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1. INTRODUCTION

In this mini-course, we will touch upon topics from logic, algebra and geometry, and
so some background in either of these topics will be helpful. Nonetheless, I will keep
things as self-contained as possible. Before I suggest some reading material, let me briefly
introduce the topic, which therefore will make it clear what kind of background will be
useful.

A standard tool in mathematics for constructing from some given mathematical struc-
tures of interest (like vector spaces, topological spaces, manifolds, . . . ), a new structure
of the same type, is by taking their (free) product. This construction is often innocuous
when dealing with finitely many structures, but infinitely many may yield structures that
are ‘too big’. Our main focus is algebraic, dealing mostly with (commutative) rings (with
unit); moreover, we seek applications in commutative algebra, or the ‘dual’ topic, alge-
braic geometry, for which rings often need to be Noetherian as well, so the latter will be
our structures of interest. However, whereas the (Cartesian) product of finitely many Noe-
therian rings is again Noetherian, this fails miserably for any infinite products. But there
are other issues with taking Cartesian products, even finite ones: they do not preserve many
other desirable properties, such as being a domain, or being a field, etc.

To our aid will come a construction from model-theory/logic, that of an ultraproduct.
Given a sequence of Noetherian rings R1, R2, . . . , we associate to them their ultraproduct
R\, which should be thought of as a certain ‘average’ of theRi and in particular it will again
be a ring. Unfortunately, one of our main desiderata is still violated: this ultraproduct is
hardly ever Noetherian. Yet, not all is lost, since often it will contain a ’nice’ Noetherian
subring (or admits a ’nice’ Noetherian quotient). Let me elaborate a little with what I mean
with ‘average’ and ‘nice’ here, without giving precise details.

Ultraproducts as ‘averages’. Consider a 0/1-probability measure on the index set N (or
any infinite index set will actually work). We will define R\ as a quotient of the ordinary
Cartesian product R∞, by identifying two sequences (ai)i, (bi)i ∈ R∞ if ai = bi with
probability one.1 This quotient R\ yields an average of the Ri in the following sense: if
an ‘algebraic’ property holds with probability one for the Ri, then it also holds for their
ultraproduct R\. For instance, if all—which is a trivial case of having probability one—
Ri are fields (respectively, domains, . . . ), then R\ is a field (respectively, domain, . . . ).
This principle, when specifying precisely what ‘algebraic properties’ are allowed, is called

Date: August 19, 2018.
1Disclaimer: this is not how they are actually defined; instead one needs the notion of an ultrafilter on the

index set, as I will explain in the lectures.
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Łos’ Theorem.2 Noetherianity, however, is not one of these properties, and hence is not
preserved.

One of the key results that I will discuss is the so-called transfer principle form positive
to zero characteristic.3 The ’miracle fact’4 that we will exploit abundantly is that if we
take the ultraproduct of the Falg

p —the algebraic closure of the p-element field—, then the
resulting ultraproduct is not only a field, it is a very familiar field, to wit C, the field of
complex numbers!

Transfer through nice subrings. As mentioned above, the ultraproduct is in general not
Noetherian (the field case being one notable exception). For instance, when each Rp =

Falg
p [x], with x = (x1, . . . , xn) a fixed tuple of indeterminates, then R\ is surely not a

polynomial ring. However, by our miracle fact, it will contain C, and even C[x]. Moreover,
the inclusion C[x] ⊆ R\ is as nice as one could hope for: it is faithfully flat.5 In the lectures,
we will explore what this means, but one way of visualizing this is that the ideals of C[x]
‘live in’ R\ (although the latter has many more ‘weird’, i.e., non-finitely generated, ideals
as well). In algebraic geometry, faithfully flat descent is an important tool to transfer
properties from the larger to the smaller ring. This is how we will achieve our ‘transfer
from positive to zero characteristic’: consider an ‘algebraic property’ that holds in all
polynomial rings Rp of positive characteristic, so that their ultraproduct R\ also has this
property by Łos’ Theorem, and then ‘descend’ this property to C[x]. Incidentally, R\ has
also a very nice quotient, to wit C[[x]], the formal power series ring, and we may also
transfer properties in that direction. Both the subring C[x] and the quotient C[[x]] will be
thought of as certain products of the original Rp, called respectively the protoproduct R[
and cataproduct R], ultimately leading to the ‘musical scale’

(1) R[ ⊆ R\ → R].

Applications. In this mini-course, I will mention two types of applications: uniform
bounds and transfer from positive to zero characteristic. Both rely heavily on the prop-
erties of the ‘musical scale’ (1), the former extending the groundbreaking work in [18],
and the latter greatly simplifying the techniques in [15] that relied on Artin Approximation
([1]). One of my original goals ([19]) was to use the transfer from positive to zero char-
acteristic to obtain an elegant tight closure theory in characteristic zero. Tight closure is a
beautiful yet powerful theory for rings of positive characteristic developed in the ’90s by
Hochster and Huneke (see, for instance, [9]).6 Tight closure theory exploits properties of
the Frobenius map, such as the ‘students binomial theorem’

(2) (x+ y)p = xp + yp,

which, of course does not hold in characteristic zero (or does it?).

2Spoiler alert: any first-order property.
3Recall that the characteristic of a ring is the positive generator of the kernel of the canonical map Z → R;

for domains, this is always a prime or zero.
4It is no accident that it is on the front page of [20]; I normally refer to it as the weak Lefschetz Principle.
5In the words of David Mumford, the great geometer: “The concept of flatness is a riddle that comes out of

algebra, but which technically is the answer to many prayers.” ([14, p. 214]).
6Their version [7] in characteristic zero, unfortunately, is far from elegant.
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2. INTRODUCTORY READINGS

From this introduction, it is clear that we will be dealing with many topics from com-
mutative algebra, including fields, Noetherian rings, local rings, modules, ideals, Krull
dimension, etc. Introductory textbooks like [2] or [17] should suffice, but of course it
wouldn’t hurt if you have already read some more specialized textbooks like [4, 5, 13], as
we will make use of some more advanced notions. All that is needed from commutative
algebra can be found in my online notes [21]. We also will make references to some no-
tions from algebraic geometry, but these will be less central. Some introductory course in
algebraic geometry, such as [6, Chapter I] or my notes [21, Chapter I] will suffice. Ul-
traproducts were first studied in model-theory ([11]), and although there were some early
applications ([3, 10]) to algebra and other fields, they never really became common knowl-
edge among general mathematicians, in spite of their power.7 I will introduce them chiefly
as algebraic objects, which removes the necessity for notions from model-theory. This
perspective, though, is a little disingenuous, since to prove some of the basic results, one
does need model-theory. Therefore, some familiarity with the topic is helpful, and to this
end, I include in the next section an extremely water-downed summary of model-theory,
or rather, an ad hoc version for rings only (for more details, consult any textbook, such as
[8, 12, 16]). Of course, ultimately, my book [20] is the main reference for this course, and
I will post some excerpts and exercises taken from some earlier versions.

3. MODEL-THEORY IN RINGS

Formulae. By a quantifier free formula without parameters in the free variables x =
(x1, . . . , xn), we will mean an expression of the form

(3) ϕ(x) :=

m∨
j=1

f1j = 0 ∧ . . . ∧ fsj = 0 ∧ g1j 6= 0 ∧ . . . ∧ gtj 6= 0,

where each fij and gij is a polynomial with integer coefficients in the variables x, and
where ∧ and ∨ are the logical connectives and and or. If instead we allow the fij and gij
to have coefficients in a ringR, then we call ϕ(x) a quantifier free formula with parameters
in R. We allow all possible degenerate cases as well: there might be no variables at all (so
that the formula simply declares that certain elements in Z or in R are zero and others
are non-zero) or there might be no equations or no negations or perhaps no conditions
at all. Put succinctly, a quantifier free formula is a Boolean combination of polynomial
equations using the connectives ∧, ∨ and ¬ (negation), with the understanding that we use
distributivity and De Morgan’s Laws to rewrite this Boolean expression in the (disjunctive
normal) form (3).

By a formula without parameters in the free variables x, we mean an expression of the
form

ϕ(x) := (Q1 y1) · · · (Qp yp)ψ(x, y),

7From the introduction of [20]: ...[ultraproducts] did not leave a lasting impression on the algebraic commu-
nity though, shunned perhaps because there were conceived as non-algebraic, belonging to the alien universe of
set-theory and non-standard arithmetic, a universe in which most mathematicians did not, and still do not feel
too comfortable. The present book intends to debunk this common perception of ultraproducts: when applied
to algebraic objects, their construction is quite natural, yet very powerful, and requires hardly any knowledge of
model-theory.
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where ψ(x, y) is a quantifier free formula without parameters in the free variables x and
y = (y1, . . . , yp) and where Qi is either the universal quantifier ∀ or the existential quanti-
fier ∃. If instead ψ(x, y) has parameters from R, then we call ϕ(x) a formula with param-
eters in R. A formula with no free variables is called a sentence.

Satisfaction. Let ϕ(x) be a formula in the free variables x = (x1, . . . , xn) with parameters
from R (this includes the case that there are no parameters by taking R = Z and the
case that there are no free variables by taking n = 0). Let A be an R-algebra and let
a = (a1, . . . , an) be a tuple with entries from A. We will give meaning to the expression a
satisfies the formula ϕ(x) in A (sometimes abbreviated to ϕ(a) holds in A or is true in A)
by induction on the number of quantifiers. Suppose first that ϕ(x) is quantifier free, given
by the Boolean expression (3). Then ϕ(a) holds inA, if for some j0, all fij0(a) = 0 and all
gij0(a) 6= 0. For the general case, suppose ϕ(x) is of the form (∃y)ψ(x, y) (respectively,
(∀y)ψ(x, y)), where the satisfaction relation is already defined for the formula ψ(x, y).
Then ϕ(a) holds in A, if there is some b ∈ A such that ψ(a, b) holds in A (respectively, if
ψ(a, b) holds inA, for all b ∈ A). The subset ofAn consisting of all tuples satisfying ϕ(x)
will be called the subset defined by ϕ, and will be denoted ϕ(A). Any subset that arises in
such way will be called a definable subset of An.

Note that if n = 0, then there is no mention of tuples in A. In other words, a sentence
is either true or false in A. By convention, we set A0 equal to the singleton {∅} (that is to
say, A0 consists of the empty tuple ∅). If ϕ is a sentence, then the set defined by it is either
{∅} or ∅, according to whether ϕ is true or false in A.

Constructible Sets. There is a connection between definable sets and Zariski-constructible
sets,8 where the relationship is the most transparent over algebraically closed fields, as we
will explain below. In general, we can make the following observations.

Let R be a ring. Let ϕ(x) be a quantifier free formula with parameters from R, given as
in (3). Let Σϕ(x) denote the constructible subset of AnR consisting of all prime ideals p of
Spec(R[x]) which, for some j0, contain all fij0 and do not contain any gij0 . In particular,
if n = 0, so that A0

R is by definition Spec(R), then the constructible subset Σϕ associated
to ϕ is a subset of Spec(R).

Let A be an R-algebra and assume moreover that A is a domain (we will never use
constructible sets associated to formulae if A is not a domain). For an n-tuple a over A,
let pa be the (prime) ideal in A[x] generated by the xi − ai, where x = (x1, . . . , xn).
Since A[x]/pa ∼= A, we call such a prime ideal an A-rational point of A[x]. It is not
hard to see that this yields a bijection between n-tuples over A and A-rational points of
A[x], which we therefore will identify with one another. In this terminology, ϕ(a) holds
in A if and only if the corresponding A-rational point pa lies in the constructible set Σϕ(x)

(strictly speaking, we should say that it lies in the base change Σϕ(x) ×Spec(R) Spec(A),
but for notational clarity, we will omit any reference to base changes). If we denote the
collection of A-rational points of the constructible set Σϕ(x) by Σϕ(x)(A), then this latter
set corresponds to the definable subset ϕ(A) under the identification ofA-rational points of
A[x] with n-tuples over A. If ϕ is a sentence, then Σϕ is a constructible subset of Spec(R)
and hence its base change to Spec(A) is a constructible subset of Spec(A). Since A is
a domain, Spec(A) has a unique A-rational point (corresponding to the zero-ideal) and
hence ϕ holds in A if and only if this point belongs to Σϕ.

8Recall that a Zariski-constructible subset of some affine scheme Spec(R) is a finite Boolean combination
of Zariski closed subsets V(I), where the latter means all prime ideals of R containing the ideal I .
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Conversely, if Σ is an R-constructible subset of AnR, then we can associate to it a quan-
tifier free formula ϕΣ(x) with parameters from R as follows. However, here there is some
ambiguity, as a constructible set is more intrinsically defined than a formula. Suppose first
that Σ is the Zariski closed subset V(I), where I is an ideal in R[x]. Choose a system of
generators, so that I = (f1, . . . , fs)R[x] and set ϕΣ(x) equal to the quantifier free formula
f1(x) = · · · = fs(x) = 0. Let A be an R-algebra without zero-divisors. It follows that an
n-tuple a is an A-rational point of Σ if and only if a satisfies the formula ϕΣ. Therefore,
if we make a different choice of generators I = (f ′1, . . . , f

′
s)R[x], although we get a dif-

ferent formula ϕ′, it defines in any R-algebra A without zero-divisors the same definable
set, to wit, the collection of A-rational points of Σ. To associate a formula to an arbitrary
constructible set, we do this recursively by letting ϕΣ∧ϕΨ, ϕΣ∨ϕΨ and ¬ϕΣ correspond
to the constructible sets Σ ∩Ψ, Σ ∪Ψ and −Σ respectively.

We say that two formulae ϕ(x) and ψ(x) in the same free variables x = (x1, . . . , xn)
are equivalent over a ring A, if they hold on exactly the same tuples from A (that is to
say, if they define the same subsets in An). In particular, if ϕ and ψ are sentences, then
they are equivalent in A if they are simultaneously true or false in A. If ϕ(x) and ψ(x)
are equivalent for all rings A in a certain class K, then we say that ϕ(x) and ψ(x) are
equivalent modulo the classK. In particular, if Σ is a constructible set in AnR, then any two
formulae associated to it are equivalent modulo the class of all R-algebras without zero-
divisors. In this sense, there is a one-one correspondence between constructible subsets of
AnR and quantifier free formulae with parameters from R up to equivalence.

Quantifier Elimination. For certain rings (or classes of rings), every formula is equiva-
lent to a quantifier free formula; this phenomenon is known under the name Quantifier
Elimination. We will only encounter it for the following class.

3.1. Theorem (Quantifier Elimination for algebraically closed fields). If K is the class of
all algebraically closed fields, then any formula without parameters is equivalent modulo
K to a quantifier free formula without parameters.

More generally, if F is a field and K(F ) the class of all algebraically closed fields
containing F , then any formula with parameters from F is equivalent modulo K(F ) to a
quantifier free formula with parameters from F .

Sketch of proof. These statements can be seen as translations in model-theoretic terms of
Chevalley’s Theorem which says that the projection of a constructible set is again con-
structible. I will only explain this for the first assertion. Let K be an algebraically closed
field. As already observed, a quantifier free formula ϕ(x) (without parameters) corre-
sponds to a constructible set Σϕ(x) in AnZ and the tuples inKn satisfying ϕ(x) are precisely
the K-rational points Σϕ(x)(K) of Σϕ(x). The key observation is now the following. Let
ψ(x, y) be a quantifier free formula and put γ(x) := (∃y)ψ(x, y), where x = (x1, . . . , xn)
and y = (y1, . . . , ym). Let Ψ := ψ(K) be the subset of Kn+m defined by ψ(x, y) and let
Γ := γ(K) be the subset of Kn defined by γ(x). Therefore, if we identify Kn+m with the
collection of K-rational points of An+m

K , then

Ψ = Σψ(x,y)(K).

Moreover, if p : An+m
K → AnK is the projection onto the first n coordinates then p(Ψ) = Γ.

By Chevalley’s Theorem (see for instance [5, Corollary 14.7] or [6, II. Exercise 3.19]),
p(Σψ(x,y)) (as a subset in AnZ) is again constructible, and therefore, by our previous dis-
cussion, of the form Σχ(x) for some quantifier free formula χ(x). Hence Γ = Σχ(x)(K),
showing that γ(x) is equivalent modulo K to χ(x). Since χ(x) does not depend on K, we
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have in fact an equivalence of formulae modulo the classK. To get rid of an arbitrary chain
of quantifiers, we use induction on the number of quantifiers, noting that the complement
of a set defined by (∀y)ψ(x, y) is the set defined by (∃y)¬ψ(x, y), where ¬(·) denotes
negation. For some alternative proofs, see [8, Corollary A.5.2] or [12, Theorem 1.6]. �
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