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6.4 Big Cohen-Macaulay algebras

Although the material in this section is strictly speaking not part of tight closure
theory, the development of the latter was germane to the discovery by Hochster
and Huneke of Theorem 6.4.1 below.

6.4.1 Big Cohen-Macaulay algebras in prime characteristic.

Recall that the absolute integral closure A+ of a domain A with field of fractions
F , is the integral closure of A inside an algebraic closure of F . Since algebraic
closure is unique up to isomorphism, so is absolute integral closure. Nonetheless
it is not functorial, and we only have the following quasi-functorial property:
given a homomorphism A→ B of domains, there exists a (not necessarily unique)
homomorphism A+ → B+ making the diagram
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"

!
"

BA

B+A+

(6.7)

commute.

Theorem 6.4.1 ([49]). For every excellent local domain R in characteristic p, the
absolute integral closure R+ is a balanced big Cohen-Macaulay algebra.

The condition that a Noetherian local ring is excellent is for instance satisfied
when R is either K-affine or complete (see [69, §32]). The proof of the above result
is beyond the scope of these notes (see for instance [59, Chapters 7& 8]) although
we will present a ‘dishonest’ proof shortly. It is quite a remarkable fact that the
same result is completely false in characteristic zero: in fact any extension of a
normal domain is split, and hence provides a counterexample as soon as R is not
Cohen-Macaulay. One can use the absolute integral closure to define a closure
operation in an excellent local domain R of prime characteristic as follows. For
an ideal I, let the plus closure of I be the ideal I+ := IR+ ∩R. One can show that
I+ is a closure operation in the sense of Definition 5.2.5, satisfying the five key
properties listed in Theorem 6.2.3. Moreover, unlike tight closure, it is not hard
to show that it commutes with localization.

Proposition 6.4.2. In an excellent local domain R of prime characteristic, the plus
closure of an ideal I ⊆ R is contained in its tight closure.
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Proof. Let z ∈ I+. By definition, there exists a finite extension R ⊆ S ⊆ R+ such
that z ∈ IS (note that R+ is the direct limit of all finite extensions of R by local
domains). Hence z ∈ cl(I) by Theorem 5.3.4. %&

It was conjectured that plus closure always equals tight closure. In view of [15],
this now seems unlikely, since plus closure is easily seen to commute with local-
ization, whereas tight closure apparently does not (see our discussion of (5.5)).
Nonetheless, Smith has verified a special case of the conjecture for an important
class of ideals:

Theorem 6.4.3 ([107]). Any ideal generated by part of a system of parameters in an
excellent local domain of prime characteristic has the same plus closure as tight closure.

Remark 6.4.4. The main ingredient in the proof of Proposition 6.4.2 is the follow-
ing fact, which is immediate from Lemma 5.3.5: the dual of R+ as an R-module
is non-zero, that is to say, there exists a non-zero R-module morphism R+ → R.
Hochster ([45, Theorem 10.5]) has proven this to be true for any big Cohen-Mac-
aulay algebra over a complete local ring of positive characteristic. Using this fact
in the same way as in the proof of Theorem 5.3.4, he shows that if B is a bal-
anced big Cohen-Macaulay algebra over a Noetherian local ring of positive char-
acteristic, then IB∩R is contained in the tight closure of an ideal I ⊆ R. In fact,
conversely, any element in the tight closure of I lies in IB, for some balanced big
Cohen-Macaulay R-algebra B ([45, Theorem 11.1]).

Proof of Theorem 6.4.1 (affine or complete case) assuming Theorem 6.4.3.

The proof we will present here is dishonest in the sense that Smith made heavily
use of Theorem 6.4.1 to derive her result. However, here is how the converse
direction goes. Let (x1, . . . ,xd) be a system of parameters in a local domain R of
characteristic p which is either affine or complete, and suppose zxi+1 ∈ IR+ for
some z ∈ R+ and I := (x1, . . . ,xi)R. Hence there already exists a finite extension
R ⊆ S ⊆ R+ containing z such that zxi+1 ∈ IS. Since R ⊆ S is finite, (x1, . . . ,xd) is
also a system of parameters in S. In either case, Colon Capturing applies (see the
remark following Theorem 5.3.3) and we get z ∈ cl(IS). By Theorem 6.4.3, this
implies that z lies in the plus closure of IS, whence in IS+. However, it is not hard
to see that R+ = S+, proving that (x1, . . . ,xd) is an R+-regular sequence. %&

6.4.5 If R is an excellent regular local ring of prime characteristic, then R+ is
faithfully flat over R.

This follows immediately from Theorem 6.4.1 and the Cohen-Macaulay cri-
terion for flatness (Theorem 3.3.9). Interestingly, it also provides an alternative
strategy to prove Theorem 6.4.1:

Proposition 6.4.6. Let k be a field of positive characteristic. Suppose we can show
that any k-affine (respectively, complete) regular local ring has a faithfully flat absolute
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integral closure, then the absolute integral closure of any k-affine (respectively, complete
Noetherian) local domain is a balanced big Cohen-Macaulay algebra.

Proof. I will only treat the affine case and leave the complete case as an exercise.
Let R be a local k-affine domain, and let x be a system of parameters in R. By
Noether normalization with parameters ([27, Theorem 13.3]), we can find a k-
affine regular local subring S ⊆ R containing x, such that S ⊆ R is finite and xS
is the maximal ideal of S. By assumption, S+ is faithfully flat over S, and hence
(x1, . . . ,xd) is an S+-regular sequence by Proposition 3.2.9. Finiteness yields S+ =
R+, and so we are done. %&

6.4.2 Big Cohen-Macaulay algebras in characteristic zero.

As already mentioned, if R is a K-affine local domain of characteristic zero, then
R+ will in general not be a big Cohen-Macaulay algebra. However, we can still
associate to any such R (in a quasi-functorial way) a canonically defined balanced
big Cohen-Macaulay algebra as follows. Let Rp be an approximation of R. By
Theorem 4.3.4, almost all Rp are domains. Let B(R) be the ultraproduct of the
R+

p . To show that this is independent from the choice of approximation, we will
give an alternative, more intrinsic description of B(R). Let N! be the ultrapower
of the set of natural numbers, and let t be an indeterminate. For an element f ∈
U(R[t]), define its ultra-degree α ∈ N! (with respect to t) to be the ultraproduct of
the t-degrees αp of the f p, where f p is an approximation of f . Call an element
f ∈ U(R[t]) ultra-monic if there exists α ∈ N! such that f − tα has ultra-degree
strictly less than α (see §2.4.4 for ultra-exponentiation). By a root of g ∈ U(R[t])
in a Lefschetz field L containing K we mean an element a ∈ L such that g ∈ (t−
a)U(RL[t]), where RL := R⊗K L and its ultra-hull is taken in the category CL.
One now easily shows that there exists an algebraically closed Lefschetz field L
containing K such that B(R) is isomorphic to the ring of all a ∈ L that are a root
of some ultra-monic element in U(RL[t]). Moreover, this ring is independent from
the choice of L.

By Łoś’ Theorem, there is a canonical homomorphism R→ B(R).

Theorem 6.4.7. If R is a K-affine local domain, then B(R) is a balanced big Cohen-
Macaulay algebra over R.

Proof. Since almost each approximation Rp is a K p-affine (whence excellent) local
domain, R+

p is a balanced big Cohen-Macaulay Rp-algebra by Theorem 6.4.1. Let
x be a system of parameters of R, with approximation xp. By Corollary 4.3.8,
almost each xp is a system of parameters in Rp, whence an R+

p -regular sequence.
By Łoś’ Theorem, x is therefore B(R)-regular, as we wanted to show. %&

Hochster and Huneke ([52]) arrive differently at balanced big Cohen-Macaulay
algebras in characteristic zero, via their lifting method discussed in §5.6. However,


