A GENERALIZATION OF THE AUSLANDER-BUCHSBAUM FORMULA

HANS SCHOUTENS

ABSTRACT. Let R be a Noetherian local ring arfdlan arbitraryR-module of finite depth
and finite projective dimension. The flat dimensiorfdik at leastlepth (R) —depth (€2)
with equality in the following cases: (f) is finitely generated over some Noetherian local
R-algebras; (ii) dim(R) = 1; (iii) dim(R) = 2 and{2 is separated; (ivR is Cohen-
Macaulaydim(R) = 3 and(2 is complete.

1. INTRODUCTION
The Auslander-Buchsbaum formusséates that
proj.dimp 2 4 depthz(©2) = depth(R)

for any finitely generated?-module(2 of finite projective dimension over a Noetherian
local ring R (see for instance5] Theorem 19.1]). Recall that th@ojective dimension
proj.dim(€2) of Q is the minimal length of a projective resolution &f and thedepth
depth(Q2) of Q, is the length of a maximal-regular sequence. This formula is no longer
true, if we drop the requirement th@tis finitely generated. The reasons for this failure
are threefold: a non-finitely generated mod@lecan (i) be flat but not free; (ii) have
infinitely many associated primes; and (iii) be non-separated. Regarding (i), projective
dimension is in this context simply the wrong invariant and should be replaced by flat
dimension. Recall that thiéat dimensioror weak dimensiowf 2, denoted.dimg(12),

is defined to be the supremum of alfor which Tor’(-, Q) is not identically zero, or,
equivalently, the minimal length of a flat resolution(ef Note that since a flat module has
finite projective dimension, a module has finite flat dimension if and only if it has finite
projective dimension. As for (ii), we can no longer define the deptf ab the maximal
length of anQ2-regular sequence (we will call the latter invariant thereforenthiee depth

of Q and denote ih-depth((2)). Insteaddepth(2) is defined by means of the vanishing

of certainExt functors (seeJ) below). Finally, (iii) is a fact of life and is responsible for

the additional separatedness constraint on our modules. In particular, Nakayama’s lemma
does no longer hold and a non-zero module can therefore have infinite depth.

The depth formulas. The following fourdepth formulagtwo equalities and two inequal-
ities) will play an important role in this paper; they always hol@it 0 is finitely gener-
ated:

Auslander-Buchsbaum formula:
fl.dim (€2) + depth(Q2) = depth(R);
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naive depth formula:
n-depth(Q2) = depth(£2);
Ischebeck inequality: for every prime ideap of R, we have
depth(Q) < depth(p; Q) + dim R/p;
subdimension inequality: for every associated prime idgabf (2, we have
depth(Q) < dim R/p.

For non-finitely generated modules, any of these four depth formulas may fail to hold,
and this paper is for a large part devoted to understanding the relationship between these
failures. Among other things, we will establish the following implications:

Auslander-Buchsbaum formuta=- Ischebeck inequality=- subdimension inequality

As far as the two equalities are concerned, they are in general only inequalities giving a
lower bound for depth, namely

n-depth(Q2) < depth(2) and depth(R) — fl.dim(2) < depth(f?).

Even if the ringR is regular, there are still plenty of examples of modules of finite depth
for which the Auslander-Buchsbaum formula fails: for instance, Aaypodule2 which
is a big Cohen-Macaulay module but which is not balanced (for a construction of such a
module, sed.13. Indeed, such a module is not flat but has maximal depth. Nonetheless,
there are also many situations in which we can prove the Auslander-Buchsbaum formula,
and | will now review some of these. Any module of depth zero over a Noetherian local
ring of Cohen-Macaulay-defect at most one satisfies the Auslander-Buchsbaum formula;
see Theorenb.1 and Propositior6.2. The Auslander-Buchsbaum formula holds in low
dimensions, under some additional separatedness conditions. Our main result in that regard
is:

1.1.Theorem. Let R be ad-dimensional Noetherian local ring. L&t be an arbitraryR-
module of finite depth and finite projective dimension. The Auslander-Buchsbaum formula
holds, that is to say,

1) fl.dimp () + depth () = depth(R),

under any of the following additional hypotheses:d(B- 1; (i) d = 2 and{2 is separated;
(i) Ris Cohen-Macaulay] = 3 and2 is complete.

This result will be proved i§55-6. Another class of modules for which the Auslander-
Buchsbaum formula holds are the finitely generated modules over ibeddebras (see
Theorem6.1). In particular, we get the following special case.

1.2. Theorem. For any local homomorphism® — S of Noetherian local rings, we have
an equality

fl.dimp(S) + depth(S) = depth(R),

providedS has finite projective dimension ovér. |
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1.3. Residual homological dimension.We remind the reader of another formula regard-
ing the depth of an arbitrary module, due to Bartijn-Strooker Théoeme 4.1]): ifQ2 has
finite depth and finite projective dimension, then

2 depth(R) — depth(Q) = res.dim(2),

whereres.dim(€2) is theresidual homological dimensioof 2 defined as the supremum

of all n > 0 for which Tor(k, Q) # 0, wherek is the residue field ofz (if no suchn

exists, we putes.dimpg(§2) := oo). This formula hinges on the dual naturelatt, (k, Q)

and Tor(k, Q). By this formula,( satisfies the Auslander-Buchsbaum formula if and
only if the inequalityres.dim () < fl.dim(2) is an equality, thus yielding a more subtle
connection between the vanishing of cert&xt and Tor functors. Put differently, the
Auslander-Buchsbaum formula is a generalized local flatness theorem. For instance, the
following result, an immediate corollary of), generalizes some flatness criteria 9f [

when we take: = 1 and apply Theorent.1

1.4.Theorem. Let R be a Noetherian local ring with residue fieldand letQ2 be anR-
module of finite projective dimension. Lget= depth(R) andp < ¢. If Q satisfies the
Auslander-Buchsbaum formula afidr? (k, ) vanishes for all = p, ..., ¢, thenQ has
flat dimension strictly less than d

We start ing2 with recalling the definition of depth for non-finitely generated modules.
In §3, we derive some local criteria for the vanishing of certaxhandTor functors, which
in turn will yield a local characterization of flat dimension. 3 we study in more detail
the four depth formulas discussed above. The last two sections are then devoted to our
main results on the Auslander-Buchsbaum formula.

2. DEPTH AND DIMENSION

In this section, we review the notion of depth for non-finitely generated modules. We
take the treatment fron3] §9.1], albeit presented without referencegi@de or Koszul
sensitivity (see also]) and only over Noetherian local rings. Formulating depth in terms
of regular sequences is a delicate matter if the mo€lule not finitely generated, even
over a Noetherian local ringR, m). Firstly, it is possible that Nakayama’s Lemma fails,
so that2? = mQ) without Q2 being zero. When this is the case, we will caldegenerated
Secondly, even if the depth is positive, this is not necessarily withessed by the existence of
a regular element. Nonetheless, it does so after an appropriate extension. For our purposes
it is instrumental that we can detect depth by means of regular sequences after an exten-
sion which does not increase the dimension, contrary to what is done in the more usual
treatments of the subject. This is accomplished by LeririaTo this end, we make the
following definition.

The extensionk C R(X). For(R,m) alocal ring andX a finite tuple of indeterminates,

let R(X) denote the localization aR[X] atmR[X]. If © is an R-module, we will denote
Q®pr R(X) by Q(X) and write its elements as polynomials with coefficient®jrthat is

to say, we writev X? for w ® XP?. In the terminology of §, §4], an extension of the form

R C R(X) is a scalar extension, that is to say, a faithfully flat and unramified extension.
We will use the following preservation properties of these extensions.

2.1.Lemma. Let R be a Noetherian local ring{2 an R-module andX a finite tuple of
indeterminates.

(2.1.1) Ris regular, Gorenstein or Cohen-Macaulay if and only if s&igX);
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(2.1.2) dim R = dim R(X) anddepth(R) = depth(R(X));

(2.1.3) Q is separated if and only if so B(X);

(2.1.4) the associated primes ¢i(X) are precisely the prime ideals of the form
pR(X) forp € Ass(2).

Proof. The first two properties follow from the fact th& C R(X) is faithfully flat and
unramified; seef], §23]. Next we proveZ.1.3, where one direction is clear sin€e C

Q(X). To prove the other direction, we induct on the number of variables, and hence we
may assume thaf is a single variable. S€[X] := Q®r R[X]. Towards a contradiction,
suppose thaf2(X) is not separated. Therefore, we can find already an element

wo+ w1 X + - +wg X4 in Q[X] which lies in everym™Q(X). | claim thatr € m"Q[X]

for all n > 0. Assuming the claim, we see that eaghlies in all m"2 whence must be
zero by our separatedness assumption.

To prove the claim, observe that sincee m™Q(X), we can findg € R[X] with not all
coefficients inm, such thayr € m"Q[X]. Write g = p + m with p a monic polynomial
andm € mR[X]. In particular,pr = grm — mr lies inmQ[X]. Sincep is monic, one
readily verifies that them € mQ[X]. If n = 1, we are done, otherwiser = grm — mnm
lies in m2Q[X] and the same argument then yields that m2Q[X]. Continuing in this
way, we reach after steps thatr € m"Q[X], as required.

For the proof of 2.1.4, note thatR(X)/aR(X) = (R/a)(X) for all idealsa C R.

In particular, ifa is prime, then so isR(X). We leave it as an exercise to show that if
p := Anng(w) is an associated prime 6f, wherew € Q, thenAnnpx)(w) = pR(X),
showing that the extended idgaR(X) is an associated prime ideal @f X'). So remains
to show that given an associated prime= Anng(x)(m) of Q(X) for somer € Q(X),
thenp := g N R is an associated prime 6f andq = pR(X). Without loss of generality,
we may assume = > w; X' lies in Q[X], for somew; € €. It is easy to check that

is the intersection of thdnng(w;). Sincep is a prime ideal, it must therefore be equal
to one of them, say = Anng(wy). This already shows that € Ass(Q2). To show that
q=pR(X),letf € R[X] being. By induction on the degreeof f, we may assume that
any polynomial inq of degree less thamalready belongs tpR(X). Write f = a + Xg
with « € R andg € R[X] of degreeec — 1. By induction oni, one easily obtains from
frm = 0thata’w; = 0. In particular,a® € Anng(w;) = p and hencer € p. This in turn
implies thataw; = 0 for all 4, sincep C Anng(w;). HenceX gm = (f —a)m = 0. SinceX

is a unit,g € q, so that by inductiory € pR(X) and thereforg = a+ Xg € pR(X). O

2.2. Depth. Let (R, m) be a Noetherian local ring and an arbitrary R-module. An
elementz € R is called azero-divisoron €2, if zw = 0 for some non-zerw € Q. If xis
not a zero-divisor of, then we call it2-regular. A sequencézy, ..., x,) is calledweakly
Q-regular, if eachz; lies inm and isQ/(x4,...,2,-1)Q-regular. Finally, a sequence
(z1,...,2q) is calledQ-regular, if it is weakly Q-regular and? # (z1,...,z4)Q. By [5,
Theorem 6.1], an elementis Q-regular if and only if it is not contained in an associated
prime ideal ofQ2. Unfortunately, however, if) is not finitely generated, then it might have
infinitely many associated primes.

Thenaive depth(also calledclassical graden [4]) of Q2 is defined to be the maximum
possible length of a weakl2-regular sequence. We do not exclude the case that this
length is infinite, for instance, when = 0, or, more generally, whef? is degenerated
The naive depth is denoted hydepth,(Q2). We define thelepthof 2 as the maximum
of the n-depthz(x)(©2(X)), whereX runs over all finite tuples of indeterminates. More
generally, ifa is a proper ideal o, thenn-depthy(a; 2) denotes the maximum length
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of a weakly regulaf2-sequence contained éinanddepth g (a, §2), called thea-depthof 2,
is the maximum of the--depth g x (aR(X); (X)), whereX runs over all finite tuples
of indeterminates. By definitiony-depth(2) = n-depth(m;{2). One easily checks that
n-depth(€2) can be at mostim R whenever it is finite.

To reconcile our definition of depth with the one & or [4], we need the following
analog of B, Theorem 9.1.3].

2.3.Lemma. Let R be a Noetherian local ringX a single variable and) an R-module.
Leta be an ideal ofR with 2 # af2. If a is not contained in any associated prime(tf
thenaR(X) contains arf)(X)-regular element.

Proof. This is an immediate corollary of the proof ai,[Proposition 9.1.3] (or alterna-
tively, it can also be deduced frord.(.4). Namely, suppose = (x1,...,x,)R and put
fi=xy+ 22X + -+ 2,X" L. In the proof of B, Proposition 9.1.3], it is shown thét
is Q[ X]-regular (wheré)[X] = Q ® R[X]). Sincef € mR[X], this property is preserved
after localization, so that is Q(X)-regular. |

By the arguments from for instance, 9.1], one can then prove using Lemi& that
3) depthp(a; Q) = inf {i € N | Ext},(R/a,Q) #0}.

Any non-degenerated module has finite depth. Note that the converse is false in general:
for instance, ifR is a discrete valuation ring with field of fractiods, thenk'/ R is degen-
erated, yet has depth zero (since the maximal ideal is an associated prime; i f&ct,
satisfies the Auslander-Buchsbaum formula).

2.4.Lemma. Let R be a Noetherian local ring anf? an arbitrary R-module. IfR and{2
have both depth at least then there exists aR(X )-regular sequencér, . .., x.) which
is alsoQ)(X)-regular, whereX is some finite set of variables.

Proof. An inductive argument reduces to the case 1 and this case is dealt with by a
careful analysis of the proof oB[ Proposition 9.1.3]. Namely, let; € m be R-regular
and chooses, ..., z, € msuch thatm = (zy,...,z,)R. As explained in the proof of
Lemma2.3 the elemenff = 21 + 22X + -+ + 2, X" ! is Q(X)-regular. | claim thatf

is R[X]-regular. Indeed, suppogg = 0in R[X] with g # 0. SinceX is regular, we may
divide out a power ofX and assume thathas non-zero constant tegne R. However,
fg = Oyieldsz,y = 0, so thaty = 0 by the regularity ofr,, contradiction. Thereforey;

is R[X]-regular whencer(X)-regular, as required. O

2.5.Remark.A simple modification of this proof shows that(ffhas positives-depth, then
we can findr € aR(X) which is simultaneously’(X)-regular and2( X )-regular.

2.6. Strong depth. Call an element € R astronglyQ2-regular element, ifx is Q2-regular
andQ) is z R-adically separated. More generally, a sequénge. . ., x.) is calledstrongly
Q-regular, if eachx;4 is stronglyQ/(z1,...,z;)Q2-regular. The maximal length of a
strongly Q-regular sequence will be called tlstrong depthof 2 and will be denoted
s-depth(€2). For finitely generated modules all three depth variants are equal, but in
general we only have inequalitieglepth (2) < n-depth(2) < depth(€2). Even if the
latter two are equal, the former can still be smaller: the strong depth of the nddrden
Example4.13is zero, whereas its (naive) depth is two. Moreover, we cannot increase the
strong depth simply by passing to an extensifrx ).
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2.7. Subdimension. Recall that thedimensiondim(2) of an R-modulef? is the dimen-
sion of R/ Anng(2). (Caveat: wher is an ideal ofR, one often callslim(R/I), the
dimension of thedeal I, which is in general different from the dimension of tmedule
1.) By thesubdimensiomnf €2, we mean the minimum of allim(1T) for IT C € running
over all non-zero submodules 06f We denote the subdimension @fby subdimg(€2).

The subdimension is completely determined by the associated prinfies of

2.8.Lemma. The subdimension of aR-modulef? is the minimum of théim(R/p) for p
running over all associated prime idealsf

Proof. If p is an associated prime 61, then R/p is isomorphic to a submodule 1.
Conversely, ifll; C II, are submodules d?, thendim(IT;) < dim(IIy). Hence in the
definition of subdimension, we may restrict ourselves to non-zero cyclic submodules. Let
w be a non-zero element 6f and putH := Rw, so thatH = R/ Anng(w). By [5,
Theorem 6.1], there is an associated prignef 2 containingAnng(w) and whence in
particularR/p has dimension at mogim (H). O

3. THE VANISHING OF EXT AND TOR

Let R be a Noetherian ring and an arbitraryR-module. The flat dimension &2 is
given as the largest for which Torff(~, Q) is not identically zero. Therefore, we would
like to have some simple criteria for its vanishing. Sifoe commutes with direct limits,
it suffices to check thafor’! (M1, Q) vanishes for all finitely generatd@-modulesM. It is
well-known that a finitely generatefd-module M admits aprime filtration, that is to say,
there is an ascending chain of submodules My, C M; C --- C M, = M with each
subsequent quotiert/; /M, isomorphic to a cyclic module of the forf/p; for some
prime idealp; of R. Moreover, if Anng (M) has height: (respectivelyM has dimension
d), then the prime ideals; occurring in a prime filtration of\/ all contain Anng (M)
whence, in particular, all have height at leasfrespectively, allR/p; have dimension at
mostd). Therefore, we proved the following result.

3.1.Lemma. Let R be a Noetherian ring an€ an R-module. If for some € N and for
all prime idealsp of R, we haveTor’(R/p,Q) = 0, thenQ has flat dimension at most
e— 1.

More generally, ifTor®(R/p, Q) = 0 (respectivelyExt%(R/p, Q) = 0) for all prime
idealsp with dim R/p < d and if M is a finitely generated?-module of dimensiod,
thenTor (M, Q) = 0 (respectivelyExt% (M, Q) = 0). Similarly, if Tor(R/p,Q) = 0
(respectivelyExt % (R/p, ©2) = 0) for all prime idealsp of height at leash and ifa is an
ideal of heighth, thenTor’(R/a, Q) = 0 (respectivelyExt%(R/a, Q) = 0).

In order to formulate a more local criterion, we need a definition./t.be a Noetherian
ring, p a prime ideal ofR and() an arbitraryR-module. We will denote the residue field
of p by k(p), thatis to sayk(p) := R, /pR,.

3.2.Definition. Then-th Betti numbeof 2 atp is the (possibly infinite) dimension of the
k(p)-vector spac@or’™ (k(p),Q,) and is denoted b2 (p; Q), or simply, byg, (p; Q) if
the ring is understood. Similarly, theth Bass numbep’, (p; 2) is defined as the dimen-
sion of thek(p)-vector spacé&xty, (k(p), ).

3.3.Proposition. Let R be a Noetherian ringf2 an R-module and € N. If ﬁf(p; Q)=0
for all j > e and all prime idealy of R, then( has flat dimension at most
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Proof. In view of Lemmas3.1, it suffices to show thdforf+1(R/p, ) = 0 for all prime
idealsp of R. In fact, we will prove the stronger statement tﬁh;trf(R/p, ) = 0 for
all j > e and allp. To this end, we will perform a downward induction on the height
of p. Assume first that = dim R, so thatp is a maximal ideal ofR. Letj > e and let
7 be an arbitrary element dforf“(R/p, Q). Clearly,pr = 0. On the other hand, since
5]3(;3; Q) = 0, we can find some ¢ p, such thatr = 0. Sincep is maximal, we can find
somet € R and somen € p, such thatst + m = 1. It follows thatT = stT + m7 = 0,
showing thafTor (R /p, Q) = 0.

Next, suppose the claim proven for all prime ideals of height at least and letp be
a heighth prime ideal ofR. Note that by Lemma&.1, our induction hypothesis actually
gives thatTorf(R/a, Q) = 0 for each ideah of height at least: + 1 and eachj > e.
Fix somej > e. Let# be an arbitrary element Gﬂ‘orf‘(R/p, Q). Since by assumption
ﬂf(p; Q) = 0, we can find some ¢ p such thated = 0. From the exact sequence

0—R/p-“>R/p—R/n—0
with n := p + xR, we get part of a long exact sequence
Torf, 1 (R/n,Q) — Torf(R/p, ) Torf(R/p, Q).
The first of these modules is zero by the inductive hypothesis and the argument above. In

other words, we showed thatis not a zero-divisor orTorf(R/p, ). Sincez = 0, this
implies that? = 0, as required. g

Note that the proof gives the following more precise resiflts; (p; 2) = 0 for all
j > e and all prime idealsy of R with dim R/p < d, thenTorf(M, Q) = 0 for every
finitely generated?-module)M of dimension at most. By the same argument, taking into
account the contravariancy Bkt (-, 2), we get the following criterion for the vanishing
of anExtfunctor.

3.4.Proposition. Let R be a Noetherian ring ané an R-module. Letl € N ande €
N U {oo}. If pf,(p; Q) = 0forall j < e and all prime ideal with dim R/p < d, then
Ext},(M, ) = 0 for everyj < e and every finitely generatefl-module)/ of dimension
at mostd. |

The main result in this section is a local criteria for flat dimension in terms of residual
homological dimension (seg..3).

3.5.Theorem. Let R be a Noetherian local ring an€ an R-module of finite projective
dimension. Then the following numbers are all equal

o the flat dimensioffl.dim (£2) of Q;

e the maximum of altes.dimp, (€2, ), wherep runs over the prime ideals dt;

e the maximum of allepth(R;) — depthy_(€2,), wherep runs over the prime
ideals for whichdepthy () is finite.

Proof. The equality of the first two numbers is merely a reformulation of Propositiim
terms of residual homological dimension. In order to prove equality with the third, we have
to show in view of ) that if fl.dim (Q2) = res.dim (€2, ) for some prime, thendepth ()

is finite. Suppose not and lgtbe the depth of?,. After possibly taking an extension of
the formR, C R,(X), which is harmless in this case in view of Lemidd, we may
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assume by Lemm2 4that there exists gtuplex which is simultaneouslyz,-regular and
2,-regular. Since R, is an associated prime afR,, we get an exact sequence

0—k(p) = Ry /xR, =V —0

for some (cyclic)R,-moduleV. From theTor long exact sequence we get an exact se-
quence

Tor. 2y (V. Q) — Torf (k(p), Q) — Tor!™ (Ry /xRy, D).
wheree := fl.dim(€2). Hence, the left most module is zero, and so is the right most

module by the regularity of the sequence Therefore also the middle module vanishes,
contradicting thaBZ (p; Q) # 0. O

This result in conjunction with?) shows that the Auslander-Buchsbaum formula has
a local character: if after localizing the residual homological dimension becomes smaller,
then the Auslander-Buchsbaum formula holds. As an immediate corollary we reprove
another result of Auslander and Buchsbaum.

3.6.Corollary ([1, Theorem 2.4]) A module of finite projective dimension over a Noe-
therian local ring R has flat dimension at most the maximum ofdaipth (R,,), wherep
runs over the prime ideals d@?. In particular, fl.dimz(2) < dim R and this inequality is
strict if R is not Cohen-Macaulay. |

That the bound in Corollar§.6is sharp, is illustrated by the two-dimensional local ring
R = Kl[z,y,2]]/(2?, 2y, 22) K[z, y, 2]], with K a field. Ifp := (z,y)R, thenR, is
isomorphic toK ((z))[[y]], so thatR, /yR, has flat dimension one, althoughitself has
depth zero. Note thak, /y R, has actually infinite depth.

4. DEPTH FORMULAS

We now take a closer look at the depth formulas from the introduction. Throughout,
(R,m) is a Noetherian local ring arid is an arbitraryR-module.

4.1. The naive depth formula. Recall that we said that a module satisfies thenaive
depth formulaif its naive depth equals its depth, that is to say, if there exist3-aggular
sequence of lengtlepth (€2). Note that if the naive depth formula holds@n then it is
not necessarily the case that it also holds in a deformd&Riorf, for x someQ-regular
element (for a counterexample, consider the modulé,iEkample 7.3] and th@-regular
elementz). However, we can always choose @rregular element which does preserve
the naive depth formula: simply take the first element if2aregular sequence of length
depth (). Lemma2.3 shows that2(X) satisfies the naive depth formula, whe¥eis a
tuple of indeterminates of length equal to the deptkof

A sufficient condition for the naive depth formula to hold is for e&tx () to have only
finitely many associated prime ideals, whareuns over all weakly2-regular sequences
([3, Exercise 9.1.10]). This is in particular trueifis finitely generated over a Noetherian
local R-algebra. In fact, we can prove a stronger property, for which we need another
definition.

4.2. The strong depth formula. We say thaf? satisfies thestrong depth formulaf its

strong depth equals its depth (g6 for the definition of strong depth). In particular, if

the strong depth formula holds, then so does the naive depth formula. Recall that a module
Q is calleduniversally separated /11 is separated for every idehbf R (equivalently,

if eachI is closed in the adic topology). Hencelfis universally separated and satisfies
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the naive depth formula, then it also satisfies the strong depth formula. This is in particular
true if Q is finitely generated over a Noetherian loéahlgebra, so that we showed:

4.3.Corollary. Let R — S be a local homomorphism of Noetherian local rings. Then
every finitely generated-module satisfies the strong depth formula (whence the naive
depth formula) when viewed as &imodule. |

4.4. The subdimension inequality. We say that arkR-module(? satisfies thesubdimen-
sion inequalityif

4) depth () < subdimpg(Q).
(Seet2.7for the definition of subdimension).

4.5.Proposition. If z is a stronglyQ2-regular element an€ /(2 satisfies the subdimension
inequality, then so does.

Proof. Lete := depth(Q2), so that?; := Q/x has deptte— 1. According to Lemma&.8,
we need to show that < h := dim R/p for every associated prime of Q. We may
assume that is a maximal associated prime Gf Choosev € 2 such thap = Ann(w).
Sincex is stronglyQ-regular, there exists somesuch thatv ¢ z"Q. If w = 26, then
xpf = 0 whencepfd = 0, sincex is Q-regular. Hence is also equal tcAnn(6) by
maximality. Applying thisn times, we may assume from the start that¢ zQ). Let
H be the submodule a2 generated by, so thath = dim H. Let H; be the (non-
zero) submodule generated by the image @fi 2;. Since there is natural surjective map
H/xH — Hi, we havedim(H;) < dim(H/zH) < h — 1, where the last inequality
follows from the fact that: is alsoH-regular. By assumptior, — 1 < dim(H;), so that
putting both inequalities together, we get 1 < h — 1, as required. |

Without any separatedness assumption, the conclusion is false. For instaaseén
Example4.13does not satisfy the subdimension inequality, but its deform&ior2 by
anQ-regular element does.

4.6.Theorem. Let R be a Noetherian local ring anf an R-module of finite depth. R
satisfies the strong depth formula, then it also satisfies the subdimension inequality.

Proof. We induct ons := depth(Q2). If s = 0, the subdimension inequality holds trivially,
S0 we may assume> 0. Let (z1,...,z,) be a strond2-regular sequence and pt :=
Q/x19Q. The depth of2; is s — 1 by [3, Proposition 9.1.2], and its strong depth is clearly
s — 1, as witnessed by the strofi -regular sequencgrs, . . ., xs). Hence our induction
hypothesis implies thd®; satisfies the subdimension inequality, and therefore so does
by Propositiont.5. O

4.7. Corollary. If Q has finite depth and(X) is universally separated for every finite
tuple of indeterminateX’, then() satisfies the subdimension inequality.

Proof. By Lemmaz2.3 the naive depth formula holds for sof¥X) and hence so does
the strong depth formula by the remark preceding CorolaBy Therefore)(X) satisfies
the subdimension inequality by Theorén®. However, it is easy to see using Lemn2as
and2.8thatQ(X) satisfies the subdimension inequality if and onlf2itloes. O
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4.8. The Ischebeck inequality. Our next condition is based on Ischebeck’s lemma (see
[5, Theorem 17.1]), of which the Ischebeck inequality will be a corollary (see Theo-
rem4.10below). Recall thaf) is said to satisfy théschebeck inequalityif

(5) depth () < depthp(p; Q) + dim R/p

for every prime ideap of R. By considering an associated prigef (2, we see that every
module satisfying the Ischebeck inequality must have finite depth, and in fact, in view of
Lemma2.8, we get:

4.9. Corollary. Any module satisfying the Ischebeck inequality also satisfies the subdi-
mension inequality.

Any module of depth zero clearly satisfies the Ischebeck inequality, and so does any
module of depth one, singe is then not an associated prime. For an example of a module
of finite depth in which the Ischebeck inequality fails, see Exarpl&below. To bet-
ter understand the failure of Ischebeck’s Lemma, we start with showing some equivalent
conditions (note that4(10.2 is the usual formulation of Ischebeck’s lemma).

4.10.Theorem. Let R be a Noetherian local ring anf2 an R-module of finite depth. The
following properties of2 are equivalent.
(4.10.1) The Ischebeck inequalif) holds for2.
(4.10.2) For every finitely generate®-module)M and every; less thandepthz(€2) —
dim M, we have .
Ext®(M,Q) = 0.
(4.10.3) For every ideak of R, we have
depthr(Q) < depthp(a; Q) + dim R/a.
(4.10.4) For every prime ideap of R, we have
depth(Q) < depthp (Qp) + dim R/p.

Proof. Let s := depth(£2) and leta be an ideal ofR with i := dim R/a. Assume first
that (4.10.9 holds and apply it with\/ := R/a to conclude thaExts(R/a, Q) = 0 for
all i < s — h. However, by 8), this means thatepth(a; Q) is at leasts — h, showing that
(4.10.3 holds. Clearly, 4.10.3 implies the Ischebeck inequality.

In general, fop a prime ideal, we have by[ Proposition 9.1.2] an inequality

depthp(p; ) < depthp ().

From this it is immediate that the Ischebeck inequality implies{.9.

Finally, assuming that4(10.4 holds, we want to show that then als©10.29 holds.
Let h be the dimension of/. By Proposition3.4, it suffices to show tha&g(p; Q2)=0
for all j < s — h and all prime idealp such thaidim R/p < h. However, this is clear
since by ¢.10.9, the depth of2, is at leasts — h, so that by §), all ufé(p; Q) = 0 for
7 <s—h. O

4.11.Remark. Note that b) is trivially satisfied for the maximal ideal as well as for all
minimal prime idealg such thatdim R = dim R/g. In particular, if R has dimension
one, then everyz-module of finite depth satisfies the Ischebeck inequality.

4.12.Corollary. Let R be a Noetherian local ring anf an R-module. If() satisfies the
Ischebeck inequality and is an Q-regular sequence, thefl /x() satisfies the Ischebeck
inequality too (viewed either as a®-module or ank/x R-module).
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Proof. By induction, we only need to treat the case of a sirfgleegular element. Let

p be a prime ideal oRR. If z ¢ p then(Q/zQ), is zero whence has infinite depth and
(4.10.9 holds atp. In the remaining case, the two depths4nl(.4 both have dropped by
one, and so also this case holds. O

4.13. Example. Let R be a complete two-dimensional regular local ring, for instance
R := K[[z, y]] with K afield. LetQ) := R@Frac(R/yR), whereFrac(R/yR) denotes the
field of fractions ofR/y R. Clearly,z is Q-regular, and sinc®/z) = R/x R, the sequence
(z,y) is Q-regular. On the other hang,is a zero-divisor orf2, so that(y, x) is not{2-
regular. Thereforedepth(Q2) = 2, butdepth(yR; Q) = 0, showing that the Ischebeck
inequality fails forQ). Note thats-depth(€2) = 0 so that the strong depth formula fails,
whereas the naive depth formula holds.

4.14.Proposition. Let R be an equidimensional, catenary Noetherian local ring. Any
balanced big Cohen-Macaulay-module satisfies the Ischebeck inequality.

Proof. Let d be the dimension ol and letp be a prime ideal ofR2. SinceR is equidi-
mensional and catenanyhas height: := d — dim R/p. Choose a system of parameters

(x1,...,2q) INn Rwith z1,... 2, € p. LetQ be a big balanced Cohen-Macaulay module,
so that in particulatzy, . .., z4) is Q-regular. It follows thatlepth(p; £2) is at leasth, so
that (6) holds. O

Note that a Cohen-Macaulay local ring is automatically equidimensional and catenary,
and so is any complete local domain. Corolldrg has the following converse:

4.15.Theorem. Let R be a Noetherian local ring an@ an R-module. Al)(X) satisfy the
Ischebeck inequality if and only if a2(X)/xQ(X) satisfy the subdimension inequality,
whereX is a finite tuple of indeterminates ards an2(.X)-regular sequence with entries
in R(X).

Proof. One direction is immediate from Corollariésl2and4.9. To prove the converse,
it suffices, by induction on the number of variabl¥s to show that itself satisfies the
Ischebeck inequality. We will verify conditiord) for each prime ideah of R. Lets :=
depth(Q), let h := dim R/p and lete := depth(p; ). By Lemma2.3, there exists an
Q(X)-regular sequencery, ..., z.) insidepR(X), for some ¢-)tuple of indeterminates
X. LetR := R(X)/(z1,...,2.)R(X) andQ’ := Q®R'. By assumption, the depth of

is at most its subdimension. Sindepth(pR’; ') = 0, there exists an associated pripie
of Q' with pR’ C p’. In particular, the depth d?’ is at mostdim R’ /p’ < dim R/p = h.
Moreover, the depth d?’ is equal tos — e by [3, Proposition 9.1.2], so that we showed the
desired inequalitg — e < h. O

Immediately from this, Corollarg.3and Theoren.6, we get:

4.16.Corollary. Let R — S be a local homomorphism of Noetherian local rings. Then
every finitely generated-module satisfies the Ischebeck inequality when viewed as an
R-module. O

Using residual homological dimension (sge3), we may rephrase conditiod.(L0.9
over an equidimensional, catenary Noetherian local ings follows: (2 satisfies the Is-
chebeck inequality if and only if for all prime idegifor which depthp (©,) is finite, we
have an inequality

(6) res.dimp, () + CM-def(R,) < res.dimpg(£2) + CM-def(R),
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where theCohen-Macaulay defectM-def(R) is the difference between the dimension
and the depth oR. In particular, over a Cohen-Macaulay local ring, we get:

4.17.Corollary. Let R be a local Cohen-Macaulay ring ardd an R-module. IfQ2 has
finite depth and finite projective dimension, tlf¢satisfies the Ischebeck inequality if and
only if res.dim({2,) < res.dim(2) for every prime ideab for which depth_(€2,) is
finite. O

4.18. The Auslander-Buchsbaum formula. Recall that a modul@ is said to satisfy the
Auslander-Buchsbaum formulla

fl.dimp () + depth(2) = depth(R).

In particular, any module satisfying the Auslander-Buchsbaum formula must have finite
depth and finite projective dimension. In view @j (satisfying the Auslander-Buchsbaum
formula is therefore equivalent with the equalitylim (©2) = res.dim ().

For an example of a module of finite depth and finite projective dimension for which
the Auslander-Buchsbaum formula fails, taR€rom Example4.13 Indeed,(? is a big
Cohen-Macaulay which is not balanced (and in particular not flat). More@veas finite
projective dimension whence finite flat dimension, showing that the Auslander-Buchsbhaum
formula fails. Seej, Exemple 3.11] or§, Example 8.3] for an example of a non-balanced
big Cohen-Macaulay module which is also separated, and hence for which the Auslander-
Buchsbaum formula fails (there can be no separated non-balanced big Cohen-Macaulay
module over a two-dimensional ring by Theoré&m). Nonetheless, one direction in the
Auslander-Buchsbaum formula always holds.

4.19.Lemma. If R is a Noetherian local ring an€? an R-module, then
fl.dimp(?) + depth(2) > depth(R).
More generally, ifa is an arbitrary ideal ofR, then
fl.dimp(2) + depthy(a; Q) > depthy(a; R).

Proof. There is nothing to show if the depth or the projective dimensiof afe infinite,
so that we may moreover assume that both are finite. 2Btle first assertion is equiv-
alent withres.dim (2) < fl.dim(£2), which in turn follows from the definition of residual
homological dimension (alternatively, the first assertion follows from the second by letting
a be the maximal ideal of). As for the second assertion, kebe thea-depth of(2 and let
e be its flat dimension. We will induct on If e = 0, so that? is flat, then anyR-regular
sequence i§)-regular, so that in faai-depth ;(a; Q) > s.

Therefore, assume> 0. Choose a short exact sequence

0—-II—-®—-Q—0

with & flat. It follows thatII has flat dimensioa — 1. Therefore, by our induction hypoth-
esis, itsa-depth is at least — e + 1. Sincedepth(a; ) = s by the previous argumert®,
hasa-depth at least — e by (3), as claimed. O

4.20.Corollary. Any flat module of finite depth satisfies the Auslander-Buchsbaum for-
mula.

Proof. One direction in the equalitepth(2) = depth(R) follows from Lemma4.19
and the other from3). O
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4.21.Proposition. Let R be a Noetherian local ring anf) an R-module. Letx be a
sequence which is botR-regular andQ2-regular. If Q2 satisfies the Auslander-Buchsbaum
formula, then so doe’/x(2 when viewed as aR/x R-module.

Proof. By induction on the length of the sequence, we only need to treat the case that
x is an R-regular andQ-regular element. LeR; := R/zR and); := Q/z(, and let

e := fl.dimg(Q). Since allTor(R;,Q) vanish forn > 0, any flat resolution of2
remains flat after tensoring witR;. Hencefl.dimpg, (©21) < e. On the other hand, since

x is both R-regular and-regular, Tor? (k, Q) = Tor® (k,Q,) for all n > 0, showing
thatres.dimp () = res.dimpg, (21). Sincef? satisfies the Auslander-Buchsbaum formula,

e = res.dimpg(Q), leading to the inequalities = res.dimg, (1) < fl.dimg, (1) < e
showing that?, satisfies the Auslander-Buchsbaum formula too. O

4.22.Proposition. Let R be a Noetherian local ring anft an R-module. If2 satisfies the
Auslander-Buchsbaum formula, then it also satisfies the Ischebeck inequality and hence
the subdimension inequality.

Proof. To verify condition ¢.10.9, letp be a prime ideal of? such thatepthp_ (Qp) is
finite. Since residual homological dimension never exceeds flat dimension,

res.dimp, (€2p) < fl.dim(2) = depth(R) — depth(Q),
where the last equality is just the Auslander-Buchsbaum formula. F2hmé then get
depth(Q2) < depth(R) — depth(Ry) + depthp_ (€).

On the other hand, since the Ischebeck inequality hold®fiiself, we havelepth(R) <
depth(R,) + dim(R/p). Putting both inequalities together therefore yieldld0.4. O

The Ischebeck inequality for small depths.We conclude with proving some cases in
which the Ischebeck inequality holds. Typically the higher the depth of a module, the
stronger the separatedness condition needed.

4.23.Lemma. Let R be a Noetherian local ring anf an R-module. Let: be a strongly
Q-regular element and lgi be a prime ideal ofR. If depth(p;2) = 0, thenp is strictly
contained in an associated prime @f z(2.

Proof. Sincep is contained in some associated prime idedRddy [3, Proposition 9.1.4],
we may assume without loss of generality thatself is an associated prime 6f. By
the same argument as in the proof of Lermna we may choose some ¢ z(2 such that
p = Ann(w). Sincep annihilates the non-zero imagewfin /z(2, it must be contained
in an associated primeof Q/z) by [5, Theorem 6.1]. Clearlyy & g sincez ¢ p. O

4.24.Corollary. Any module of depth at most one or any separated module of depth two
satisfies the Ischebeck inequality.

Proof. We already argued that any module of depth at most one satisfies the Ischebeck
inequality. So assuméepth () = 2. SupposeX) does not hold for some (non-maximal)
prime idealp. The only way this can be the case islifpth(p;Q?) = 0 anddim R/p =

1. By Lemmas2.1 and2.3 we may assume, after possibly making a base change over
R C R(X), that there exists aft-regular element. Since(? is separatedy is strongly
Q-regular. Hence, by Lemm@&a23 there is an associated primef Q/xQ2 such thap ¢ g.
SinceR/p is one-dimensionaly must be the maximal ideal, showing t§atz$2 has depth

zero. On the other hand,is 2-regular and hencg/z2 has depth one bys[ Proposition

9.1.2], contradiction. O
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4.25.Corollary. Let R be a three-dimensional, equidimensional, catenary Noetherian
local ring and2 an R-module. If2 is complete, then it satisfies the Ischebeck inequality.

Proof. Since(2 is complete, it is non-degenerated and hence has finite depth. By Corol-
lary 4.24, we only need to treat the case tlfahas depth three. This means tlbats a

big Cohen-Macaulay module. However, sirfieds complete, it is therefore a balanced
big Cohen-Macaulay module by,[Corollary 8.5.3] and hence we are done by Proposi-
tion4.14 O

I do not know whether every complete module of depth three satisfies the Ischebeck
inequality.

4.26.Corollary. LetR be afour-dimensional, equidimensional, catenary Noetherian local
ring and 2 an R-module of finite projective dimension.(¥fis complete and satisfies the
subdimension inequality, théhsatisfies the Ischebeck inequality.

Proof. Inspecting the previous proofs, one sees that the only instance in which we have
not yet verified §), is whenp has height two anf has depth three. We need to then show
thatdepth(p; Q) is at least one. Towards a contradiction, suppose it is zero, s@ fhat
contained in an associated prinmpef Q by [3, Proposition 9.1.4]. Sincg has height two,

R/q has dimension at most two and hence violates the subdimension inequality. O

5. THE AUSLANDER-BUCHSBAUM FORMULA: THE COHEN-MACAULAY CASE

In this section,R will always be a local Cohen-Macaulay ring. We investigate condi-
tions which guarantee that a module ovesatisfies the Auslander-Buchsbaum formula.
We start with an extremal case.

5.1. Theorem. Let R be a local Cohen-Macaulay ring of dimensidn Let (2 be an ar-
bitrary R-module of finite depth and finite projective dimension. If eitenas depth
zero or flat dimensiod, then it also satisfies the other condition and hence the Auslander-
Buchsbaum formula.

Proof. Suppose&? has depth zero. By Lemnm@a19 the flat dimension of? is at leastd
and by Corollana.6, it is at mostd, and hence the Auslander-Buchsbaum formula holds.

Conversely, towards a contradiction, suppose thats flat dimensior, but positive
depth. Since neither flat dimension nor depth change after an extension of th&farm
R(X) by Lemmaz2.1, we may assume by Lemn®a4 that there exists afk-regular,-
regular element:. Taking a flat resolution of? and tensoring withR/z R yields a flat
resolution of2/x$2 over R/ R. In particular2/z(2 has finite flat dimension as d@y/z R-
module.

Since) has flat dimensiod, By Proposition3.3, there is some prime idegalof R for
which §,(p; €?) is non-zero. However, i is not maximal, then thé?,-module(, has
flat dimension at mosi — 1 by Corollary 3.6, so thatg,(p; 2) = 0. Thereforep must
be the maximal ideal, so thdbor’ (k, Q) # 0, wherek is the residue field oR. Again
by Corollary3.6, the flat dimension of?/z} is at mostdim(R/xR) = d — 1. It follows

thatTorff’/:”R(k, Q/zQ) = 0. However, the lattefor module is isomorphic t@or’ (k, )
sincex is both R-regular and2-regular, contradiction. O

There are two more extremal cases: if the flat dimension is zero, then the Auslander-
Buchsbaum formula always holds by Coroll@r20 On the other hand, 2 has maximal
depth (equal to the dimension &), then the Auslander-Buchsbaum formula might fail
as the non-flat big Cohen-Macaulay module 9n Example 7.3] shows. However, if we
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moreover assume th& is complete whence a balanced big Cohen-Macaulay module by
[3, Corollary 8.5.3], then the Auslander-Buchsbaum formula holds again by an application
of Propositiord.14and the next theorem.

5.2. Theorem. A modulef of finite projective dimension over a local Cohen-Macaulay
ring satisfies the Ischebeck inequality if and only if it satisfies the Auslander-Buchsbaum
formula.

Proof. Suppose the Ischebeck inequality holds, so thatimpg, (€2,) < res.dimpg(Q2)
wheneverlepth, (€2,) < oo by Corollary4.17. By Theorens.5, the flat dimension of2

is equal to the maximum of these local residual dimensions, and hence in this case, equal
to res.dim(f2). The Auslander-Buchsbaum formula therefore holds@)y The converse

was already shown in Propositidn22. O

Since the Auslander-Buchsbaum formula hold<taf and only if it holds forQ2(X) by
Lemma2.1, we obtain from Theorem.15that the Auslander-Buchsbaum formula holds
for © if and only if the subdimension inequality holds for &{(X)/xQ(X) with x an
Q(X)-regular sequence. In particular, in view of Corollary, we proved that if2 has
finite projective dimension and ea€l(X) is universally separated, théh satisfies the
Auslander-Buchsbaum formula. Using Theoré1 we may formulate this in terms of the
strong depth formula. However, since the latter does not deform well under non-strongly
regular sequences, we also have to enforce this:

5.3.Corollary. Let R be alocal Cohen-Macaulay ring arfd an R-module of finite depth
and finite projective dimension. {1/x() satisfies the strong depth formula for eagh
regular sequence, then? satisfies the Auslander-Buchsbaum formula. O

The module in), Example 7.3], already discussed above, is an example of a module for
which the Auslander-Buchsbaum formula fails but the strong depth formula holds. Hence,
we cannot drop the requirement on the deformations in CoraliayAnother immediate
application of Theorers.2can be derived from Corollar.16

5.4.Corollary. Let R — S be a local homomorphism of Noetherian local ringsRlis
Cohen-Macaulay, then any finitely generateanodule of finite projective dimension over
R satisfies the Auslander-Buchsbaum formula aver O

In this result, we may drop the Cohen-Macaulay assumption, as we will show in Theo-
rem6.1below. Combining Corollaryt.24with Theorenb.2, we get:

5.5.Corollary. Let R be local Cohen-Macaulay ring arfd an R-module of finite projec-
tive dimension. If) has depth at most one or(f is separated and has depth two, then it
satisfies the Auslander-Buchsbaum formula. O

Note that Examplé.13shows that the separatedness condition cannot be omitted in the
depth two case. The same argument, using this time Coroll2ésand4.26 yields the
following result.

5.6.Corollary. LetR be a local Cohen-Macaulay ring and I8tbe a completd?-module
of finite projective dimension. ffim R = 3 or if dim R = 4 and(2 satisfies the subdimen-
sion inequality, the) satisfies the Auslander-Buchsbaum formula. O

6. THE AUSLANDER-BUCHSBAUM FORMULA: THE NON COHEN-MACAULAY CASE

We start with proving Corollary.4 without the Cohen-Macaulay assumption.
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6.1. Theorem. If R — S is a local homomorphism of Noetherian local rings, then any
finitely generated’-modulef? of finite projective dimension ovét satisfies the Auslander-
Buchsbaum formula oveR.

Proof. Let us first show that'Forff(M ,Q) is separated for every finitely generatéd
module M and everyn > 0. We induct onn, where the case = 0 follows from the
fact that M ®@pg  is finitely generated as af-module. Forn > 0, let N be a first
syzygy of M. From the long exact sequence Tar, we have an inclusioffor? (M, Q) <
Torffl(N, Q) for everyn > 0 (and in fact, fom > 1 these are isomorphisms). By induc-
tion, the second module is separated, whence so is the first.

We now turn to the proof of the assertion. Lebe the flat dimension o2 and letp
be maximal among all prime ideals such tiat*(R/p, Q) # 0. If p is not the maximal
ideal, then we can chooseso that

0—R/p~>R/p—R/a—0

is an exact sequence for some proper idezlheight strictly larger thap. Tensoring with
Q yields part of a long exact sequence

Tor (R /p, Q) Tor (R /p, Q) — Tor(R/a, Q)

By the maximality ofp, Lemma3.1 yields Tor®(R/a,2) = 0. Hence multiplication
with 2 on Tor®(R/p, Q) is surjective (and in fact bijective). However, as we argued,
Tor(R/p, Q) is separated and therefore must be zero. This contradiction shows that
has to be the maximal ideal. In particuless.dim (2) = e, so that we are done bg), O

6.2.Proposition. If R is ad-dimensional Noetherian local ring of Cohen-Macaulay defect
one, then any depth ze®-module of finite projective dimension satisfies the Auslander-
Buchsbaum formula.

Proof. By Lemma4.19, the flat dimension of? is at least! — 1, and by Corollang.6it is
at mostd — 1. (]

Under the same hypotheses, does the other extremal case, namelpwhasrflat di-
mensiond — 1, also imply the Auslander-Buchsbaum formula? And is the assumption on
the Cohen-Macaulay defect necessary? We finish by completing the proof of (i) and (ii) in
Theoreml. 1

6.3.Corollary. Any module? of finite depth and finite projective dimension over a one-
dimensional Noetherian local ring satisfies the Auslander-Buchsbaum formula.

Proof. If R is Cohen-Macaulay, then the result holds by Corolfarfy If R is not Coh-
en-Macaulay, thef is flat by Corollary3.6 and hence satisfies the Auslander-Buchsbaum
formula by Corollary4.2Q O

6.4.Theorem. Any separated module of finite projective dimension over a two-dimension-
al Noetherian local ring satisfies the Auslander-Buchsbaum formula.

Proof. The Cohen-Macaulay case was already treated by Cordll&arso we may assume
that R has depthy < 2. Let (2 be a separate®-module of finite flat dimensiom and
(necessarily finite) depth. We need to show that+ e = ¢. In any casee < 1 by
Corollary 3.6, ands < ¢ by (2). Assume first thag = 1. If s = 0, thenQ) cannot be flat
whencee = 1 and we are done. So assume 1. Henceres.dim (§2) = 0 by (2), meaning
thatTorf*(k, Q) = 0. Therefore is flat by [9, Theorem 6.5].
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So remains the case that= 0. In particular,s = 0, and we want to show that also
e = 0. SinceR has depth zero, we have an exact sequence

@) 0—-k—R—-N-—=0

for some (cyclic)R-moduleN. Tensoring with yields Tor? (k, Q) = Tord (N, Q) = 0.
The flatness of2 now follows from another application of[ Theorem 6.5]. O
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