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SCHEMIC GROTHENDIECK RINGS I: MOTIVIC SITES

HANS SCHOUTENS

Abstract

We propose a suitable substitute for the classical Grothendieck ring of an alge-
braically closed field, in which any quasi-projective scheme is represented with its
non-reduced structure. This yields a more subtle invariant, called the schemic Gro-
thendieck ring. In order to include open subschemes and their complements, we
introduce formal motives. Although originally cast in terms of definability, every-
thing in this paper has been phrased in a topos-theoretic framework.

1. Introduction

Modeled on p-adic integration, Kontsevich [7] formulated a general integration
technique for smooth varieties over an algebraically closed field κ, called motivic
integration. This was extended by Denef and Loeser [1, 2, 3] to arbitrary varieties
to achieve motivic rationality, by which they mean the fact that the rationality of a
certain generating series from geometry or number-theory, like the Igusa-zeta series,
is “motivated” by the rationality of its motivic counterpart. Here, the motivic coun-
terpart is supposed to specialize to the given classical series via some multiplicative
function, like a counting function or Euler characteristic. The two main ingredients
of this construction are the Grothendieck ring of varieties over κ, in which the inte-
gration takes its values, and the truncated arc space LpXq of a variety X , that is to
say, the reduced Hilbert scheme classifying all jets Specκrrξss Ñ X . Our aim is
to extend this by replacing varieties by schemes (of finite type), in such a way that
killing the nilpotent structure reverts to the old theory.

In the present paper, we will deal with the first ingredient only, leaving the def-
initions of jet schemes (=truncated arc schemes) and motivic integrals to [11]. The
classical Grothendieck ring GrpVarκq of an algebraically closed field κ is designed
to encode both combinatorial and geometric properties of varieties. It is defined
as the quotient of the free Abelian group on varieties over κ, modulo the relations
rXs � rX 1s, if X � X 1, and

(1) rXs � rX � Y s � rY s,
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if Y is a closed subvariety, for Y,X,X 1 varieties (=reduced, separated schemes of
finite type over κ). We will refer to the former relations as isomorphism relations (or
more correctly, homeomorphism relations) and to the latter as scissor relations, in
the sense that we “cut out Y from X .” Multiplication on GrpVarκq is then induced
by the fiber product. In sum, the three building blocks for a Grothendieck ring are:
scissor relations, isomorphism relations, and products. Only the former causes prob-
lems if one wants to extend the construction of the Grothendieck ring from varieties
to arbitrary finitely generated schemes. Put bluntly, we cannot cut a scheme in two,
as there is no notion of a scheme-theoretic complement, and so we ask what new
objects we should add to make this work. Let us call these new objects tentatively
motives,1 in the sense that their existence is motivated by a combinatorial necessity.
There are now two approaches to construct these.

The first one, discussed at length in [10], is based on definability, and was the
original approach. The point of departure is the representation of a scheme by an
equational (first-order) formula modulo the theory of local Artin algebras. The log-
ical operations of conjunction, disjunction, and negation are then used to form the
required new objects: motives arise as Boolean combinations of equational formu-
lae. Scissor relations are now easily expressed in this formalism, whereas products
are given by conjunction with respect to distinct variables, and isomorphism rela-
tions are phrased in terms of definable isomorphisms, cumulating in the construction
of the schemic Grothendieck ring over κ. To obtain geometrically more significant
motives, one is forced not only to introduce quantifiers, but also to resort to some
infinitary logic via formularies, leading to larger Grothendieck rings, all of which
still admit a natural homomorphism onto the classical Grothendieck ring. To define
the analogue of jet spaces or truncated arc spaces, jet formulae are obtained by inter-
preting the theory of a local Artin algebra in that of its residue field. The resulting
jet operator is compatible with Boolean combinations and hence induces an endo-
morphism on the Grothendieck rings. This was the first striking success of the new
theory: no such operation exists in the classical Grothendieck ring. Other main ad-
vantages of this approach are (i) the presence of negation, allowing one to “cut up” a
scheme into motives, and (ii) the uniformity inherent in model-theory, allowing one
to use parameters, and hence to work over an arbitrary base ring rather than just an
algebraically closed field. The main disadvantage stems from non-functoriality, in
particularly when dealing with morphisms. Nonetheless, the theory in [10] has led
to new motivic rationality results in certain cases, even the thus far illusive, positive
characteristic case.

However, as research on the topic progressed, I came to realize that sacrificing
definability for functoriality has its own benefits. In this approach, which forms the

1This is not the usual meaning of motif in algebraic geometry, and so perhaps the more appropriate
nomenclature should have been combinatorial motif.
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content of this paper and is essentially topos-theoretical, schemes are viewed as (con-
travariant) functors. Traditionally, one views them as functors, called representable
functors, from the category of κ-algebras to the category of sets, but the power of
the present approach comes from narrowing down the former category to that of fat
points, consisting only of one-point schemes over κ. Thus, given a scheme X of fi-
nite type over κ and a fat point z, we letXpzq be the set of all z-rational points, that is
to say, κ-morphisms z Ñ X . The functor z ÞÑ Xpzq uniquely determines the scheme
structure on X . Motives are then certain subfunctors of these representable functors,
with morphisms between them given by certain natural transformations. Since these
functors take values in the category of sets, all set-theoretic operations are available
to us, such as union, intersection, and complement. However, complementation does
not behave functorially, and so motives now only form a lattice, leading to the no-
tion of a motivic site: apart from a Grothendieck topology inherited from the Zariski
topology on the underlying schemes, we also require a categorical lattice structure
in order to formulate scissor relations. Defining multiplication by means of fiber
products, we thus get the Grothendieck ring of a motivic site. In a sequel paper [11],
using some tools from category theory and topos theory, in particular, adjunction,
we will generalize the construction of truncated arc spaces to the present setup, by
introducing for each fat point z a jet morphism ∇z operating on the corresponding
Grothendieck ring.

Let me now briefly discuss in more detail the content of the present paper. In §2,
we discuss the functors that will play the role of motives. Borrowing terminology
from topos theory, on the category of fat points, a subfunctor X of a representable
functor given by a scheme X is called a sieve on X , and X is called an ambient
space of X. We may do this over an arbitrary Noetherian base scheme V . For the
sake of this introduction, I will only treat the case of greatest interest to us, namely,
when V is the spectrum of an algebraically closed field κ. To define a morphism of
sieves, we cannot just allow any natural transformation, see §2.14 for details. More
often than not, such a morphism is induced by a morphism of the ambient schemes,
in which case we call it rational. We turn this into a true topos in §3, by defining
an admissible open of a sieve X to be its restriction to an open in its ambient space.
We define a global section on a sieve X to be any morphism of sieves into the affine
line. We establish an acyclicity result for global sections, allowing us to define the
structure sheaf OX of X.

In the next four sections, §§4–7, we introduce the Grothendieck ring of a motivic
site, and discuss the three main cases. As already mentioned, a motivic site is for
each scheme, a choice of lattice of sieves on that scheme, called the motives of the
site. The associated Grothendieck ring is then defined as the free Abelian group on
motives in the site modulo the isomorphism relations and the scissor relations, where
the latter take the lattice form
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(2) rXs � rYs � rXYYs � rXXYs,

for any two motives X and Y on the same ambient space. The first motivic site of
interest consists of the schemic motives, given on each scheme as the lattice of its
closed subschemes (viewed as representable subfunctors). The resulting Grothen-
dieck ring is too coarse, as it is freely generated as an additive group by the classes
of irreducible schemic motives (Theorem 5.7). A larger, more interesting site is
given by the sub-schemic motives, where we call a sieve X on X sub-schemic, if
there is a morphism ϕ : Y Ñ X such that at each fat point z, the set Xpzq consists
of all z-rational points z Ñ X that factor through ϕ, that is to say, Xpzq is the image
of the induced map ϕpzq : Y pzq Ñ Xpzq. Any locally closed subscheme is sub-
schemic. Moreover, any morphism of sieves with domain a sub-schemic motif is
rational (Theorem 3.15), from which it follows that the sub-schemic Grothendieck
ring admits a natural homomorphism into the classical Grothendieck ring.

Whereas in general the complement of a sieve is no longer a sieve (as functoriality
fails), this does hold for any open subscheme. However, such a complement is in
general no longer sub-schemic, but only what we will call a formal motif, that is to
say, a sieve X that can be approximated by sub-schemic submotives in the sense that
for each fat point z, one of its sub-schemic approximations has the same z-rational
points as X. In case of an open U � X � Y , the complement is represented by
the formal completion pXY , whose approximations are the co-jet spaces JnYX :�
SpecpOX{InY q. If Y � tP u is a single closed point, then this is also represented by
the local scheme SpecpOX,P q. A morphism in the site of formal motives Formκ is
approximated by rational morphisms, and therefore, the ensuing Grothendieck ring
GrpFormκq still admits a canonical homomorphism onto the classical Grothen-
dieck ring GrpVarκq. We conclude with a brief discussion on how to circumvent
the lack of complements in this setup by restricting the morphisms in the category of
fat points to only those that are split; we will use this to define motivic integration in
[11].

Notation and terminology. Varieties are assumed to be reduced, but not neces-
sarily irreducible. Given a scheme X , we let X red denote its underlying variety or
reduction. We often denote a morphism of affine schemes SpecB Ñ SpecA by
the same letter as the corresponding ring homomorphism A Ñ B, whenever this
causes no confusion. By a germ pX,Y q we mean a scheme X together with a closed
subscheme Y ⊆ X . Most of the time Y is an irreducible subvariety, that is to say,
the closure of a point y P X , and we simply write pX, yq for this germ. If Y is a
closed point, we call the germ closed. The n-th co-jet JnYX of a germ pX,Y q is
the closed subscheme defined by InY , where IY is the ideal of definition of Y .2 The
formal completion pXY of the germ pX,Y q is the locally ringed space obtained as the

2Note that many authors take instead the n� 1-th power.
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direct limit of the JnYX (see [6, II.§9]). For instance, if Y � P is a closed point with
maximal ideal mP , then the ring of global sections of pXP is the mP -adic completionpOX,P of OX,P .

We denote the affine line A1
V :� A1

Z � V over a base scheme V by LV , or
simply L, and also use this notation for its class in any of the Grothendieck rings.
The formal completion of the germ pL, Oq, where O is the origin, is denoted pL, and
the punctured line LzO, that is to say, the open subscheme obtained by removing
the origin, is denoted L�. Whereas in the classical Grothendieck ring, L � L� �

1 (and pL is undefined), in the formal Grothendieck ring, we have L � L� � pL
(see Proposition 7.1), which over a field κ, after taking global sections, takes the
suggestive form

(3) “κrxs” � “κrx, 1{xs”� “κrrxss”.

The n-th co-jet of pL, Oq will be denoted ln :� Specpκrxs{pxnqq.

2. Sieves

Fix a Noetherian scheme V , to be used as our base space. Most often, V is just the
spectrum of an algebraically closed field κ. By a V -scheme X , we mean a separated
scheme X together with a morphism of finite type X Ñ V , called the structure
morphism. We call X a fat V -point, if X Ñ V is finite and X has a unique point.
In other words, X � SpecR, for some Artinian local ring R which is finite as an
OV -module. We call the length of R the length of the fat point and denote it `pzq.
We denote the subcategory of fat V -points by FatV , and we will use letters z, v, . . .

to denote fat points. An important example of fat points are the co-jets of a closed
germ pX,P q, that is to say, given a V -scheme X and a closed point P on X with
corresponding maximal ideal mP , we let JnPX , called the n-th co-jet of X along P ,
be the fat point with coordinate ring OX,P {mn

P .
Let X be a V -scheme and z a fat point. A morphism of V -schemes a : z Ñ X

will be called a z-rational point on X (over V ). The set of all z-rational points on
X will be denoted by Xpzq, or sometimes by XpRq, where R is the coordinate ring
of z. The image of the unique point of z under a is a closed point on X , called the
center (or origin) of a. Indeed, since the composition z Ñ X Ñ V is the structure
map whence finite, so is its first component a : z Ñ X . As finite morphisms are
proper, closed points are mapped to closed points. Let x be the center of a z-rational
point a on a V -scheme X . We will denote the residue field of x and z respectively
by κpxq and κpzq. The z-rational point a induces a homomorphism of residue fields
κpxq Ñ κpzq. By the Nullstellensatz this a is a finite extension, and its degree will
be called the degree of a.
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The category of contravariant functors (with morphisms given by natural transfor-
mations) from FatV to the category of sets will be called the category of pre-sieves
over V . The product X�Y (respectively, the disjoint union X\Y) of two pre-sieves
X and Y is defined point-wise by the rule that a fat point z is mapped to the Cartesian
product Xpzq �Ypzq (respectively, to the disjoint union Xpzq \Ypzq). Similarly, we
say that X is a sub-pre-sieve of Y, symbolically X ⊆ Y, if for every fat point z,
we have an inclusion Xpzq ⊆ Ypzq, and this inclusion is a natural transformation,
meaning that for any morphism j : z̃ Ñ z, we have a commutative diagram

(4)

?

-

?
-

YpzqXpzq

Ypz̃qXpz̃q

Xpjq Ypjq

⊆

⊆

where the downward arrows are the maps induced functorially by j. We call a pre-
sieve X on FatV representable (respectively, pro-representable), if there exists a
V -scheme X (respectively, a scheme X which is not necessarily of finite type over
V ) such that Xpzq � Xpzq, for all fat points z. To emphasize that we view the
(V -)scheme X as a contravariant functor on FatV , we will denote it by X� :�
MorV p�, Xq. Any morphism ϕ : Y Ñ X of (V -)schemes induces, by composition,
a natural transformation ϕ� : Y � Ñ X�, that is to say, a morphism in the category
of pre-sieves on FatV . More precisely, given a fat point z and a z-rational point
b : z Ñ Y , let ϕ�pzqpbq :� ϕ � b. Instead of ϕ�pzq, we will simply write ϕpzq for the
induced map Y pzq Ñ Xpzq if there is no danger for confusion.

2.1. Example. Suppose V � Specκ with κ an algebraically closed field. Since
κ � κpzq, any z-rational point has then degree zero. After identifying the closed
points of X with the set Xpκq of κ-rational points, the map sending a z-rational
point a to its center x is none other than the map Xpzq Ñ Xpκq induced by the
residue morphism SpecκÑ z and will be denoted ρz. More generally, functoriality
yields, for every pre-sieve X, a (residue) map

(5) ρzp� ρX
z q : Xpzq Ñ Xpκq.

2.2. Lemma. Two closed closed subschemes X and Y of a V -scheme Z are
distinct if and only if there is a fat point z such that Xpzq and Y pzq are distinct
subsets of Zpzq.

Proof. One direction is immediate, so assume X and Y are distinct. Then their
restriction to some affine open of Z remains distinct, and hence we may assume
Z � SpecA is affine. Let I and J be the ideals in A defining X and Y respectively.
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Since I � J , there is a maximal ideal m ⊆ A such that IAm � JAm. Hence, by
Krull’s Intersection Theorem in the Noetherian local ring Am, there is some n such
that I and J remain distinct ideals in A{mn. In particular, upon replacing I by J
if necessary, z :� SpecpA{pI � mnqq is a closed subscheme of X , but not of Y ,
showing that the closed immersion z ⊆ Z lies in XpzqzY pzq. �

The resulting map from the category of V -schemes to the category of pre-sieves
on FatV is an embedding by Yoneda’s Lemma and Lemma 2.2. Note that this is no
longer true for schemes not of finite type, an obvious reason for this failure being
that there might be no rational points at all: for instance, SpecpCq has no rational
points over any fat point defined over the algebraic closure Q̄ (for another example,
see (2.3.iv) below). The product of any two (pro-)representable pre-sieves is again
(pro-)representable. More explicitly, the productX��Y � is the same as pX�V Y q

�,
whereX�V Y is the usual fiber product in the category of V -schemes. If s : X Ñ Y

is a morphism of pre-sieves, then we define its image Impsq and its graph Γpsq as the
sub-pre-sieve of respectively Y and X �Y, given at each fat point z as respectively
the image and the graph of the map spzq : Xpzq Ñ Ypzq.

2.3. Sieves. By a sieve, we mean a sub-pre-sieve X of some representable X�. If
we want to emphasize the underlying V -scheme X , we say that X is a sieve on X ,
or that X is an ambient space of X. We say that X is affine, if it admits some affine
ambient space. Some examples of sieves:

(2.3.i) If Z ⊆ X is a closed subscheme, then Zpzq, for a fat point z, consists
precisely of those z-rational points z Ñ X that factor through Z, and
hence Z� is a subsieve of X�, called a closed subsieve;

(2.3.ii) If ϕ : Y Ñ X is a morphism of V -schemes, then we let Impϕq be the
image pre-sieve of the corresponding natural transformation ϕ� : Y � Ñ

X�, that is to say, Impϕqpzq consists of all z-rational points on X that
lift to a z-rational point on Y , meaning that z Ñ X factors through Y .
Any sieve of the form Impϕq for some morphism ϕ : Y Ñ X of V -
schemes is called sub-schemic (we will study these more extensively in
§6 below).

(2.3.iii) If ϕ is a (locally) closed or open immersion, then Impϕq is equal to Y �,
whence is itself representable, and we call Impϕq � Y � respectively a
(locally) closed or open subsieve on X .

(2.3.iv) If P is a closed point on X , then the pro-representable pre-sieve given
by the localization XP :� SpecpOX,P q is a sieve on X . For each fat
point z, a z-rational point onX belongs toXP pzq if and only if its center
is P ; we will see shortly that this is an example of a formal motif (see
Corollary 7.3). When P is not a closed point, the pre-sieve represented
by the local scheme XP is empty: indeed, suppose we are given a z-
rational point z Ñ XP , composition with XP Ñ X yields a z-rational
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point on X , and hence its center is a closed point Q. Since P is not
closed, Q does not lie on XP , contradiction.

2.4. Lemma. Let X be a sieve on X and z � SpecR a fat point. A z-rational
point a : z Ñ X belongs to Xpzq if and only if Impaq ⊆ X. If X � Y � is a closed
subsieve, given by a closed subscheme Y ⊆ X , then this is also equivalent with
z � z�X Y and also with a�IY � 0, where IY is the ideal sheaf of Y and a�IY its
image in R.

Proof. Suppose a P Xpzq. Let w be a fat point and b P Impaqpwq. Hence b : w Ñ

X factors through a, that is to say, we can find a morphism i : w Ñ z such that the
diagram

(6)

�
�
�
�
�
��

A
A
A
A
A
AU-

w

z Xa

i b

commutes. By functoriality, i induces a map Xpzq Ñ Xpwq, sending a to b, proving
that b P Xpwq. Since this holds for all w and b, we showed Impaq ⊆ X. Conversely,
assume the latter inclusion of sieves holds. In particular, the identity 1z is a z-rational
point whose image under apzq is just a, proving that a P Impaqpzq ⊆ Xpzq.

To see the equivalence with the last two conditions if X � Y �, we may work
locally and assume X � SpecA. Let I be the ideal defining Y , and let A Ñ R be
the homomorphism corresponding to a. Then a P Y pzq if and only if IR � 0 if and
only if A{I bA R � R, proving the desired equivalences. �

We may generalize the notion of an image sieve as follows. Given a sieve Y on
an V -scheme Y and a morphism ϕ : Y Ñ X of V -schemes, we define the push-
forward ϕ�Y as the sieve on X given at a fat point z as the image of Ypzq ⊆ Y pzq

under the map ϕpzq : Y pzq Ñ Xpzq. In particular, ϕ�Y � � Impϕq. Similarly, given
a sieve X onX , we define its pull-back ϕ�X as the sieve on Y given at a fat point z as
the pre-image of Xpzq under the map ϕpzq : Y pzq Ñ Xpzq. In other words, ϕ�Xpzq

consists of those rational points z Ñ Y such that the composition z Ñ Y Ñ X lies
in Xpzq. The pull-back of a closed subsieve is again a closed subsieve: if X̄ ⊆ X is
a closed immersion and ϕ : Y Ñ X a morphism, then ϕ�X̄� is the closed subsieve
given by ϕ�1pX̄q � Y �X X̄ . More generally, if X̄ Ñ X is an arbitrary morphism,
then the pull-back of the sub-schemic sieve ImpX̄ Ñ Xq is the sub-schemic sieve
ImpY �X X̄ Ñ Y q of the base change.

2.5. The lattice of sieves on a fixed scheme. Below we will consider the cat-
egory of all sieves. For now, we restrict to sieves on a fixed V -scheme X , with
morphisms given by inclusion. They form a lattice in the following sense: given
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sieves X and Y on X , we define their intersection X X Y and union X Y Y as
the sieves given respectively by point-wise intersection and union, that is to say,
pX X Yqpzq � Xpzq X Ypzq ⊆ Xpzq and pX Y Yqpzq � Xpzq Y Ypzq ⊆ Xpzq.
One easily checks that they are again sieves, that is to say, (contravariant) func-
tors. Clearly, the intersection of two closed subsieves is again a closed subsieve:
V �XW � � pV XW q�, for V,W ⊆ X closed subschemes, but this is no longer true
for their union.

By the Zariski closure of X in X , denoted X̄, we mean the intersection of all
closed subschemes Y ⊆ X such that X ⊆ Y �. By Noetherianity, X is a sieve on
its Zariski closure X̄, and the latter is the smallest closed subscheme on which X

is a sieve. We say that X is Zariski dense in X if X̄ � X . For instance, given a
morphism ϕ : Y Ñ X of V -schemes, the Zariski closure of Impϕq is the so-called
scheme-theoretic image of ϕ, that is to say, the closed subscheme of X given by the
kernel of the induced morphism OX Ñ ϕ�OY . Let us call ϕ strongly dominant if
Impϕq is Zariski dense.

2.6. Lemma. If w Ñ v is a strongly dominant morphism of fat points, then the
induced map Xpvq Ñ Xpwq is injective, for any sieve X.

Proof. This is a form of duality: strongly dominant morphisms are epimorphisms
and so under a contravariant functor they become monomorphisms. More explicitly,
since X ⊆ X�, for some V -scheme X , it suffices to show injectivity for the latter,
that is to say, we may assume X � X� is representable, and then since the problem
is local, we may assume X is affine with coordinate ring A. Let a, a1 P Xpvq have
the same image in Xpwq. If RÑ S is the homomorphism corresponding to ϕ, then
strong dominance means that this homomorphism is injective. Since, by assumption,
the two homomorphisms A Ñ R induced respectively by a and a1 give rise to the
same homomorphism A Ñ S when composed with the injection R ⊆ S, they must
already be equal, as we needed to show. �

2.7. Example. Suppose V is the spectrum of an algebraically closed field κ.
Zariski closure does not commute with taking κ-rational points, that is to say, the
κ-rational points of the Zariski closure of a sieve X in X may be bigger than the
Zariski closure of Xpκq (in the usual Zariski topology) in Xpκq. For instance, the
cone CLpOq (defined below after Lemma 2.12) of the origin O on the affine line
L :� A1

κ has Zariski closure equal to L, whereas its κ-rational points consist just of
the origin.

The category of sieves on a fixed ambient space is closed under direct limits: if
Xi for i P I is a direct system of sieves on a scheme X , then we define a sieve X at
each point z, by letting Xpzq be the direct limit (as sets) of the subsets Xipzq of Xpzq.
It is not hard to see that X is again a sieve on X and satisfies the universal property
of direct limits in the category of sieves on X .
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2.8. Lemma. A V -scheme X viewed as a (representable) sieve is the direct limit
of all its closed subsieves given by zero-dimensional closed subschemes.

Proof. The collection of all zero-dimensional closed subschemes Z ⊆ X forms
a direct system (with the ordering given by closed immersion). Indeed, since zero-
dimensional closed subschemes are affine, we may assume X � SpecA is affine,
and I, I 1 ⊆ A are ideals defining two zero-dimensional closed subschemes Z and Z 1

respectively. From the short exact sequence

0 Ñ A{pI X I 1q Ñ A{I `A{I 1 Ñ A{pI � I 1q Ñ 0

it is clear that IXI 1 defines again a zero-dimensional closed subscheme, admitting Z
andZ 1 as closed subschemes, whence showing that the system is directed. Therefore,
the corresponding collection of closed subsieves Z�, for Z running over all zero-
dimensional closed subschemes of X , is a direct system of sieves on X . Let Z be
its direct limit. Given a z-rational point a : z Ñ X for some fat point z, let x be its
scheme-theoretic image, so that a factors as z Ñ x ⊆ X , and hence belongs to xpzq.
As x� is a closed subsieve given by a zero-dimensional closed subscheme, a belongs
to Zpzq, proving that Zpzq � Xpzq. �

2.9. Remark. It is not true, as pointed out to me by Zhixian Zhu, that X is equal
to the direct limit limÝÑZ of the Z as schemes; we merely have a faithfully flat and
surjective morphism limÝÑZ Ñ X which is trivial on each fat point (in the affine case,
the coordinate ring of limÝÑZ is equal to the product

±
x
pOX,x, where the product runs

over all closed points x of X).
2.10. Germs of sieves. Strictly speaking, a sieve is a pair pX, Xq consisting of

a sub-pre-sieve X of an ambient space X , but we will often treat sieves as abstract
objects, that is to say, disregarding their ambient space. This allows us, for instance,
to view the same sieve as already defined on a smaller subscheme. To give a more
formal treatment, let us call a germ of a sieve any equivalence class of pairs pY, Y q,
where we call two such pairs pY, Y q and pY1, Y 1q equivalent if there exists a pair
pX, Xq and locally closed immersions ϕ : Y Ñ X and ϕ : Y 1 Ñ X 1 such that
ϕ�Y � X � ϕ1�Y1. In particular, Y is then also a sieve on the intersection Y X Y 1,
viewed as a locally closed subscheme of X . Therefore, we may always assume, if
necessary, that Y is Zariski dense in Y , and then it is also a Zariski dense sieve on
any open subsieve of Y containing it. Henceforth, we will often confuse a sieve
with the germ it determines. Note that the Zariski closure of a germ is therefore not
well-defined.

2.11. Complete sieves. The complement �X of a sieve X ⊆ X�, where we set
�Xpzq :� XpzqzXpzq for any fat point z, is in general not a sieve, as witnessed by any
closed subsieve. The following definition completely characterizes the phenomenon:
we call a sieve X on X complete if

Xpzq � Xpjq�1pXpz̃qq,
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for every morphism j : z̃ Ñ z of fat points, where Xpjq : Xpz̃q Ñ Xpzq is the map
induced functorially by j. More generally, if Y ⊆ X is an inclusion of sieves on X ,
then we say that Y is relatively complete in X, if

Ypzq � Xpjq�1pYpz̃qq X Xpzq,

for all morphisms j : z̃ Ñ z.
If V is the spectrum of an algebraically closed field κ, then Y is relatively com-

plete in X if and only if Ypzq � Xpzq X ρ�1
z pYpκqq, for every fat point z, where

ρz : Xpzq Ñ Xpκq is the residue map sending a rational point to its center (see (5)).
In fact, for V arbitrary, we have a similar criterion in that we only have to check
the condition for every morphisms of fat points j : z̃ Ñ z in which z̃ has length one
(necessarily therefore the spectrum of a field extension of the residue field of z).

As we shall see in Proposition 7.1 below, open subsieves over an algebraically
closed field are complete, and their complements are again sieves. The second prop-
erty in fact follows from the first, as one easily verifies:

2.12. Lemma. Given an inclusion of sieves Y ⊆ X, then Y is relatively complete
in X if and only if XzY is again a sieve. �

Assume the base scheme is an algebraically closed field κ. Given a κ-scheme X
and a subset F ⊆ Xpκq, we define the cone CXpF q over F on X to be the sieve
given by

CXpF qpzq :� ρ�1
z pF q

for every fat point z, where as before, ρz : Xpzq Ñ Xpκq is the map induced by
the residue map. In other words, a z-rational point belongs to CXpF qpzq if and only
if its center belongs to F . By our previous discussion on complete sieves over an
algebraically closed field, it follows that CXpF q is complete, and its complement is
the cone CXp�F q. We call a cone CXpF q constructible, if F ⊆ Xpκq is. More
generally, for any sieve X, the intersection X X CXpF q is relatively complete in X,
and its complement in X is equal to XX CXp�F q. We have the following converse:

2.13. Lemma. Over an algebraically closed field κ, a subsieve Y ⊆ X is rela-
tively complete if and only if it is the intersection of X and a cone.

Proof. Let Y be relatively complete in X, and let F :� Ypκq. Then Y �

CXpF q X X, since both have the same z-rational points, for any fat point z. �

Given a sieve X on an ambient spaceX , we define its completion inX as the conepXX :� CXpXpκqq. By functoriality, X is contained in pXX , and pXX is the smallest
complete sieve on X containing X.

2.14. The category of sieves. In the category of pre-sieves, morphisms are just
natural transformations between these functors. To obtain a geometrically more rel-
evant notion, we call a natural transformation s : Y Ñ X between two V -sieves
a morphism of sieves, if for each morphism of V -schemes ϕ : Z Ñ Y such that
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Impϕ�q ⊆ Y, there exists a morphism of V -schemes ψ : Z Ñ X such that ψ� is
equal to the composition

Z�

ϕ�

��

ψ�

''PPPPPPPPPPPPPP

Y
s // X

� � // X�

whereX is some ambient space of X. That this yields indeed a category, the category
SieveV of sieves over V , follows once we showed that the composition s � t of
two morphisms t : Z Ñ Y and s : Y Ñ X is again a morphism. To see this, let
ϕ : T Ñ Z be a morphism of V -schemes such that its image lies in Z. Hence there
exists a morphism of schemes ψ : T Ñ Y , for some ambient space Y of Y , such
that ψ� � t � ϕ�. In particular, Impψ�q ⊆ Y, and hence by definition, there exists
a morphism of schemes γ : T Ñ X , for some ambient space X of X, such that
γ� � s � ψ�. The claim now follows since γ� � s � t � ϕ�.

Note that this definition also yields the notion of a morphism between germs of
sieves, and we will not make a distinction between the two. In particular, if Y is
a subsieve on X, then the inclusion Y ⊆ X is a morphism of sieves. A natural
transformation with domain a representable sieve Y � is a morphism of sieves if and
only if it is induced by a genuine morphism of schemes with domain Y : indeed, just
take Z � Y and ϕ the identity morphism in the above definition.

2.15. Corollary. For any sieve X, we have an isomorphism of sieves

MorSieveV
pp�q�,Xq � Xp�q.

Proof. Let z be a fat point and s : z� Ñ X a morphism of sieves. By our previous
observation, this morphism is induced by a morphism a : z Ñ X of schemes, where
X is some ambient space of X. Since s � a�, we have an inclusion Impaq ⊆ X, and
hence a P Xpzq by Lemma 2.4. The converse follows along the same lines. �

2.16. Example. It is not hard to see that the above isomorphism is also continuous
in the sense defined below in §3.6, that is to say, a homeomorphism of sieves.

Not every natural transformation between representable sieves needs to be a mor-
phism of sieves. The following example was pointed out to me by Zhixian Zhu (it
uses some results proven below; see Example 7.10). We will show that the schemic
sieve L� given by the affine line L :� A1

κ over a field κ is the disjoint union of the
open subsieve L�

� given by the punctured line, that is to say, the basic open obtained
by removing the origin, and the formal motif pL� given by the formal completion
of the affine line at the origin, or, equivalently, the completion in L of the closed
subsieve given by the origin. We may choose now morphisms on each of these two
submotives and take their disjoint union, and this will in general no longer be a
morphism of sieves. More precisely, global sections will be defined in §3.1 below
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as morphisms from a sieve into L�, and for the sieves L�, L�
�, and pL� these are in

one-one correspondence with respectively the polynomials, the Laurent polynomi-
als, and the power series in one variable x (see (3)). So, taking on L�

� the morphism
induced by the open immersion L� ⊆ L, corresponding to x, but on pL� the mor-
phism pL� Ñ L� given by x2, we get a natural transformation (even continuous in
the sense given by Proposition 3.9), which cannot be a global section.

Neither is it the case that a bijective morphism of sieves is automatically an iso-
morphism of sieves. To give an example, we take a closer look at etale morphisms
(recall that ϕ : Y Ñ X is called etale if it is flat and unramified). We call a morphism
of sieves bijective (respectively, injective, surjective, or with finite fibers), if it is so
at each fat point.

2.17. Theorem. Over an algebraically closed field κ, a morphism ϕ : Y Ñ X

is etale at a closed point Q P Y if and only if it induces a bijective morphism
ϕ�Q : Y �

Q Ñ X�
ϕpQq of sieves. In particular, an etale covering ϕ : Y Ñ X induces a

surjective morphism ϕ� : Y � Ñ X� of sieves, with finite fibers.

Proof. Since etale maps are quasi-finite, all (closed) fibers are finite, and hence
the second assertion follows from the first. Note that by Zariski’s Main Theorem, a
surjective etale map is automatically finite. To prove the direct implication, assume
ϕQ : OX,P Ñ OY,Q is etale, with P � ϕpQq. Given a fat point with Artinian local
coordinate ring pR,mq, anR-rational point onX with centerP corresponds to a local
homomorphism a : OX,P Ñ R. Since κ is algebraically closed, κpQq � κ � R{m,
so that we have a natural homomorphism i : OY,Q Ñ R{m making

(7)

?

-

?
-

OY,QOX,P

R{mR

a i

commute. Since OX,P Ñ OY,Q is formally etale, i lifts to a unique OX,P -algebra
homomorphism b : OY,Q Ñ R (see [9, §28]). In other words, b is anR-rational point
lifting a, showing that ϕQpRq is surjective, and by uniqueness, it is also injective.

Conversely, assume Y �
Q Ñ X�

P is bijective. To show that OX,P Ñ OY,Q is etale,
it suffices to verify that it is formally etale in the adic topology. So assume we have
a commutative diagram
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(8)

?

-

?
-

OY,QOX,P

C{nC

a i

j

with n ⊆ C an ideal of square zero, containing mn
PC for some n. Hence the image

B̄ of OY,Q in C{n is an Artinian local ring, and its pre-image R :� j�1pB̄q in C
is then a fat point. The induced homomorphism OX,P Ñ R is an R-rational point,
which by assumption lifts to a unique R-rational point b : OY,Q Ñ R, proving the
desired unique factorization in the definition of being formally etale. �

2.18. Remark. The same argument shows that if ϕ is smooth, then ϕ� is sur-
jective. Note that the bijection between Y �

Q and X�
P induced by ϕ�Q is in fact an

isomorphism of sieves: by Corollary 7.3 below, these two sieves are equal to the
pro-representable sieves given by the formal completions pYQ and pXP respectively,
and for etale morphisms over an algebraically closed field, these formal schemes are
isomorphic via the completion of ϕQ.

However, we can construct an example of a bijective morphism of sieves which
is not an isomorphism from this as follows: let ϕ : Y Ñ X be an etale covering.
For each closed point P P X , choose a closed point Q on Y lying above P and let
Y be the union of all Y �

Q. It follows that the restriction of ϕ� induces a bijection
between Y and X�, but this cannot be an isomorphism, since Y is in general not
representable.

2.19. Definition. We call a natural transformation s : Y Ñ X rational, if there
exists a morphism of V -schemes ϕ : Y Ñ X such that X and Y are sieves on re-
spectively X and Y , and such that s is the restriction of ϕ� : Y � Ñ X�; we might
also express this by saying that s extends to a morphism of schemes.

It is easy to see that a rational natural transformation is in fact a morphism of
sieves. Moreover, since the definition allows the ambient spaces to be dependent
on s, we also defined what it means for a morphism between germs of sieves to be
rational. It follows that if Y is Zariski dense in Y and X is a sieve on X (without any
further restriction), then s extends to a morphism Ỹ Ñ X for some open Ỹ ⊆ Y on
which Y is also a sieve, that is to say, such that Y ⊆ Ỹ �. Any inclusion of subsieves
is rational, and so is any rational point by Lemma 2.4.

The composition of two rational morphisms is again rational. Indeed, let s : Z Ñ

Y and t : Y Ñ X be rational, extending respectively to morphisms ϕ : Z Ñ Y and
ψ : Y 1 Ñ X . Since Y and Y 1 are both ambient spaces for Y, so is their intersection
Y 2 :� Y X Y 1, which is therefore locally closed in either. Hence the restriction of
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ϕ to ϕ�1pY 2q (respectively, the restriction of ψ to Y 2) is a morphism extending s
(respectively t), and therefore, the composition ϕ�1pY 2q Ñ X extends t�s. We can
therefore define the explicit category of sieves, denoted SieveV , as the subcategory
of all sieves in which the morphisms are only the rational ones.

A note of caution: not every morphism of sieves is rational, and we will discuss
some examples later. Moreover, even if it is, one cannot always extend it to any
ambient space of the source sieve. An example is in order:

2.20. Example. Let Hyp ⊆ L2 be the hyperbola with equation xy � 1 over a
field κ, and let L� be the punctured line. Note that this is again an affine scheme, with
coordinate ring κrx, 1{xs. The projection L2 Ñ L onto the first coordinate induces
an isomorphism Hyp Ñ L�. Its inverse induces an isomorphism L�

� Ñ Hyp�,
which is trivially rational, as both sieves are representable. However, although L�

� is
an open subsieve on L, the above isomorphism does not extend (since 1{x is not a
polynomial).

We may generalize the definitions of pull-back and push-forward along a mor-
phism of sieves as follows. Let s : Y Ñ X be a morphism of sieves. Given a
subsieve Y1 ⊆ Y, we define its push-forward s�Y1 as the sieve defined at each fat
point z as the image of Y1pzq under spzq. Similarly, given a subsieve X1 ⊆ X, we
define its pull-back s�X1 as the sieve defined at each fat point z as the pre-image of
X1pzq under spzq.

3. The topos of sieves

Fix a Noetherian scheme V . Recall that AnV :� AnZ �V is the affine n-space over
V , and that we will denote it as LnV � Ln.

3.1. Section rings. Given a sieve X on a V -scheme X , we define its global sec-
tion ring as

H0pXq :� MorpX,Lq,

where by the latter, we actually mean the collection of morphisms of sieves X Ñ L�,
but for notational simplicity, we will identify a scheme with the functor it represents
if there is no danger for confusion. For each fat point z � SpecR, we have a
natural bijection Ψz : Lpzq � R defined as follows. Given a rational point a : z Ñ

L, it factors through an affine open of the form Lλ ⊆ LV , for some affine open
Specλ ⊆ V , and hence induces a homomorphism λrys Ñ R, which, again for
notational simplicity, we continue to denote by a. Now, set Ψzpaq :� apyq P R. This
identification endows L with a ring structure, and by transfer, then makesH0pXq into
a ring. Indeed, given morphisms s, t : X Ñ L, we define their sum s�t (respectively,
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their product st) as the morphism which at a fat point z maps a P Xpzq to

spzqpaq � tpzqpaq � Ψ�1
z

�
Ψzpspzqpaqq �Ψzptpzqpaqq

�

and a similar formula for spzqpaq � tpzqpaq. The functoriality of s� t and st is easy.
Moreover, if X � X� is representable, so that s and t correspond to elements in
ΓpOX , Xq, that is to say, are global sections on X (see the proof of Proposition 3.3
below), then s� t and st correspond exactly to their sum and product in ΓpOX , Xq.
Using this, it is now an easy exercise to show that the sum and product of arbitrary
global sections are again global sections.

As we shall see below, rational morphisms will play a key role, and so we define
the ring of rational sections H rat

0 pXq as the subset of H0pXq consisting of all rational
morphisms X Ñ L. To see that this is closed under sums and products, let s and s1

be two rational sections. By definition, there exist morphisms X Ñ L and X 1 Ñ

L inducing s and s1 respectively, where X and X 1 are ambient spaces for X. In
particular, the locally closed subscheme X2 :� X X X 1 is then also an ambient
space for X. Hence s� t and st extend to the sum and product of the restrictions to
X2 of X Ñ L and X 1 Ñ L, proving that they are also rational.

3.2. Lemma. Assigning to a sieve X its ring of global sections H0pXq yields a
contravariant functor from SieveV to the category of OV -algebras. Similarly, X ÞÑ

Hrat
0 pXq is a contravariant functor on the explicit category SieveV . In particular, if

two sieves are isomorphic, then they have the same global section ring, and if they
are rationally isomorphic, then they have the same rational section ring.

Proof. If s : X Ñ Y is a morphism of sieves, then pulling-back induces a OV -
algebra homomorphism H0pYq Ñ H0pXq given by t ÞÑ t � s, for t : Y Ñ L. One
easily verifies that this constitutes a contravariant functor. Since the pull-back of an
rational morphism under a rational morphism is easily seen to be rational again, we
get an induced homomorphism H rat

0 pYq Ñ H rat
0 pXq. �

3.3. Proposition. The global section ring of a representable functor X� is equal
to the ring of global sections H0pXq :� ΓpOX , Xq of the corresponding scheme,
and this is also its rational section ring.

Proof. A global section of X� is induced by a morphism of V -schemes X Ñ L,
and it is well-known that the collection of all these is precisely the ring of global
sections on X (see, for instance, [6, II. Exercise 2.4]). �

In particular, if X is affine, say, with ambient space SpecA, then H0pXq and
H rat

0 pXq are A-algebras.
3.4. Corollary. The rational section ring Hrat

0 pXq of a sieve X is the inverse limit
of all H0pXq, where X runs over all ambient spaces of X.

Proof. If s : X Ñ L is a rational section, then it extends to a morphism X Ñ L,
where X is some ambient space of X, and hence by the argument in the above proof,
it is the image of an element inH0pXq under the homomorphismH0pXq Ñ H rat

0 pXq
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induced by the inclusion X ⊆ X�. IfX 1 ⊆ X is a locally closed subscheme which is
also an ambient space for X, then s extends to a morphism with domain X 1, and this
is therefore necessarily the restriction of the global section in H0pXq determined by
s. This shows that the H0pXq form an inverse system as X varies over the germ of
X, with limit equal to H rat

0 pXq. �
3.5. Example. If X is Zariski dense in X , then the only ambient spaces of X

inside X are open, so that we may think of the ring of rational sections as a sort of
stalk:

H rat
0 pXq � limÐÝH

rat
0 pUq

where U runs over all open subschemes on which X is a sieve. In particular, if V is
the spectrum of an algebraically closed field κ and Xpκq � Xpκq, then there are no
proper opens in X on which X is a sieve, and hence H rat

0 pXq � H0pXq. This holds
automatically if X is for instance a fat point.

3.6. The topos of sieves. The Zariski topology on a V -schemeX induces a topos
on each of its sieves X. More precisely, the admissible opens on X are the sieves of
the form XXU�, where U ⊆ X runs over all opens of X; and the admissible cover-
ings are all collections of admissible opens Ui ⊆ X such that their union (as sieves)
is equal to X, that is to say, such that the corresponding opens Ui ⊆ X cover some
ambient space of X. For simplicity, we will simply write XXU for XXU�. In partic-
ular, since X is quasi-compact, any admissible covering contains a finite admissible
subcovering. The collection of admissible opens does not depend on the ambient
space X , for if X 1 ⊆ X is a locally closed subscheme on which X is also a sieve,
then since its topology is induced by that of X , it induces the same admissible opens
on X, and the same admissible coverings. Without going into details, we claim that
the collection of admissible opens and admissible coverings yields a Grothendieck
topology on X, turning SieveV into a Grothendieck site. Nonetheless, since for
each fat point z, this induces a topological space on Xpzq, we will just pretend that
we are working in a genuine topological space, and borrow the usual topological jar-
gon. For instance, we call a morphism s : Y Ñ X continuous if the pull-back of any
(admissible) open in X is an (admissible) open in Y.

3.7. Lemma. Suppose V is the spectrum of an algebraically closed field κ. Given
a sieve X on X and an open U ⊆ X with corresponding open sieve U :� XXU , we
have an equality Upzq � ρ�1

z pUpκqq.
Proof. Let a : z Ñ X be a z-rational point with center x � ρzpaq (see (5)). Since

the problem is local, we may assume X � SpecA is affine and U � SpecAf is a
basic open subset. Hence a corresponds to a κ-homomorphism a : A Ñ R, where
R is the coordinate ring of z. Using Lemma 2.4, we see that a P Upzq if and only
if a factors through Af . The latter is equivalent with apfq being a unit in R, that is
to say, with xpfq � 0 in κ, which in turn is equivalent with x belonging to Upκq
whence to Upκq. �
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3.8. Remark. Over an algebraically closed field κ, unless z is the geometric point
Specκ itself, the topological space Xpzq is not separated: by Lemma 3.7, two z-
rational points a, b P Xpzq are inseparable if and only if they have the same center,
that is to say, if and only if ρzpaq � ρzpbq.

3.9. Proposition. If s : Y Ñ X is a rational morphism of sieves, then it is contin-
uous.

Proof. By assumption, s extends to a morphism ϕ : Y Ñ X , where Y is a sieve
on Y and X on X . An open U ⊆ X is of the form XX U , for some open subscheme
U ⊆ X . Since ϕ�1pUq is open in Y and ϕ�U � XXϕ�1pUq, the claim follows. �

To make SieveV into a topos, we need to define structure sheafs for a given sieve
X. We define presheaves OX and Orat

X on X, by associating to an open U :� X X U

its OV -algebra of global sections

OXpUq :� H0pXX Uq and Orat
X pUq :� H rat

0 pXX Uq.

The main property is the following acyclicity result:
3.10. Theorem (Acyclicity). For each sieve X, the presheaves OX and Orat

X are
sheaves (in the topos sense).

Proof. Given a (finite) admissible covering of an admissible open U � U1Y� � �Y

Us of X, we have to show the exactness of

(9) 0 Ñ H0pUq Ñ
à
i

H0pUiq
pij

Ñ
pji

à
i j

H0pUi X Ujq

where pij : H0pUiq Ñ H0pUi X Ujq is the restriction homomorphism on the global
sections induced by the inclusion Ui X Uj ⊆ Ui; and a similar exact sequence for
rational sections

(10) 0 Ñ H rat
0 pUq Ñ

à
i

H rat
0 pUiq

pij

Ñ
pji

à
i j

H rat
0 pUi X Ujq.

By induction, one reduces to s � 2, in which case we have to show that

(11)

?

-

?
-

H0pU2qH0pUq

H0pU1 X U2qH0pU1q

i1 p2

p1

i2

is a Cartesian square. The construction of the commutative square (11) and the ver-
ification that it is commutative, follows easily from Lemma 3.2. Recall that (11), as
a commutative square in the category of OV -algebras, is called Cartesian or a pull-
back, if H0pUq is universal in this category for making the diagram commute, or,
equivalently, if it is the equalizer of the two compositions p1i1 and p2i2. To verify
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this property, let sj P H0pUjq, for j � 1, 2, be such that s1|U1XU2
� p1ps1q �

p2ps2q � s2|U1XU2
. We then define s P H0pUq as follows. Given a fat point z, let

spzq be the map sending a P Upzq to sjpzqpaq if a P Ujpzq. This is well-defined,
since s1pzq and s2pzq agree on U1pzq X U2pzq by assumption. One easily checks that
ijpsq � sj , and, moreover, if the sj are rational, then so is s. So, remains to verify
that this defines a morphism of sieves s : U Ñ L, that is to say, a global section of
U. Let X be an ambient space of X and let ϕ : Y Ñ X be a morphism such that
Impϕq ⊆ U. Let U � U1 Y U2 be the Zariski opens of X so that U � X X U and
Uj � X X Uj . In particular, ϕ�1pUq � Y . The image of the restriction of ϕ to
ϕ�1pUjq then lies in Uj , and hence, by definition of morphism, the composition of
this restriction with sj is induced by a morphism ψj : Y Ñ L. It is now easy to see
that the ψj coincide on their common domain ϕ�1pU1q X ϕ�1pU2q, and hence glue
together to a morphism ψ : Y Ñ L, inducing the composition s � ϕ�, as we needed
to prove. �

So we are justified in callingOX the structure sheaf of the sieve X on a V -scheme
X , and Orat

X its rational structure sheaf.
3.11. Stalks. Let X be a sieve with ambient space X . A closed point P P X is

called a point on X, if the closed immersion iP : P ⊆ X , viewed as a P -rational
point, belongs to XpP q, or equivalently, if P � ⊆ X. We define the stalk at a point
P P X as usual as the respective direct limits

OX,P :� limÝÑOXpUq and Orat
X,P :� limÝÑO

rat
X pUq

where U runs over all admissible opens of X such that P P U. Clearly, if X � X� is
representable, then OX�,P � Orat

X�,P is just the local ring OX,P at the closed point
P P X by Proposition 3.3. In fact, we have:

3.12. Proposition. If X is a sieve which is Zariski dense in X , and if P is a point
on X, then Orat

X,P � OX,P .
Proof. One inclusion is immediate, so let s P Orat

X,P . Hence there exists an open
U ⊆ X containing P such that s : XX U Ñ L is a rational section. Since XX U is
then Zariski dense in U , there exists an open ambient space Ũ ⊆ U of XX U and a
morphism Ũ Ñ L extending s. This morphism corresponds to a global section of Ũ
and hence is an element in OŨ,P � OX,P , since Ũ is open in X containing P . �

More generally, if X is a sieve on X and P a point on X, then Orat
X,P � OX̄,P ,

where X̄ is the Zariski closure (see §2.5) of X.
3.13. Lemma. A global section s : X Ñ L of a sieve X is a unit if and only if

the image of spP q does not contain zero, for any point P P X. If V is the spectrum
of an algebraically closed field κ, then this is equivalent with the image of spκq not
containing zero.

Proof. One direction is clear, so assume that the image of spP q does not contain
zero, for any closed point P . Let z be a fat point, and let P be its center. It follows
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from the commutative diagram

(12)

?

-

?
-

RXpzq

kpP qXpP q

π

spP q

spzq

where kpP q is the residue field of P , that the image of spzq has empty intersection
with the maximal ideal of the coordinate ring R of z, since π is just the residue map.
Hence, for each a P Xpzq, its image spzqpaq is a unit in R, and hence we can define
tpzqpaq to be its inverse. So remains to check that t is a morphism of sieves X Ñ L,
that is to say, a global section, and this is easy. �

3.14. Proposition. For each point P on a sieve X, the stalk OX,P is a local ring.

Proof. Let X be an ambient space of X. We have to show that given two non-
units s, t P OX,P , their sum is a non-unit as well. Shrinking X if necessary, we may
assume that s, t P H0pXq. I claim that spP qpiP q and tpP qpiP q are both equal to zero,
where iP : P ⊆ X is the closed immersion. Indeed, suppose not, say, spP qpiP q � 0,
so that there exists an open U ⊆ X containing P such that spQq does not vanish on
UpQq for any closed point Q P U . By Lemma 3.13, this implies that s is a unit in
H0pX X Uq whence in OX,P , contradiction. Hence spP q � tpP q also vanishes at
iP and hence cannot be a unit in OX,P . Note that we in fact proved that the unique
maximal ideal consists of all sections s P OX,P such that spP qpiP q � 0. �

3.15. Theorem. Any morphism s : X Ñ Z of sieves with X sub-schemic and Z

affine, is rational. In particular, H0pXq � Hrat
0 pXq.

Proof. Let us prove the second assertion first. Let ϕ : Y Ñ X be a morphism of
V -schemes, so that X � Impϕq. Replacing X by the Zariski closure of Impϕq, we
may assume that ϕ is strongly dominant. Our objective is to show that we have an
equality

(13) H rat
0 pImpϕqq � H0pImpϕqq.

Assume first that Y � y is a fat point, and hence, since ϕ is strongly dominant, so
is then X � x. Consider the induced homomorphism of Artinian local rings R ⊆ S,
which is injective precisely because ϕ is strongly dominant. Let s : Impϕq Ñ L
be a global section. By definition of morphism (see §2.14), we can find q P S

which, when viewed as a global section y Ñ L, extends the composition s � ϕ�.
Let g1 : S Ñ S bR S and g2 : S Ñ S bR S be given by respectively a ÞÑ a b 1
and a ÞÑ 1 b a. Since g1 and g2 agree on R, the two corresponding rational points
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y �x y Ñ y have the same image under spy �x yq and hence, g1pqq � g2pqq. It
follows then from Lemma 3.19 below that q P R.

By Corollary 3.4, this proves (13) whenever the domain of ϕ is a fat point.
If the domain is a zero-dimensional scheme Z, then it is a finite disjoint union
y1 \ � � � \ ys of fat points. By an induction argument, we may assume s � 2,
so that Impϕq � Impϕ|y1

q Y Impϕ|y2
q. In particular, H0pImpϕqq and H rat

0 pImpϕqq
satisfy each the same Cartesian square (11) by what we just proved for fat points (in-
stead of induction, we may alternatively use (9) and (10)). By uniqueness, they
must therefore be equal, showing that (13) holds whenever the domain is zero-
dimensional. For Y arbitrary, we may write the corresponding representable sieve
Y � as the direct limit of all its zero-dimensional closed subsieves by Lemma 2.8.
Let tZ :� Impϕ|Zqu be the collection of all sub-schemic motives, where Z ⊆ Y

varies over all zero-dimensional closed subschemes of Y . One easily checks, us-
ing the universal property of direct limits, that the Z form a direct system of sieves
with direct limit equal to Impϕq. Therefore, H0pImpϕqq is the inverse limit of all
H0pZq � H rat

0 pZq, by Lemma 3.18 below, and by the same argument, this inverse
limit is equal to H rat

0 pImpϕqq, proving (13).
To prove the first assertion, we may assume, without loss of generality, that Z �

Z� is representable by an affine scheme Z, and then, since the problem is local, that
X � SpecA is affine. Hence Z ⊆ Ln is a closed subscheme for some n and some
open Specλ ⊆ V . Let si be the composition of s with the morphism induced by
the projection Ln Ñ L onto the i-th coordinate. Hence si P H0pXq � H rat

0 pXq.
Replacing X by an open subscheme if necessary as per Corollary 3.4, we can find
qi P A such that, viewed as a global section X Ñ L, it extends si. Therefore, the
morphism X Ñ Ln given by pq1, . . . , qnq is an extension of s, as we wanted to
show. �

3.16. Remark. By the above proof, we actually showed that if the domain of ϕ is
zero-dimensional, then H0pImpϕqq is equal to the global section ring of the Zariski
closure of Impϕq. However, this is no longer true in the general case, as can be seen
from Corollary 3.4. If the target space is not affine, then we have:

3.17. Theorem. A morphism with source a sub-schemic motif is rational if and
only if it is continuous.

Proof. One direction is just Proposition 3.9, so assume s : Y Ñ X is continuous
and Y is sub-schemic. Let Y be the Zariski closure of Y and let X1, . . . , Xs be an
affine open covering of X . Hence, the Xi :� X X Xi form an open covering of X.
Since s is continuous, each pull-back Yi :� s�Xi is open in Y, so that we can find
opens Yi ⊆ Y such that Yi � Y X Yi. Let si : Yi Ñ Xi be the restriction of s
to Yi. By Theorem 3.15, each si is rational, so that, upon shrinking Y and the Yi
if necessary, there is a morphism of schemes ϕi : Yi Ñ Xi inducing si. Moreover,
from its proof it follows that each ϕi is given by a tuple of global sections of Yi, and
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hence, since si and sj agree on Yi X Yj , both tuples must agree on their common
domain of definition Yi X Yj . Hence the ϕi glue together to a morphism of schemes
Y Ñ X extending s, as we needed to show. �

We conclude with the proof of the two lemmas that were used in the proof of
Theorem 3.15.

3.18. Lemma. Let tXiu be a direct system of sieves on some scheme X and let X

be their direct limit. Then H0pXq is the inverse limit of all H0pXiq.
Proof. Contravariance turns a direct limit into an inverse limit, and the rest is now

an easy consequence of the universal property of inverse limits:

H0pXq � MorpX,Lq
� MorplimÝÑ

i

Xi,Lq

� limÐÝ
i

MorpXi,Lq � limÐÝ
i

H0pXiq.

�

3.19. Lemma. Let R ⊆ S be an injective homomorphism of rings. Then the
tensor square

(14)

?

-

?
-

SR

S bR SS

is Cartesian, that is to say, if q b 1 � 1 b q in S bR S for some q P S, then in fact
q P R.

Proof. Let for simplicity assume that R and S are algebras over some field κ
(since we only need the result forR and S Artinian, this already covers any equichar-
acteristic situation). Let T :� S bκ S be the tensor product over κ, and let n be the
ideal in T generated by all expressions of the form r b 1 � 1 b r for r P R. Hence
S bR S � T {n. If q P S satisfies q b 1 � 1 b q in S bR S, then viewed as an
element in T , the tensor q b 1� 1b q lies in n. The canonical surjection S Ñ S{R

induces a homomorphism of tensor products T Ñ pS{Rq bκ pS{Rq. Under this
homomorphism, n is sent to the zero ideal, whence so is in particular q b 1� 1b q.
If the image of q in S{R were non-zero, then we can find a basis of S{R containing
q. Hence q b 1 and 1 b q are two independent basis vectors of pS{Rq bκ pS{Rq,
contradicting that they are equal in the latter ring. Hence q P R, as we wanted to
show. �
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By Lemma 3.2 and properties of tensor products, we have for any two sieves X

and Y, a canonical homomorphism

(15) H0pXq bOV
H0pYq Ñ H0pX�Yq,

and a similar formula for rational sections. If X and Y are both representable, then
this is an isomorphism, but not so in general.

3.20. The etale site. We call a natural morphism of sieves s : Y Ñ X an et-
morphism, or a morphism in the etale site, if there exists a surjective, etale morphism
ϕ : Z Ñ Y , where Y is some ambient space of Y, such that the composition ϕ�Y Ñ

Y Ñ X is a morphism of sieves (where ϕ�Y is the pull-back and ϕ�Y Ñ Y

the morphism induced by ϕ). Clearly, any (usual) morphism is an et-morphism.
Likewise, we call s algebraic if the above composition is rational; so to paraphrase,
algebraic is rational in the etale sense. By Theorem 3.15 and the fact that a pull-back
of a sub-schemic is again sub-schemic, any continuous et-morphism with source a
sub-schemic motif is algebraic.

4. Motivic sites

As before, V is a fixed Noetherian scheme. A motivic site M over V is a subcate-
gory of SieveV which is closed under products, and such that for any V -scheme X ,
the restriction M|X (that is to say, the set of all M-sieves on X) forms a lattice. In
other words, if X,Y P M are both sieves on a common scheme X , then XXY and
X Y Y belong again to M (including the minimum given by the empty set and the
maximum given by X). Sieves in a motivic site M will often be called motives. This
nomenclature is to express the fact that a motif represents something geometrical
which is not a scheme but ought to be something like a scheme, thus ‘motivating’
our geometric treatment of it.

We call M an explicit motivic site, if all continuous morphisms are rational. If M
is an arbitrary motivic site, then we let M be the corresponding explicit motivic site,
obtained by only taking rational morphisms.

4.1. The Grothendieck ring of a motivic site. Let M be a motivic site. Given
two M-motives X and Y, we say that they are M-homeomorphic, if there exists a
continuous, bijective M-morphism X Ñ Y, whose inverse is again a continuous
M-morphism. We denote the isomorphism class of a motif X by xXy. As the sieves
in M form locally a lattice (on each V -scheme), we can now define its associated
Grothendieck ring GrpMq as the free Abelian group on isomorphism classes xXy,
where X runs over all M-motives, modulo the scissor relations

xXy � xYy � xXYYy � xXXYy
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for any twoM-motives X and Y on a common V -scheme. We denote the image of an
M-motif X in GrpMq by rXs. In particular, since each representable functor is in M,
we may associate to any V -scheme X its class rXs :� rX�s in GrpMq. We define
a multiplication on GrpMq by the fiber product (one easily checks that this is well-
defined): rXs � rYs :� rX�Ys. Since a motivic site has the same objects as its ex-
plicit counterpart, we get a canonical surjective homomorphism GrpMq Ñ GrpMq,
which, however, need not be injective, since there are more homeomorphism rela-
tions in the latter Grothendieck ring. Note that V pzq is a singleton, consisting of the
structure morphism z Ñ V , for every fat V -point z. So, we set

(16) 1 :� rV s,

as it is the unit for multiplication.
On occasion, we will encounter variants which are supported only on a subcate-

gory of the category of all V -schemes (that is to say, we only require the restriction
of the site to one of the schemes in the subcategory to be a lattice), and we can still
associate a Grothendieck ring to it. We will refer to this as a partial motivic site. If
instead we work on the etale site, the same definitions then yield an et-motivic site as
a subcategory of the category of sieves on the etale site. The only difference is that
morphisms are now et-morphisms. We will not study these in detail here.

Most motivic sites M will also have additional properties, like for instance being
stable under push-forwards along closed immersions, meaning that if i : Y ⊆ X is
a closed subscheme and Y a motif on Y in M, then i�Y too is a motif in M. If
this is the case, then M is also closed under disjoint unions: given motives X and
X1 on X and X 1 respectively, then their disjoint union X \ X1 is the union of the
push-forwards i�X and i1�X1, where i : X Ñ X \X 1 and i1 : X 1 Ñ X \X 1 are the
canonical closed immersions. Moreover, the general scissor relations then are easily
seen to be generated by just the disjointness relations

(17) xX\Yy � xXy � xYy

for any pair of disjoint motives X and Y on some common ambient space. Using
this, it is now easy to see that any element in GrpMq is a difference rXs � rYs, for
some motives X and Y.

4.2. Lemma. Given a motivic site M which is stable under push-forwards along
closed immersions, two motives X and Y have the same class in GrpMq if and only
if there exists a motif Z such that X\ Z and Y\ Z are M-isomorphic.

Proof. One direction is immediately, for if X\Z and Y\Z are isomorphic, then
rXs � rZs � rX\ Zs � rY\ Zs � rYs � rZs in GrpMq, from which it follows
rXs � rYs. Conversely, if rXs � rYs, then by (17), there exist mutually disjoint
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motives Ai,Bi,Ci,Di such that

xXy �
¸
i

xAiy � xBiy � xAi \Biy � xYy �
¸
i

xCiy � xDiy � xCi \Diy

in the free Abelian group on isomorphism classes. Bringing the terms with negative
signs to the other side, we get an expression in which each term on the left hand side
must also occur on the right hand side, that is to say, the collection of all isomorphism
classes txXy, xAiy, xBiy, xCi \Diyu is the same as the collection of all isomorphism
classes txYy, xCiy, xDiy, xAi \Biyu. By properties of disjoint union, we therefore
get xX\ Zy � xY\ Zy, where Z is the disjoint union of all motives Ai, Bi, Ci, and
Di. �

4.3. Definition (Lefschetz class). The class of the affine line L plays a pivotal
role in what follows; we call it the Lefschetz class and keep denoting it by L (as the
context will always make clear whether we mean the scheme, the associated motif,
or its class), or LV in case we want to make explicit the base scheme V . When
dealing with motivic rationality questions (see the forthcoming [11]), we will need
to invert this class, and therefore also consider localizations of the form GrpMqL.

5. The schemic Grothendieck ring

To connect the theory of motivic sites to the classical construction, we must de-
scribe motivic sites whose Grothendieck ring admits a natural homomorphism into
the classical Grothendieck ring GrpVarV q (obviously, this fails miserably for the
motivic site of all sieves). We will first introduce the various motives of interest in
the next few sections, before we settle this issue in Theorem 7.7 below. The smallest
motivic site on V is obtained by taking for sieves on a scheme X only the empty
sieve and the whole sieve X�. The resulting Grothendieck ring has no non-trivial
scissor relations and so we just get the free Abelian ring on isomorphism classes of
V -schemes.

To define larger sites, we want to include at least closed subsieves of a scheme
X . Any object in the lattice generated by the closed subsieves of X will be called a
schemic motif on X . Since closed subsieves are already closed under intersection, a
schemic motif on X is a sieve of the form

(18) X � X�
1 Y � � � YX�

s ,

where the Xi are closed subschemes of X . Let us call a V -scheme X schemically
irreducible if X� cannot be written as a finite union of proper closed subsieves.
In particular, by an easy Noetherian argument, any schemic motif is the union of
finitely many schemically irreducible closed subsieves. We call a representation (18)
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a schemic decomposition, if it is irredundant, meaning that there are no closed sub-
scheme relations among any twoXi, and theXi are schemically irreducible. Assume
(18) is a schemic decomposition, and let X � Y �

1 Y � � � Y Y �
t be a second schemic

decomposition. Hence, for a fixed i, we have

X�
i � X�

i X X � pXi X Y1q
� Y � � � Y pXi X Ytq

�.

Since Xi is schemically irreducible, there is some j such that Xi � Xi X Yj , that is
to say, Xi ⊆ Yj . Reversing the roles of the two representations, the same argument
yields some i1 such that Yj ⊆ Xi1 . Since Xi ⊆ Yj ⊆ Xi1 , irredundancy implies that
these are equalities. Hence, we proved:

5.1. Proposition. A schemic decomposition is, up to order, unique. �
We call the Xi in the (unique) schemic decomposition (18) the schemic irre-

ducible components of X. If X has dimension zero, then it is a finite disjoint sum of
fat points, its schemic irreducible components. More generally, any schemic motif
on X is a disjoint sum of closed subsieves given by fat points, and hence is itself a
closed subsieve.

To give a purely scheme-theoretic characterization of being schemically irre-
ducible, recall that a point x P X is called associated, if OX,x has depth zero,
that is to say, if every element in OX,x is either a unit or a zero-divisor. Any mini-
mal point is associated, and the remaining ones, which are also finite in number, are
called embedded. The closure of an associated point is called a primary component.
We say that X is strongly connected, if the intersection of all primary components
is non-empty, that is to say, if there exists a (closed) point generalizing to each asso-
ciated point (in the affine case X � SpecA, this means that the associated primes
generate a proper ideal). For instance, if X is the union of two parallel lines and one
intersecting line, then it is connected but not strongly. For an example of a scheme
with embedded points which is not strongly connected, take the affine line with two
(embedded) double points given by the ideal px2, xypy � 1qq; a (reduced) example
where any two primary, but not all three, components meet, is given by the ‘triangle’
xypx� y � 1q.

5.2. Proposition. A V -scheme X is schemically irreducible if and only if it is
strongly connected.

Proof. It is easier to work with the contrapositives of these statements, and we
will show that their negations are then also equivalent with the existence of finitely
many non-zero ideal sheafs I1, . . . , Is ⊆ OX with the property that for each closed
point x, there is some n such that InOX,x � 0. To prove the equivalence of this
with being schemically reducible, assume X� � X�

1 Y � � � Y X�
s for some proper

closed subschemes Xn � X . Let In be the ideal sheaf of Xn and let x be an
arbitrary closed point. For each m, the closed immersion Jmx X ⊆ X is a rational
point on X along the m-th co-jet, whence must belong to one of the XnpJ

m
x Xq,
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that is to say, Jmx X is a closed subscheme of Xn by Lemma 2.4. Since there are
only finitely many possibilities, there is a single n such that each Jmx X is a closed
subscheme ofXn. By Lemma 2.4, this means that InOX,x is contained in any power
of the maximal ideal mx, and hence by Krull’s intersection theorem must be zero.
Conversely, suppose there are non-zero ideal sheaves I1, . . . , Is ⊆ OX such that at
each closed point, at least one vanishes. Let Xn be the closed subscheme defined by
In, let z be a fat point, and let a : z Ñ X be a z-rational point. Let x be the center of
z, a closed point of X , and let ax : OX,x Ñ R be the induced local homomorphism
on the stalks, where R is the coordinate ring of z. By assumption, there is some n
such that InOX,x � 0, whence so is its image under ax. By Lemma 2.4, this implies
that a P Xnpzq. Since this holds for any rational point, X� is the union of all X�

n.
We can now prove the equivalence of the above condition with failing to be

strongly connected. By (global) primary decomposition (see for instance [5, IV
§3.2]), there exist (primary) closed subschemes Yn ⊆ X and an embedding OX ãÑ

OY1 `� � �`OYs
, such that the underlying sets of the Yn are the primary components

of X . Let Jn be the ideal sheaf of Yn, so that the above embeddability amounts to
J1 X � � � X Js � 0. If X is not strongly connected, then the intersection of all Yn is
empty, which means that

(19) J1 � � � � � Js � OX .

Let Ij be the intersection of all Jm with m � j, and let Xj be the closed sub-
scheme given by Ij . Let x be any closed point. By (19), we may assume af-
ter renumbering that the maximal ideal of x does not contain J1, that is to say,
J1OX,x � OX,x. Therefore, I1OX,x � pI1 X J1qOX,x, whence is zero, since
I1 X J1 � 0. Conversely, assume there are non-zero ideal sheafs I1, . . . , Is ⊆ OX
such that InOX,x � 0, for each closed point x and for some n depending on x. This
is equivalent with the sum of all AnnpInq being the unit ideal. Since any annihi-
lator ideal is contained in some associated prime, the sum of all associated primes
must also be the unit ideal, and hence the intersection of all primary components is
empty. �

From the proof we learn that SpecA is schemically reducible if and only if there
exist finitely many proper ideals whose sum is the unit ideal and whose intersection
is the zero ideal. We can even describe an algorithm which calculates its schemic
irreducible components. Let 0 � g1 X � � � X gn be a primary decomposition of the
zero ideal in A, and assume g1 � � � � � gs � 1, for some s ¤ n. Then the schemic
irreducible components of X are among the schemic irreducible components of the
closed subschemes Xi � Spec pA{Annpgiqq, for i � 1, . . . , s. That the Xi can
themselves be schemic reducible, whence require further decomposition, is illus-
trated by the ‘square’ with equation xpx�1qypy�1q � 0. A sufficient condition for
the Xi to be already schemically irreducible is that s � n and no fewer gi generate
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the unit ideal. By Noetherian induction, this has to happen eventually. In the same
vein, we have:

5.3. Proposition. Let X be a V -scheme, and let X1, . . . , Xs ⊆ X be closed sub-
schemes with respective ideals of definition I1, . . . , Is ⊆ OX . The Zariski closure
of the schemic motif X :� X�

1 Y � � � Y X�
s is the closed subscheme with ideal of

definition I1 X � � � X Is. In particular, X is equal to its own Zariski closure if and
only if I1 � � � � � Is � OX .

Proof. Let Y be the closed subscheme with ideal of definition I :� I1X� � �XIs.
Since each Xj ⊆ Y , the Zariski closure of X is contained in Y . To prove the
converse, suppose Z ⊆ X is a closed subscheme such that X ⊆ Z�. We have to
show that Y ⊆ Z, so suppose not. This mean that JOY � 0, where J is the
ideal of definition of Z. Choose a closed point x P Y , with maximal ideal mx,
such that JOY,x � 0. By Krull’s Intersection Theorem, there is some n such that
J pOY,x{mn

xq � 0. We may write mn
x � n1 X � � � X nt as a finite intersection of

irreducible ideal sheafs,3 and then for at least one, say for j � 1, we must have
J pOY,x{n1q � 0. Let z be the fat point with coordinate ring R :� OY,x{n1. By
Lemma 2.4, this means that the z-rational point a given by the inclusion z ⊆ Y does
not factor through Z. On the other hand, by the same lemma, we have IR � 0.
Since the zero ideal is irreducible, at least one of the IjR must vanish, showing that
a lies in Xpzq, whence by assumption in Zpzq, contradiction. The last assertion is
now immediate from the previous discussion. �

5.4. Corollary. The global section ring of a schemic motif is equal to that of its
Zariski closure.

Proof. By an induction argument, we may reduce to the case that X � Y � Y Z�

where Y, Z ⊆ X are closed subschemes (alternatively, use (9)). In view of the local
nature of the problem, we may furthermore reduce to the case that X � SpecA
is affine, so that Y and Z are defined by some ideals I, J ⊆ A. In particular, the
Cartesian square (11) becomes

(20)

?

-

?
-

A{IH0pXq

A{pI � Jq.A{J

However, it is easy to check that puttingA{pIXJq in the left top corner of this square
also yields a Cartesian square, and hence, by uniqueness, we must have H0pXq �

3An ideal is called irreducible if it cannot be written as a finite intersection of strictly larger ideals.
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A{pIXJq. By Proposition 5.3, the Zariski closure of X is SpecpA{pIXJqq, proving
the assertion. �

5.5. Definition. We define the schemic motivic site over V , denoted SchV , as
the full subcategory of SieveV consisting of all schemic motives. By our definition
of morphism of sieves, the category of V -schemes fully embeds in SchV , and the
image of this embedding is precisely the full subcategory of representable schemic
motives. In fact, by Theorem 3.17, all continuous morphisms in SchV are rational,
so that SchV is an explicit motivic site.

5.6. Lemma. Any element in GrpSchV q is of the form rXs � rY s, for some
V -schemes X and Y .

Proof. For any two V -schemes X and X 1, we have rXs � rX 1s � rX \X 1s,
where X \X 1 denotes their disjoint union. So remains to verify that any element in
GrpSchV q is a linear combination of classes of schemes. This reduces the problem
to the class of a single schemic motif X on a V -scheme X . Hence there exist closed
subschemes X1, . . . , Xn ⊆ X such that X � X�

1 Y � � � YX�
n. For each non-empty

I ⊆ t1, . . . , nu, let XI be the closed subscheme obtained by intersecting all Xi with
i P I , and let |I| denote the cardinality of I . A well-known argument deduces from
the scissor relations the equality

(21) rXs �
¸

H�I⊆t1,...,nu

p�1q|I|rXI s

in GrpSchV q, proving the claim. �
5.7. Theorem. The schemic Grothendieck ring GrpSchV q is freely generated,

as an additive group, by the classes of strongly connected V -schemes.
Proof. Let Γ be the free Abelian group generated by isomorphism classes xXy

of strongly connected V -schemes X , and let Γ1 be the free Abelian group generated
by homeomorphism classes xXy of schemic motives X. I claim that the composition
Γ ⊆ Γ1 � GrpSchV q admits an additive inverse δ : GrpSchV q Ñ Γ.

To construct δ, we will first define an additive morphism δ1 : Γ1 Ñ Γ which is
the identity on Γ, and then argue that it vanishes on each scissor relation, inducing
therefore a morphism δ : GrpSchV q Ñ Γ. It suffices, by linearity, to define δ1 on an
homeomorphism class of a schemic motif

(22) X � X�
1 Y � � � YX�

n,

given by a schemic decomposition with Xi ⊆ X strongly connected, closed sub-
schemes. By Noetherian induction, we may furthermore assume that δ1 has been
defined on the homeomorphism class of any schemic motif on a proper closed sub-
scheme of X . In particular, δ1xXIy has already been defined, where we borrow the
notation from (21). We therefore set

(23) δ1xXy :�
¸

H�I⊆t1,...,nu

p�1q|I|δ1xXIy
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By Proposition 5.1, the schemic decomposition is unique, and hence δ1 is well-
defined. Moreover, if n � 1, so that X � X�

1 is a schemically irreducible closed
subsieve, whence strongly connected by Proposition 5.2, then its image under δ1 is
just xX1y, showing that δ1 is the identity on Γ.

Next, let us show that even if (22) is not irredundant, (23) still holds in Γ. We can
go from such an arbitrary representation to the schemic decomposition in finitely
many steps, by adding or omitting at each step one strongly connected closed sub-
sieve contained in X. So assume (23) holds for a representation (22), and we now
have to show that it also holds for the representation adding a X�

0 ⊆ X, with X0

strongly connected. Since X0 is schemically irreducible by Proposition 5.2, it must
be a closed subscheme of one of the others, say, of X1. Let J range over all non-
empty subsets of t0, . . . , nu. To each subset J� containing 0 and 1, we associate the
subset J� :� J�zt1u. Since X0 ⊆ X1, we get XJ� � XJ� , and as J� has one
element less than J�, the two terms corresponding to J� and J� in the sum (23)
cancel each other out. So, in that sum, only subsets J not containing 0 contribute,
which is just the value for the representation without X�

0 . We also have to consider
the converse case, where instead we omit one, but the argument is the same.

We can now show that (23) is still valid even if the Xi in (22) are not strongly
connected. Again we may reduce the problem to adding or omitting a single closed
subsieveX�

0 . LetX�
0 � Y �

1 Y� � �YY
�
m be a schemic decomposition forX0. We have

to show that the value of the sum in (23) for the representation X � X�
0 Y � � � YX�

n

is the same as that for the representation

(24) X � X�
1 Y � � � YX�

n Y Y �
1 Y � � � Y Y �

m.

The first sum is given by

(25)
¸

H�I⊆t1,...,nu

p�1q|I|δ1xXIy �
¸

I⊆t1,...,nu

p�1q|I|�1δ1xX0 XXIy

By Noetherian induction and the fact that pX0 XXIq
� � pXI XY1q

�Y � � � Y pXI X

Ymq
�, we have an identity

δ1xX0 XXIy �
¸

H�J⊆t1,...,mu

p�1q|J|δ1xXI X YJy

for each subset I . Substituting this is in (25) yields the sum corresponding to rep-
resentation (24) (note that I \ J ranges over all non-empty subsets of t1, . . . , nu \
t1, . . . ,mu, as required).

To obtain the induced map δ, we must show next that δ1 vanishes on any scissor
relation. To this end, let Y � Y �

1 Y � � � YY
�
t be a second schemic motif on X , again

assumed to be given by its schemic decomposition. PutZij :� XiXYj , so that XYY

is the union of theX�
i and Y �

j , whereas XXY is the union of the closed subsievesZ�
ij .

By our previous argument, we may use these respective representations to calculate
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δ1 of the scissor relation xXYYy � xXXYy � xXy � xYy. Comparing the various
sums given by the respective right hand sides of (23), this reduces to the following
combinatorial assertion. Given finite subsets I, J , let us call a subset N ⊆ I � J

dominant, if its projections onto the first and second coordinates are both surjective;
then ¸

N dominant

p�1q|N | � 1.

We leave the details to the reader. In conclusion, we have constructed an (additive)
map δ : GrpSchV q Ñ Γ which is the identity on Γ. On the other hand, it follows
from (21) that rδrXss � rXs, showing that δ is in fact an isomorphism. �

Immediately from this we get:
5.8. Corollary. Given a strongly connected V -scheme X , then rXs � rY s in

GrpSchV q, for some V -scheme Y , if and only if X � Y . �

5.9. Remark. As in the classical case, the schemic Grothendieck ring is not a
domain. In fact, using some examples due to Danielewski, we can show that L
is even a zero-divisor. Indeed, let Yn ⊆ L3 be the smooth surface with equation
xny�z2 � 1. Then all Yn�L are mutually isomorphic, but no two Yn are isomorphic
(see, for instance, [4, 8]). So rYnsL � rYmsL, but rYns � rYms, for m � n.

6. The sub-schemic Grothendieck ring

To allow for additional relations, we want to include also open subsieves, or more
generally, locally closed subsieves (see (2.3.iii)). For applications, it is more appro-
priate to put this in a larger context. Our point of departure is:

6.1. Lemma. For any V -scheme, the set of its sub-schemic sieves forms a lattice.
Moreover, the product of two sub-schemic sieves is again sub-schemic.

Proof. Recall that a sub-schemic sieve is just an image sieve. If ϕ : Y Ñ X and
ψ : Z Ñ X are morphisms of V -schemes, then Impϕq X Impψq � Impϕ �X ψq,
where ϕ�X ψ : Y �X Z Ñ X is the total morphism in the commutative square

(26)

?

-

?
-

YY �X Z

XZ

ϕ

ψ

given by base change. Likewise Impϕq Y Impψq � Impϕ\ ψq, where ϕ\ ψ : Y \

Z Ñ X is the disjoint union of the two morphisms.
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As for products, if ϕ : Y Ñ X and ϕ1 : Y 1 Ñ X 1 are morphisms of V -schemes,
then the image of ϕ�V ϕ1 : Y �V Y Ñ X 1 �V X is equal to the product Impϕq �
Impϕ1q, showing that the latter is again sub-schemic. �

6.2. Definition. We define the sub-schemic motivic site subSchV as the full sub-
category of SieveV with objects the sub-schemic sieves. By Theorem 3.17, any con-
tinuous morphism in this category is rational, so that subSchV is again an explicit
motivic site.

Instead, we could have opted for a smaller site to take care of open coverings:
define the motivic constructible site ConV by taking on each scheme the lattice
generated by locally closed subsieves (note that this is again an explicit motivic
site). We have a natural homomorphism of Grothendieck rings GrpConV q Ñ

GrpsubSchV q, but I do not know whether it is injective and/or surjective.
6.3. Example. The constructible site itself though is strictly smaller than the sub-

schemic one, as illustrated by the following example: let ϕ : l4 Ñ l2 be the morphism
corresponding to the homomorphism R2 :� κrξs{pξ2q Ñ R4 :� κrξs{pξ4q given
by ξ ÞÑ ξ2. Given a fat point z � SpecR, the z-rational points of l2 are in one-one
correspondence with the elements in R whose square is zero, whereas Impϕqpzq is
the subset of all those that are themselves a square, in general a proper subset. As
l2 is a fat point, it has no non-trivial locally closed subsieves, showing that Impϕq is
sub-schemic but not constructible. Moreover, the Zariski closure of Impϕq is l2.

6.4. Lemma. If Y is an open in a V -scheme X , then Y � is a complete sieve on
X .

Proof. Let v Ñ w be a morphism of fat points. We have to show that any w-
rational point a : w Ñ X whose image under Xpwq Ñ Xpvq belongs to Y pvq,
itself already belongs to Y pwq. The condition that needs to be checked is that if the
composition v Ñ w

a
Ñ X factors through Y , then so does a. Let x P X be the

center of a. Since x is then also the center of the composition v Ñ X , it is a closed
point of Y . Therefore,OX,x � OY,x. Since a induces a homomorphismOX,x Ñ T ,
where T is the coordinate ring of w, whence a homomorphism OY,x Ñ T , we get
the desired factorization w Ñ Y . �

This will, among other things, allow us often to reduce the calculation of rational
points to the affine case. Let X � X1 Y � � � YXn be an open cover. By Lemma 6.4,
we get X� � X�

1 Y � � � YX�
n. An easy argument on scissor relations, with notation

as in (21), yields:4

6.5. Lemma. If X � X1 Y � � � YXn is an open covering of V -schemes, then

rXs �
¸

H�I⊆t1,...,nu

p�1q|I|rXI s

4By assumption, all V -schemes are separated, and hence the intersection of affines is again affine.
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in GrpsubSchV q. In particular, the class of a schemic motif lies in the subring
generated by classes of affine schemes. �

6.6. Example. As an example, let us calculate the class of the projective line P1
V .

It admits an open covering X1 Y X2 where X1 and X2 are obtained by removing
respectively the origin and the point at infinity. Since X1 � X2 � L, we have

rP1
V s � 2L� L�

where L� denotes the class of the punctured line X1 X X2, the affine line with the
origin removed. One would be tempted to think that L� is just L�1, but this is false,
as we shall see shortly. However,X1XX2 is an affine scheme, by Example 2.20, iso-
morphic to the hyperbola Hyp ⊆ L2 with equation xy� 1 � 0 under the projection
L2 Ñ L onto the first coordinate. In other words, we have

(27) rP1
V s � 2L� rHyps.

7. The formal Grothendieck ring

Let Y ⊆ X be a closed subscheme. Recall that the n-th co-jet of X along Y ,
denoted JnYX , is the closed subscheme with ideal sheaf InY , where IY ⊆ OX is
the ideal sheaf of Y . The formal completion pXY of X along Y is then the ringed
space whose underlying set is equal to the underlying set of Y and whose sheaf of
rings is the inverse limit of the sheaves OJn

Y X
. In particular, if X � SpecA is affine

and I the ideal of definition of Y , then the ring of global sections of pXY is equal
to the I-adic completion pA of A (see, for instance, [6, II.§9]). We define the formal
completion sieve along Y to be the sieve MorV p�, pXY q represented by the formal
completion pXY of X at Y , that is to say, for each fat point z, it gives the subset of
all z-rational points z Ñ X that factor through pXY . We will simply denote it by pX�

Y

and call any such sieve again pro-representable.5

7.1. Proposition. For a closed subscheme Y ⊆ X , the formal completion sievepX�
Y ofX along Y is equal to the infinite union of all closed subsieves pJnYXq

� ⊆ X�,
for n ¥ 1. Moreover, we have an identity of sieves

pX�
Y � X�zpXzY q�,

showing that pX�
Y is a complete sieve, equal to CXpY q.

Proof. The inclusion JnYX ⊆ pX�
Y , for any n, is clear since the co-jets of pXY

(with respect to its closed point) are the same as those of the germ pX,Y q. Let z be a
fat point of length l. If a : z Ñ pXY is a z-rational point, then this must already factor

5Note that pXY is no longer a scheme, but only a locally ringed space with values in the category of
OV -algebras, and so for a (formal) scheme Z, the set MorV pZ, pXY q is to be understood as the set of
morphisms Z Ñ pXY of locally ringed spaces with values in the category ofOV -algebras.
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through J lYX , as any l-th power of a non-invertible section on z is zero. Hence
pJ lYXq

� ⊆ pX�
Y have the same z-rational points, proving the first assertion. Since

J lYX has the same underlying variety as Y , it lies outside the open U :� XzY , and
hence a R Upzq. To prove the converse inclusion in the second assertion, suppose
now that a : z Ñ X does not lie in Upzq. In particular, the center of a lies in Y .
Let SpecA be an affine open of X containing the center of a, and let pR,mq be
the (Artinian local) coordinate of z. Hence a induces a OU -algebra homomorphism
A Ñ R. If I is the ideal locally defining Y in SpecA, then IR ⊆ m. In particular,
I lR ⊆ ml � 0, showing that a lies in pJ lYXqpzq whence in pXY pzq by our first
inclusion. The completeness of pX�

Y now follows from Lemma 2.12, and the last
assertion from Lemma 2.13 and the fact that pXY pκq � Y pκq. �

7.2. Remark. Since pXY � CXpY q, the set pXY pzq, for each fat point z, consists
exactly of those z-rational points of X whose center lies in Y . From this characteri-
zation, and (2.3.iv) in §2.3, we get:

7.3. Corollary. For each closed point P on X , we have an equality of sieves
X�
P � pX�

P . �

Recall that a morphism of formal completions pYȲ Ñ pXX̄ is by definition a
scheme-theoretic morphism Ȳ Ñ X̄ together with a compatible inverse system of
homomorphisms OX{InX̄ � OJn

X̄
X Ñ OY {InȲ � OJn

Ȳ
Y . The inverse limit of the

latter then yields a morphism of sheaves O
xXX̄

Ñ O
pYȲ

.

7.4. Proposition. A morphism of formal completions f : pYȲ Ñ pXX̄ , induces a
morphism of sieves f� : pY �

Ȳ
Ñ pX�

X̄
.

Proof. Without loss of generality, we may assume all spaces are affine, say, X �

SpecA and Y � SpecB, with respective ideals of definition I ⊆ A and J ⊆ B

of X̄ and Ȳ . Let pA and pB denote the respective completions. By assumption, we
have a homomorphism pAÑ pB (which might fail to be induced by a homomorphism
A Ñ B, so that f� will in general not be rational). To verify that we have a mor-
phism of sieves, assumeB Ñ C induces a morphism with image contained in pY �

Ȳ
. In

particular, SpecC Ñ Y must factor through the underlying variety Ȳ of pYȲ , show-
ing that JmC � 0, for some m. Hence, the natural transformation f� is induced by
SpecC Ñ X given by the composition AÑ pAÑ pB Ñ B{Jm Ñ C. �

The proof of the first assertion of Proposition 7.1 actually gives a stronger state-
ment, which we formalize as follows. A sieve X on X is called a formal motif
on X , if for each fat point z, there exists a sub-schemic motif Yz ⊆ X such that
Yzpzq � Xpzq (we call the Yz the sub-schemic approximations of X, in spite of the
fact that they are not unique). A sub-schemic motif is a trivial example of a formal
motif; the proof of Proposition 7.1 shows that formal completion sieves are formal
too, whose approximations are even schemic. In fact, if follows from the proof that
they are strongly formal in the following sense: a formal motif X on X is called
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strongly formal, if there exists for each l P N, a sub-schemic motif Yl ⊆ X, such
that Ylpzq � Xpzq, for all fat points z of length at most l.

7.5. Lemma. If a sieve X on a V -scheme X has formal approximations in the
sense that for each fat point z, there exists a formal subsieve Yz ⊆ X with the same
z-rational points, then X itself is formal.

Proof. By assumption, there exists, for each fat point z, a sub-schemic approxi-
mation Zz ⊆ Yz with the same z-rational points, and it is now easy to check that the
Zz form a sub-schemic approximation of X. �

7.6. Lemma. Over an algebraically closed field κ, if a formal motif X has no
z-rational points, for some fat point z, then X itself is empty.

Proof. Suppose first that X � Impϕq is sub-schemic, with ϕ : Y Ñ X some
morphism. In order for ϕpzq to be empty, Y pzq has to be empty, whence so must
Y pκq be, showing that Y has to be the empty scheme, whence Impϕq the empty
motif. Suppose now that X is merely formal, and let w be an arbitrary fat point.
Let Y ⊆ X be a sub-schemic approximation with the same w-rational points. Since
Ypzq ⊆ Xpzq � H, we get Y � H, by the sub-schemic case, showing that Xpwq �

Ypwq � H. Since this holds for all fat points w, the assertion follows. �
Using Lemma 6.1, one easily verifies that the (strongly) formal motives on X

form again a lattice, and the product of two (strongly) formal motives is again a
(strongly) formal motif, leading to the formal motivic site FormV , and its corre-
sponding Grothendieck ring GrpFormV q, and similarly, the strongly formal motivic
site Formstr

V , and its corresponding Grothendieck ring GrpFormstr
V q.

7.7. Theorem. Over an algebraically closed field κ, we have natural ring homo-
morphisms

GrpSchκq Ñ GrpConκq Ñ GrpsubSchκq Ñ

GrpFormstr
κ q Ñ GrpFormκq Ñ GrpVarκq.

Proof. Only the last of these homomorphisms requires an explanation. Given a
formal motif X, we associate to it the class of Xpκq in the classical Grothendieck
ring GrpVarκq. Note that by definition, Xpκq � Impϕqpκq, for some morphism
ϕ : Y Ñ X of κ-schemes. In particular, by Chevalley’s theorem, Xpκq is a con-
structible subset of Xpκq and hence its class in GrpVarκq is well-defined. Clearly,
this map is compatible with intersections, unions, and products, so that in order for
this map to factor through GrpFormκq, we only have to show that it respects home-
omorphisms. So assume s : X Ñ Y is an homeomorphism of formal motives. Let
Z ⊆ X be a sub-schemic approximation of X with the same κ-rational points. Its
push-forward s�Z is isomorphic with Z. By Theorem 3.17, the restriction s|Z ex-
tends to a morphism ϕ : X Ñ Y , where X and Y are some ambient spaces of Z

and Y respectively. Since ϕpκq : Xpκq Ñ Y pκq maps Zpκq bijectively onto s�Zpκq,
these two constructible subsets are isomorphic in the Zariski topology. However, by
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definition of push-forward, s�Zpκq is the image of Zpκq � Xpκq under spκq, that is
to say, is equal to Ypκq, as we needed to show. �

7.8. Theorem. Let s : Y Ñ X be a morphism of V -sieves. If Y and X are sub-
schemic (respectively, strongly formal, formal) motives, then so is the graph of s.
Moreover, the pull-back or the push-forward of a sub-schemic (respectively, strongly
formal, formal) submotif is again of that form.

Proof. Let X be an ambient spaces of X. Since the graph of the composition
Y Ñ X ⊆ X� is equal to the intersection of the graph Γpsq of s with Y�X, we may
assume from the start that X � X�. Assume first that Y is sub-schemic. By The-
orem 3.15, the morphism s extends to a morphism ϕ : Y Ñ X of V -schemes. Let
Z ⊆ Y �V X be the graph of this morphism, which therefore is a closed subscheme.
Since Γpsq is equal to the intersection Z� X pY�X�q, it is again sub-schemic.

Suppose next that Y is merely a formal motif, and, for each fat point z, let Zz ⊆ Y

be a sub-schemic approximation. Since Γpsq contains the graph of the restriction of s
to Zz, and since they have the same z-rational points, the assertion follows from what
we just proved for sub-schemic motives, and a similar argument proves the strongly
formal case.

Let Y1 ⊆ Y be a sub-schemic or (strongly) formal submotif. Since the push-
forward s�Y is the image of the restriction of s to Y1, we may reduce the problem to
showing that Impsq is respectively sub-schemic or (strongly) formal. The (strongly)
formal case follows easily, as in the previous argument, from the sub-schemic one.
So assume once more that Y is sub-schemic, say of the form, Impψqwith ψ : Z Ñ Y

a morphism of V -schemes. With ϕ as above, one easily verifies that Impsq � Impϕ�
ψq. To prove the same for the pull-back, simply observe that the pull-back s�X1 of
a submotif X1 ⊆ X is equal to the image of Γpsq X pY � X1q under the morphism
induced by the projection Y �X Ñ Y . The result then follows from our previous
observations. �

7.9. Corollary. For each closed germ pX,P q, we have isomorphisms of OV -
algebras

Hrat
0 pX�

P q � OX,P and H0pX
�
P q �

pOX,P .
Moreover, the ring of algebraic global sections of X�

P is equal to the Henselization
of OX,P .

Proof. Let X :� X�
P , the formal motif determined by the formal completion

along P by Corollary 7.3. It follows from Krull’s Intersection Theorem, that the
Zariski closure of X and X have the same stalk, and so we may assume that X is
Zariski dense. An open subscheme U ⊆ X is an ambient space of X if and only if
P P U by 2.3(2.3.iv). By Corollary 3.4, the ring of rational sectionsH rat

0 pXq is there-
fore the direct limit of all H0pUq, where U ⊆ X runs over all opens containing P ,
that is to say, toOX,P . On the other hand, since the co-jets JnPX are approximations
of X, the inverse limit of the H0pJ

n
PXq is equal to H0pXq by Lemma 3.18. Since
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H0pJ
n
PXq � OX,P {mn

P , this proves the second isomorphism. The last one follows
along the same lines, observing that an algebraic global section factors through a
morphism Y Ñ X which is etale at P , and the direct limit of all local etale exten-
sions of OX,P is precisely its Henselization. �

7.10. Example. Let pL be the class of the formal completion of the affine line
along the origin O (recall that this is also the class of the localization LO). It follows
from Proposition 7.1 that pL � L�L� (see Example 6.6). In particular, (27) becomes

rP1
V s � L� pL.

We will shortly generalize this in Proposition 7.11 below, but let us first construct
from this an example of a non-rational morphism. Let fpxq be a power series in a
single indeterminate which is not a polynomial. The homomorphism κrts Ñ κrrxss

given by t ÞÑ f induces a morphism of sieves sf : pL� Ñ L�. Since f is not a poly-
nomial, it cannot extend to a morphism of schemes, that is to say, it is not rational.
Its graph, in accordance with Theorem 7.8, is the formal motif with approximations
the graphs of the rational morphisms given by the various truncations of f .

We can also use this to give a counterexample to Proposition 3.9 for global sec-
tions. In general, given a global section s : X Ñ L of a formal motif X, define a
sieve Xs by letting Xspzq consist of all z-rational points a P Xpzq such that spzqpaq
is a unit, for each fat point z. Since Xs � s�L�

�, it is a strongly formal motif by
Theorem 7.8. Applied to the global section sf above, pL�

sf
is the intersection of the

open subsieves given by the truncations of f , whence not an admissible open in X for
the Zariski topos. In particular, sf is not continuous. Put differently, the submotives
of the form Xs form in general a basis for a Grothendieck topology which is stronger
than the Zariski one.

7.11. Proposition. For each n, the class of projective n-space is given by

rPnV s �
ņ

m�0

Lm � pLn�m

in GrpFormstr
V q.

Proof. Let px0 : � � � : xnq be the homogeneous coordinates of PnV , and let Xi

be the basic open given as the complement of the xi-hyperplane. Hence every Xi is
isomorphic with Ln and their union is equal to PnV . Therefore, by Lemma 6.5, we
have

(28) rPnV s �
¸

H�I⊆t0,...,nu

p�1q|I|rXI s

in GrpFormV q. So we need to calculate the class of each XI . One easily verifies
that, for m ¥ 0, any intersection of m different opens Xi is isomorphic to the open
Ln�m � pL�q

m, where L� is the affine line minus a point. Since L� � L � pL by
Proposition 7.1, the class of such an intersection is equal to the product Ln�mpL �
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pLqm. Since there are
�n� 1
m

�
terms with |I| � m in (28), the class of PnV is equal to

gpL, pLq, where

gpt, uq :�
ņ

m�0

p�1qm
�n� 1
m

�
tn�mpt� uqm.

By the binomial theorem, tn�1 � pt � uqgpt, uq � pt � pt � uqqn�1 � un�1, and
hence

gpt, uq �
tn�1 � un�1

t� u
�

ņ

m�0

tmun�m,

as we wanted to show. �

7.12. Example. To see that the homomorphisms in Theorem 7.7 are not injective,
we construct a non-zero element in the kernel of GrpSchκq Ñ GrpFormstr

κ q. Let
C ⊆ L2 be the nodal curve with equation y2 � x3 � x2. Since C is rational, as a
variety, CzO is isomorphic to L�, and hence rCs � L in GrpVarκq. This equality
no longer holds in the formal Grothendieck ring, but we have nonetheless a non-
trivial relation which collapses to this in the classical Grothendieck ring: letX ⊆ L2

be the variety given as the union of two distinct lines, that is to say, given by xy � 0.
Since pXO � pCO, they have the same class in GrpFormstr

κ q by Proposition 7.4. Let
U :� L2zO, given as the union of the two basic open sets Dx and Dy (obtained by
respectively inverting x and y). Since X X Dx X Dy � H, we have rX X U s �

rX XDxs � rX XDys, and the latter two are both equal to L�. On the other hand,
C XDx is the punctured parabola with equation py{xq2 � x� 1, and hence its class
is also equal to L� (via projection). Since X XU � XzO and C XDx � CzO, two
applications of Proposition 7.1 yield rXs � rX X U s�r pXOs and rCs � rC XDxs�

r pCOs. Putting everything together, we get

(29) rXs � rCs � L�

(note that the image of rXs � L� in GrpVarκq is indeed L). However, since X
is not isomorphic with C \ L�, this equality does not yet hold in GrpSchκq by
Theorem 5.7. I suspect that it even fails in GrpsubSchκq.

It is not yet clear to me, what the kernels of the homomorphisms in Theorem 7.7
are, not even into the classical Grothendieck ring. Clearly, the ideal I generated by
all differences rXs � rX reds, with X a κ-scheme, lies in the kernel of GrpSchκq Ñ
GrpVarκq, but I do not know whether it constitutes the whole kernel (this seems
quite unlikely for the schemic Grothendieck ring but it could hold for the formal
one). A possibly smaller ideal is the ideal I0 generated by the differences 1 � rzs,
with z a fat point.
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7.13. Restriction of scalars. Let f : W Ñ V be a morphism of schemes. We
want to compare the respective Grothendieck rings over these base schemes. In [11,
§3], we will study this problem in more detail through adjunction. Here we only
discuss a simpler solution, to wit, restriction of scalars, producing an additive map
f� : GrpSchW q Ñ GrpSchV q, which extends to the sub-schemic and the strongly
formal Grothendieck rings as well. Given a scheme Y over W , we may also view it
as a scheme over V via f , and to denote the latter, we will write f�Y . Now, given
a fat V -point z, any z-rational point a : z Ñ f�Y , induces a W -scheme structure on
z via the W -structure on Y , and we denote the corresponding fat W -point by z̃a.
Hence, a now becomes a morphism z̃a Ñ Y of W -schemes, and as such, will be
denoted ã. This allows us to define, for any sieve Y on Y , its restriction of scalars
f�Y as the sieve on f�Y containing, for every fat V -point z, exactly those z-rational
points a : z Ñ f�Y for which ã : z̃a Ñ Y belongs to Ypz̃aq. The reader easily
verifies that f�Y is indeed a contravariant functor, that is to say, a sieve on f�Y .
From this, it is already clear that f� preserves unions and intersections of sieves. By
definition, f�pY �q � pf�Y q

�, so it also preserves schemic motives. By functoriality,
one easily verifies that given a morphism ϕ : Y 1 Ñ Y of W -schemes, we have an
equality

(30) f�Impϕq � Impf�ϕq,

where f�ϕ : f�Y 1 Ñ f�Y is the corresponding morphism over V , showing that
f� preserves sub-schemic motives as well. So, remains to show that if Y is strongly
formal, then so is its restriction f�Y. Let Zl ⊆ Y be the sub-schemic approximations
of Y, with the same y-rational points for any fatW -point y of length at most l. Given
a fat V -point z of length l, consider the sub-schemic V -motif Xl :� f� pZlq. Clearly,
Xl ⊆ f�Y, and we will be done if we can show that they have the same z-rational
points. So, let a : z Ñ f�Y be a z-rational point in f�Y. By definition, ã : z̃a Ñ Y

is a z̃a-rational point in Ypz̃aq, whence in Zlpz̃aq, since z̃a has also length l. By
definition of f� once more, this means that a P Xlpzq, as we wanted to show. I do
not know whether the restriction of scalars of a formal motif is again formal. In any
case, we proved:

7.14. Theorem. A morphism f : W Ñ V of schemes induces additive maps
f� : GrpSchW q Ñ GrpSchV q, f� : GrpsubSchW q Ñ GrpsubSchV q, and
f� : GrpFormstr

W q Ñ GrpFormstr
V q by restriction of scalars. �

Note that f� does not preserve products, as f�pY1 �W Y2q is in general only a
closed subscheme of f�Y1 �V f�Y2. However, we have one important case of semi-
linearity (we leave the verification to the reader; see [11, Lemma 3.9] for a more
general form):

(31) f�pLnW � αq � LnV � f�α
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for every α P GrpFormstr
W q. In the notation of (16), we have f�1 � rW sp� 1q.

7.15. Lemma. Given a morphism of schemes f : W Ñ V , a strongly formal
V -motif X is in the image of f� : Formstr

W Ñ Form
str
V if and only if it admits an

ambient space of the form f�Y , for some W -scheme Y .

Proof. One direction is clear by definition, so assume X is a strongly formal motif
on f�Y , for Y some W -scheme. Define a sieve Y on Y as follows: given a fat
W -point w, let Ypwq consists of all w-rational points a : w Ñ Y such that their
restriction f�a : f�w Ñ f�Y lies in Xpf�wq. I claim that Y is strongly formal and
f�Y � X. To prove the latter, given a fat V -point z, a z-rational point a : z Ñ f�Y

belongs by definition to f�Y if and only if ã : z̃a Ñ Y belongs to Ypz̃aq if and only
if f�ã : f�z̃a Ñ f�Y belongs to Xpf�z̃aq. The assertion then follows since f�z̃a � z

and a � f�ã.
To prove that Y is strongly formal, by the usual approximation argument (on the

length of a fat point), we may reduce to the case that X � Impϕq for some morphism
ϕ : Z Ñ f�Y . Considering Z as a W -scheme Z̃ via the composition Z Ñ Y ÑW ,
the V -morphism ϕ induces a W -morphism ϕ̃ : Z̃ Ñ Y , and it remains to show that
Y � Impϕ̃q. However, this is immediate from the fact that f�ϕ̃ � ϕ and a similar
argument as the one proving (30). �

7.16. Corollary. A morphism f : W Ñ V is split if and only if the restriction of
scalars functor f� : Formstr

W Ñ Form
str
V is surjective.

Proof. Recall that f being split means that there exists a morphism s : V Ñ W ,
called a section, or also, a V -rational point, such that f � s is the identity morphism
on V . In particular, for any strongly formal V -motif X, we have X � f�ps�Xq,
showing that f� is surjective.

Conversely, if f� is surjective, then in particular, V � is obtained by restriction of
scalars, and hence hence admits an ambient space of the form f�Y for some W -
scheme Y , by Lemma 7.15. The induced morphism V Ñ Y composed with the
structure morphism Y ÑW is then the desired section. �

8. Complements

As noted in the introduction, a complement of a sieve is in general no longer a
sieve, as functoriality fails (this phenomenon is not present when formulating the
theory in the model-theoretic framework of [10]). By Lemma 2.12, only complete
sieves have a complement which is again a sieve. So we start with a characterization
of the complete sieves among the formal motives. Throughout this section, we work
over an algebraically closed field κ.
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8.1. Theorem. Over an algebraically closed field, a sieve is a complete formal
motif if and only if it is a constructible cone. Moreover, any such motif is then strongly
formal.

Proof. Recall that a cone is constructible, if it is of the form CXpF q with F ⊆
Xpκq constructible. Suppose X is complete and formal. By Lemma 2.13, it is a cone,
say, of the form CXpF q for F ⊆ Xpκq. In fact, F � Xpκq, and hence, by definition,
of the form Impϕqpκq for some morphism ϕ : Y Ñ X . By Chevalley’s theorem, F
is constructible. To prove the converse, since cones are easily seen to commute with
union and intersection, and since any constructible subset of Xpκq is an intersection
and union of closed and open subsets, it suffices to prove that CXpF q is formal,
whenever F is a closed or an open subset. The open case follows immediately from
Lemma 6.4, and in the closed case, we have CXpF q � pX�

F by Proposition 7.1 (note
that the completion of a scheme along a subscheme only depends on the underlying
variety of the subscheme, so that pXF is well-defined). This then also proves the last
assertion. �

8.2. Corollary. Over an algebraically closed field, a Boolean combination of
(strongly) formal motives on an ambient spaceX is a (strongly) formal motive if and
only if it is a sieve on X (that is to say, is functorial).

Proof. Before we start, observe that if a disjoint union X \ Y is a sieve on a
scheme X , then so must both X and Y be: indeed, given a morphism j : z̃ Ñ z of fat
points, it maps a z-rational point a of X to a z̃-rational point ã of X \ Y. However,
since a and ã have the same center, and since Xpκq and Ypκq are disjoint, we must
have ã P Xpz̃q.

Now, let Z be a sieve, equal to a Boolean combination of formal motives onX . We
can write it as a disjoint union with disjuncts of the form XzY (see the discussion in
the beginning of the proof of Proposition 8.6), and by our previous observation, each
of these disjuncts is again a sieve. Hence, by induction on the number of disjuncts,
we may assume Z � XzY with Y ⊆ X formal motives on X . By Lemmas 2.12 and
2.13 combined, Y � X X CXpF q, where F � Ypκq ⊆ Xpκq is constructible. It is
now easy to see that Z � XX CXpXpκqzF q and so we are done by Theorem 8.1 and
the fact that Xpκq is also constructible. �

In [11], we will introduce motivic integration, but even to integrate step functions,
one needs to be able to partition a motif (which inevitably requires complementa-
tion). The remainder of this section is to describe a more restricted motivic site
than Formκ which allows for complements but which still yields the same formal
Grothendieck ring.

8.3. Pure and split points. Let Fatpure
κ and Fatsplit

κ be the respective categories
of pure points and split points over κ, whose objects are fat points over κ and whose
morphisms are respectively pure and split epimorphisms. Recall that a morphism
ϕ : Y Ñ X is called pure if OX Ñ OY is injective, and remains so after tensoring
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with anyOX -module; and that it is called split, if there exists a morphism, also called
a section, σ : X Ñ Y such that ϕσ is the identity on X . Faithfully flat morphisms
are pure, and so are split morphisms, whence Fatsplit

κ is a subcategory of Fatpure
κ ,

and, of course, both are (non-full) subcategories of Fatκ. Each structure morphism
z Ñ Specκ is a split epimorphism, and by base change, so is each projection map
zw Ñ w.

We will call a contravariant functor X from Fat
pure
κ (respectively, from Fat

split
κ ) to

the category of sets, a pure (respectively, a split) pre-sieve. If, moreover, we have an
inclusion morphism X ⊆ X�, whereX� is the restriction of the representable functor
of a κ-scheme X , then we call X a pure (respectively, a split) sieve. In particular,
ordinary pre-sieves or sieves (that is to say, defined on Fatκ) when restricted to
Fat

split
κ are split—and to emphasize this, we may call them full sieves—, but as the

next result shows, in view of Theorem 8.1, not every split sieve is the restriction of a
full sieve:

8.4. Proposition. The complement of a schemic motif X ⊆ X� is a pure sieve.
The complement �X of a formal motif X ⊆ X� is a split sieve.

Proof. Any (full) schemic motif is the union of closed subsieves, and hence its
complement is the intersection of complements of closed subsieves. Since the in-
tersection of (pure or split) sieves is again a sieve, we only need to verify that the
complement of a single closed subsieve Y � ⊆ X� is a pure sieve. The only thing
to show is functoriality, so let w Ñ z be a pure morphism of fat points. We have
to show that under the induced map Xpzq Ñ Xpwq any z-rational point a not in
Y pzq is mapped to a point not in Y pwq. Since fat points are affine, we may replace
X by an affine open, and so assume from the start that it is affine with coordinate
ring A. Let I be the ideal defining Y , and let R and S be the coordinate rings of
z and w respectively. The z-rational point a corresponds to a morphism A Ñ R; it
does not belong to Y pzq if and only if the image IR of I under AÑ R is non-zero.
Suppose towards a contradiction that a P Y pwq, so that IS � 0. Since RÑ S is by
assumption pure, we must have IR � IS XR � 0, contradiction.

Assume next that X is a sub-schemic motif, that is to say, X � Impϕq for some
morphism ϕ : Y Ñ X . Let λ : w Ñ z be a split epimorphism of fat points and let
a : z Ñ X be a z-rational point outside Impϕqpzq. We have to show that the image
a � λ of a in Xpwq does not lie in the image of ϕpwq. Towards a contradiction,
assume the opposite, so that a � λ factors through Y , giving rise to a commutative
diagram
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(32)

?

-

?
-

Yw

X.z

λ ϕ

a

b

By assumption, there exists a section σ : z Ñ w so that λσ is the identity on z. Let b̃
be the image of b under Y pσq : Y pwq Ñ Y pzq, that is to say, b̃ � b � σ. The image
of b̃ under ϕpzq : Y pzq Ñ Xpzq is by (32) equal to

ϕpzqpb̃q � ϕ � b̃ � ϕ � b � σ � a � λ � σ � a

showing that a lies in the image of ϕpzq, contradiction.
Lastly, assume that X is formal, so that there exists for each fat point z a sub-

schemic motif Yz ⊆ X such that Yzpzq � Xpzq. Let λ : w Ñ z be a split epi-
morphism. Since Yw ⊆ X, we have �Xpzq ⊆ �Ywpzq. By what we just proved,
�Ywpzq, is sent under Xpλq : Xpzq Ñ Xpwq inside �Ywpwq, and by construction,
the latter is equal to �Xpwq. A fortiori, �Xpzq is then sent inside �Xpwq, proving
the assertion. �

8.5. Remark. It is important to note that we may not apply this argument to an
arbitrary split sieve, since a section of a split morphism is not split and hence does
not induce a morphism on the rational points of the split sieve. The point in the above
argument is that formal motives are pre-sieves on the full category of fat points, and
hence any section does induce a map between their rational points.

The argument of the proof shows that we could replace pure points by the slightly
larger category of cyclically pure points, since that is the only property needed: recall
that RÑ S is cyclically pure if I � IS XR for any ideal I ⊆ R.

We call any Boolean combination of closed subsieves a pure-schemic motif. By
what we just proved, any such motif is indeed a pure sieve. Our aim is to define mo-
tivic sites of schemic, sub-schemic and formal motives with respect to pure and/or
split points, but without changing the corresponding Grothendieck ring. To not ob-
tain too many morphisms, we only allow morphisms that extend to true motives.6

More precisely, we define the pure-schemic motivic site Schpure
κ , as the category with

objects all pure-schemic motives, and with morphisms all natural transformations
s : Y Ñ X of pure schemic motives which extend to a morphism of schemic motives
in the sense that there are schemic motives X1 � X and Y1 � Y and a morphism of
schemic motives s1 : Y1 Ñ X1 whose restriction to Y is s. To not introduce unwanted
isomorphisms, we moreover require that if s is injective and continuous, then so

6I do not know whether the analogous notion of morphism as for full sieves is sufficiently strong.
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must its extension s1 be. Likewise, we call any Boolean combination of sub-schemic
(respectively, strongly formal, formal) motives a split-sub-schemic (respectively, a
strongly split-formal, split-formal) motif, and we define the split-sub-schemic mo-
tivic site subSchsplit

κ (respectively, the strongly split-formal motivic site Formsspl
κ ,

the split-formal motivic site Formsplit
κ ), as the category with objects all split-sub-

schemic (respectively, strongly split-formal, split-formal) motives, and as morphisms
all natural transformations which extend to a morphism of sub-schemic (respectively,
strongly formal, formal) motives, with continuous, injective morphisms extending to
continuous, injective ones. By Corollary 8.2, a (strongly) split-formal motif is a full
(strongly) formal motif if and only if it is a (full) pre-sieve. All these sites satisfy the
same properties as ordinary motivic sites, apart from being defined only over a re-
stricted category, but have the additional property that their restriction to any scheme
is a Boolean lattice. At any rate, we can define their corresponding Grothendieck
rings.

8.6. Proposition. We have equalities of Grothendieck rings

GrpSchpure
κ q � GrpSchκq,

GrpsubSchsplit
κ q � GrpsubSchκq,

GrpFormsspl
κ q � GrpFormstr

κ q,

GrpFormsplit
κ q � GrpFormκq.

Proof. I will only give the argument for the case of most interest to us, the for-
mal motives, and leave the remaining cases, with analogous proof, to the reader.
Before we do this, let us first discuss briefly Boolean lattices. Let B be a Boolean
lattice. Given a finite collection of subsets X1, . . . , Xn P B, and an n-tuple ε �
pε1, . . . , εnq with entries �1, let Xε be the subset given by the intersection of all Xi

with εi � 1 and all �Xi with εi � �1. Then any element in the Boolean sublattice
BpX1, . . . , Xnq of B generated by X1, . . . , Xn is a disjoint union of the Xε. In par-
ticular, if all Xi belong to a sublattice L ⊆ B, then any element in BpX1, . . . , Xnq

is a disjoint union of sets of the form CzD with D ⊆ C in L.
We now define a map γ from the free Abelian group ZrFormsplit

κ s to GrpFormκq

as follows. By the above argument, a typical element in Formsplit
κ is a disjoint union

of split formal motives of the form XzY with Y ⊆ X (full) formal motives. We
define its γ-value to be the element rXs � rYs. This is well-defined, for if it is also
equal to a difference of motives X̃zỸ then one easily checks that X Y Ỹ � X̃ Y Y

and XX Ỹ � X̃XY, so that

rXs � rỸs � rX̃s � rYs.
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We extend this to disjoint sums by taking the sum of the disjoint components, and
then extend by linearity, to the entire free Abelian group. It is not hard to ver-
ify that γ preserves all scissor relations. So we next check that it preserves also
homeomorphism relations. We may again reduce to an homeomorphism of the form
s : XzY Ñ X̃zỸ with Y ⊆ X and Ỹ ⊆ X̃ formal motives. By assumption, s extends
to an injective morphism s1 : X1 Ñ X̃1 with X1 and X̃1 formal motives. Upon replac-
ing X and X1 with their common intersection, we may assume that they are equal.
Since s1 is injective, it induces an homeomorphism between X and its image, as well
between Y and its image. Hence XzY � s1pXqzs1pYq and, since s1 extends s, the
latter must be equal to X̃zỸ, yielding

γpXzYq � rXs � rYs � rs1pXqs � rs1pYqs � γpX̃zỸq

as we wanted to show. Hence, γ induces a map GrpFormsplit
κ q Ñ GrpFormκq.

By construction, it is surjective and the identity on GrpFormκq (when viewing a
full motif as a split motif), showing that it is a bijection. By construction it is also
additive, and the reader readily verifies that it preserves products, thus showing that
it is an isomorphism. �

8.7. Remark. Consider the pure-schemic motif l�3zl
�
2. It has no κ-rational points,

but is does have an l3-rational point, namely the identity morphism on l3. This ex-
ample shows that the analogue of Lemma 7.6 does not hold for split formal motives.
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