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ABSTRACT. We associate to every equicharacteristic zero Noetherian locaRrataith-

fully flat ring extension which is an ultraproduct of rings of various prime characteristics,
in a weakly functorial way. Since such ultraproducts carry naturally a non-standard Frobe-
nius, we can define a new tight closure operatiorfby mimicking the positive charac-
teristic functional definition of tight closure. This approach avoids the use of generalized
Néron Desingularization and only relies on Rotthaus’ result on Artin Approximation in
characteristic zero. IR is moreover equidimensional and universally catenary, then we
can also associate to it in a canonical, weakly functorial way a balanced big Cohen-Mac-
aulay algebra.
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INTRODUCTION

In this paper, we investigate when a ring of characteristic zero can be embedded in
an ultraproduct of rings of positive characteristic. Recall that an ultraproduct of a family
of rings is a sort of ‘average’ of its members; ggefor more details. To facilitate the
discussion, let us call a ring of characteristic zerbedschetz ringf it is realized as an
ultraproduct of rings of prime characteristic. The designation alludes to an old heuristic
principle in algebraic geometry regarding transfer between positive and zero characteristic,
which Weil [62] attributes to Lefschetz. Befschetz fields a Lefschetz ring which happens
to be a field. To model-theorists it is well-known that the fi€ldf complex numbers is
Lefschetz. Moreover, any field of characteristic zero embeds into a Lefschetz field. It
follows thatany domain of characteristic zero embeds into a Lefschetz ring, but in doing
so, we loose the entire ideal theory of the domain. It is therefore natural to impose that the
embedding preserves enough of the ideal structure, leading to:

Question. Given a Noetherian ring? of characteristic zero, can we findfathfully flat
ring extension of? which is Lefschetz?

Suppose thaR is a ring of characteristic zero which admits a faithfully flat Lefschetz
extensionD. HenceD is an ultraproduct of a familyD,,) of rings D,,, of prime character-
istic; infinitely many different prime characteristics must occur. EBghcan be viewed
as a kind of ‘reduction modulp', or approximation of R. Faithful flatness guarantees that
the D,, retain enough properties of the original ring. ($8éelow.) For an easy example
consider the following criterion for ideal membershipRngiven fy, . .., fs € R and given
fiw € Dy, whose ultraproduct is equal to the image of f; in D, we have fy € (f1,..., fs)R
if and only if fouw € (f1w,- - - fsw)Daw for almost all w.

The main motivation for posing the above question stems from the following observa-
tions. Any ring of prime characteristijc admits an endomorphism which is at the same
time algebraic and canonical, to wit, the Froberliys = — z”. This has an immense im-
pact on the homological algebra of a prime characteristic ring, as is withessed by a myriad
of papers exploiting this fact. To mention just a few: Peskine-Szpiro [42] on homological
conjectures, Hochster-Roberts [32] on the Cohen-Macaulay property of rings of invariants,
Hochster [24] on big Cohen-Macaulay algebras and Mehta-Ramanathan [41] on Frobenius
splitting of Schubert varieties. This approach has found its culmination itighieclosure
theoryof Hochster-Huneke [27, 28, 35]. (For a more extensive history of the subject, see
[35, Chapter 0]; the same book is also an excellent introduction to tight closure theory.)

Hochster and Huneke also developed tight closure in characteristic zero (see [31] or [35,
Appendix 1]), but without any appeal to an endomorphism and relying on deep theorems
about Artin Approximation and 8kon desingularization. Any Lefschetz rifigy however,
is endowed with amon-standard FrobeniuE' ., obtained by taking the ultraproduct of the
Frobenii on theD,,. The endomorphisnif,, acts on the subring: of D, and although
it will in general not leaveR invariant, its presence makes it possible to generalize the
characteristip) functional definition of tight closure to any Noetherian riRgadmitting a
faithfully flat Lefschetz extension. This was carried out in [55] for the case wRdsean
algebra of finite type ovef’. Here we had a canonical choice for a faithfully flat Lefschetz
extension, called theon-standard hulbf R. The resulting closure operation was termed
non-standard tight closurev/ariants and further results can be found in [50, 51, 57, 58, 53].

Let us briefly recall the construction of the non-standard hull of a finitely generated
algebraA over a Lefschetz field<, and at the same time indicate the problem in the
non-affine case. For ease of exposition assumeihet an ultraproduct of field$, of
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characteristig, with p ranging over the set of prime numbers. (See also Proposition 1.4
below.) If A is of the formK[X]/I, wherel is an ideal ofK[X] = K[Xq,...,X,], and

we have already constructed a faithfully flat Lefschetz extensiaf K[X], thenD/ID

is a faithfully flat Lefschetz extension of. So we may assumé = K[X]. There is an
obvious candidate for a Lefschetz ring, namely the ultraprodijéf]., of the K,,[X]. In

a natural wayK [X | is a K-algebra. Taking the ultraproduct of the constant sequence
X, in K,[X] yields an element ik [X].,, which we continue to write aX;. By tos’
Theorem (see Theorem 1.1 below), the eleméfts. .., X,, € K[X], are algebraically
independent oveK and hence can be viewed as indeterminates &verThis yields a
canonical embedding df [ X] into K[X]... Van den Dries observed that this embedding
is faithfully flat [16, 18], thus giving a positive answer to the question above for finitely
generatedy-algebras.

In[52,§3.3], the Artin-Rotthaus Theorem [3] was used to extend results from the finitely
generated case to the complete case. This ad hoc application will be replaced in this pa-
per by constructing a faithfully flat Lefschetz extensiondgeryNoetherian local ring of
equal characteristic zero. However, for the proof, a stronger form of Artin Approximation
is needed, to wit [47]. By the Cohen Structure Theorem, any equicharacteristic zero Noe-
therian local ring has a faithfully flat extension which is a homomorphic image of a power
series ringK [[ X]] (whereK is as before), so the problem is essentially reducdd [{&]].
There is again a natural candidate for a faithfully flat Lefschetz extension, namely the ul-
traproductK [[X]] of the K,,[[X]]. SinceK [X] is a subring ofK[[X]], SO iISK[X].
Moreover, one easily verifies thaf[[ X ]|, with the X -adic topology is complete, that is
to say, each Cauchy sequencdiff X]], has a limit inK[[X]].,. The obstruction in ex-
tending the above argument fraki[ X ] to K'[[X]] is that theX -adic topology ok [[ X ]] oo
is not Hausdorff, and hence these limits are not unique. Therefore, tofsenli [[X]] to
an element inK'[[X]].., we must pick a limit inK[[X]].. of the Cauchy sequendg,,),
where f,, € K[X] is the truncation off at degreen. It is not at all obvious how to do
this systematically in order to get a ring homomorphismK'[[X]] — K[[X]]c. (Itis not
hard to prove that such an once defined, must be faithfully flat.) An example exhibits
some of the subtleties encountered: Let us say that a power gefidg[X ]|, whereL is a
field, does not involve the variabl¥; if f € L[[X1,..., Xi—1, Xit1,..., X,]]. Similarly
we say that an element &f[[ X ]|, does not involve the variablg; if it is the ultraproduct
of power series if{, [ X]] not involving X;. Using an example of from [46] we explain in
§4.33 why there can be no homomorphismK[[X]] — K[ X]]~ with the property that
for arbitraryi, if f € K[[X]] does not involve the variabl&;, then neither doek( f). (Of
course there is always a limit of th in K[[X]]. which has this property.) To circum-
vent these kinds of problems, we use Artin Approximation to derive the following positive
answer to the question posed at the beginning:

Theorem. For each equicharacteristic zero Noetherian local riRy we can construct a
local Lefschetz ring (R) and a faithfully flat embeddingr: R — ©(R).

In fact, the result also holds for semi-local rings. More importarfilycan be made
functorial in a certain way, which is crucial for applications. See Theorem 4.3 for the
precise statement.

Organization of the paper. Sections 1-4 of Part 1 contain a proof of the theorem above.
The proof will be self-contained except for the use of Rotthaus’ result [47]. We also discuss
further connections with Artin Approximation and cylindrical approximation. In Section 5
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we investigate which algebraic properties are carried over fRamthe rings whose ultra-
product is©(R). The reader who is mostly interested in the applications of the theorem
might skip this section at first reading and immediately proceed to Part 2 (referring back to
Section 5 whenever necessary).

We apply our main theorem in two ways. First, in Section 6 we defioa{standar)l
tight closure in any equicharacteristic zero Noetherian local ring and prove the basic facts
(such as its triviality on regular rings, Colon Capturing and Briangon-Skoda). In contrast
with the Hochster-Huneke version from [31] or [35, Appendix 1] we do not have to invoke
generalized Mron desingularization. In order for this paper not to become too long, issues
such as the existence of test elements, persistence of tight closure, detailed comparison
with other tight closure operations, F-rationality and F-regularity will be postponed to a
future publication.

Our second application is a direct construction of a balanced big Cohen-Macaulay al-
gebra for each equicharacteristic zero Noetherian local ring, simpler than the one given in
[30]. This construction is weakly functorial on the subcategory of equidimensional and
universally catenary rings of bounded cardinality. Using non-standard hulls, the second
author gave a similar construction for finitely generated algebras over a field [57]. The
method, which itself relies on a result of [29], easily extends to the present situation, at
least for complete domains with algebraically closed residue field.

Conventions. Throughoutyn andn range over the séf := {0, 1,2, ... } of natural num-
bers. By ‘ring’ we always mean ‘commutative ring with multiplicative identity

Part 1. Faithfully Flat Lefschetz Extensions

After some preliminaries on ultraproducts & and on nested rings i§2, in §4 we
prove the theorem from the introduction (in the form of Theorem 4.3). The construction of
the desired Lefschetz extensions is achieved via cylindrical approximation in equicharac-
teristic zero, which is a corollary of Rotthaus’ theorem [47], as we expla§B.inn §5 we
then discuss the relationship betweand the components a¥(R).

1. ULTRAPRODUCTS

Let W be an infinite set. Anon-principal ultrafilteron W is a collection of infinite
subsets oV which is closed under finite intersections and has the property that for any
W C W, eitherW or its complemen¥V \ W belongs to the collection. (One should
think of the subset$l” which are in the ultrafilter as ‘big’ and those not in it as ‘small’.)
Given an infinite selV, any collection of infinite subsets &% which is closed under finite
intersections can be enlarged to a non-principal ultrafiltet¥on (See for instance [33,
Theorem 6.2.1].) Applying this to the collection of co-finite subset®\bimplies that on
every infinite set there exists at least one non-principal ultrafilter. With a few exceptions
we will always consider a fixed ultrafilter on a given infinite set, so there is no need to name
the ultrafilter. Henceforth we call a s endowed with some non-principal ultrafilter an
ultraset

In the remainder of this section we & be an ultraset, and we lat range ovenV.

For eachw let A,, be a ring. Thaultraproductof the family (A,,) (with respect toV) is

by definition the quotient of the produg{,, A,, modulo the idealZ,, consisting of the
sequences almost all of whose entries are zero. Here and elsewhere, a property is said to
hold for almost all indicesf the subset of allv for which it holds lies in the ultrafilter. We



LEFSCHETZ EXTENSIONS, TIGHT CLOSURE, AND BIG COHEN-MACAULAY ALGEBRAS 5

will often denote the ultraproduct of the fami(yl,,) by

(1.0.1) ulim A, = IT Aw / Tnul-

weW
Sometimes we denote such an ultraproduct simplylhy, and we also speak, somewhat
imprecisely, of ‘the ultraproduct of thd,,’ (with respect to)V). Given a sequence =
(aw) in [, A we call its canonical image id, the ultraproductof thea,, and denote
it by

oo := ulim a,,.

weWw
Similarly if a,, = (1w, .-, 0nw) € (Ay)™ for eachw € W anda; is the ultraprod-
uct of thea;,, fori = 1,...,n, thenaw = (@100,---,noo) € (Ax)™ is called the

ultraproductof the n-tuplesa,,. If all A,, are the same, say equal to the ringthen the
resulting ultraproduct is called artrapowerof A (with respect td/V), denoted by
AW = ulim A.
weWw

The mapis: A — A" which sends: € A to the ultraproduct of the constant sequence
with valuea is a ring embedding, called tlBagonal embeddingf A into A¥Y. We will
always viewA" as anA-algebra viaj 4. Hence ifA is an S-algebra (for some ring),
then so isA" in a natural way.

Let A, and B, be ultraproducts, with respect to the same ultragetof rings A,
and B, respectively. If for eaclw we have a map,,: A, — By, then we obtain a map
Yoo Ase — Beo, Called theultraproductof the p,, (with respect ta/), by the rule

a = ulima, — poo(a) := ulim @, (ay,).

(The right-hand side is independent of the choice ofdhesuch thata = ulim,, a,,.)
Almost all ¢,, are homomorphisms if and onlyf.. is a homomorphism, and the, are
injective (surjective) if and only ifr, is injective (surjective, respectively).

These definitions apply in particular to ultrapowers, that is to say, the case whdrg all
andB,, are equal to respectively andB. In fact, we then can extend them to arbitr&ty
algebras, for some base risg For instance, letl andB beS-algebras, andlet: A — B
be anS-algebra homomorphism. Thetrapowerof ¢ (with respect ta/), denotedy”,
is the ultraproduct of the,, := ¢. One easily verifies that”V: A — B is again an
S-algebra homomorphism.

The main model-theoretic fact about ultraproducts is called £os’ Theorem. For most of
our purposes the following equational version suffices.

1.1 Theorem(Equational £os’ Theorem)Given a syster§ of equations and inequalities

fi=fo==f=0,91#0,g2#0,...,9: #0

with f;, g; € Z[X1,..., X,], the tuplea is a solution ofS in A if and only if almost
all tuplesa,, are solutions ofS in A,,.

In particular it follows that any ring-theoretic property that can be expressed “equation-
ally” holds for A, if and only if it holds for almost all the ringgl,,. For example, the
rng A is reduced (a domain, a field) if and only if almost all the rintjs are reduced
(domains, fields, respectively). All these statements can deduced from Los’ Theorem using
appropriately chosen systeiis For instance, a ringg is reduced if and only if the system
X?% =0,X # 0 (in the single indeterminat&) has no solution irB. We leave the details
of these and future routine applications of Los’ Theorem to the reader. An example of a
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property whichcannotbe transferred betweet,, and theA,, in this way is Noetherianity.
(However, A is Artinian of length< [ if and only if almost allA,, are Artinian of length
< I, see [36, Proposition 9.1].) Also note that if almost 4}, are algebraically closed
fields, thenA,, is an algebraically closed field; the converse is false in general, as [36,
Example 2.16] shows.

We refer to [13], [19] or [33] for in-depth discussions of ultraproducts. A brief review by
the second author, adequate for our present needs, can be founds2] [3%sing induction
on the quantifier complexity of a formula, Theorem 1.1 readily implies the “usual” version
of Los’ Theorem, stating that irl ., the tuplea,, satisfies a given (first-order) formula
in the language of rings if and only if almost al}, satisfy the same formula (id,,). In
particular, a sentence in the language of rings holds.inif and only if it holds in almost
all A,,. Similarly, if for eachw we are given an endomorphism,: A,, — A, of Ay,
then its ultraproduct, is an endomorphism afi,, and a formula in the language of
difference rings (= rings with a distinguished endomorphism) holds for the tuplén
(Ao, poo) if and only if it holds for almost alk,, in (A4, ¢.,). On occasion, we invoke
these stronger forms of Los’ Theorem. (See for instance, [33, Theorem 9.5.1] for a very
general formulation.)

The ultraproduct construction also extends to more general algebraic structures than
rings. For example, if for eaclr we are given am,,-moduleM,,,, we may define

Mo = ulim M, = wgv M, / M
where My is the submodule of[,, M., consisting of the sequences almost all of whose
entries are zero. Thel, is a module over , in a natural way. If thed .-module M,

is generated byni, - . . , Mseo, then thed,,-moduleM,, is generated byhy,,, - .., Mgy,

for almost allw. It is possible to formulate a version of Los’ Theorem for modules. Since
this will not be needed in the present paper, let us instead illustrate the functoriality inherent
in the ultraproduct construction by establishing a fact which will be usefgdirSuppose

that for eachw € VW we are given am,,-algebraB,, and anA,,-modulei,,.

1.2 Proposition. If M, has a resolution
= (A) M L (Ag)™ B (An)™ 1t = - B (An)™ — My, — 0
by finitely generated fred ..-moduleg A, )™ and B, is coherent, then aB.,-modules
(1.2.1) Tor* (Boo, Moo) = (Tor{ (Bu, M)
for everyi € N.

Here the module on the right-hand side of (1.2.1) is the ultraproduct d$fhmodules
Tor,;‘"“’ (Bw, M,,). Before we begin the proof, first note that we may identify the free
Aso-module(A.,)™ with the ultraproductA?, ), of the freeA,,-modulesA?, in a canon-
ical way. Under this identification, iy, ..., a,, are elements ofi?, then theA .-
submodule of(A.,)™ generated by the ultraproduciS.c, .. .,amns € (As)™ of the
ayw, - - -, amw, respectively, corresponds to the ultraprodiit of the A,,-submodules
Ny := Apagy + -+ Ayanm, of A7 (an A,-submodule of A” ),). The canonical sur-
jectionsm,,: Ay — Al /N, induce a surjections : (As)” = (A)oo — (Al /Nuw)oo
whose kernel isV.,. Hence we may identifyA.,)" /Ny and(A” /Ny)oo-

Proof (Proposition 1.2) The A.-linear mapsp; are given by certain;_; x n;-matrices
with entries inA.,. Hence eacly; is an ultraproducp; = ulim,, ¢; ., of A,,-linear maps
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iw: Aw™ — A% with ker o; = (ker ;)00 @Ndimp; = (im; 4)e0. Hence for

w

giveni > 0 the complex

n: Pi,w . Pi—1,w ’ Yo, w ’
4!’1,,4,1 ) 47L ) 47L —1 2 4”0 7‘[
wl wz wz w w O

is exact for almost allv, by £os’ Theorem. On the other hand, tensoring the free resolution
of M, from above withB,, we obtain the complex

s (Ba)" 1 YL By = % (Bo)™ — Boo @4 Mo — 0

wherey; := 1®y;. (We identify(Bu )™ andB..® 4 (As)™ as usual, for each) Writ-
ing eachy; as an ultraproduap; = ulim,, v; ., Of By,-linear mapsy; ,, : Byt — B
yields, for giveni > 0, thatw; ,, = 1 ® ¢, ., for almost allw, henCéTor?W(Bw,Mw) =
ker ;1 4/ im1; o, for almost allw. SinceB,, is coherent, théB,,-moduleker ¢,_; is
finitely generated, and we get

Tor;400 (Boos Moo) = kertp; 1/ imp; = (ker wi_l.’w/im@bi’w)oo.

This proves the case> 0 of the proposition. Using the remarks preceding the proof it is
easy to show thaB,, ®4_ M, = (Bw ®a, Mw)oc’ proving the casé = 0. O

1.3. Lefschetz rings. An ultraproductA., of rings A,, with respect to an ultraséy will

be calledLefschetZ{with respect ta/V) if almost all of theA,, are of prime characteristic
and A, is of characteristic zero. (The condition omar(A.,) holds precisely if for each
prime numbep, the set{w : char(4,,) = p} does not belong to the ultrafilter d9.) A
Lefschetz field is a Lefschetz ring that happens to be a field; in this case almdst afe
fields. The following proposition is a well-known consequence of Los’ Theorem. We let
p range over the set of prime numbers. As udijatienotes the field witp elements and
]F;lg its algebraic closure.

1.4. Proposition. There is a(non-canonicdl isomorphism between the field of complex
numbersC and an ultraproduct of th@glg.

Proof. Equip the sefP of prime numbers with a non-principal ultrafilter and It be

the ultraproduct of th&’glg with respect to the ultras@. By the remarks following Theo-

rem 1.1, we see thdf, is an algebraically closed field. Sintés a unit inF, for every
prime! distinct fromp, it is a unit in F' ., by £0s’ Theorem. Consequently,, has char-
acteristic zero. The cardinality d&f . is that of the continuum; see [13, Proposition 4.3.7].
Any two algebraically closed fields of characteristic zero, of the same uncountable car-
dinality, are isomorphic, since they have the same transcendence degrég. odence
F~F,. O

1.5 Remark.Note that that the particular choice of non-principal ultrafilter/mised in

the proof above is irrelevant. The same argument may also be employed to show, more
generally: every algebraically closed field of characteristic zero of uncountable cardinality
2* (for some infinite cardinal) is isomorphic to a Lefschetz fielH,, with respect tagP

all of whose components,, are algebraically closed fields of characterigtidt follows

that every field of characteristic zero can be embedded into a Lefschetz field all of whose
components are algebraically closed fields. Moreover, under the assumption of the Gen-
eralized Continuum Hypothesi@X = A+ for all infinite cardinals\) every uncountable
algebraically closed field of characteristic zero is Lefschetz.

The following class of Lefschetz rings will be of special interest to us:
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1.6. Definition. A Lefschetz ringA., (with respect to the ultrasét’) will be called an
analytic Lefschetz ringwith respect taV) if almost all of theA,, are complete Noetherian
local rings of prime equicharacteristic with algebraically closed residue field. ALet
and B, be analytic Lefschetz rings. An ultraprodugt,: A, — Bx Of local ring
homomorphismsp,,: A,, — B,, Will be called ahomomorphism of analytic Lefschetz
rings (with respect toV).

By Los’ Theorem every analytic Lefschetz ring is a local ring, and every homomor-
phism of analytic Lefschetz rings is a local homomorphism of local ringsd ¥ A,
is a Lefschetz ring (an analytic Lefschetz ring) with respedttand ! a finitely gener-
ated proper ideal off, thenA/I is isomorphic to a Lefschetz ring (an analytic Lefschetz
ring, respectively) with respect to the same ultragét Hence if the maximal ideal of
the analytic Lefschetz ringl ., is finitely generated, then the residue fieldAaf, may be
identified with the ultraproduck’, of the residue field$(,, of A,, in a natural way. In
particulark ., is itself Lefschetz and algebraically closed.

1.7. Example. For fixedn let A, := K,[[X1,...,X,]] be the ring of formal power
series in indeterminates,, . . ., X,, over an algebraically closed field,, of characteristic

p(w) > 0. If for every integerp > 0, almost allp(w) are> p, then the ultraproduct .,

of the A,, has characteristic zero and hence is an analytic Lefschetz ring. In this example,
A is aK -algebra in a natural way. In general/if is a Lefschetz field (with respect to

W) andK — A is a homomorphism of analytic Lefschetz rings (with respe¢ttp then

we call A ananalytic LefschetZ(-algebra(with respect to)V). The analytic Lefschetz
K-algebras with respect td) form a category whose morphisms are the homomorphisms
of analytic Lefschetz rings with respect}® that are alsd<-algebra homomorphisms.

We will on occasion use the following construction.

1.8. Ultraproducts of polynomials of bounded degree.Let X = (X4,...,X,) be a
tuple of indeterminates and I, be the ultraproduct of the polynomial rings,[X].
Taking the ultraproduct of the natural homomorphisii&] — A,[X] gives a canonical
homomorphisnZ[ X"V — B.,. We will continue to writeX; for the image ofX; under
this homomaorphism. On the other hantl,, is a subring ofB,. Using Los’ Theorem, we
see thatX,, ..., X,, remain algebraically independent ouy,, so that we have in fact a
canonical embeddind . [X] C B,,. Suppose how we are given, for somiec N and
eachw, a polynomial

Qu = Zaz/wXV € Ay [X] (auw S Aw)

of degree at mosi. Here the sum ranges over all multi-indices= (v4,...,v,) € N*
with d < |v| := 11 + -+ + v, and as usuaK” is shorthand forX;* --- X}, Let
ayso € As be the ultraproduct of the,,, and put
Qoo = ZauocXV7
v

a polynomial inA..[X] of degree< d. (The polynomialQ ., has degred if and only if
almost allQ., have degred.) We call Q.. the ultraproductof the @,,. This is justified

by the fact that the image @)., under the canonical embeddinb,.[X] C B is the
ultraproduct of th&),,. In contrast, ultraproducts of polynomials of unbounded degree do
no longer belong to the subring.,[X].
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2. EMBEDDINGS AND EXISTENTIAL THEORIES

In this section, we want to address the following questginen S-algebrasA and B,
when does there exist &talgebra homomorphismd — B? If one is willing to replace
B by some ultrapower, then a simple criterion exists (Corollary 2.5 below). Although
this does not solve the question raised above, it suffices for showing that a faithfully flat
Lefschetz extension exists (s§4). To obtain the desired functoriality, we need a nested
version of this result, which we now explain.

2.1. Nested rings. A nestedring is a ring R together with anestof subrings, that is, an
ascending chain of subrings

RyCRy{C---CR,C---

of R whose union equal&. We agree that whenevét is a nested ring, we denote the
subrings in the nest bR,,, and we express this by saying tHat= (R,,) is a nested ring.
Every ring R can be made into a nested ring using the nest With.= R for all n. (We
say thatR is trivially nested)

Let R = (R,) andS = (S,) be nested rings. A homomorphism S — Ris called a
homomorphism of nested ringsy(S,,) C R, for all n. Alternatively, we say thaR is a
nestedS-algebra(via ¢). Note that in this caseR,, is naturally anS,,-algebra, for every
n. An S-algebra homomorphisiit — R’ between nestefl-algebrask and R’ which is a
homomorphism of nested rings is called@nomorphism of nestédalgebras.If R — R’
is injective, we may identify? with a subalgebra of?’, and we refer to this situation by
calling R anestedS-subalgebreof R’. A bijective homomorphism of nested rings (nested
S-algebras) is called asomorphisnof nested rings (nestett-algebras, respectively).

2.2 Example. Let L be a field andYy, Y7,... an infinite sequence of finite (possibly
empty) tuples,, = (Y1, ..., Yk, ) of distinct indeterminates;,, € N. For eachn put

S, = L[[Yo]][Y1,..., Y],
R, == L[[Yo]][Y1, ..., Ya]™8,
Ay = L[[Yo, ..., Y]

Here and elsewhere, given a domdinand a finite tupléy” of indeterminates we denote

by D[[Y]]9 the subring ofD[[Y]] consisting of all elements which are algebraic over
D[Y]. (If D is an excellent domain, theR[[Y]]2¢ is equal to the HenselizatioR[Y]™

of D[Y], 1y pjy) at the ideal generated by the indeterminates, see [45, p. 126].) We make
the subringsS := J S, R := J,, R, and A := |J,, A, of L[[Yy,Y1,...]] into nested

rings with nestgS,,), (R,) and(A4,,), respectively. TherR is a nesteds-subalgebra of

the nestedb-algebraA. (This example will play an important role §3.)

Let S be a nested ring arid a nested-algebra with nesfl, ). We say that’ is of finite
type(over.S) if eachV,, is a finitely generated,, -algebra, and for somey, eachV,, with
n > ng is the S, -subalgebra oV generated by, , that is to sayy,, = S,,[V,,,]. Choose
ng minimal with this property. Clearly, all the knowledge abduts already contained in
the initial chainly, C V, C --- C V,,,, and consequently, we refer to it as teéevant part
of V, and ton, as itslength

2.3. Nested equations and nested algebras of finite typdn the following letS be a
nested ring. Anested system of polynomial equatiavith coefficients fromsS is a finite
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sequencé of systems of polynomial equations

-P(]()(Z()) = = R)k(Z()) = 07

Py(Zo, Z1) = - = Pu(Z,2) = 0,
(2.3.1) . .

Poo(Zoy. . Zyn) = -+ = Pu(Zo,...,Zn) = 0,
for somen andk € N, some tuplesZ; = (Z;1, ..., Z;,) of indeterminates ove$ (where
k; € N) and some polynomialB;; € S;[Zy,. .., Z;]. Given a nested-algebraA, a tuple
(ag,...,a,) With a; € (4;)* is called anested solution of in A if P;;(ao,...,a;) =
Oforalli = 0,...,nandj = 0,...,k. Similarly, given an ideahk of the nestedsS-
algebraA4, we call (ay, ..., a,) anapproximate nested solution 6f moduloa in A, if
P;;(ap,...,a;) =0mod aforall,j.

Let V be a nested’-algebra of finite type and let be the length of its relevant part.
Fori < n, choose tuples; € Vi’“, such that eacll; is generated as afi;-algebra by
ap,...,a;. Let Py, ..., P; be generators of the kernel of tie-algebra homomorphism
SilZo,...,Z;] — V givenbyZy — ay, ..., Z; — a;. In particular

Vi S, Zo, ... 2]/ (P, ..., Pw)Sil %o, .., Zi].

The system of equationgy,, = --- = P,; = 0 form a nested system of polynomial
equations with coefficients froifi, called adefining nested system of equatiéms’. (It
depends on the choice of generatarg Note that the generating tup(e, ..., a,) is a
nested solution of this systemin Conversely, any nested system of polynomial equations
with coefficients fromS together with a nested solution in some nesiealgebraB gives
rise to a nested-subalgebra oB of finite type.

Given an ultrasdl/ and a nested-algebraB we consider the ultrapowds¥ as ans,,-
subalgebra o3 in the natural way. We make ttfesubalgebré J,, BY of the ultrapower
BY into a nesteds-algebra by means of the ngg8%). We denote this nestestalgebra
by B}, The main result of this section is the following criterion for the existence of a
homomorphism of nestesl-algebras from a nestestalgebraA to an ultrapower oi3.

2.4. Theorem. Let A and B be nestedS-algebras. If eachS,, is Noetherian, then the
following are equivalent:

(2.4.1) every nested system of polynomial equations with coefficientsSrarhich
has a nested solution iA also has one irB;

(2.4.2) for every nested’-subalgebra of finite typ& of A, there exists a homomor-
phism of nested-algebraspy : V — B;

(2.4.3) there exists a homomorphism of nestedlgebrasn: A — B, for some
ultraset/.

Proof. Suppose that (2.4.1) holds, and 1étbe a nested-subalgebra of finite type of.
Supposéd/, C --- C V,, is the relevant part oF (so thatV,, = S,,[V,] for all m > n).
Let S be a defining nested system of equation¥ aind let(ay, . . ., a, ) with a; € (4;)%

be the nested solution id arising from a generating set &f over S (see§2.3). By
assumption, there exists a nested solutibg, . .., b,) of S with b; € (B;)*: for all .
Hence theS,,-algebra homomorphisif,, [Zy, ..., Z,] — B, given by Z; — b, fori =
0,...,n factors through as$,,-algebra homomorphisiy : V,, — B,, with oy (V;) C B;

for all i. SinceV,,, = S,,[V,,] for m > n, we can extend this to a homomorphism of nested
S-algebras/ — B, proving implication (2.4.13% (2.4.2).
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Assume next that (2.4.2) holds. L#tbe the collection of all nestesl-subalgebras of
finite type of A (an infinite set). For each finite subsBt= {(a1,n1),..., (ax,ni)} of
A x N let (E) be the subset dff consisting of all nested-subalgebrad” = (V,,) of
finite type of A with a; € V,,, for all i. Any finite intersection of sets of the for(E) is
again of that form. Hence we can find a non-principal ultrafiltet/aontaining eackE),
whereE runs over all finite subsets of x N. For eachV € U, letpy: A — B be the
map which coincides witlpy, on V' and which is identically zero outsidé. (This is of
course no longer a homomorphism.) DefineA — BY to be the restriction tel of the
ultraproduct of thepy . In other words,

n(a) := 1‘1/1&51 ov(a) fora € A.

It remains to verify that the image of lies insideB“) and that the induced homomor-
phismA — B is a homomorphism of nestettalgebras. Fou,b € A, we have for
eachV € ({(a,n), (b,n)}) thatgy (a) = ¢(a) andpy (b) = ¢(b) liein B, and

pvia+b) =pv(a+bd)=9pv(a)+ev(b) =pv(a) + ov(b).
Since this holds for almost alf, we get that)(a), n(b) € BY andn(a+b) = n(a) +n(b).
In particular, the image of lies insideB“. By a similar argument, one also shows that
n(ab) = n(a)n(b) andn(sa) = sn(a) for s € S. We have shown (2.4.2)- (2.4.3).

Finally, suppose thaj: A — B is a homomorphism of nestestalgebras, for some
ultraset/. Suppose moreover that we are given a nested syStehpolynomial equations
with coefficients fromS as above, which has a nested solutfap, ..., a,) in A. Then
(n(ap),...,n(ay)) is a nested solution af in the nesteds-algebraB“’. Using tos’
Theorem it follows thatS has a nested solution . This shows (2.4.33- (2.4.1). O

Applying the theorem to trivially nested rings we obtain the following partial answer to
the question raised at the beginning of this section. Itis an incarnation of a model-theoretic
principle (originating with Henkin [23]) which has proven to be useful in other situations
related to Artin Approximation; for instance, see [5, Lemma 1.4] and [17, Lemma 12.1.3].

2.5 Corollary. LetS be a Noetherian ring and let and B be S-algebras. The following
are equivalent:

(2.5.1) every(finite) system of polynomial equations with coefficients fmhich is
solvable inA, is solvable inB;

(2.5.2) for each finitely generated-subalgebral” of A, there exists arb-algebra
homomorphisnpy : V — B;

(2.5.3) there exists an ultrasét and anS-algebra homomorphism: A — BY. 0O

We finish this sections with some remarks about Theorem 2.4 and its corollary above.

2.6. Remark.Only the proof of the implications (2.4.5> (2.4.2) and (2.5.13 (2.5.2)
used the assumption that eagh (respectively,S) is Noetherian. These implications do
hold without the Noetherian assumption, provided we allow for infinite systems (in finitely
many variables) in (2.4.1) and (2.5.1) respectively.

2.7. Remark.In the proof of (2.4.2)= (2.4.3) we may replace the underlying set of the
ultraset/ by any cofinal collection of nesteg+subalgebras of finite type of.

2.8 Remark.We can strengthen (2.4.3) and (2.5.3) by makjnganonical, that is to say,
independent of the choice Stalgebra homomorphisms,,. Let us just give the argument
in the non-nested case. Replace the above indeX bgtthe set4 of all S-algebra homo-
morphismsy: V' — B whose domairV is a finitely generated-subalgebra ofA. Given
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a finite subsef of A, let (E) be the subset of alp € A whose domain containg. If

we assume (2.5.2) andl is not finitely generated, thed is infinite and no(E) is empty,

so that we can choose a non-principal ultrafilter.4mvhich contains all thé £), for E

a finite subset ofA. The remainder of the construction is now the same. Namely, define
n: A — B to be the restriction tol of the ultraproduct of all5, where for eaclp € A

we letp: A — B be the extension by zero ¢f The same argument as above then yields
thatn is an.S-algebra homomorphism.

2.9. Remark.We also have criteria fad to embednto an ultrapower of3: under the same
assumptions as in Corollary 2.5, the following are equivalent:

(2.9.1) every(finite) system of polynomial equations and inequalities with coefficients
from S which is solvable imd, is solvable inB;

(2.9.2) given a finitely generated-subalgebral” of A and finitely many non-zero
elementsyy, ..., a, of V there exists arb-algebra homomorphisiiy — B
sending eacl; to a non-zero element @,

(2.9.3) there exists an ultrasét and an embedding — BY of S-algebras.

In particular, if all thepy in (2.5.2) can be taken injective, then so eaim (2.5.3). Sim-
ilar criteria may be formulated in the general nested case. We leave the proof (which is
analogous to the proof of Theorem 2.4) to the reader.

In the next remarks (not essential later) we assume that the reader is familiar with basic
notions of model theory; see [13] or [33].

2.10 Remark.The language(S) of S-algebras (in the sense of first-order logic) consists
of the languagel = {0,1,+, —, -} of rings augmented by a unary function symbd|,

for eachs € S. We construe eacK-algebra as af(S)-structure by interpreting the ring
symbols as usual ang as multiplication bys. We can then reformulate (2.5.1) in more
model-theoretic terms as:

(2.5.1) Bis a model of the positive existential theorysfn the languageC(S).
Similarly (2.9.1) may be replaced by

(2.9.1) B is a model of théfull) existentialC(S)-theory ofA.
2.11 Remark. Suppose thaB is | A|-saturated (as af(S)-structure). Then to (2.5.1)—
(2.5.3) in Corollary 2.5 we may add the equivalent statement

(2.5.3) There exists a$-algebra homomorphismd — B.
For a proof see for instance [33, Theorem 10.3.1]. The assumptids snsatisfied if
S (and henceC(.9)) is countable A has cardinality at most;, and B is an ultraproduct
of a countable family ofS-algebras with respect to a non-principal ultrafilter. (See [13,
Theorem 6.1.1].) If, on the other hanf, is Ry-saturated, then in Remark 2.9 we may
replace (2.9.2) with

(2.9.2) For every finitely generated-subalgebral” of A there exists an embedding

V' — B of S-algebras.

3. ARTIN APPROXIMATION AND EMBEDDINGS IN ULTRAPRODUCTS

In this section, K is a field which is the ultraproduct of fields’, (not necessarily
algebraically closed nor of different characteristics) with respect to an ultPadetmost
applicationsP will have as underlying set the set of prime numbers and éacWill have
characteristip. For a finite tupleX = (X1, ..., X,,) of indeterminates, we put

KXo = ulim K, [[X])



LEFSCHETZ EXTENSIONS, TIGHT CLOSURE, AND BIG COHEN-MACAULAY ALGEBRAS 13

We start with an important fact about ultraproducts of powers series rings taken from [6,
Lemma 3.4]; since we will need a similar argument below (Proposition 4.30), we indicate
the proof. Thedeal of infinitesimal®f a local ring(S, m) is the ideallnf(S) := [,y m?

of S. Them-adic topology orS is separated if and only Iiaf (S) = 0, and this is the case

if S is Noetherian by Krull's Intersection Theorem.

3.1 Proposition. There is a surjectivé([ X ]-algebra homomorphism
m: K[[X]]oo — K[[X]]
whose kernel i$nf (K[ X]]x0)-

Proof. We start by definingr. Let f., € K[[X]]~ and choose, € K,[[X]], forp € P,
whose ultraproduct if . Write eachf, as

fpi= Z ayp X"

with a,, € K,. Here the sum ranges over all multi-indices N". Leta, . € K be the
ultraproduct of the,,, and define

T(foo) =Y o X¥ € K[[X]].

It follows from tos’ Theorem thair is a well-definedK'[X]-algebra homomorphism. Its
surjectivity is clear. So it remains to show that the kernet @ Inf(K[[X]]oo). If foo €
Inf(K[[X]]s). then by Los’ Theorem, for eachh € N, there is a membel/; of the
ultrafilter such thatf, € (Xi,..., X,,)?K,[[X]] for all p € Uy. In particular, for each
v € N" we have that,,, = 0, for all p € Uj,|4,. Thereforen, ., = 0, and since this holds
for all v, we see thaf ., € ker 7. The converse holds by reversing the argument. [

3.2 Remark. In fact, we may replace in the abov€[[X]].. by its subring K[X]..
given as the ultraproduct of th&,[X]. That is to says induces a surjectiveés[X]-
algebra homomorphisik'[X],, — K]J[[X]] with kernel equal to the intersection of all
(X1,...,X,)¢K[X] for d € N. Indeed, it suffices to show thatmapsK[X]., onto
K[[X]]. Let us explain this just in case the underlying sefPois countable and hence,
after identification, we may think of it as a subsetfGivenf = > a, X" € K[[X]],
choosen,, € K, so that their ultraproduct is, and put

foi= Y apX" € K,[X].

lv|<p
Thenn(f~) = f, wheref,, € K[X] is the ultraproduct of the polynomiafs,.

3.3. Artin Approximation. Recall that a Noetherian local rird?, m) is said to satisfy
Artin Approximationif every system of polynomial equations ov@rwhich is solvable in
the completiorﬁ of Ris already solvable i. In view of Corollary 2.5, this is equivalent
with the existence of an ultrasitand anR-algebra homomorphism

(3.3.1) R— RY.

In fact, if R satisfies Artin Approximation, theR is existentially closed ink, that is to

say, every system of polynomial equatlons and inequalities Bvetich is solvable in

R has a solution inR. (SinceR is dense i, inequalities, and also congruence condi-
tions, can be incorporated in a system of equations.) Artin proved (in [1] and [2, Theorem
1.10], respectively) that the ring of convergent complex power sé€He$} and the ring

of algebraic power serieh|[X]]29, with L an arbitrary field, satisfy Artin Approximation.
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Artin’s Conjecture.A local ring (R, m) satisfying Artin Approximation is necessarily
Henselian, and Artin conjectured that the converse holdsig excellent. This conjecture

was eventually confirmed to be true [43, 60, 61]. In each of these papers, Artin’s Conjec-
ture is derived frongeneralized Mron Desingularizationstating that a homomorphism

A — B of Noetherian rings is regular if and only B is the direct limit of smooth4-
algebras. In the development of tight closure in characteristic zero in the sense of Hochster
and Huneke [31], this latter theorem plays an essential role. In this paper we give an alter-
native definition of tight closure relying only on a weaker form of Artin Approximation,

to wit, Rotthaus’ result [47] on the Artin Approximation property for rings of the form
L{[X])[[Y]]¥9 with L a field of characteristic zero. (In Theorem 3.15 below, which is not
needed anywhere else, we do need generalizzdiNDesingularization.)

Strong Artin ApproximationWe say that a Noetherian local rif@, m) satisfiesStrong
Artin Approximation if any system of polynomial equations ov&r which is solvable
modulo arbitrary high powers ai is already solvable i&k. By Corollary 2.5, this amounts
to the existence of an ultrag¢tand anR-algebra homomorphism

(3.3.2) I r/m™ — B

neN
From (3.3.1) and (3.3.2) it follows thdt satisfies Strong Artin Approximation if and only
if R satisfies Artin Approximation and satisfies Strong Artin Approximation. In [6], a
very quick proof using ultraproducts is given to show thgtX ]| satisfies Strong Artin Ap-
proximation, for every uncountable algebraically closed fieltUsing the Cohen Structure
Theorem, one then deduces from this and the positive solution of Artin's Conjecture, that
every equicharacteristic, excellent, Henselian local ring with an uncountable algebraically
closed residue field satisfies Strong Artin Approximation.

Uniform Strong Artin ApproximationAny version in which the same conclusion as in
Strong Artin Approximation can be reached just from the solvability modulo a single power
m? of m, whereN only depends on (some numerical invariants of) the system of equa-
tions, is calledUniform Strong Artin Approximatianin [6], using ultraproducts, Uniform
Strong Artin Approximation fol? = L[[X]]39is shown to follow from Artin Approxima-

tion for that ring. In more general situations, additional restrictions have to be imposed on
the equations (see [2, Theorem 6.1] or [6, Theorem 3.2]) and substantially more work is
required [14, 56]. For instance, the proof of the parametric version in [15, Theorem 3.1]
uses the positive solution [47] of Artin’s Conjecture in the equicharacteristic case.

Nested ConditionsAn even more subtle question regarding (Strong or Uniform Strong)
Artin Approximation for subrings of[[X]] is whether one can maintain side conditions

on the solutions requiring some of the entries of a solution tuple to depend only on some of
the variables, provided the given (approximate) solutions also satisfy such constraints. In
[6], several examples are presented to show that this might fail in general (sed &30
below). However, Rotthaus’ approximation result [47] implies that cylindrical approxima-
tion does hold, providedhar L = 0. (This was first noted in [6].) Here, bgylindrical
approximatiorwe mean Artin Approximation for nested systems of polynomial equations
in the context of Example 2.2. We refer to Theorem 3.11 below for a precise formulation.

3.4. Embeddings in ultraproducts. We now turn to the issue of embedding a power
series ring in the ultraproduct of power series rings, which is needed for our construction
of a Lefschetz hull in the next section. The existence of a Lefschetz hull is immediate from
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the following corollary to Artin’s original result on the Artin Approximation property for
algebraic power series.

3.5, Proposition. For every finitely generatedl [ X]-subalgebral” of K[[X]] there exists
a K[X]-algebra homomorphisii — K[[X]]. In particular, there exists an ultrasét
and aK [X]-algebra homomorphismit [ X]] — K[[X]%.

Proof. Translating the Artin Approximation property fdt [[X]]2'9 in the terminology of
Corollary 2.5 yields the existence offé[ X]-algebra homomorphism: V' — K[[X]]29.

As the Henselian property can be expressed in terms of the solvability of certain systems
of polynomial equations, it follows by tos’ Theorem th&f[ X ]|, is Henselian. By the
universal property of Henselizations there exists a uniffy& |-algebra homomorphism
K[[X]]9 — K[[X]]~. Composition withy yields the desireds[X]-algebra homomor-
phismV — K[[X]]. The last assertion is now clear by Corollary 2.5. O

The remainder of the section is devoted to enhancements of this, and in particular, the
nested version from Theorem 3.10, which we need to obtain functoriality of Lefschetz
extensions. In the followind. denotes a field and = |J,, S, the nested subring of the
nested ringd = | J,, A,, as defined in Example 2.2, so

S = LI[Yoll[Yi,....Ya], An=L[[Yy,...,Y,] foralln,

whereYy, Y7, ... is an infinite sequence of finite tupl&s of indeterminates. If we need to
emphasize the field, we will writ§, and Ay, for S and A. We need some further notations
concerning nested rings.

3.6. Notation. Let@ = |J,, @» be a nested ring. We denote §y1) the ring(y considered
as a nested ring with ne6t(1),, := @,+1. A homomorphism): Q — R of nested rings
is then also a homomorphis@(1) — R(1) of nested rings.

If I'is anideal ofQ, then we constru€@/I as a nested ring with nest given @9 /17),, :=
Qn/INQ, foralln. If pis a prime ideal of), then the localizatior),, is a nested ring with
nest given bY@, )» := (@n)png, for all n. If each@,, is a local ring with maximal ideal
m,,, then@ is local with maximal ideain := | J,, m,, and residue field)/m = |J,, Q.. /m,.
In this case we say th&f), m) is anested local ringlf moreoverQ,, Nm* = m* for every
k, thenInf(Q) N Q,, = Inf(Q,,) for all n.

If Q is a nested®-algebra, for some nested rifg = |J,, R, andT an Ry-algebra,
then we considef) ®r, T as a neste@®-algebra by means of the nds},, @z, T').

Given a Henselian local ringH, n) and a homomorphisni: @ — H we denote the
Henselization 0lQ.ng by @~ and we lety™: @~ — H be the unique extension of
given by the universal property of Henselizations. (Oftéhjs to be understood from
the context.) Note that theR™ is a nested local ring with ne$)™~),, := (Q,)"~. For
instance, applied t6) := S, H := A and the natural inclusior — A, we get the
nestedS-subalgebreé™ = R of A (see Example 2.2).

The argument in the proof of the following lemma was inspired by [5, Remark 1.5].

3.7. Lemma (Cylindrical Approximation) If V' is a nestedS-subalgebra of finite type of
A, then there exists a homomorphism of nefteslgebrasy: V — 5™,

Proof. We proceed by induction on the lengthof the relevant part, CV; C --- C 'V,
of V, where the case = 0 holds trivially since ther” = S. Consider the nested ring
T :=S5(1) ®s, A1 with nest(T,,) given by

Tn:=S(1)n ®s, A1 = L[[Yo, V]][Yz, ..., Yoqa].
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In particular,T" is a nesteds(1)-subalgebra ofi(1). Let TV be the image of the homomor-
phism of nested™-algebras/(1) ®s, A1 — A(1) induced by the inclusiofr (1) C A(1),
so W is a nested-subalgebra of finite type afi(1). Since its relevant part has length
< n, we may apply our induction hypothesis to conclude that there is a homomorphism
of nestedr-algebrasiV’ — T". Via the natural homomorphisi¥i(1) — W, we get a
homomorphism of nestesl(1)-algebras/(1) — T". Let W' be its image, so thal’ is
a nestedS(1)-subalgebra of finite type ar~.

For our purposes i§4, we only have to deal with the case that the base fielihs
characteristic zero. In that case, we can use [47, Theorem 4.2], which implief thets
the Artin Approximation property. In case the characteristid.aé positive, we require
the positive solution of Artin’s Conjecture by [43, 60]. In any case, by (3.3.1), there exists
an ultraset/ and anS; -algebra homomorphism; — (S7)¥. For each, this S, -algebra
homomaorphism extends to &f,-algebra homomorphism

T, = Al[YQa ceey Yn+1] - (Slm)u[y% s 7Yn+1] - (S;+1)u’

Since the right hand side is Henselian, we may replace the ring on the left by its Henseliza-
tion. Gathering these homomorphisms forsalyields a homomorphism of nesteti1)-
algebrasi™ — (S(1)~)™. Applying (2.4.2) to the nestesl(1)-subalgebra of finite type

W' C T, yields the existence of a homomorphism of nestét)-algebradv’ — S(1)~.
Composition withV (1) — W’ gives a homomorphisir (1) — S(1)~ of nestedS(1)-
algebras. Sinc&, = Vy = Ay, this is in fact a homomorphism of nestédalgebras

V — S§~, as required. O

From now on we always assume thatis the empty tupleg(The more general case was
only needed for inductive reasons, in the proof of the previous lemma.)
In the following corollary we specialize th = K. Then, in a natural wayB,, :=

K|[[Y1,...,Y,]]~ is anS, -algebra, and we may identif,, with a subring ofB,, 4, for
all n; hence the subring := J,, B, of ulim, K,,[[Y1,Y>,...]] is a nested’-algebra with
nest(B,,).

3.8 Corollary. There exists an ultrasét and a homomorphism: A — B of nested
S-algebras.

Proof. We only need to verify that condition (2.4.2) in Theorem 2.4 is fulfilled. To this
end, letV be a nestedy-subalgebra ofd of finite type. By Lemma 3.7, there exists a
homomorphism of nestest-algebras” — S™~. SinceB is Henselian, the homomorphism
of nested ringsS — B extends to a homomorphism of nested rirfffs — B, and the
compositiont — S~ — B proves (2.4.2). O

We denote bym the ideal ofS generated by all the indeterminatgs;, for all » and
1=0,..., k.

3.9. Remark.For eachn, let 7, be the canonical epimorphisi, — A,, given by Propo-
sition 3.1 and letr: B — A be the induced homomorphism of nestedlgebras (given as
the direct limit of ther,,). Thenr induces an isomorphism betweBym°B and.S/m®S,
for all ¢ € N. On the other hand, for a fixatle N, we can realized as the union of all
nestedS-subalgebra¥ of finite type of A such that’/m°V = S/m*S. For thoseV, the
homomorphisni” — S~ given by Lemma 3.7 becomes an isomorphism modtflpand
applying Remark 2.7 with this collection we see that we may take Corollary 3.8 so
that its composition withr is congruent modulen® to the diagonal embedding € A,
Without proof, we mention that one can achieve the even stronger conditionr that



LEFSCHETZ EXTENSIONS, TIGHT CLOSURE, AND BIG COHEN-MACAULAY ALGEBRAS 17

is equalto the diagonal embedding. (This however, even in characteristic zero, requires
generalized 8ron Desingularization.)

Applying Corollary 3.8 with eacly,, for n > 1 equal to a single indeterminate yields
the following result, needed for the functorial construction of faithfully flat Lefschetz ex-
tensions in the next section.

3.1Q Theorem. There exists an ultrasét and for eachn a KX, ..., X,]-algebra ho-
momorphism

e K[[X1,...,X,)] = K[[X1,..., X4,
such that for alln < m, the diagram

MNn
K[[X1,...,X,]] K[[X1,..., X4
m
K[[X1,...,Xm] K[[X1,..., Xn)l%
commutes, where the vertical arrows are the natural inclusion maps. |

Given a nested system of polynomial equatiGnever S as in (2.3.1) we call the maxi-
mum ofn, ko, ..., k, and the degrees of the polynomidts the complexityof S. We say
that a nested-algebraV of finite type haomplexity< d if V' admits a defining system
of nested equations of complexity d. (See§2.3.) The proof of the next theorem is a
modification of the argument in [6, Theorem 4.3].

3.11 Theorem (Uniform Strong Artin Approximation with Nested Conditionsiven
¢,d € N, there existaN = N(c¢,d) € N with the following property. Lef be a field,
let S := S and letV be a nesteds-algebra of finite type and of complexity at most
d. f¢:V — S/mVNS is a homomorphism of-nested algebras, then there exists a
homomorphisnp: V' — S~ of nestedS-algebras such that

v Ld S~

P q

S/mNs

commutes, whergis induced by the canonical isomorphisify /mcS™~ 2 §/m°S.

S/meS

Proof. Suppose the claim is false for some paird), so that we have counterexamples
for increasing powers ofr. That is to say, for eacp € N there is a fieldk, and a
nestedSy  -algebraV/,, of finite type with a defining nested equatiofis of complexity

at mostd and a homomorphism of nested algebias — Sk, /m?Sk  which is not
congruent modulen® to a homomorphisn¥,, — S . We may assume that there exist
k € N and indeterminate¥; = (Z;1,...,Z;4), fori = 0,...,d, such that eacls,
has the form (2.3.1) witm = d, for some polynomials®;; € (Sk,):[Zo,...,Z;] of
degree< d. Let K be the ultraproduct of thél, with respect to some ultraset with
underlying seN. Taking the ultraproduct of the polynomialsdt), yields a nested system
S of equations with coeffcients if. Let V' be the corresponding nest&g -algebra of
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finite type. By [18, (1.8)]V embeds into the ultraproduct of th§. Taking ultraproducts

of the homomorphism¥’,, — Sk, /mPSk, = Ag /mPAg  yields a homomorphism

V — Bg/Inf(Bg) = Ak of nestedSk-algebras, where we used Proposition 3.1 for the
last isomorphism. By Lemma 3.7, applied to (the image untery> Ak, there exists a
homomorphisn’’ — Sy of nestedSk-algebras, which we may assume to be congruent
to V — Ax modulom®A, by Remark 3.9. By tos’ Theorem, the ultraprodiizbf the
S;(p is Henselian. Sinc® is a nesteds x-algebra, it is in fact a nestesi; -algebra by the

universal property of Henselizations. Hence we have a composed homomofphisr®
of nestedSk-algebras which is congruenttd — A modulom©Ag. £os’ Theorem then
yields for almost alp a homomorphisnv’, — Sgp of nestedSk, -algebras which modulo

me is equal to the original homomorphisify, — Sg, /m°Sk , a contradiction. O

3.12 Remark. Conversely, Lemma 3.7 is an immediate consequence of Theorem 3.11.
Indeed, lef’” be a nested-subalgebra oft of finite type. Sinced/m™ A = §/m™ S, this
induces for eactv.a homomorphisn¥’ — S/m” S of nestedS-algebras. For sufficiently
large N this yields by Theorem 3.11 a homomorphi$m— S~ of nestedS-algebras.

3.13 Remark. Spelling out the previous result in terms of equations yields the following
equational form of cylindrical approximation: For alld € N there exists a boundy =
N(c,d) € N with the following property. Letl be a field and le§S be a nested system
of polynomial equations with coefficients frofy,, of complexity at most. If S has an
approximate nested solutian= (ay, . ..,a,) in Ay modulo(Y7,...,Y,)", thenS has a
nested solution it¥7” which is congruent ta modulo (Y7, ..., Y,)c.

3.14 Remark.Let £(n) be the language of rings augmented by unary predicate symbols
Ry, ..., R,. We construe a formal power series rif{j.Xi, ..., X, ]] over aringS as an
L(n)-structure by interpreting?; by the subringS[[X,. .., X;]]. The previous remark
yields the followingexistential Lefschetz principfer nested power series rings: An exis-
tential £(n)-sentence holds iB[[ X, ..., X,]] ifand only if it holds inF2'8 [ X1, . .., X,,]]

for all but finitely many primeg. For existential sentences not involving tRg, this has
already been noted elsewhere, see [7, Proposition 1]nFerl a much stronger transfer
principle holds in which not only existential sentences are carried over, but any sentence.
(This follows from the Ax-Kochen-Ershov Principle.)

We finish this section by indicating a strengthening of Theorem 3.10 (not needed later).
Given a power serieg € Z[[X]] = Z[[ X1, ..., X,]], let f, be its image inK ,[[X]] and
let f - be the ultraproduct of thé, in K[[X]]... One verifies that the map— f isan
injective Z| X ]-algebra homomorphis[[ X]] — K[[X]]. which extends to an injective
Z[X]-algebra homomorphist[[ X ]| @z K — K[[X]]co. We will view Z := Z[[X]] @z K
as a subring of{[[X]].. via this embedding. Writen,, for the ideal inZ[X| generated
by X1,...,X,. SinceZ/mkZ = K[[X]]/mkK[[X]], for all k, we see that[[X]] is
the m,, Z-adic completion ofZ. In particular,Z is a dense subring ok [[X]], equal to
the K[ X]-subalgebra of{[[X]] generated by all power series with integral coefficients.
Inspecting the proof of Proposition 3.1, we see thigin fact aZ-algebra homomorphism.
Let Z~ be the Henselization of at the maximal ideai,, Z. By the universal property
of Henselizations, the embeddiuf) C K[[X]],, extends to a unique embeddiag” —
K[[X]]s. Henceforth we will viewZ™ as a subring o [[X]].. Note that sincé([X] is
a subring ofZ~, so is its Henselizatiok [ X]]¥9 atm,, K [X].

3.15 Theorem. The ultraset/ and the K[X;, ..., X,]-algebra homomorphisms, in
TheorenB.10can be chosen so that in addition eaghis a Z™~-algebra homomorphism.
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Proof. This theorem follows as above from the corresponding extension of Lemma 3.7.
To this end, replace the filtered ring in Lemma 3.7 and its proof by the nested ring

T = U, Tn, whereT, is the Henselization oZ[[Yy, ..., Y,]] ®z K at (Yp,...,Y,)Z.
Whenever we invoked Rotthaus’ result, we now use the positive solution of Artin’s Con-
jecture due to [43, 60, 61] instead. Note that e@ghs excellent. (Use for instance the
Jacobian Criterion [39, Theorem 101].) Details are left to the reader. O

3.16 Remark.By the same argument as in Remark 3.9, we can choosg, timoreover so
that its composition with the canonical epimorphisth: K[[X]% — K[[X]]“ is equal
to the diagonal embedding [[X]] C K[[X]¥, for eachn.

3.17. Remark.By Theorem 3.15, the existential Lefschetz principle from Remark 3.14
remains true upon augmentififn) by additional constant symbols, one for each power
series inZ[[X]] = Z[[X;, ..., X,]], to be interpreted in the natural way $[X]].

4. LEFSCHETZHULLS

Our objective in this section is to prove the theorem stated in the introduction, in a
more precise formThroughout, we fix a Lefschetz field with respect to some ultraset
with underlying set equal to the set of the prime numbers, whose compdsigrese
algebraically closed fields of characterisfic See the remark following Proposition 1.4 on
how to obtain sucli, of arbitrarily large cardinality.

In obtaining a functorially defined Lefschetz extension, we face the following complica-
tion: not every automorphism df is an ultraproduct of automorphisms of its components
K,. The simplest counterexample is complex conjugatio@ gior no algebraically closed
field of positive characteristic has a subfield of in@exn fact, each subfield ok has an
automorphism which cannot be extended to an automorphigitbft is an ultraproduct
of automorphisms of thé(,,. Therefore there cannot exist a functor from the category of
equicharacteristic zero Noetherian local rifigsvhose residue field is containedinto a
category of analytic Lefschetz rings. The way around this problem is to fix some additional
data ofR, as we will now explain.

4.1. Quasi-coefficient fields.Let (R, m) be a Noetherian local ring which contains the
rationals (that is to sayR has equicharacteristic zero). A subfigldof R is called a
quasi-coefficient fieldf R if R/m is algebraic over the image df under the residue
homomorphismR — R/m. Every maximal subfield ofR is a quasi-coeffcient field.
A quasi-coefficient field is called eoefficient fieldf the natural mapgk — R/m is an
isomorphism. In general, coefficient fields may not existz i Henselian then a subfield
of R is a coefficient field if and only if it is maximal. In particular, i is complete, then
R has a coefficient field. Every quasi-coefficient figlcbf R is contained in a unique
coefficient field ofR, namely, the algebraic closure jofn R. For proofs and more details,
see [40528].

4.2. The category Cohg. In order to state a refined version of the theorem from the
introduction, we introduce a catego@ohy (for “Cohen”). Its objects are quadruples
A = (R,x, k,u) where

(@) (R, m) is a Noetherian local ring (thenderlying ringof A),

(b) x is a (finite) tuple of elements @t which generaten,

(c) kis a quasi-coefficient field aR, and

(d) u: R — K is alocal homomorphism (that is to sayis a ring homomorphism

with ker u = m).
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A morphismA — T from A to another such quadruple= (S,y, [, v) is given by a local
ring homomorphisnm: R — S such that

(@) a(x) is an initial segment of (if x = (z1,...,2,) andy = (y1,...,Ym),

thenn < mandy; = a(z;) fori =1,...,n),

(b) a(k) Cl,and

(€) voa =u.
We will often identify a morphism\ — I" with its underlying homomorphism: R — S
and hence denote it also by

Let Loc be the category of (not necessarily Noetherian) local rings, with the local ring

homomorphisms as morphisms. Given an ultradetwve denote byLef,, the category
of analytic Lefschetz rings with respect W' as defined ir§1. (Its objects are ultraprod-
ucts, with respect tdV, of complete local rings with algebraically closed residue fields
of positive characteristic, and its morphisms are ultraproducts of local homomorphisms.)
We stress once more thhef,y, as a subcategory @foc, is not full. We will denote the
forgetful functorwith values inLoc always byring (regardless of the source category). If
F and@ are functors from a categofyto Loc, then we will say that a natural transforma-
tionn: F — G isfaithfully flatif the ring homomorphismy, : F(A) — G(A) is faithfully
flat, for each objecA in C.

4.3 Theorem. There exists an ultrasét, a functor®: Cohx — Lef,y and a faithfully
flat natural transformatiom;: ring — ringo ©.

We call ©(A) the Lefschetz hulbf A. Let us state in more detail what the above
functoriality amounts to. Given a morphistn — T" in Cohg with underlying homo-
morphisma: R — S, where R := ring(A) and S := ring(I'), we get a morphism
D(a): D(A) — D(T) in Lefyy and faithfully flat homomorphismg, : R — ©(A) and
nr: S — D(T) fitting into a commutative diagram

R S
(4.3.1) A nr
D D ()
(A) 2(I).

(Technically speaking we should have writtéh— ring(D(A)), etc., but we'll always
identify ©(A) with its underlying ring.)

The proof proceeds in two steps. We first prove the theorem for a certain subcategory
Ang of Cohg given by quotients of power series rings ovér(see§4.4). The existence
of the functor® for these rings then follows from Theorem 3.10. The second step con-
sists in associating in a functorial way to an obj&ct (R, x, k, u) of Cohx a complete
local K-algebra which is a faithfully flak-algebra (se€4.13). This is achieved by mak-
ing a base change @ usingk andu, and then taking completion. By Cohen’s structure
theoremx then determines a unique ri@(A) in Ang isomorphic to the latter. After
the proof of Theorem 4.3 we discuss a construction of Lefschetz hulls with some addi-
tional properties. We finish the section by pointing out§4n33) another obstacle which
prevented us from outright defining a functor from the category of Noetherian local rings
whose residue field embeds inkbto a category of analytic Lefschetz rings.

We adopt the following notation for polynomial and power series rings: we fix a count-
able sequence of indeterminat®¥s, X,, ..., and for eac and each ringp, we letS[n]
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and S[[n]] be shorthand for respectively[ X1, ..., X,,] andS[[X, ..., X,]]. We write
K[[n]] for the ultraproduct of thé< ,[[n]].

4.4. Power series rings.We first describe in more detail the category of quotients of
power series rings ovet, which we denote byAn . Its objects are local rings of the form
K{[n]]/I, for somen and some ideal of K[[n]]. A morphism inAng is a K-algebra
homomorphismu: K[[n]]/I — K[[m]]/J wheren < m, I C J, and« is induced by
the inclusionK [[n]] C K[[m]]. To each objecf[[n]]/I of Ank we associate the object
(K[[n]]/I,x, K,m,)in Cohg, wherex = (z1,...,z,) with z; := X, + I for eachi and
7n: K[[n]] — K is the residue map. Evetkny-morphisma: K{[n]|/I — K[[m]]/J
gives rise to & oh g -morphism (with underlying homomorphisty) between the objects
corresponding td<[[n]]/I and K[[m]]/J, respectively. It is easily verified that via this
identification,An g becomes a full subcategory @foh .

We now embark on the proof of Theorem 4.3, first for the subcatedary . Leti/ be
the ultraset proclaimed in Theorem 3.10 and set

D(n) := K[[n]]4 for eachn.

oo

By that theorem, there exists, for eacha K[n]-algebra homomorphism,,: K[[n]] —
D (n) such that for each < m, the diagram

K{[n]] K([m]
(4.4.1) n T
D(n) D(m)

commutes, where the horizontal maps are the natural inclusions. We coBgtili@s a
K-algebra viayy; then eachy,, is a K-algebra homomorphism.

4.5. Remark.If we are only interested in constructing a Lefschetz extension for a single
K]{[n]], then the existence of &[n]-algebra homomorphism,: K[[n]] — D(n) already
follows by combining Theorem 2.4 with the more elementary Proposition 3.5.

4.6. Remark.Suppose thaf{ = C. If we are willing to weaken the requirement that

be aK[n]-algebra homomorphism, then under assumption of the Continuum Hypothesis
2% = N, the passage to the ultrapow€f[n]% is superfluous: Lef. be a countable
subfield ofC; thenS,, = L[n] is countable, and under the assumptidn = X, it follows

along the lines of Remark 2.11 that there exists, for ega@n.S,,-algebra homomorphism

0n: C[[n]] = C[[n]] such thatp, is the restriction ob,, to C[[n]], for all n < m.

Note that©(n), being an ultrapower of the analytic Lefschetz rifg[n]].. is itself
an analytic Lefschetz ring. Indeed, we can construct an ultdasetith the following
property: for each, the ring®(n) is isomorphic to the ultraproduct with respectto of
the ringsK , [[n]], where K, := K, for some prime numbes(w). (See [13, Propo-
sition 6.5.2].) From now on, we always repres@ntn) in this way. The Lefschetz ring
D(n) is aK-algebra, wher& := ©(0) = K, via the natural inclusio®(0) — D(n),
and the natural inclusior®(n) — ©(m) (for n < m) areK-algebra homomorphisms.
Next we show tha® (n) gives the desired faithfully flat Lefschetz extension:

4.7. Proposition. For eachn, the homomorphism, : K|[n]] — ©(n) is faithfully flat.
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In the proof we use the following variant of [12, Corollary 8.5.3]. A modideover
a local ringR is called abig Cohen-Macaulay modulever R if there exists a system of
parameters oR? which is anM -regular sequence. If every system of parameters isfan
M -regular sequence, thed is called abalanced big Cohen-Macaulay modwaeer R. If
(R,m) is aregular local ring and/ a balanced big Cohen-Macaulay module oiethen
M is flat, see [35, proof of Theorem 9.1].

4.8 Lemma. Let R be a Noetherian local ring and let/ be a big Cohen-Macaulay
module overR. If every permutation of ai/-regular sequence is agaii/ -regular, then
M is a balanced big Cohen-Macaulay module oyer

Proof. We proceed by induction o#h := dim R. There is nothing to show if = 0, so
assumel > 0. By assumption, there exists a system of paramdteys. .., z,) of R
which is anM-regular sequence. Léy,...,yq) be an arbitrary system of parameters.
By prime avoidance we find € m not contained in a minimal prime ¢k, ...,z4-1)R
and of (y1,...,y4—1)R. Hence botH(x1,...,z4-1,2) and(y1,...,ya—1, 2) are systems
of parameters oR2. Since a power of,, is a multiple ofz modulo (x4, ...,z4_1)R, the
sequenc€zxy,...,xq_1,2) IS M-regular. Thus, by assumption, the permuted sequence
(z,21,...,24—1) IS @lsoM-regular. In particular, the canonical image(ef, ..., z4—1)

in R/zR is M /zM-regular, showing thad//zM is a big Cohen-Macaulay module over
R/zR. Moreover, every permutation of alf/zM-regular sequence is agav/zM-
regular. By induction hypothesis, the canonical imagé&ef. .., y4—1) in R/zR, being a
system of parameters iR/z R, is M /zM-regular. Henc€z, y1, . ..,yq4—1) is M-regular,
and therefore, using the assumption once more, 89 iS. ., y4—1, 2). As some power of

z is a multiple ofy; modulo(y1,...,ys—1)R, we get that(yy, ..., yq) is M-regular, as
required. O

Proof of Proposition 4.7 Since(X1, ..., X,,) is a K,,[[n]]-regular sequence for each
itis a®(n)-regular sequence by tos’ Theorem. It follows tl¥{») is a big Cohen-Mac-
aulay K [[n]]-algebra via the homomorphism,. Using tos’ Theorem once more, one
shows that every permutation ofgyn)-regular sequence is agadih(n)-regular (since ev-
ery permutation of & ,, [[n]]-regular sequence iR, [[]] remainsK,, [[n]]-regular by [12,
Proposition 1.1.6]). Therefor&(n) is a balanced big Cohen-Macaul&§{[n]]-algebra,
by the lemma above. Sind&[[n]] is regular,n, is flat by [35, proof of Theorem 9.1],
hence faithfully flat. O

Below, we writeI©(n) to denote the ideal & (n) generated by the image of an ideal
I of K[[n]] undern,,.

4.9 Remark.We have
Im(ny,) = Im(np41) N D(n) for all n.
This follows fromX,, 1 19(n + 1) N ®(n) = (0) and the injectivity ofy,, ;.

4.10. Proof of Theorem 4.3 for the categoryAny. The construction ofo(n) above

extends in a natural way to quotientsigf[n]]. Namely, ifI = (a1, ...,a,,)K][[n]] is an

ideal of K'[[n]] and R := K]{[n]]/I, then we choosg;,, € K, [[n]] whose ultraproduct in
D(n) isn,(a;), for eachi, and put

D(R) := uld)m Ky[[n)])/ 1w

Herel, is the ideal ofK,,[[n]] generated by, ...,bn. The canonical surjections
Kyl[[n]] — Kyl[n]]/I, yield a surjectior®(n) — ©(R) whose kernel idD(n). On
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the one hand, this shows tha{ R) does not depend on the choice of thg and that we
have an isomorphism: ©(n)/ID(n) — ©(R). On the other hand, composing with the
homomorphismy,,: K[[n]] — ©(n) we obtain a homomorphisii [[n]] — D (R) whose
kernel containd, and hence an inducdd-algebra homomorphism

nr: R = K[[n]]/I — D(R).
(According to this definitior® (K [[n]]) = D(n) andng ) = 7n, for all n.) We have a

commutative diagram

R R

D(R)

D(n)/ID(n)
where the arrow on the left is the homomorphism obtained fyptoy base change modulo
1. Hence by Proposition 4.7 the homomorphiggis faithfully flat. In the following we
identify ®(n)/ID(n) and®(R) via the isomorphisnp.

Let J be an ideal of<[[n+m]] with I C J. The natural inclusio[[n]] — K|[[n+m]]
induces a morphismx: R — S := KJ[n + m]]/J in Ang. (This is the onlyAng-
morphismR — S.) ChooseJ,, C K,,[[n + m]] in the same way as we constructed the
I,,; so their ultraproduct igD(n + m) and®(S) = D(n + m)/JD(n + m). Since
I9(n) C JO(n + m), we havel,, C J,, for almost allw, by Los’ Theorem. The natural
inclusionsK ,,[[n]] — K [[n + m]] give rise to homomorphisms

a: Kyl[n)]/ 1w — Kylln+m]]/Jw.

The ultraproduct of thev,, yields aK-algebra homomorphis® («): ©(R) — D(S)
making the diagram

D(n) ———D(n+m)

ol D)
() ————2($)

commutative. Together with (4.4.1) this gives a commutative diagram

R “ s
R ns
D(a)
D(R) 2(5)
as required. O

This concludes the proof of Theorem 4.3 for the subcategaty,. Before we turn to
the general case, we take a closer look at finite maps. We use the following version of the
Weierstrass Division Theorem f@r(n + 1). Let f, g € ©(n+ 1) and suppose is regular
in X,,+1 of orderd, that is,

g=X2,(1+¢) mod (Xi,...,X,)D(n+1)
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with e € X,,;:1D(n + 1). Then there exist unique € ©(n + 1) andr € D(n)[X,41]
such thatf = gg + r and the degree af with respect taX,,;; is strictly less thani.
(Use tos’ Theorem and the Weierstrass Division Theored jri[n + 1]].) A polynomial
P(Y) € A]Y] in a single indeterminat¥ with coefficients in a local ringA, n) is called
aWeierstrass polynomial P(Y") is monic of degred andP = Y¢ mod nA[Y].

4.11 Proposition. If a: R — S is afinite morphism inAng (that is to say, ifS is
module-finite overR), then the natural ma®(R) ®r S — D(S) is an isomorphism,
making the diagram

D(R)®r S

commutative.

Proof. We keep the notation from above, so that in particalarR = K|[[n]]/I — S =
K[[n+m]]/J. The casen = 0 is clear. By an induction o, we may reduce to the case
m = 1. The ideal

Ty = IO K[[n])[X]

of K|[[n]][Xn,+1] contains a monic polynomidP. Now P (as an element of([[n + 1]])
is regular of order at most = degree ofP, hence can be written a8 = u@Q where
u € K[[n+ 1]]isaunitand? € K[[n]][X,+1] is @ Weierstrass polynomial. Replacify
by @ we may assume tha? is a Weierstrass polynomial of degréeontained in/;. The
natural inclusionk [[n]][X,,+1] — K|[[n + 1]] induces an embedding

(4.11.1) K[[n]|[Xnt+1]/J1 — K[[n+1]]/J =S,

which is in fact an isomorphism, for givehe K|[[n + 1]] we can writef —r =qP € .J
whereq € K[[n+1]] andr € K[[n]][X,+1] of degree< d, using Euclidean Division by.
The image ofP undern,, 11, which we continue to denote by, lies in®(n)[X,,+1] and
is @ Weierstrass polynomial of degréeThe natural inclusio® (n)[X,+1] — D(n + 1)
induces a map

(4.11.2) D(n)[Xpi1]/PD()[Xps1] — D(n+1)/PD(n+1).

From the uniqueness of quotient and remainder in Weierstrass Divisidh ibjollows
that (4.11.2) is in fact an isomorphism. Sinée= J; K[[n + 1]] and thus/®(n + 1) =
J1®(n + 1), we get an induced isomorphism

(4.11.3) D(n)[Xn+1]/1D(n)[Xng1] = D(n+1)/JD(n+ 1) = D(S).
On the other hand, sindeC J; andR = K][[n]]/I we have

(4.11.4) K([n]][Xni1]/J1 = R[Xn 1]/ 1 R[X 4]

and usingl®(n) C J19(n)[X,+1] andD(R) = D(n)/ID(n) we get

(4.11.5) D () [Xn ]/ 1D (n)[Xn41] = D(R)[Xna]/ D (R) [ Xy ]
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Therefore, by (4.11.1) and (4.11.3)—(4.11.5):
D(R) ®r S = D(R) ®r R[Xn41]/J1R[Xni1]
= D(R)[Xn41]/ WD (R)[ X1
= D(1n)[ Xy 1]/ 1D (n)[X 1] = D(S).
It is straightforward to check that we have a commutative diagram as claimed. O

Faithful flatness ofjr: R — ©(R) now yields:

4.12 Corollary. If S'is a finite R-module viax, thene is injective if and only if0(«) is
injective, andx is surjective if and only i («) is surjective. O

4.13. Proof of Theorem 4.3. We complete the proof of Theorem 4.3 by defining a func-
tor C: Cohg — Ang and a faithfully flat natural transformation: ring — C. The
proclaimed® andn are then realized as the composite funcr C' and the natural
transformation given byc(a) o va, for each objecth. In essenced’ will be a kind of
‘completion’ functor. (See als§4.16 below.) More precisely, let = (R, x, k,u) be an
object inCohg and letk* be the algebraic closure &fin R. Recall from§4.1 thatk* is
the unique coefficient field ok containingk. We viewR as ak*-algebra via the inclusion
k* C R. Letx = (x1,...,2,) and letd,: k*[[n]] — R be thek*-algebra homomor-
phism given byX; — x;, fori = 1,...,n. We denote its kernel by, . Consequently, we
have associated to eadha Cohen presentatioh*[[n]]/Ix = R of the completion of its
underlying ring.

Letd: R — K bethe completion of and denote the restriction afto k* by u*. There
is a unique local homomorphisht[[n]] — K|[n]] extendingu*: k¥* — K and leaving the
variables invariant, which we denote hb§j. Define the functot” on objects by the rule

C(A) := Kl[n]]/uy, (In) K[[n]].

As for morphisms, le\ — T' = (S,y,l,v) be a morphism with underlying local ho-
momorphisma: R — S. Sincek* (respectively*) is the algebraic closure df in R
(respectively, of in S) and sincex(k) C [, the completioriv: R — S of o mapsk* inside
I*. Let us denote the restriction afto a field embedding* — [* by o*, and the induced
mapk*[[n]] — I*[[n + m]] leaving the variableX, ..., X,, invariant bya. Sincea(x)

is an initial segment of, we getdr(X;) = a(z;) € Sfori = 1,...,n. Therefore, we
have a commutative diagram

(n]] ————R
(4.13.1) ot ~

Plintm]] — s 5,
In particular,« (Ix) C Ir. Sincev o a = u, We getv o @ = u which in turn yields
V) L © oy = ur. Henceu?, (Ix) C v}, (Ir) under the inclusiotk [[n]] — K[[n + m]],
and this inclusion then inducesié-algebra homomorphisifi(a): C(A) — C(T'). Note
thatC(«) is indeed a morphism iAng. Because every step in this construction is carried
out in a canonical way' is a functor; details are left to the reader. Note thais the
identity on the subcategotn i of Cohg.
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To define the natural transformation ring — C we lety, be the composite map
R — R=k*([n])/Ta — Kn]]/u;,(Ia)K[[n]] = C(A)

where the isomorphism is induced By and the last arrow is the base change pf Each
map in this composition is canonically defined and faithfully flat. It is now straightforward
to check thaty is the desired faithfully flat natural transformation. |

4.14 Remark.It follows from our construction that the maximal ideals(®fA) and®(A)
aremC'(A) andm®(A), respectively, wheren is the maximal ideal of the underlying ring
of A.

4.15 Remark.If we do not insist that the ultraproducts are Lefschetz rings, then we can let
K be any ultraproduct of arbitrary fields, and Theorem 4.3 above, suitably reformulated,
remains true in this more general setting, apart from the Lefschetz condition.

4.16. Extension of scalars.On occasion, we need a Lefschetz extension with some addi-
tional properties, and to achieve this, we enlarge the catdgotyx to a categoryCohj,.

To this end, we need a method to extend scalars. Suppose that we have a quasi-coefficient
field k of a Noetherian local ringR, m) and a local homomorphism: R — L to a field

L. Letk* be the algebraic closure bfin R (the unique coefficient field 3 containingk).
We vieAwﬁ andL ask*—algebras via respectively the inclusibh C R and the rgstriction
ofu: R — Ltok*. Let R ) be the completion of the Noetherian local rifg®y- L
with respect to its maximal ideah(f% ®p+ L) = mR Qi+ L. We viewf%(k?u) as ank-
algebra (respectively, as dnalgebra) via the natural map — R — R @ L — R
(respectively, — R @y~ L — Ry;,)). The image of_ in R - L is a coefficient field

of R®y- L, and hence of the complete Noetherian local nftlg’u). TheR—aIgebraﬁ(m)
is faithfully flat. The following transfer result will be used in the next section:

4.17. Lemma. Suppose thathar k = 0. Then, for giveni € N, the completion? of
R satisfies(R;) (or (S;)) if and only if R, ., does. In particular,R is reduced(regu-
lar, normal, or Cohen-Macaulgyif and only ifﬁ(,w) has this property. Similarlyﬁ is
equidimensional if and only i, ) is.

Proof. There is probably a more straightforward way to see this, but we argue as follows:
Sincechar k = 0, the homomorphisrt|k*: k* — L is separable. Therefore the induced
homomorphisnk*[[n]] — L[[n]] is formally smooth [40, Theorem 28.10] hence regular
[40, p. 260]. By the Cohen Structure Theorem we may assinse E*[[n])/T (ask*-
algebras) for some idedlof £*[[n]]; thenﬁ (k) = L[[n]]/IL][n]] (asL algebras). Now

use [40, Theorem 23 9, and the remark following it] to conclude thantisfies (R (or

(Sy)) if and only if R(k «) has this property. The local rm@ k,u) IS complete and hence
catenary. Thus n‘R(k «) IS equidimensional, the® is eqU|d|menS|onaI by [40, Theo-
rem 31.5]. Conversely, iR is equidimensional, then so}%(,w) by [30, (3.25)]. O

4.18 Remark.Suppose thathar k = 0. If R is excellent, thed? — R is regular, henc&
satisfies (R) (or (S;)) if and only if R has this property, for everiyc N. Therefore, ifR is
excellent, therR is reduced (regular, normal, or Cohen-Macaulay) if and on@(jj_yu) is.
By [44], Ris equidimensional if and only iR is equidimensional and universally catenary.
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Suppose we are given another Noetherian local (#a@) with quasi-coefficient field
I of characteristic zero and local homomorphimS — L, as well as a local homomor-
phisma: R — S such thatu = v o @ anda(k) C . Sincea(k*) C I*, we get natural
maps

(4.18.1) Ry L2218 @ L=8 @ (I @ L) — S @ L,

where the last map is induced by the niap,- L — L given bya ® b — v(a)b, fora € 1
andb € L. Taking completions yields ah-algebra homomorphism®;, ., — Sq..),
which we denote by, .

4.19. The categoryCoh},. Letus firstlook at an objedt = (R, x, k,u) in Cohg. Ap-
plying the above construction with respect to the homomorphisiR — K, we get ak -
algebraﬁ(m) which is isomorphic withC'(A); the isomorphism is uniquely determined by
x. Allowing more general choices for leads to the extensioBoh}, of Cohg. Namely,

for objects we take the quadruplés= (R, x, k, u) where as beforéR, m) is a Noetherian
local ring with quasi-coefficient fiel# andu: R — K is a local homomorphism, but this
time x is a tuple in the larger rin@(k,u) generating its maximal ideaiﬁ(k.,u). A mor-
phismA — T' = (S,y,!,v) in this extended category is given by a local homomorphism
a: R — Ssuchthat = voa, a(k) C I, and such thalix : R;..) — S, Sendsx to

an initial segment of. Itis clear thatCoh is a full subcategory o€ohj, .

4.20 Remark.Up to isomorphism, the*—algebraﬁ(k,u) is independent of the choice of
u, since every isomorphism between subfieldgo€an be extended to an automorphism
of K (but not necessarily to an ultraproduct of automorphisms ofdhe It is also easy

to see thaﬁ(m) is independent of the choice bf up to local isomorphism of local rings.

We extend” to a functorCoh}, — Ang as follows. Letx = (z4,...,z,) and Ieth
be the kernel of thd(-algebra homomorphisity : K[[n]] — R .y with X; — x; for
i=1,...,n. We now put

C(A) := K[[n]]/1a.
It follows thatC'(A) = }A%(kvu). Note that ifA is an object of the subcatego@oh g, then
Ix = u?(I))K|[[n]] and, is the base change 6f overu?, showing thalC'(A) agrees
with the K-algebra defined previously. As for morphisms,detA — T" be as above. We
have a commutative diagram

K{[n]]

R(k,u)

~

aK

~

Or

K[n +m]] ———— 4.,

where the first vertical arrow is the natural inclusion. It follows tﬁatg fp, thus giving
rise to a morphisnt’(a): C(A) — C(T") in Ang. Itis now straightforward to verify that
C'is a functor. Furthermore, the composition

Ya: R — ﬁ(k,u) ~ (C(A)
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is faithfully flat and hence yields a faithfully flat natural transformationring — C
(extending the previously defined natural transformatjpn From this discussion it is
clear that we have the following extension of Theorem 4.3:

4.21 Theorem. There exists a functdd: Cohj};, — Lef)y, and a faithfully flat natural
transformatiory: ring — ringo ®. O

4.22. Noether normalizations. To explain the advantages of this extended version, we
need to discuss Noether normalizations. [4tm) be a complete Noetherian local ring
with coefficient fieldk. A k-algebra homomorphisrh[[d]] — A which is finite and in-
jective is called aNoether normalizatiorof A. (Here necessarily = dim A.) If x is
ann-tuple generatingn whose firstd entries form a system of parametersAfthen the
k-algebra homomorphisrh[[d]] — A given by X; — x; fori = 1,...,d is a Noether
normalization ofA. (See for instance [40, Theorem 29.4].) However, by choosirgen
more carefully, we can achieve this also for homomorphic images:

4.23 Lemma. Let (A, m) be a complete Noetherian local ring with an uncountable alge-
braically closed coefficient fieldand letZ be a set of proper ideals of. If the cardinality
of 7 is strictly less than that of, then there exists a surjectivealgebra homomorphism
0: k[[n]] — A with the property that for every € Z, the k-algebra homomorphism
k[ld]] — A/I obtained by composing the restriction &fo the subringk[[d]] with the
natural surjectionA — A/I is a Noether normalization o /I, whered := dim A/1.

Proof. Choose generators, . .., y, of m and let
n
:ci,:Za?;jyj, 1=1,...,n, andaijek
j=1

be generak-linear combinations of thg;. By [40, Theorem 14.14] there exists, for every
1 € 7, a non-empty Zariski open subgéi of k"*" such thatry,...,z4 (Whered =
dim A/T) is a system of parameters moduldor all (a;;) € U;. Since the transcendence
degree ofk is strictly larger thanZ|, the intersectior{), ., U; is non-empty. Choose
(ai;) in this intersection and l€try, . .., «,) be the corresponding tuple. Tlhealgebra
homomorphisnd: k[[n]] — A given by X, — z; for all i has the required propertiesC]

Let us express the property stated in the lemma by sayingtihormalizing with
respect tdZ. Let A = (R, x, k,u) be an object ifCoh}, and let; denote the embedding
of k£ in the algebraic closure ai(k) in K induced byu. The natural homomorphism
R — ﬁ(m) factors askR — E(k,i) — ﬁ(m). We say that\ is absolutely normalizingf
51\: K[[n]] — ﬁ(k,u) is normalizing with respect to the set of all ideals of the fdrﬁ‘(k,u)
with [ an ideal inﬁ(m). (This definition will be useful ir§5.) By Lemma 4.23 and noting
that the cardinality of%;. ;) is at mos®!%!, we immediately get:

4.24 Corollary. If we chooseX sufficiently large(e.g., so thae!®l < |K]), then there
exists an absolutely normalizing object@ohj, with underlying ringR. |

We say thatA is normalizingif the entries of the tuplx = (z4,...,z,) are in the
maximal ideamR of R and if thek*-algebra homomorphist[[n]] — R with X; — z;
fori =1,...,nis normalizing with respect to the collecti@nhconsisting of the zero ideal
and all minimal prime ideals aR. (As beforek* denotes the algebraic closurefoin R)
SinceR is NoetherianZ is finite, and hence:
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4.25 Corollary. If k is uncountable, then there exists a normalizing obje€oh}, with
underlying ringR. O

4.26 Remark.Let us discuss now how we intend to apply Theorem 4.3 and its extension,
Theorem 4.21, in practice. With aid of a faithfully flat Lefschetz extension of an equichar-
acteristic zero Noetherian local ring, we’ll define in §6 a non-standard tight closure
relation onR, and in§7, a big Cohen-Macaulay algebra f8r If we only are interested in

the ring R itself, then no functoriality is necessary, and we remarked already that the proof
in that case is much simpler, as it only relies on Proposition 3.5.

Functoriality comes in when we are dealing with several rings at the same time, and
when we need to compare the constructions made in each of these rings. We explain the
strategy in the case of a single local homomorphisimiz — S between equicharacteristic
zero Noetherian local rings. Choose an algebraically closed LefschetzAfigfisuffi-
ciently large cardinality (for instance larger thal¥l and2!S!) and choose an embedding
of the residue fieldcs of S into K. Denote the compostiof — ks — K by v and
let uw := v o . Choose a quasi-coefficient fiekdof R and then a quasi-coefficient field
[ of S containinga(k). Finally, choose a tuple in R generating its maximal ideal and
enlarge the tuple((x) to a generating tuplg of the maximal ideal of. These data yield
two objectsA := (R, x, k,u) andl’ := (S,y,[,v) of Cohx and« induces a morphism
between them. We tak®(A) and®(T") as the faithfully flat Lefschetz extensions Bf
andS respectively, and us®(«) to go from one to the other. Of course, in this way, the
closure operations defined dhand.S, and similarly, the big Cohen-Macaulay algebras
associated to them, depend on the choices made, but this will not cause any serious prob-
lems. Therefore, we will often simply denote the Lefschetz extensiof(l) and® (.5)
with D(a): D(R) — D(S) the homomorphism between them.

For certainc, more adequate choices for the quadrupleandI” (and hence for the
Lefschetz extension®(R) and®(S)) can be made. For instance, this is the caseif
unramified that is to say, if the image of the maximal ideal ®fgenerates the maximal
ideal in S and« induces an algebraic extension of the residue fields. In that case, we can
takel = a(k) andy = «a(x). It follows thatC(a): C(A) — C(T') is also unramified,
whence? (o) sends the maximal ideal @f( R) to the maximal ideal oD (S). We'll tacitly
assume that wheneveiis unramified (for instance i is surjective), then we choo&¥ R)
and®(S) with these additional properties. (See aidd28 below.)

In the above construction df, after we chosé andu, we could have chosen the tuple
x with entries inﬁ(k,u), so that the resulting is only an object inCoh}. This has the
following advantage: by an application of Corollary 4.24, we now may chdose that
it is absolutely normalizing. We express this by saying that the corresponding Lefschetz
extension®(R) (:= D(A)) is absolutely normalizing Similarly, we also say thaD(R)
is normalizingif A is normalizing. One easily proves thatif R — S is a local homo-
morphism as before, thek with underlying ringR andT" with underlying ringS can be
chosen so that is a morphismA — T andI” and A are absolutely normalizing. If more-
overc is surjective and an absolutely normalizing obj&aif Coh}, with underlying ring
R is given, therl” with underlying ringS chosen as above is also absolutely normalizing.

Next, we extend Proposition 4.11. We call a morphi&m- T' in Coh}, finite if the
underlying homomorphism: R — S'is finite.

4.27 Proposition. If a: A — T"is a finite morphism irCoh}, then®(«) is also finite.
If in addition « induces an isomorphism on the residue fields, then the natural map

DA)@r S —2()
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is an isomorphism, making the diagram

D(A) ®r S

commutative. In particulary is injective(respectively, surjectiyef and only if©(«) is.

Proof. In view of Proposition 4.11 and Corollary 4.12, it suffices to show the analogous
statements witt® replaced by the functof. If a: (R,m) — (S, n) is finite, then all

the maps in (4.18.1) are finite and hence s@'igr). Assume next thatv induces an
isomorphism on the residue fields. By the maximality property of coefficient fields we
havea(k*) = I*. Since the canonical maR ®z S — S is an isomorphism by [40,
Theorem 8.7], we get a canonical isomorphism

(Rop K)®r S (R®R S) @ K 28 @4 K = 8 @0 K.

Moreover, then(§®l* K)-adic topology orb ®;- K is equivalent with it31(§®l* K)-adic
topology, sincems is n-primary. Hence taking completions and using [40, Theorem 8.7]
once more, we get a canonical isomorphism

ﬁ(k,v) ®rS = §(z,y)-

This in turn gives rise to a canonical isomorphisiA) @z S = C(I'), which fits in a
analogous commutative diagram as the above one. |

4.28. Quotients. Given an objectA = (R, x,k,u) in Coh}, and an ideall of R, we
define thequotient objectA /I as the quadrupléR/I, %, k, u), where we identifyk with
its image inR/I, wherex denotes the image of in E(k,u)/Iﬁ(m) and wheret is the
factorization ofu throughR/I. The residue map: R — R/I gives rise to a morphism
A — A/I. It follows from Proposition 4.27 that induces a surjective map(A) —
D(A/I) and one easily checks that its kernell®(A). If A is absolutely normalizing,
thensoisA/I.

4.29. Further basic properties. Recall from§4.4 thatK = ©(0) is just the ultrapower
KY. By constructionK is a coefficient field of>(A), for everyA, and®(a): D(A) —
D(T") is a morphism of analyti&-algebras with respect 8V (as defined ir§1.7), for
every morphism: A — T'in Coh,. The following is an analogue of Proposition 3.1.

4.30 Proposition. For eachn there exists an exact sequence
0 — Inf(D(n)) — D(n) = K][n]] — 0
wherer is a K[[n]]-algebra homomorphism.

Proof. Recall thafinf(®(n)) denotes the ideal of infinitesimals ®f(n), that is to say, the
intersection of alm?®(n), wherem := (X1, ..., X,,)K|[[n]]. Definer: D(n) — K[[n]]
as follows. Take an elemerft € ©(n) and realize it as an ultraproduct of power series
fw € Ky[[n]], say of the form

fu) = Z auwXV
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with a,,, € K,, wherev ranges oveN". For each such leta, € K be the ultraproduct

of thea,,,. Define nowr(f) as the power series’ , a, X”. We leave it to the reader to
verify thatr is a well-defined, surjectiv& [n]-algebra homomorphism, and that its kernel
is equal tolnf(D(n)). (The argument is the same as in the proof of Proposition 3.1.) It
remains to show that it is in fact A[[n]]-algebra homomorphism. Légt € K[[n]] and
choose polynomialg; € K[n] so thatf = f; mod m'. It follows that

nn(f) = nn(fl) = fl mod mlCD(n)
Taking the image under shows that

m((f)) = fi=f mod m'K][[n]].

Since this holds for all, we get thatr(n,,(f)) = f, proving thatr is a K[[n]]-algebra
homomorphism. O

4.31 Remark. The ultraproduct of theé-th partial derivative on eack,[[n]], for i =

1,...,n, is aK-linear endomorphism ob(n), which we denote again b§/0X;. It
follows that
_ ( da ) _ 9(n(a))

for eacha € D (n). In particular, for everyf € K|[n]] we have

of ) _ 9 (f))
0X; 0X;

e(f) =mm ( € Inf(D(n)).
The mapf — &(f): K|[[n]] — Inf(D(n)) is a derivation which is trivial o'[n]. We do
not know whethee(f) = 0 forall f € K[[n]]. (Note thatQ k(j,.yj/x[n) 7# 0.)

4.32 Corollary. For eachA = (R,x,k,u) in Coh}, we have an isomorphism at-
algebras

D(R)/nf(D(R)) = K[[n]]/TAK[[n]] = Rk, noou)s

where®(R) := D(A). If nis anm-primary ideal of R, thenn®(R) is m®D(R)-primary
and

(4.32.1) D(R)/vD(R) = (R/n).

Proof. For the first statement use that the base change mdgubthe K [[n]]-algebra ho-

momorphismr from Proposition 4.30 yields an epimorphisd{R) — K|[n]]/IxK|[[n]].

One verifies that its kernel is precisdlyf (D (R)). The second isomorphism is then clear

sinceK[[n]]/Ix 2 R1..)- (Recall thaty: K — K = K" is the diagonal embedding.)
Now letn be anm-primary ideal ofR, saym! C n. Thenm!®(R) C n®(R), hence

n®D(R) is mD(R)-primary. To establish (4.32.1) we first treat the case hat K|[n]].

By Proposition 4.30x induces an isomorphism

D(n)/n®(n) = K{[n]]/nK][n]].

The natural homomorphisi|[[n]] — (K[[n]]/n)¥ has kernehK|[n]] (use tos’ Theo-
rem). The general case follows from this by base change. O
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4.33. A note of caution— unnested conditions.In the following we fix a natural number
n. For afieldL andi € {1,...,n} letus write

L[]} == L[ X1, ..., Xi1, Xig1, ..., X ]].

Let ©(7) be the ultraproduct of th&,,[[ 7]]. The natural inclusio® (%) C D(n) is a
section of the canonical epimorphism

D(n) — D(n)/X:D(n) = D(7).

However, it is not true in general tha, : K[[n]] — ©(n) mapsK|[[7]] inside®(7) for
all i (the exception being of courge= n by (4.4.1)). This is rather surprising since after
all, n,, sends a power serig/sto a limit of its truncations i (n) and if f does not involve
X, then neither does each truncation, yet the limit element must in)ve

To prove that such inclusions cannot hold in general, we use an example due to Roberts
in [46], which was designed to be a counterexample to a question of Hochster on solid
closure. Namely, suppose far= 6, we would have inclusions

(4.33.1) ne(K[[7]]) € D(7)

fori = 4,5,6. Letz := X?X2X2 anda; := X? fori = 1,2,3. Given a fieldL, the
monomialz lies in thesolid closureof the ideal(a1, a2, a3)L[[3]] if and only if

f = 2 Xy X5X6 + a1 X5X6 + a0 Xy Xg + a3 Xy X5 € Z[6]
viewed as an element @f[[6]], has a non-zero multiple inside tiiesubspace
L{[4]]+ LI[5]] + LI[6]]

of L[[6]]. (See [25§9].) With Hochster we say that this non-zero multiplefaf special
If (4.33.1) holds, then fol. := K the image undeng of such a non-zero multiple lies in
the K-subspace
D(4)+D(5)+D(6).

of ©(6). By tos’ Theorem,f, as an element oK ,,[[6]], has then a non-zero multiple
which is special for almost allb. This in turn means that, viewed as an element of
K ,,[[3]], liesin the solid closure dfu1, a2, as) K, [[3]]- By [25, Theorem 8.6] solid closure
is trivial in K,,[[3]] (since K,,[[3]] is regular of positive characteristic). Henedies in
(a1, az, a3) K ,[[3]], which is clearly false.

The failure of the existence of inclusions (4.33.1) bears a strong resemblance to the fact
that there is no Artin Approximation for unnested conditions (see our discuss§@i3n

5. TRANSFER OFSTRUCTURE

Throughout this sectiofi?, m) denotes an equicharacteristic zero Noetherian local ring,
andK is a Lefschetz field with respect to some ultraset with underlying set equal to the set
of the prime numbers, whose componeRisare algebraically closed fields of character-
istic p. Whenever necessary, we assume ftidtas cardinality> 2%/, We fix once and for
all an objectA = (R, k,x, u) of Coh}, with underlying ringR. (We might on occasion
require some additional properties fy such as being absolutely normalizing.) By abuse
of notation, we writeD (R) for ©(A). We view® (R) as anR-algebra via the faithfully flat
mapna: R — ®(R) and often surpress this map in our notation. In particular, given an
ideal I in R, we simply write/©(R) for the ideal in® (R) generated by (I). Moreover,
we construct a Lefschetz hull fd?/I always by means of the quotieft I, as explained
in §4.28. In particular®(R/I) = ©(R)/ID(R). The other notations introduced 4
remain in force.
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5.1. Approximations. By construction,® (R) is an ultraproduct (with respect to some
unspecified ultraset) of equicharacteristic complete Noetherian local Rpgsith alge-
braically closed residue fiel&,, (of prime characteristip(w)). We think of R,, as an
approximationof R. EachR, is of the form K [[n]]/I.,, wherel,, are ideals whose
ultraproduct is equal t@\@(n) (in the notation ok4.19). In this section, we make more
precise how th&k,, play the role of a reduction modujoof R. A similar study for affine
K-algebras was carried out in [55] and the subsequent papers, using effective bounds and
the resulting first-order definability (as established in [18, 49]). Since no such tool is avail-
able in the present situation, our arguments are purely algebraic. Here is a first example:

5.2 Theorem.

(5.2.1) Almost all R,, have the same dimensidrespectively, embedding dimension
or depth as R.

(5.2.2) Almost all R,, are regular (respectively, Cohen-Macaulay or Gorens)eifn
and only if R has the same property.

Before we begin the proof, let us introduce some more notations. Given an element
D (R) choose elements, € R,, whose ultraproduct is. We calla,, anapproximationof
a. If o}, is another choice of elements whose ultraproduet ihena,, = a/, for almost
all w. We use similar terminology for tuples of elements@R), and given a finitely
generated ided = (aq,...,as)D(R) of O(R), let1,, := (a1, - -, Gsw) R, Wherea;,,
is an approximation af;. The ultraproduct of thé,, is I, and we calll, anapproximation
of I. If we choose different generators and approximations of these generators and denote
the resulting ideals by, , then the ultraproduct of thE, is again/ and thereford,, = I/,
for almost allw. With anapproximationof an ideall of R we mean an approximation of
its extension/® (R) to an ideal of9(R). Note that themR,,/I,, is an approximation of
R/I. By faithful flatness ofR — ©(R) we have:

5.3 Lemma. If [ andJ are ideals ofR with approximationd,, andJ,,, then

(531 ID(R)NR=1,

(5.3.2) ID(R)NJD(R) = (INJ)D(R),

(5.3.3) (I’D(R) ‘D(R) J’D(R)) = :gr J)D(R),
and the ideals in(5.3.2) and (5.3.3) have approximationd,, N J,, and (I, :r, Jw),
respectively.

Let m be the maximal ideal oR. As a first step in the proof of Theorem 5.2 we show
the following lemma, of interest in its own right:

5.4 Lemma. A d-tuplez = (z1,...,24) € R?is a system of parameters fdt if and
only if almost every,, is a system of parameters f&,,, wherez,, = (21w, - - -, 2dw) IS
an approximation of. Similarly, z is an R-regular sequence if and only #is a D (R)-
regular sequence if and only if almost every is an R, -regular sequence.

Proof. Supposez is a system of parameters f&; sod = dim R. We claim that almost
everyz,, is a system of parameters fé,,. We havem” C (2, ..., z4) R for somer, and
since this is preserved B(R), we get by tos’ Theorem that! C (214, - . -, Zdw) Ruw»
for almost allw. This shows that almost aRt,, have dimension at mogt and it suffices
to shows thatlim R,, = d for almost allw. Suppose on the contrary thditn R,, < d
for almost allw. We may assume, after renumbering if necessary, that theigeak
(Z1wy - - - » Zd—1,w) Ruw Of Ry, is my,-primary for almost alkw. For thosew letr,, € N be
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minimal such thatz,,,)"™ € n,,. By Noetherianity ofR, we have for some that
(n:zy) =(n:zy)

forall r > s, wheren := (z1,...,24-1)R. By (5.3.3) we get

(nD(R) 1o(r) 2y) = (n:r 2)D(R)
(5.4.1) =(n:g z;)9(R)

= (n®(R) :n(r) i),

for all r > s. Supposer,, > s for almost allw, and letb € ©(R) equal the ultra-
product of the(zg,,)"»~*~1. By tos’ Theorempbz5™' € nD(R). By (5.4.1), we have
bz5 € n®(R) and hence, by tos’ Theorem once mofe;,,)" ! € n,, for almost all
w, contradicting the minimality of,,. Therefore,r,, < s and hencezy,)® € ny,
for almost allw. By tos’ Theorem, this yieldg; € n®(R) and hencezj € n by
faithful flathess ofR — ©(R), contradicting thatz is a system of parameters fét.
Conversely, assume that, is a system of parameters faét,, for almost allw. Then
dim R,, = d for almost allw. We have already showdim R,, = dim R for almost all
w, hencedim R = d. Therefore it suffices to show théty, ..., z4) R is m-primary. Now
(Z1ws -+ - » Zdw ) Ry iSmy,-primary, hencelim R, / (214, - - - » Zdw ) Ry = 0 for almost alko.
The ringsS, = Ru/(21w, - - -, 2dw) Ry are approximations t6 := R/(z1,...,zq)R.
Thusdim S = 0 by what we have shown above, or equivalently, ..., z4)R is m-
primary.

If z is R-regular, therz is also®(R)-regular due to faithful flatness @@ — D(R),
see [40, Exercise 16.4]. By tos’ Theoremzifis ©(R)-regular, then almost a#,, are
R,,-regular. Finally, suppose that almost=aj) are R,,-regular, and let € {1,...,d — 1}
anda € R with az;11 € (21,...,2;)R. Then we havei,zit1.4 € (Z1ws-- - Ziw)Ruw
for almost allw, hencea,, € (z1u,.-.,2iw)Ry for almost allw, and thereforex €
(#1,...,%)D(R), by Los’ Theorem. Now (5.3.1) yields € (z1,...,2;)R. Similarly
one shows that ¢ (z1, ..., z;)R. Hencez is R-regular. O

Proof of Theorem 5.2Suppose thak has embedding dimensiaen so that we can write
m=(21,...,2)Rforsomez,...,z € R. Hencem,, = (214w, - - , Zew ) Rw, Wherez;,,
is an approximation of;. If the embedding dimension of almost &l|, would be strictly
less thare, then after renumbering if necessaty, = (21w, - - - ; Ze—1,w) Ry for almost all
w (by Nakayama’s Lemma). TherefoneD (R) = (21, ..., 2z.—1)®(R) by tos’ Theorem,
hencem = (z1,...,2.—1)R by faithful flathess ofR — D(R), contradiction. From
Lemma 5.4 it follows thatlim R = dim R,, for almost allw. Now supposer has depth
d,andletz = (zq,..., 24), with z; € m for all i be anR-regular sequence. By Lemma 5.4
almost every approximatios, € m of z is anR,,-regular sequence imn,, and hence?,,
has depth at leag!, for almost alkv. On the other hand, sinde has depthi, the quotient
R/(z,...,z4)R has depth zero, that is to say,is an associated prime ¢f;, ..., z4)R.
Chooses ¢ (z1,...,zq4)R such thatsm C (z1,...,24)R and lets,, be an approximation
of s. By Los’ Theorem,s,,my, C (21w, -- -, 2dw)Rw @and s, € (21w, - - -, Zdw) Ry fOr
almost allw. Hence the depth of almost dfl,, equalsd.

SinceR is regular (respectively, Cohen-Macaulay) if and only if its dimension is equal
to its embedding dimension (respectively, to its depth), the desired transfer follows from the
preservation of these invariants in the approximations.dLet dim R, and recall thaf?
Gorenstein means th&tis Cohen-Macaulay and for some (equivalently, evétyegular
sequence = (zy,..., zq) In m, the socle ofR/n is principal, wheren := (zy, ..., zq)R;
that is, there existes € R such that(n : m) = n 4+ aR. In order to show thaR? is
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Gorenstein if and only if almost alk,, are, we may assume, by our agument above, that
R and hence almost alk,, are Cohen-Macaulay. Suppose tliats Gorenstein. Lek,

n, anda as above, and let,, andn,, be approximations af andn respectively, sa,, is
generated by aR,,-sequence, for almost all. By £os’ Theorem, we get

(542) (nu; . mw) =ny + awa,

for almost allw. It follows that almost allR,,, are Gorenstein. Conversely, if almost Alj,
are Gorenstein, then there exist € R,, satisfying (5.4.2). By Los’ Theorem,

(5.4.3) (nD(R) 1o(r) MD(R)) = nD(R) + axcD(R)

wherea., € ©(R) is the ultraproduct of the,,.

Let f andg be elements ir{n : m) but not inn. From (5.4.3) it follows thatf =
(oo mod ND(R) andg = a0 Coo mod nD(R), for someby,, ¢, € D(R). By faithful
flathess ofR — ©(R), neitherf nor g belongs ta®(R), so that, andc., must be units
in®(R). In particular,f € gO(R) +n®D(R) andg € fD(R) + nD(R). Therefore, again
by faithful flathess,f € gR + nandg € fR + n. Since this holds for every choice ¢f
andy, the socle ofR/n is principal, showing thak is Gorenstein. a

Since a Noetherian local ring is a discrete valuation ring (DVR) if and only if it has
positive dimension and its maximal ideal is principal [40, Theorem 11.2], we get:

5.5. Corollary. The following are equivalent:

(5.5.1) Ris aDVR;
(5.5.2) almost evenR,, is a DVR;
(5.5.3) ©(R) is a valuation ring. O

5.6. Flatness and Noether normalization.Let I" be an object irCoh}, with underlying
ring S, andA — T' a morphism inCoh7, with underlying homomorphism: R — S.
We denote the induced morphist(R) — D(5) := D(I") by ©(«). By definition,®(«)
is an ultraproduct oK ,,-homomorphisms,,: R, — S.,, wheresS,, is an approximation
of S.

5.7. Proposition. If a: R — S is finite, then so are almost all,,. If  moreover induces
an isomorphism on the residue fields, then the following are equivalent:

(5.7.1) ais flat;
(5.7.2) D(«) is flat;
(5.7.3) almost all«,, are flat.

Proof. The first assertion and the implication (5.7:2)(5.7.2) are immediate by Propo-
sition 4.27. From the commutative diagram (4.3.1) and the faithful flathesg of 7
andng := nr we get (5.7.2)= (5.7.1). Hence remains to show that (5.7.1) and (5.7.3)
are equivalent. We use the local flatness criterion [40, Theorem 22(@litely generated
module M over a local Noetherian ring (A, ) is flat if and only if Tor{'(A/n, M) = 0.
Sincenr, is flat we have an isomorphism &f( R)-modules

D(R) ®p Torl(R/m, S) = Tory ™ (D(R) @r (R/m),D(R) ®r S).

Moreover®(R) ®r (R/m) &2 D(R/m) = D(K), and®(R) ®r S = D(S) by Propo-
sition 4.27. The finitely generated-moduleS has a free resolution by finitely generated
free R-modules (sincer is Noetherian). Hence by the faithful flathessRf— D(R),
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the finitely generate® (R)-module®(S) has a free resolution by finitely generated free
D (R)-modules. Sinc®(K) is a field and hence coherent, Proposition 1.2 yields

D(R) @r Torf(R/m, S) = ulim Tori™ (K, Sy,).
The Noetherian local ring?,, has residue field<,,, and S,, is finitely generated as a

module overR,,, for almost allw. The claim now follows from the local flatness criterion
and faithful flathess ok — D(R). O

5.8 Proposition. LetI be anideal inR with approximationd,, C R,,, andd = dim R/1.
If ©(R) is absolutely normalizing, then the composition

Kylldl] € Ku[[n]] = Ry — Ru/Tw

(where the first map is given by inclusion and the remaining maps are the natural surjec-
tions) is a Noether normalization a®,,/I,,, for almost allw.

Proof. By Remark 4.26, the naturd{ -algebra homomorphism

K[[d]] — K{fn]] 2 C(8) — C(A)/IC(A) = C(A/1)

is injective and finite, hence a Noether normalization. By Proposition 4.11, appiying
yields a finite and injective homomorphis®(d) — ©(R/I). By tos’ Theorem, the
maps in the statement are therefore almost all injective and finite, since their ultraproduct
is precisely® (d) — D(R/I). O

5.9. Remark.Suppose = (0). Then the conclusion of the proposition hold€ifR) is
only assumed to be normalizing.

Let us elaborate some more on the Proposition 5.87Let K[[d]], where0 < d < n.
We have a commutative diagram

T Xat1,- o Xn] —=D(d)[Xat1, .- Xn)

n

K{[n]] D(n).

Hence giverf € T[ X441, . .., X,] we may choose approximatiofig of f in the subring
Tw[Xat1,--.,Xn] of Ky[[n]]. Note thatT',, := K,|[d]] is an approximation of’, so
that f is the ultraproduct of the polynomialg, of bounded degree, in the sensesf8.
Given generatorgi,. .., f of anidealJ of T[X441,...,X,] we let.J,, be the ideal of
Tw[Xd+1,--.,X,] generated byf1.,, ..., frw. (We think of J,, as an approximation of
the idealJ.)

Suppose tha (R) is normalizing. Recall that we denote the kernefgby 7, and let
J =T Xay1,. .- ,Xn]mfA, where as abov& = K|[[d]], withd := dim R. ThenJNT =
(0), and the natural inclusiof[X 441, . .., X,,] — K[[n]] induces an isomorphism

T[Xas1,- . Xn]/J = K[[n]]/Ix = C(A).

Hence for every idealM of T[X 41, ...,X,] containingJ, we haveM = MK][[n]] N
T[X441,-.-,Xn]. By the remark following the proposition above, we see that filen=
M, Ky[[n]] N Tw[Xds1, - - -, X, for almost allw. This fact is used in the proof of Theo-
rem 5.31 below.
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5.10 Remark.Because of its importance, let us give alternative arguments for (5.2.2) using
Noether normalization. These arguments work i= (R, x, k, u) is absolutely normal-
izing. (In fact, it is enough thad, be normalizing with respect to the zero ideal.) First,

in all three cases we may replageby E(k,u) and hence assume thatis in Ang. (See
Theorem 23.7, Corollary to Theorem 23.3, and Theorem 23.4, respectively, in [40].) Say
R = K][[n]]/I for somen and some ideal of K[[n]]. The restriction of the-algebra
homomorphismK[[n]] — R with X — xtoT := K][[d]], whered := dimR, is a
Noether normalization oR. By Proposition 5.87,, — R, is a Noether normalization

of R, for almost allw. The proof of [40, Theorem 29.4] shows thatis regular if and

only if T'— R is surjective. Hence is regular if and only if©(7') — D(R) is surjec-

tive (by Corollary 4.12) if and only i}, — R, is surjective for almost allv. Therefore

R is regular if and only if almost eacR,, is regular. By [12, Proposition 2.2.11R is
Cohen-Macaulay if and only if' — R is flat. By Proposition 5.7 this is equivalent with
the flatness of almost all, — R.,, which in turn is equivalent with almost alt,, being
Cohen-Macaulay. Finally, for the Gorenstein property, observeiijiais Artinian, where

n is a parameter ideal dR, and so iSD(R/n), as it is an ultrapower ofR/n) @, K by
(4.32.1). Since being Gorenstein is first order definable for Artinian local rings by [48],
we get thatR/n is Gorenstein if and only i®(R/n) is if and only if almost allR,, /n,,

are. Since almost evety,, is generated by aR,,-sequence, this is equivalent with,,
Gorenstein for almost alb.

5.11. Hilbert-Samuel functions. We now want to strengthen (5.2.2) and show that almost
all R,, have the same Hilbert-Samuel functionas For this, we assume that the reader

is familiar with the fundamentals of the theory of standard bases in power series rings; for
example, see [8]. We fix > 0, and we denote by the degree-lexicographic ordering on
N, that is,v < pif and only if [v]| < |ul, or|v| = |u| andv < p lexicographically. Letl

be a field. For every non-zero

f=Y a,X"eLln] (witha, LforallyeN")

there exists as-smallestA € N™ with a) # 0, and we pute(f) := ay andu(f) = A.
It is convenient to define(0) := 0 andv(0) := oo with oo + v = v + oo = oo for all
v € N" U {oo}. We extend= to N U {oo} by N* < co. Note thatv is a valuation on
L[[n]] with values in the ordered semigro(iN”, <), that is, for allf, g € L[[n]]:

(5.11.1) v(f) = 00 <= f =0,

(5.11.2) v(fg) = v(f) + v(g), and

(5.12.3) v(f + g) = min {v(f), v(g)}.
Given a subset of L[[n]] we put

v(s) = {u(f) : f € sL[[n]]} € N" U {oo)
wheresL|[n]] denotes the ideal generated dylLet f,g1,...,9n € L[[n]]. We call an
expression

m

f=Y a9  (whereg,...,qn € L[[n]))
i=1

such thaw(f) < v(¢;) + v(g;) for all ¢ astandard representatioof f with respect ta =
{91;---,9m} (in L[[n]]). Note that themw( f) equals the{-) minimum of thev(g;)+v(g;).

If L C L' is afield extension, andl € L[[r]] has a standard representation with respect
to s in L'[[n]], then f has a standard representation with respect ito L{[n]]. (Since
L[[n]] — L'[[n]] is faithfully flat.) Moreover:
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5.12 Lemma. An elementf of K[[n]] has a standard representation with respect to a
subset = {¢1, ..., gm} Of K[[n]] if and only if almost every,, has a standard represen-
tation with respect t@,, := {g1w, - - - , gmw }» Wheref,, andg;,, are approximations of
and g; respectively.

Proof. We may assum¢g # 0. Writing f = f, + ¢ where f; € K|n| is homogeneous
of degreed := |v(f)| ande € mi*t! we see that(f), = c(fu) andv(f) = v(fu)
for almost allw. Hence iff = Y. | ¢;g; is a standard representation pfvith respect
tos, thenf, = Zf;l Giw9iw 1S @ Standard representation ff in terms ofs,,, where
¢iw IS an approximation of;;. Conversely, suppose that almost evgryhas a standard
representatiorf,, = Y .-, qiwgiw With respect tcs,,, whereg;,, € K,[[n]]. Sincev is
a valuation, there is somesuch thatw(f,) = v(giw) + V(giw) =< v(gjw) + v(g;w) fOr
all 7 and almost alkv. Therefore, if we ley; be the ultraproduct of the;,, and= as in
Proposition 4.30, then(f) = v(n(g:)) + v(g:) = v(7(g;)) + v(g;)) for all j, showing
that f = >°I", m(¢;)g: is a standard representation pfwith respect tos in D (K)[[n]].
Hencef has a standard representation with respestimok[[n]] by faithful flatness. O

Every ideall of L[[n]] has astandard basisthat is, a finite subset of I such that
every element of has a standard representation with respeet tar equivalently, such
thatv(s) = v(I). (See [8, Theorem on p. 219].)

5.13 Proposition. A subset of an ideall C K[[n]] is a standard basis fof if and only
if its approximations,, is a standard basis for the approximatidp C K, [[n]] of I, for
almost allw. In particular we havey(I) = v(1,,) for almost allw.

Proof. We use the Buchberger criterion for standard bases: for nonfzere L[[n]] we
define

s(f,9) = c(g)X"f —c(f)X"g € L[[n]]
wherep, v are the multiindices itN™ such thatX#+v(/) = x»+v(9) = the least common
multiple of Xv/) and X*(9). Then a finite subset of L[[n]] is a standard basis of the
ideal it generates if and only H(f, g) has a standard representation with respeet for
all0 # f,g € ¢[8, Theorem 4.1]. The claim follows from this and Lemma 5.12, since if

f,g € s are non-zero then their approximatiofis, g,, are non-zero and(f,, g.,) is an
approximation of( f, g) for almost allw. O

Given a Noetherian local ringS, n) we useys to denote the Hilbert-Samuel function
d + length(S/n?*1) of S. By Corollary 4.32 we see that for fixedl € N, we have
xr(d) = xr, (d) foralmost alkw. Proposition 5.13 implies the following stronger version:

5.14 Corollary. For almost allw, we havexr = xr,, (thatis,xr(d) = xr, (d) for all
d).

Proof. Sinceﬁ(m)/md“ﬁ(k,u) = (R/mi*t1) @, K forall d, we haveyr = XRp., FOT
an ideall of L[[n]], the Hilbert-Samuel functions df[[n]]/I and L[[n]]/I’, wherel’ is
the ideal generated by ai” with v € v(I), agree. Hence by Proposition 5.13 we obtain
thatxﬁ(k ;= XRy, for almost allw. O

In particular, almost alR,, have the same Hilbert-Samuel polynomialiashence the
same multiplicity, and we see once more that almoskallhave the same dimension and
the same embedding dimensionfasFor later use we also show:
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5.15 Lemma. Let fy,..., f, € K[[r]] andey,...,e, € Inf(®(n)), and consider the
idealsI = (f1,...,fr)K|[[n]] andI. = (fi + e1,..., fr + &.)D(n) with respective
approximationsl,, and I, ,,. Thenv(I,) C v(l..) and hencedim(K,[[n]]/l,) >
dim(K,[[n]]/ I w), for almost allw.

Proof. We may assume > 0 andf; # 0 for all .. Letd := max; |v(f;)|. Then for almost
all w we haves;,, € m&tt and hence(fiw, + €iw) = v(fiw) = v(f) for almost allw.
Lets = {g1,...,9m  be a standard basis fér Then its approximatios,, is a standard
basis forl,, by Proposition 5.13, and thugl,,) = v(s,), for almost allw. For every
j €{l,...,m} there exists € {1,...,r} andv € N™ with v(g;) = v(f;) + v. Hence
V(gjw) = v(fiw) + v = v(fiw + €iw) + v for almost allkw. This showsy(I,,) = v(s,) C
v(I¢ ) for almost allw. O

5.16. Irreducibility. Suppose that = (R, x, k, v), and recall from the discussion before
4.24 thati = u|k is the embedding of into the algebraic closure af(k) inside K. We
call R absolutely analytically irreduciblé E(,m-) is a domain. This does not depend on
the choice oft andu. (Cf. Remark 4.20.)From now on up to and including5.27 we
assume thaD(R) is absolutely normalizing.

5.17 Theorem. The following statements are equivalent:

(5.17.1) R is absolutely analytically irreducible;
(5.17.2) ©(R) is a domain;
(5.17.3) almost allR,, are domains.

We first establish some auxiliary facts needed in the proof. ILée a domain with
fraction field I’ = Frac(T). LetY = (Y3,...,Y,,) be a tuple of indeterminates, and let
I be afinitely generated ideal @f[Y’]. There exists a non-zee< T with the following
property: for all domaing” extendingT’, with fraction field 7/ = Frac(7’), and all
feT'[Y]wehavef € IF'[Y]ifandonlyifdf € IT'[Y]. (See, e.g., [4, Corollary 3.5].)
In other words,

IF'YINT'[Y] = (IT'[Y] i1y 0)
and therefore:

5.18 Lemma. If 7" is a domain extending, with fraction fieldF’, andT" is flat overT’,
then
IF'lYINT'[Y] = (IF[Y] N T[Y])T’[Y].

In the following proposition and lemma 1&t = K[[d]] andT* = ©(d).

5.19 Proposition. If I is a prime ideal of'[Y] with I N T = (0), thenIT*[Y] is a prime
ideal of T*[Y] with IT*[Y] N T* = (0).

For the proof we need:
5.20 Lemma. The fraction fieldf™ of T* is a regular extension of'.

Proof. Sincechar F' = 0 we only need to show thdft is algebraically closed i#™*. Let

y € F* be algebraic oveF'. To show thaty € F' we may assume thatis integral ovefT'.
SinceT™ is integrally closed it follows thag € T*. Let P(Y') € T[Y] be a monic poly-
nomial of minimal degree such th&(y) = 0. Thenn(y) is a zero ofP in K[[d]], where

m: T* — K]J[d]] is the surjectiveK [[d]]-algebra homomorphism from Proposition 4.30
andK = ©(K). SinceK is algebraically closed it follows (using Hensel's Lemma) that
P has a zeroirK[[d]] = T. By minimality of P, this zero isy, soy € T as required. O
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Proof of Proposition 5.19 Suppose thakis prime and'NT" = (0), or equivalently] F'[Y]
isprimeand F[Y]NT[Y] = I. By Lemma 5.20] F*[Y] is a prime ideal of F[Y]. (See
[9], Chapitre V,§15, Proposition 5 ang17, Corollaire to Proposition 1.) In particular
IT*[Y]NT* = (0). SinceT* is flat overT, by Lemma 5.18 we have

IF*YINT*[Y] = (IF[Y]NTY))T*[Y] = IT*[Y].
It follows that IT*[Y] is prime. O

Proof of Theorem 5.17By tos’ Theorem, almost alk,, are domains if and only iD(R)
is. Moreover, if this is the case, then every subring of the dorB¥iR) is also a domain.
Hence we only have to prove that# is absolutely analytically irreducible, theéd(R)
is a domain. Let us first assume tﬂ%@u) is a domain. Puf’ := K][[d]] and letJ :=

T Xat1,---,Xn]N fA, whered = dim R. Since@\ is a Noether normalization @¥(A),
Ry & T[Xap1,- - Xn)/J

and

D(R) 2D(T)[ Xat1,---, Xn]/ID(T) [ Xag1,- .-, Xn].
(See Proposition 4.11 and the discussion following Proposition 5.8.) ﬁ%) is a
domain if and only ifJ is a prime ideal, and in this case, by Proposition 5.19, the expansion
JD(T)[Xnt1,- -y Xntm) Of J to an ideal of®(T)[X 41, - .., Xnt+m) remains prime.
Hence®(R) is a domain, as required. The proof of Theorem 5.17 is now completed by
Lemma 5.21 below. O

5.21 Lemma. If E(,m-) is an integral domain then so ﬁ(k,u).

Proof. We write [ for the algebraic closure af(k) inside K. It is easy to see that the
unigue extension of a Noether normalizatigja]] — E(,m-) of E(k,i) to a K-algebra ho-

momorphismK[[d]] — ﬁ(,w) is a Noether normalization (ﬁ(m). Hence the argument
above, which allowed us to transfer integrality frd?@k,u) to ©(R), can be used to trans-

fer integrality ofﬁ(k@ to E(M), provided we know that the fraction field &f[[d]] is a
regular extension of the fraction field 8fd]]. This is shown as in Lemma 5.20. O

A prime idealp of R is calledabsolutely analytically primé& R/p is absolutely analyt-
ically irreducible, that is to say, iR ;) is prime. SinceD(R) is absolutely normalizing,
s0isD(A/I) =D(R)/ID(R) for every ideall of R. Hence the theorem implies:

5.22 Corollary. The following statements are equivalent, for a prime igeaf R:

(5.22.1) p is absolutely analytically prime;
(5.22.2) p®(R) is prime;
(5.22.3) almost all approximationsg,, of p are prime. O

5.23. ReducednessA local ring A is calledanalytically unramifiedor, analytically re-
duced, if its completion is reduced (that is to say, without non-zero nilpotent elements).

5.24 Theorem. The following statements are equivalent:

(5.24.1) R is analytically unramified;
(5.24.2) ©(R) is reduced,
(5.24.3) almost allR,, are reduced.
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Proof. The implication (5.24.3)= (5.24.2) is a consequence of tos’ Theorem, and the
implication (5.24.2)= (5.24.1) is trivial. Hence we only need to show thakifs reduced,
then almost allR,, are reduced. If? is reduced, then so ié(,m-), by Lemma 4.17. Let
p1,...,Pps be the minimal prime ideals d'[?(m). Sinceﬁf(m is reduced, their intersection

is zero, and hence so is the intersection of their approximagigngor almost alkw. Since
D(R) is absolutely normalizing, almost al],, are prime ideals by Corollary 5.22, proving
that almost allR,,, are reduced. O

5.25 Corollary. Suppose thak is excellent. For an ideal of R the following are equiv-
alent:

(5.25.1) I is radical;
(5.25.2) ID(R) is radical;
(5.25.3) almost all approximationg,, of I are radical.

In particular, we have/I®(R) = /ID(R), and(v/1),, = VT, for aimost allw. O

A Noetherian ring is calle@quidimensionaif all its minimal primes have the same
dimension. A Noetherian local ring is calléarmally equidimensionaf its completion is
equidimensional.

5.26 Corollary. If R is complete and: is algebraically closed, then the following are
equivalent, for a prime idegl of R:

(5.26.1) p is a minimal prime ideal oR;

(5.26.2) p©(R) is a minimal prime ideal oD (R);

(5.26.3) for almost allw the approximatiorp,, of p is a minimal prime ideal oR?,,.
If R is arbitrary, thenR is formally equidimensional if and only if almost af,, are
equidimensional.

Proof. The intersection of the minimal prime ideals . . . , p, of R equals the (nil-) radical
of R. By Corollary 5.22 the,© (R) are prime ideals dD (R), and almost alp,,, are prime
ideals ofR,,. By the previous corollary and (5.3.2), the intersectig® (R)N- - -Np D (R)
equals the radical d(R), and hencei,, N - -- N pg,, is the radical ofR,, for almost alll
w. This yields the equivalence of (5.26.1)—(5.26.3). It remains to show that Wihien
arbitrary, it is formally equidimensional if and only if almost &, are equidimensional.
Using Lemma 4.17 we reduce to the case fRad complete and: is algebraically closed,
and then the claim follows from the earlier statements and (5.2.1). O

Given aringA and idealsy, . . ., a; of A, the canonical homomorphism
A— Afag x - x Afas

is an isomorphism if and only if; N --- N a; = (0) andl € a; + a; for all ¢ # j. Hence
by Theorem 5.24 and Corollary 5.26 we get:

5.27 Corollary. Suppose thaR is complete and is algebraically closed. Lety, ..., ps
be the minimal prime ideals d@?. The following statements are equivalent:

(5.27.1) the canonical homomorphisi® — R/p; x -+ x R/p, Is bijective;
(5.27.2) the canonical homomorphism

D(R) — D(R)/p1D(R) x --- x D(R)/pD(R)

is bijective;
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(5.27.3) the canonical homomorphism

Ry, — Rw/plw X X Rw/psw
is bijective for almost altv. O

5.28 Remark.The proof of Theorem 5.17 shows thabif is normalizing with respectto a
prime idealp of ﬁi(m)’ then almost all approximations pfare prime. Hence by the proof
of Theorem 5.24: i), is normalizing for all minimal primes of an ideélof ]:B(M), then
(V1) = /T, for almost allw. (This will be used ir§5.30 below.)

5.29 Remark. Suppose thad is normalizing (se€4.25). Then Theorem 5.17 above re-
mains true, with the same proof. Moreoverkifs algebraically closed and , . . . , p are

the minimal primes of?, then for almost altv, the approximationgi,, . . ., psy are the
minimal primes ofR,,, and Theorem 5.24 and Corollary 5.26 also remain true. (This will
be used in Sections 6 and 7.)

5.30. Normality. Recall that a domain is calledormalif it is integrally closed in its
fraction field. By tos’ TheorempR is a normal domain if and only if almost akt,, are
normal domains, and in this cag&eis a normal domain, by faithful flatness 8f— ©(R).

5.31 Theorem. Suppose thak is a complete normal domain with algebraically closed
residue field. Ther with underlying ringR can be chosen such that(R) = ©(A) is a
normal domain.

The proof is based on the following criterion for normality due to Grauert and Remmert
[21, pp. 220-221]; see also [37]. L& be a Noetherian domain, ad(B) be the non-
normal locus ofB3, that is, the set of all prime ideapsof B such thatB, is not normal.

5.32 Proposition. Let H be a non-zero radical ideal aB such that every € N(B)
containsH, and0 # f € H. Then

B is normal = fB=(fH :p H).

Let A be a ring and3 an A-algebra of finite type, that ig3 is of the formB = A[Y]/J
whereJ = (f1,..., fr)A[Y] is an ideal of the polynomial ringl[Y] = A[Y3,...,Y,,].
Given a tupleg = (¢1,. .., 9s) with entries in{ f1, ..., f..} we write Ag for the ideal of

A[Y] generated by all the x s-minors of thes x m-matrix gg; , with the understanding

thatA( := A. We letH 4 denote the nilradical of the ideal it[Y'] generated by and
by theAg - (gA[Y] : J), for g ranging over all tuples with entries Yy, ..., f,}. The
image inB of the idealH 3,4 does not depend on the chosen presentdtiéa A[Y]/.J of
the A-algebraB. (See [60, Property 2.13].) i is Noetherian angd 2 J a prime ideal of
A[Y], thenB, is smooth overA if and only if Hg /4 Z p. In this caseA — B, is regular
[60, Corollary 2.9]. In particular, if4 is regular, then so i#3, [40, Theorem 23.7] and,
since a regular ring is normal, the canonical imagél@f; 4 in B is then a non-zero radical
ideal which is contained in every element®{ B). Therefore Proposition 5.32 implies:

5.33 Corollary. Let B be an integral domain, of finite type over a regular ridgand let
J be a non-zero element of the canonical im&gef Hz, 4 in B. ThenB is normal if and
onlyif fB=(fH :p H). |

Proof of Theorem 5.31The desired objech has the form R, x, k, v), wherek is an ar-
bitary coefficient field ofR, whereu: R — K is an arbitrary local homomorphism, ard
is determined as follows. Choose a Noether normalizattoR [[n]] — R .y Of Rk ).
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Let] := kerf and putJ := A[X441,...,X,] NI, whered := dim R and A := K]|[d]].
Let B := A[X441,...,Xn]/J, sO thatB = E(m) asA-algebras, and lel be the image
of the idealHp, 4 of A[Xqy1,...,X,]in fz(k,u). We already remarked tha&f does not
depend on the choice ¢f By Lemma 4.23 we can choogenormalizing for all mini-
mal prime ideals of and for all idealsiR ), wherea is an ideal ofR, ;). Now put
xz; = 0(X;) fori = 1,...,nandx := (z1,...,z,). Itfollows thatf = 5/\ (hence
1= TA) for the thus constructedl, andA is absolutely normalizing.

We claim thatD(R) = ©(A) is a normal domain. By Lemma 5.21 and [40, Theo-
rem 23.9],]§(k1u) is a normal domain, and therefo@( R) is a domain, by Theorem 5.17.
With A, := K,|[[d]], Proposition 5.8 yields for almost alt an isomorphism of4,,-
algebras

Ry = By i= Ap[Xas1, ., X/ Jw
whereJ,, is an approximation of the idedlof A[X4,1,..., X,]. We claimthatp /4,
is an approximation off i, 4, for almost alkw. This implies that for almost all the canon-
ical image ofHp,_ /4, in B, is an approximation of/. Lemma 5.3 and Corollary 5.33
then show that almost al®,, are normal, as required.

To establish the claim, note that since a radical ideal[of -1, . . . , X,;] remains rad-
ical upon extension té [[n]], the ideall 5, 4 K [[n]] is the radical of the ideal

I+ Ag- (gK(n]] ke T)

whereg ranges over all tuples with entries in a fixed set of generators ahd similarly
the idealH g, /4, Kw[[n]] is the radical of

Lu+ Y Agw - (8uKulln]] k) Tw)
g

wherel,, andg,, are approximations of andg respectively. Note that the idedlg,, of
Aw[Xdt1,- .., Xn] is an approximation of the idedlg of A[X441,...,X,]. It follows
thatHp, /4, Kw[[n]] is an approximation off 5, 4 K[[n]], for aimost alkw, by Lemma 5.3,
Remark 5.28, and the choice é&fMoreover

HB/A = HB/AKHnH N A[Xd+1, ce. ,Xn]
and similarly, using the remarks preceditg10:
HBw/Am = HB“,/AWKan]] NA, [Xd+1, ceey Xn]

This yields thattiz  ,4,, is an approximation ofi 4, as claimed. O

Aring A is callednormal if A, is a normal domain for every prime ideplof A.
If A has finitely many minimal prime ideals,, ..., ps then A is normal if and only if
A= A/p; x -+ x A/ps and each domaiml/p; is normal. A local ringA is called

analytically normalif Ais normal.

5.34 Corollary. Suppose thak is analytically normal. Then the objedtwith underlying
ring R can be chosen such that(R) = ©(A) is normal and almost alR,, are normal.

Proof. As in the proof of Theorem 5.24 reduce to the case fhas complete and: is
algebraically closed. The claim now follows from Corollary 5.27 and Theorem 5.31.



44 MATTHIAS ASCHENBRENNER AND HANS SCHOUTENS

Recall that Serre’s conditiofR;) for a Noetherian ringd signifies thatA,, is regular
for all prime idealsp of A of height at most, see [40,523]. In the transfer of property
(R;), the fact that we do not know whethgy commutes with partial differentiation (see
Remark 4.31) poses a technical difficulty. We confine ourselves to showing:

5.35 Theorem. Suppose thak is equidimensional and excellent a®d R) is absolutely
normalizing. Then for each if R satisfiegR;) then so do almost alR,,,.

~

To show this note that iR is excellent, ther? satisfieR;) if and only if S := R}, .,
does (see Remark 4.18). By Corollary 5.2&ifs equidimensional an® (R) is absolutely
normalizing, then almost all approximatiol, of R are equidimensional. Note that the
R, are also approximations &f. Now apply the following lemma t®'"

5.36 Lemma. Suppose thal? € Ang, and R and almost all its approximation®,, are
equidimensional. Then for eachif R satisfiesR;) then so do almost alR,,.

Proof. Let f1,..., f» € K[[n]] be generators of the ide&l:= T, and leth be the height
of I. LetJ be the Jacobian ideal éf that is to say the ideal df'[[n]] generated by and alll

h x h-minors of the matrix with entrie8 f; /0X ;. By the Jacobian criterion for regularity
for power series rings in characteristc zero [40, Theorem 30.8], given a primepidéal
R, the localization ofR atp is regular if and only ifJR ¢ p. HenceR satisfies(R;) if
and only if JR has height at least+ 1. SinceR is equidimensional, this is equivalent
with J having height at least+ i + 1, and hence witli[[»]]/J having dimension at most
n—(h+i+1). By (5.2.1) thisis in turn is equivalent withm K, [[n]]/J, < n—(h+i+1)

for almost allw, whereJ,, is an approximation off. Now for everyw let .J,, be the
Jacobian ideal of,,. By Remark 4.31 and Lemma 5.15 we hatien K, [[n]]/J,, <
dim K, [[n]]/J., for almost alkw. Hence ifR satisfieg R, ), then almost all/,, have height

> h + i+ 1 and thus, since almost alt,, are equidimensional, almost aTIwa have
height> 7 4+ 1. Hence by the Jacobian criterion for regularity for power series rings over
the algebraically closed fields',, of positive characteristic [40, Theorem 30.10], almost
all R, satisfy(R). O

5.37. Affine approximations and localization. One of the main drawbacks of the present
theory is the fact that there is no a priori way to compare&®hextension of a local ring
with the®-extension of one of its localizations. For example, supposeRhatcomplete
andk algebraically closed, and Igtbe a prime ideal of. From Theorem 5.17, we know
that we can choos®(R) such thatp®(R) is a prime ideal, and the®(R),»(r) is @
faithfully flat extension ofk,. However, it is not clear how this compares with a Lefschetz
extensiorn® (R, ) of R,: there is no obvious homomorphism frad(R) to D (R, ), since

the homomorphisnk — R, is not local. (This problem is already apparent in the simplest
possible situation tha® = k[[n]] with n > 1, andp is generated by a single variable.)

We have to take these considerations into account when comparing the affine approxi-
mations defined in [55] with the present version of approximations. Therefore, we restrict
our attention to the case thAt= C, is a localization of a finitely generatédalgebraC' at
a maximal ideai. Herek is a Lefschetz field, realized as an ultraproduct of algebraically
closed subfields,, of K, with respect to the same ultraset as usedfolMe consider:
as a subfield of{ in the natural way. Suppose = k[n|/I wherel is an ideal oft[n]. As
explained in the introduction, the non-standard hulCas

Coo = E[n]oo/TE[n]oc
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wherek[n|., is the ultraproduct of thé,[n]. By [55, Corollary 4.2], the ideahC, is
again prime and by definition [554.3], the non-standard hull @ is then

Ry = (Coo)mCoc-

If C" = k[n']/I' is anotherk-algebra andn’ a maximal ideal o’ such thatr’ := CY,
is isomorphic toR as k-algebras, therR,, = (R') as Lefschetz rings [554.3]. In
particular, since: is algebraically closed we can make a translation and assume that
(X1,...,Xn)k[n]. The embedding:[n].. C k[[n]]o factors through(k[n]oc ) mufn] . »
where we denote the ultraproduct of thg[[n]] by k[[n]]. Composing with the nat-
ural embedding:[[n]]oc € K[[n]]~ followed by the diagonal embedding[[n]].. —
K[[n]]%, = D(n) yields ak[n]-algebra homomorphism

(k[n]bo>mk-[n]oo - @(n)
Taking reduction moduld gives a homomorphism®., — ©(R) making

R

R%’D(R)

R

commutative, wherd? — R, is the canonical embedding. LB;ff be approximations

of R in the affine sense, that is to sayranges over the set of prime numbers and the
ultraproduct of theR?" is equal toR... Recall that for almost ajp, we can obtainza"

as the localization ok, [n]/I3" at the prime ideam3", where73" andma" are respective
approximations off andm in the sense of [55]. Lep(w) := char K., SOkp(,) is @
subfield of K, for eachw. Let R,, be the completion oR;f(fw) ®k, (., Kw at the ideal
generated by th&;. Hence there is a canonical mﬁ’@f(fw) — R, and this is faithfully
flat. Alternatively, with the notation frorf4.16, we have that

—

Rw = (Raﬁ )(k)p(w),uw)

p(w)

whereu,: R, — K, is the composition of the residue ma{,, — k() with

the inclusionk,,,,, € K. It follows that the ultraproduct of th&,, is equal toD(R),
showing that theR,, are approximations oR in the present sense. MoreoverciE R,

then approximations,, of cin the present sense are obtained by taking approximatg'ins

of c in the sense of [55] and setting, := cg‘sz) (as an element aR,,,). Put succinctly, an
approximation ofR is obtained by the process of taking an approximatioR of the sense

of [55], extending scalars and completing. We use this below to compare results between
the affine and the complete case.

5.38 Proposition. With the notations just introduced, the homomorphBm — D(R)
is pure, and it is flat ifR has dimension at mo&t

M can be regarded as a submodulé\gfand every finite system of linear equations with
constants inM/ which admits a solution iV admits a solution im/. For a moduleM
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over aringA let u(M) € NU {co} be the least number of elements in a generating set for
M, and put

pra(m) = sup{p(ker ¢) : o € Homy(A™, A)} € NU {oo} for all m.

The ring A is calleduniformly coherenif pa(m) < oo for all m. If A is a finitely
generated algebra over a field théns uniformly coherent if and only iflim A < 2, and
in this caseua(m) < m + 2 for all m. (See [20, Corollary 6.1.21].)

5.39 Lemma. For eachv in an ultrasetV , letC, — D, be a flat homomorphism, with
eachC, a two-dimensional algebra over a field, anddet, — D, be their ultraproduct.
If D, — D* is any elementary map, then the compositiony — D, — D* is flat.

Proof. We have to show that for every linear forlne C[Y] whereY = (Y1,...,Y,,),
the solution set of. = 0in (D*)™ is generated by the solution setbf= 0in (C)™.
Let L, be an approximation of. For eachv, there existn + 2 tuplesa,, ..., amy2,v
with entries inC,, which generate the solution set bf = 0 in (C,)™, by uniform co-
herence. These same tuples generate the solution det ef 0 in (D,)™, by flatness.
The ultraproduct® o, . . ., am 12,00 Of thesem + 2 tuples are then solutions @ = 0
and generate the solution setlof= 0 in (D)™, by tos’ Theorem. Sinc®,, — D* is
elementary, the, ., also generate the solution setlof= 0 in (D*)™, as required. O

Proof of Proposition 5.38 We keep the notation from above. The inclusions
(5.39.1) R — K [[n]] /13" Ky [[n]

are faithfully flat and hence pure. Their ultraprodiity, — K[[n]]e/IK[[n]]s is also
pure. The diagonal embedding

(6392)  Klnlloo/IK (]l — (K[[n]loc/TK[[n]loc)" = D(R)
is pure, hence so is the composition
(5.39.3) Ry — D(R).

Assume next thaR? has dimension at mo& We may choose a finitely generatéd
algebraC such thatk = C,, with C' of dimension at mos2. It suffices to show that the
compositionCs, — Re — D(R) is flat. Almost allC2™ have dimension at mogtby
[55, Theorem 4.5]. Since (5.39.2) is elementary, and siifffe— R2" and (5.39.1) are
flat, Lemma 5.39 yields that (5.39.3) is flat, as required. |

We do not know in general wheth&,, — ©(R) is flat (and hence faithfully flat).

5.40. The non-local case.Let A D Q be a Noetherian ring of cardinality at most the
cardinality of K. Let Max A be the set of all maximal ideals of, and for everyn €
Max A choose a faithfully flat Lefschetz extensign, : A, — ©(A4,) of the Noetherian
local ring A, of equicharacteristic zero. The product of the, yields a faithfully flat
embedding

(5.40.1) A=A = ] 24w
neMax A
In general,A* is not a Lefschetz ring, but it is so # is semi-local. Thus:

5.41 Proposition. Every semi-local Noetherian ring containifadmits a faithfully flat
Lefschetz extension. O



LEFSCHETZ EXTENSIONS, TIGHT CLOSURE, AND BIG COHEN-MACAULAY ALGEBRAS a7

For arbitraryA, in spite of the fact thatl* is not Lefschetz, it still admits a non-standard
Frobenius, so that the constructions in the next two sections can be generalized to the non-
local case as well; s€g.17 for a further discussion.

Part 2. Applications

The standing assumption for the rest of this paper is(tRatn) is an equicharacteristic
zero Noetherian local ring anH is an algebraically closed Lefschetz field with respect
to an ultraset whose underlying set is the set of all prime numbers, whose approximations
K, are algebraically closed fields of characterigtias in Section 5). We také& of
uncountable cardinality, as large as necessary. (Most of the|fithe- 2! will suffice.)

We fix a Lefschetz extensio®(R) of R as defined in Part 1, and we IeR,,, m,,) be

the corresponding approximation & In other words, we fix som& = (R, x, k,u) in
CohJ; with underlying ringR and put®(R) := ©(A). Where necessary, we'll make
some additional assumptions an(for instance so thaD(R) is absolutely normalizing;
see§d.22). Ifa: R — S'is a local homomorphism, then we choose an oljject Coh},

so thata induces a morphismk — T, and hence a local hon®@(«a): D(R) — D(S).

In the sequel, we often will use a subscriptto indicate a choice of approximation of

a certain object without explicitly mentioning this. For instan&g, will stand for some
approximation ofS, etc. We now discuss non-standard tight closure and big Cohen-Mac-
aulay algebras, and indicate several applications of these notions.

6. NON-STANDARD TIGHT CLOSURE

Every Lefschetz ring comes with a canonical endomorphism obtained by taking the
ultraproduct of the Frobenii on each component: Het: R, — R, be the Frobenius
x — 2P on R, wherep(w) denotes the characteristic &, and letF,, be the
ultraproduct of thé,,,, that is to say,

Foo: D(R) — D(R): ulima, — ulimFy(ay).

We call F, the non-standard Frobeniusn ©(R). More generally, for eaclw let [,,
be a positive integer and lét, be its ultraproduct in the ultrapow&@”V of Z. We let
F denote the ultraproduct of tHel’, and call it anultra-Frobeniuson D(R). In this
paper, we are only concerned with the (powers of the) non-standard Froliepjuer an
application of ultra-Frobenii, see [58]. Note thatif R — S is a local homomorphism,
then for eachi.,, we have a commutative diagram

Fl Fl
o D(a)
(R) — "~ 9(s).

Given an ideah of R, we useF . (a)D(R) to denote the ideal i®(R) generated by all
F.(a) with ¢ € a (and a similar notation for powers @f.,). Note that in generalF .
does not leave the subrirginvariant. In fact, we have an inclusion

(6.0.1) Foo(m)®(R) C Inf(D(R)).
It follows thatF . (m)®D(R) N R = (0), by the faithful flatness oR — D (R).
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Below we often make use of the important fact (easily checked using £os’ Theorem and
[40, Theorem 16.1]) that the image ofty R)-regular sequence i®(R) underF ., and
hence under each of its powerg, is ©(R)-regular. In particular, by Lemma 5.4, the
image undeF" of any R-regular sequence iR is © (R)-regular.

6.1. Non-standard tight closure. Let a be an ideal ofR. We say that: € R belongs
to thenon-standard tight closuref a if there existsc € R not contained in any minimal
prime of R such that

(6.1.1) cF7(z) € F™ (a)D(R),

for all sufficiently bigm. We denote the non-standard tight closure of an idésf cl(a).
A priori, this notion depends on the choice ®{R), that is to say, on the choice of.
If we want to make this dependence explicit, we writg(a). It is an interesting (and
probably difficult) question to determine whether different choiced a@jive rise to the
same closure operation. Here we take a pragmatic approach: we are primarily interested
in using non-standard tight closure to prove statements (a@pwhich do not mention it,
and for this, we are free to choodeto suit our needs.

The next proposition shows theil - ) shares some basic properties with characteristic
p tight closure. We denote the set of all elements of a Ainghich are not contained in a
minimal prime ofA by A° (a multiplicatively closed subset of).

6.2 Proposition. Leta andb be ideals ofR. Then the following hold:

(6.2.1) cl(a) is an ideal ofR anda C b implies thatcl(a) C cl(b);

(6.2.2) there exists: € R° such thatc F2 (cl(a))®(R) C F2 (a)D(R) for all suffi-
ciently largem;

(6.2.3) a C cl(a) = cl(cl(a));

(6.2.4) cl(anb) C cl(a) Ncl(b), cl(a + b) = cl(cl(a) + cl(b)), and cl(ab) =
cl(cl(a) cl(b));

(6.2.5) if R is reduced and the residue classzo€ R liesincly /, (a(R/p)) for each
minimal primep of R, thenz € cla(a).

Proof. The proofs of the first four properties are as in the case of tight closure in positive
characteristic. Suppose thitis reduced. Lep, ..., ps be all the minimal prime ideals of

R, and for eacly choose an elemeat inside all minimal primes except;. In particular,

¢;p; = 0. By assumption, for eachthere exists an elemed} ¢ p; such that

d; ¥ (2) € FL(a)D(R/p;),
for all largem. By the discussion i§4.28, this means that
(6.2.1) d;F7(2) € F2 () (R) + p;D(R),

for all largem. Putc := ¢1d; + - - - + ¢sds; note thatc does not lie in any minimal prime
of R. Multiplying (6.2.1) with¢; and taking the sum over al| we get thatFZ (z) lies in
F7 (a), for all largem, showing that € cl(a). O

Next we derive versions of some other well-known results about tight closure in prime
characteristic. We say that an ideal ®fis non-standard tightly closed it is equal to its
non-standard tight closure.

6.3 Theorem. If R is regular, then every ideal d® is non-standard tightly closed.
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Proof. The image undeFZ! of any regular system of parameters®fis © (R)-regular,
and by tos’ Theorem and [12, Proposition 1.1.6] every permutation ®f R)-regular
sequence i (R) is ©(R)-regular. Hence th&-algebra structure o® (R) given by
(6.3.1) R—®(R): a— F(a)
is that of a balanced big Cohen-Macaulay algebra. SRigeregular, this implies that the
homomorphism (6.3.1) is flat. (See the remarks preceding the proof of Proposition 4.7.)
Suppose towards a contradiction thdtes in the non-standard tight closure of an ideal
in R but not ina. For some non-zero € R, we have relations (6.1.1) fon sufficiently
large. Thus

c€ (FLL()D(R) :or) Fit(2)) = Fi(a:r 2)D(R)
where we used flatness of (6.3.1) for the last equality. Singex, the colon ideala : i 2)
is contained imm. Therefore¢ is zero by (6.0.1), contradiction. O

6.4. Remark.For this argument to work, it suffices that (6.1.1) only holds/for= 1; the
ensuing notion is the analogue of what was called-standard closura [55].

In the next result, we require thdt is a homomorphic image of a Cohen-Macaulay
local ring S, sayR = S/I. In order to get a induced map on the Lefschetz hulls, we tacitly
assume thad is equal to a quotierif /I for some objecl in Coh}, whose underlying
ring is S (see§4.28).

6.5. Theorem (Colon Capturing) Suppose thaR is a homomorpic image of a Cohen-
Macaulay local ring and that? is equidimensional. 1 = (z1,...,z4) is a system of
parameters of?, then for each = 1, ..., d, we have an inclusion

((Zl, ey Zifl)R ‘R Zz) Q Cl((Zh ey Zifl)R).

Proof. Write R = S/I with S a Cohen-Macaulay local ring and considealready as a

tuple inS. Supposd has height. By prime avoidance, we can find, ..., y. € I, such

that for eachi, the idealJ + (z1,..., z)S has height + i, whereJ := (y1,...,9.)S.

In particular, (y1, ..., Ye, 21, - - ., 24) IS @ System of parameters # whenceS-regular.

By the Unmixedness Theorem (see for instance [40, Theorem 17.6]), thejides no
embedded associated primes. We can now use the same argument as in the proof of [55,
Theorem 8.1], to gat € S not contained in any minimal prime dfand N € N such that

(6.5.1) eIV C .

Leta € S be such that its image iR lies in ((z1,...,2z-1)R : ), and hencez; lies in
I+ (z,...,2-1)S. For afixedm, applyingF7 yields

F2 (a)F2%(z) € FZ(DD(S) + (FL(21), ..., FL(2i-1))D(9).
Multiplying this with ¢ and using thaF .. (1)D(S) C IVD(S), we get from (6.5.1) that
F2(a)FL (2) € JD(S) + (FZ(21), ..., F2(2i-1))D(S).

By the remark befor§6.1, the sequence
(1o ye Fra(a), .o Fii(20))
is®(S)-regular, so that the previous equation can be simplified to
cF(a) € JD(S) + (FL(21),..., F(2-1))D(S).

By our choice ofA we have® (R) = ©(S)/ID(S). Taking the reduction modulf® (.5)
we get equations exhibiting as an element of the non-standard tight closure of the ideal
(#1,...,2-1)R. (Note that the image aflies in R°.) O
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6.6. Remark.Every complete Noetherian local rirfgis a homomorphic image of a Coh-
en-Macaulay (in fact, regular) local ring by Cohen’s Structure Theorem, hence Colon Cap-
turing holds forR. If we were able to prove that

(6.6.1) cl(a) = cl(aR) N R,

for every ideak in R, then we get Colon Capturing for every equidimensional and univer-
sally catenary Noetherian local ring. Note that the inclusio in (6.6.1) is immediate.
On the other hand, even for tight closure in characteristithe other inclusion is still
open. Below (see Lemma 6.27), we prove Colon Capturing for complete reduegith
algebraically closed residue field.

Using the previous theorem, we get a direct proof of the celebrated Hochster-Roberts
Theorem [32]. A ring homomorphistd — B is calledcyclically pureif a = aB N A,
that is to say, ifA/a — B/aB is injective, for every ideah of A. A cyclically pure
homomorphismA — B between local ringsl and B is automatically local. Moreover:

6.7. Lemma. Let A and B be Noetherian local rings with respective completi(ﬁmnd
B. The completio — B of a cyclically pure homomorphisth — B is cyclically pure.

Proof. The homomorphisnB — Bis faithfully flat, hence cyclically pure; thus the com-
positionA — B — Bis cyclically pure. So from now on we may suppose tBat B.

It suffices to show thatl — B is injective, since the completion of/a is equal toA/aA
for any ideala in A. Leta € A be such that, = 0 in B, and for each choosen; € A
such thatz = a; mod plﬁ, wherep is the maximal ideal ofd. Thena, lies inp’B, hence
by cyclical purity, inp?. Thereforea ¢ plﬁfor all 4, showing thatz = 0 in A by Krull's
Intersection Theorem. O

6.8 Theorem(Hochster-Roberts)If there exists a cyclically pure homomorphigtn— S
into a regular local ringS, thenR is Cohen-Macaulay.

Proof. By Lemma 6.7 we reduce to the case tRaand S are complete. Letzy, ..., zq)
be a system of parameters i1 We need to show thdk., ..., z;) is R-regular. To this
end assume that

az; € a:= (2’1, ceey Zifl)R,

for somei and somer € R. SinceR is a complete domain, we can apply Theorem 6.5,
to get thata € cly(a), for a suitable choice oA with underlying ringR. So for some

¢ # 0in R we have relations (6.1.1) for all sufficiently large. Now R — S induces

a homomorphisn®(R) — ©(S). Applying this homomorphism to (6.1.1) we get that
a lies incl(aS). (Note thatc remains non-zero it$ sinceR — S is injective.) Hence

a € aS N R = a by Theorem 6.3 and cyclic purity. a

6.9. Remark.We say thafk is weakly non-standard F-regulafevery ideal is non-standard
tightly closed, for every choice of with underlying ringR. The argument in the proof
above actually gives two independent results. Firstly,if weakly non-standard F-regular,
then S is Cohen-Macaulay. Secondly, 8 — S is cyclically pure ands is weakly non-
standard F-regular, then sois

For some more proofs of this theorem, see Remarks 6.28 and 7.5 below. By the argu-
ment in the beginning of the proof of [30, (2.3)], the theorem implies the following global
version; for further discussion, see Conjecture A in the next section.
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6.1Q Corollary. If A — B is a pure homomorphism of Noetherian rings containihg
and if B is regular, thenA is Cohen-Macaulay. O

Theintegral closureof an ideal.J C S of a ring S will be denoted byJ. It is the set of
all z € S which areintegral overJ, that is, which satisfy a relation

(6.10.1) 24 a12¥ 4 ag_1z+ag =0

with a; € J for eachi. See [12§10.2] for a proof that/ is an ideal ofS, and other basic
properties of/. The following is a useful characterization of integral closure:

6.11 Lemma. Let.S be a Noetherian local ring and an ideal ofS. An element € S'is
integral overJ if and only ifz € JV for every local homomorphisisi — V' to a discrete
valuation ringV whose kernel is a minimal prime 6f

See [34, Lemma 3.4] for the proof in the case whe&ris a domain; the general case
easily reduces to this one; see for instance [26, Lemma 3.2].
Before we state the next property of tight closure, we make a general remark:

6.12 Lemma. LetJ be an ideal of a ringS and suppose that € S satisfies an integral
relation (6.10.1) ThenJ¢~ 12N ¢ JN forall N € N.

Proof. We claim thatz4+* ¢ J*+! for all £ € N. We show this by induction oh, the
casek = 0 being trivial. For the inductive step note that by (6.10.1) we have

LR (g pdtR k1),

-1
a1z ---+ak+1zd—|—ak+gzd + -4 agz

Sincea;z¢tF+H1-1 ¢ Jk+2fori = 1,...,k + 1 (by the inductive hypothesis) and <
JEC JH2fori = k +2,...,d, we get that?t++1 ¢ J¥+2 as required. Now clearly
J=1N C JNif N < d, and by the claim we get

Jd*lZN — Jd*lZdJrk C Jd*le‘Jrl — JN
forall N > d, wherek := N — d. O

6.13 Theorem(Briangon-Skoda) For every ideak of R we havecl(a) C a. Moreover, if
a has positive height and is generated by at mastlements, then the integral closure of
a™ is contained ircl(a).

Proof. Let z € cl(a); so we have a relation (6.1.1) for soae= R° and all sufficiently
largem. In order to prove that € @, we apply Lemma 6.11. L&t be a discrete val-
uation ring and letR — V be a local homomorphism with kernel a minimal prime of
R. This induces a homomorphis®(R) — ©(V'), and applying this homomorphism to
the relations (6.1.1) shows thate cl(aV’). (Note that by assumption# 0 in V.) By
Theorem 6.3, the latter ideal is just’, and we are done.

Suppose now that has positive height and is generated$yn elements, and let lie
in the integral closure of”*. Thenz satisfies a relation

R

+-+ag=0

with a; € a’™. By Los’ Theorem, we have for almost all an integral relation
2 tarzd T b g, =0

with a;,, € ai™ for all i. For thosew, we get for allV that

@ ¢



52 MATTHIAS ASCHENBRENNER AND HANS SCHOUTENS

by Lemma 6.12. FolV equal to thdth power of the characteristic @t,, we getaY™ C
F!,(a,)R., sincea, is generated by at most elements by £os’ Theorem. Hence taking
ultraproducts, we get

a™@=DEL (2) C F_(a)D(R).
Since this holds for all and since we assumed thahas positive height (hencg® N
a™@=1) £ (), we get that € cl(a). O

6.14 Remark. The same argument together with [35, Remark 5.8.2] proves under the
hypothesis of the theorem that the integral closure’®f’ lies in the non-standard tight
closure ofa'*!, for all 1.

6.15 Remark.It follows thatcl(a) = @ for each principal ideat in R. Hence a domait®

is normal if and only if every principal ideal is equal to its non-standard tight closure. In
particular, using Remark 6.9, we see that a cyclically pure subring of a regular local ring
(and more generally, a weakly non-standard F-regular local ring) is normal.

We immediately obtain the following classical version of the Briangcon-Skoda Theorem
from [38]. (For the ring of convergent power series o{ethis was first proved in [11];
see [35855] or [54] for some more background.)

6.16 Theorem (Briangcon-Skoda for regular rings)f A is a regular ring containingQ
and a an ideal of A generated by at most. elements, then the integral closure ©f

is contained ina. In particular, if f is a formal power series im variables over a field
of characteristic zero withf(0) = 0, then f™ lies in the ideal generated by the partial
derivatives off.

Proof. Since this is a local property, we may assume thé local. By Theorem 6.13, the
integral closure ofi™ is contained ircl(a), hence ina, by Theorem 6.3. It is an exercise
on the chain rule to show, using Lemma 6.11, thées in the integral closure of the ideall
J generated by the partials ¢f (See [35, Exercise 5.1].) Hengé lies inJ™ C J by our
first assertion. O

6.17. Tight closure—non-local case.Although of minor use, one can extend the notion
of non-standard tight closure to an arbitrary NoethefjaalgebraA as follows. For every
maximal ideat of A choose a Lefschetz huld(A,) of the equicharacteristic zero Noe-
therian local ringA.,, and writecl,, for the ensuing notion of non-standard tight closure for
ideals ofA,,. We define theon-standard tight closuref an ideala of A as the intersection

cl(a) := ﬂ cla(ady) N A.
neMax A
We invite the reader to check that this is indeed a closure operation, admitting similar
properties as in the local case: for instance, the analogues of Theorems 6.3 and 6.13 hold.
If A* is the product of all®(A,) as in (5.40.1), then each of its factors admits the action
of a non-standard Frobenius. Let us denote the product of these Frobenii adgain bye
can now define directly a tight closure operation on ideal$ by mimicking the definition
in the local case, that is to say:c A belongs to the ‘global’ non-standard tight closure of
an ideala if there is some: € A° such thatF7 (=) € FZ (a)A*, for all sufficiently large
m. Itisimmediate that an element in the ‘global’ non-standard tight closurdefongs to
cl(a) as defined above. In cagés semi-local, the converse also holds, but this is no longer
clear for arbitraryA, for we do not have yet an appropriate notion of uniform test elements
for non-standard tight closure (see also Proposition 6.24 below). This is presumably not
an easy problem, and we will not further investigate it here.
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6.18. Comparison with affine non-standard tight closure. We confine ourselves to the
geometric case, that is, whefeis the local ring at a closed point on a scheme of finite
type over an algebraically closed Lefschetz field K as in§5.37. In such a ring, non-
standard tight closure was defined in [55] in a similar fashion, using the non-standard hull
R instead of©(R). More precisely, an elementc R lies in the (affine) non-standard
tight closure of an ideal of R if there exists: € R° such that

(6.18.1) cF2(z) e Fl(a)Roo

for all sufficiently largem, where we also writ®', for the non-standard Frobenius on the
Lefschetz ringR,. As discussed i§5.37, we have a natural embeddiRg, — D(R),

and this is compatible with the non-standard Frobenii defined on each ring. In particular,
taking the image of the relations (6.18.1) via this homomorphism shows thatl(a) in

the present sense. Conversely, suppose there exisf?° such that (6.1.1) holds i®(R)

for all sufficiently largem. By tos’ Theorem, for those: we have that

(6.18.2) cw F(24) € F(ay) Ry

wherec,, 2z, a,, and R,, are approximations of, z, a and R respectively. By our
discussion ir§5.37, we can realize these approximations as follows2"f 22", o™ and
Rgﬁ are approximations af, z, a and R in the sense of [55], then we may takg, to be

the completion oRgf(fw) ®kep(y K w @Ney, 2,y anda,, the corresponding image of(fw),

221, anda2{ i this completion. (Recall that(w) = char K.,.) Therefore, by faithful

flatness, relation (6.18.2) already holds in the subm;gu), for almost allw, hence for
almost all characteristics. Taking ultraproducts of this relation in almosﬂfllyields
(6.18.1), and since this is true for any sufficiently large choicepfve showed that lies

in the non-standard tight closure @in the sense of [55]. In conclusion, we showed that
for localizations of finitely generateki-algebras at maximal ideals, both notions of tight
closure coincide.

6.19. Generic tight closure. We finish this section with studying a related closure oper-
ation, which also played an important role in the affine case.alle an ideal ofR. We
say that an element € R lies in thegeneric tight closuref a if z,, lies in the (positive
characteristic) tight closure af, for almost allw. We denote the generic tight closure of
a by cl*(a). Again, this depends on the choice/ofwvith underlying ringR; if we want to
stress this dependence, we wiitg (a). From [35, Appendix 1] recall Hochster-Huneke’s
notion of tight closure in equicharacteristicHere and below, given a ring and a prime
pwe letS(p) := S ®zF,, and for an ideal of S we letI(p) be the image of in S(p)
under the map — z(p) :=2®1: S — S(p).

6.20 Definition. An elementz of R is in the gquationa) tight closurea* of a if there
exists a finitely generated subrisgof R with z € .S such that(p) is in the (characteristic
p) tight closure of(a N S)(p) in S(p), for all but finitely many primep.

Lety = (y1,-..,ym) € R™, and letJ be the kernel of the ring homomorphism
ZlY=Z[Y1,...,Yn] = R

given byY; — y; for all j. We get an induced embeddi@g}]/J — R, and we identify
Z[Y')/J with its image, the subring of R generated by. Given a primep we then have

S(p) =S @z F, =F,[Y]/J(p)
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where J(p) is the image ofJ under the canonical surjectidf]Y] — F,[Y]. We let
S~ denote the ultraproduct of th€(p) with respect to the same ultraset that buifds
(and whose underlying set is the set of prime numbers). The canonical$napsS(p)
combine to give a ring homomorphisth— S.,. Composing with the diagonal embedding
S, — SY, wherel/ is the ultraset constructed §, we obtain ars-algebra structure on
SY . We also get as-algebra structure o (R) via the restriction ofj to S.

6.21 Lemma. There exists a-algebra homomorphism: S% — D(R).

Proof. For everyw let S,, be the subring of?,, generated by the approximatiops, =
(Y1w, - - -»Ymw) Of y, and letS,, be the ultraproduct of thé&,,. If P(Y) € J, so
P(y) = 0, thenP(y,,) = 0 for almost allw. Therefore, since is finitely generated,
we have for almost allv a surjectionS (p(w)) — S, with y;(p(w)) — y;,, for all 5.

Let ¢ S(p(w)) — R, denote the composition of this surjection with the embedding
S, € R, and lety be the ultraproduct of the,,. One easily checks that is an .S-
algebra homomorphisis?, — D(R). O

6.22 Remark. This means in particular that for eveeyc S, the z,, := pu (z(p(w)))
are an approximation of. Indeed,z = (z) is by construction the ultraproduct of the

Pw(2(p(w))).

6.23 Corollary. For every ideak of R, we havar* C cl*(a).

Proof. Letz € a*, and choos& = Z[y|, wherey = (y1,...,yn) € R™, which contains
z and such that(p) is in the tight closure ofa N S)(p) in S(p), for all but finitely many
p. Thenz(p(w)) is in the tight closure of ,, := (a N S)(p(w)) in S(p(w)), for almost
all w. By [35, Theorem 2.3], almost each, := ¢, (z(p(w))) is in the tight closure of
ow(lw)Ry. By Remark 6.22, the,, and they,,(I,,)R,, are approximations of and
(a N S)R respectively. In particular, if,, is an approximation of, then almost each,,
lies in the tight closure of,,,, showing that € cl*(a). O

The relation between generic tight closure and non-standard tight closure is more subtle.
We need a result on test elements. (See [35, Chapter 2] for the notion of test element.)

6.24 Proposition. Suppose tha®(R) is normalizing andR is absolutely analytically
irreducible. There exists an element Bfalmost all of whose approximations are test
elements.

Proof. The assumption oM (R) implies that the homomorphisffy, := k*[[d]] — R
given by X, — z; is a Noether Normalization, wherke:= dim R andk* is the algebraic
closure ofk in R (whence a coefficient field cﬁ). Moreover, this homomorphism induces
(by extension of scalars) the restrictiorgaf: K[[n]] — E(k,u) toT := K|[d]] (see§4.22).
Let ¢ be a non-zero element in thelative Jacobian/ . . (Recall that/p . is the0-

th Fitting ideal of the relative module ofé&hler differentialsﬂﬁ/To.) By Remark 5.29,
almost eaclR,, is a domain, and by Proposition 4.27, almost eRghis a finite extension
of T, of degreee. In particular, for almost allv, the field of fractions oR?,, is separably
algebraic over the field of fractions @f,,. SinceJE/T0 C Jﬁ(m)/T, almost eacle,, is a

non-zero element of; 7, , hence a test element fé,, by [35, Exercise 2.9]. |

w

6.25 Remark.From this we can also derive the same resultRanalytically unramified
with & algebraically closed an®(R) normalizing. Namely, lepy, ..., ps be the minimal
prime ideals ofR. By Remark 5.29 the approximatiops,,, . .., ps, are the minimal
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prime ideals ofR,,, for almost allw, and almost alR,, are reduced. For eagh choose

t; € R inside all minimal prime ideals excepi. By Proposition 6.24, there exists
E\pj whose approximation is a test element for almosEall/p,.,. Using tos’ Theorem,
one shows that := ¢t + - - - + csts has the desired properties. (See for instance [35,
Exercise 2.10] for more details.)

6.26 Theorem. Suppose thaR is complete andD(R) is normalizing. IfR is either
absolutely analytically irreducible or otherwise reduced withlgebraically closed, then
cl*(a) C cl(a) for every ideak of R.

Proof. Let z € cl*(a), that is, z, is in the tight closure ofi, for almost allw. By
either Proposition 6.24 or the remark following it, there exists an elementR? whose
approximatiore,, is a test element i®,,,, for almost alkw. Hence for almosty and for all
m:

CwFZ}(zw) S F:,T}(aw)Rw-

Taking ultraproducts, we get for alt that
cF2(2) e FZ(a)D(R)
showing that € cl(a). O

For the Hochster-Huneke notion of tight closure in equicharacteristic zero, Colon Cap-
turing is only known to be true in locally excellent rings. Since Colon Capturing holds for
every complete Noetherian local ring of positive characteristic, hence for every approxi-
mation of R, Los’ Theorem in conjunction with Lemma 5.4 immediately yields:

6.27. Lemma (Colon Capturing for generic tight closurelf (z,..., z4) is a system of
parameters of?, then

((217 .. %zi—1)R R ZL) C Cl*((zl, PN Zi—l)R)
foreachi =1,...,d. O

In particular, combining this lemma with Theorem 6.26 yields Colon Capturing for non-
standard tight closure in cageis reduced and complete, with algebraically clogezhd
D(R) normalizing.

6.28 Remark. It follows from Theorem 5.2 that every ideal in an equicharacteristic zero
regular local ring is equal to its generic tight closure. Together with Lemma 6.27, we get
an even easier proof of the Hochster-Roberts Theorem (including the global version of
Corollary 6.10), usingl* in place ofcl.

7. BALANCED B1G COHEN-MACAULAY ALGEBRAS

Recall that ank-algebraB is called abalanced big Cohen-Macauldy-algebra if any
system of parameters @t is a B-regular sequence. (If we only know this for a single
system of parameters, we cdl a big Cohen-MacaulayR-algebra) The key result on
big Cohen-Macaulay algebras was proved by Hochster-Huneke in [29]isifan excel-
lent local domain of prime characterisi¢ then its absolute integral closufg” is a bal-
anced big Cohen-Macaulay algebra. (Incidentally, this is false in equicharacteristic zero if
dim S > 3, see [29].) Theabsolute integral closurei™ of a domainA is defined to be
the integral closure oft in an algebraic closure of its field of fractions. (We put := 0
if Ais nota domain.) In [57], this is used to give a canonical construction of a balanced
big Cohen-Macaulay algebra for a local domairessentially of finite type ovet, by
taking the ultraproduct of th&;F, whereS,, is an approximation of' in the sense of [55].
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The S, are local domains, for almost al| by [55, Corollary 4.2], so that the construction
makes sense. In view of the restrictions imposed by Theorem 5.17, we cannot directly
generalize this to arbitrary domains. We first consider the caséxfyay is a domain, or
equivalently, that almost all approximatiofs, of R are domains. This is the casefifis
absolutely irreducible and is absolutely normalizing or normalizing (by Theorem 5.17
and Remark 5.29, respectively), but als@ifs a DVR (by Corollary 5.5).

7.1 Definition.
B(A) := ulim R.
We often write’B(R) for B(A), keeping in mind tha#3(R) depends on the choice af

The canonical homomorphisng: R — ©(R) induces a homomorphis — B(R),
turningB(R) into an R-algebra. (Note that this is no longer an integral extension.) Since
the R,, are complete (hence Henselian), fg are local, whence so B(R). Moreover,
the canonical homomorphisi — B(R) is local.

7.2 Theorem. The R-algebra®B(R) is a balanced big Cohen-Macaulay algebra. If
a: A — T'is a morphism inCoh7} with underlying ring homomorphisiR — S, where
D(T") is a domain, then there exists(aon-uniqug¢ homomorphisna: B(R) — B(S)
giving rise to a commutative diagram

R

S
(7.2.1) l
B(S).

B(R) —

Moreover, ifa is finite, injective, and induces an isomorphism on the residue fields, then
B(R) = B(9).

Proof. Let z be a system of parameters R with approximations,,. By Lemma 5.4
almost eactz,, is a system of parameters i, hence isR} -regular by [29]. By tos’
Theorem,z is B(R)-regular. From the homomorphis®(«): D(R) — D(S) we get
homomorphismsz,, — S,, for almost allw, wheresS.,, is an approximation of. These
extend (non-uniquely) to homomorphismyg, — S. whose ultraproduct is the required

a. If «is finite, injective, and induces an isomorphism on the residue fields, then almost
all R, — S, are finite and injective by Proposition 4.27, and heRgge= S;. The last

assertion is now clear. O

7.3 Remark.Incidentally, the argument at the end of the proof shows that there is essen-
tially only one ring in each dimensiahplaying the role of a big Cohen-Macaulay algebra:
Indeed, suppose that the restrictiondafto K[[d]] is a Noether normalization of‘E(k,u),
whered = dim R. (This is satisfied, for example, if is absolutely normalizing.) Then
B(R) is isomorphic (non-canonically) 8 (K |[d]]).

7.4. Corollary. If R is regular, then theR-algebra®B(R) is faithfully flat.

Proof. We already mentioned that a balanced big Cohen-Macaulay algebra over a regular
local ring is automatically flat; see the remarks before Lemma 4.8. Sinee B(R) is
local, it is therefore faithfully flat. O
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7.5. Remark. This gives us a second direct proof of the Hochster-Roberts Theorem (The-
orem 6.8): with notation from the theorem, we may reduce again to the casg trad

S are complete and that has algebraically closed residue field. Supp@se. .., zq) is

a system of parameters i and letaz; € a := (z1,...,%-1)R. Since(zy,...,z4) is
B(R)-regular by Theorem 7.2, we gete a®B(R). Choose absolutely normalizing ob-
jects A andT" of Coh}, with underlying ringsk and S, respectively, such tha8 — S
becomes arCoh’,-morphism, hence induces a homomorphi#&r) — 9(S) which
makes diagram (7.2.1) commutative. Theg a®B(S). SinceS — B(.5) is faithfully flat

by Corollary 7.4, we get € aS and hence, by cyclical purity, € a.

As in positive characteristic, the rirfl§(R) has many additional properties (which fail
to hold for the big Cohen-Macaulay algebras in equicharacteristic zero constructed by
Hochster-Huneke in [30]). For instanc®,(R) is absolutely integrally closed, hence in
particular quadratically closed, and therefore, the sum of any number of prime ideals is
either the unit ideal or again a prime ideal (same argument as ig3}7 Moreover:

7.6. Proposition. The canonical mafpec B(R) — Spec R is surjective.

Proof. Let p be a prime ideal iR and letq be a prime ideal irﬁ(kﬂ-) lying overp. By
Theorem 5.17, almost all approximations of q are prime ideals. Sinc&, C R}
is integral, there exists a prime idedl,, in R}, whose contraction td®?,, is q,,. The
ultraproduct of theQ,, is then a prime ideal ifB(R) whose contraction t& is p. O

7.7. Big Cohen-Macaulay algebras— general caséiVe now definéB(R) = B(A) for
an arbitrary equicharacteristic zero Noetherian local (ilRgm), under the assumption that
A is absolutely normalizing'

@% Icz)/q3

where3 runs over all prime ideals oR(,w») of maximal dimension (that is to say, such
thatdim(f?(k.,i)/ip) = dim R). Note that this agrees with our former definition in case
D(A) (and hencefi(,m)) is a domain. Clearly3(R) inherits anR-algebra structure via
the R(k,i)/‘n—algebra structure on each summand. We claim#@e) is a balanced big
Cohen-Macaulay algebra. Indeedzifs a system of parameters I, then it remains so
in E(M) and hence in eacﬁ(kﬂ;)/q:s‘ since the3 have maximal dimension. Therefore,
by Theorem 7.2, for eacls, the sequenceis %(ﬁ(k,i)/m)-regular, henc&(R)-regular.
All the properties previously stated in the case tB&f\) is a domain remain true in this
more general setup.

As in the Hochster-Huneke construction, there is a weak form of functoriality. We need
a definition taken from [30] (see also [3R®)]).

7.8 Definition. We say that a local homomorphis® — S of Noetherian local rings
is permissiblef for each prime ideal in S of maximal dimension, we can find a prime
idealp in R of maximal dimension such thatC q N R. A Coh}-morphism is called
permissibldf its underlying ring homomorphism is permissible.

As remarked in [35§9], any local homomorphism with source an equidimensional and
universally catenary local ring is permissible. Moreover:

7.9 Lemma. If A — T = (S,y,l,v) is a permissiblaCoh}.-morphism then the homo-
morphlst(,€ i) — S(l ;) is permissible.



58 MATTHIAS ASCHENBRENNER AND HANS SCHOUTENS

Proof. Recall thati andj denote the respective embeddingkodnd! into the algebraic
closuresk: and! of u(k) andv(l) inside K. LetQ a prime ideal of maximal dimension in
S(.;) and letq be its contraction t&. We have inequalities

(7.9.1) dim(Sy ;) = dim(S( ;,/Q) < dim(S/q) < dim(S)

where the middle inequality follows from [40, Theorem 15.1], since the closed fiber is
trivial. As §(l,j) has the same dimension &8sz, [ and therefore a8, all inequalities in
(7.9.1) are equalities, so thatis a prime ideal of maximal dimension. By assumption,
there is a prime ideal in R of maximal dimension contained in By faithful flatness,
ﬁ(m)/pfﬂ(m) has dimensionlim(R) = dim(ﬁ(m)). SinceR/p is universally catenary
and equidimensional, o ;. ;) /p Rk 1. Therefore, if}s is a minimal prime of R, ;)
contained i, then it has maximal dimension, as required. d

We turn to the definition of3(R) — B(S) for a permissible homomorphisi® — S:
7.1Q Corollary. Given a permissible&Cohj,-morphisma: A — T with T' absolutely
normalizing, there exists a homomorphism®B(A) = B(R) — B(I") = B(S) making
(7.2.1)commutative.

Proof. By the lemma, for each prime idea) in §(z,j) of maximal dimension we can
choose a prime ideal’ of maximal dimension irﬁ(kﬂ-) such that)’ C 9. Fix one such
prime ideal’ for eachQ. The homomorphism
Ry /Q — Saj)/Q
induces by Theorem 7.2 a homomorphism
ja: B[Ry /Q) — B(S,)/9).

DefineB(R) — B(S) now by sending a tupléasgs) with agp € %(ﬁ(m)/m) and3 a
prime ideal inﬁ(,w-) of maximal dimension, to the tuplga(aq/)), whereQ runs over

all prime ideals inS(; ; of maximal dimension. It is easy to see that this gives rise to a
commutative diagram (7.2.1). O

It is also easy to see thatdf: A — T is a permissibl&Coh7,-morphism whered(T")
is a domain, then there exists a homomorphismaking (7.2.1) commutative. Calling
I permissibleif ©(T") is a domain or absolutely normalizing ($8(T") is defined), we
therefore have:

7.11 Corollary. Given a permissibl€oh},-morphisma: A — T between permissible
CohJ;-objects, there exists a homomorphigm®B(A) — B(T") making(7.2.1)commu-
tative. O

To show the strength of the existence of big Cohen-Macaulay algebras, let us give a
quick proof of the Monomial Conjecture.

7.12 Corollary (Monomial Conjecture) Given a system of parametdrs, ..., zq) in the
equicharacteristic zero Noetherian local rirfg, we have for alt € N that

(7.12.1) (z120- - 2a)" & (2471, 2D R.

Proof. The sequencéz, ..., zq) is B(R)-regular and so (7.12.1) holds®(R), hencea
fortiori in R. g
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The above proof does rely on the result of Hochster and Huneke that absolute integral
closure in positive characteristic yields big Cohen-Macaulay algebras. A more elementary
argument is obtained by using Lemma 5.4 together with the observation that the Monomial
Conjecture admits an elementary proof in positive characteristic [12, Remark 9.2.4(b)]. An
equally quick proof, which we will not produce here, relying also on the weak functoriality
property of3, can be given for the Vanishing Theorem of maps for Tor [30, Theorem 4.1].

7.13. B-closure. As in [57], we can use our construction of a big Cohen-Macaulay alge-
bra to define yet another closure operation on ideal® @6 follows. Suppose that is
permissible, and let be an ideal ofk. TheB-closureof a in R is by definition

at :=aB(R)NR.

We next show that the analogues of Theorems 6.3, 6.5 and 6.13 haid fior place of

cl(a). As for the last property in the next theorem, persistence, it is not immediately clear
that it also holds for non-standard tight closure. We also remind the reader tRas if
equidimensional and universally catenary (for instance, an excellent domain), then every
local R-algebra is permissible.

7.14 Theorem. Leta be an ideal ofR.

(7.14.1) If Ris regular, them = a™*.
(7.14.2) If (21, ..., 24) is a system of parameters R\, then

((Zl, ey Zi—l) ‘R Z,) g ((Zl, ceey Z,;_l)R)+

for all i (Colon Capturing)
(7.14.3) We havea™ C @, and ifa is generated byn elements, then

al+m (al+1)+

for all [ (Briangon-Skoda)
(7.14.4)1f A - T' = (S,...) is a permissible morphism between permissible objects
in Cohj, thenatS C (aS)™ (Persistence)

Proof. For (7.14.1), observe thﬁ(,m-) is again regular (Lemma 4.17), so that the com-
positionR — ﬁ(kﬂ;) — B(R) is faithfully flat, by Corollary 7.4, hence cyclically pure.

For (7.14.2), letl := (z1,...,2;—1)R and supposez; € I. Since(zy, ..., z4) IS B(R)-
regular, we gett € IB(R), and hencex € I*. The argument in [57§6.1] (the affine

case) can be copied almost verbatim to prove the second assertion in (7.14.3); for the first
assertion, we use Lemma 6.11 together with (7.14.1) in the same way as in the proof
of Theorem 6.13. (Note thak — V is automatically permissible, wheié is as in
Lemma 6.11, and ever§ oh’-object with underlying ring’ is permissible, so that we

get a homomorphisB(R) — B(V), by Corollary 7.11.) Persistence is immediate from
weak functoriality ofB. O

Conjecturally, in characteristjg plus closure and tight closure coincide. A characteris-
tic zero analogue of this is thég-closure and generic tight closure should be the same. We
have at least the following analogue of [30, Theorem 5.12]. (The second statement relies
on Smith’s work [59]).

7.15 Proposition. SupposeR is formally equidimensional. For each idaabf R, we have
at C cl*(a). If ais generated by a system of parameters, tier= cl*(a).



60 MATTHIAS ASCHENBRENNER AND HANS SCHOUTENS

Proof. We give the proof in the case that(R) is absolutely normalizing, the case that
D(R) is a domain being similar (and simpler). In view of Lemma 4.17, passing fRom
to ﬁ(kﬂ;) reduces the problem to the case tRais complete and equidimensional, with
algebraically closed. (Note that bo®-closure and generic tight closure commute with
such an extension of scalars). By Corollary 5.26, almoskgllare equidimensional, and
their minimal primes;,, are approximations of the minimal primgsof R. By definition,
B(R) is the direct sum of th&8(R/p;). Suppose € a™, so thatz € a®B(R/p;) for each

Jj. Hencez,, € a,(R./pjw)" for all j and almost alkv. If B is an integral extension of
a Noetherian domainl of positive characteristic anflis an ideal ofA, then/B N A is
contained in the tight closure df[35, Theorem 1.7]. Thus almost all, lie in the tight
closure ofa,, (R.,/p;w), hence in the tight closure af, (since this holds for all minimal
primes). This means thate cl*(a).

Suppose thad is generated by a system of parameters. By Lemma 5.4, almas} all
are generated by a system of parameters, and this remains true in the homomorphic images
Ry /pjw. By [59], the tight closure of,, (R, /p;.) is contained in,, (R., /p;.) " . Taking
ultraproducts yieldsl*(a) C aB(R). O

7.16 Remark. Suppose thaR is complete and(R) is normalizing. IfR is either ab-
solutely analytically irreducible or reduced, equidimensional witlgebraically closed,
then the previous result in combination with Theorem 6.26 yields an inclusian cl(a).

7.17. Comparison with big Cohen-Macaulay algebras for affine local domainsWe

want to compare the present construction with the one from [57] discussed in the introduc-
tion of this section. We restrict ourselves once more to the casétisahe localization of

a finitely generated@-algebra at a maximal ideal, withan algebraically closed Lefschetz
field contained inK as in§5.37; we continue to use the notations introduced there. Let
Rgﬁ denote an approximation @ in the sense of [55]. Recall that the approximatiéhs

in the sense of the present paper are defined as

aff

R,, := completion opr(w

) Ok K, wherep(w) = char K.

p(w)

Suppose thak is an integral domain; then almost evéig" isadomain. In generaﬁ and
the R,,, though reduced and equidimensional, will no longer be domains. $g,let , p,
be the minimal primes ofk. Suppose thad is absolutely normalizing. It follows from
Corollary 5.26 that for almost all, thep;,, are the minimal prime ideals dt,,, and from
Theorem 5.2, that they have maximal dimension. By definit(R) is the direct sum of

all %(E/pj). The ultraproducB(R) of the (Rgff)Jr is a big Cohen-Macaulaiz-algebra;
see [57]. For eachy and eacly, the composition

R3l,) — Ru — Ru/Pjuw

p(w

is injective and can be extended (non-unigquely) to a homomorphism

+
(sz(fw)) - (quz/qu,,)+.
By construction
ulim (R3(,))" = B(R)"

wherel{ is the ultraset frong4. Therefore, the composition of the diagonal embedding
with the sum of the ultraproducts of the homomorphisms

(R;a)fgw))-i_ - (Rw/piw)+
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yields a homomorphisnB(R) — B(R). The reader can verify that this fits in a commu-
tative diagram

R B(R)

B(R)
In [57], the B-closureof an ideala of R is defined as the idealB(R) N R. Clearly,
we haveaB(R) N R C a' and we suspect that both are equal. For this to be true, it
would suffice to show that the homomorphigBtiR) — B(R) is cyclically pure. (Note,
however, thatB(R) is not local.) We leave it to the reader to verify that the discussion in
§6.18 also applies to generic tight closure, that is to say, the two notions, the present one
and the ‘affine’ one from [55], coincide for localizations of finitely generdteagebras at
maximal ideals. Using this together with Proposition 7.15 and [57, Corollary 4.5], we get
an equalitya B(R) N R = a* for a an ideal generated by a system of parameters.

7.18. Rational singularities. The main merit of the present approach to tight closure in
equicharacteristic zero and to the construction of balanced big Cohen-Macauly modules,
via D(R), is its flexibility. We want to finish with a brief discussion of one possible
application of our construction &8 (R), which we formulate in two Conjectures.

Let us return to the situation of the Hochster-Roberts Theorem, that is to say, a cycli-
cally pure homomorphism from a Noetherian local riRdnto a regular local rings. We
already showed thak (and also its completion‘?%) is Cohen-Macaulay and normal (see
Theorem 6.8 and Remarks 6.15 and 7.5). In dasedS are of finite type ove€, Boutot
has shown in [10], using deep Vanishing Theorems, fhatas rational singularities. In
fact, he proves an even stronger result in that he only needs to assunsehigmtational
singularities. Recall that an equicharacteristic zero excellent local doRhasrational
singularities(or, more correctly, ipseudo-rationdlif it is normal, analytically unramified
and Cohen-Macaulay, and the canonical embedding

Ho(W,ww) — Ho(X,wx)

is surjective (it is always injective), whei® — X := Spec R is a desingularization, and
where in generalyy denotes the canonical sheaf on a schéme

In the affine case, the methods of the second author (via non-standard tight closure in
[50], and via big Cohen-Macaulay algebras in [57]) yield more elementary arguments for
the fact that a cyclically pure subring of an affine regular ring has rational singularities.
Moreover, in the second paper, a more general version is proven, Whemly assumed
to have rational singularities and be Gorenstein. However, for this stronger version, one
needs a result of Hara in [22], which itself uses deep Vanishing Theorems. In any case, we
expect that one can generalize Boutot’s result by removing the condition that the rings are
finitely generated over a field. (Note that no Vanishing Theorems are known to hold for
arbitrary excellent schemes.)

Conjecture A. Every equicharacteristic zero excellent local rikgwhich admits a cycli-
cally pure homomorphism into a regular local rirfgis pseudo-rational.

In fact, we suspect that an excellent local domain is pseudo-rational if there exists a
system of parameterssuch thatzR = (zR)™" (= generic tight closure afR, by Propo-
sition 7.15). It is clear by (7.14.1) how this implies the ConjectureR lis in addition
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Q-Gorenstein, then in the affine case it has log-terminal singularities by [58, Theorem
B and Remark 3.13]. (Here again we can weaken the assumptisghtorbe only log-
terminal, provided we use Hara’s result; see that article for the terminology.) In view of
this, we postulate the following generalization.

Conjecture B. Every equicharacteristic zero excellent lo€dGorenstein ring which ad-
mits a cyclically pure homomorphism into a regular local ring has log-terminal singulari-
ties.

The conjecture would follow from (7.14.1), if one can show th&@-&orenstein excel-
lent local ring R in which each ideal is equal to iB8-closure, or, equivalently, for which
R — B(R) is cyclically pure, has log-terminal singularities.
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