
A GENERALIZATION OF THE AUSLANDER-BUCHSBAUM FORMULA

HANS SCHOUTENS

ABSTRACT. Let R be a Noetherian local ring andΩ an arbitraryR-module of finite depth
and finite projective dimension. The flat dimension ofΩ is at leastdepth(R)−depth(Ω)

with equality in the following cases: (i)Ω is finitely generated over some Noetherian local
R-algebraS; (ii) dim(R) = 1; (iii) dim(R) = 2 andΩ is separated; (iv)R is Cohen-
Macaulay,dim(R) = 3 andΩ is complete.

1. INTRODUCTION

TheAuslander-Buchsbaum formulastates that

proj.dimR Ω + depthR(Ω) = depth(R)

for any finitely generatedR-moduleΩ of finite projective dimension over a Noetherian
local ring R (see for instance [5, Theorem 19.1]). Recall that theprojective dimension
proj.dim(Ω) of Ω is the minimal length of a projective resolution ofΩ, and thedepth
depth(Ω) of Ω, is the length of a maximalΩ-regular sequence. This formula is no longer
true, if we drop the requirement thatΩ is finitely generated. The reasons for this failure
are threefold: a non-finitely generated moduleΩ can (i) be flat but not free; (ii) have
infinitely many associated primes; and (iii) be non-separated. Regarding (i), projective
dimension is in this context simply the wrong invariant and should be replaced by flat
dimension. Recall that theflat dimensionor weak dimensionof Ω, denotedfl.dimR(Ω),
is defined to be the supremum of alli for which TorR

i (·,Ω) is not identically zero, or,
equivalently, the minimal length of a flat resolution ofΩ. Note that since a flat module has
finite projective dimension, a module has finite flat dimension if and only if it has finite
projective dimension. As for (ii), we can no longer define the depth ofΩ as the maximal
length of anΩ-regular sequence (we will call the latter invariant therefore thenaive depth
of Ω and denote itn-depth(Ω)). Instead,depth(Ω) is defined by means of the vanishing
of certainExt functors (see (3) below). Finally, (iii) is a fact of life and is responsible for
the additional separatedness constraint on our modules. In particular, Nakayama’s lemma
does no longer hold and a non-zero module can therefore have infinite depth.

The depth formulas. The following fourdepth formulas(two equalities and two inequal-
ities) will play an important role in this paper; they always hold ifΩ 6= 0 is finitely gener-
ated:

Auslander-Buchsbaum formula:

fl.dim(Ω) + depth(Ω) = depth(R);
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naive depth formula:

n-depth(Ω) = depth(Ω);

Ischebeck inequality: for every prime idealp of R, we have

depth(Ω) ≤ depth(p; Ω) + dim R/p;

subdimension inequality: for every associated prime idealp of Ω, we have

depth(Ω) ≤ dim R/p.

For non-finitely generated modules, any of these four depth formulas may fail to hold,
and this paper is for a large part devoted to understanding the relationship between these
failures. Among other things, we will establish the following implications:

Auslander-Buchsbaum formula=⇒ Ischebeck inequality=⇒ subdimension inequality.

As far as the two equalities are concerned, they are in general only inequalities giving a
lower bound for depth, namely

n-depth(Ω) ≤ depth(Ω) and depth(R)− fl.dim(Ω) ≤ depth(Ω).

Even if the ringR is regular, there are still plenty of examples of modules of finite depth
for which the Auslander-Buchsbaum formula fails: for instance, anyR-moduleΩ which
is a big Cohen-Macaulay module but which is not balanced (for a construction of such a
module, see4.13). Indeed, such a module is not flat but has maximal depth. Nonetheless,
there are also many situations in which we can prove the Auslander-Buchsbaum formula,
and I will now review some of these. Any module of depth zero over a Noetherian local
ring of Cohen-Macaulay-defect at most one satisfies the Auslander-Buchsbaum formula;
see Theorem5.1 and Proposition6.2. The Auslander-Buchsbaum formula holds in low
dimensions, under some additional separatedness conditions. Our main result in that regard
is:

1.1.Theorem. LetR be ad-dimensional Noetherian local ring. LetΩ be an arbitraryR-
module of finite depth and finite projective dimension. The Auslander-Buchsbaum formula
holds, that is to say,

(1) fl.dimR(Ω) + depthR(Ω) = depth(R),

under any of the following additional hypotheses: (i)d = 1; (ii) d = 2 andΩ is separated;
(iii) R is Cohen-Macaulay,d = 3 andΩ is complete.

This result will be proved in§§5–6. Another class of modules for which the Auslander-
Buchsbaum formula holds are the finitely generated modules over localR-algebras (see
Theorem6.1). In particular, we get the following special case.

1.2.Theorem. For any local homomorphismR → S of Noetherian local rings, we have
an equality

fl.dimR(S) + depthR(S) = depth(R),

providedS has finite projective dimension overR. �
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1.3. Residual homological dimension.We remind the reader of another formula regard-
ing the depth of an arbitrary module, due to Bartijn-Strooker ([2, Théor̀eme 4.1]): ifΩ has
finite depth and finite projective dimension, then

(2) depth(R)− depth(Ω) = res.dim(Ω),

whereres.dim(Ω) is theresidual homological dimensionof Ω defined as the supremum
of all n ≥ 0 for which TorR

n (k,Ω) 6= 0, wherek is the residue field ofR (if no suchn
exists, we putres.dimR(Ω) := ∞). This formula hinges on the dual nature ofExt•R(k,Ω)
andTorR

• (k,Ω). By this formula,Ω satisfies the Auslander-Buchsbaum formula if and
only if the inequalityres.dim(Ω) ≤ fl.dim(Ω) is an equality, thus yielding a more subtle
connection between the vanishing of certainExt and Tor functors. Put differently, the
Auslander-Buchsbaum formula is a generalized local flatness theorem. For instance, the
following result, an immediate corollary of (2), generalizes some flatness criteria of [9]
when we takee = 1 and apply Theorem1.1.

1.4.Theorem. Let R be a Noetherian local ring with residue fieldk and letΩ be anR-
module of finite projective dimension. Letq := depth(R) andp ≤ q. If Ω satisfies the
Auslander-Buchsbaum formula andTorR

n (k,Ω) vanishes for alln = p, . . . , q, thenΩ has
flat dimension strictly less thanp. �

We start in§2 with recalling the definition of depth for non-finitely generated modules.
In §3, we derive some local criteria for the vanishing of certainExtandTor functors, which
in turn will yield a local characterization of flat dimension. In§4, we study in more detail
the four depth formulas discussed above. The last two sections are then devoted to our
main results on the Auslander-Buchsbaum formula.

2. DEPTH AND DIMENSION

In this section, we review the notion of depth for non-finitely generated modules. We
take the treatment from [3, §9.1], albeit presented without reference togradeor Koszul
sensitivity (see also [4]) and only over Noetherian local rings. Formulating depth in terms
of regular sequences is a delicate matter if the moduleΩ is not finitely generated, even
over a Noetherian local ring(R,m). Firstly, it is possible that Nakayama’s Lemma fails,
so thatΩ = mΩ withoutΩ being zero. When this is the case, we will callΩ degenerated.
Secondly, even if the depth is positive, this is not necessarily witnessed by the existence of
a regular element. Nonetheless, it does so after an appropriate extension. For our purposes
it is instrumental that we can detect depth by means of regular sequences after an exten-
sion which does not increase the dimension, contrary to what is done in the more usual
treatments of the subject. This is accomplished by Lemma2.3. To this end, we make the
following definition.

The extensionR ⊆ R(X). For (R,m) a local ring andX a finite tuple of indeterminates,
let R(X) denote the localization ofR[X] atmR[X]. If Ω is anR-module, we will denote
Ω⊗R R(X) by Ω(X) and write its elements as polynomials with coefficients inΩ, that is
to say, we writeωXp for ω ⊗Xp. In the terminology of [8, §4], an extension of the form
R ⊆ R(X) is a scalar extension, that is to say, a faithfully flat and unramified extension.
We will use the following preservation properties of these extensions.

2.1. Lemma. Let R be a Noetherian local ring,Ω an R-module andX a finite tuple of
indeterminates.

(2.1.1) R is regular, Gorenstein or Cohen-Macaulay if and only if so isR(X);
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(2.1.2) dim R = dim R(X) anddepth(R) = depth(R(X));
(2.1.3) Ω is separated if and only if so isΩ(X);
(2.1.4) the associated primes ofΩ(X) are precisely the prime ideals of the form

pR(X) for p ∈ Ass(Ω).

Proof. The first two properties follow from the fact thatR ⊆ R(X) is faithfully flat and
unramified; see [5, §23]. Next we prove (2.1.3), where one direction is clear sinceΩ ⊆
Ω(X). To prove the other direction, we induct on the number of variables, and hence we
may assume thatX is a single variable. SetΩ[X] := Ω⊗R R[X]. Towards a contradiction,
suppose thatΩ(X) is not separated. Therefore, we can find already an elementπ :=
ω0 + ω1X + · · ·+ ωdX

d in Ω[X] which lies in everymnΩ(X). I claim thatπ ∈ mnΩ[X]
for all n > 0. Assuming the claim, we see that eachωi lies in all mnΩ whence must be
zero by our separatedness assumption.

To prove the claim, observe that sinceπ ∈ mnΩ(X), we can findg ∈ R[X] with not all
coefficients inm, such thatgπ ∈ mnΩ[X]. Write g = p + m with p a monic polynomial
andm ∈ mR[X]. In particular,pπ = gπ − mπ lies in mΩ[X]. Sincep is monic, one
readily verifies that thenπ ∈ mΩ[X]. If n = 1, we are done, otherwise,pπ = gπ −mπ
lies in m2Ω[X] and the same argument then yields thatπ ∈ m2Ω[X]. Continuing in this
way, we reach aftern steps thatπ ∈ mnΩ[X], as required.

For the proof of (2.1.4), note thatR(X)/aR(X) ∼= (R/a)(X) for all idealsa ⊆ R.
In particular, ifa is prime, then so isaR(X). We leave it as an exercise to show that if
p := AnnR(ω) is an associated prime ofΩ, whereω ∈ Ω, thenAnnR(X)(ω) = pR(X),
showing that the extended idealpR(X) is an associated prime ideal ofΩ(X). So remains
to show that given an associated primeq := AnnR(X)(π) of Ω(X) for someπ ∈ Ω(X),
thenp := q ∩ R is an associated prime ofΩ andq = pR(X). Without loss of generality,
we may assumeπ =

∑
ωiX

i lies in Ω[X], for someωi ∈ Ω. It is easy to check thatp
is the intersection of theAnnR(ωi). Sincep is a prime ideal, it must therefore be equal
to one of them, sayp = AnnR(ωk). This already shows thatp ∈ Ass(Ω). To show that
q = pR(X), let f ∈ R[X] be inq. By induction on the degreee of f , we may assume that
any polynomial inq of degree less thane already belongs topR(X). Write f = a + Xg
with a ∈ R andg ∈ R[X] of degreee − 1. By induction oni, one easily obtains from
fπ = 0 thataiωi = 0. In particular,ak ∈ AnnR(ωk) = p and hencea ∈ p. This in turn
implies thataωi = 0 for all i, sincep ⊆ AnnR(ωi). HenceXgπ = (f−a)π = 0. SinceX
is a unit,g ∈ q, so that by inductiong ∈ pR(X) and thereforef = a+Xg ∈ pR(X). �

2.2. Depth. Let (R,m) be a Noetherian local ring andΩ an arbitraryR-module. An
elementx ∈ R is called azero-divisoron Ω, if xω = 0 for some non-zeroω ∈ Ω. If x is
not a zero-divisor onΩ, then we call itΩ-regular. A sequence(x1, . . . , xd) is calledweakly
Ω-regular, if eachxi lies in m and isΩ/(x1, . . . , xi−1)Ω-regular. Finally, a sequence
(x1, . . . , xd) is calledΩ-regular, if it is weakly Ω-regular andΩ 6= (x1, . . . , xd)Ω. By [5,
Theorem 6.1], an elementx is Ω-regular if and only if it is not contained in an associated
prime ideal ofΩ. Unfortunately, however, ifΩ is not finitely generated, then it might have
infinitely many associated primes.

Thenaive depth(also calledclassical gradein [4]) of Ω is defined to be the maximum
possible length of a weaklyΩ-regular sequence. We do not exclude the case that this
length is infinite, for instance, whenΩ = 0, or, more generally, whenΩ is degenerated.
The naive depth is denoted byn-depthR(Ω). We define thedepthof Ω as the maximum
of then-depthR(X)(Ω(X)), whereX runs over all finite tuples of indeterminates. More
generally, ifa is a proper ideal ofR, thenn-depthR(a; Ω) denotes the maximum length



A GENERALIZATION OF THE AUSLANDER-BUCHSBAUM FORMULA 5

of a weakly regularΩ-sequence contained ina anddepthR(a,Ω), called thea-depthof Ω,
is the maximum of then-depthR(X)(aR(X); Ω(X)), whereX runs over all finite tuples
of indeterminates. By definition,n-depth(Ω) = n-depth(m; Ω). One easily checks that
n-depth(Ω) can be at mostdim R whenever it is finite.

To reconcile our definition of depth with the one in [3] or [4], we need the following
analog of [3, Theorem 9.1.3].

2.3.Lemma. LetR be a Noetherian local ring,X a single variable andΩ anR-module.
Let a be an ideal ofR with Ω 6= aΩ. If a is not contained in any associated prime ofΩ,
thenaR(X) contains anΩ(X)-regular element.

Proof. This is an immediate corollary of the proof of [3, Proposition 9.1.3] (or alterna-
tively, it can also be deduced from (2.1.4)). Namely, supposea = (x1, . . . , xn)R and put
f := x1 + x2X + · · ·+ xnXn−1. In the proof of [3, Proposition 9.1.3], it is shown thatf
is Ω[X]-regular (whereΩ[X] = Ω⊗R[X]). Sincef ∈ mR[X], this property is preserved
after localization, so thatf is Ω(X)-regular. �

By the arguments from for instance [3, §9.1], one can then prove using Lemma2.3that

(3) depthR(a; Ω) = inf
{

i ∈ N | Exti
R(R/a,Ω) 6= 0

}
.

Any non-degenerated module has finite depth. Note that the converse is false in general:
for instance, ifR is a discrete valuation ring with field of fractionsK, thenK/R is degen-
erated, yet has depth zero (since the maximal ideal is an associated prime; in fact,K/R
satisfies the Auslander-Buchsbaum formula).

2.4.Lemma. LetR be a Noetherian local ring andΩ an arbitraryR-module. IfR andΩ
have both depth at leaste, then there exists anR(X)-regular sequence(x1, . . . , xe) which
is alsoΩ(X)-regular, whereX is some finite set of variables.

Proof. An inductive argument reduces to the casee = 1 and this case is dealt with by a
careful analysis of the proof of [3, Proposition 9.1.3]. Namely, letx1 ∈ m beR-regular
and choosex2, . . . , xn ∈ m such thatm = (x1, . . . , xn)R. As explained in the proof of
Lemma2.3, the elementf = x1 + x2X + · · ·+ xnXn−1 is Ω(X)-regular. I claim thatf
is R[X]-regular. Indeed, supposefg = 0 in R[X] with g 6= 0. SinceX is regular, we may
divide out a power ofX and assume thatg has non-zero constant termy ∈ R. However,
fg = 0 yieldsx1y = 0, so thaty = 0 by the regularity ofx1, contradiction. Therefore,f
is R[X]-regular whenceR(X)-regular, as required. �

2.5.Remark.A simple modification of this proof shows that ifΩ has positivea-depth, then
we can findx ∈ aR(X) which is simultaneouslyR(X)-regular andΩ(X)-regular.

2.6. Strong depth. Call an elementx ∈ R astronglyΩ-regular element, ifx is Ω-regular
andΩ is xR-adically separated. More generally, a sequence(x1, . . . , xe) is calledstrongly
Ω-regular, if eachxi+1 is stronglyΩ/(x1, . . . , xi)Ω-regular. The maximal length of a
strongly Ω-regular sequence will be called thestrong depthof Ω and will be denoted
s-depthR(Ω). For finitely generated modules all three depth variants are equal, but in
general we only have inequalitiess-depth(Ω) ≤ n-depth(Ω) ≤ depth(Ω). Even if the
latter two are equal, the former can still be smaller: the strong depth of the moduleΩ from
Example4.13is zero, whereas its (naive) depth is two. Moreover, we cannot increase the
strong depth simply by passing to an extensionΩ(X).
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2.7. Subdimension. Recall that thedimensiondim(Ω) of anR-moduleΩ is the dimen-
sion of R/ AnnR(Ω). (Caveat: whenI is an ideal ofR, one often callsdim(R/I), the
dimension of theideal I, which is in general different from the dimension of themodule
I.) By thesubdimensionof Ω, we mean the minimum of alldim(Π) for Π ⊆ Ω running
over all non-zero submodules ofΩ. We denote the subdimension ofΩ by subdimR(Ω).
The subdimension is completely determined by the associated primes ofΩ:

2.8.Lemma. The subdimension of anR-moduleΩ is the minimum of thedim(R/p) for p
running over all associated prime ideals ofΩ.

Proof. If p is an associated prime ofΩ, thenR/p is isomorphic to a submodule ofΩ.
Conversely, ifΠ1 ⊆ Π2 are submodules ofΩ, thendim(Π1) ≤ dim(Π2). Hence in the
definition of subdimension, we may restrict ourselves to non-zero cyclic submodules. Let
ω be a non-zero element ofΩ and putH := Rω, so thatH ∼= R/ AnnR(ω). By [5,
Theorem 6.1], there is an associated primep of Ω containingAnnR(ω) and whence in
particularR/p has dimension at mostdim(H). �

3. THE VANISHING OF EXT AND TOR

Let R be a Noetherian ring andΩ an arbitraryR-module. The flat dimension ofΩ is
given as the largestn for which TorR

n (·,Ω) is not identically zero. Therefore, we would
like to have some simple criteria for its vanishing. SinceTor commutes with direct limits,
it suffices to check thatTorR

n (M,Ω) vanishes for all finitely generatedR-modulesM . It is
well-known that a finitely generatedR-moduleM admits aprime filtration, that is to say,
there is an ascending chain of submodules0 = M0 ⊆ M1 ⊆ · · · ⊆ Ms = M with each
subsequent quotientMi+1/Mi isomorphic to a cyclic module of the formR/pi for some
prime idealpi of R. Moreover, ifAnnR(M) has heighth (respectively,M has dimension
d), then the prime idealspi occurring in a prime filtration ofM all containAnnR(M)
whence, in particular, all have height at leasth (respectively, allR/pi have dimension at
mostd). Therefore, we proved the following result.

3.1.Lemma. Let R be a Noetherian ring andΩ an R-module. If for somee ∈ N and for
all prime idealsp of R, we haveTorR

e (R/p,Ω) = 0, thenΩ has flat dimension at most
e− 1.

More generally, ifTorR
e (R/p,Ω) = 0 (respectively,Exte

R(R/p,Ω) = 0) for all prime
idealsp with dim R/p ≤ d and if M is a finitely generatedR-module of dimensiond,
thenTorR

e (M,Ω) = 0 (respectively,Exte
R(M,Ω) = 0). Similarly, if TorR

e (R/p,Ω) = 0
(respectively,Exte

R(R/p,Ω) = 0) for all prime idealsp of height at leasth and if a is an
ideal of heighth, thenTorR

e (R/a,Ω) = 0 (respectively,Exte
R(R/a,Ω) = 0).

In order to formulate a more local criterion, we need a definition. LetR be a Noetherian
ring, p a prime ideal ofR andΩ an arbitraryR-module. We will denote the residue field
of p by k(p), that is to say,k(p) := Rp/pRp.

3.2.Definition. Then-th Betti numberof Ω atp is the (possibly infinite) dimension of the
k(p)-vector spaceTorRp

n (k(p),Ωp) and is denoted byβR
n (p; Ω), or simply, byβn(p; Ω) if

the ring is understood. Similarly, then-th Bass numberµn
R(p; Ω) is defined as the dimen-

sion of thek(p)-vector spaceExtn
Rp

(k(p),Ωp).

3.3.Proposition. LetR be a Noetherian ring,Ω anR-module ande ∈ N. If βR
j (p; Ω) = 0

for all j > e and all prime idealsp of R, thenΩ has flat dimension at moste.
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Proof. In view of Lemma3.1, it suffices to show thatTorR
e+1(R/p,Ω) = 0 for all prime

idealsp of R. In fact, we will prove the stronger statement thatTorR
j (R/p,Ω) = 0 for

all j > e and allp. To this end, we will perform a downward induction on the heighth
of p. Assume first thath = dim R, so thatp is a maximal ideal ofR. Let j > e and let
τ be an arbitrary element ofTorR

j (R/p,Ω). Clearly,pτ = 0. On the other hand, since
βR

j (p; Ω) = 0, we can find somes /∈ p, such thatsτ = 0. Sincep is maximal, we can find
somet ∈ R and somem ∈ p, such thatst + m = 1. It follows thatτ = stτ + mτ = 0,
showing thatTorR

j (R/p,Ω) = 0.
Next, suppose the claim proven for all prime ideals of height at leasth + 1 and letp be

a heighth prime ideal ofR. Note that by Lemma3.1, our induction hypothesis actually
gives thatTorR

j (R/a,Ω) = 0 for each ideala of height at leasth + 1 and eachj > e.

Fix somej > e. Let θ be an arbitrary element ofTorR
j (R/p,Ω). Since by assumption

βR
j (p; Ω) = 0, we can find somex /∈ p such thatxθ = 0. From the exact sequence

0 → R/p
x−−→R/p→R/n → 0

with n := p + xR, we get part of a long exact sequence

TorR
j+1(R/n,Ω) → TorR

j (R/p,Ω) x−−→TorR
j (R/p,Ω).

The first of these modules is zero by the inductive hypothesis and the argument above. In
other words, we showed thatx is not a zero-divisor onTorR

j (R/p,Ω). Sincexθ = 0, this
implies thatθ = 0, as required. �

Note that the proof gives the following more precise result:if βj(p; Ω) = 0 for all

j > e and all prime idealsp of R with dim R/p ≤ d, thenTorR
j (M,Ω) = 0 for every

finitely generatedR-moduleM of dimension at mostd. By the same argument, taking into
account the contravariancy ofExt•R(·,Ω), we get the following criterion for the vanishing
of anExt functor.

3.4. Proposition. Let R be a Noetherian ring andΩ an R-module. Letd ∈ N and e ∈
N ∪ {∞}. If µj

R(p; Ω) = 0 for all j < e and all prime idealsp with dim R/p ≤ d, then
Extj

R(M,Ω) = 0 for everyj < e and every finitely generatedR-moduleM of dimension
at mostd. �

The main result in this section is a local criteria for flat dimension in terms of residual
homological dimension (see§1.3).

3.5.Theorem. Let R be a Noetherian local ring andΩ an R-module of finite projective
dimension. Then the following numbers are all equal

• the flat dimensionfl.dim(Ω) of Ω;
• the maximum of allres.dimRp(Ωp), wherep runs over the prime ideals ofR;
• the maximum of alldepth(Rp)− depthRp

(Ωp), wherep runs over the prime
ideals for whichdepthRp

(Ωp) is finite.

Proof. The equality of the first two numbers is merely a reformulation of Proposition3.3in
terms of residual homological dimension. In order to prove equality with the third, we have
to show in view of (2) that if fl.dim(Ω) = res.dim(Ωp) for some primep, thendepth(Ωp)
is finite. Suppose not and letq be the depth ofRp. After possibly taking an extension of
the formRp ⊆ Rp(X), which is harmless in this case in view of Lemma2.1, we may
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assume by Lemma2.4that there exists aq-tuplex which is simultaneouslyRp-regular and
Ωp-regular. SincepRp is an associated prime ofxRp, we get an exact sequence

0 → k(p) → Rp/xRp → V → 0

for some (cyclic)Rp-moduleV . From theTor long exact sequence we get an exact se-
quence

TorRp

e+1(V,Ωp) → TorRp
e (k(p),Ωp) → TorRp

e (Rp/xRp,Ωp),
wheree := fl.dim(Ω). Hence, the left most module is zero, and so is the right most
module by the regularity of the sequencex. Therefore also the middle module vanishes,
contradicting thatβR

e (p; Ω) 6= 0. �

This result in conjunction with (2) shows that the Auslander-Buchsbaum formula has
a local character: if after localizing the residual homological dimension becomes smaller,
then the Auslander-Buchsbaum formula holds. As an immediate corollary we reprove
another result of Auslander and Buchsbaum.

3.6.Corollary ([1, Theorem 2.4]). A moduleΩ of finite projective dimension over a Noe-
therian local ringR has flat dimension at most the maximum of alldepth(Rp), wherep
runs over the prime ideals ofR. In particular,fl.dimR(Ω) ≤ dim R and this inequality is
strict if R is not Cohen-Macaulay. �

That the bound in Corollary3.6is sharp, is illustrated by the two-dimensional local ring
R := K[[x, y, z]]/(x2, xy, xz)K[[x, y, z]], with K a field. If p := (x, y)R, thenRp is
isomorphic toK((z))[[y]], so thatRp/yRp has flat dimension one, althoughR itself has
depth zero. Note thatRp/yRp has actually infinite depth.

4. DEPTH FORMULAS

We now take a closer look at the depth formulas from the introduction. Throughout,
(R,m) is a Noetherian local ring andΩ is an arbitraryR-module.

4.1. The naive depth formula. Recall that we said that a moduleΩ satisfies thenaive
depth formula, if its naive depth equals its depth, that is to say, if there exists anΩ-regular
sequence of lengthdepth(Ω). Note that if the naive depth formula holds inΩ, then it is
not necessarily the case that it also holds in a deformationΩ/xΩ, for x someΩ-regular
element (for a counterexample, consider the module in [9, Example 7.3] and theΩ-regular
elementx). However, we can always choose anΩ-regular element which does preserve
the naive depth formula: simply take the first element in anΩ-regular sequence of length
depth(Ω). Lemma2.3 shows thatΩ(X) satisfies the naive depth formula, whereX is a
tuple of indeterminates of length equal to the depth ofΩ.

A sufficient condition for the naive depth formula to hold is for eachΩ/xΩ to have only
finitely many associated prime ideals, wherex runs over all weaklyΩ-regular sequences
([3, Exercise 9.1.10]). This is in particular true ifΩ is finitely generated over a Noetherian
local R-algebra. In fact, we can prove a stronger property, for which we need another
definition.

4.2. The strong depth formula. We say thatΩ satisfies thestrong depth formulaif its
strong depth equals its depth (see§2.6 for the definition of strong depth). In particular, if
the strong depth formula holds, then so does the naive depth formula. Recall that a module
Ω is calleduniversally separatedif Ω/IΩ is separated for every idealI of R (equivalently,
if eachIΩ is closed in the adic topology). Hence ifΩ is universally separated and satisfies
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the naive depth formula, then it also satisfies the strong depth formula. This is in particular
true if Ω is finitely generated over a Noetherian localR-algebra, so that we showed:

4.3. Corollary. Let R → S be a local homomorphism of Noetherian local rings. Then
every finitely generatedS-module satisfies the strong depth formula (whence the naive
depth formula) when viewed as anR-module. �

4.4. The subdimension inequality. We say that anR-moduleΩ satisfies thesubdimen-
sion inequalityif

(4) depthR(Ω) ≤ subdimR(Ω).

(See§2.7for the definition of subdimension).

4.5.Proposition. If x is a stronglyΩ-regular element andΩ/xΩ satisfies the subdimension
inequality, then so doesΩ.

Proof. Let e := depth(Ω), so thatΩ1 := Ω/xΩ has depthe−1. According to Lemma2.8,
we need to show thate ≤ h := dim R/p for every associated primep of Ω. We may
assume thatp is a maximal associated prime ofΩ. Chooseω ∈ Ω such thatp = Ann(ω).
Sincex is stronglyΩ-regular, there exists somen such thatω /∈ xnΩ. If ω = xθ, then
xpθ = 0 whencepθ = 0, sincex is Ω-regular. Hencep is also equal toAnn(θ) by
maximality. Applying thisn times, we may assume from the start thatω /∈ xΩ. Let
H be the submodule ofΩ generated byω, so thath = dim H. Let H1 be the (non-
zero) submodule generated by the image ofω in Ω1. Since there is natural surjective map
H/xH � H1, we havedim(H1) ≤ dim(H/xH) ≤ h − 1, where the last inequality
follows from the fact thatx is alsoH-regular. By assumption,e − 1 ≤ dim(H1), so that
putting both inequalities together, we gete− 1 ≤ h− 1, as required. �

Without any separatedness assumption, the conclusion is false. For instance,Ω as in
Example4.13does not satisfy the subdimension inequality, but its deformationΩ/xΩ by
anΩ-regular elementx does.

4.6.Theorem. Let R be a Noetherian local ring andΩ an R-module of finite depth. IfΩ
satisfies the strong depth formula, then it also satisfies the subdimension inequality.

Proof. We induct ons := depth(Ω). If s = 0, the subdimension inequality holds trivially,
so we may assumes > 0. Let (x1, . . . , xs) be a strongΩ-regular sequence and putΩ1 :=
Ω/x1Ω. The depth ofΩ1 is s− 1 by [3, Proposition 9.1.2], and its strong depth is clearly
s − 1, as witnessed by the strongΩ1-regular sequence(x2, . . . , xs). Hence our induction
hypothesis implies thatΩ1 satisfies the subdimension inequality, and therefore so doesΩ
by Proposition4.5. �

4.7. Corollary. If Ω has finite depth andΩ(X) is universally separated for every finite
tuple of indeterminatesX, thenΩ satisfies the subdimension inequality.

Proof. By Lemma2.3, the naive depth formula holds for someΩ(X) and hence so does
the strong depth formula by the remark preceding Corollary4.3. Therefore,Ω(X) satisfies
the subdimension inequality by Theorem4.6. However, it is easy to see using Lemmas2.1
and2.8thatΩ(X) satisfies the subdimension inequality if and only ifΩ does. �
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4.8. The Ischebeck inequality. Our next condition is based on Ischebeck’s lemma (see
[5, Theorem 17.1]), of which the Ischebeck inequality will be a corollary (see Theo-
rem4.10below). Recall thatΩ is said to satisfy theIschebeck inequality, if

(5) depthR(Ω) ≤ depthR(p; Ω) + dim R/p

for every prime idealp of R. By considering an associated primep of Ω, we see that every
module satisfying the Ischebeck inequality must have finite depth, and in fact, in view of
Lemma2.8, we get:

4.9. Corollary. Any module satisfying the Ischebeck inequality also satisfies the subdi-
mension inequality.

Any module of depth zero clearly satisfies the Ischebeck inequality, and so does any
module of depth one, sincem is then not an associated prime. For an example of a module
of finite depth in which the Ischebeck inequality fails, see Example4.13below. To bet-
ter understand the failure of Ischebeck’s Lemma, we start with showing some equivalent
conditions (note that (4.10.2) is the usual formulation of Ischebeck’s lemma).

4.10.Theorem. LetR be a Noetherian local ring andΩ anR-module of finite depth. The
following properties ofΩ are equivalent.

(4.10.1) The Ischebeck inequality(5) holds forΩ.
(4.10.2) For every finitely generatedR-moduleM and everyi less thandepthR(Ω)−

dim M , we have
Exti

R(M,Ω) = 0.

(4.10.3) For every ideala of R, we have

depthR(Ω) ≤ depthR(a; Ω) + dim R/a.

(4.10.4) For every prime idealp of R, we have

depthR(Ω) ≤ depthRp
(Ωp) + dim R/p.

Proof. Let s := depth(Ω) and leta be an ideal ofR with h := dim R/a. Assume first
that (4.10.2) holds and apply it withM := R/a to conclude thatExti

R(R/a,Ω) = 0 for
all i < s− h. However, by (3), this means thatdepth(a; Ω) is at leasts− h, showing that
(4.10.3) holds. Clearly, (4.10.3) implies the Ischebeck inequality.

In general, forp a prime ideal, we have by [3, Proposition 9.1.2] an inequality

depthR(p; Ω) ≤ depthRp
(Ωp).

From this it is immediate that the Ischebeck inequality implies (4.10.4).
Finally, assuming that (4.10.4) holds, we want to show that then also (4.10.2) holds.

Let h be the dimension ofM . By Proposition3.4, it suffices to show thatµj
R(p; Ω) = 0

for all j < s − h and all prime idealsp such thatdim R/p ≤ h. However, this is clear
since by (4.10.4), the depth ofΩp is at leasts − h, so that by (3), all µj

R(p; Ω) = 0 for
j < s− h. �

4.11.Remark.Note that (5) is trivially satisfied for the maximal ideal as well as for all
minimal prime idealsg such thatdim R = dim R/g. In particular, ifR has dimension
one, then everyR-module of finite depth satisfies the Ischebeck inequality.

4.12.Corollary. Let R be a Noetherian local ring andΩ an R-module. IfΩ satisfies the
Ischebeck inequality andx is an Ω-regular sequence, thenΩ/xΩ satisfies the Ischebeck
inequality too (viewed either as anR-module or anR/xR-module).
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Proof. By induction, we only need to treat the case of a singleΩ-regular elementx. Let
p be a prime ideal ofR. If x /∈ p then(Ω/xΩ)p is zero whence has infinite depth and
(4.10.4) holds atp. In the remaining case, the two depths in (4.10.4) both have dropped by
one, and so also this case holds. �

4.13. Example. Let R be a complete two-dimensional regular local ring, for instance
R := K[[x, y]] with K a field. LetΩ := R⊕Frac(R/yR), whereFrac(R/yR) denotes the
field of fractions ofR/yR. Clearly,x isΩ-regular, and sinceΩ/xΩ ∼= R/xR, the sequence
(x, y) is Ω-regular. On the other hand,y is a zero-divisor onΩ, so that(y, x) is not Ω-
regular. Therefore,depth(Ω) = 2, but depth(yR; Ω) = 0, showing that the Ischebeck
inequality fails forΩ. Note thats-depth(Ω) = 0 so that the strong depth formula fails,
whereas the naive depth formula holds.

4.14.Proposition. Let R be an equidimensional, catenary Noetherian local ring. Any
balanced big Cohen-MacaulayR-module satisfies the Ischebeck inequality.

Proof. Let d be the dimension ofR and letp be a prime ideal ofR. SinceR is equidi-
mensional and catenary,p has heighth := d − dim R/p. Choose a system of parameters
(x1, . . . , xd) in R with x1, . . . , xh ∈ p. LetΩ be a big balanced Cohen-Macaulay module,
so that in particular(x1, . . . , xd) is Ω-regular. It follows thatdepth(p; Ω) is at leasth, so
that (5) holds. �

Note that a Cohen-Macaulay local ring is automatically equidimensional and catenary,
and so is any complete local domain. Corollary4.9has the following converse:

4.15.Theorem. LetR be a Noetherian local ring andΩ anR-module. AllΩ(X) satisfy the
Ischebeck inequality if and only if allΩ(X)/xΩ(X) satisfy the subdimension inequality,
whereX is a finite tuple of indeterminates andx is anΩ(X)-regular sequence with entries
in R(X).

Proof. One direction is immediate from Corollaries4.12and4.9. To prove the converse,
it suffices, by induction on the number of variablesX, to show thatΩ itself satisfies the
Ischebeck inequality. We will verify condition (5) for each prime idealp of R. Let s :=
depth(Ω), let h := dim R/p and lete := depth(p; Ω). By Lemma2.3, there exists an
Ω(X)-regular sequence(x1, . . . , xe) insidepR(X), for some (e-)tuple of indeterminates
X. LetR′ := R(X)/(x1, . . . , xe)R(X) andΩ′ := Ω⊗R′. By assumption, the depth ofΩ′

is at most its subdimension. Sincedepth(pR′; Ω′) = 0, there exists an associated primep′

of Ω′ with pR′ ⊆ p′. In particular, the depth ofΩ′ is at mostdim R′/p′ ≤ dim R/p = h.
Moreover, the depth ofΩ′ is equal tos− e by [3, Proposition 9.1.2], so that we showed the
desired inequalitys− e ≤ h. �

Immediately from this, Corollary4.3and Theorem4.6, we get:

4.16.Corollary. Let R → S be a local homomorphism of Noetherian local rings. Then
every finitely generatedS-module satisfies the Ischebeck inequality when viewed as an
R-module. �

Using residual homological dimension (see§1.3), we may rephrase condition (4.10.4)
over an equidimensional, catenary Noetherian local ringR as follows:Ω satisfies the Is-
chebeck inequality if and only if for all prime idealsp for whichdepthRp

(Ωp) is finite, we
have an inequality

(6) res.dimRp(Ωp) + CM-def(Rp) ≤ res.dimR(Ω) + CM-def(R),
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where theCohen-Macaulay defectCM-def(R) is the difference between the dimension
and the depth ofR. In particular, over a Cohen-Macaulay local ring, we get:

4.17.Corollary. Let R be a local Cohen-Macaulay ring andΩ an R-module. IfΩ has
finite depth and finite projective dimension, thenΩ satisfies the Ischebeck inequality if and
only if res.dim(Ωp) ≤ res.dim(Ω) for every prime idealp for which depthRp

(Ωp) is
finite. �

4.18. The Auslander-Buchsbaum formula. Recall that a moduleΩ is said to satisfy the
Auslander-Buchsbaum formulaif

fl.dimR(Ω) + depthR(Ω) = depth(R).

In particular, any module satisfying the Auslander-Buchsbaum formula must have finite
depth and finite projective dimension. In view of (2), satisfying the Auslander-Buchsbaum
formula is therefore equivalent with the equalityfl.dim(Ω) = res.dim(Ω).

For an example of a module of finite depth and finite projective dimension for which
the Auslander-Buchsbaum formula fails, takeΩ from Example4.13. Indeed,Ω is a big
Cohen-Macaulay which is not balanced (and in particular not flat). Moreover,Ω has finite
projective dimension whence finite flat dimension, showing that the Auslander-Buchsbaum
formula fails. See [2, Exemple 3.11] or [9, Example 8.3] for an example of a non-balanced
big Cohen-Macaulay module which is also separated, and hence for which the Auslander-
Buchsbaum formula fails (there can be no separated non-balanced big Cohen-Macaulay
module over a two-dimensional ring by Theorem6.4). Nonetheless, one direction in the
Auslander-Buchsbaum formula always holds.

4.19.Lemma. If R is a Noetherian local ring andΩ anR-module, then

fl.dimR(Ω) + depthR(Ω) ≥ depth(R).

More generally, ifa is an arbitrary ideal ofR, then

fl.dimR(Ω) + depthR(a; Ω) ≥ depthR(a;R).

Proof. There is nothing to show if the depth or the projective dimension ofΩ are infinite,
so that we may moreover assume that both are finite. By (2), the first assertion is equiv-
alent withres.dim(Ω) ≤ fl.dim(Ω), which in turn follows from the definition of residual
homological dimension (alternatively, the first assertion follows from the second by letting
a be the maximal ideal ofR). As for the second assertion, lets be thea-depth ofΩ and let
e be its flat dimension. We will induct one. If e = 0, so thatΩ is flat, then anyR-regular
sequence isΩ-regular, so that in factn-depthR(a; Ω) ≥ s.

Therefore, assumee > 0. Choose a short exact sequence

0 → Π → Φ → Ω → 0

with Φ flat. It follows thatΠ has flat dimensione− 1. Therefore, by our induction hypoth-
esis, itsa-depth is at leasts− e + 1. Sincedepth(a; Φ) = s by the previous argument,Ω
hasa-depth at leasts− e by (3), as claimed. �

4.20.Corollary. Any flat module of finite depth satisfies the Auslander-Buchsbaum for-
mula.

Proof. One direction in the equalitydepth(Ω) = depth(R) follows from Lemma4.19
and the other from (2). �
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4.21. Proposition. Let R be a Noetherian local ring andΩ an R-module. Letx be a
sequence which is bothR-regular andΩ-regular. If Ω satisfies the Auslander-Buchsbaum
formula, then so doesΩ/xΩ when viewed as anR/xR-module.

Proof. By induction on the length of the sequence, we only need to treat the case that
x is anR-regular andΩ-regular element. LetR1 := R/xR andΩ1 := Ω/xΩ, and let
e := fl.dimR(Ω). Since allTorR

n (R1,Ω) vanish forn > 0, any flat resolution ofΩ
remains flat after tensoring withR1. Hencefl.dimR1(Ω1) ≤ e. On the other hand, since
x is bothR-regular andΩ-regular,TorR

n (k,Ω) ∼= TorR1
n (k,Ω1) for all n > 0, showing

thatres.dimR(Ω) = res.dimR1(Ω1). SinceΩ satisfies the Auslander-Buchsbaum formula,
e = res.dimR(Ω), leading to the inequalitiese = res.dimR1(Ω1) ≤ fl.dimR1(Ω1) ≤ e
showing thatΩ1 satisfies the Auslander-Buchsbaum formula too. �

4.22.Proposition. LetR be a Noetherian local ring andΩ anR-module. IfΩ satisfies the
Auslander-Buchsbaum formula, then it also satisfies the Ischebeck inequality and hence
the subdimension inequality.

Proof. To verify condition (4.10.4), let p be a prime ideal ofR such thatdepthRp
(Ωp) is

finite. Since residual homological dimension never exceeds flat dimension,

res.dimRp(Ωp) ≤ fl.dim(Ω) = depth(R)− depth(Ω),

where the last equality is just the Auslander-Buchsbaum formula. From (2), we then get

depth(Ω) ≤ depth(R)− depth(Rp) + depthRp
(Ωp).

On the other hand, since the Ischebeck inequality holds forR itself, we havedepth(R) ≤
depth(Rp) + dim(R/p). Putting both inequalities together therefore yields (4.10.4). �

The Ischebeck inequality for small depths.We conclude with proving some cases in
which the Ischebeck inequality holds. Typically the higher the depth of a module, the
stronger the separatedness condition needed.

4.23.Lemma. LetR be a Noetherian local ring andΩ anR-module. Letx be a strongly
Ω-regular element and letp be a prime ideal ofR. If depth(p; Ω) = 0, thenp is strictly
contained in an associated prime ofΩ/xΩ.

Proof. Sincep is contained in some associated prime ideal ofΩ by [3, Proposition 9.1.4],
we may assume without loss of generality thatp itself is an associated prime ofΩ. By
the same argument as in the proof of Lemma4.5, we may choose someω /∈ xΩ such that
p = Ann(ω). Sincep annihilates the non-zero image ofω in Ω/xΩ, it must be contained
in an associated primeq of Ω/xΩ by [5, Theorem 6.1]. Clearly,p  q sincex /∈ p. �

4.24.Corollary. Any module of depth at most one or any separated module of depth two
satisfies the Ischebeck inequality.

Proof. We already argued that any module of depth at most one satisfies the Ischebeck
inequality. So assumedepth(Ω) = 2. Suppose (5) does not hold for some (non-maximal)
prime idealp. The only way this can be the case is ifdepth(p; Ω) = 0 anddim R/p =
1. By Lemmas2.1 and2.3 we may assume, after possibly making a base change over
R ⊆ R(X), that there exists anΩ-regular elementx. SinceΩ is separated,x is strongly
Ω-regular. Hence, by Lemma4.23, there is an associated primeq of Ω/xΩ such thatp  q.
SinceR/p is one-dimensional,q must be the maximal ideal, showing thatΩ/xΩ has depth
zero. On the other hand,x is Ω-regular and henceΩ/xΩ has depth one by [3, Proposition
9.1.2], contradiction. �
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4.25. Corollary. Let R be a three-dimensional, equidimensional, catenary Noetherian
local ring andΩ anR-module. IfΩ is complete, then it satisfies the Ischebeck inequality.

Proof. SinceΩ is complete, it is non-degenerated and hence has finite depth. By Corol-
lary 4.24, we only need to treat the case thatΩ has depth three. This means thatΩ is a
big Cohen-Macaulay module. However, sinceΩ is complete, it is therefore a balanced
big Cohen-Macaulay module by [3, Corollary 8.5.3] and hence we are done by Proposi-
tion 4.14. �

I do not know whether every complete module of depth three satisfies the Ischebeck
inequality.

4.26.Corollary. LetR be a four-dimensional, equidimensional, catenary Noetherian local
ring andΩ an R-module of finite projective dimension. IfΩ is complete and satisfies the
subdimension inequality, thenΩ satisfies the Ischebeck inequality.

Proof. Inspecting the previous proofs, one sees that the only instance in which we have
not yet verified (5), is whenp has height two andΩ has depth three. We need to then show
thatdepth(p; Ω) is at least one. Towards a contradiction, suppose it is zero, so thatp is
contained in an associated primeq of Ω by [3, Proposition 9.1.4]. Sincep has height two,
R/q has dimension at most two and hence violates the subdimension inequality. �

5. THE AUSLANDER-BUCHSBAUM FORMULA: THE COHEN-MACAULAY CASE

In this section,R will always be a local Cohen-Macaulay ring. We investigate condi-
tions which guarantee that a module overR satisfies the Auslander-Buchsbaum formula.
We start with an extremal case.

5.1. Theorem. Let R be a local Cohen-Macaulay ring of dimensiond. Let Ω be an ar-
bitrary R-module of finite depth and finite projective dimension. If eitherΩ has depth
zero or flat dimensiond, then it also satisfies the other condition and hence the Auslander-
Buchsbaum formula.

Proof. SupposeΩ has depth zero. By Lemma4.19, the flat dimension ofΩ is at leastd
and by Corollary3.6, it is at mostd, and hence the Auslander-Buchsbaum formula holds.

Conversely, towards a contradiction, suppose thatΩ has flat dimensiond, but positive
depth. Since neither flat dimension nor depth change after an extension of the formR ⊆
R(X) by Lemma2.1, we may assume by Lemma2.4 that there exists anR-regular,Ω-
regular elementx. Taking a flat resolution ofΩ and tensoring withR/xR yields a flat
resolution ofΩ/xΩ overR/xR. In particular,Ω/xΩ has finite flat dimension as anR/xR-
module.

SinceΩ has flat dimensiond, By Proposition3.3, there is some prime idealp of R for
which βd(p; Ω) is non-zero. However, ifp is not maximal, then theRp-moduleΩp has
flat dimension at mostd − 1 by Corollary3.6, so thatβd(p; Ω) = 0. Therefore,p must
be the maximal ideal, so thatTorR

d (k,Ω) 6= 0, wherek is the residue field ofR. Again
by Corollary3.6, the flat dimension ofΩ/xΩ is at mostdim(R/xR) = d − 1. It follows
thatTorR/xR

d (k,Ω/xΩ) = 0. However, the latterTor module is isomorphic toTorR
d (k,Ω)

sincex is bothR-regular andΩ-regular, contradiction. �

There are two more extremal cases: if the flat dimension is zero, then the Auslander-
Buchsbaum formula always holds by Corollary4.20. On the other hand, ifΩ has maximal
depth (equal to the dimension ofR), then the Auslander-Buchsbaum formula might fail
as the non-flat big Cohen-Macaulay module in [9, Example 7.3] shows. However, if we
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moreover assume thatΩ is complete whence a balanced big Cohen-Macaulay module by
[3, Corollary 8.5.3], then the Auslander-Buchsbaum formula holds again by an application
of Proposition4.14and the next theorem.

5.2. Theorem. A moduleΩ of finite projective dimension over a local Cohen-Macaulay
ring satisfies the Ischebeck inequality if and only if it satisfies the Auslander-Buchsbaum
formula.

Proof. Suppose the Ischebeck inequality holds, so thatres.dimRp(Ωp) ≤ res.dimR(Ω)
wheneverdepthRp

(Ωp) < ∞ by Corollary4.17. By Theorem3.5, the flat dimension ofΩ
is equal to the maximum of these local residual dimensions, and hence in this case, equal
to res.dim(Ω). The Auslander-Buchsbaum formula therefore holds by (2). The converse
was already shown in Proposition4.22. �

Since the Auslander-Buchsbaum formula holds forΩ if and only if it holds forΩ(X) by
Lemma2.1, we obtain from Theorem4.15that the Auslander-Buchsbaum formula holds
for Ω if and only if the subdimension inequality holds for allΩ(X)/xΩ(X) with x an
Ω(X)-regular sequence. In particular, in view of Corollary4.7, we proved that ifΩ has
finite projective dimension and eachΩ(X) is universally separated, thenΩ satisfies the
Auslander-Buchsbaum formula. Using Theorem4.6, we may formulate this in terms of the
strong depth formula. However, since the latter does not deform well under non-strongly
regular sequences, we also have to enforce this:

5.3.Corollary. LetR be a local Cohen-Macaulay ring andΩ anR-module of finite depth
and finite projective dimension. IfΩ/xΩ satisfies the strong depth formula for eachΩ-
regular sequencex, thenΩ satisfies the Auslander-Buchsbaum formula. �

The module in [9, Example 7.3], already discussed above, is an example of a module for
which the Auslander-Buchsbaum formula fails but the strong depth formula holds. Hence,
we cannot drop the requirement on the deformations in Corollary5.3. Another immediate
application of Theorem5.2can be derived from Corollary4.16:

5.4.Corollary. Let R → S be a local homomorphism of Noetherian local rings. IfR is
Cohen-Macaulay, then any finitely generatedS-module of finite projective dimension over
R satisfies the Auslander-Buchsbaum formula overR. �

In this result, we may drop the Cohen-Macaulay assumption, as we will show in Theo-
rem6.1below. Combining Corollary4.24with Theorem5.2, we get:

5.5.Corollary. LetR be local Cohen-Macaulay ring andΩ anR-module of finite projec-
tive dimension. IfΩ has depth at most one or ifΩ is separated and has depth two, then it
satisfies the Auslander-Buchsbaum formula. �

Note that Example4.13shows that the separatedness condition cannot be omitted in the
depth two case. The same argument, using this time Corollaries4.25and4.26, yields the
following result.

5.6.Corollary. LetR be a local Cohen-Macaulay ring and letΩ be a completeR-module
of finite projective dimension. Ifdim R = 3 or if dim R = 4 andΩ satisfies the subdimen-
sion inequality, thenΩ satisfies the Auslander-Buchsbaum formula. �

6. THE AUSLANDER-BUCHSBAUM FORMULA: THE NON COHEN-MACAULAY CASE

We start with proving Corollary5.4without the Cohen-Macaulay assumption.
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6.1. Theorem. If R → S is a local homomorphism of Noetherian local rings, then any
finitely generatedS-moduleΩ of finite projective dimension overR satisfies the Auslander-
Buchsbaum formula overR.

Proof. Let us first show thatTorR
n (M,Ω) is separated for every finitely generatedR-

moduleM and everyn ≥ 0. We induct onn, where the casen = 0 follows from the
fact thatM ⊗R Ω is finitely generated as anS-module. Forn > 0, let N be a first
syzygy ofM . From the long exact sequence forTor, we have an inclusionTorR

n (M,Ω) ↪→
TorR

n−1(N,Ω) for everyn > 0 (and in fact, forn > 1 these are isomorphisms). By induc-
tion, the second module is separated, whence so is the first.

We now turn to the proof of the assertion. Lete be the flat dimension ofΩ and letp
be maximal among all prime ideals such thatTorR

e (R/p,Ω) 6= 0. If p is not the maximal
ideal, then we can choosex so that

0 → R/p
x−−→R/p→R/a → 0

is an exact sequence for some proper ideala of height strictly larger thanp. Tensoring with
Ω yields part of a long exact sequence

TorR
e (R/p,Ω) x−−→TorR

e (R/p,Ω) → TorR
e (R/a,Ω)

By the maximality ofp, Lemma3.1 yields TorR
e (R/a,Ω) = 0. Hence multiplication

with x on TorR
e (R/p,Ω) is surjective (and in fact bijective). However, as we argued,

TorR
e (R/p,Ω) is separated and therefore must be zero. This contradiction shows thatp

has to be the maximal ideal. In particular,res.dim(Ω) = e, so that we are done by (2). �

6.2.Proposition. If R is ad-dimensional Noetherian local ring of Cohen-Macaulay defect
one, then any depth zeroR-module of finite projective dimension satisfies the Auslander-
Buchsbaum formula.

Proof. By Lemma4.19, the flat dimension ofΩ is at leastd− 1, and by Corollary3.6 it is
at mostd− 1. �

Under the same hypotheses, does the other extremal case, namely whenΩ has flat di-
mensiond − 1, also imply the Auslander-Buchsbaum formula? And is the assumption on
the Cohen-Macaulay defect necessary? We finish by completing the proof of (i) and (ii) in
Theorem1.1.

6.3.Corollary. Any moduleΩ of finite depth and finite projective dimension over a one-
dimensional Noetherian local ring satisfies the Auslander-Buchsbaum formula.

Proof. If R is Cohen-Macaulay, then the result holds by Corollary5.5. If R is not Coh-
en-Macaulay, thenΩ is flat by Corollary3.6and hence satisfies the Auslander-Buchsbaum
formula by Corollary4.20. �

6.4.Theorem. Any separated module of finite projective dimension over a two-dimension-
al Noetherian local ring satisfies the Auslander-Buchsbaum formula.

Proof. The Cohen-Macaulay case was already treated by Corollary5.5. So we may assume
that R has depthq < 2. Let Ω be a separatedR-module of finite flat dimensione and
(necessarily finite) depths. We need to show thats + e = q. In any case,e ≤ 1 by
Corollary3.6, ands ≤ q by (2). Assume first thatq = 1. If s = 0, thenΩ cannot be flat
whencee = 1 and we are done. So assumes = 1. Henceres.dim(Ω) = 0 by (2), meaning
thatTorR

1 (k,Ω) = 0. Therefore,Ω is flat by [9, Theorem 6.5].
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So remains the case thatq = 0. In particular,s = 0, and we want to show that also
e = 0. SinceR has depth zero, we have an exact sequence

(7) 0 → k → R → N → 0

for some (cyclic)R-moduleN . Tensoring withΩ yieldsTorR
1 (k,Ω) ∼= TorR

2 (N,Ω) = 0.
The flatness ofΩ now follows from another application of [9, Theorem 6.5]. �
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