedean analytic spaces, Publ. Math. I.H.E.S. 78

(1993), 5–161.
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