
J. ALGEBRAIC GEOMETRY
00 (XXXX) 000–000
S 1056-3911(XX)0000-0

SCHEMIC GROTHENDIECK RINGS II: JET SCHEMES
AND MOTIVIC INTEGRATION

HANS SCHOUTENS

Abstract

We generalize the notion of a jet scheme (truncated arc space) to arbitrary fat points
via adjunction, and show that this yields for each fat point, an endomorphism on
each schemic Grothendieck ring as defined in [17]. We prove that some of the ana-
logues for linear jets still hold true, like locally trivial fibration over the smooth lo-
cus. In this formalism, we can define several generating zeta series, motivic series,
the rationality of which can now be investigated. We use the theory of jet schemes
to define a local motivic integration with values in the formal Grothendieck ring.

1. Introduction

Modeled on p-adic integration, Kontsevich [9] formulated a general integration
technique for smooth varieties over an algebraically closed field κ, called motivic
integration. This was extended by Denef and Loeser [1, 2, 3] to arbitrary varieties
to achieve motivic rationality, by which they mean the fact that the rationality of a
certain generating series from geometry or number-theory, like the Igusa-zeta series,
is “motivated” by the rationality of its motivic counterpart. Here, the motivic coun-
terpart is supposed to specialize to the given classical series via some multiplicative
function, like a counting function or Euler characteristic. The two main ingredients
of this construction are the Grothendieck ring of varieties over κ, in which the inte-
gration takes its values, and the truncated arc space LpXq of a variety X , that is to
say, the reduced Hilbert scheme classifying all jets Specκrrξss Ñ X .

In [17], we generalized the concept of a Grothendieck ring to include also schemes
with nilpotent structure. The idea is to view a scheme as a contravariant functor, not
on all κ-algebras, but only on Artinian local κ-algebras, the so-called fat points. We
defined a formal motif as a certain subfunctor of a representable functor which can be
approximated by images of scheme-theoretic maps (more details are given in §2), and
build from these the formal Grothendieck ring GrpFormκq. In the present paper,
we turn to the second ingredient and define jet schemes via adjunction given by base
change over a fat point z. The resulting jet motif ∇zX is again formal and classifies
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all maps from z to X. Applied to a scheme X , with z equal to the n-th co-jet ln :�
Specpκrts{tnκrtsq, we recover the classical truncated arc/jet scheme. The major
advantage over the classical construction is that each jet map ∇z now operates on
the formal Grothendieck ring GrpFormκq. Jets behave well over smooth varieties,
as in the classical case (Theorem 4.14): the canonical morphism ∇zX Ñ X is a
locally trivial fibration over the non-singular locus of X , with general fiber some
affine space. Hence, in the smooth case, r∇zXs � rXsLlpd�1q, where d and l are
respectively the dimension of X and the length of (the coordinate ring of) z, and
where L :� rA1

κs is the Lefschetz class.
Using the formalism of adjunction, we discuss some variants of jets: deformed

jets in §6, and extendable jets in §8. For the definition of the latter, we discuss in §7
a compactification of the category of fat points, the category of limit points, given as
direct limits of fat points (e.g., the formal completion pYP ). Although we can extend
the notion of jets to any limit point, the corresponding scheme is no longer of finite
type, and will be called an arc scheme.

In §9, we discuss some of the motivic series that can now be defined using this
formalism. Since they or their classical variants specialize to generating series that
are known to be rational, we ask whether they are already rational over the formal
Grothendieck ring, or rather, over its localization GrpFormκqL; this is what is meant
by motivic rationality.

The final section, §10 is devoted to motivic integration. We only develop the fini-
tistic theory, that is to say, over a fixed fat point, leaving the case of a limit point to a
future paper. One of the great disadvantages of the categorical approach is that fibers
are in general not functorial (after all, a fiber is the complement of the remaining
fibers). We can overcome this, without changing the resulting Grothendieck ring, by
restricting to the category of split fat points, as discussed in [17, §9]. Our motivic
integration will take values in the localization GrpFormκqL. A functor s, viewed
on the category of split fat points, from a formal motif X on X to the constant sheaf
with values in this localization GrpFormκqL is called a formal invariant if all its
fibers are formal motives, with only finitely many non-empty. We then define»

s dzX :� L�dl
¸

gPGrpFormκqL

g � r∇zps
�1pgqqs,

where d is the dimension of X and l the length of z. This motivic integral can be
calculated locally (Theorem 10.4).

Notation and terminology. Varieties are assumed to be reduced, but not neces-
sarily irreducible. Given a scheme X , we let X red denote its underlying variety or
reduction. We often denote a morphism of affine schemes SpecB Ñ SpecA by
the same letter as the corresponding ring homomorphism A Ñ B, whenever this
causes no confusion. By a germ pX,Y q we mean a scheme X together with a closed
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subscheme Y ⊆ X . Most of the time Y is an irreducible subvariety, that is to say,
the closure of a point y P X , and we simply write pX, yq for this germ. If Y is a
closed point, we call the germ closed. The n-th co-jet JnYX of a germ pX,Y q is
the closed subscheme defined by InY , where IY is the ideal of definition of Y .1 The
formal completion pXY of the germ pX,Y q is the locally ringed space obtained as the
direct limit of the JnYX (see [7, II.§9]). For instance, if Y � P is a closed point with
maximal ideal mP , then the ring of global sections of pXP is the mP -adic completionpOX,P of OX,P .

We denote the affine line A1
V :� A1

Z � V over a base scheme V by L, or LV
if we want to emphasize the base scheme, and also use this notation for its class in
a Grothendieck ring. The formal completion of the germ pL, Oq, where O is the
origin, is denoted pL, and the punctured line LzO, that is to say, the open subscheme
obtained by removing the origin, is denoted L�. Recall the formula L � L� � pL in
GrpFormκq from [17, Proposition 7.1]. The n-th co-jet of pL, Oq will be denoted
ln � SpecRn, where Rn :� pκrxs{pxnqq.

2. The formal Grothendieck ring

In this section, I give a brief overview of the results, as we need them, from [17].
Fix a Noetherian, separated, Jacobson scheme V as a base scheme, which often is
just the spectrum of an algebraically closed field κ. By a scheme X , we mean a
separated scheme of finite type over V , and we let SchV denote the category of
schemes over V . Viewing a scheme X as a contravariant functor on the subcategory
FatV ⊆ SchV of all fat points, we denote it for emphasis by X�. Recall that a fat
(V -)point z is a scheme of the form SpecR with R a finite, local V -algebra (that
is to say, a one-point scheme). More precisely, we let Xpzq denote the collection
of all z-rational points, by which we mean V -morphisms z Ñ X . In other words,
X� � MorV p�, Xq. By a sieve on X , we mean a subfunctor X of X�, and we
denote the category of sieves over V by SieveV . Morphisms are a bit more tricky,
as we cannot allow just any natural transformation (see [17, Example 2.16]). One
first makes the category of sieves into a topos via the Zariski topology of the ambient
space ([17, §3]), and requires that all morphisms be continuous, although this is still
not sufficient. Without going into details, the most important class of morphisms are
the rational ones, where a morphism s : Y Ñ X is called rational, if it is induced
by a scheme-theoretic morphism ϕ : Y Ñ X of some ambient spaces, meaning that
s � Y|ϕ� (see [17, §2.14]). In particular, we have

(1) MorSieveV pz
�,Xq � Xpzq.

1Note that many authors take instead the n� 1-th power.
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for every fat point z.
By applying set-theoretic constructions (such as inclusion, intersection, comple-

ment,. . . ) point-wise, that is to say, on each set Xpzq, we can extend them to any
sieve. Now, the key notion is that of a motivic site M, which is a category of sieves
closed under Cartesian products, restricting on each scheme X to a lattice (with re-
spect to intersection and union); an M-sieve on X is called an M-motif with ambient
space X . To a motivic site M, we associate its Grothendieck ring GrpMq as the free
Abelian group on M-homeomorphism classes xXy of motives X modulo the scissor
relations

xXy � xYy � xXYYy � xXXYy

for any two motives X and Y with common ambient space (so that XYY and XXY

are again motives in M). In [17], we give three motivic sites, each extending the
previous one, with the property that each of their Grothendieck rings admits a ho-
momorphism into the classical Grothendieck ring GrpVarV q of varieties. Namely,
given an arbitrary scheme X , we call a sieve X

(2.i) a schemic motif when it is a finite union of (functors represented by)
closed subschemes, yielding the Grothendieck ring GrpSchV q;

(2.ii) to close the latter site under homorphic images, we call X sub-schemic if
its equals the sieve given by the image of some (scheme-theoretic) mor-
phism Y Ñ X (that is to say, on each fat point z, it consists of the
z-rational points on X that factor through Y ), yielding the sub-schemic
Grothendieck ring GrpsubSchV q;

(2.iii) to include certain complements of sub-schemic motives, we say X is for-
mal, if it can be approximated by sub-schemic motives, yielding the for-
mal Grothendieck ring GrpFormV q.

For our purposes, we will mainly work with the latter class, and so let me give a
more detailed definition: X is a formal motif on X , if there exists, for each fat point
z, a morphism ϕz : Yz Ñ X whose image lies inside X (meaning that ϕzpxq

�
Ypxq

�
⊆

Xpxq for all fat points x) and is equal to it at the fat point x � z itself. If, moreover,
we can choose the morphism ϕz only depending on the length of z, then we call
X strongly formal, and we denote the collection of all strongly formal motives by
Form

str
V . Any morphism with sub-schemic source is rational ([17, Theorem 3.17]),

and hence any morphism with formal source can be approximated by rational ones.
The most important example of a sub-schemic motif on a scheme X is the functor
U� represented by a Zariski open U ⊆ X , and that of strongly formal motif, is its
complement X�zU�, which is represented by the formal completion pX of X along
the complement XzU . We proved in [17, Theorem 7.6], that if V is the spectrum
of an algebraically closed field κ, then there exists a canonical homomorphism from
GrpFormκq to the classical Grothendieck ring GrpVarκq, sending the class of a
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motif X to the class of its κ-rational points Xpκq. For the purposes in this paper, we
mainly need strongly formal motives. As we also need to invert the Lefschetz class
L, we therefore work, especially in the latter part of this paper, mostly in GV :�
GrpFormstr

V qL. Moreover, the base field is more often than not just an algebraically
closed field κ, and so we write G for Gκ.

3. Adjunction

Let V and W be two Noetherian schemes. By a schemic adjunction over pV,W q,
we mean a pair of functors η : FatW Ñ FatV and ∇: SchV Ñ SchW , called
respectively the left and right adjoint, such that, for each fat W -point z and each
V -scheme X , we have an adjunction isomorphism

(2) Θz,X : Xpηpzqq � MorV pηpzq, Xq � MorW pz,∇Xq � ∇Xpzq,

which is functorial in both arguments. Whenever z and X are clear from the context,
we may just denote this isomorphism by Θ, or even omit it altogether, thus identi-
fying Xpηpzqq with ∇Xpzq. More generally, by an (arbitrary) adjunction we mean
the same as above, except that the right adjoint now only takes values in the cate-
gory of sieves, that is to say, is a functor ∇: SchV Ñ SieveW , where we identify
the category of V -schemes with its image as the full subcategory of representable
sieves. Of course, the morphisms on the right hand side of (2) are now to be taken
in SieveW , where the last equality is then given by (1) (note that all morphisms are
in fact rational). If each ∇X is sub-schemic or formal, then we call the adjunction
respectively sub-schemic or formal.

We can formulate the adjunction property as a representability question: given
a functor η : FatW Ñ FatV and a V -scheme X , let ∇ηX be the functor over W
associating to a fatW -point z, the set of rational pointsXpηpzqq. We have adjunction
when each functor∇ηX is a sieve as X varies over all V -schemes; the adjunction is
then (sub-)schemic or formal, if each∇ηX is respectively a (sub-)schemic or formal
motif. From this perspective, ∇η is the right adjoint of η, and we simply call ∇η the
adjunction. To extend this to a functor∇η : SieveV Ñ SieveW , let X be a sieve on
a V -scheme X , and define its adjoint ∇ηX as the functor over W given by

∇ηXpzq :� Θz,X

�
Xpηpzqq

�
for any W -point z. It follows immediately from (2) that ∇ηX � ∇X , and hence
∇ηX is a subsieve of∇X . The adjunction isomorphism (2) then becomes

(3) MorSieveV pηpzq,Xq � MorSieveW pz,∇ηXq.
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3.1. Lemma. If ϕ : Y Ñ X is a morphism of V -schemes, then, with∇ϕ : ∇Y Ñ

∇X the induced morphism of W -sieves, we have an equality of sieves

(4) ∇ηImpϕq � Imp∇ϕq.

In particular, sub-schemic adjunctions preserve sub-schemic as well as formal mo-
tives, whereas formal adjunctions preserve formal motives.

Proof. We verify (4) on a fat W -point z. Functoriality of adjunction implies that
we have a one-one correspondence of diagrams

(5) Y

ϕ

��

∇Y

∇ϕ
��

ηpzq

b 77nnnnnn

a ''PPPPPP

Θ
**e _ Y
z

Θ�1

jj e_Y

b̃ 77oooooo

ã
''OOOOOO

X ∇X

where the right triangle is in SieveW . So, if ã P Imp∇ϕqpzq, then by (1), we can
find b̃ making the right triangle in (5) commute. Taking the image under Θ�1

z,X yields
the commutative triangle on the left, showing that Θ�1pãq P Impϕqpηpzqq, and hence
that ã P p∇ηImpϕqqpzq. The converse holds for the same reason, by going this time
from left to right.

It then follows from [17, Theorem 7.8] that the adjoint of a sub-schemic motif is
again sub-schemic, in case η is sub-schemic itself. Suppose next that X is formal,
and, for each fat V -point w, let Yw ⊆ X be a sub-schemic approximation with the
same w-rational points. For each fat W -point z, let Ỹz be defined as ∇ηpYηpzqq. By
what we just proved, Ỹz ⊆ ∇ηX is a sub-schemic submotif, and one easily verifies
that both sieves have the same z-rational points, proving the last assertion for sub-
schemic adjunctions. The case of a formal adjunction then follows from previously
cited theorem and [17, Lemma 7.5]. �

3.2. Remark. The proof as it stands, does not work for strongly formal motives.
However, with an additional assumption, met in every single application, we can also
deal with this case. Namely, let us call η : FatW Ñ FatV bounded, if `pηpzqq ¤
`pzq for all fat W -points z (in fact, all we need is that the length of ηpzq is bounded
by a function only depending on `pzq). With this additional assumption, modify the
above proof by letting Ỹl be ∇ηpYlq, where Yl ⊆ X is now a strong approximation
of X by sub-schemic motives.

3.3. Proposition. A formal adjunction ∇η induces a homomorphism of Grothen-
dieck rings ∇η : GrpFormV q Ñ GrpFormW q. If ∇η is strongly formal and η is
bounded, we get a homomorphism ∇η : GrpFormstr

V q Ñ GrpFormstr
W q. If ∇η is

(sub-)schemic, we get a homomorphism of the corresponding (sub-)schemic Gro-
thendieck rings.

Proof. By Lemma 3.1 and Remark 3.2, adjunction preserves motivic sites of the
same respective type, (sub-)schemic or formal. As it is compatible with unions and
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intersections, it preserves scissor relations, and as it is functorial, it preserves iso-
morphisms as well as products. �

Before we describe some important instances in which we have adjunction, with
applications discussed in §§4 and 6, we give an example of a formal adjunction.

3.4. Example. Given a fat point z over an algebraically closed field κ, and r ¥ 2,
let Υpzq :� Υrpzq be the fat point with coordinate ring κ � mr ⊆ R, where pR,mq
is the Artinian local ring corresponding to z. Note that Υ is bounded, and we have
a strongly dominant morphism z Ñ Υpzq. For simplicity, let us take r � 2. For
fixed n, let l :� ln be the n-th co-jet of a point on a line, with coordinate ring
S :� κrξs{pξnq. For each l, let wl be the fat point in L2l with ideal of definition
generated by all ξli and Qn, where

Q :� ξ1ξ2 � ξ3ξ4 � � � � � ξ2l�1ξ2l.

Let Yl be the image sieve of the morphism ϕl : wl Ñ l induced by ξ ÞÑ Q. I claim
that ∇Υl is approximated by the Yl, from which it then follows that it is strongly
formal. To this end, fix a fat point z with coordinate ring pR,mq and let l be its
length. An Υpzq-rational point a P lpΥpzqq is completely determined by the image,
denoted again a, of ξ in κ � m2. Since an � 0, we must in particular have a P

m2 (note that m2 is the maximal ideal of Υpzq), and hence can be written as a �

b1b2 � � � � � b2l�1b2l, for some bi P m. Since bli � 0 and a � Qpb1, . . . , b2lq, the
assignment ξi ÞÑ bi induces a morphism z Ñ wl which factors through ϕl. In other
words, a P Ylpzq. Conversely, since Q is quadratic, any z-rational point factoring
through ϕl must extend to Υpzq.

Presumably, this argument should extend to any fat point other than l and any
power r ¥ 2. To extend this to higher dimensional schemes, we face the problem
that a rational point can be given by non-units. This forces us to be able to single
out the field elements inside an Artinian local ring R. In characteristic p, this can
be done: the elements of κ ⊆ R are precisely the pl-th powers. Using this, a slight
modification of the above argument then yields ∇ΥL as a strongly formal motif: in
the above, replace wl by Lwl and Yl by the image of the morphism Lwl Ñ Lκ given
by ξ ÞÑ ξp

l

0 �Q. It seems likely that we can again extend this argument to arbitrary
schemes and arbitrary r ¥ 2.

Augmentation. Fix a morphism of Noetherian schemes f : W Ñ V . Via f , any
W -scheme Y becomes a V -scheme, and to make a notational distinction between
these two scheme structures, we denote the latter by f�Y . We will show that f�
constitutes a left adjoint, where the corresponding right adjoint is given by base
change: given a V -scheme X , we set

f�X :�W �V X.
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3.5. Theorem. If f : W Ñ V is a morphism of finite type of Noetherian Jacobson
schemes, then f� is a bounded functor from FatW to FatV , and as such, it is the
left adjoint of f�. The corresponding adjunction associates to a V -sieve X on a
V -scheme X , the W -sieve ∇f�X on f�X , inducing ring homomorphisms

∇f� : GrpSchV q Ñ GrpSchW q

∇f� : GrpsubSchV q Ñ GrpsubSchW q

∇f� : GrpFormstr
V q Ñ GrpFormstr

W q

∇f� : GrpFormV q Ñ GrpFormW q.

Proof. Let z be a fat W -point with coordinate ring R and let y be its center, that
is to say, the closed point on W given as the image under the structure morphism
z Ñ W . By the generalized Nullstellensatz ([6, Theorem 4.19]), the image x :�
fpyq is a closed point on V , and the residue field extension κpxq ⊆ κpyq is finite.
As κpyq ⊆ R{m is also finite, f�z is a fat V -point (note that R is also the coordinate
ring of f�z, so that f� is bounded). The adjunction of f� and f� is well-known (and,
in any case, easily checked; see, for instance [7, Chapter II.5], but note that left and
right are switched there since they are formulated in the dual category of sheaves),
proving that ∇f�X � f�X . The last statement follows from Proposition 3.3. �

If we drop the condition that the schemes are Jacobson, then we must require f to
be proper as well.

3.6. Remark. Although f� : FatW Ñ FatV is an embedding of categories, it is,
however, not full: so are the closed subschemes in L2 defined by the ideals px2, y3q

and px3, y2q isomorphic as fat κ-points, but not as fat κrxs-points. Nonetheless,
FatW is cofinal in FatV , or, in the terminology of §7 below, both have the same
universal point.

Diminution. Let f : W Ñ V be a finite and faithfully flat morphism of Noethe-
rian schemes. As opposed to the previous section, we will now consider f� as a left
adjoint. For technical reasons (see Remark 3.9 below for how to circumvent these),
we make the following additional assumptions:

(:)
V is of finite type over an algebraically closed field κ and f induces
an isomorphism on the underlying varieties.

The second condition implies that for any closed point x P V there is a unique closed
point y P W lying above it, and hence the closed fiber f�1pxq is a local scheme.
Under these assumptions, the base change f�z of a fat V -point z is a fat W -point.
Indeed, since the problem is local, we may assume V � Specλ and W � Specµ
are affine. Let pR,mq be the coordinate ring of z, and let p :� λXm be the induced
maximal ideal of λ, defining its center. The coordinate ring of f�z is then S :�
Rbλ µ. By base change, S is finite (and flat) over R, whence in particular Artinian.
By base change, S is also finite as a µ-module, and `pSq ¤ `pRq. Since m is
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nilpotent, any maximal ideal of S must contain mS. Since S{mS � R{mbλ{pµ{pµ,
since λ{p � κ by the Nullstellensatz, and sinceR{m is a finite extension of the latter,
whence trivial, S{mS � µ{pµ is local by assumption (:), showing that S itself is an
Artinian local ring, thus proving the claim. Moreover, f� is bounded.

3.7. Theorem. If f : W Ñ V is a finite and faithfully flat morphism satisfying (:),
then f� is the left adjoint of a schemic adjunction, inducing natural homomorphisms

∇f� : GrpSchW q Ñ GrpSchV q

∇f� : GrpsubSchW q Ñ GrpsubSchV q

∇f� : GrpFormstr
W q Ñ GrpFormstr

V q

∇f� : GrpFormW q Ñ GrpFormV q.

More precisely, for any W -scheme Y , there exists a V -scheme ∇f�Y and a
canonical morphism ρY : f�p∇f�Y q Ñ Y of W -schemes, such that, for any fat
V -point z, the map sending a z-rational point a : z Ñ ∇f�Y to the f�z-rational
point ρY � f�a : f�z Ñ Y , induces an isomorphism p∇f�Y qpzq � Y pf�zq.

If Z ⊆ Y is a closed immersion, then so is∇f�Z Ñ ∇f�Y .
Proof. Since f is finite and flat, W is locally free over V . Since we may con-

struct each ∇f�Y locally and then, by the uniqueness of the universal property of
adjoints, glue the pieces together, we may assume that Y � SpecB, V � Specλ,
and W � Specµ are affine, and that µ is free over λ (in all applications, we
will already have global freeness anyway). Let α1, . . . , αl be a basis of µ over λ.
Write B :� µrxs{ph1, . . . , hsq, for some polynomials hi over µ, and x a n-tuple
of variables. Let x̃ � px̃1, . . . , x̃lq be a row of l many n-tuples of variables x̃i, for
i � 1, . . . , l, and define a generic n-tuple of jets

(6) ux :� α1x̃1 � � � � � αlx̃l

in pµrx̃sqn. Given any g P µrxs, let∇jg P λrx̃s be defined by the expansion

(7) gpuxq � ļ

j�1

αj∇jg.

Applying (7) with g � hi, for i � 1, . . . , s, we get polynomials ∇jhi in λrx̃s and
we let A be the residue ring of λrx̃s modulo the ideal generated by all these ∇jhi,
with i � 1, . . . , s and j � 1, . . . , l. I claim that X :� SpecA represents ∇f�Y . It
follows from (7) that the map x ÞÑ ux yields a µ-algebra homomorphism B Ñ f�A,
where f�A :� Abλµ is the base change, and hence a µ-morphism ρY : f�X Ñ Y .
Fix a fat λ-point z, and a z-rational point a : z Ñ X . By base change, we get a
µ-algebra homomorphism f�z Ñ f�X which composed with ρY induces a f�z-
point Θpaq : f�z Ñ Y . To prove that the map a ÞÑ Θpaq establishes an adjunction
isomorphism, we construct its converse. Given an f�z-rational point b : f�z Ñ Y ,
let B Ñ R bλ µ be the corresponding µ-algebra homomorphism, where R is the
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coordinate ring of z. The latter homomorphism is uniquely determined by a tuple u
in Rbλ µ such that all hipuq � 0. Expanding this tuple as

(8) u � α1ũ1 � � � � � αlũl

yields a (unique) tuple ũ :� pũ1, . . . , ũlq over R such that all ∇jhipũq � 0, de-
termining, therefore, a λ-algebra homomorphism A Ñ R, whence a λ-morphism
Λpbq : z Ñ X . So remains to verify that Λ and Θ are mutual inverses. Starting
with the f�z-rational point b, we get the z-rational point Λpbq, which in turn induces
the f�z-rational point ΘpΛpbqq, given as the composition ρY � f�Λpbq. The latter
corresponds by (8) to the µ-algebra homomorphism B Ñ f�A Ñ f�R given by
x ÞÑ ux ÞÑ u, showing that ΘpΛpbqq � b. If, on the other hand, we start with the
z-rational point a, given by x̃ ÞÑ ũ, we get the f�z-rational point Θpaq, given by
x ÞÑ u, where u is as in (8). Hence ΛpΘpaqq is given by x̃ ÞÑ ũ, that is to say, is
equal to a, as we needed to show.

To prove the last assertion, assume that Z is a closed subscheme of Y , so that its
coordinate ring is of the form B{phs�1, . . . , htqB for some additional polynomials
hi P µrxs. Hence ∇f�Z is the closed subscheme of ∇f�Y given by the ∇jhi for
s   i ¤ t. �

Immediately from the above proof, by taking Y � f�X , we have the following
result, which we will use in the next section:

3.8. Corollary. If f : W Ñ V is a finite and faithfully flat morphism satisfying
(:), then we have for each V -scheme X , a canonical V -morphism ρX : ∇f�f�X Ñ

X . If Z ⊆ X is a closed immersion, then so is∇f�f�Z Ñ ∇f�f�X . �

3.9. Remark. Without assumption (:), the pull-back of a fat V -point z is only
a zero-dimensional W -scheme, and hence a disjoint sum of fat W -points f�z �

w1 \ � � � \ ws. We can then still make sense of Y pf�zq, as the disjoint union
Y pw1q \ � � � \ Y pwsq, and the adjunction condition then becomes that this must
be equal to p∇f�Y qpzq. Since nowhere in the above proof we used that f�R is
local, we therefore can omit condition (:) from the statements of Theorem 3.7 and
Corollary 3.8.

Caveat: do not confuse diminution with the restriction of scalars operation f� de-
fined in [17, §7.13], which is not an adjunction. In particular, f� is not multiplicative.
Using the present notation, we can now generalize [17, (29)] as follows:

3.10. Lemma. Given a morphism f : W Ñ V of finite type of Noetherian Jacob-
son schemes, for every α P GrpFormstr

V q and every β P GrpFormstr
W q, we have an

identity

(9) α � f�β � f�p∇f�α � βq

in GrpFormstr
V q. In particular, the image of GrpFormstr

W q under f� is an ideal IW
in GrpFormstr

V q, called the ideal of W -motives.
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Proof. By linearity, we may reduce to the case that α � rXs and β � rYs, with
X and Y strongly formal motives on some V -scheme X and some W -scheme Y
respectively. Given a fat V -point z and a z-rational map a : z Ñ f�p∇f�X�W Y q �

X�V f�Y , let π1 and π2 be the respective projections of X�V f�Y to X and f�Y .
Now, ã : z̃a Ñ f�X �W Y belongs to

�
∇f�X�Y

�
pz̃aq if and only if π1 � ã and

π2 � ã belong respectively to

∇f�Xpz̃aq � Xpf�z̃aq � Xpzq

and Ypz̃aq. But this just means that a P Xpzq � f�Ypzq, proving (9). The second
assertion now easily follows from this. �

Taking β � 1 and using that f�1 � rW s, we see that the image of the composite
map f� �∇f� : GrpFormstr

V q Ñ GrpFormstr
W q Ñ GrpFormstr

V q is the ideal gener-
ated by rW s. In view of [17, Corollary 7.16], we ask whether f is split if and only if
IW is the unit ideal. In this generality, we do not know the answer, but by restricting
to schemic motives, we get the following criterion. Let MV pW q be the residue ring
GrpSchV q{IW , then we have:

3.11. Corollary. Over a Noetherian, Jacobson V , a V -scheme W has a V -
rational point if and only if MV pW q � 0.

Proof. Saying that f : W Ñ V has a V -rational point just means that f is split,
and by [17, Corollary 7.16], this is equivalent with the surjectivity of f� (on schemic
motives). This proves already one direction. For the converse, if IW is the unit ideal,
it contains 1 � rV s and hence rV s � rf�Y s � rf�Zs in GrpSchV q, for some W -
schemes Y and Z. Since any schemic irreducible component of f�Y is also obtained
by restriction of scalars (use for instance [17, Lemma 7.15]), we may assume f�Y
is schemic irreducible, and hence V \ f�Z � f�Y by [17, Corollary 5.8], whence
V � f�Y by the irreducibility assumption. It follows that f� is surjective, whence
f is split. �

Thus, we may rephrase the Faltings-Mordell theorem that over a number field κ,
any curve C of genus at least two, has a (non-empty, whence dense) open subset
U ⊆ C such that MκpUq � 0. The Bombieri-Lang conjecture can then be stated
in the same vain: if X is a smooth variety of general type over κ, does there exist
an open U ⊆ X such that MκpUq � 0. For adjunctions, (9) corresponds to the
following commutation rule in a Cartesian square:

3.12. Theorem (Projection Formula). Let f : W Ñ V be a finite and faithfully
flat morphism of Noetherian schemes satisfying (:), let u : Ṽ Ñ V be a morphism of
finite type, with either V Jacobson or u proper, and let
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(10)

?

-

?
-

ṼW̃

VW

ũ u

f

f̃

be the base change diagram, where W̃ :�W �V Ṽ . We have an identity of adjunc-
tions

∇f̃�∇ũ� � ∇u�∇f�

from W -sieves to Ṽ -sieves.
Proof. Note that f̃ is again finite and faithfully flat, satisfying (:), so that the

diminution ∇f̃� makes sense. To prove the identity we have to check it on each
W -sieve Y and each fat Ṽ -point z, becoming

p∇f̃�∇ũ�Yqpzq � Ypũ�f̃
�zq

?
� Ypf�u�zq � p∇u�∇f�Yqpzq.

But one easily verifies that we have an equality of fat W -points

ũ�f̃
�z � f�u�z

concluding the proof of the theorem. �
Frobenius transform. Assume for the remainder of this section that the base

ring is a field κ of characteristic p ¡ 0. Let us denote the Frobenius homomorphism
a ÞÑ ap on a κ-algebra A by F, or in case we need to specify the ring by FA, so that
we have in particular a commutative diagram

(11)

?

-

?
-

κκ

A.A
FA

Fκ

Due to the functorial nature, we can glue these together and hence obtain on any
κ-scheme X a corresponding endomorphism FX .

Diagram (11) implies that FA is not a κ-algebra homomorphism. To overcome
this difficulty, we assume κ is perfect, so that F is an isomorphism on κ. To make
(11) into a κ-algebra homomorphism, we must view the second copy of A with a
different κ-algebra structure, namely, the one inherited from the composite homo-
morphism κ

F
Ñ κ Ñ A. Several notational devices have been proposed (see for
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instance [7, Chapter IV, Remark 2.4.1] or [18, Chapter 8.1.c]), but we will use the
one already introduced in the previous section: the push-forward of A along F will
be denoted F�A. In other words, F�A is A with its κ-action given by u � a � upa.
Since κ is perfect, A � F�A as rings, and in many instances, even as κ-algebras.
In particular, (11) yields a κ-algebra homomorphism A

F
Ñ F�A, called the κ-linear

Frobenius. The image of the κ-linear Frobenius homomorphism A
F
Ñ F�A is the

subring of A consisting of all p-th powers, and we will simply denote it by FA
(rather than the more common Ap, which might lead to confusions with Cartesian
powers). Hence, pushing forward the inclusion homomorphism FA ⊆ A gives a
factorization of the κ-algebra homomorphism F as A � F�FA ⊆ F�A, where the
first homomorphism is an isomorphism if and only if A is reduced. For instance, if
A � κrxs, then FA � κrxps, so that this factorization is given by the sequence of
κ-algebra homomorphisms

(12) κrxs
� // F�κrx

ps ⊆ F�κrxs
� // κrxs

h
� σ // h̃

g � // gp � // gpxpq,

where h̃ is obtained from h by replacing each coefficient with its (unique) p-th root.
So, from this we can calculate F�A for A of the form κrxs{pf1, . . . , fsq as

F�A � κrxs{pf̃1, . . . , f̃sq,

with f̃i � σpfiq as in (12). The κ-linear Frobenius A Ñ F�A is then the induced
homomorphism by the composite map g ÞÑ gpxpq from (12).

Similarly, viewingX as a κ-scheme via the compositionX Ñ Specκ F
Ñ Specκ,

it will be denoted by F�X , yielding a morphism FX : F�X Ñ X of κ-schemes,
called the κ-linear Frobenius. Its scheme-theoretic image will be denoted by FX ,
so that we have a strongly dominant morphism X Ñ FX , yielding a factorization

(13) FX : F�X Ñ F�FX ⊆ X

of FX , where the closed immersion F�FX ⊆ X is the identity if and only if X is a
variety. In particular, FX is the Zariski closure of ImpFXq in X .

We could view Fκ as an automorphism of the base to get by Theorem 3.5 an
adjunction pair pF�

κ,Fκ�q. However, since X and Fκ�F�
κX are isomorphic as

κ-schemes, this merely induces an action of the Frobenius. For the same reason,
diminution does not induce any interesting endomorphism on the Grothendieck ring.
Instead we take a relative point of view. To a morphismϕ : Y Ñ X of κ-schemes, we
can associate two commutative squares; the base change and the Frobenius square.
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Combined into a single commutative diagram of κ-morphisms, we have

F�Y FY

((''OOOOOOOOOOOO

F�ϕ

##

F�
XY FX � 1Y

//

��

Y

ϕ
��

F�X
FX

// X

where F�
XY :� F�X �X Y is the pull-back of Y along FX , called the Frobe-

nius transform of Y in X , and where the canonical projection FX � 1Y : F�
XY �

F�X�X Y Ñ Y is called the relative Frobenius on Y over X . In case ϕ is a closed
immersion, the natural morphism F�Y Ñ F�

XY is then also a closed immersion.
We can calculate it explicitly in case X � SpecA is affine and Y is defined by the
ideal I ⊆ A. Traditionally, one denotes the ideal generated by the image of I under
the Frobenius FA by Irps; it is the ideal generated by all fp with f P I . With this
notation, we have

F�
XY � F�pSpecA{Irpsq.

In particular, applying σ from (12) to the previous isomorphism in case X is affine
space, we get:

3.13. Corollary. If Y is the closed subscheme of Ln with ideal of definition
pf1, . . . , fsq, then F�

LnY is the closed subscheme of Ln with ideal of definition
pf1px

pq, . . . , fspx
pqq, and the relative Frobenius FLn � 1Y is the map induced by

x ÞÑ xp. �
The assignment z ÞÑ Fz constitutes a bounded functor on Fatκ, which will play

the role of left adjoint. However, in this case, the adjunction will only be sub-
schemic, via the following right adjoint. For each κ-scheme Y , we define a sub-
schemic motif FY , called its Frobenius motif. In order to do this, we will work
locally: show that it is a right adjoint locally, and then deduce its uniqueness and
existence, as well as right adjointness, globally. So let Y be affine, say, a closed
subscheme of Ln, and let FLn � 1Y : F�

LnY Ñ Y be the corresponding relative
Frobenius. Set FY :� ImpFLn � 1Y q, so that it is a sub-schemic motif on Y . To see
that this is independent from the choice of closed immersion, we prove the adjunction
formula

(14) Y pFzq � FY pzq

for any fat point z. More precisely, the canonical (strongly dominant) morphism
z Ñ Fz induces a map Y pFzq Ñ Y pzq. By [17, Lemma 2.6] it is injective,
and we want to show that its image is FY pzq. Let pf1, . . . , fsq be the ideal defin-
ing Y . By Corollary 3.13, the Frobenius transform F�

LnY is given by the ideal
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pf1px
pq, . . . , fspx

pqq. An Fz-rational point a in Y corresponds to a κ-algebra ho-
momorphism AÑ FR, where R is the coordinate ring of z, and hence to a solution
of f1 � � � � � fs � 0 in R of the form rp. The image a1 of a in Y pzq corresponds to
the composition AÑ FR ⊆ R. Since r is a solution in R of the equations defining
F�

LnY , it induces a z-rational point b : z Ñ F�
LnY such that a1 � pFLn � 1Y qpzqpbq,

proving that a1 P FY pzq. Conversely, by reversing these arguments, we see that
any such z-rational point is induced by a p-th power in R, and hence comes from a
Fz-rational point. This concludes the proof of (14) when Y is affine, and proves in
particular that FY does not depend on the choice of closed immersion. For arbitrary
Y , let Y1, . . . , Ym be an open affine covering. For each Yi and each intersection
Yi X Yj , we have an equality (14). Hence we may glue all pieces together to obtain
a sub-schemic motif FY satisfying (14). In particular, in view of Proposition 3.3, we
proved:

3.14. Theorem. The functors z ÞÑ Fz and Y ÞÑ FY constitute a sub-schemic
adjunction. In particular, we get induced endomorphisms ∇F on GrpsubSchκq,
GrpFormstr

κ q, and GrpFormκq. �
Unraveling the definitions, the action of this adjunction on a motif Y on a scheme

Y is given by

∇FY � YX FY .

Moreover, if Y � Ln, then FY is just ImpFLnq, the image of the κ-linear Frobenius.
Therefore, if a motif Y has an ambient space which is affine, we may take it to be an
affine space Ln, so that

∇FY � YX ImpFLnq.

3.15. Families of motives. Let s : Y Ñ X be a rational morphism of V -sieves
(see Remark 3.17 below for the non-rational case). Hence, we can find ambient
spaces Y andX of Y and X respectively, and a morphism ϕ : Y Ñ X of V -schemes
extending s. We explain now how we may view s as a family of V -sieves, by as-
sociating to each V -rational point a, that is to say, any V -morphism a : V Ñ X , a
V -sieve Ya as follows. We may view Y as anX-sieve via ϕ by restriction of scalars,
denoted ϕ�Y (see [17, §7.13]). Using a as augmentation map, we define

Ya :� ∇a�ϕ�Y,

called the specialization of Y at a. By Theorem 3.5, this is a sieve on the base change
∇a�Y � a�Y � V �X Y . To see that the specialization Ya is independent from
the choice of ambient space Y , we simply observe that

(15) Yapzq � V pzq �Xpzq Ypzq � tpr, bq P V pzq �Ypzq | apzqprq � spzqpbqu

as a subset of V pzq�XpzqY pzq, for any fat V -point z. Immediately from Theorem 3.5,
we have:
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3.16. Proposition. The specialization of a schemic, sub-schemic, or strongly for-
mal motif is again of the same type. �

3.17. Remark. We can even apply this theory to a non-rational morphism s : Y Ñ

X of strongly formal motives. Indeed, let Zl ⊆ Y be sub-schemic approximations
of the stronlgy formal motif Y. By [17, Theorem 3.15], the restriction s|Zl is ra-
tional. Hence, given a : V Ñ X , the specialization pZlqa is sub-schemic by Propo-
sition 3.16. Using (15), it is not hard to show that these specializations pZlqa are
approximations of Ya (as defined by the right hand side of (15)), showing that the
latter is strongly formal too.

4. Jet schemes

From now on, our base scheme will (almost always) be a field κ, often even
assumed to be algebraically closed. Fix a fat point z and let j : z Ñ Specκ be its
structure morphism. Clearly, it is flat and finite and satisfies condition (:) when κ is
algebraically closed, and so both augmentation and diminution with respect to j are
well-defined (in the non-algebraically closed case, we apply Remark 3.9). We define
the jet functor of z, as a double adjunction2

∇z :� ∇j� �∇j� .

In other words, given a motif X on a κ-scheme X , and a fat point w, we have

p∇zXqpwq � Xpj�j
�wq

where j�j�w is the product z�κ w viewed as a fat point over κ, denoted henceforth
simply by zw. Applied to a κ-scheme X , we get the so-called jet scheme ∇zX ,
whose w-rational points are in one-one correspondence with the zw-rational points
of X , and so we will identify

Xpzwq � p∇zXqpwq.

Moreover, we have by Corollary 3.8 a canonical morphism

(16) ρX : ∇zX Ñ X.

4.1. Remark. In other words, ∇zX is the Hilbert scheme classifying all maps
from z to X . When ln � Specpκrξs{pξnqq, the resulting jet scheme is also known in
the literature as a truncated arc scheme.3

2See §6 below for the corresponding single adjunction.
3This was also the terminology in an earlier version of this paper posted on ArXiv.
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4.2. Remark. By the argument in the proof of Theorem 3.7, for any fat point z,
we may choose a basis ∆ � tα0, . . . , αl�1u of its coordinate ring pR,mq with some
additional properties. In particular, unless noted explicitly, we will always assume
that the first base element is 1 and that the remaining ones belong to m. Moreover,
once the basis is fixed, we let x̃ be the l-tuple of jet variables px̃0, . . . , x̃l�1q, so thatux � x̃0 � α1x̃1 � � � � � αl�1x̃l�1 is the corresponding generic jet. It follows from
(7) that ∇0f � fpx̃0q, for any f P κrxs. By [14, §2.1], we may choose ∆ so that,
with ai :� pαi, . . . , αl�1qR, we have a Jordan-Holder composition series

al � 0 � al�1 � al�2 � � � � � a1 � m � a0 � R.

Without giving the details, we may construct ∆ as follows: write R as a homomor-
phic image of κrys so that y :� py1, . . . , yeq generates m, and let apαq, for α P Zn¥0,
be the ideal in R generated by all yβ with β lexicographically larger than α. Then
we may take ∆ to be all monomials yα such that yα R apαq.

Given r P R, we expand it as in (8) in the basis as r � r0�α1r1�� � ��αl�1rl�1,
with ri P κ. I claim that rj � 0 for j   i whenever r P ai. Indeed, if not, let
j   i be minimal so that there exists a counterexample with rj � 0. By minimality,
r � αjrj � αj�1rj�1 � � � � P ai showing that αj P aj�1, since rj is invertible.
However, this implies that aj � aj�1, contradiction. From this, it is now easy to
see that the first m basis elements of ∆ form a basis of Rm :� R{am�1. Therefore,
calculating ∇mf in (7) for f P κrxs does not depend on whether we work over R or
over Rm, and hence, in particular, ∇mf P κrx̃0, . . . , x̃ms for every m   l.

4.3. Remark. In case X � SpecA is affine, with A � κrxs{I , then the proof of
Theorem 3.7 also provides a recipe for calculating rational points. Namely, let Ã be
the coordinate ring of the jet scheme∇zX , where z is a fat point with coordinate ring
R. Given any fat point SpecS, an S-rational point of the jet scheme, that is to say,
a homomorphism a : Ã Ñ S defines an R b S-rational point on X as follows. For
each variable xi, let uxi be the corresponding generic jet (see (6)), then A Ñ R b S

is given by sending xi to ap uxiq, the value of the generic jet at the S-rational point a.
With these observations, we can now prove the following important openness

property of jets:
4.4. Theorem. Given a κ-scheme X , a fat point z, and an open U ⊆ X , we have

isomorphisms

(17) ∇zU � ρ�1
X pUq � ∇zX �X U.

Proof. By the universal property of adjunction, whence of jets, it suffices to verify
(17) in case X � SpecB ⊆ Ln is affine and U � SpecpBf q is a basic open subset.
Let A be the coordinate ring of ∇zX . Since U is the closed subscheme of LB given
by g :� fy � 1 � 0, the corresponding jet scheme ∇zU is the closed subscheme of
LnA with coordinate ring A1 :� Arỹs{p∇0g, . . . ,∇l�1gq, where l is the length of z �



18 HANS SCHOUTENS

SpecR and the∇ig are given by (7), with ỹ a tuple of l variables. By Remark 4.2, we
may calculate the∇ig using any basis α0 � 1, . . . , αl�1 ofR, and so we may assume
it has the properties discussed in that remark. In particular, by the last observation
in that remark, each ∇ig only depends on ỹ0, . . . , ỹi. Clearly, ∇0g � p∇0fqỹ0 � 1.
In particular, the A-subalgebra of A1 generated by ỹ0 is just the localization A∇0f .
We will prove by induction, that each ỹi belongs to this subalgebra, and hence A1 �
A∇0f , as we needed to prove.

To verify the claim, we may assume by induction that ỹ0, . . . ỹi�1 belong toA∇0f .
The coefficient of αi in the expansion of the product

(18) p∇0f � α1∇1f � � � � � αl�1∇l�1fqpỹ0 � α1ỹ1 � � � � � αl�1ỹl�1q

is equal to ∇ig, whence zero in A1. As observed in Remark 4.2, the choice of basis
allows us to ignore all terms with αj for j ¡ i. Put differently, upon replacing R by
R{pαi�1, . . . , αl�1qR, which does not effect the calculation of∇ig, we may assume
that they are zero in (18). Hence,

∇ig � p∇0fqỹi � terms involving only ỹ0, . . . , ỹi�1

proving the claim, since∇0f is clearly invertible in A∇0f . �
Before we proceed, some simple examples are in order. Jet spaces are sensitive to

singularities, as the next examples show:
4.5. Example. Let us calculate the jet scheme of the cuspC given by the equation

x2 � y3 � 0 along the fat point z with coordinate ring the four dimensional algebra
R :� κrξ, ζs{pξ2, ζ2q, using the basis ∆ :� t1, ξ, ζ, ξζu (in the order listed), and
corresponding jet variables x̃ � px̃00, x̃10, x̃01, x̃11q and ỹ � pỹ00, ỹ10, ỹ01, ỹ11q.
One easily calculates that∇zC is given by the equations

x̃2
00 � ỹ3

00

2x̃00x̃10 � 3ỹ2
00ỹ10

2x̃00x̃01 � 3ỹ2
00ỹ01

2x̃00x̃11 � 2x̃10x̃01 � 3ỹ2
00ỹ11 � 6ỹ00ỹ10ỹ01.

Note that above the singular point x̃00 � 0 � ỹ00, the fiber consist of two 4-
dimensional hyperplanes, whereas above any regular point, it is a 3-dimensional
affine space, the expected value by Theorem 4.14 below.

4.6. Example. Another example is classical: let R2 � κrξs{pξ2q be the ring of
dual numbers and l2 :� SpecpR2q the corresponding fat point. Then one verifies
that a κ-rational point on ∇l2X is given by a κ-rational point P on X , and a tangent
vector v to X at P , that is to say, an element in the kernel of the Jacobian matrix
JacXpP q.

4.7. Example. As a last example, we calculate∇ln lm, where ln is the n-th co-jet
of the origin on the affine line, that is to say, Specpκrξs{pξnqq. With ux � x̃0� ξx̃1�
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� � � � ξn�1x̃n�1, we will expand uxm in the basis t1, ξ, . . . , ξn�1u of κrξs{pξnq; the
coefficients of this expansion then generate the ideal of definition of∇ln lm. A quick
calculation shows that these generators are the polynomials

gspx̃0, . . . , x̃n�1q :�
¸

i1�����im�s

x̃i1 x̃i2 � � � x̃im

for s � 0, . . . , n� 1, where the ij run over t0, . . . , n� 1u. Note that g0 � x̃m0 . One
shows by induction that px̃0, . . . , x̃sq is the unique minimal prime ideal of ∇ln lm,
where s � r nm s is the round-up of n{m, that is to say, the least integer greater than
or equal to n{m. In particular, ∇ln lm is irreducible (but not reduced) of dimension
n� r nm s.

Immediately from Theorems 3.5 and 3.7, we get:
4.8. Theorem. For each fat point z, the jet functor ∇z induces a ring endo-

morphism on each of the motivic Grothendieck rings GrpSchκq, GrpsubSchκq,
GrpFormstr

κ q, and GrpFormκq. �
Applied to the affine line, we get the following simple formula

(19) ∇zL � L`pzq

either as an identity of schemes or as a relation in the Grothendieck ring. In case of
complete formal motives, we can calculate the jet scheme by base change:

4.9. Lemma. For any closed immersion Y ⊆ X of κ-schemes, and any fat point
z, we have isomorphisms

∇zp pXY q � ∇zX �X pXY � pz∇zXqρ�1pY q,

where ρ : ∇zX Ñ X is the canonical map from (16).
Proof. Let U :� XzY . By [17, Proposition 7.1], we have an equality of sieves

(20) � pX�
Y � U�

on X . By [17, Theorem 7.7], we may pull back (20) under the map ρ : ∇zX Ñ X ,
to get a relation

�p∇zX �X pXY q
� � ρ�p� pX�

Y q � ρ�U� � p∇zX �X Uq� � p∇zUq
�

where we used the openness of jets (Theorem 4.4) for the last equality. On the other
hand, taking jets in identity (20), yields

�∇z
pX�
Y � ∇zp� pX�

Y q � ∇zU
� � p∇zUq

�

where one easily checks that jet functors commute with complements of complete
sieves. Combining both identities and taking complements then proves the first iso-
morphism.

To see the second isomorphism, we may assume, in view of the local nature of
jets, that X � SpecA is affine. Let I ⊆ A be the ideal of definition of Y , so that
the global sections of pXY is the completion pAI of A with respect to I . Let Arys{J
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be the coordinate ring of the jet scheme ∇zX , for some J ⊆ Arys and some tuple
of variables y. By the first isomorphism, the global section ring of∇z

pXY is equal to
the base change pAI rys{J pAI rys. The ideal defining ρ�1pY q in ∇zX is IpArys{Jq,
and the completion of Arys{J with respect to this ideal is pAI rys{J pAI rys, proving
the second isomorphism. �

In view of [17, Corollary 7.3], jets commute with localization in the following
sense, where XP is the local scheme SpecpOX,P q:

4.10. Corollary. For any closed germ pX,P q and any fat point z, we have an
isomorphism∇zXP � p∇zXq �X XP . �

4.11. Corollary. The jet of a complete formal motif is again complete. More
precisely, if F ⊆ X is a constructible subset, then

(21) ∇zpCXpF qq � C∇zXpρ
�1pF qq,

for any fat point z, where ρ : ∇zX Ñ X is the canonical map.

Proof. By [17, Proposition 7.1], the cone of a closed subset Y is pXY , and by [17,
Lemma 6.4], that of an open subset U is just U . Identity 21 holds in either case by
Lemma 4.9 and Theorem 4.4 respectively. Since cones and arcs pass both through
unions and intersections, we proved (21) in general. The first assertion now follows
from [17, Theorem 8.1]. �

A similar result holds for etale maps (compare with [5, Lemma 2.9]):
4.12. Theorem. For any etale morphism ϕ : Y Ñ X and any fat point z, we have

an isomorphism of schemes ∇zY � ∇zX �X Y .
Proof. By functoriality, we have a commutative diagram

(22)

?

-

?
-

∇zX∇zY

XY

ρY ρX

ϕ

∇zϕ

whence a morphism∇zY Ñ ∇zX�X Y . To construct its inverse, we may work over
a fixed fat point v. Hence let b P ∇zXpvq and ā P Y pvq have the same image inXpvq.
Let b̃ be the zv-rational point of X induced by b. Hence, if Q is the center of ā, then
ϕpQq is the center of b̃. Since b̃ factors through XϕpQq, there is a unique zv-rational
point zv Ñ YQ lifting the latter by [17, Theorem 2.17]. Let ã be its composition with
the natural morphism YQ Ñ Y , and let a : v Ñ ∇zY be the induced v-rational point
of the jet scheme. We leave it to the reader to verify that the assignment pb, āq ÞÑ a

is the desired inverse morphism. �
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It is easy to check that

(23) ∇v∇w � ∇vw � ∇w∇v,

so that all jet functors commute with one another. If κ has positive characteristic, we
also have a Frobenius adjoint acting on the sub-schemic and formal Grothendieck
rings, and we have the following commutation relation

(24) ∇z∇F � ∇F∇Fz

for any fat point z. Indeed, we verify this on an arbitrary motif X and a fat point w.
The left hand side of (24) becomes

p∇z∇FqpXqpwq � ∇zp∇FXqpwq

� p∇FXqpzwq

� XpFpzwqq,

whereas the right hand side becomes

p∇F∇FzqpXqpwq � ∇Fp∇FzXqpwq

� p∇FzXqpFwq

� XppFzqpFwqq,

and these are both equal since an easy calculation shows that Fpzwq � pFzqpFwq.
Jets and locally trivial fibrations. By adjunction, any morphism z̄ Ñ z of fat

points induces a natural transformation of jet functors∇z Ñ ∇̄z. In particular, taking
z̄ to be the geometric point given by κ itself, we get a canonical morphism∇zX Ñ X,
for any motif X, since ∇κ is the identity functor. In case X � X� is representable,
this is none other than the canonical morphism ρX : ∇zX Ñ X from (16). To
formulate the key property of this morphism, we need a definition.

We call a morphism Y Ñ X of κ-schemes a locally trivial fibration with fiber Z
if for each (closed) point P P X , we can find an open U ⊆ X containing P such
that the restriction of Y Ñ X to U is isomorphic with the projection U �κ Z Ñ U .

4.13. Lemma. If f : Y Ñ X is a locally trivial fibration of κ-schemes with fiber
Z, then rY s � rXs � rZs in GrpsubSchκq.

Proof. By definition and compactness, there exists a finite open covering X �

X1 Y � � � YXn, so that

f�1pXiq � Xi �κ Z,

for i � 1, . . . , n. In fact, for any non-empty subset I ⊆ t1, . . . , nu, we have an iso-
morphism f�1pXIq � XI �κ Z, and hence, after taking classes in GrpsubSchκq,
we get rf�1pXIqs � rXI s � rZs. Since the f�1pXiq form an open affine covering of
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Y and pre-images commute with intersection, a double application of [17, Lemma
6.5] yields

rY s �
¸

H�I⊆t1,...,nu

p�1q|I|rf�1pXIqs �
¸

H�I⊆t1,...,nu

p�1q|I|rXI s � rZs � rXs � rZs

in GrpsubSchκq. �

4.14. Theorem. If X is a d-dimensional smooth κ-scheme and z̄ ⊆ z a closed
immersion of fat points, then the canonical map ∇zX Ñ ∇̄zX is a locally trivial
fibration with fiber Ldpl�l̄q, where l and l̄ are the respective lengths of z and z̄. In
particular,

r∇zXs � rXs � Ldpl�1q

in GrpsubSchκq.

Proof. Let R and R̄ be the Artinian local coordinate rings of z and z̄ respectively.
Since jets can be calculated locally, we may assume X is the (affine) closed sub-
scheme of Lm with ideal of definition pf1, . . . , fsq. Since the composition of locally
trivial fibrations is again a locally trivial fibration, with general fiber the product of
the fibers, we may reduce to the case that R̄ � R{αR with α an element in the socle
of R, that is to say, such that αm � 0, where m is the maximal ideal of R. Let ∆
be a basis of R as in Remark 4.2, with αl�1 � α (since α is a socle element, such a
basis always exists). In particular, ∆ � tαu is a basis of R̄. We will use these bases
to calculate both jet maps.

To calculate a general fiber of the map s : ∇zX Ñ ∇̄zX , fix a fat point w with
coordinate ring S, and a w-rational point b̄ : w Ñ ∇̄zX , given by a tuple ũ over
S. The fiber spwq�1pb̄q, is equal to the fiber of Xpzwq Ñ Xpz̄wq above ā, where
ā : z̄w Ñ X is the z̄w-rational point corresponding to b̄, that is to say, the compo-
sition z̄w Ñ z̄ � ∇̄zX Ñ X given by Theorem 3.7 (see Corollary 3.8). Being a
rational point, ā corresponds therefore to a solution u in R̄bκ S of the equations
f1 � � � � � fs � 0, where the relation with the tuple ũ is given by equation (8). Let
x be the center of ā, that is to say, the closed point given as the image of ā under
the canonical map Xpz̄wq Ñ Xpκq. Since X is smooth at x, the Jacobian ps � nq-
matrix JacX :� pBfi{Bxjq has rank m � d at x. Replacing X by an affine local
neighborhood of x and rearranging the variables if necessary, we may assume that
the first pm� dq � pm� dq-minor in JacX is invertible on X .

The surjection RÑ R̄ induces a surjection R bκ S Ñ R̄ bκ S. The fiber above
ā is therefore defined by the equations fjpu � x̃l�1αq � 0, for j � 1, . . . , s. By
Taylor expansion, this becomes

(25) 0 � fjpu� x̃l�1αq �
� m̧

i�1

Bfj
Bxi

puqx̃l�1,i

	
α
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since fjpuq � 0 and α2 � 0 in Rbκ S. In fact, since u � ũ0 mod mpRbκ Sq and
αm � 0, we may replace each Bfj{Bxipuq in (25) by Bfj{Bxipũ0q. Hence, the fiber
above ā is is the linear subspace of pR b Sqm defined as the kernel of the Jacobian
JacXpũ0q. In view of the shape of the Jacobian of X , we can find gij P κrxs such
that

x̃l�1,i �
¸

j¡m�d

gijpũ0qx̃l�1,j

for all i ¤ m� d, by Kramer’s rule. Therefore, viewing the parameter ũ0 as varying
over Xpwq, the fiber of spwq is the constant space Ld, as we needed to show. Apply-
ing this to ∇zX Ñ X , (note that X � ∇κX) we get a locally trivial fibration with
fiber equal to Ldpl�1q, so that the last assertion follows from Lemma 4.13. �

Calculations, like for instance Example 4.7, suggest that even for certain non-
reduced schemes, there might be an underlying locally trivial fibration (here we write
X red for the underlying reduced variety of a scheme X):

4.15. Question. Let z be a fat point of length l and X a d-dimensional κ-scheme.
If the reduction ofX is smooth, when is the induced reduction map p∇zXq

red Ñ X red

a locally trivial fibration with fiber Lm, for some m?
4.16. Remark. As we shall see in Example 5.4 below, m can be different from

dpl� 1q, the value that we get in the reduced case. In many cases, the answer seems
to be affirmative, but there are exceptions, see Example 4.17 below.

Moreover, as can be seen from Table (1) below, taking jets does not commute with
reduction, that is to say, p∇zXq

red is in general not equal to the jet space∇zpX
redq of

the reduction of X , nor even to the reduction of the latter jet space.
4.17. Example. The simplest instance to which Question 4.15 applies is when X

itself is a fat point x. The expectation then is that

(26) p∇zxq
red � Lm

for some m (for expected values, see Example 5.4 below). Example 4.7 provides
instances in which (26) holds. However, the following is a counterexample: let
z :� J4

OC, where C is the cuspidal curve with equation ξ2 � ζ3 � 0 and O the
origin, its unique singularity. Let us calculate its auto-arcs∇zz. As the monomials in
ξ and ζ of degree at most two together with ξζ2 form a basis of the coordinate ring
R of z, its length is 7 and the generic jets are

ux � x̃0 � x̃1ξ � � � � � x̃6ξζ
2 and uy � ỹ0 � ỹ1ξ � � � � � ỹ6ξζ

2.

Since the jet scheme ∇zz lies above the origin, its reduction lies in the subvariety of
L14 defined by x̃0 � ỹ0 � 0, and hence, we may put these two to zero in the generic
jets and work inside the affine space L12 given by the remaining jet variables. From
the fact that ξ3 � 0 in R, the jet scheme is contained in the closed subscheme of L12
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by the coefficients of the expansion of

ux3 � 3x̃1x̃
2
2ξζ

2 � x̃3
2ξ

2 � . . .

In particular, since x̃3
2 vanishes, the reduction lies in the subvariety given by x̃2 � 0,

and so we may again put this variable equal to zero and work in the corresponding
11-dimensional affine space. The remaining equations come from the expansion of

ux2 � uy3 � px̃1ξ � x̃3ξ
2 � x̃4ξζ � x̃5ζ

2 � . . . q2 � pỹ1ξ � ỹ2ζ � . . . q3

� px̃2
1 � ỹ3

2qξ
2 � p2x̃1x̃5 � 3ỹ1ỹ

2
2qξζ

2

showing that the reduced jet space is the singular variety with equations x̃2
1 � ỹ3

2 �

2x̃1x̃5 � 3ỹ1ỹ
2
2 � 0. Note that the latter can be viewed as the tangent bundle of

the cusp. More precisely, instead of the anticipated (26), we obtain the following
modified form of the auto-arc variety

p∇J4
OC
pJ4
OCqq

red � ∇l2C � L7,

a singular 9-dimensional variety. However, I could not find such a form for values
higher than 4.

Locally constructible sieves. We say that a sieve X on a κ-scheme X is locally
constructible, if Xpzq is constructible inXpzq, for each fat point z, by which we mean
that ∇zXpκq is constructible in the Zariski topology on the variety ∇zXpκq viewed
as the space of closed points of∇zX .

4.18. Proposition. Any formal motif is locally constructible.
Proof. This follows from Chevalley’s theorem and Theorem 4.8 in case X is sub-

schemic, since, for a morphism ϕ : Y Ñ X of κ-schemes, Impϕqpzq, as a subset of
∇zXpκq, is the image of the map∇zY pκq Ñ ∇zXpκq. The formal case then follows
from this, since there exists a sub-schemic motif Y ⊆ X such that Ypzq � Xpzq. �

4.19. Remark. Let Z be a zero-dimensional κ-scheme, so that it is a disjoint
union of fat points Z � z1 \ � � � \ zs. Although the structure morphism j : Z Ñ

Specκ no longer satisfies (:), we can still define, for each scheme X , its jet scheme
∇ZX along Z as the double adjunction ∇j� �∇j� in view of the discussion in Re-
mark 3.9. An easy calculation then shows that

(27) ∇ZX �
s¹
i�1

∇ziX.

In particular, (19) generalizes to∇ZL � L`pZq.

5. Dimension

In this section, we assume κ is an algebraically closed field. The dimension of
an jet scheme ∇zX is a subtle invariant depending on z and X , and not just on their



SCHEMIC GROTHENDIECK RINGS II 25

respective length l and dimension d, as Table (1) shows. The underlying cause for
this phenomenon is the fact that taking reduction does not commute with taking
jets. To exemplify this behavior, we list, for small lengths, some defining equations
of jets and their reductions for three different closed subschemes X with the same
underlying one-dimensional variety, the union of two lines in the plane. Here le
denotes the closed point with coordinate ring κrξs{pξeq, that is to say, the e-th co-jet
of the origin on the affine line.

TABLE 1. Jet equations, their reductions and dimension δ.

X e xy � 0 δ x2y � 0 δ x2y3 � 0 δ

∇le

1 x̃0ỹ0, x̃2
0ỹ0, x̃2

0ỹ
3
0 ,

2 x̃0ỹ1 � x̃1ỹ0, 2x̃0x̃1ỹ0 � x̃2
0ỹ1, 2x̃0x̃1ỹ

3
0 � 3x̃2

0ỹ
2
0 ỹ1,

3 x̃0ỹ2 � x̃1ỹ1� x̃2
0ỹ2 � 2x̃0x̃1ỹ1� 3x̃2

0pỹ0ỹ
2
1 � ỹ2

0 ỹ2q�

x̃2ỹ0 p2x̃0x̃2 � x̃2
1qỹ0 6x̃0x̃1ỹ

2
0 ỹ1 � px̃2

1 � 2x̃0x̃2qỹ
3
0

∇red
le

1 x̃0ỹ0, 1 x̃0ỹ0, 1 x̃0ỹ0, 1

2 x̃0ỹ1, x̃1ỹ0, 2 x̃0ỹ1, 3 [no new equation] 3

3 x̃0ỹ2, x̃1ỹ1, x̃2ỹ0 3 x̃0ỹ2, x̃1ỹ0 4 x̃1ỹ0 5

As substantiated by the data in this table, we have the following general estimate:
5.1. Lemma. The dimension of∇zX is at least dl, where d is the dimension of X

and l the length of z, with equality if X is smooth.
Proof. Assume first thatX is reduced so that it contains a non-empty open subset

U which is non-singular. By Theorem 4.4, the pull-back ∇zU � U �X ∇zX is a
open subset of ∇zX . Moreover, by Theorem 4.14 the dimension of ∇zU is equal to
dl.

ForX arbitrary, let V :� X red be the variety underlyingX . The closed immersion
V ⊆ X yields a closed immersion ∇zV ⊆ ∇zX by Corollary 3.8. The result now
follows from the reduced case applied to V . �

We will call the difference dimp∇zXq � dl the defect of X at z. Smooth varieties
therefore have no defect. An interesting question is which varieties do not have
defect. In the linear case, locally closed intersections with rational singuarities have
this property by [13, Theorem 0.1]. The bound given by Lemma 5.1 is far from
optimal, as can be seen by taking the jet scheme of a fat point (see, for instance,
Example 4.7). Calculations lead me to believe that the dimension of∇lnz is equal to
n� 1, for n ¥ 1, where z is the fat point in L2 with equations x3 � xy � y3 � 0 (a
case not covered by Lemma 9.7 below). To obtain motivic rationality of the Igusa-
zeta series and other motivic generating series, to be discussed shortly in §9, we must
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understand the growth of these defects. Given a closed germ pY, P q and a scheme
X , let us define the asymptotic defect of X along pY, P q as

(28) δpY,P qpXq :� lim sup
n

dimp∇JnPYXq
`pJnPY q

� dimpXq

In other words, the asymptotic defect is the limsup of the JnPY -defect over the length
jnP pY q of JnPY , where the latter grows as a polynomial in n of degree dimpY, P q by
Hilbert-Samuel theory. It is not true that the asymptotic defect is always zero, as the
example below shows, but we expect:

5.2. Conjecture. The asymptotic defect is attained, that is to say, the sequence
on the right hand side of (28) becomes eventually stationary.

5.3. Example. Suppose Y is of the form Z � z for some fat point z for which
X has a defect a, that is to say, dimp∇zXq � dl � a, where d � dimpXq and
l � `pzq. Let Q be the projection of P on Z, let jnP pY q and jnQpZq be the length
of JnPY and JnQZ respectively. In particular, JnPY � JnQZ � z for n ¥ l. Hence,
jnP pY q � ljnQpZq, and

∇JnPYX � ∇JnQZp∇zXq

by (23). From this, one easily calculates that

lδpY,P qpXq � δpZ,Qqp∇zXq � a

showing that both defects cannot be zero, if the z-defect a of X is non-zero. In fact,
since defects are always non-negative, we must have 0   a{l ¤ δpY,P qpXq.

Auto-arcs. The growth of the dimension of auto-arcs (see Example 4.17), that is
to say, the function

δpzq :� dimp∇zzq

for z a fat point, is still quite puzzling. By Example 4.7, we have δplnq � n � 1.
However, the next example shows that δpzq can be bigger than `pzq.

5.4. Example. Let on :� JnOL2 be the n-th co-jet of the origin in the plane

with ideal of definition pξ, ζqn. Its length is equal to on :�
�n� 1

2
�
, with a basis

consisting of all monomials in ξ and ζ of degree strictly less than n. Let

(29) ux :�
¸

i�j n

x̃ijξ
iζj and uy :�

¸
i�j n

ỹijξ
iζj

be the generic jets, so that ∇onon is the closed subscheme of Lon given by the co-
efficients of the monomials uxiuyn�i, for i � 0, . . . , , n. Since the jet scheme ∇onon
lies above the origin, its defining equations contain the ideal px̃00, ỹ00q

n. To cal-
culate its dimension, we may take its reduction, which means that we may put x̃00

and ỹ00 equal to zero in (29). However, any monomial of degree n in the generic
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jets is then identical zero, showing that the reduction of the jet scheme is given by
x̃00 � ỹ00 � 0, and hence, its dimension is equal to

δponq � 2
�n� 1

2
�
� 2 � n2 � n� 2.

One might be tempted to propose therefore that δpzq is equal to the embedding di-
mension of z times its length minus one, but the next example disproves this. Namely,
without proof, we state that δpzq � 7 for z the fat point in the plane with equations
ξ2 � ξζ2 � ζ3 � 0 (note that z has length 5 and embedding dimension 2, so that the
expected value would be 2 � 4 � 8). Note that the auto-arc space ∇zz is often, but
not always an affine space (see Question 4.15 and the example following it).

It seems plausible that δpJnPY q grows as a polynomial in n of degree d, for any
d-dimensional closed germ pY, P q. In particular, we expect the limit

epY, P q :� lim
nÑ8

δpJnPY q

`pJnPY q

to exist. For instance, an easy extension of the above examples yields the equality
epLm, Oq � m. In view of Question 4.15, we would even expect that the auto-
Igusa-zeta series

ζzptq :�
8̧

n�1

L�d`pJnPY qr∇JnPY pJ
n
PY qst

n

is rational over the localization of the classical Grothendieck ring with respect to L,
for any d-dimensional closed germ pY, P q, a phenomenon that we will study in §9
below under the name of motivic rationality (and where we also explain the choice of
power of L). What about its motivic rationality over the localization GrpFormκqL
of the formal Grothendieck ring?

Dimension of a motif. Given a formal motif X on a κ-scheme X , we define
its dimension as the dimension of Xpκq. This is well-defined since Xpκq is a con-
structible subset of Xpκq by Proposition 4.18. If X � X� is representable, then its
dimension is precisely the dimension of the scheme X . On the other hand, if X is
the formal completion of X at a closed point, then X has dimension zero, whereas
its global section ring (see [17, §3.1]) has dimension equal to that of X at P by [17,
Corollary 7.8].

5.5. Proposition. If two formal motives have the same class in the formal Gro-
thendieck ring GrpFormκq, then they have the same dimension.

Proof. Since dimension is determined by the κ-rational points, we may take, us-
ing [17, Theorem 7.6], the image of this common class in GrpVarκq, where the
result is known to hold. �

As we will work over G :� GrpFormstr
κ qL below, we extend the notion of dimen-

sion into an integer valued invariant on this localized Grothendieck ring by defining
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the dimension of rXs � L�i to be dimpXq � i, for any strongly formal motif X and
any i P Z. In particular, if X has dimension d and z length l, then r∇zXs � L�dl has
positive dimension, which is the reason behind the introduction of this power of the
Lefschetz class in the formulas below. This also gives us the Kontsevich filtration by
dimension on G. Namely, for each m P N, let ΓmpGq be the subgroup generated by
all classes rXs � L�i of dimension at most �m. This is a descending filtration and
the completion of G with respect to this filtration will be denoted pG. However, since
we define motivic filtration locally (see §10 below), we will not make use of it. For
a motif X, we can, in view of Proposition 5.5, define its weightless class in G as

(30) rrXss :�
rXs

LdimpXq
,

a notation that will be handy at times.

6. Deformed jets

We continue with the setup from §4: let jz : z Ñ Specκ be the structure morphism
of a fat point z over an algebraically closed field κ. Instead of looking at the double
adjunction giving rise to the jet functor ∇z, we consider here the diminution part
only, that is to say, the right adjoint ∇j�z satisfying for each z-sieve Y on a z-scheme
Y and each fat κ-point w, an isomorphism

p∇j�z Yqpwq � Ypj�z wq

where this time, we have to view j�z w � zw as a fat z-point. By Theorem 3.7,
we associate in particular to any z-scheme Y , a κ-scheme ∇j�z Y . In particular, if
Y � j�z X is obtained from a κ-scheme X by base change, then

(31) ∇j�z Y � ∇zX

by Corollary 3.8.
Apart from jz, we also have the residue field morphism πz : Specκ Ñ z. To a

z-scheme Y , we can therefore also associate the base change Ȳ :� π�z Y , called the
closed fiber of Y . We can think of Y as a fat deformation of j�z Ȳ . Indeed, since
κ �z κ � κ, any κ-rational point of Y is also a κ-rational point on Ȳ , that is to
say, Y pκq � Ȳ pκq � j�z Ȳ pκq, showing that Y and j�z Ȳ have the same underlying
variety.

6.1. Example. For instance, if C is the curve x2 � y3, then the l3-scheme X :�
SpecR3rx, ys{px

2 � y3 � ξ2q has closed fiber C, and Xpκq � Cpκq. Note however
that Xpl3q � Cpl3q. In fact, truncation yields a map Xpl3q Ñ Cpl2q.

Hence, by (31), we may likewise think of ∇j�z Y as a fat deformation of the jet
space∇zȲ of its closed fiber, justifying the term deformed jet space for∇j�z Y . This
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construction is compatible then with specializations in the following sense. Fix a
κ-scheme Z. The base change jZ : Z � z Ñ Z is again a finite, flat homomorphism
satisfying condition (:), thus allowing us to consider the diminution∇j�Z , associating
to any Z � z-scheme Y , a Z-scheme∇j�ZY , called the relative jet scheme of Y . The
deformed jet space is then given by the special case when Z � Specκ.

6.2. Proposition. Let z be a fat κ-point and Z a κ-scheme. For every Z � z-
scheme Y , viewed as a family over Z in the sense of §3.15, and for any κ-rational
point a on Z, we have an isomorphism

∇j�z pYãq � p∇j�ZY qa

of κ-schemes, where ã : z Ñ Z � z is the base change of a.
Proof. Immediately from Theorem 3.12 applied to the base change diagram

(32)

?

-

?
-

Specκz

Z.Z � z

ã a

jZ

jz

�
So, returning to Example 6.1, let X ⊆ L3

l3
be the hypersurface with equation

x2 � y3 � zξ2. As a family over Ll3 via projection onto the last coordinate, its
specializations Xa are all isomorphic if a � 0, whereas the special fiber is X0 �

C � l3. The corresponding relative jet scheme∇j�L,l3X is given by

x̃2
0 � ỹ3

0 � 2x̃0ỹ1 � 3ỹ2
0 ỹ1 � 2x̃0x̃2 � x̃2

1 � 3ỹ0ỹ
2
1 � 3ỹ2

0 ỹ2 � z̃0 � 0

Its specializations are again all isomorphic (to the third order Milnor fiber; see below)
whereas the special fiber is isomorphic to∇l3C.

7. Limit points

The closed subscheme relation defines a partial order relation on Fatκ, that is
to say, we say that z̄ ¤ z if and only if z̄ is a closed subscheme of z (and not just
isomorphic to one). Consider a direct system of fat points with a least element,
viewed as schemes. It follows that all fat points in the system must have the same
center (to wit, the center of the least element). In other words, any fat point in the
directed system has the same underlying closed point, and so we will call such a
system a point system.
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We want to adjoin to the category of fat points its direct limits, but the problem
is that the category of schemes is not closed under direct limits either. However, the
category of locally ringed spaces is: if pXi,OXiq form a direct system, then their
direct limit is the topological space X :� limÝÑXi endowed with the structure sheaf
OX :� limÐÝOXi . Since we will assume that all fat points have the same underlying
topological space, namely a single point, the construction simplifies: the direct limit
of a point system is simply the one-point space with its unique stalk given as the
inverse limit of all the coordinate rings of the fat points in the system. A morphism in
this setup will mean a morphism of locally ringed spaces with values in the category
of κ-algebras. For example, if R is any κ-algebra and o the locally ringed space
with underlying set the origin and (unique) stalk R, and if X � SpecA is any affine
scheme, then Morκpo, Xq is in one-one correspondence with the set of κ-algebra
homomorphisms Homκ�algpA,Rq.

Let X ⊆ Fatκ be a point system. Its direct limit limÝÑX, as a one-point locally
ringed space, is called a limit point. Some examples of limit points are:

(7.i) If X is finite, the direct limit is just its maximum, whence a fat point.
(7.ii) Given a closed germ pY, P q, its formal completion pYP is the direct limit

of the co-jets JnPY , whence a limit point.
(7.iii) The direct limit of all fat points with the same center is called the uni-

versal point and is denoted uκ, or just u. Any limit point admits a closed
immersion into u. In particular, up to isomorphism, u does not depend on
the underlying point.

7.1. Lemma. The stalk of the universal point uκ is isomorphic to the power series
ring over κ in countably many indeterminates.

Proof. Any fat point is a closed subscheme of some formal scheme zpLnq. Hence
suffices to show that the inverse limit of the power series rings Sn :� κrrx1, . . . , xnss

under the canonical projections Sm Ñ Sn given by modding out the variables xi
for n   i ¤ m is isomorphic to the power series ring κrrxss in countably many
indeterminates x � px1, x2, . . . q. To this end, let fn P Sn be a compatible se-
quence in the inverse system. For each exponent ν � pν1, ν2, . . . q in the direct sum
NpNq of countably many copies of N, and each n, let an,ν P κ be the coefficient
of xν :� xν11 � � �x

νipνq
ipνq in fn, where ipνq is the largest index for which νi is non-

zero. Compatibility means that there exists for each ν an element aν P κ such that
aν � an,ν for all n ¡ ipνq. Hence f :�

°
ν aνx

ν P κrrxss is the limit of the
sequence fn, proving the claim. �

To make the limit points into a category, denoted yFatκ, take morphisms to be
direct limits of morphisms of fat points. More precisely, given point systems X,Y ⊆
Fatκ with respective direct limits x and y, then a morphism (of locally ringed spaces)
ϕ : x Ñ y is a morphism of limit points if for each z P X there exists a v P Y
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such that ϕpzq ⊆ v, or, dually, if the induced morphism limÐÝOv Ñ limÐÝOz has the
property that for each z P X, we can find a v P Y such that this morphism factors
through Ov Ñ Oz. In this way, the category yFatκ of limit points is an extension
of the category Fatκ of fat points, which in a sense acts as its compactification. In
particular, any limit point x admits a canonical structure morphism jx : x Ñ Specκ.
We also extend the partial order relation on Fatκ to one on yFatκ as follows. Firstly,
we say that z ¤ x for z a fat point and x � limÝÑX a limit point, if z ¤ v for some fat
point v P X. It follows that there is a canonical embedding z ⊆ x which induces a
surjection on the stalks, and which we therefore call a closed embedding in analogy
with the scheme-theoretic concept. We then say for a limit point y � limÝÑY that y ¤ x

if for every z P Y we have z ¤ x. It follows that we have a canonical morphism of
limit points y Ñ x which is again surjective on their stalks, and hence can rightly be
called once more a closed embedding. One checks that this defines indeed a partial
order on limit points extending the one on fat points.

We call a limit point x bounded if it is the direct limit of fat points of embedding
dimension at most n, for some n. Formal completions of closed germs are examples
of bounded limit points, whereas u clearly is not. In fact, any bounded limit point
arises in a similar, analytical way:

7.2. Proposition. The bounded limit points are in one-one correspondence with
analytic germs. More precisely, the stalks of bounded limit points are precisely the
complete Noetherian local rings with residue field κ.

Proof. Let x be a bounded limit point, say, realized as the direct limit of fat points
zi ⊆ Ln centered at the origin, for some fixed n. Let κrxs{ai be the coordinate ring
of zi, so that ai ⊆ κrxs is m-primary, where m is the maximal ideal generated by the
variables. Let I be the intersection of all aiκrrxss. I claim that x has stalk equal to
S :� κrrxss{I . Indeed, by a theorem of Chevalley ([12, Exercise 8.7]), there exists
for each l, some i such that aiS ⊆ mlS. In particular, the inverse limit is simply the
m-adic completion of S, which is of course S itself.

The converse is also obvious: given a complete Noetherian ring pS,mq with
residue field κ, then by Cohen’s structure theorem, it is of the form κrrxss{I for
some ideal I . One easily checks that it is the coordinate ring of the direct limit of the
corresponding co-jets SpecpS{mlq. �

Any limit point x � limÝÑX defines a functor x� by assigning to a fat point z the set
of morphisms Mor

yFatκ
pz, xq.

7.3. Corollary. The functor x� defined by a limit point x � limÝÑX is the inverse
limit of the representable functors v� for v P X. If x is moreover bounded, then x� is
a strongly formal motif.

Proof. Given a fat point z � SpecR, we have to show that vpzq for v P X forms
an inverse system with inverse limit equal to Mor

yFatκ
pz, xq. Let pS,mq be the stalk

of x, that is to say, the inverse limit of the coordinate rings of the fat points belonging
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to X. The first statement is immediate by functoriality, and for the second, note that
since R has finite length,

(33) Mor
yFatκ

pz, xq � Homκ�algpS,Rq.

More precisely, any κ-algebra homomorphism a : S Ñ R factors through S{ml Ñ

R, for l � `pRq. Moreover, if n is the embedding dimension of R, then there exists
a complete, Noetherian residue ring S̄ of S of embedding dimension at most n such
that a factors as S Ñ S̄{mlS̄ Ñ R. By the same argument as in the proof of
Proposition 7.2, there is some v � SpecT P X such that T Ñ S̄{mlS̄, showing that
a is already induced by the morphism z Ñ v. In fact, if x is bounded, then we may
choose v independent from a, showing that x�pzq � vpzq. Since all v P X embed in
the same affine space, x� is a locally schemic sieve on this space, whence a strongly
formal motif. �

Let x � limÝÑX be a limit point. Given a contravariant functor X on Fatκ, the
collection of all Xpvq for v P X is an inverse system of sets given by the maps
iv,w : Xpwq Ñ Xpvq if v ¤ w in X, where iv,w is induced by the embedding v ⊆
w. We denote the inverse limit of this system simply by Xpxq. It follows from the
definition of morphisms of limit points that X becomes a functor on the category of
limit points. In other words, any contravariant functor on Fatκ extends to one onyFatκ; this principle will simply be called continuity. Since inverse limits commute
with functors, one easily verifies that if s : X Ñ Y is a natural transformation, then
for any limit point x, this induces a map Xpxq Ñ Ypxq, showing that extension by
continuity is functorial.

If X is a point system in Fatκ with limit x, and if z is any fat point with canonical
morphism jz : z Ñ Specκ, then the base change j�z X consisting of all zv for v P X

is again a point system, whose limit we simply denote by zx (the reader can check
that this defines a product in the category yFatκ). Repeating this argument on the
first factor then shows that we may even multiply any two limit points. However,
this multiplication does no longer behave as well as before. For instance, since the
base change j�z pFatκq by any fat point z is equal to the whole category Fatκ, we
get zu � u.

Let jx : x Ñ Specκ be the structure morphism of the limit point x. Strictly speak-
ing, as this is only a direct limit of finite, flat morphisms, the theory of diminution
does not apply, and neither that of augmentation. Nonetheless, without going into
details, one could develop the theory under this weaker condition, although we will
only give an ad hoc argument in the case we need it. So, given a sieve X on yFatκ,
we define ∇xX :� ∇j�x ∇pjxq�X at a limit point y as the set Xpxyq, where we view xy

again as a limit point (over κ).
7.4. Lemma. For any limit point x and any κ-scheme X , the adjoint ∇xpX

�q is
representable, by the so-called arc scheme∇xX along x.
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Proof. Let x be the direct limit of the directed subset X ⊆ Fatκ. Suppose first
thatX is affine. Since the∇wX for w P X form an inverse system of affine schemes,
their inverse limit is a well-defined affine scheme X̃ with coordinate ring the direct
limit of the coordinate rings of the jet schemes along fat points in X. By continuity,
it suffices to verify that∇xpX

�q � X̃� on Fatκ. To this end, fix a fat point z. From

p∇xpX
�qqpzq � Xpxzq � limÐÝ

wPX

Xpwzq

� limÐÝ
wPX

Morκpz,∇wXq

� Morκpz, limÐÝ
wPX

∇wXq

� Morκpz, X̃q � X̃pzq,

where we used the universal property of inverse limits in the third line, the claim
now follows. The general case follows from this by the open nature of jet schemes
(Theorem 4.4) and the fact that ifX admits an open affine covering of cardinalityN ,
then so does any jet scheme∇zX by base change. �

7.5. Remark. We can take this still one step further by using Remark 4.19 and
the fact proven in [17, Lemma 2.8] that any scheme Y is the direct limit, as a sieve,
of its zero-dimensional closed subsieves. Thus we define ∇YX as the inverse limit
of the ∇ZX , where Z ⊆ Y runs over all zero-dimensional closed subschemes, and
call it the scheme of Y -arcs on X .

8. Extendable jets

Let pY be a formal completion of a closed germ pY,Oq, viewed as the limit point
of the co-jets JnOY , and let X be a κ-scheme. By Lemma 7.4, we have an associated
arc scheme ∇

pYX . For each n, we have a canonical map ∇
pYX Ñ ∇JnOYX , which

in general is not surjective (it is so, by Theorem 4.14, when X is smooth). To study
this image, we make the following definitions.

Given a closed embedding v ⊆ w, the image sieve given by the canonical map
∇wX Ñ ∇vX is called the motif of w-extendable jets on X along v, and will be
denoted ∇w{vX . By construction, it is sub-schemic. Let ∇nX :� ∇JnOYX , and
∇m{nX :� ∇JmO Y {JnOYX , for m ¥ n. Since the map ∇

pYX Ñ ∇nX is not of
finite type, the corresponding image sieve, denoted∇

pY {nX and called the n-th orderpY -extendable jets on X , may fail to be sub-schemic. We do have:
8.1. Theorem. For each κ-scheme X , for each formal completion pY of a closed

germ, and for each n, the n-th order extendable jets on X along this formal comple-
tion,∇

pY {nX , is a formal motif.
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Proof. Without loss of generality, we may assume that pY is the completion of
Y at the origin. It is clear that ∇

pY {nX is the intersection of all ∇m{nX , for m ¥

n. To show that it is a formal motif, it suffices to show that its complement can
be approximated by sub-schemic motives. Since each ∇m{nX is sub-schemic, this
will follow if we can show that for each fat point z, there is some mz such that
∇
pY {nXpzq � ∇mz{nXpzq.
Recall that for pR,mq a quotient of a power series ring κrrξss modulo an ideal

generated by polynomials, we have uniform strong Artin Approximation, in the sense
that for any polynomial system of equations f1 � � � � � fs � 0 and every n, there
exists some N , such that any solution of this system in R{mN is congruent modulo
mn to a solution in R: see for instance [15, Theorem 7.1.10], where the proof is only
given for the power series ring itself, but immediately generalizes to any quotient
by a polynomial ideal, whence in particular to the stalk of the formal completion pY .
This means that ∇

pY {nXpκq � ∇m{nXpκq, for some m ¥ n. To obtain a similar
identity over an arbitrary fat point z, we apply the same result but replacing X by the
jet scheme∇zX , yielding the existence of a mz ¥ n such that

∇
pY {nXpzq � ∇pY {np∇zXqpκq � ∇mz{np∇zXqpκq � ∇mz{nXpzq,

as required. �

8.2. Remark. I believe that with some greater care on how the boundmz depends
on z, one should be able to show that in fact ∇

pY {nX is strongly formal. Since we
may no longer have the required strong Artin Approximation estimate, I do not know
whether this result generalizes to arbitrary limit points, that is to say, is ∇y{xX a
formal motif, for limit points x ¤ y. The first case to look at is when x is a fat point
and y is bounded (but not a formal completion).

9. Motivic generating series

Although we can work in greater generality, we will assume once more that our
base scheme is an algebraically closed field κ, and, unless noted, we will work over
the localized Grothendieck ring G :� GrpFormstr

κ qL of strongly formal motives.
We can similarly extend the theory to arbitrary formal motives, but except possibly
for Poincaré series (see below), this does not seem to be necessary.

Motivic Igusa-zeta series. For any κ-schemeX and any closed germ pY, P q, we
define the motivic Igusa-zeta series of X along the germ pY, P q as the formal power
series

Igumot
pY,P qpXq :�

8̧

n�1

L�d�jnP pY qr∇JnPYXs t
n
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in Grrtss, where d is the dimension of X and jnP pY q the length of the n-th co-jet
JnPY (which is also equal to the Hilbert-Samuel polynomial of OY,P for large n).
This definition generalizes the one in [1] or [3, §4], where Y is just the germ of a
point on a line (and the classes are taken inside the classical Grothendieck ring).

9.1. Theorem. If X is a smooth d-dimensional variety and pY, P q a closed germ,
then

Igumot
pY,P qpXq �

rrXss t

1� t
,

over G.
Proof. Recall that rrXss � rXs{Ld is the weightless class of X defined in (30).

Since X is smooth, we have

(34) r∇JnPYXs � rXsLdpj
n
P pY q�1q

by Theorem 4.14, from which the assertion follows easily. �

With aid of (34) applied to affine space (or (19)), we can write down a more
suggestive formula for the motivic Igusa-zeta series

(35) Igumot
pY,P qpXq :�

8̧

n�1

∇JnPY rrXss t
n.

To discuss motivic rationality, we have to keep in mind that G is most likely not
a domain, nor even reduced (as neither is GrpVarκq). Let Σ be the multiplicative
subset consisting of products of units of the form u�vLatb with u, v P κ and u � 0,
and with a, b P Z and b ¥ 1. We call f P Grrtss strongly rational, if it is of the
form P {s with P P Grts and s P Σ. In particular, by the previous result, the motivic
Igusa-zeta series of a smooth variety is strongly rational.

9.2. Question. When is the motivic Igusa-zeta series Igumot
pY,P qpXq of a κ-scheme

X along an arbitrary closed germ pY, P q strongly rational over G?
More generally, given any strongly formal motif X on a d-dimensional κ-scheme

X , we define its Igusa-zeta series along the germ pY, P q as the formal power series

Igumot
pY,P qpXq :�

8̧

n�1

∇JnPY
�
rXs

Ld



tn

and ask about its strong rationality.
9.3. Corollary. Given an irreducible scheme X and a closed germ pY, P q, its

motivic Igusa zeta series is strongly rational if and only if Igumot
pY,P qp

pXsingq is strongly

rational, where pXsing is the formal completion of X along its singular locus.
Proof. Let U be the regular locus of X , so that U is either empty, in which case

the statement trivially holds, or otherwise, it has the same dimension d asX . By [17,
Proposition 7.1], we have an equality rXs � rU s � r pXsings in G. Diving by Ld and
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taking the jet operator∇n :� ∇JnPY yields

∇nrrXss � ∇nrrU ss �∇nr
pXsing

Ld
s

Multiplying with tn and summing over all n then yields an identity of motivic series

(36) Igumot
pY,P qpXq � Igumot

pY,P qpUq � Igumot
pY,P qp

pXsingq.

By Theorem 9.1 the first series on the right hand side is strongly rational, proving
the claim. �

Building upon this phenomenon, let us define an equivalence relation on Grrtss

by calling f � g, if there exists s, t P Σ such that sf � tg is strongly rational.
In particular, if f � g and one is strongly rational, then so is the other. We can
now weaken the requirement in Question 9.2, by asking when two schemes have
�-equivalent motivic Igusa-zeta series. An identity like [17, (28)], namely rXs �
rCs�L� in G, whereX is the union of two lines given by xy � 0 andC is the nodal
curve with equation y2 � x3�x2, shows that both curves have�-equivalent motivic
Igusa-zeta series by applying the jet operator to this identity and using Theorem 9.1.

9.4. Weighted motifs. Example 5.3 implies that not every motivic Igusa-zeta se-
ries can be rational: with the notation of loc. cit., the Igusa-zeta series along pY, P q
requires us to use the factor L�djnP pY q whereas along pZ,Qq, we need L�pdl�aqjnQpZq.
In case a ¡ 0 and pY, P q has dimension at least two, the rationality of the first pre-
cludes that of the second, in view of the extra factor LajnZpQq, since these exponents
grow at least quadratically in n, and hence can never appear in a rational function
(see also (38) below). To circumvent this, we introduce the jet of a weighted motif
as follows. Given a fat point z of length l, let∇z act on G`Q as

(37) ∇zrX, qs :� r∇zXs � Lrqls

for any strongly formal motif X and any rational number q. Thus, we can rewite (35)
also as

Igumot
pY,P qpXq :�

8̧

n�1

∇JnPY rX,�dst
n

With this notation, we define a weighted motivic Igusa-zeta series for any weighted
strongly formal motif pX, qq as

Igumot
pY,P qpX, qq :�

8̧

n�1

∇JnPY rX, q � dstn

and ask for which values of q is the series strongly rational. We postulate, in view of
Conjecture 5.2, that �q should be equal to δpY,P qpXq, the asymptotic defect, at least
when pY, P q has dimension two or higher. Continuing with Example 5.3, we have,
for any q P Q, an equality of weighted motivic Igusa-zeta series

(38) Igumot
pY,P qpX, qq � Igumot

pZ,Qqp∇zX, ql � aq.
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9.5. Remark. There is another possible solution to avoid quadratic or higher
powers of L to appear in the general term of the motivic Igusa-zeta series, by making
each term weightless (in the sense of dimension as given by (30)). Namely, define
the weightless motivic Igusa-zeta series

(39) Iguw
pY,P qpXq :�

8̧

n�1

rr∇JnPYXss t
n

for any κ-scheme X and any closed germ pY, P q. Conjecture 5.2 is then equivalent
with the existence of some q for which the difference Igumot

pY,P qpX, qq� Iguw
pY,P qpXq

is a polynomial (it is zero for X smooth and q � 0). When is (39) strongly rational?
9.6. Example. The present point of view even gives interesting new results over

the classical Grothendieck ring, since we may take the image of the motivic Igusa
zeta series in GrpVarκq. Continuing with the calculations made in Example 4.7,
let m be a positive integer and consider the image of Iguplmq :� Igumot

pL,Oqplmq over
the localized classical Grothendieck ring GrpVarκqL. This amounts to taking the
reduced scheme underlying each jet scheme ∇ln lm, and as shown above, this reduc-
tion is just Ln�r nm s. Write n � sm � r for some unique s ¥ 1 and 0 ¤ r   m, so
that r nm s � s. Over GrpVarκqL, we have

Iguplmq �
m�1̧

r�0

8̧

s�1

Lsm�r�stsm�r �
°m�1
r�0 pLtq�r

p1� Lm�1tmq
.

In particular, whenever Question 4.15 holds affirmatively, the image of the motivic
Igusa zeta series of the fat point would be strongly rational over the classical Gro-
thendieck ring. Skipping the easy calculations, where one uses that jets commute
with products, we have for instance that

Igupzq �
t� L2t2

p1� L2t2q

where z is the fat point l22p� l2 � l2q with coordinate ring κrx, ys{px2, y2q. Simi-
larly, one calculates that Igupla � lbq is strongly rational with denominator dividing
1 � L2ab�a�btab (the exact denominator is given by diving both exponents by the
greatest common divisor of a and b); and Igupldmq has denominator p1�Ldpm�1qtmq.
However, the reduced Igusa zeta-series does not characterize the fat point uniquely,
as can be seen from the next result:

9.7. Lemma. Let m ¥ 2 and suppose z is a closed subscheme of ldm given by
equations of order at least m. Then ∇lnz and ∇ln ldm have the same underlying
variety, whence the same dimension, for all n. In particular, Igupzq � Igupldmq.

Proof. Let x, y, . . . be the d variables defining z and let 1, . . . , ξn�1 be the basis
of ln with respect to which we calculate jets. By assumption, its ideal of definition
contains all powers xm, ym, . . . and some additional polynomials of order at least
m. Since jets commute with products, the minimal prime ideal of∇ln ldm � p∇ln lmq

d
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is equal to px̃0, ỹ0, . . . , x̃1, ỹ1, . . . , x̃s, ỹs, . . . q with s � r nm s by Example 4.7. Let
Ā be the coordinate ring of the reduction of ∇ln ldm. Hence the generic jets ux, uy, . . .
all have order at least s in ξ over Ā. If fpx, y, . . . q is some additional equation of
z, by assumption of order at least m in the variables x, y, . . . , then fpux, uy, . . . q has
order at least sm ¥ n in ξ over Ā, and hence does not contribute in the calculation
of∇lnz, showing that Ā is also the coordinate ring of the reduction of∇lnz. �

We can take this construction even a step further: let X be a d-dimensional κ-
scheme, X a strongly formal motif on X , and y a limit point. In order to study
∇yrrXss, we need to understand the asymptotics of the direct system ∇zX with z

running over all fat points in a point system Y with limit y. To which extent is this
independent from the choice of point system Y? Suppose Y is a countable chain
tz1 ⊆ z2 ⊆ . . . u, so that we can build the motivic Igusa-zeta series of X along Y, as
the power series over G given by

(40) Igumot
Y pXq :�

8̧

n�1

∇znrX,�dst
n.

We again may ask about its strong rationality (which, of course, will require a certain
‘naturality’ of the chain) , and how these series for two different point systems Y and
Y1 with the same limit, are related to each other.

Motivic Hilbert series. Given a motivic siteM, we letM0 be its restriction to the
subcategory of zero-dimensional schemes, that is to say, the union of all M|Z , where
Z runs over all zero-dimensional κ-schemes. As the product of two zero-dimensional
schemes is again zero-dimensional, M0 is a partial motivic site, and hence has an as-
sociated Grothendieck ring Gr0pMq :� GrpM0q, called the Grothendieck ring of
M in dimension zero. There is a natural homomorphism Gr0pMq Ñ GrpMq, which
in general will fail to be injective, as there are a priori more relations in the latter
Grothendieck ring. In particular, applied to (sub-)schemic or (strongly) formal mo-
tives, we get the corresponding Grothendieck rings in dimension zero Gr0pSchκq,
Gr0psubSchκq, Gr0pForm

str
κ q, and Gr0pFormκq.

9.8. Proposition. The schemic Grothendieck ring in dimension zero, Gr0pSchκq,
is freely generated, as an additive group, by the isomorphism classes of fat points.

In particular, there is a canonical homomorphism ` : Gr0pSchκq Ñ Z extending
the length function.

Proof. A zero-dimensional scheme Z is a disjoint union z1 \ � � � \ zs of fat
points (in a unique way). Moreover, since any fat point is strongly connected, this
unique decomposition in fat points is its schemic decomposition. Hence, by the
proof of [17, Theorem 5.7], the image of rZs under the composition Gr0pSchκq Ñ

GrpSchκq
δ
Ñ Γ is xz1y � � � � � xzsy, where Γ is the free Abelian group on isomor-

phism classes of strongly indecomposable κ-schemes. Since rZs � rz1s � � � � � rzss
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in Gr0pSchκq, this composition is an isomorphism. The last assertion is now im-
mediate. �

Let pX,P q be a closed germ over κ. For t a single variable, we define the motivic
Hilbert series as the series

Hilbmot pX,P q :�
8̧

n�1

rJnPXs t
n

in Gr0pSchκqrrtss. Extending the homomorphism ` from Proposition 9.8 to the
power series ring Gr0pSchκqrrtss by letting it act on the coefficients of a power
series, `pHilbP pXqq is a rational function in Zrrtss by Hilbert-Samuel theory (it is
the first difference of the classical Hilbert series ofX atP ). However, Hilbmot pX,P q

will in general not be (strongly) rational, even over G, as is already clear from taking
pX,P q � pL, Oq. Although no longer specializing to a classical series, we may also
consider the more general series

Hilbmot pX,xq :�
8̧

n�0

rJnxXs t
n

where x is any point on X (not necessarily closed).
9.9. Theorem. Let κ be an algebraically closed field of cardinality 2γ for some

infinite cardinal γ (under the Generalized Continuum hypothesis this means any un-
countable algebraically closed field). The assignment pXP ÞÑ Hilbmot pX,P q is a
complete invariant in the sense that for closed germs pX,P q and pY,Qq over κ,
their completions pXP and pYQ are abstractly isomorphic (that is to say, over Z) if
and only if they have the same motivic Hilbert series in Gr0pSchκq.

Proof. Immediate from Proposition 9.8 and the classification results [16, Theo-
rem 1 and §8.3]. �

Motivic Hilbert-Kunz series. Assume that κ has characteristic p. Recall that for
a given closed subscheme Y ⊆ X , we defined in §3 its Frobenius transform in X as
the pull-back F�

XY :� F�X �X Y of Y along FX . We may also take the pull-back
with respect to the powers FnX of the Frobenius, yielding the n-th Frobenius trans-
form Fn�X Y . If Y has dimension zero, then so does any of its Frobenius transforms,
and so the following series, called the motivic Hilbert-Kunz series,

HKmot
Y pXq :�

8̧

n�1

rFn�X Y s tn

is a well-defined series in Gr0pSchκqrrtss. Taking the length function ` yields the
classical Hilbert-Kunz series, of which not too much is known (one expects it to be
rational). Of course, we could also take Y to be of higher dimension, and get the
corresponding motivic Hilbert-Kunz series in GrpSchκqrrtss.

Instead of transforms we could take iterated Frobenius motives FnY :� ∇FnY

given as the image sieve of the n-th relative Frobenius FnLs � 1Y , for some closed
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immersion Y ⊆ Ls, in case Y is affine, and by glueing for the general case, yielding
a series

FrmotpY q :�
8̧

n�1

r∇FnY s t
n

in Gr0pSchκqrrtss. Note that FnY pκq � Y pFnκq � Y pκq by Theorem 3.14, so that
this series becomes the rational function rY s{p1� tq in GrpVarκq.

Motivic Milnor series. Let pY, P q be a closed germ with formal completion pYP ,
so that pY �

P is a strongly formal motif approximated by its co-jets. However, this is
not the only way to locally approximate it with schemic submotives. Given a system
of parameters ξ1, . . . , ξe in OY,P (that is to say, a tuple of length e � dimpOY,P q
generating an ideal primary to the maximal ideal), let yn be the fat point with coor-
dinate ring Bn :� OY,P {pξn1 , . . . , ξne qOY,P , and jyn : yn Ñ Specκ the canonical
morphism. The reader can check that given a fat point z, there exists some n such that
ynpzq � pYP pzq, that is to say, pYP is the limit point corresponding to the point system
tynun (see §7), called the deformations of Y with respect to the system of parame-
ters ξ1, . . . , ξe. Recall that by the Monomial Theorem, the element pξ1 � � � ξeqn�1 is
a non-zero element in the socle of Bn (meaning that the ideal it generates has length
one).

Let X ⊆ Ld�1 be the (d-dimensional) hypersurface with equation fpxq � 0 and
letXn ⊆ Ld�1

yn be the deformed hypersurface with equation fpxq�pξ1 � � � ξeqn�1 �

0. In other words, it is the general fiber in the family Wn ⊆ Ld�2
yn over the last

coordinate z, given by the equation fpxq � zpξ1 � � � ξeq
n�1 � 0, whereas the special

fiber is just the base change j�ynX . We define the n-th order Milnor fiber of X along
the germ pY, P q as the deformed jet space

MnpXq :� ∇j�ynXn.

Hence, by Proposition 6.2, with jd,n : Ld�2
yn Ñ Ld�2 the base change of jyn , the

specializations of the relative jet scheme are

(41)
p∇j�d,nWnqa � ∇ynX if a is the zero section;

�MnpXq otherwise.

We define the associated Milnor series

Milmot
pY,P qpXq :�

8̧

n�1

L�d`pynqrMnpXqst
n

as a power series in t over G. By (40) and (41), this series can be viewed as a
deformation of the motivic Igusa-zeta series along the deformations yn. When pY, P q
is the germ of a point on a line, we get the schemic variant of the series introduced
by Denef-Loeser et al. Therefore, in view of Question 9.2, we ask when the motivic
Milnor series is also strongly rational, and in fact, as a rational function, to have
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degree zero. Assuming this to be true, we can calculate the limit of this series when
tÑ8, and this conjectural limit, presumably in G, will be called the motivic Milnor
fiber of X along the closed germ pY, P q.

9.10. Proposition. The motivic Milnor series of a smooth hypersurface X along
a closed germ is strongly rational and its motivic Milnor fiber is equal to �rrXss.

Proof. With notation as above, the defining equations of MnpXq are the same as
those of ∇ynX , except for the last equation, which has an additional term �1 (here
we choose a basis for the coordinate ring of yn with last element pξ1 � � � ξeqn�1,
which is possible by the Monomial Theorem). Therefore, the argument in Theo-
rem 4.14 shows that rMnpXqs � rXsLdp`pynq�1q, where d is the dimension of X . It
follows that Milmot

pY,P qpXq �
rrXsst
1�t , from which the last claim is now also clear. �

For Y of higher dimension, we may again need weighted (see §9.4) or weightless
(see Remark 9.5) variants for rationality to happen, and so, setting rMnpX, qqs :�
rMnpXqs � Lr�q`pynqs, we define the weighted motivic Milnor series as

Milmot
pY,P qpX, qq :�

8̧

n�1

rMnpX, q � dqstn,

and, with the notation from (30), the weightless motivic Milnor series as

MilwpY,P qpXq :�
8̧

n�1

rrMnpXqsst
n.

We may again ask whether there is a q such that MilwpY,P qpXq �Milmot
pY,P qpX, qq is a

polynomial.
Motivic Hasse-Weil series. Another important generating series in algebraic ge-

ometry whose rationality—proven by Dwork in [4]—is postulated to be motivic, is
the Hasse-Weil series of a scheme over a finite field Fq: its general coefficient is the
number of rational points over the finite extensions Fqn . To turn this into an abstract
counting principle, we use the inversion formula relating the number of degree n ef-
fective zero cycles onX to the number of rational points in an extension of degree n,
and observe that the former cycles are in one-one correspondence with the rational
points on the n-fold symmetric productXpnq ofX (given as the quotient ofXn mod-
ulo the action of the symmetric group on n-tuples). Therefore, following Kapranov
[8], we propose the following motivic variant, the Motivic Hasse-Weil series:

HWmot
X :�

8̧

n�0

rXpnqs tn,

as a power series over G. Kapranov himself proved rationality of the image of
this series over GrpVarCqL, as well as a functional equation, for certain smooth,
projective irreducible curves, but the general case is still open. We know from work
of Larsen and Lunts on smooth surfaces ([10]), that, in general, this cannot hold over
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the Grothendieck ring itself: in [11], they show that rationality over the Grothendieck
ring is equivalent with the complex surface having negative Kodaira dimension. It is
therefore natural to conjecture the same properties for our motivic variant HWmot

X .
Motivic Poincare series. Given a closed germ pY, P qwith formal completion pY ,

viewed as a limit point, and a κ-scheme X , by Theorem 8.1, we can now define the
motivic Poincaré series of X along pY, P q as the formal series

Poinmot
pY,P qpXq :�

8̧

n�1

L�dj
n
P pY qr∇

pY {nXst
n

over G, where d is the dimension of X , where ∇
pY {nX denotes the n-th order pY -

extendable jets on X (see §8), and where, as before, jnP pY q is the length of the
n-th co-jet JnPY (strictly speaking, we do not yet know whether extendable jets are
strongly formal, and so we should really work in GrpFormκqL, but see Remark 8.2).
Denef and Loeser proved in [2] that along the germ of a point on the line, the image
of this series in the localized classical Grothendieck ring is rational, provided κ has
characteristic zero. Extending the notation to weighted motifs (see §9.4), by putting
∇
pY {nrX, qs :� r∇

pY {nXsL
rqjnP pY qs, and defining the weighted motivic Poincaré se-

ries as

Poinmot
pY,P qpX, qq :�

8̧

n�1

r∇
pY {nX, q � dstn

it is therefore natural to ask:
9.11. Question. For any closed germ pY, P q and any κ-scheme X , for which q is

the associated motivic Poincaré series Poinmot
pY,P qpX, qq strongly rational over G?

The question is answered in the affirmative by Theorem 9.1 for smooth X with
q � 0, since then ∇

pY {nX � ∇JnPYX by Theorem 4.14, so that the Poincare series
and Igusa-zeta series agree. Similarly, we define the weightless motivic Poincaré
series as

Poinw
pY,P qpXq :�

8̧

n�1

rr∇
pY {nXsst

n.

Given X and a formal completion pY , we may ask for each n, which are the fat
points z containing the n-th co-jet jn :� JnOY such that ∇

pY {jn
X ⊆ ∇z{jnX , that is

to say, when are pY -extendable jets also z-extendable? For instance, if pY � pL is the
completion of the affine line, then by Theorem 4.14, we can extend along any co-jet
of a non-singular germ pW,Oq, since there exist closed immersions jn ⊆ JnOW ⊆ jdn,
where d is the dimension of pW,Oq. However, I do not know whether we can extend
along the fat point given by, say, x4 � y4 � x3� y2 � 0. For which schemes X can
every pY -extendable jet be extended along any fat point? This is true if X is smooth,
but are there any other cases?
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10. Motivic integration

Unlike the Kontsevitch-Denef-Loeser motivic integration, we will only define in-
tegration on the jet schemes, and not on the arc schemes. We continue to work over
the localized Grothendieck ring G :� GrpFormstr

κ qL, with κ an algebraically closed
field (we leave the general formal case as an exercise). Before we develop the theory,
we discuss a naive approach.

Motivic measure. We fix a fat point z. Our goal is to define a motivic measure
µz on strongly formal motives. To this end, we define

µzpXq :� r∇zXs

in G. In particular, this measure does not depend on the ambient space of X, only
on its germ. Using Theorem 4.8, we can extend the motivic measure to an en-
domorphism on G. We would like to normalize this measure, with the ultimate
goal—which, however, we do not discuss in this paper—to make the comparison be-
tween different fat points and take limits. One way to normalize is to make the value
weightless (in the sense of dimension; see (30)), by

µ̄zpXq :� rr∇zXss

This, of course, is no longer additive, and the corresponding integral will no longer
satisfy Proposition 10.3 below. For this reason, we will normalize differently below,
by fixing an ambient space. Following integration theory practice, we would like to
say that »

1X dzx :� µzpXq :� r∇zXs

and extend this to arbitrary step functions. Here, a step function would be a formal,
finite sum s �

°
gi1Xi with gi P G and Xi strongly formal motives. However,

how to interpret this as a function? As usual, we should do this at each fat point w,
and interpret 1Xpwq as the characteristic function on Xpwq of Xpwq, where X is an
ambient space of X. Likewise, providedX is an ambient space for all Xi, we let spwq
be the function Xpwq Ñ G associating to a w-rational point a P Xpwq the sum of
all gi for which a P Xipwq. However, the main obstruction is that this point-wise
defined function is in general not functorial. The reason is the non-functorial nature
of fibers, which in turn stems from the lack of complements in categories—note that
the complement of a fiber is the union of the other fibers. To recover functoriality,
we work over a subcategory of fat points as in [17, §8], the material of which we
quickly review.

Split points. Let Fatsplit
κ be the category of split points over κ, whose objects are

fat points over κ and whose morphisms are split epimorphisms ϕ : z Ñ w, that is to
say, admitting a section, σ : w Ñ z such that ϕσ is the identity on w. Each structure
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morphism z Ñ Specκ is a split epimorphism, and by base change, so is each pro-
jection map zw Ñ w. We call a Boolean combination of strongly formal motives a
strongly split-formal motif. The key result proven in [17, Proposition 8.4]–explaining
also the name–, is that a split-formal motif is a functor on Fatsplit

κ (it is in general
no longer a functor on Fatκ). To make this into a motivic site, the strongly split-
formal motivic site Formsspl

κ , we take as morphisms those natural transformations
between strongly split-formal motives that extend to a morphism of (full) strongly
formal motives (see [17, §8] for more details). We show in [17, Proposition 8.6] that
the Grothendieck ring of Formsspl

κ has not changed: it is equal to the formal Gro-
thendieck ring GrpFormstr

κ q. For strongly formal motives X ⊆ Y and a fat point z,
we therefore set

(42) ∇z pYzXq :� ∇zYz∇zX.

Since jets commute with unions, this is well-defined, and extends the jet operator to
any strongly split-formal motif. Moreover, after taking classes, (42) gives the correct
value in the Grothendieck ring.

10.1. Lemma. If X is a strongly split-formal motif and z a fat point such that
∇zX is empty, then X too is empty. In particular, all jet maps are injective on each
ambient space.

Proof. By the argument in the proof of [17, Proposition 8.6], we may reduce to
the case that X is of the form YzZ with Z ⊆ Y (full) strongly formal motives. Let
w be an arbitrary fat point. The closed immersion w ⊆ zw induces maps Zpzwq Ñ

Zpwq and Ypzwq Ñ Ypwq. Since composing the closed immersion with the (split)
projection zw Ñ w is the identity, the two above maps are surjective. Since ∇zX is
the empty motif, it has no w-rational points, that is to say, Zpzwq � Ypzwq by (42).
Surjectivity then yields that Zpwq � Ypwq, whence Xpwq � H. Since this holds for
any fat point w, we see that X is the empty motif.

To prove the last assertion, assume ∇zX � ∇zY for X,Y strongly split-formal
motives on a scheme X . By what we just proved, XzpX X Yq and YzpX X Yq are
both empty, from which the claim now follows. �

From now on, we will work in the category of strongly split-formal motives
Form

sspl
κ , and we view the class of any such motif as an element in the localized

Grothendieck ring G :� GrpFormstr
κ qL. Let G be the constant pre-sieve with val-

ues in G, that is to say, the contravariant functor on the category of split points which
associates to any fat point the set G and to any split epimorphism of fat points the
identity on G. Given a morphism, that is to say, a natural transformation, s : X Ñ G,
we define, for each g P G, the fiber s�1pgq as the subfunctor of X given at each fat
point z by the fiber spzq�1pgq of spzq : Xpzq Ñ G at g. If both X and all fibers are
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strongly split-formal motives, and s has only finitely many non-empty fibers, then
we call s a formal invariant.4

10.2. Corollary. The formal invariants on a strongly split-formal motif X form
an algebra over G.

Proof. Clearly, any multiple of a formal invariant by an element in G is again a
formal invariant. Let s, t : X Ñ G be formal invariants. We have to show that s� t

and st are also formal invariants. Functoriality is easily verified, so we only need to
show that the fibers are again strongly split-formal motives. Fix a fat point z, and
an element g P G. A z-rational point a P Xpzq lies in ps� tq�1pgqpzq (respectively,
in pstq�1pgqpzq), if spzqpaq � tpzqpaq � g (respectively, if spzqpaq � tpzqpaq � g).
Since spzq and tpzq have finite image, their are only finitely many ways that g can be
written as a sum p� q (respectively, a product pq), with p in the image of spzq and q
in the image of tpzq. Hence, the rational point a lies in the intersection

�
spzq�1ppq

�
X�

tpzq�1pqq
�
, for one of these finitely many choices of p and q. Since a finite union

of intersections of strongly split-formal motives is again strongly split-formal, the
result follows. �

Motivic integrals. Let X be a κ-scheme, z a fat point, and s : X Ñ G a formal
invariant with X a strongly split-formal motif on X . We define the motivic integral
of s on X along z as

(43)
»
s dzX :� L�dl

¸
gPG

g � r∇zps
�1pgqqs,

where d is the dimension of X and l the length of z. Note that the sum on the right
hand side of (43) is finite by definition, so that

³
s dzX is a well-defined element in

G. At the reduced fat point, Specκ, we drop the subscript in the measure, and so
this integral becomes »

s dX :� L�d
¸
gPG

g � rs�1pgqs.

To a strongly formal motif Y on X , we can associate two invariants. Firstly, the
constant map, denoted again Y, which at each fat point is the constant map sending
every rational point to rYs. One easily calculates that»

Y dzX � rYs

»
dzX � rYs � L�dl � r∇zXs.

In particular, X ÞÑ
³
dX � rrXss is the weightless class map. It follows from The-

orem 4.8 and Proposition 5.5 that the integral
³
Y dzX only depends on the classes

of Y and X . Moreover, by our previous discussion
³
dzX has positive dimension.

4I do not know whether the finitude of the non-empty fibers does not already follow from the other
assumptions.
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Secondly, we define the characteristic function 1Y of Y by the rule that 1Ypzq

is the characteristic function of Ypzq, that is to say, the formal invariant sending a
rational point a P Xpzq to 1, if a P Ypzq, and to zero otherwise, for any fat point
z. Any formal invariant can be written as a G-linear combination of characteristic
functions, and, in fact, the decomposition

(44) s �
ņ

i�1

gi1Yi

is unique if the non-empty strongly formal submotives Yi are mutually disjoint (note
that then necessarily Yi � s�1pgiq). Therefore, (44) is called the fiber decomposi-
tion of s.

Since 1�1
Y p1q � Y, in the notation of weighted motifs (see §9.4), we get

(45)
»

Y

dzX �

»
1Y dzX � ∇zrY,�ds

where we followed the common practice of writing in general»
Y

s dzX :�
»
s � 1Y dzX.

In this notation, we have »
s dzX �

¸
gPG

g

»
s�1pgq

dzX

The weighted variant is simply given by scaling as»
s dzpX, qq :�

¸
gPG

g �∇zrs
�1pgq, q � ds � Lrqls

»
s dzX.

10.3. Proposition. For each κ-schemeX and each fat point z, the motivic integral
on X along z is a G-linear functional on the G-algebra of formal invariants.

Proof. Motivic integration is clearly preserved under multiplication by a constant
g P G. To prove additivity, we may induct on the number of characteristic functions,
and reduce to the case of a sum s� h1Z, that is to say, we have to prove

(46)
»
s� h1Z dzX �

»
s dzX �

»
h1Z dzX.

Let (44) be the fiber decomposition of s. Since the fiber decomposition of s � h1Z

is then
ņ

i�1

gi1Yi�Z �
ņ

i�1

pgi � hq1YiXZ � h1Z�Y

where Y is the union of the Yi, the left hand side of (46) is

L�dlp
ņ

i�1

gir∇zpYizZqs �
ņ

i�1

pgi � hqr∇zpYi X Zqs � hr∇zpZzYqsq,
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where d and l are respectively the dimension of X and the length of z. Grouping
together the n� 1 terms with coefficient h, and for each i, the two terms with coef-
ficient gi, this sum becomes

L�dlp
ņ

i�1

gir∇zYis � hr∇zZsq,

since ∇z acts on the Grothendieck ring by Theorem 4.8, and since both YizZ and
ZzY are disjoint from Yi X Z. However, this is just the right hand side of (46), and
so we are done. �

Let s : X Ñ G be a formal invariant on a κ-scheme X . Given an open U ⊆
X , let s|U denote the restriction of s to X X U�. It is easy to see that s|U is a
formal invariant on U . Let U1, . . . , Un be an open covering of X . For each non-
empty subset I ⊆ t1, . . . , nu, let UI be the intersection of all Ui with i P I . We
have the following local formula for the motivic integral (here we call a scheme
equidimensional if every non-empty open has the same dimension as the scheme):

10.4. Theorem. Let s : X Ñ G be a formal invariant on an equidimensional κ-
scheme X , let z be a fat point, and let U1, . . . , Un be an open covering of X . Then
we have an equality

(47)
»
s dzX �

¸
H�I⊆t1,...,nu

p�1q|I|
»
s|UI dzUI .

Proof. Given g P G, one easily verifies that we have an equality of motives

ps|UI q
�1pgq � s�1pgq X U�

I ,

for each I ⊆ t1, . . . , nu. Applying the scissor relations to this, we get an identity

rs�1pgqs � r
n¤
i�1

ps|Uiq
�1pgqs �

¸
H�I⊆t1,...,nu

p�1q|I|rps|UI q
�1pgqs

in G. Applying the jet morphism∇z as per Theorem 4.8, we get

r∇zps
�1pgqqs �

¸
H�I⊆t1,...,nu

p�1q|I|r∇zpps|UI q
�1pgqqs.

Since by assumption all non-empty UI have the same dimension as X (and, of
course, the empty ones do not contribute), the result follows from (43). �

Relations among motivic series. Let G0 :� Gr0pSchκq. We define, for any
element α P G0, the integral»

s dαX :�
ş

i�1

ni

»
s dziX

where α � n1rz1s� � � ��nsrzss is the unique decomposition in classes of fat points
given by Proposition 9.8. We then formally extend this over G0rrtss, by treating t as
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a constant. In this sense, we get, for a closed germ pY, P q, and a κ-scheme X , the
following identity of power series:

Igumot
pY,P qpXq �

»
dHilbmot pY,P qX.

As before, let us call a power series over G0 strongly rational, if it is of the form
p{s with p P G0rts a polynomial and s P Σ0, where Σ0 consist of all non-zero
polynomials over κ. Likewise, given f, f 1 P G0rrtss, we say f � f 1, if there exist
s, s1 P Σ0 such that sf � s1f 1 is strongly rational.

10.5. Theorem. Let pY, P q and pY 1, P 1q be two closed germs with the property
that Hilbmot pY, P q � Hilbmot pY 1, P 1q over G0, then for any scheme X , we have
Igumot

pY,P qpXq � Igumot
pY 1,P 1qpXq over G.

Proof. Let H and H 1 denote the respective motivic Hilbert series Hilbmot pY, P q

and Hilbmot pY 1, P 1q. By assumption

(48) sH � s1H 1 �
p

t
,

with s, s1, t P κrts non-zero and p P G0rts. In general, if q P κptq and h P G0rrtss,
then an easy calculation shows that dqh � qdh, meaning that for each scheme X and
each formal invariant s, we have

³
s dqhX � q

³
s dhX , and the claim now follows

by additivity applied to (48). �

11. Appendix: lattice rings

Let M be a motivic site over an algebraically closed field κ and let X be a κ-
scheme. By assumption, M|X is a lattice, and so we can define its lattice group
ΛXpMq as the free Abelian group on M-motives on X modulo the scissor relations

xXy � xYy � xXYYy � xXXYy

for any two M-motives X and Y on X . In other words, same definition as for the
Grothendieck ring, but without the homeomorphism relations. In particular, there
is a natural linear map ΛXpMq Ñ GrpMq. We will denote the class of a motif
X again by rXs. For each n, consider the embedding M|Xn Ñ M|Xn�1 via the
rule X ÞÑ X � X�. One verifies that this induces a well-defined linear map Λn :�
ΛX

n

pMq Ñ Λn�1 :� ΛX
n�1

pMq, where Xn is the n-fold Cartesian power of X .
Moreover, the Cartesian product defines a multiplication Λm � Λn Ñ Λm�n, for
all m,n. Hence `nΛn is a graded ring, called the graded lattice ring of M on
X , and denoted ΛX pMq. The linear maps Λn Ñ GrpMq combine to form a ring
homomorphism ΛX pMq Ñ GrpMq.

We can now state a combinatorial property of the motivic integral:
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11.1. Proposition. Over a κ-scheme X and a fat point z, we can define for each
formal invariant s : X Ñ G on X and each g P ΛXpFormstr

κ q, an integral
³
g
s dzX ,

such that if g is the class in ΛXpFormstr
κ q of a strongly formal motif Y on X , then»

g

s dzX �

»
Y

s dzX.

Proof. By definition, g is a Z-linear combination of classes of strongly formal
motives on X , say, of the form g � n1rY1s � � � � � nsrYss. Define»

g

s dzX :�
ş

i�1

ni

»
Yi

s dzX.

To show that this is well-defined, we have to verify this only for scissor relations,
that is to say, we have to show that»

Y

s dzX �

»
Y1

s dzX �

»
YYY1

s dzX �

»
YXY1

s dzX

for Y,Y1 strongly formal motives on X . This is immediate from the easily proven
identity of characteristic functions

1Y � 1Y1 � 1YYY1 � 1YXY1 .

�

Using this, we can now show that the lattice rings are not very interesting invari-
ants (and hence only by also taking homeomorphism relations, do we get something
significant):

11.2. Corollary. The natural map sending a strongly formal motif on some Carte-
sian power of X to its class in ΛX pForm

str
κ q is injective.

Proof. Note that there are no non-trivial relations among classes of motives on
different Cartesian powers ofX , so after replacingX by one of its Cartesian powers,
we may reduce to the case that X and Y are strongly formal motives on X having
the same class in ΛXpFormstr

κ q. By Proposition 11.1, we have

(49)
»

X

s dzX �

»
Y

s dzX

for any formal invariant s on X and any fat point z. Take s :� 1X. The left hand
side of (49) is equal to L�dlr∇zXs (as an element in G), whereas the right hand side
is equal to L�dlr∇zpXXYqs, where d and l are respectively the dimension of X
and the length of z. Using that ∇z preserves scissor relations, we get ∇zpXzYq � 0.
Hence XzY � H by Lemma 10.1, showing that Y ⊆ X. Replacing the role of X

and Y then proves the other inclusion. �
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5. L. Ein and M. Mustaţă, Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2,

Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505–546. 20
6. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math-

ematics, vol. 150, Springer-Verlag, New York, 1995. 8
7. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. 3, 8, 13
8. M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups,

ArXiv: math.AG/0001005. 41
9. M. Kontsevich, Motivic integration, Lecture at Orsay, 1995. 1

10. M. Larsen and V. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003),
no. 1, 85–95, 259. 41

11. , Rationality criteria for motivic zeta functions, Compos. Math. 140 (2004), no. 6, 1537–
1560. 42

12. H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986. 31
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