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SCHEMIC GROTHENDIECK RINGS II: JET SCHEMES
AND MOTIVIC INTEGRATION

HANS SCHOUTENS

Abstract

We generalize the notion of a jet scheme (truncated arc space) to arbitrary fat points
via adjunction, and show that this yields for each fat point, an endomorphism on
each schemic Grothendieck ring as defined in [17]. We prove that some of the ana-
logues for linear jets still hold true, like locally trivial fibration over the smooth lo-
cus. In this formalism, we can define several generating zeta series, motivic series,
the rationality of which can now be investigated. We use the theory of jet schemes
to define a local motivic integration with values in the formal Grothendieck ring.

1. Introduction

Modeled on p-adic integration, Kontsevich [9] formulated a general integration
technique for smooth varieties over an algebraically closed field x, called motivic
integration. This was extended by Denef and Loeser [, 2, 3] to arbitrary varieties
to achieve motivic rationality, by which they mean the fact that the rationality of a
certain generating series from geometry or number-theory, like the Igusa-zeta series,
is “motivated” by the rationality of its motivic counterpart. Here, the motivic coun-
terpart is supposed to specialize to the given classical series via some multiplicative
function, like a counting function or Euler characteristic. The two main ingredients
of this construction are the Grothendieck ring of varieties over «, in which the inte-
gration takes its values, and the truncated arc space L(X) of a variety X, that is to
say, the reduced Hilbert scheme classifying all jets Spec x[[£]] — X.

In [17], we generalized the concept of a Grothendieck ring to include also schemes
with nilpotent structure. The idea is to view a scheme as a contravariant functor, not
on all x-algebras, but only on Artinian local x-algebras, the so-called fat points. We
defined a formal motif as a certain subfunctor of a representable functor which can be
approximated by images of scheme-theoretic maps (more details are given in §2), and
build from these the formal Grothendieck ring Gr(Form,). In the present paper,
we turn to the second ingredient and define jet schemes via adjunction given by base
change over a fat point 3. The resulting jet motif V; X is again formal and classifies
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all maps from 3 to X. Applied to a scheme X, with 3 equal to the n-th co-jet [, :=
Spec(k[t]/t"k[t]), we recover the classical truncated arc/jet scheme. The major
advantage over the classical construction is that each jet map V; now operates on
the formal Grothendieck ring Gr(Form,,). Jets behave well over smooth varieties,
as in the classical case (Theorem 4.14): the canonical morphism V; X — X is a
locally trivial fibration over the non-singular locus of X, with general fiber some
affine space. Hence, in the smooth case, [V, X] = [X]L!¢~Y), where d and [ are
respectively the dimension of X and the length of (the coordinate ring of) 3, and
where L := [Al] is the Lefschetz class.

Using the formalism of adjunction, we discuss some variants of jets: deformed
jets in 86, and extendable jets in §8. For the definition of the latter, we discuss in §7
a compactification of the category of fat points, the category of limit points, given as
direct limits of fat points (e.g., the formal completion ?p). Although we can extend
the notion of jets to any limit point, the corresponding scheme is no longer of finite
type, and will be called an arc scheme.

In §9, we discuss some of the motivic series that can now be defined using this
formalism. Since they or their classical variants specialize to generating series that
are known to be rational, we ask whether they are already rational over the formal
Grothendieck ring, or rather, over its localization Gr(Form,); ; this is what is meant
by motivic rationality.

The final section, §10 is devoted to motivic integration. We only develop the fini-
tistic theory, that is to say, over a fixed fat point, leaving the case of a limit point to a
future paper. One of the great disadvantages of the categorical approach is that fibers
are in general not functorial (after all, a fiber is the complement of the remaining
fibers). We can overcome this, without changing the resulting Grothendieck ring, by
restricting to the category of split fat points, as discussed in [17, §9]. Our motivic
integration will take values in the localization Gr(Form,,); . A functor s, viewed
on the category of split fat points, from a formal motif X on X to the constant sheaf
with values in this localization Gr(Form, ), is called a formal invariant if all its
fibers are formal motives, with only finitely many non-empty. We then define

j sd X =L 3 g-[V(s (9],

geGr(Form, ),

where d is the dimension of X and [ the length of 3. This motivic integral can be
calculated locally (Theorem 10.4).

Notation and terminology. Varieties are assumed to be reduced, but not neces-
sarily irreducible. Given a scheme X, we let X™ denote its underlying variety or
reduction. We often denote a morphism of affine schemes Spec B — Spec A by
the same letter as the corresponding ring homomorphism A — B, whenever this
causes no confusion. By a germ (X, Y') we mean a scheme X together with a closed
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subscheme Y C X. Most of the time Y is an irreducible subvariety, that is to say,
the closure of a point y € X, and we simply write (X, y) for this germ. If Y is a
closed point, we call the germ closed. The n-th co-jet J3 X of a germ (X,Y) is
the closed subscheme defined by Z5:, where Zy is the ideal of definition of Y.! The
Jformal completion X y of the germ (X, Y) is the locally ringed space obtained as the
direct limit of the J3# X (see [7, I1.§9]). For instance, if Y = P is a closed point with
maximal ideal mp, then the ring of global sections of X p is the m p-adic completion
@X,p of OXJD.

We denote the affine line Aj, := A} x V over a base scheme V by L, or Ly
if we want to emphasize the base scheme, and also use this notation for its class in
a Grothendieck ring. The formal completion of the germ (L, O), where O is the
origin, is denoted H:, and the punctured line IL\O, that is to say, the open subscheme
obtained by removing the origin, is denoted L. Recall the formulalL. = L, + L in
Gr(Form,;) from [17, Proposition 7.1]. The n-th co-jet of (IL, O) will be denoted
[, = Spec R,,, where R,, := (x[z]/(z™)).

2. The formal Grothendieck ring

In this section, I give a brief overview of the results, as we need them, from [17].
Fix a Noetherian, separated, Jacobson scheme V as a base scheme, which often is
just the spectrum of an algebraically closed field k. By a scheme X, we mean a
separated scheme of finite type over V, and we let $chy denote the category of
schemes over V. Viewing a scheme X as a contravariant functor on the subcategory
Faty C $chy of all fat points, we denote it for emphasis by X°. Recall that a far
(V-)point 3 is a scheme of the form Spec R with R a finite, local V -algebra (that
is to say, a one-point scheme). More precisely, we let X (3) denote the collection
of all 3-rational points, by which we mean V-morphisms 3 — X. In other words,
X° = Mory (-, X). By a sieve on X, we mean a subfunctor X of X°, and we
denote the category of sieves over V by $ievey. Morphisms are a bit more tricky,
as we cannot allow just any natural transformation (see [|7, Example 2.16]). One
first makes the category of sieves into a topos via the Zariski topology of the ambient
space ([17, §3]), and requires that all morphisms be continuous, although this is still
not sufficient. Without going into details, the most important class of morphisms are
the rational ones, where a morphism s: ) — X is called rational, if it is induced
by a scheme-theoretic morphism ¢: ¥ — X of some ambient spaces, meaning that
s = 23|v° (see [17, §2.14]). In particular, we have

(1) Morgieve,, (3°, %) = X(3).

INote that many authors take instead the n 4 1-th power.
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for every fat point 3.

By applying set-theoretic constructions (such as inclusion, intersection, comple-
ment,...) point-wise, that is to say, on each set X(3), we can extend them to any
sieve. Now, the key notion is that of a motivic site M, which is a category of sieves
closed under Cartesian products, restricting on each scheme X to a lattice (with re-
spect to intersection and union); an M-sieve on X is called an M-motif with ambient
space X . To a motivic site M, we associate its Grothendieck ring Gr(IM) as the free
Abelian group on M-homeomorphism classes {X) of motives X modulo the scissor
relations

X+ - XY -&nY)

for any two motives X and ) with common ambient space (so that X UQ) and X n'Q)
are again motives in M). In [17], we give three motivic sites, each extending the
previous one, with the property that each of their Grothendieck rings admits a ho-
momorphism into the classical Grothendieck ring Gr(Vary ) of varieties. Namely,
given an arbitrary scheme X, we call a sieve X

(2.1) a schemic motif when it is a finite union of (functors represented by)
closed subschemes, yielding the Grothendieck ring Gr($chy );

(2.ii) to close the latter site under homorphic images, we call X sub-schemic if
its equals the sieve given by the image of some (scheme-theoretic) mor-
phism Y — X (that is to say, on each fat point 3, it consists of the
3-rational points on X that factor through Y), yielding the sub-schemic
Grothendieck ring Gr(sub%chy );

(2.iii) to include certain complements of sub-schemic motives, we say X is for-
mal, if it can be approximated by sub-schemic motives, yielding the for-
mal Grothendieck ring Gr(Formy ).

For our purposes, we will mainly work with the latter class, and so let me give a
more detailed definition: X is a formal motif on X, if there exists, for each fat point
3, amorphism ¢; : Y; — X whose image lies inside X (meaning that ¢, (r) (Y(x)) C
X(p) for all fat points r) and is equal to it at the fat point r = j itself. If, moreover,
we can choose the morphism ¢; only depending on the length of 3, then we call
X strongly formal, and we denote the collection of all strongly formal motives by
[F®rrrm§t,r. Any morphism with sub-schemic source is rational ([17, Theorem 3.17]),
and hence any morphism with formal source can be approximated by rational ones.
The most important example of a sub-schemic motif on a scheme X is the functor
U°® represented by a Zariski open U C X, and that of strongly formal motif, is its
complement X °\U®°, which is represented by the formal completion X of X along
the complement X\U. We proved in [17, Theorem 7.6], that if V' is the spectrum
of an algebraically closed field x, then there exists a canonical homomorphism from
Gr(Form,) to the classical Grothendieck ring Gr(Var,), sending the class of a
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motif X to the class of its x-rational points X(x). For the purposes in this paper, we
mainly need strongly formal motives. As we also need to invert the Lefschetz class
L, we therefore work, especially in the latter part of this paper, mostly in Gy :=
Gr([Fou'rmS‘}r)L. Moreover, the base field is more often than not just an algebraically

closed field x, and so we write G for G,..

3. Adjunction

Let V' and W be two Noetherian schemes. By a schemic adjunction over (V, W),
we mean a pair of functors n: Faty — Faty and V: $chy — Ichyy, called
respectively the left and right adjoint, such that, for each fat W-point 3 and each
V-scheme X, we have an adjunction isomorphism

@) O;.x: X(1(3)) = Mory (n(3), X) = Morw (3, VX) = VX(3),

which is functorial in both arguments. Whenever 3 and X are clear from the context,
we may just denote this isomorphism by O, or even omit it altogether, thus identi-
fying X (n(3)) with VX (3). More generally, by an (arbitrary) adjunction we mean
the same as above, except that the right adjoint now only takes values in the cate-
gory of sieves, that is to say, is a functor V: $chy — Sievey,, where we identify
the category of V-schemes with its image as the full subcategory of representable
sieves. Of course, the morphisms on the right hand side of (2) are now to be taken
in Sieveyy, where the last equality is then given by (1) (note that all morphisms are
in fact rational). If each VX is sub-schemic or formal, then we call the adjunction
respectively sub-schemic or formal.

We can formulate the adjunction property as a representability question: given
a functor n: Faty — Faty and a V-scheme X, let V,, X be the functor over W
associating to a fat WW-point 3, the set of rational points X (1)(3)). We have adjunction
when each functor V,, X is a sieve as X varies over all V-schemes; the adjunction is
then (sub-)schemic or formal, if each V,, X is respectively a (sub-)schemic or formal
motif. From this perspective, V,, is the right adjoint of 1, and we simply call V,, the
adjunction. To extend this to a functor V,,: $ievey — Sieveyy, let X be a sieve on
a V-scheme X, and define its adjoint V, X as the functor over W given by

ViX() := 0;,x (X(n(3)))

for any W-point 3. It follows immediately from (2) that V;; X = VX, and hence
V,, X is a subsieve of V.X. The adjunction isomorphism (2) then becomes

3) M0r$ﬁCBV<Bv (77(3)7 x) = M0r$ﬁ@\/@w (37 vnx)
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3.1.Lemma. Ifp: Y — X is a morphism of V -schemes, then, with Vyp: VY —
VX the induced morphism of W -sieves, we have an equality of sieves

4) Vi Im(p) = Im(Vep).

In particular, sub-schemic adjunctions preserve sub-schemic as well as formal mo-
tives, whereas formal adjunctions preserve formal motives.

Proof. We verify (4) on a fat W-point 3. Functoriality of adjunction implies that
we have a one-one correspondence of diagrams

(5) Y 7 VY
b e /b7 l
T Ve
a\X o1 %

where the right triangle is in Sievey . So, if a € Im(V)(3), then by (1), we can
find b making the right triangle in (5) commute. Taking the image under @;}( yields
the commutative triangle on the left, showing that © (@) € Im(¢)(n(3)), and hence
that & € (V,Im(y))(3). The converse holds for the same reason, by going this time
from left to right.

It then follows from [17, Theorem 7.8] that the adjoint of a sub-schemic motif is
again sub-schemic, in case 7 is sub-schemic itself. Suppose next that X is formal,
and, for each fat V-point tv, let P, C X be a sub-schemic approximation with the
same to-rational points. For each fat W-point 3, let @5 be defined as V,)(2),,(;))- By
what we just proved, Q:J 5 © VX is a sub-schemic submotif, and one easily verifies
that both sieves have the same 3-rational points, proving the last assertion for sub-
schemic adjunctions. The case of a formal adjunction then follows from previously
cited theorem and [17, Lemma 7.5]. Il

VX

3.2. Remark. The proof as it stands, does not work for strongly formal motives.
However, with an additional assumption, met in every single application, we can also
deal with this case. Namely, let us call n: Faty — Faty bounded, if £(n(3)) <
£(3) for all fat W-points 3 (in fact, all we need is that the length of 7(3) is bounded
by a function only depending on £(3)). With this additional assumption, modify the
above proof by letting 2); be V,(2:), where 2); C X is now a strong approximation
of X by sub-schemic motives.

3.3. Proposition. A formal adjunction V,, induces a homomorphism of Grothen-
dieck rings V,: Gr(Formy) — Gr(Formw). If V, is strongly formal and 1 is
bounded, we get a homomorphism V,: Gr(Form}/) — Gr(Formy;). If V, is
(sub-)schemic, we get a homomorphism of the corresponding (sub-)schemic Gro-
thendieck rings.

Proof. By Lemma 3.1 and Remark 3.2, adjunction preserves motivic sites of the
same respective type, (sub-)schemic or formal. As it is compatible with unions and
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intersections, it preserves scissor relations, and as it is functorial, it preserves iso-
morphisms as well as products. 0

Before we describe some important instances in which we have adjunction, with
applications discussed in §§4 and 6, we give an example of a formal adjunction.

3.4. Example. Given a fat point 3 over an algebraically closed field x, and r > 2,
let Y(3) := Y,.(3) be the fat point with coordinate ring x + m” C R, where (R, m)
is the Artinian local ring corresponding to 3. Note that Y is bounded, and we have
a strongly dominant morphism 3 — Y(3). For simplicity, let us take » = 2. For
fixed n, let [ := [, be the n-th co-jet of a point on a line, with coordinate ring
S := k[€]/(€™). For each [, let ro; be the fat point in 12 with ideal of definition
generated by all ¢/ and Q", where

Q=66 +8686+ -+ 16

Let 9); be the image sieve of the morphism ¢;: tv; — [induced by £ — Q. I claim
that Vy[ is approximated by the 2);, from which it then follows that it is strongly
formal. To this end, fix a fat point 3 with coordinate ring (R, m) and let [ be its
length. An Y'(3)-rational point a € [(Y(3)) is completely determined by the image,
denoted again a, of £ in k + m2. Since a” = 0, we must in particular have a €
m? (note that m? is the maximal ideal of Y(3)), and hence can be written as a =
b1by + - - + bgy_1boy, for some b; € m. Since b,li =0and a = Q(by,...,by), the
assignment &; +— b; induces a morphism 3 — to; which factors through ;. In other
words, a € 9;(3). Conversely, since @ is quadratic, any 3-rational point factoring
through (; must extend to Y (3).

Presumably, this argument should extend to any fat point other than [ and any
power r > 2. To extend this to higher dimensional schemes, we face the problem
that a rational point can be given by non-units. This forces us to be able to single
out the field elements inside an Artinian local ring R. In characteristic p, this can
be done: the elements of x C R are precisely the p'-th powers. Using this, a slight
modification of the above argument then yields VyL as a strongly formal motif: in
the above, replace tv; by L,, and ); by the image of the morphism L,,, — L,; given
by & — & l + Q. It seems likely that we can again extend this argument to arbitrary
schemes and arbitrary r > 2.

Augmentation. Fix a morphism of Noetherian schemes f: W — V. Via f, any
W-scheme Y becomes a V-scheme, and to make a notational distinction between
these two scheme structures, we denote the latter by f,Y. We will show that f,
constitutes a left adjoint, where the corresponding right adjoint is given by base
change: given a V-scheme X, we set

FEX =W xy X,
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3.5. Theorem. If f: W — V is a morphism of finite type of Noetherian Jacobson
schemes, then f, is a bounded functor from Faty to Faty, and as such, it is the
left adjoint of f*. The corresponding adjunction associates to a V-sieve X on a
V-scheme X, the W -sieve V, X on f* X, inducing ring homomorphisms

Vf* : Gr($¢hv) d Gr($¢hw)
V¢, : Gr(subSchy ) — Gr(subSchy)

Vs, : Gr(Formy/) —» Gr(Formyy)

V¢, : Gr(Formy) — Gr(Formyy).

Proof. Let 3 be a fat W-point with coordinate ring R and let y be its center, that
is to say, the closed point on W given as the image under the structure morphism
3 — W. By the generalized Nullstellensatz ([0, Theorem 4.19]), the image = :=
f(y) is a closed point on V, and the residue field extension x(z) C «(y) is finite.
As k(y) € R/mis also finite, f,3 is a fat V-point (note that R is also the coordinate
ring of fy3, so that f, is bounded). The adjunction of f, and f* is well-known (and,
in any case, easily checked; see, for instance [7, Chapter I1.5], but note that left and
right are switched there since they are formulated in the dual category of sheaves),
proving that Vy, X = f*X. The last statement follows from Proposition 3.3. d

If we drop the condition that the schemes are Jacobson, then we must require f to
be proper as well.

3.6. Remark. Although f,: Faty — Faty is an embedding of categories, it is,
however, not full: so are the closed subschemes in IL? defined by the ideals (22, y?)
and (23, %?) isomorphic as fat x-points, but not as fat x[z]-points. Nonetheless,
Faty is cofinal in Faty, or, in the terminology of §7 below, both have the same
universal point.

Diminution. Let f: W — V be a finite and faithfully flat morphism of Noethe-
rian schemes. As opposed to the previous section, we will now consider f* as a left
adjoint. For technical reasons (see Remark 3.9 below for how to circumvent these),
we make the following additional assumptions:

V is of finite type over an algebraically closed field x and f induces
an isomorphism on the underlying varieties.

Q)

The second condition implies that for any closed point x € V' there is a unique closed
point y € W lying above it, and hence the closed fiber f~!(z) is a local scheme.
Under these assumptions, the base change f*3 of a fat V-point 3 is a fat W-point.
Indeed, since the problem is local, we may assume V' = Spec A and W = Spec
are affine. Let (R, m) be the coordinate ring of 3, and let p := A n m be the induced
maximal ideal of A, defining its center. The coordinate ring of f*3 is then S :=
R ®j p. By base change, S is finite (and flat) over R, whence in particular Artinian.
By base change, S is also finite as a p-module, and ¢(S) < £(R). Since m is
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nilpotent, any maximal ideal of S must contain mS. Since S/mS = R/m®y, 11/pits
since A/p = k by the Nullstellensatz, and since R/m is a finite extension of the latter,
whence trivial, S/mS = u/pp is local by assumption (1), showing that S itself is an
Artinian local ring, thus proving the claim. Moreover, f* is bounded.

3.7. Theorem. If f: W — V is afinite and faithfully flat morphism satisfying (),
then f* is the left adjoint of a schemic adjunction, inducing natural homomorphisms

Vi Gr(Schy ) — Gr($chy)

Vi o Gr(subSchy ) — Gr(sub$chy)
Vi« : Gr(Formiy,) — Gr(Formy/)
Vi : Gr(Formy ) — Gr(Formy ).

More precisely, for any W-scheme Y, there exists a V-scheme V;+Y and a
canonical morphism py : f*(V+Y) — Y of W-schemes, such that, for any fat
V-point 3, the map sending a 3-rational point a: 3 — VY to the f*3-rational
point py o f*a: f*3 — Y, induces an isomorphism (V+Y)(3) = Y (f*3).

If Z C Y is a closed immersion, then so is Vix Z — VY.

Proof. Since f is finite and flat, W is locally free over V. Since we may con-
struct each Vx Y locally and then, by the uniqueness of the universal property of
adjoints, glue the pieces together, we may assume that Y = Spec B, V' = Spec J,

and W = Specp are affine, and that 4 is free over A (in all applications, we
will already have global freeness anyway). Let a1, ...,a; be a basis of p over A.
Write B := u[z]/(h1,...,hs), for some polynomials h; over i, and x a n-tuple
of variables. Let £ = (Z1,...,Z;) be a row of [ many n-tuples of variables Z;, for
i =1,...,l, and define a generic n-tuple of jets

(6) =T+ + o

in (u[Z])". Given any g € p[z], let V;g € A\[Z] be defined by the expansion
!
) 9(z) = Y a;V,g.
j=1

Applying (7) with g = h;, fori = 1,..., s, we get polynomials V;h; in A[Z] and
we let A be the residue ring of A[Z] modulo the ideal generated by all these V;h;,
withi =1,...,sand j = 1,...,l. I claim that X := Spec A represents Vy+Y. It
follows from (7) that the map « — 2 yields a p-algebra homomorphism B — f* A,
where f*A := A®, p is the base change, and hence a p-morphism py : f*X — Y.
Fix a fat A-point 3, and a j-rational point a: 3 — X. By base change, we get a
p-algebra homomorphism f*3 — f*X which composed with py induces a f*3-
point ©(a): f*3 — Y. To prove that the map a — ©O(a) establishes an adjunction
isomorphism, we construct its converse. Given an f*3-rational point b: f*3 — Y,
let B — R ®) p be the corresponding p-algebra homomorphism, where R is the
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coordinate ring of 3. The latter homomorphism is uniquely determined by a tuple u
in R ®y p such that all h;(u) = 0. Expanding this tuple as

@®) u=qu +---+oy

yields a (unique) tuple @ := (@1,...,1q;) over R such that all V;h;(01) = 0, de-
termining, therefore, a A-algebra homomorphism A — R, whence a A\-morphism
A(b): 3 — X. So remains to verify that A and © are mutual inverses. Starting
with the f*3-rational point b, we get the 3-rational point A(b), which in turn induces
the f*3-rational point ©(A(b)), given as the composition py o f*A(b). The latter
corresponds by (8) to the p-algebra homomorphism B — f*A — f*R given by
x — Z +— u, showing that ©(A(b)) = b. If, on the other hand, we start with the
3-rational point a, given by & — 1, we get the f*3-rational point O(a), given by
x + u, where u is as in (8). Hence A(©(a)) is given by & — 1, that is to say, is
equal to a, as we needed to show.

To prove the last assertion, assume that Z is a closed subscheme of Y, so that its

coordinate ring is of the form B/(hs1,...,h:)B for some additional polynomials
hi € plz]. Hence Vi« Z is the closed subscheme of Vy+Y given by the V;h; for
s<i<t. 0

Immediately from the above proof, by taking Y = f* X, we have the following
result, which we will use in the next section:

3.8. Corollary. If f: W — V is a finite and faithfully flat morphism satisfying
(1), then we have for each V -scheme X, a canonical V-morphism px : Vs f*X —
X. If Z C X is a closed immersion, then so is Vs f*Z — Vs f*X. O

3.9. Remark. Without assumption (), the pull-back of a fat V-point 3 is only
a zero-dimensional T -scheme, and hence a disjoint sum of fat W-points f*3 =
;U --- U tog. We can then still make sense of Y (f*3), as the disjoint union
Y(wy) b -+ u Y(,), and the adjunction condition then becomes that this must
be equal to (V;+Y)(3). Since nowhere in the above proof we used that f*R is
local, we therefore can omit condition (f) from the statements of Theorem 3.7 and
Corollary 3.8.

Caveat: do not confuse diminution with the restriction of scalars operation f, de-
fined in [17, §7.13], which is not an adjunction. In particular, f, is not multiplicative.
Using the present notation, we can now generalize [17, (29)] as follows:

3.10. Lemma. Given a morphism f: W — V of finite type of Noetherian Jacob-
son schemes, for every a € Gr(Form{") and every 3 € Gr(Form}y,), we have an
identity

©)] Oz-f*ﬁ=f*(Vf*Oz-ﬂ)

in Gr(FormY/). In particular, the image of Gr(Formy[;) under f, is an ideal Ty

in Gr(FormY/), called the ideal of W-motives.
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Proof. By linearity, we may reduce to the case that @ = [X] and 8 = [2)], with
X and ) strongly formal motives on some V-scheme X and some W-scheme Y
respectively. Given a fat V-point 3 and a 3-rational map a: 3 = fo(Vy, X xw Y) =
X xvy fY,let m; and 7o be the respective projections of X xy f.Y to X and f,Y.
Now, @: 3o — f*X xw Y belongs to (Vy, X x 9)) (3,) if and only if 7; o @ and
9 © G belong respectively to

Vi, X(3a) = X(fa3a) = X(3)

and 2)(3,). But this just means that a € X(3) x f+2(3), proving (9). The second
assertion now easily follows from this. g

Taking 6 = 1 and using that f,1 = [W], we see that the image of the composite
map f o Vy, : Gr(Formy) — Gr(Formy,) — Gr(Form{}) is the ideal gener-
ated by [W1]. In view of [17, Corollary 7.16], we ask whether f is split if and only if
Ty is the unit ideal. In this generality, we do not know the answer, but by restricting
to schemic motives, we get the following criterion. Let My, (W) be the residue ring
Gr(Schy)/Jw, then we have:

3.11. Corollary. Over a Noetherian, Jacobson V, a V-scheme W has a V-
rational point if and only if My (W) = 0.

Proof. Saying that f: W — V has a V-rational point just means that f is split,
and by [17, Corollary 7.16], this is equivalent with the surjectivity of f (on schemic
motives). This proves already one direction. For the converse, if Jyy is the unit ideal,
it contains 1 = [V] and hence [V] = [f«Y] — [f+Z] in Gr(Schy ), for some -
schemes Y and Z. Since any schemic irreducible component of f,.Y is also obtained
by restriction of scalars (use for instance [17, Lemma 7.15]), we may assume f,Y
is schemic irreducible, and hence V' u f,Z = f,Y by [17, Corollary 5.8], whence
V = f.Y by the irreducibility assumption. It follows that f, is surjective, whence
f is split. d

Thus, we may rephrase the Faltings-Mordell theorem that over a number field x,
any curve C' of genus at least two, has a (non-empty, whence dense) open subset
U C C such that M (U) # 0. The Bombieri-Lang conjecture can then be stated
in the same vain: if X is a smooth variety of general type over x, does there exist
an open U C X such that M (U) # 0. For adjunctions, (9) corresponds to the
following commutation rule in a Cartesian square:

3.12. Theorem (Projection Formula). Let f: W — V be a finite and faithfully
flat morphism of Noetherian schemes satisfying (1), let u: V — V be a morphism of
finite type, with either V Jacobson or u proper, and let
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W ! .
(10) g !
w 7 -V

be the base change diagram, where W :=W xy V. We have an identity of adjunc-
tions

Vs Vi, = Vi, Vix
from W -sieves to V -sieves.
Proof. Note that f is again finite and faithfully flat, satisfying (f), so that the
diminution Vf* makes sense. To prove the identity we have to check it on each
W -sieve ) and each fat V-point 3, becoming

N
(Vi Vi, D)) = D(as f*3) = D(f*uxz) = (Vu, Ve D) 3)-
But one easily verifies that we have an equality of fat W-points
Uy f 3= fTuxs

concluding the proof of the theorem. O

Frobenius transform. Assume for the remainder of this section that the base
ring is a field x of characteristic p > 0. Let us denote the Frobenius homomorphism
a — aP on a k-algebra A by F, or in case we need to specify the ring by F 4, so that

we have in particular a commutative diagram
F,

K >~ K

(1)

A Fi - A.
Due to the functorial nature, we can glue these together and hence obtain on any
k-scheme X a corresponding endomorphism F x.

Diagram (11) implies that F 4 is not a x-algebra homomorphism. To overcome
this difficulty, we assume & is perfect, so that F' is an isomorphism on . To make
(11) into a k-algebra homomorphism, we must view the second copy of A with a
different x-algebra structure, namely, the one inherited from the composite homo-

morphism Kk — k — A. Several notational devices have been proposed (see for
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instance [7, Chapter IV, Remark 2.4.1] or [18, Chapter 8.1.c]), but we will use the
one already introduced in the previous section: the push-forward of A along F will
be denoted F, A. In other words, F4 A is A with its k-action given by u - a = uPa.
Since « is perfect, A = F, A as rings, and in many instances, even as x-algebras.
In particular, (11) yields a x-algebra homomorphism A L F, A, called the k-linear
Frobenius. The image of the x-linear Frobenius homomorphism A L F, A is the
subring of A consisting of all p-th powers, and we will simply denote it by FA
(rather than the more common AP, which might lead to confusions with Cartesian
powers). Hence, pushing forward the inclusion homomorphism FA C A gives a
factorization of the k-algebra homomorphism F as A — F,FA C F, A, where the
first homomorphism is an isomorphism if and only if A is reduced. For instance, if
A = k[z], then FA = k[zP], so that this factorization is given by the sequence of
k-algebra homomorphisms

(12) k[x] i>F*/€[$p] C  Fyrlz] = K[z]
o ~
ht———>}

g gp} g(l.p)’

where £ is obtained from & by replacing each coefficient with its (unique) p-th root.
So, from this we can calculate F . A for A of the form «[z]/(f1,..., fs) as

F. A= [z]/(fi..... fs),

with f; = o(f;) as in (12). The k-linear Frobenius A — F, A is then the induced
homomorphism by the composite map g — g(zP) from (12).

Similarly, viewing X as a x-scheme via the composition X — Spec x 5 Spec k,
it will be denoted by F, X, yielding a morphism Fx: F, X — X of k-schemes,
called the k-linear Frobenius. Its scheme-theoretic image will be denoted by F.X,
so that we have a strongly dominant morphism X — F X, yielding a factorization

(13) Fx:F,X > F,FXCX

of F x, where the closed immersion F,FX C X is the identity if and only if X is a
variety. In particular, F X is the Zariski closure of Im(F x) in X.

We could view F, as an automorphism of the base to get by Theorem 3.5 an
adjunction pair (F}, F,,). However, since X and F,.F}X are isomorphic as
k-schemes, this merely induces an action of the Frobenius. For the same reason,
diminution does not induce any interesting endomorphism on the Grothendieck ring.
Instead we take a relative point of view. To a morphism ¢: Y — X of k-schemes, we
can associate two commutative squares; the base change and the Frobenius square.
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Combined into a single commutative diagram of x-morphisms, we have

F.Y

\ Fy
FLY Y
Fap i Foxly lsﬂ

F. X ——X
X
where F%Y := F,.X xx Y is the pull-back of Y along Fx, called the Frobe-
nius transform of Y in X, and where the canonical projection Fx x 1y: F%Y =
F. X xxY — Y is called the relative Frobenius on'Y over X. In case y is a closed
immersion, the natural morphism F.Y — F%Y is then also a closed immersion.
We can calculate it explicitly in case X = Spec A is affine and Y is defined by the
ideal I C A. Traditionally, one denotes the ideal generated by the image of I under
the Frobenius F 4 by I[Pl it is the ideal generated by all f* with f € I. With this
notation, we have
F%Y = F,(Spec A/IP)).

In particular, applying o from (12) to the previous isomorphism in case X is affine
space, we get:

3.13. Corollary. If Y is the closed subscheme of L™ with ideal of definition
(fi,.-., fs), then F}.Y is the closed subscheme of L™ with ideal of definition
(f1(xP), ..., fs(xP)), and the relative Frobenius Fr» X 1y is the map induced by
T — xP. O

The assignment 3 — F3 constitutes a bounded functor on Fat,, which will play
the role of left adjoint. However, in this case, the adjunction will only be sub-
schemic, via the following right adjoint. For each x-scheme Y, we define a sub-
schemic motif §y, called its Frobenius motif. In order to do this, we will work
locally: show that it is a right adjoint locally, and then deduce its uniqueness and
existence, as well as right adjointness, globally. So let Y be affine, say, a closed
subscheme of ", and let Fr» x 1y: Ff,Y — Y be the corresponding relative
Frobenius. Set §y := Im(FpL» x 1y), so that it is a sub-schemic motif on Y. To see
that this is independent from the choice of closed immersion, we prove the adjunction
formula

(14) Y(F3) = 3y (3)
for any fat point 3. More precisely, the canonical (strongly dominant) morphism
3 — F3 induces a map Y(F3) — Y (3). By [I7, Lemma 2.6] it is injective,

and we want to show that its image is §y (3). Let (f1,..., fs) be the ideal defin-
ing Y. By Corollary 3.13, the Frobenius transform F[, Y is given by the ideal
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(f1(zP), ..., fs(xP)). An F3-rational point a in Y corresponds to a x-algebra ho-
momorphism A — F R, where R is the coordinate ring of 3, and hence to a solution
of f{ =--- = fs = 0in R of the form r?. The image a’ of a in Y (3) corresponds to

the composition A — FR C R. Since r is a solution in R of the equations defining
F¥.Y,itinduces a 3-rational point b: 3 — F[, Y such that ' = (Fr» x 1y)(3)(b),
proving that @’ € Fy(3). Conversely, by reversing these arguments, we see that
any such z-rational point is induced by a p-th power in R, and hence comes from a
Fj-rational point. This concludes the proof of (14) when Y is affine, and proves in
particular that §y does not depend on the choice of closed immersion. For arbitrary
Y, let Y1,...,Y,, be an open affine covering. For each Y; and each intersection
Y; n'Y;, we have an equality (14). Hence we may glue all pieces together to obtain
a sub-schemic motif §y satisfying (14). In particular, in view of Proposition 3.3, we
proved:

3.14. Theorem. The functors 3 — F3 and Y — Fy constitute a sub-schemic
adjunction. In particular, we get induced endomorphisms Vg on Gr(sub%ch,),
Gr(Form!"), and Gr(Form,,). O

Unraveling the definitions, the action of this adjunction on a motif ) on a scheme
Y is given by

VFY) =2 n Fy.

Moreover, if Y = L™, then §y is just Im(F~ ), the image of the k-linear Frobenius.
Therefore, if a motif ) has an ambient space which is affine, we may take it to be an
affine space ", so that

VFQ) = Q) N Im(FLn,).

3.15. Families of motives. Let s: ) — X be a rational morphism of V' -sieves
(see Remark 3.17 below for the non-rational case). Hence, we can find ambient
spaces Y and X of ) and X respectively, and a morphism ¢: Y — X of V-schemes
extending s. We explain now how we may view s as a family of V-sieves, by as-
sociating to each V-rational point a, that is to say, any V-morphisma: V — X, a
V-sieve 9, as follows. We may view ) as an X -sieve via by restriction of scalars,
denoted ¢,9) (see [17, §7.13]). Using a as augmentation map, we define

Q'ja = a*@*@a

called the specialization of ) at a. By Theorem 3.5, this is a sieve on the base change
VoY = a™Y =V xx Y. To see that the specialization ), is independent from
the choice of ambient space Y, we simply observe that

(15)  Da(3) = V) xxi) D) = {(,0) € V() x D) [ a(3)(r) = 5(3)(b)}

as asubset of V'(3) x x ;)Y (3), for any fat VV-point 3. Immediately from Theorem 3.5,
we have:
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3.16. Proposition. The specialization of a schemic, sub-schemic, or strongly for-
mal motif is again of the same type. 0

3.17. Remark. We can even apply this theory to a non-rational morphism s: ) —
X of strongly formal motives. Indeed, let 3; C Q) be sub-schemic approximations
of the stronlgy formal motif ). By [17, Theorem 3.15], the restriction s|3l is ra-
tional. Hence, given a: V' — X, the specialization (3;), is sub-schemic by Propo-
sition 3.16. Using (15), it is not hard to show that these specializations (3;), are
approximations of ), (as defined by the right hand side of (15)), showing that the
latter is strongly formal too.

4. Jet schemes

From now on, our base scheme will (almost always) be a field «, often even
assumed to be algebraically closed. Fix a fat point 3 and let j: 3 — Speck be its
structure morphism. Clearly, it is flat and finite and satisfies condition () when « is
algebraically closed, and so both augmentation and diminution with respect to j are
well-defined (in the non-algebraically closed case, we apply Remark 3.9). We define
the jet functor of 3, as a double adjunction’

V; = Vjx oV,
In other words, given a motif X on a x-scheme X, and a fat point tv, we have
(V;X)(r0) = X(jxj*ro)

where j,j*to is the product 3 X, to viewed as a fat point over x, denoted henceforth
simply by 3to. Applied to a x-scheme X, we get the so-called jet scheme V;X,
whose tv-rational points are in one-one correspondence with the jto-rational points
of X, and so we will identify

X(3mw) = (V;X)(w).
Moreover, we have by Corollary 3.8 a canonical morphism
(16) px: V,X = X.

4.1. Remark. In other words, V, X is the Hilbert scheme classifying all maps
from 3 to X. When [,, = Spec(x[£]/(£™)), the resulting jet scheme is also known in
the literature as a truncated arc scheme.’

2See 86 below for the corresponding single adjunction.
3This was also the terminology in an earlier version of this paper posted on ArXiv.



SCHEMIC GROTHENDIECK RINGS II 17

4.2. Remark. By the argument in the proof of Theorem 3.7, for any fat point 3,
we may choose a basis A = {ayg, ..., a;_1} of its coordinate ring (R, m) with some
additional properties. In particular, unless noted explicitly, we will always assume
that the first base element is 1 and that the remaining ones belong to m. Moreover,
once the basis is fixed, we let Z be the [-tuple of jet variables (Zo, ..., Z;—1), so that
Z =29+ a1y +---+ 1T, is the corresponding generic jet. It follows from
(7) that Vo f = f(Zo), for any f € x[z]. By [14, §2.1], we may choose A so that,
with a; := (a, ..., a;—1)R, we have a Jordan-Holder composition series

=00 1SEm2&G - -GFa=m&a =R.

Without giving the details, we may construct A as follows: write R as a homomor-
phic image of x[y] so that y := (y1,...,y.) generates m, and let a(«), for o € ZZ,
be the ideal in R generated by all y® with 3 lexicographically larger than «.. Then
we may take A to be all monomials y® such that y* ¢ a(«).

Givenr € R, we expand itasin (8) inthe basisasr = ro+ o171+ -+ ay—17-1,
with r; € k. I claim that r; = 0 for j < 7 whenever r € a;. Indeed, if not, let
J < 4 be minimal so that there exists a counterexample with ; # 0. By minimality,
r = o;r; + ;11741 + -+ € a; showing that o; € a;44, since r; is invertible.
However, this implies that a; = a;1, contradiction. From this, it is now easy to
see that the first m basis elements of A form a basis of R,,, := R/a,,+1. Therefore,
calculating V,,, f in (7) for f € x[z] does not depend on whether we work over R or
over R,,, and hence, in particular, V,,, f € k[Zo,. .., Zm] for every m <.

4.3. Remark. Incase X = Spec A is affine, with A = x[z]/I, then the proof of
Theorem 3.7 also provides a recipe for calculating rational points. Namely, let Abe
the coordinate ring of the jet scheme V; X, where 3 is a fat point with coordinate ring
R. Given any fat point Spec S, an S-rational point of the jet scheme, that is to say,
a homomorphism a: A — S defines an R ® S-rational point on X as follows. For
each variable x;, let £; be the corresponding generic jet (see (6)), then A - R® S
is given by sending x; to a(:£;), the value of the generic jet at the S-rational point a.

With these observations, we can now prove the following important openness
property of jets:

4.4. Theorem. Given a x-scheme X, a fat point 3, and an open U C X, we have
isomorphisms

(17) VU = p'(U) =V, X xx U.

Proof. By the universal property of adjunction, whence of jets, it suffices to verify
(17)in case X = Spec B C L™ is affine and U = Spec(By) is a basic open subset.
Let A be the coordinate ring of V; X. Since U is the closed subscheme of Lp given
by g := fy — 1 = 0, the corresponding jet scheme V,U is the closed subscheme of
L" with coordinate ring A’ := A[7]/(Mog, - .., Vi—1g), where [ is the length of 3 =
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Spec R and the Vg are given by (7), with g a tuple of [ variables. By Remark 4.2, we
may calculate the Vg using any basis ag = 1, ..., ;1 of R, and so we may assume
it has the properties discussed in that remark. In particular, by the last observation
in that remark, each Vg only depends on g, . .., §;. Clearly, Vog = (Vo f)go — 1.
In particular, the A-subalgebra of A’ generated by g is just the localization Ay, ;.
We will prove by induction, that each §; belongs to this subalgebra, and hence A’ =
Ay, > as we needed to prove.

To verify the claim, we may assume by induction that gy, . . . ;—1 belong to Ay, s.
The coefficient of «; in the expansion of the product

(18) (Mof+aaVif+- -+ Vi f) o +oath + o 1Gi-1)

is equal to V;g, whence zero in A’. As observed in Remark 4.2, the choice of basis
allows us to ignore all terms with «; for j > 4. Put differently, upon replacing 2 by
R/(ay1,-..,a;—1)R, which does not effect the calculation of V; g, we may assume
that they are zero in (18). Hence,

Vig = (Vo f)y; + terms involving only 9o, . .., Ji—1

proving the claim, since V; f is clearly invertible in Ay, . O

Before we proceed, some simple examples are in order. Jet spaces are sensitive to
singularities, as the next examples show:

4.5. Example. Let us calculate the jet scheme of the cusp C' given by the equation
22 — y3 = 0 along the fat point 3 with coordinate ring the four dimensional algebra
R = k[&,]/(€2,¢?), using the basis A := {1,£,(,£C} (in the order listed), and
corresponding jet variables £ = (Zoo, Z10, Zo1,Z11) and § = (Yoo, J10, Jo1, J11)-
One easily calculates that V;C'is given by the equations

T0 = Hoo
2F00710 = 3dapT10
2Z00T01 = 350701
2i00%11 + 2E10Z01 = 30pp¥11 + 6%ood10701-
Note that above the singular point g9 = 0 = ggo, the fiber consist of two 4-
dimensional hyperplanes, whereas above any regular point, it is a 3-dimensional
affine space, the expected value by Theorem 4.14 below.

4.6. Example. Another example is classical: let Ry = x[£]/(£?) be the ring of
dual numbers and I := Spec(R3) the corresponding fat point. Then one verifies
that a k-rational point on Vi, X is given by a x-rational point P on X, and a tangent
vector v to X at P, that is to say, an element in the kernel of the Jacobian matrix
Jacx (P).

4.7. Example. As a last example, we calculate V;, [,,,, where [,, is the n-th co-jet
of the origin on the affine line, that is to say, Spec(x[&]/(£™)). With 2 = &g + T +
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o4 €717, 1, we will expand 2™ in the basis {1,&, ..., "} of k[€]/(€™); the
coefficients of this expansion then generate the ideal of definition of Vi, [,,,. A quick
calculation shows that these generators are the polynomials

gs(jo,...,.fnfl) = 2 jiljiz "'jim
i1 tim=s
fors = 0,...,n —1, where the 4; run over {0, ...,n — 1}. Note that go = Z{;*. One
shows by induction that (Zg, ..., Z) is the unique minimal prime ideal of Vi, [,,,

where s = [>] is the round-up of n/m, that is to say, the least integer greater than
or equal to n/m. In particular, V[, is irreducible (but not reduced) of dimension
Immediately from Theorems 3.5 and 3.7, we get:
4.8. Theorem. For each fat point 3, the jet functor V, induces a ring endo-
morphism on each of the motivic Grothendieck rings Gr($ch,), Gr(sub%ch,),

Gr(Form!"), and Gr(Form,,). O
Applied to the affine line, we get the following simple formula
(19) V,L = L)

either as an identity of schemes or as a relation in the Grothendieck ring. In case of
complete formal motives, we can calculate the jet scheme by base change:

4.9. Lemma. For any closed immersion Y C X of k-schemes, and any fat point
3, we have isomorphisms

V;, (XY) = V;,X X x j(\vy = (ﬁ)p—l(y),

where p: V; X — X is the canonical map from (16).
Proof. LetU := X\Y. By [17, Proposition 7.1], we have an equality of sieves
(20) — Xy =U°
on X. By [17, Theorem 7.7], we may pull back (20) under the map p: V; X — X,
to get a relation
~(GX xx Xy)* = p*(=X7) = p*U° = (VX xx U)° = (V,U)°

where we used the openness of jets (Theorem 4.4) for the last equality. On the other
hand, taking jets in identity (20), yields

_szgf = V‘«,(—Xf/) = van = (VZU)O

where one easily checks that jet functors commute with complements of complete
sieves. Combining both identities and taking complements then proves the first iso-
morphism.

To see the second isomorphism, we may assume, in view of the local nature of
jets, that X = Spec A i is affine. Let I C A be the ideal of definition of Y, so that
the global sections of Xy is the completion A; of A with respect to I. Let A[y]/.J
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be the coordinate ring of the jet scheme V; X, for some J C A[y] and some tuple
of variables y. By the first isomorphism, the global section ring of V; )A(y is equal to
the base change A; [y]/JA\I [y]. The ideal defining p~1(Y) in V, X is I(A[y]/J),
and the completion of A[y]/.J with respect to this ideal is A;[y]/.JA;[y], proving
the second isomorphism. O

In view of [17, Corollary 7.3], jets commute with localization in the following
sense, where X p is the local scheme Spec(Ox p):

4.10. Corollary. For any closed germ (X, P) and any fat point 3, we have an
isomorphism V; Xp = (V;X) xx Xp. O

4.11. Corollary. The jet of a complete formal motif is again complete. More
precisely, if ' C X is a constructible subset, then

Q1) Vi(€x(F)) = €y, x (p~ ' (F)),

for any fat point 3, where p: V; X — X is the canonical map.

Proof. By [17, Proposition 7.1], the cone of a closed subset Y is )A(y, and by [17,
Lemma 6.4], that of an open subset U is just U. Identity 21 holds in either case by
Lemma 4.9 and Theorem 4.4 respectively. Since cones and arcs pass both through
unions and intersections, we proved (21) in general. The first assertion now follows
from [17, Theorem 8.1]. U

A similar result holds for etale maps (compare with [5, Lemma 2.9]):

4.12. Theorem. For any etale morphism p: Y — X and any fat point 3, we have
an isomorphism of schemes V;Y =V, X xx Y.

Proof. By functoriality, we have a commutative diagram

v
AL ke - VX

22) PY PX

Y - X
4

whence a morphism VY — V; X x x Y. To construct its inverse, we may work over
a fixed fat point v. Hence let b € V,; X (v) and @ € Y (v) have the same image in X (v).
Let b be the 3v-rational point of X induced by b. Hence, if () is the center of @, then
©(Q) is the center of b. Since b factors through X (), there is a unique jv-rational
point 30 — Y lifting the latter by [17, Theorem 2.17]. Let a be its composition with
the natural morphism Yg — Y, and let a: v — V,Y be the induced v-rational point
of the jet scheme. We leave it to the reader to verify that the assignment (b, @) — a
is the desired inverse morphism. O
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It is easy to check that
(23) VoVie = Vo = Vi Vg,

so that all jet functors commute with one another. If « has positive characteristic, we
also have a Frobenius adjoint acting on the sub-schemic and formal Grothendieck
rings, and we have the following commutation relation

24) Vz,Vp = VFVF3

for any fat point 3. Indeed, we verify this on an arbitrary motif X and a fat point tv.
The left hand side of (24) becomes

(V3 VF)(X)(w) = V;(VpX)(w)
= (VrX)(3t)
= .%’(F(gm)),

whereas the right hand side becomes

(Ve VE;)(X)(0) = Vp(Vr; X)(10)
= (Vr; X)(Fro)
= X((F3)(Fw)),

and these are both equal since an easy calculation shows that F(3w) = (F3)(Fw).

Jets and locally trivial fibrations. By adjunction, any morphism 3 — 3 of fat
points induces a natural transformation of jet functors V; — V;. In particular, taking
3 to be the geometric point given by « itself, we get a canonical morphism V; X — X,
for any motif X, since V, is the identity functor. In case X = X?° is representable,
this is none other than the canonical morphism px: V;X — X from (16). To
formulate the key property of this morphism, we need a definition.

We call a morphism Y — X of k-schemes a locally trivial fibration with fiber Z
if for each (closed) point P € X, we can find an open U C X containing P such
that the restriction of Y — X to U is isomorphic with the projection U x, Z — U.

4.13. Lemma. If f: Y — X is a locally trivial fibration of k-schemes with fiber
Z, then [Y] = [X] - [Z] in Gr(subSch,).

Proof. By definition and compactness, there exists a finite open covering X =
X1 uU---u X, so that

FHX) = X %, Z,
fori = 1,...,n. In fact, for any non-empty subset I C {1,...,n}, we have an iso-

morphism f~1(X7) =~ X; x, Z, and hence, after taking classes in Gr(sub%ch,),
we get [f~1(X7)] = [X1] - [Z]. Since the f~*(X;) form an open affine covering of
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Y and pre-images commute with intersection, a double application of [17, Lemma
6.5] yields

= > Mrteol= Y GMIXG[2] = (XD [2]

G#IC{1,...,n} g#IC{1,...,n}

in Gr(sub%ch,). O

4.14. Theorem. If X is a d-dimensional smooth k-scheme and 3 C 3 a closed
immersion of fat points, then the canonical map V; X — V;X is a locally trivial

fibration with fiber LY~ where | and [ are the respective lengths of 3 and 3. In
particular,

[V;X] = [X]- L4

in Gr(subSch,,).

Proof. Let R and R be the Artinian local coordinate rings of 3 and 3 respectively.
Since jets can be calculated locally, we may assume X is the (affine) closed sub-
scheme of L™ with ideal of definition (f1, ..., fs). Since the composition of locally
trivial fibrations is again a locally trivial fibration, with general fiber the product of
the fibers, we may reduce to the case that R= R/aR with « an element in the socle
of R, that is to say, such that am = 0, where m is the maximal ideal of R. Let A
be a basis of R as in Remark 4.2, with a;_1 = « (since « is a socle element, such a
basis always exists). In particular, A — {a} is a basis of R. We will use these bases
to calculate both jet maps.

To calculate a general fiber of the map s: V,; X — V;X, fix a fat point to with
coordinate ring S, and a to-rational point b: v — V;X, given by a tuple u over
S. The fiber s(to)~1(b), is equal to the fiber of X (310) — X (3v) above @, where
a: 3w — X is the 3t-rational point corresponding to b, that is to say, the compo-
sition 3w — 3 x V;X — X given by Theorem 3.7 (see Corollary 3.8). Being a
rational point, @ corresponds therefore to a solution u in R ®, S of the equations
f1 =---= fs = 0, where the relation with the tuple u is given by equation (8). Let
x be the center of a, that is to say, the closed point given as the image of a under
the canonical map X (3tv) — X (k). Since X is smooth at x, the Jacobian (s x n)-
matrix Jacy := (0f;/0z;) has rank m — d at . Replacing X by an affine local
neighborhood of x and rearranging the variables if necessary, we may assume that
the first (m — d) x (m — d)-minor in Jacy is invertible on X.

The surjection R — R induces a surjection R ®,, S — R ®, S. The fiber above
a is therefore defined by the equations f;(u + Z;_1a) = 0, forj = 1,...,s. By
Taylor expansion, this becomes

(25) 0= fi(u+iia) = ()] Zf (Wii-1,:)a
i=1 """
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since f;(u) = 0and o = 0in R®, S. In fact, since u = 6y mod m(R®, S) and
am = 0, we may replace each 0f;/0x;(u) in (25) by 0f;/dz;(Tp). Hence, the fiber
above @ is is the linear subspace of (R ® S)™ defined as the kernel of the Jacobian
Jacx (@1p). In view of the shape of the Jacobian of X, we can find g;; € x[z] such
that
Ti_1,; = Z 955 (o) &1,
j>m—d

for all © < m — d, by Kramer’s rule. Therefore, viewing the parameter Uiy as varying
over X (tv), the fiber of s(tv) is the constant space L%, as we needed to show. Apply-
ing this to V, X — X, (note that X = V, X)) we get a locally trivial fibration with
fiber equal to L2U=1) g0 that the last assertion follows from Lemma 4.13. O

Calculations, like for instance Example 4.7, suggest that even for certain non-
reduced schemes, there might be an underlying locally trivial fibration (here we write
X for the underlying reduced variety of a scheme X):

4.15. Question. Let 3 be a fat point of length [ and X a d-dimensional x-scheme.
If the reduction of X is smooth, when is the induced reduction map (V, X)™¢ — X
a locally trivial fibration with fiber L™, for some m?

4.16. Remark. As we shall see in Example 5.4 below, m can be different from
d(l — 1), the value that we get in the reduced case. In many cases, the answer seems
to be affirmative, but there are exceptions, see Example 4.17 below.

Moreover, as can be seen from Table (1) below, taking jets does not commute with
reduction, that is to say, (V;X )™ is in general not equal to the jet space V;(X™) of
the reduction of X, nor even to the reduction of the latter jet space.

4.17. Example. The simplest instance to which Question 4.15 applies is when X
itself is a fat point r. The expectation then is that

(26) (V)™ = L™

for some m (for expected values, see Example 5.4 below). Example 4.7 provides
instances in which (26) holds. However, the following is a counterexample: let
3 := JAC, where C is the cuspidal curve with equation £ — ¢* = 0 and O the
origin, its unique singularity. Let us calculate its auto-arcs V3. As the monomials in
¢ and ¢ of degree at most two together with £¢? form a basis of the coordinate ring
R of 3, its length is 7 and the generic jets are

B=dg+ 31§+ +56EC7 and §=go+ &+ + 5

Since the jet scheme V3 lies above the origin, its reduction lies in the subvariety of
L'* defined by %y = gjo = 0, and hence, we may put these two to zero in the generic
jets and work inside the affine space IL'? given by the remaining jet variables. From
the fact that €3 = 0 in R, the jet scheme is contained in the closed subscheme of L.'2
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by the coefficients of the expansion of

23 =33 326 + 1567 + ...
In particular, since 73 vanishes, the reduction lies in the subvariety given by Zo = 0,
and so we may again put this variable equal to zero and work in the corresponding
11-dimensional affine space. The remaining equations come from the expansion of

22— P = (T + T3 + T48C+ T + .. ) = (€ + ol + .. )P
= (@] = 32)€” + (20175 — 3 73)¢¢7
showing that the reduced jet space is the singular variety with equations 72 — g5 =
27175 — 37193 = 0. Note that the latter can be viewed as the tangent bundle of

the cusp. More precisely, instead of the anticipated (26), we obtain the following
modified form of the auto-arc variety

(Vsao(J60))™ = V,C x LT,

a singular 9-dimensional variety. However, I could not find such a form for values
higher than 4.

Locally constructible sieves. We say that a sieve X on a k-scheme X is locally
constructible, if X(3) is constructible in X (3), for each fat point 3, by which we mean
that V;X(k) is constructible in the Zariski topology on the variety V, X (k) viewed
as the space of closed points of V; X.

4.18. Proposition. Any formal motif is locally constructible.

Proof. This follows from Chevalley’s theorem and Theorem 4.8 in case X is sub-
schemic, since, for a morphism ¢: Y — X of x-schemes, Im(y)(3), as a subset of
V, X (k), is the image of the map V,Y (k) — V, X (x). The formal case then follows
from this, since there exists a sub-schemic motif ) C X such that 9)(3) = X(3). O

4.19. Remark. Let Z be a zero-dimensional k-scheme, so that it is a disjoint
union of fat points Z = 3; u --- u 5. Although the structure morphism j: Z —
Spec k no longer satisfies (), we can still define, for each scheme X, its jet scheme
Vz X along Z as the double adjunction V;x o V;, in view of the discussion in Re-
mark 3.9. An easy calculation then shows that

27) VzX =[[ V. X.

i=1

In particular, (19) generalizes to VL = L4%),

5. Dimension

In this section, we assume & is an algebraically closed field. The dimension of
an jet scheme V; X is a subtle invariant depending on 3 and X, and not just on their
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respective length [ and dimension d, as Table (1) shows. The underlying cause for
this phenomenon is the fact that taking reduction does not commute with taking
jets. To exemplify this behavior, we list, for small lengths, some defining equations
of jets and their reductions for three different closed subschemes X with the same
underlying one-dimensional variety, the union of two lines in the plane. Here [,
denotes the closed point with coordinate ring «[£]/(£¢), that is to say, the e-th co-jet
of the origin on the affine line.

TABLE 1. Jet equations, their reductions and dimension §.

‘ X ‘e‘ zy =0 ‘6‘ 22y =0 ‘6‘ 22y =0 ‘5‘
1 ZoFo, 5o, 355
Vi | 2| Zofh + E1do, 230d1 9o + T30, 2207195 + BTG5,
3| Zofe+ Tti+ 200 + 2%0T1 51+ 323 (Yol + G202)+
Z2Yo (2Z02 + 27)70 6Z0Z1J501 + (T + 2T0Z2) T4
1 Z0Yo, 1 Z0Yo, 1 Z0Yo, 1
yred —— — -
e |2 ZoY1, 190, 2 oY1, 3 [no new equation] 3
3| ZoY2,T191,%2Y0 | 3| ToY2, T1Y0 4 Z1%0 5

As substantiated by the data in this table, we have the following general estimate:

5.1. Lemma. The dimension of V, X is at least dl, where d is the dimension of X
and [ the length of 3, with equality if X is smooth.

Proof. Assume first that X is reduced so that it contains a non-empty open subset
U which is non-singular. By Theorem 4.4, the pull-back V;U = U xx V;X is a
open subset of V; X. Moreover, by Theorem 4.14 the dimension of V,U is equal to
dl.

For X arbitrary, let V := X ™ be the variety underlying X. The closed immersion
V' C X yields a closed immersion V;V C V, X by Corollary 3.8. The result now
follows from the reduced case applied to V. O

We will call the difference dim(V;.X) — di the defect of X at 3. Smooth varieties
therefore have no defect. An interesting question is which varieties do not have
defect. In the linear case, locally closed intersections with rational singuarities have
this property by [13, Theorem 0.1]. The bound given by Lemma 5.1 is far from
optimal, as can be seen by taking the jet scheme of a fat point (see, for instance,
Example 4.7). Calculations lead me to believe that the dimension of V_ 3 is equal to
n + 1, for n > 1, where j is the fat point in L.? with equations 23 = zy = 3> = 0 (a
case not covered by Lemma 9.7 below). To obtain motivic rationality of the Igusa-
zeta series and other motivic generating series, to be discussed shortly in §9, we must
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understand the growth of these defects. Given a closed germ (Y, P) and a scheme
X, let us define the asymprotic defect of X along (Y, P) as

dim(Vinyv X
(28) d(v.py(X) := limsup (Viny X)

5 7€(ng) — dim(X)

In other words, the asymptotic defect is the limsup of the J3Y -defect over the length
Jp(Y) of JRY, where the latter grows as a polynomial in n of degree dim(Y, P) by
Hilbert-Samuel theory. It is not true that the asymptotic defect is always zero, as the
example below shows, but we expect:

5.2. Conjecture. The asymptotic defect is attained, that is to say, the sequence
on the right hand side of (28) becomes eventually stationary.

5.3. Example. Suppose Y is of the form Z x 3 for some fat point 3 for which
X has a defect a, that is to say, dim(V,;X) = dl + a, where d = dim(X) and
I = £(3). Let Q be the projection of P on Z, let j3(Y') and j¢(Z) be the length
of JpY and J;Z respectively. In particular, JpY = J3Z x 3 for n > [. Hence,
ip(Y) = ljg(Z), and

VJ}gyX = Vng(VZ,X)
by (23). From this, one easily calculates that
l(;(y7p) (X) = 5(Z,Q) (VZX) +a

showing that both defects cannot be zero, if the 3-defect a of X is non-zero. In fact,
since defects are always non-negative, we must have 0 < a/l < §¢y, py(X).

Auto-arcs. The growth of the dimension of auto-arcs (see Example 4.17), that is
to say, the function

6(3) := dim(V;3)

for 3 a fat point, is still quite puzzling. By Example 4.7, we have 6(,,) = n — 1.
However, the next example shows that §(3) can be bigger than £(3).

5.4. Example. Let 0, := J3L? be the n-th co-jet of the origin in the plane

n+1

2
consisting of all monomials in & and ¢ of degree strictly less than n. Let

(29) 2= ), #;8¢ and §i= ) i

i+j<n 1+j<n

with ideal of definition (£, {)™. Its length is equal to o,, := ( ), with a basis

be the generic jets, so that V, o, is the closed subscheme of L°» given by the co-
efficients of the monomials 25" ~¢, fori = 0,...,,n. Since the jet scheme V, o,
lies above the origin, its defining equations contain the ideal (%o, %oo)™. To cal-
culate its dimension, we may take its reduction, which means that we may put Zg
and oo equal to zero in (29). However, any monomial of degree n in the generic
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jets is then identical zero, showing that the reduction of the jet scheme is given by
Zoo = Yoo = 0, and hence, its dimension is equal to

1
8(0,) :2(n—2i— )—2=n’+n-2.

One might be tempted to propose therefore that §(3) is equal to the embedding di-
mension of 3 times its length minus one, but the next example disproves this. Namely,
without proof, we state that §(3) = 7 for 3 the fat point in the plane with equations
€2 = £¢? = 3 = 0 (note that 3 has length 5 and embedding dimension 2, so that the
expected value would be 2 x 4 = 8). Note that the auto-arc space V;3 is often, but
not always an affine space (see Question 4.15 and the example following it).

It seems plausible that §(JRY') grows as a polynomial in n of degree d, for any
d-dimensional closed germ (Y, P). In particular, we expect the limit

o0(JBY)
Y,P) = li L
to exist. For instance, an easy extension of the above examples yields the equality
e(L™,0) = m. In view of Question 4.15, we would even expect that the auto-
Igusa-zeta series

e
() i= D) L HUEI [y (JRY) "
n=1

is rational over the localization of the classical Grothendieck ring with respect to L,
for any d-dimensional closed germ (Y, P), a phenomenon that we will study in §9
below under the name of motivic rationality (and where we also explain the choice of
power of IL). What about its motivic rationality over the localization Gr(Form,);
of the formal Grothendieck ring?

Dimension of a motif. Given a formal motif X on a k-scheme X, we define
its dimension as the dimension of X(x). This is well-defined since X(x) is a con-
structible subset of X (x) by Proposition 4.18. If X = X° is representable, then its
dimension is precisely the dimension of the scheme X. On the other hand, if X is
the formal completion of X at a closed point, then X has dimension zero, whereas
its global section ring (see [17, §3.1]) has dimension equal to that of X at P by [17,
Corollary 7.8].

5.5. Proposition. If two formal motives have the same class in the formal Gro-
thendieck ring Gr(Form,,), then they have the same dimension.

Proof. Since dimension is determined by the x-rational points, we may take, us-
ing [17, Theorem 7.6], the image of this common class in Gr(Var, ), where the
result is known to hold. O

As we will work over G := Gr(Form;."); below, we extend the notion of dimen-

K
sion into an integer valued invariant on this localized Grothendieck ring by defining
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the dimension of [X] - L™ to be dim(X) — i, for any strongly formal motif X and
any ¢ € Z. In particular, if X has dimension d and 3 length [, then [V, X] - L~ has
positive dimension, which is the reason behind the introduction of this power of the
Lefschetz class in the formulas below. This also gives us the Kontsevich filtration by
dimension on G. Namely, for each m € N, let I',,,(G) be the subgroup generated by
all classes [X] - L™ of dimension at most —m. This is a descending filtration and
the completion of G with respect to this filtration will be denoted G. However, since
we define motivic filtration locally (see §10 below), we will not make use of it. For
a motif X, we can, in view of Proposition 5.5, define its weightless class in G as

(30) (] = s

a notation that will be handy at times.

6. Deformed jets

We continue with the setup from §4: let j; : 3 — Spec & be the structure morphism
of a fat point 3 over an algebraically closed field . Instead of looking at the double
adjunction giving rise to the jet functor V;, we consider here the diminution part
only, that is to say, the right adjoint V; * satisfying for each 3-sieve ) on a 3-scheme
Y and each fat x-point tv, an isomorphism

(V,5D) () = (jf )

where this time, we have to view j;m = j3tv as a fat 3-point. By Theorem 3.7,
we associate in particular to any 3-scheme Y, a x-scheme Vj;g Y. In particular, if
Y = j;‘X is obtained from a x-scheme X by base change, then

31) VY =V, X

by Corollary 3.8.

Apart from j,, we also have the residue field morphism 7;: Specx — 3. To a
3-scheme Y, we can therefore also associate the base change Y := Tr;‘Y, called the
closed fiber of Y. We can think of Y as a fat deformation of j;‘Y. Indeed, since
K X3 K = K, any s-rational point of Y is also a k-rational point on Y, that is to
say, Y (r) = Y (k) = j¥Y (x), showing that Y and j}Y have the same underlying
variety.

6.1. Example. For instance, if C is the curve 22 — 33, then the [3-scheme X :=
Spec Rs[x,y]/(z? — y* — €2) has closed fiber C, and X () = C(k). Note however
that X (I3) # C(I3). In fact, truncation yields a map X (I3) — C(lz).

Hence, by (31), we may likewise think of Vj;’*Y as a fat deformation of the jet
space VY of its closed fiber, justifying the term deformed jet space for Vj;k Y. This
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construction is compatible then with specializations in the following sense. Fix a
k-scheme Z. The base change jz: Z x 3 — Z is again a finite, flat homomorphism
satisfying condition (), thus allowing us to consider the diminution V; s associating
toany Z X 3-scheme Y, a Z-scheme V; * Y, called the relative jet scheme of Y. The
deformed jet space is then given by the special case when Z = Spec k.

6.2. Proposition. Let 3 be a fat k-point and Z a k-scheme. For every Z X j-
scheme Y, viewed as a family over Z in the sense of §3.15, and for any k-rational
point a on Z, we have an isomorphism

Vj;‘ (Ya) = (v]; Y)a
of k-schemes, where a.: 3 — Z X 3 is the base change of a.

Proof. Immediately from Theorem 3.12 applied to the base change diagram

J
3 ’ ~ Speck

(32)

Z X% - > Z.
Jz
O
So, returning to Example 6.1, let X C Lf’s be the hypersurface with equation
22 — % — 22, As a family over L, via projection onto the last coordinate, its
specializations X, are all isomorphic if @ # 0, whereas the special fiber is X, =
C x 3. The corresponding relative jet scheme Vjﬂf N X is given by

T2 — U8 = 27001 — 30T = 2F0de + 32 — 3GoTt — 30ate — Zo = 0

Its specializations are again all isomorphic (to the third order Milnor fiber; see below)
whereas the special fiber is isomorphic to Vi, C.

7. Limit points

The closed subscheme relation defines a partial order relation on Fat,, that is
to say, we say that 3 < 3 if and only if 3 is a closed subscheme of 3 (and not just
isomorphic to one). Consider a direct system of fat points with a least element,
viewed as schemes. It follows that all fat points in the system must have the same
center (to wit, the center of the least element). In other words, any fat point in the
directed system has the same underlying closed point, and so we will call such a
system a point system.
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We want to adjoin to the category of fat points its direct limits, but the problem
is that the category of schemes is not closed under direct limits either. However, the
category of locally ringed spaces is: if (X;, Ox,) form a direct system, then their
direct limit is the topological space X := lim X; endowed with the structure sheaf
Ox :=lim Oy;. Since we will assume that all fat points have the same underlying
topological space, namely a single point, the construction simplifies: the direct limit
of a point system is simply the one-point space with its unique stalk given as the
inverse limit of all the coordinate rings of the fat points in the system. A morphism in
this setup will mean a morphism of locally ringed spaces with values in the category
of k-algebras. For example, if R is any k-algebra and o the locally ringed space
with underlying set the origin and (unique) stalk R, and if X = Spec A is any affine
scheme, then Mor, (0, X) is in one-one correspondence with the set of x-algebra
homomorphisms Hom,;, _,4(A, R).

Let X C Fat, be a point system. Its direct limit lim X, as a one-point locally
ringed space, is called a limit point. Some examples of limit points are:

(7.1) If Xis finite, the direct limit is just its maximum, whence a fat point.
(7.ii) Given a closed germ (Y, P), its formal completion Yp is the direct limit
of the co-jets J3Y, whence a limit point.

(7.iii) The direct limit of all fat points with the same center is called the uni-
versal point and is denoted u,,, or just u. Any limit point admits a closed
immersion into u. In particular, up to isomorphism, u does not depend on
the underlying point.

7.1. Lemma. The stalk of the universal point u,; is isomorphic to the power series
ring over K in countably many indeterminates.

—

Proof. Any fat point is a closed subscheme of some formal scheme (IL"). Hence
suffices to show that the inverse limit of the power series rings Sy, := £[[z1,. .., Zn]]
under the canonical projections S, — S,, given by modding out the variables x;
for n < i < m is isomorphic to the power series ring x[[x]] in countably many
indeterminates * = (x1,x2,...). To this end, let f,, € S, be a compatible se-
quence in the inverse system. For each exponent v = (v1, s, ... ) in the direct sum
N®™ of countably many copies of N, and each n, let Gn,, € K be the coefficient
toe. :c;j(qi")) in f,, where i(v) is the largest index for which v; is non-
zero. Compatibility means that there exists for each v an element a,, € x such that
a, = apn, foralln > i(v). Hence f := ) a,z” € k[[z]] is the limit of the
sequence f,, proving the claim. d

of z¥ := zf

To make the limit points into a category, denoted [Ifzﬁtm take morphisms to be
direct limits of morphisms of fat points. More precisely, given point systems X, Y C
Fat, with respective direct limits ¢ and v, then a morphism (of locally ringed spaces)
@: ¢ — Yy is a morphism of limit points if for each 3 € X there exists av € Y
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such that ¢(3) C v, or, dually, if the induced morphism lim O, — lim O; has the
property that for each 3 € X, we can find a v € Y such that this morphism factors
through O, — O;. In this way, the category I]?a;t,g of limit points is an extension
of the category Fat, of fat points, which in a sense acts as its compactification. In
particular, any limit point ¢ admits a canonical structure morphism j;: r — Speck.
We also extend the partial order relation on Fat, to one on [lfzﬁt,€ as follows. Firstly,
we say that 3 < ¢ for 3 a fat point and ¢ = lim X a limit point, if 3 < v for some fat
point b € X. It follows that there is a canonical embedding 3 C ¢ which induces a
surjection on the stalks, and which we therefore call a closed embedding in analogy
with the scheme-theoretic concept. We then say for a limit pointt) = lim Y thaty < ¢
if for every 3 € Y we have 3 < r. It follows that we have a canonical morphism of
limit points y — ¢ which is again surjective on their stalks, and hence can rightly be
called once more a closed embedding. One checks that this defines indeed a partial
order on limit points extending the one on fat points.

We call a limit point ¢ bounded if it is the direct limit of fat points of embedding
dimension at most n, for some n. Formal completions of closed germs are examples
of bounded limit points, whereas u clearly is not. In fact, any bounded limit point
arises in a similar, analytical way:

7.2. Proposition. The bounded limit points are in one-one correspondence with
analytic germs. More precisely, the stalks of bounded limit points are precisely the
complete Noetherian local rings with residue field k.

Proof. Let ¢ be a bounded limit point, say, realized as the direct limit of fat points
3i C L™ centered at the origin, for some fixed n. Let x[x]/a; be the coordinate ring
of 3;, so that a; C k[x] is m-primary, where m is the maximal ideal generated by the
variables. Let I be the intersection of all a;x[[«]]. I claim that ¢ has stalk equal to
S := k[[z]]/I. Indeed, by a theorem of Chevalley ([ 12, Exercise 8.7]), there exists
for each [, some i such that a;S C m!S. In particular, the inverse limit is simply the
m-adic completion of S, which is of course S itself.

The converse is also obvious: given a complete Noetherian ring (S, m) with
residue field «, then by Cohen’s structure theorem, it is of the form «[[z]]/I for
some ideal I. One easily checks that it is the coordinate ring of the direct limit of the
corresponding co-jets Spec(S/mt). O

Any limit point r = lim X defines a functor r° by assigning to a fat point 3 the set
of morphisms Morg, (3,1).

7.3. Corollary. The functor t° defined by a limit point ¢ = lim X is the inverse
limit of the representable functors v° for v € X. If v is moreover bounded, then t° is
a strongly formal motif.

Proof. Given a fat point 3 = Spec R, we have to show that v(3) for v € X forms
an inverse system with inverse limit equal to Mor== (3,z). Let (S, m) be the stalk

Fat,
of r, that is to say, the inverse limit of the coordinate rings of the fat points belonging
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to X. The first statement is immediate by functoriality, and for the second, note that
since IR has finite length,

(33) Morﬁ_&ﬁ (3,1) = Homy (S, R).

More precisely, any x-algebra homomorphism a: S — R factors through S/m! —
R, for | = ¢(R). Moreover, if n is the embedding dimension of R, then there exists
a complete, Noetherian residue ring S of S of embedding dimension at most n such
that a factors as S — S/m!S — R. By the same argument as in the proof of
Proposition 7.2, there is some v = Spec T' € X such that 7' — S/m!S, showing that
a is already induced by the morphism 3 — v. In fact, if ¢ is bounded, then we may
choose v independent from a, showing that z°(3) = v(3). Since all v € X embed in
the same affine space, ¢° is a locally schemic sieve on this space, whence a strongly
formal motif. d

Letyr = li_r)nX be a limit point. Given a contravariant functor X on Fat,, the
collection of all X(v) for v € X is an inverse system of sets given by the maps
v X(r0) — X(v) if v < 1o in X, where i, y is induced by the embedding v C
. We denote the inverse limit of this system simply by X(z). It follows from the
definition of morphisms of limit points that X becomes a functor on the category of
limit points. In other words, any contravariant functor on Fat, extends to one on
[};a\t,{; this principle will simply be called continuity. Since inverse limits commute
with functors, one easily verifies that if s: X — %) is a natural transformation, then
for any limit point r, this induces a map X(r) — 2 (r), showing that extension by
continuity is functorial.

If X is a point system in Fat,, with limit r, and if 3 is any fat point with canonical
morphism j;: 3 — Spec &, then the base change j;‘X consisting of all 30 for v € X
is again a point system, whose limit we simply denote by 3z (the reader can check
that this defines a product in the category ﬂf;ﬁt,ﬁ). Repeating this argument on the
first factor then shows that we may even multiply any two limit points. However,
this multiplication does no longer behave as well as before. For instance, since the
base change j;‘(Fatn) by any fat point 3 is equal to the whole category Fat,, we
get zu = u.

Let j, : ¥ — Spec & be the structure morphism of the limit point r. Strictly speak-
ing, as this is only a direct limit of finite, flat morphisms, the theory of diminution
does not apply, and neither that of augmentation. Nonetheless, without going into
details, one could develop the theory under this weaker condition, although we will
only give an ad hoc argument in the case we need it. So, given a sieve X on ﬂ%m
we define Ve X := V;« V(; ), X ata limit point y as the set X(zv), where we view ry
again as a limit point (over x).

7.4. Lemma. For any limit point ¢ and any k-scheme X, the adjoint Vi (X°) is
representable, by the so-called arc scheme V; X along .
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Proof. Let ¢ be the direct limit of the directed subset X C Fat,. Suppose first
that X is affine. Since the Vi, X for tv € X form an inverse system of affine schemes,
their inverse limit is a well-defined affine scheme X with coordinate ring the direct
limit of the coordinate rings of the jet schemes along fat points in X. By continuity,

it suffices to verify that V,(X°) = X° on Fat,. To this end, fix a fat point 3. From

(Ve(X?))(3) = X(x3) = lim X (w3)

roeX
= lim Mor (3, Vip X)
roeX
= Mor (3, lim Vi, X)
weX
= MOI‘,{(j, X) = X(5)>
where we used the universal property of inverse limits in the third line, the claim
now follows. The general case follows from this by the open nature of jet schemes
(Theorem 4.4) and the fact that if X admits an open affine covering of cardinality N,
then so does any jet scheme V; X by base change. O
7.5. Remark. We can take this still one step further by using Remark 4.19 and
the fact proven in [17, Lemma 2.8] that any scheme Y is the direct limit, as a sieve,
of its zero-dimensional closed subsieves. Thus we define Vy X as the inverse limit
of the Vz X, where Z C Y runs over all zero-dimensional closed subschemes, and
call it the scheme of Y -arcs on X.

8. Extendable jets

Let ¥ be a formal completion of a closed germ (Y, O), viewed as the limit point
of the co-jets J3Y, and let X be a x-scheme. By Lemma 7.4, we have an associated
arc scheme Vo X. For each n, we have a canonical map Vo X — V,;gyX , which
in general is not surjective (it is so, by Theorem 4.14, when X is smooth). To study
this image, we make the following definitions.

Given a closed embedding v C tv, the image sieve given by the canonical map
VX — VX is called the motif of vo-extendable jets on X along v, and will be
denoted V, /UX . By construction, it is sub-schemic. Let V,, X := VngX , and
VX = VJS‘LY/JSYX, for m > n. Since the map Vo X — V, X is not of
finite type, the corresponding image sieve, denoted Vo /nX and called the n-th order
Y -extendable Jets on X, may fail to be sub-schemic. We do have:

8.1. Theorem. For each k-scheme X, for each formal completion % of a closed
germ, and for each n, the n-th order extendable jets on X along this formal comple-
tion, Vg /nX , s a formal motif.
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Proof. Without loss of generality, we may assume that Y is the completion of
Y at the origin. It is clear that Vg /nX is the intersection of all V,,,, X, for m >
n. To show that it is a formal motif, it suffices to show that its complement can
be approximated by sub-schemic motives. Since each V,,,, X is sub-schemic, this
will follow if we can show that for each fat point 3, there is some m; such that
Vf//nX(a) = Vmé/nX(ﬁ)'

Recall that for (R, m) a quotient of a power series ring £[[£]] modulo an ideal
generated by polynomials, we have uniform strong Artin Approximation, in the sense
that for any polynomial system of equations f; = --- = f, = 0 and every n, there
exists some N, such that any solution of this system in R/m” is congruent modulo
m” to a solution in R: see for instance [ 15, Theorem 7.1.10], where the proof is only
given for the power series ring itself, but immediately generalizes to any quotient
by a polynomial ideal, whence in particular to the stalk of the formal completion Y.
This means that Vg , X (k) = Vi X (x), for some m > n. To obtain a similar
identity over an arbitrary fat point 3, we apply the same result but replacing X by the
jet scheme V; X, yielding the existence of a m; > n such that

V}A’/nX(é) = v}?/n(véX)(H) = vmé/n(vaX)(H) = Vm&/nX(Z)a

as required. g

8.2. Remark. I believe that with some greater care on how the bound m; depends
on 3, one should be able to show that in fact V /nX is strongly formal. Since we
may no longer have the required strong Artin Approximation estimate, I do not know
whether this result generalizes to arbitrary limit points, that is to say, is VX a
formal motif, for limit points ¢y < y. The first case to look at is when ¢ is a fat point
and 1 is bounded (but not a formal completion).

9. Motivic generating series

Although we can work in greater generality, we will assume once more that our
base scheme is an algebraically closed field x, and, unless noted, we will work over
the localized Grothendieck ring G := Gr(Form;."); of strongly formal motives.
We can similarly extend the theory to arbitrary formal motives, but except possibly
for Poincaré series (see below), this does not seem to be necessary.

Motivic Igusa-zeta series. For any x-scheme X and any closed germ (Y, P), we
define the motivic Igusa-zeta series of X along the germ (Y, P) as the formal power

series

Igufyp)(X) == Y, L4 [Vy Xt

n=1
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in G[[t]], where d is the dimension of X and j3(Y") the length of the n-th co-jet
JBY (which is also equal to the Hilbert-Samuel polynomial of Oy, p for large n).
This definition generalizes the one in [1] or [3, §4], where Y is just the germ of a
point on a line (and the classes are taken inside the classical Grothendieck ring).

9.1. Theorem. If X is a smooth d-dimensional variety and (Y, P) a closed germ,
then

mot

Iguy’py(X) =

over G.

Proof. Recall that [[X]] = [X]/L? is the weightless class of X defined in (30).
Since X is smooth, we have

(34) [Vyy X] = [XJLAGO)-D

by Theorem 4.14, from which the assertion follows easily. O
With aid of (34) applied to affine space (or (19)), we can write down a more
suggestive formula for the motivic Igusa-zeta series

(35) Tgus?p) (X) = Zl Vimy [X]] "

To discuss motivic rationality, we have to keep in mind that G is most likely not
a domain, nor even reduced (as neither is Gr(Var,)). Let X be the multiplicative
subset consisting of products of units of the form v —vIL%t" with u, v € x and u # 0,
and with a,b € Z and b > 1. We call f € GJ[[t]] strongly rational, if it is of the
form P/s with P € G[t] and s € X. In particular, by the previous result, the motivic
Igusa-zeta series of a smooth variety is strongly rational.

9.2. Question. When is the motivic Igusa-zeta series Igu?;fftp) (X) of a k-scheme
X along an arbitrary closed germ (Y, P) strongly rational over G?

More generally, given any strongly formal motif X on a d-dimensional x-scheme
X, we define its Igusa-zeta series along the germ (Y, P) as the formal power series

o
mo - x n
IgU(yip)(X) = ngy <[])t

and ask about its strong rationality.

9.3. Corollary. Given an irreducible scheme X and a closed germ (Y, P), its
motivic Igusa zeta series is strongly rational if and only ifIguE%ﬁ?tp) ()?S,-ng) is strongly
rational, where Xsi,,g is the formal completion of X along its singular locus.

Proof. Let U be the regular locus of X, so that U is either empty, in which case
the statement trivially holds, or otherwise, it has the same dimension d as X. By [17,
Proposition 7.1], we have an equality [X] = [U] + [)?sing] in G. Diving by ¢ and
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taking the jet operator V,, := Vny yields

A~

Xsing
L ]
Multiplying with t” and summing over all n then yields an identity of motivic series

(36) Tgu(soh) (X) = Iguys) (U) + Igufoh) (Xong).

By Theorem 9.1 the first series on the right hand side is strongly rational, proving
the claim. 0

Building upon this phenomenon, let us define an equivalence relation on G[[t]]
by calling f ~ g, if there exists s,t € X such that sf — tg is strongly rational.
In particular, if f & ¢ and one is strongly rational, then so is the other. We can
now weaken the requirement in Question 9.2, by asking when two schemes have
~-equivalent motivic Igusa-zeta series. An identity like [17, (28)], namely [X] =
[C]+L, in G, where X is the union of two lines given by 2y = 0 and C'is the nodal
curve with equation y? = 23 + 22, shows that both curves have ~-equivalent motivic
Igusa-zeta series by applying the jet operator to this identity and using Theorem 9.1.

9.4. Weighted motifs. Example 5.3 implies that not every motivic Igusa-zeta se-
ries can be rational: with the notation of loc. cit., the Igusa-zeta series along (Y, P)
requires us to use the factor L.~ %7(Y) whereas along (Z, Q), we need L~ (d+a)ig(Z),
In case @ > 0 and (Y, P) has dimension at least two, the rationality of the first pre-
cludes that of the second, in view of the extra factor L%z (@) since these exponents
grow at least quadratically in n, and hence can never appear in a rational function
(see also (38) below). To circumvent this, we introduce the jet of a weighted motif
as follows. Given a fat point 3 of length [, let V; act on G @ Q as

(37) V,[%,q] := [V, %] - LI

for any strongly formal motif X and any rational number ¢. Thus, we can rewite (35)
also as

e
Tgu(yp) (X) i= D" Vny [X, —d]t”
n=1
With this notation, we define a weighted motivic Igusa-zeta series for any weighted
strongly formal motif (X, ¢) as

o]
Tgu(yp) (X,q) = 3} Vv [X,q = d]t”
n=1

and ask for which values of ¢ is the series strongly rational. We postulate, in view of
Conjecture 5.2, that —q should be equal to §(y, p) (X ), the asymptotic defect, at least
when (Y, P) has dimension two or higher. Continuing with Example 5.3, we have,
for any g € Q, an equality of weighted motivic Igusa-zeta series

(38) Igu?;ﬁjﬁ;) (X,q) = IguinzcitQ)(VéX, ql + a).
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9.5. Remark. There is another possible solution to avoid quadratic or higher
powers of L to appear in the general term of the motivic Igusa-zeta series, by making
each term weightless (in the sense of dimension as given by (30)). Namely, define
the weightless motivic Igusa-zeta series

vel
(39) Tgufy py(X) == Y. [Vpy X112
n=1
for any k-scheme X and any closed germ (Y, P). Conjecture 5.2 is then equivalent
with the existence of some ¢ for which the difference Igu?{ﬁjtp) (X, q) —Igupy, py (X)
is a polynomial (it is zero for X smooth and ¢ = 0). When is (39) strongly rational?

9.6. Example. The present point of view even gives interesting new results over
the classical Grothendieck ring, since we may take the image of the motivic Igusa
zeta series in Gr(Var,;). Continuing with the calculations made in Example 4.7,
let m be a positive integer and consider the image of Igu(l,,) := Iguzf]i‘fto) (I) over
the localized classical Grothendieck ring Gr(Var,,); . This amounts to taking the
reduced scheme underlying each jet scheme V_[,,, and as shown above, this reduc-
tion is just L"~ 1. Write n = sm — r for some unique s > 1 and 0 < r < m, so

that [ 2] = 5. Over Gr(Var,); , we have
m—1 o m—1 —
s psmer _ 2o (D)
I [m — Lsm T StSm T — = .
gu( ) Tgo Sgl (1 _ meltm)

In particular, whenever Question 4.15 holds affirmatively, the image of the motivic
Igusa zeta series of the fat point would be strongly rational over the classical Gro-
thendieck ring. Skipping the easy calculations, where one uses that jets commute
with products, we have for instance that
t+L2¢?
I = ——

where 3 is the fat point [2(= [y x [5) with coordinate ring [z, y]/(22,y?). Simi-

larly, one calculates that Igu(l, x [;) is strongly rational with denominator dividing
1 — LL2eb—a=b1ab (the exact denominator is given by diving both exponents by the
greatest common divisor of a and b); and Tgu([%, ) has denominator (1—L2(m=1¢m),
However, the reduced Igusa zeta-series does not characterize the fat point uniquely,
as can be seen from the next result:

9.7. Lemma. Let m > 2 and suppose 3 is a closed subscheme of &, given by
equations of order at least m. Then Vi3 and V1%,
variety, whence the same dimension, for all n. In particular, Igu(3) = Igu(I%).

Proof. Letx,y,... be the d variables defining 3 and let 1, ..., £"~! be the basis
of [,, with respect to which we calculate jets. By assumption, its ideal of definition
contains all powers ",y ... and some additional polynomials of order at least
m. Since jets commute with products, the minimal prime ideal of Vi, [¢ = (V;, [,,,)¢

have the same underlying
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is equal to (Zo, Yoy -+, T1,Y1s-- - TsyTs, - .- ) With s = [2] by Example 4.7. Let

m

A be the coordinate ring of the reduction of Vi, I4,. Hence the generic jets 2,7, . . .
all have order at least s in £ over A. If f(z,y,...) is some additional equation of

3, by assumption of order at least m in the variables x,y, ..., then f(Z,7,...) has
order at least s > n in & over A, and hence does not contribute in the calculation
of V3, showing that A is also the coordinate ring of the reduction of V3. 0

We can take this construction even a step further: let X be a d-dimensional x-
scheme, X a strongly formal motif on X, and 1 a limit point. In order to study
Vy[[X]], we need to understand the asymptotics of the direct system V, X with 3
running over all fat points in a point system Y with limit §). To which extent is this
independent from the choice of point system Y? Suppose Y is a countable chain
{31 C 32 C ...}, so that we can build the motivic Igusa-zeta series of X along Y, as
the power series over G given by

s}
(40) Tguy® (%) := >V, [, —d]t".
n=1

We again may ask about its strong rationality (which, of course, will require a certain
‘naturality’ of the chain) , and how these series for two different point systems Y and
Y’ with the same limit, are related to each other.

Motivic Hilbert series. Given a motivic site M, we let M be its restriction to the
subcategory of zero-dimensional schemes, that is to say, the union of all M| 4> where
Z runs over all zero-dimensional x-schemes. As the product of two zero-dimensional
schemes is again zero-dimensional, My is a partial motivic site, and hence has an as-
sociated Grothendieck ring Gro(M) := Gr(My), called the Grothendieck ring of
M in dimension zero. There is a natural homomorphism Gro(M) — Gr(M), which
in general will fail to be injective, as there are a priori more relations in the latter
Grothendieck ring. In particular, applied to (sub-)schemic or (strongly) formal mo-
tives, we get the corresponding Grothendieck rings in dimension zero Gry($ch,),
Gro(subSch,,), Gro(Form®"), and Gro(Form,,).

9.8. Proposition. The schemic Grothendieck ring in dimension zero, Gro($ch,,),
is freely generated, as an additive group, by the isomorphism classes of fat points.

In particular, there is a canonical homomorphism £: Gro($Sch,) — Z extending
the length function.

Proof. A zero-dimensional scheme Z is a disjoint union 3; u --- U 35 of fat
points (in a unique way). Moreover, since any fat point is strongly connected, this
unique decomposition in fat points is its schemic decomposition. Hence, by the
proof of [17, Theorem 5.7], the image of [Z] under the composition Gry($ch,) —
Gr(%ch,) 5 Tis Gy + -+ 4+ {3s), where T is the free Abelian group on isomor-
phism classes of strongly indecomposable x-schemes. Since [Z] = [31] + -+ + [3s]
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in Gro($ch,,), this composition is an isomorphism. The last assertion is now im-
mediate. 0

Let (X, P) be a closed germ over x. For t a single variable, we define the morivic
Hilbert series as the series

[o 8}
Hilb™ (X, P) := Y [JpX] "
n=1

in Gro($ch,)[[t]]- Extending the homomorphism ¢ from Proposition 9.8 to the
power series ring Gro($ch,)[[t]] by letting it act on the coefficients of a power
series, {(Hilbp(X)) is a rational function in Z[[t]] by Hilbert-Samuel theory (it is
the first difference of the classical Hilbert series of X at P). However, Hilb™" (X, P)
will in general not be (strongly) rational, even over G, as is already clear from taking
(X, P) = (IL, O). Although no longer specializing to a classical series, we may also
consider the more general series
v e
Hilb™ (X, z) := > [J2X]t"
n=0

where z is any point on X (not necessarily closed).

9.9. Theorem. Let k be an algebraically closed field of cardinality 27 for some
infinite cardinal vy (under the Generalized Continuum hypothesis this means any un-
countable algebraically closed field). The assignment Xp — Hilb™" (X,P)isa
complete invariant in the sense that for closed germs (X, P) and (Y, Q) over &,
their completions X p and }A/Q are abstractly isomorphic (that is to say, over Z) if
and only if they have the same motivic Hilbert series in Gro($Schy).

Proof. Immediate from Proposition 9.8 and the classification results [16, Theo-
rem 1 and §8.3]. O

Motivic Hilbert-Kunz series. Assume that « has characteristic p. Recall that for
a given closed subscheme Y C X, we defined in §3 its Frobenius transform in X as
the pull-back F%Y := F, X xx Y of Y along F x. We may also take the pull-back
with respect to the powers F' of the Frobenius, yielding the n-th Frobenius trans-
form F'*Y . If Y has dimension zero, then so does any of its Frobenius transforms,
and so the following series, called the motivic Hilbert-Kunz series,

e
HKP™(X) := ), [FRFY]¢"
n=1
is a well-defined series in Gro($ch,)[[t]]. Taking the length function ¢ yields the
classical Hilbert-Kunz series, of which not too much is known (one expects it to be
rational). Of course, we could also take Y to be of higher dimension, and get the
corresponding motivic Hilbert-Kunz series in Gr($ch,;)[[t]]-

Instead of transforms we could take iterated Frobenius motives §y := VgnY

given as the image sieve of the n-th relative Frobenius F'. x 1y, for some closed
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immersion Y C L*, in case Y is affine, and by glueing for the general case, yielding
a series

€L
mot Z an tn

in Gro($ch,)[[t]]- Note that §} (k) = Y(F"k) = Y (x) by Theorem 3.14, so that
this series becomes the rational function [Y]/(1 — t) in Gr(Var,).

Motivic Milnor series. Let (Y, P) be a closed germ with formal completion Yp,
so that 1?'18 is a strongly formal motif approximated by its co-jets. However, this is
not the only way to locally approximate it with schemic submotives. Given a system

of parameters &1, ..., & in Oy, p (that is to say, a tuple of length e = dim(Oy,p)
generating an ideal primary to the maximal ideal), let v,, be the fat point with coor-
dinate ring B, := Oy p/(£7,...,&2)Oy,p, and j,, : h, — Speck the canonical

morphism. The reader can check that given a fat point 3, there exists some n such that
9.(3) = Yp(3), that is to say, Yp is the limit point corresponding to the point system
{vn}n (see §7), called the deformations of Y with respect to the system of parame-
ters &1, . .., &. Recall that by the Monomial Theorem, the element (& -+ - &)t is
a non-zero element in the socle of B,, (meaning that the ideal it generates has length
one).

Let X C L' be the (d-dimensional) hypersurface with equation f(z) = 0 and
let X, C L™ be the deformed hypersurface with equation f(z) — (& -+ -&)" ™! =
0. In other words, it is the general fiber in the family W,, C L‘g:Q over the last
coordinate z, given by the equation f(z) — z(&; - - &)™~ = 0, whereas the special
fiber is just the base change Jn X. We define the n-th order Milnor fiber of X along
the germ (Y, P) as the deformed jet space

My (X) := Vg X,
Hence, by Proposition 6.2, with jg.,: L‘é:’Q — L4*2 the base change of j,,, the
specializations of the relative jet scheme are
(Vj: Wn)a =V, X if a is the zero section;
(4D " .
= M, (X) otherwise.

We define the associated Milnor series
[s 8]
Milf3e) (X) = Y L= O [M, (X)]"
n=1

as a power series in t over G. By (40) and (41), this series can be viewed as a
deformation of the motivic Igusa-zeta series along the deformations 1),,. When (Y, P)
is the germ of a point on a line, we get the schemic variant of the series introduced
by Denef-Loeser et al. Therefore, in view of Question 9.2, we ask when the motivic
Milnor series is also strongly rational, and in fact, as a rational function, to have



SCHEMIC GROTHENDIECK RINGS II 41

degree zero. Assuming this to be true, we can calculate the limit of this series when
t — o0, and this conjectural limit, presumably in G, will be called the motivic Milnor
fiber of X along the closed germ (Y, P).

9.10. Proposition. The motivic Milnor series of a smooth hypersurface X along
a closed germ is strongly rational and its motivic Milnor fiber is equal to —[[X]].

Proof. With notation as above, the defining equations of M,,(X) are the same as
those of V), X, except for the last equation, which has an additional term —1 (here
we choose a basis for the coordinate ring of v,, with last element (&7 ---&.)" 1,
which is possible by the Monomial Theorem). Therefore, the argument in Theo-
rem 4.14 shows that [M,,(X)] = [X]LA¢0)=1) where d is the dimension of X It
follows that Mil{’;}ftp) (X) = (X1} from which the last claim is now also clear. [

-t »
For Y of higher dimension, we may again need weighted (see §9.4) or weightless
(see Remark 9.5) variants for rationality to happen, and so, setting [M,, (X, q)] :=
[M,,(X)] - LI=2¢0n)1 we define the weighted motivic Milnor series as
oo
Ml (X, q) = 3] [Mo(X.q — d)]e,
n=1
and, with the notation from (30), the weightless motivic Milnor series as
s8]
MYy, p) (X) := Y [[Ma(X)]]E".
n=1
We may again ask whether there is a ¢ such that Mil{y, p(X) — Mil?}f}) (X,q)isa
polynomial.

Motivic Hasse-Weil series. Another important generating series in algebraic ge-
ometry whose rationality—proven by Dwork in [4]—is postulated to be motivic, is
the Hasse-Weil series of a scheme over a finite field IF,;: its general coefficient is the
number of rational points over the finite extensions . To turn this into an abstract
counting principle, we use the inversion formula relating the number of degree n ef-
fective zero cycles on X to the number of rational points in an extension of degree n,
and observe that the former cycles are in one-one correspondence with the rational
points on the n-fold symmetric product X (™) of X (given as the quotient of X mod-
ulo the action of the symmetric group on n-tuples). Therefore, following Kapranov
[8], we propose the following motivic variant, the Motivic Hasse-Weil series:

e]
HWE = > [xM] e,
n=0
as a power series over G. Kapranov himself proved rationality of the image of
this series over Gr(\/arrc)]L, as well as a functional equation, for certain smooth,
projective irreducible curves, but the general case is still open. We know from work
of Larsen and Lunts on smooth surfaces ([10]), that, in general, this cannot hold over
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the Grothendieck ring itself: in [1 1], they show that rationality over the Grothendieck
ring is equivalent with the complex surface having negative Kodaira dimension. It is
therefore natural to conjecture the same properties for our motivic variant HW'".

Motivic Poincare series. Given a closed germ (Y, P) with formal completion Y,
viewed as a limit point, and a x-scheme X, by Theorem 8.1, we can now define the
motivic Poincaré series of X along (Y, P) as the formal series

Poin{y} ( Z ~UEMVy, X"

over G, where d is the dimension of X, where %= /nX denotes the n-th order Y-
extendable jets on X (see §8), and where, as before, j3(Y") is the length of the
n-th co-jet JpY (strictly speaking, we do not yet know whether extendable jets are
strongly formal, and so we should really work in Gr(Form,); , but see Remark 8.2).
Denef and Loeser proved in [2] that along the germ of a point on the line, the image
of this series in the localized classical Grothendieck ring is rational, provided x has
characteristic zero. Extending the notation to weighted motifs (see §9.4), by putting
Vo [ Xoal = [V, X L1972, and defining the weighted motivic Poincaré se-

ries as
%L

Poin(yp (X, q) := ) [V, X, q — d]t"
n=1

it is therefore natural to ask:

9.11. Question. For any closed germ (Y, P) and any x-scheme X, for which ¢ is
the associated motivic Poincaré series PoinE‘iﬁ?};) (X, q) strongly rational over G?

The question is answered in the affirmative by Theorem 9.1 for smooth X with
q = 0, since then Vp /nX =V ngX by Theorem 4.14, so that the Poincare series
and Igusa-zeta series agree. Similarly, we define the weightless motivic Poincaré
series as

5»L
Poingy v, P Z Vo /n

Given X and a formal completion Y, we may ask for each n, which are the fat
points 3 containing the n-th co-jet j, := J3Y such that V X cV 3in X, that is

to say, when are Y -extendable jets also 3-extendable? For 1nstance if ¥V = L is the
completion of the affine line, then by Theorem 4.14, we can extend along any co-jet
of a non-singular germ (W, O), since there exist closed immersions j,, C JGW C j‘fl,
where d is the dimension of (W, O). However, I do not know whether we can extend
along the fat point given by, say, 2% = y* = 23 —y? = 0. For which schemes X can
every Y -extendable jet be extended along any fat point? This is true if X is smooth,
but are there any other cases?
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10. Motivic integration

Unlike the Kontsevitch-Denef-Loeser motivic integration, we will only define in-
tegration on the jet schemes, and not on the arc schemes. We continue to work over
the localized Grothendieck ring G := Gr(Form"), , with x an algebraically closed
field (we leave the general formal case as an exercise). Before we develop the theory,
we discuss a naive approach.

Motivic measure. We fix a fat point 3. Our goal is to define a motivic measure
45 on strongly formal motives. To this end, we define

ps(X) := [V3X]

in G. In particular, this measure does not depend on the ambient space of X, only
on its germ. Using Theorem 4.8, we can extend the motivic measure to an en-
domorphism on G. We would like to normalize this measure, with the ultimate
goal—which, however, we do not discuss in this paper—to make the comparison be-
tween different fat points and take limits. One way to normalize is to make the value
weightless (in the sense of dimension; see (30)), by

73 (X) = [[V;X]]

This, of course, is no longer additive, and the corresponding integral will no longer
satisfy Proposition 10.3 below. For this reason, we will normalize differently below,
by fixing an ambient space. Following integration theory practice, we would like to
say that

Jlx dyz = (%) := [V, X]

and extend this to arbitrary step functions. Here, a step function would be a formal,
finite sum s = Y, ¢g;1x, with g; € G and X; strongly formal motives. However,
how to interpret this as a function? As usual, we should do this at each fat point tv,
and interpret 1x (1) as the characteristic function on X (tv) of X(tv), where X is an
ambient space of X. Likewise, provided X is an ambient space for all X;, we let s(10)
be the function X (tv) — G associating to a t-rational point a € X (tv) the sum of
all g; for which a € X;(w). However, the main obstruction is that this point-wise
defined function is in general not functorial. The reason is the non-functorial nature
of fibers, which in turn stems from the lack of complements in categories—note that
the complement of a fiber is the union of the other fibers. To recover functoriality,
we work over a subcategory of fat points as in [17, §8], the material of which we
quickly review.

Split points. Let [F:cntffht be the category of split points over k, whose objects are
fat points over £ and whose morphisms are split epimorphisms ¢: 3 — tv, that is to
say, admitting a section, o: tv — 3 such that @0 is the identity on tv. Each structure
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morphism 3 — Spec « is a split epimorphism, and by base change, so is each pro-
jection map 3tv — . We call a Boolean combination of strongly formal motives a
strongly split-formal motif. The key result proven in [ 17, Proposition 8.4]-explaining
also the name-, is that a split-formal motif is a functor on [Fatff“t (it is in general
no longer a functor on Fat,). To make this into a motivic site, the strongly split-
formal motivic site Form®?
between strongly split-formal motives that extend to a morphism of (full) strongly
formal motives (see [ 17, §8] for more details). We show in [17, Proposition 8.6] that
the Grothendieck ring of Form®® has not changed: it is equal to the formal Gro-

thendieck ring Gr(Form®"). For strongly formal motives X C ) and a fat point 3,
we therefore set

, we take as morphisms those natural transformations

(42) V; (D\X) := va@\vsx

Since jets commute with unions, this is well-defined, and extends the jet operator to
any strongly split-formal motif. Moreover, after taking classes, (42) gives the correct
value in the Grothendieck ring.

10.1. Lemma. If X is a strongly split-formal motif and 3 a fat point such that
V,; X is empty, then X too is empty. In particular, all jet maps are injective on each
ambient space.

Proof. By the argument in the proof of [17, Proposition 8.6], we may reduce to
the case that X is of the form 2)\3 with 3 C 2) (full) strongly formal motives. Let
v be an arbitrary fat point. The closed immersion to C 3to induces maps 3(3tv) —
3(w) and Y(3t0) — Y(t). Since composing the closed immersion with the (split)
projection 3tv — tv is the identity, the two above maps are surjective. Since V; X is
the empty motif, it has no r-rational points, that is to say, 3(3w) = 2)(3w) by (42).
Surjectivity then yields that 3(w) = 2)(w), whence X(v) = . Since this holds for
any fat point tv, we see that X is the empty motif.

To prove the last assertion, assume V;X = V,9) for X, %) strongly split-formal
motives on a scheme X. By what we just proved, X\(X n 2)) and 9\(X n Q) are
both empty, from which the claim now follows. g

From now on, we will work in the category of strongly split-formal motives
‘,‘:pl, and we view the class of any such motif as an element in the localized
Grothendieck ring G := Gr(Form;,"); . Let G be the constant pre-sieve with val-
ues in 7, that is to say, the contravariant functor on the category of split points which
associates to any fat point the set G and to any split epimorphism of fat points the
identity on G. Given a morphism, that is to say, a natural transformation, s: X — G,
we define, for each g € G, the fiber s~1(g) as the subfunctor of X given at each fat

point 3 by the fiber 5(3)7(g) of 5(3): X(3) — G at g. If both X and all fibers are

Form



SCHEMIC GROTHENDIECK RINGS II 45

strongly split-formal motives, and s has only finitely many non-empty fibers, then
we call s a formal invariant.*

10.2. Corollary. The formal invariants on a strongly split-formal motif X form
an algebra over G.

Proof. Clearly, any multiple of a formal invariant by an element in G is again a
formal invariant. Let s,7: X — G be formal invariants. We have to show that s + ¢
and st are also formal invariants. Functoriality is easily verified, so we only need to
show that the fibers are again strongly split-formal motives. Fix a fat point 3, and
an element g € G. A j-rational point a € X(3) lies in (s +¢)~*(g)(3) (respectively,
in (st)7(g)(3)), if 5(3)(a) + t(3)(a) = g (respectively, if s(3)(a) - t(3)(a) = g).
Since s(3) and t(3) have finite image, their are only finitely many ways that g can be
written as a sum p + ¢ (respectively, a product pq), with p in the image of s(3) and ¢
in the image of ¢(3). Hence, the rational point a lies in the intersection (s(g,) -1 (p)) N
(t(g)_l(q)), for one of these finitely many choices of p and g. Since a finite union
of intersections of strongly split-formal motives is again strongly split-formal, the
result follows. 0

Motivic integrals. Let X be a x-scheme, 3 a fat point, and s: X — G a formal
invariant with X a strongly split-formal motif on X. We define the motivic integral
of s on X along 3 as

43) [sdx =L Y g M @)

geG
where d is the dimension of X and [ the length of 3. Note that the sum on the right
hand side of (43) is finite by definition, so that Ss d; X is a well-defined element in
G. At the reduced fat point, Spec x, we drop the subscript in the measure, and so
this integral becomes

Js dX :=1L7¢ Z g-[s71(9)]
9eG

To a strongly formal motif ) on X, we can associate two invariants. Firstly, the
constant map, denoted again ¥), which at each fat point is the constant map sending
every rational point to [2)]. One easily calculates that

[vax -1 dx -1

In particular, X — { dX = [[X]] is the weightless class map. It follows from The-
orem 4.8 and Proposition 5.5 that the integral {2) d; X only depends on the classes
of ) and X . Moreover, by our previous discussion { d; X has positive dimension.

41 do not know whether the finitude of the non-empty fibers does not already follow from the other
assumptions.
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Secondly, we define the characteristic function 1g of 2) by the rule that 1g)(3)
is the characteristic function of 9)(3), that is to say, the formal invariant sending a
rational point a € X(3) to 1, if a € 2(3), and to zero otherwise, for any fat point
3. Any formal invariant can be written as a G-linear combination of characteristic
functions, and, in fact, the decomposition

(44) s= > gily,
i=1

is unique if the non-empty strongly formal submotives ); are mutually disjoint (note
that then necessarily 9); = s~ 1(g;)). Therefore, (44) is called the fiber decomposi-
tion of s.

Since 151 (1) = 9, in the notation of weighted motifs (see §9.4), we get

(45) J d,X = f1@ d,X = V,[, —d|
2

where we followed the common practice of writing in general

J sd; X := Js-lm d; X.
2

fsdaX = Z gf d; X
571 (g)

geG

In this notation, we have

The weighted variant is simply given by scaling as

[sat0 =3 09 @a—a -1 [sax.
geG
10.3. Proposition. For each k-scheme X and each fat point 3, the motivic integral
on X along 3 is a G-linear functional on the G-algebra of formal invariants.
Proof. Motivic integration is clearly preserved under multiplication by a constant
g € G. To prove additivity, we may induct on the number of characteristic functions,
and reduce to the case of a sum s + k13, that is to say, we have to prove

(46) Js+h13 d, X =Js d5X+Jh13 d,X.

Let (44) be the fiber decomposition of s. Since the fiber decomposition of s + hl3
is then

Z gily, -3 + Z(gz + h)l@i(ﬁ; + hls_g

i=1 i=1
where 9) is the union of the ¥);, the left hand side of (46) is

n n

LY 6l V5 (Qi\3)] + D (g0 + BV5(Di n 3)] + B[V (3\D)D),

=1 i=1
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where d and [ are respectively the dimension of X and the length of 3. Grouping
together the n + 1 terms with coefficient h, and for each i, the two terms with coef-
ficient g;, this sum becomes

L") ¢:[V,9i] + h[V,3]),
i=1

since V; acts on the Grothendieck ring by Theorem 4.8, and since both 9);\3 and
3\ are disjoint from 2); n 3. However, this is just the right hand side of (46), and
so we are done. O

Let s: X — G be a formal invariant on a k-scheme X. Given an open U C
X, let s|;; denote the restriction of s to X n U°. It is easy to see that s|, is a
formal invariant on U. Let Uy, ..., U, be an open covering of X. For each non-
empty subset I C {1,...,n}, let U; be the intersection of all U; with i € 1. We
have the following local formula for the motivic integral (here we call a scheme
equidimensional if every non-empty open has the same dimension as the scheme):

10.4. Theorem. Let s: X — G be a formal invariant on an equidimensional k-
scheme X, let 3 be a fat point, and let Uy, ..., U, be an open covering of X. Then
we have an equality

(47) JsdaX = > (—1)‘”J3|UI d,Ur.
}

G#IC{1,...n

Proof. Given g € G, one easily verifies that we have an equality of motives

(sly,) " (9) = 7 (9) n U7,

foreach I C {1,...,n}. Applying the scissor relations to this, we get an identity

(0] = 1 (s

o)1= D FDCsl,) T 9)]

G#IC{L,...,n}
in G. Applying the jet morphism V; as per Theorem 4.8, we get
Vi oDl = D EDIV(Csl,) M 9))-
GAIC{1,...,n}
Since by assumption all non-empty U; have the same dimension as X (and, of
course, the empty ones do not contribute), the result follows from (43). O

Relations among motivic series. Let Gy := Gry(Sch,). We define, for any
element o € Gy, the integral

J,S do X = Z n; J,S d;, X
i=1

where oo = nq[31] + - - - + ns[3s] is the unique decomposition in classes of fat points
given by Proposition 9.8. We then formally extend this over Go[[t]], by treating ¢ as
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a constant. In this sense, we get, for a closed germ (Y, P), and a k-scheme X, the
following identity of power series:

Igu?;ﬁ?g)) (X) = J dHilbmoL (Y,P) X.

As before, let us call a power series over G strongly rational, if it is of the form
p/s with p € Golt] a polynomial and s € ¥y, where Xy consist of all non-zero
polynomials over «. Likewise, given f, f' € Go[[t]], we say f ~ f’, if there exist
s,8 € g such that sf — s’ f’ is strongly rational.

10.5. Theorem. Let (Y, P) and (Y’, P’) be two closed germs with the property
that Hilb™” (Y, P) ~ Hilb™” (Y', P’) over Gy, then for any scheme X, we have
Igu?{}ftp) (X) ~ Igu’(%}),ﬁp,) (X) over G.

Proof. Let H and H' denote the respective motivic Hilbert series Hilb™ (Y, P)
and Hilb™ (Y, P'). By assumption

(48) sH = s'H' + %

with s, §',t € k[t] non-zero and p € Gg[t]. In general, if ¢ € x(t) and h € Go[[¢]],
then an easy calculation shows that d,;, = gd},, meaning that for each scheme X and
each formal invariant s, we have Ss dgn X = q S s dp X, and the claim now follows
by additivity applied to (48). U

11. Appendix: lattice rings

Let M be a motivic site over an algebraically closed field x and let X be a x-
scheme. By assumption, M| is a lattice, and so we can define its lattice group
AX (M) as the free Abelian group on M-motives on X modulo the scissor relations

&+ - XvY-&nY)

for any two M-motives X and ) on X. In other words, same definition as for the
Grothendieck ring, but without the homeomorphism relations. In particular, there
is a natural linear map AX(M) — Gr(M). We will denote the class of a motif
X again by [X]. For each n, consider the embedding M|y, — M|y .41 via the
rule X — X x X°. One verifies that this induces a well-defined linear map A,, :=
AX"(M) = Apyq = AX"" (M), where X™ is the n-fold Cartesian power of X.
Moreover, the Cartesian product defines a multiplication A,,, x A, — A, for
all m,n. Hence @, A,, is a graded ring, called the graded lattice ring of M on
X, and denoted AX(M). The linear maps A,, — Gr(M) combine to form a ring
homomorphism AX (M) — Gr(M).
We can now state a combinatorial property of the motivic integral:
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11.1. Proposition. Over a k-scheme X and a fat point 3, we can define for each
Str
K

such that if g is the class in A (Form®!") of a strongly formal motif ) on X, then

Jsd3X=J sd; X.
g 2

Proof. By definition, g is a Z-linear combination of classes of strongly formal
motives on X, say, of the form g = n1[Y1] + -+ + ns[Y;]. Define

f sd; X := anf sd; X.
g i=1 i

To show that this is well-defined, we have to verify this only for scissor relations,
that is to say, we have to show that

JSdaX"'f sd; X = sde—i-f sdy X
2 ! DuY’ DnY’

formal invariant s: X — G on X and each g € AX (Form®"), an integral Sg sd; X,

for 9,9’ strongly formal motives on X. This is immediate from the easily proven
identity of characteristic functions

1y + 1y = 1gyoy + 1y~y-

O

Using this, we can now show that the lattice rings are not very interesting invari-

ants (and hence only by also taking homeomorphism relations, do we get something
significant):

11.2. Corollary. The natural map sending a strongly formal motif on some Carte-

sian power of X to its class in A¥ (Form?!”

=) is injective.

Proof. Note that there are no non-trivial relations among classes of motives on
different Cartesian powers of X, so after replacing X by one of its Cartesian powers,
we may reduce to the case that X and ) are strongly formal motives on X having
the same class in AX (Form®"). By Proposition 11.1, we have

K

(49) J.;dg(:f sd, X
x 2

for any formal invariant s on X and any fat point 3. Take s := 1x. The left hand
side of (49) is equal to L% [V;X] (as an element in G), whereas the right hand side
is equal to L™%[V,(X n )], where d and I are respectively the dimension of X
and the length of 3. Using that V, preserves scissor relations, we get V;(X\2) = 0.
Hence ¥\ = ¢ by Lemma 10.1, showing that 2) C X. Replacing the role of X
and %) then proves the other inclusion. g
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