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Chapter 1
Ultraproducts and L.os’ Theorem

In this chapter, W always denotes an infinite set.

1.1 Ultraproducts

Non-principal ultrafilters. By a non-principal ultrafilter 7% on W, we mean a
collection of infinite subsets of W closed under finite intersection, with the property
that for any subset F of W, either F or its complement —F belongs to % . In par-
ticular, the empty-set does not belong to % and if D € % and E is an arbitrary set
containing D, then also E € %, for otherwise —E € %, whence ) = DN—E € %,
contradiction. Since every set in %/ must be infinite, it follows that any co-finite
set belongs to %/ . The existence of non-principal ultrafilters is equivalent with the
Axiom of Choice, and we make this set-theoretic assumption henceforth. It follows
that for any infinite subset of W, we can find a non-principal ultrafilter containing
this set.

In the remainder of these notes, we also fix a non-principal ultrafilter 7 on W,
and (almost always) omit reference to this fixed ultrafilter from our notation. No
extra property of the ultrafilter is assumed, with the one exception described in Re-
mark 11.1.5, which is nowhere used in the rest of our work anyway. Non-principal
ultrafilters play the role of a decision procedure on the collection of subsets of W by
declaring some subsets ’large’ (those belonging to %) and declaring the remaining
ones "small’. More precisely, let o,, be elements indexed by w € W, and let & be a
property. We will use the expressions almost all o,, satisfy property & or o,, satis-
fies property 2 for almost all w as an abbreviation of the statement that there exists
a set D in the ultrafilter %, such that property & holds for the element o,,, whenever
w € D. Note that this is also equivalent with the statement that the set of all w € W
for which o,, has property Z, lies in the ultrafilter (read: is large). Similarly, we say
that the o,, almost never satisfy property &2 (or almost no o,, satisfies &), if almost
all 0,, do not satisfy property .
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Ultraproducts. Let O,, be sets, for w € W. We define an equivalence relation on
the Cartesian product [TO,,, by calling two sequences (a,,|w € W) and (b,,|w € W)
equivalent, if a,, and b,, are equal for almost all w. In other words, if the set of indices
w € W for which a,, = b,, belongs to the ultrafilter. We will denote the equivalence
class of a sequence (a,|w € W) by

ulima,,, or ulima,, or aj.
W—00
The set of all equivalence classes on []O,, is called the ultraproduct of the O,, and
is denoted
ulimO,,, or ulimO,, or O

w—o0

Note that the element-wise and set-wise notations are reconciled by the fact that
ulim{o,, } = {ulimo,,}.
W-—00 Ww—00

The more common notation for an ultraproduct one usually finds in the literature is
O*; in the past, I also have used O... The reason for using the particular notation Oy
in these notes is because we will also introduce the remaining “chromatic” products
O, and Oy (at least for certain local rings; see Chapters 12 and 11 respectively).

We wil also often use the following terminology: if o is an element in an ultra-
product Oy, then any choice of elements o,, € O,, with ultraproduct equal to o will
be called an approximation of o. Although, an approximation is not uniquely deter-
mined by the element, any two agree almost everywhere. Below we will extend our
usage of the term approximation to include other objects as well.

Properties of ultraproducts. For the following properties, the easy proofs of
which are left as an exercise, let Oy, be sets with ultraproduct O,

1.1.1 If Q,, is a subset of O,, for each w, then ulim Q,, is a subset of ulimO,,,.

In fact, ulim Q,, consists of all elements of the form ulimo,,, with almost all o,,

in Q,,.

1.1.2 If each O,, is the graph of a function f,: A,, — B,,, then Oy is the graph
of a function Ay — By, where Ay and By are the respective ultraproducts
of A,, and B,,. We will denote this function by

ulim f,, or fj.
w—oo
Moreover, we have an equality

ulim(f, (aw)) = (%Ergfw)(gl_lg}aw)v (L.1)

W—00

fora, € A,,.
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1.1.3 If each O,, comes with an operation x,,: O,, X O,, — O,,, then

*p i=ulim *,,
Ww-—oo
is an operation on Oy. If all (or, almost all) O,, are groups with multipli-
cation *,, and unit element 1,,, then Oy is a group with multiplication *;
and unit element 1y := ulim 1,,. If almost all O,, are Abelian groups, then
s0is Oy.

1.1.4 If each O,, is a (commutative) ring with addition +,, and multiplication
‘w» then Oy is a (commutative) ring with addition + and multiplication

4
In fact, in that case, Oy is just the quotient of the product []O,, modulo the ideal
consisting of all sequences (0,,|w € W) for which almost all o,, are zero. From now

on, we will drop subscripts on the operations and just write 4+ and - for the ring
operations on the O,, and on Oy.

1.1.5 If almost all O,, are fields, then so is O.

Just to give an example of how to work with ultraproducts, let me give the proof:
if a € Oy is non-zero, with approximation a,, (recall that this means that ulima,, =
a), then by the previous description of the ring structure on Oy, almost all a,, will be
non-zero. Therefore, letting b,, be the inverse of a,, whenever this makes sense, and
zero otherwise, one verifies that ulimb,, is the inverse of a.

1.1.6 If C,, are rings and O,, is an ideal in C,, then Oy, is an ideal in
Cy :=ulimC,,. In fact, Oy is equal to the subset of all elements of the
form ulimo,, with almost all o,, € O,,. Moreover, the ultraproduct of the
C\,/O,, is isomorphic to Cy/ Oy.

1.1.7 If f\,: A, — B,, are ring homomorphisms, then the ultraproduct f; is
again a ring homomorphism. In particular, if ¢, is an endomorphism on
A,,, then the ultraproduct Gy is a ring endomorphism on Ay := ulimA,,.

1.2 Model-theory in rings

The previous examples are just instances of the general principle that ‘algebraic
structure’ carries over to the ultraproduct. The precise formulation of this principle
is called tos’ Theorem (Los is pronounced ‘wésh’) and requires some terminology
from model-theory. However, for our purposes, a weak version of tos’ Theorem
(namely Theorem 1.3.1 below) suffices in almost all cases, and its proof is entirely
algebraic. Nonetheless, for a better understanding, the reader is invited to indulge
in some elementary model-theory, or rather, an ad hoc version for rings only (if this
not satisfies him/her, (s)he should consult any textbook, such as [34, 39, 48]).
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Formulae. By a quantifier free formula without parameters in the free variables
& =(&,...,&), we will mean an expression of the form

q)(é): \/flj:()/\.../\fsj:O/\g|j7é0/\‘../\gtj7é0, (12)

Jj=1

where each f;; and g;; is a polynomial with integer coefficients in the variables &,
and where A and V are the logical connectives and and or. If instead we allow the
fij and g;; to have coefficients in a ring R, then we call ¢(§) a quantifier free formula
with parameters in R. We allow all possible degenerate cases as well: there might
be no variables at all (so that the formula simply declares that certain elements in
Z or in R are zero and others are non-zero) or there might be no equations or no
negations or perhaps no conditions at all. Put succinctly, a quantifier free formula is
a Boolean combination of polynomial equations using the connectives A, Vv and -
(negation), with the understanding that we use distributivity and De Morgan’s Laws
to rewrite this Boolean expression in the (disjunctive normal) form (1.2).

By a formula without parameters in the free variables &, we mean an expression

of the form
(&) :=(Q1&1) - (Qy &) w(&,0),

where y(&, ) is a quantifier free formula without parameters in the free variables &
and { = (i,...,§,) and where Q; is either the universal quantifier v or the existential
quantifier 3. If instead w(&, ) has parameters from R, then we call ¢ (&) a formula
with parameters in R. A formula with no free variables is called a sentence.

Satisfaction. Let ¢(£) be a formula in the free variables & = (&;,...,&,) with
parameters from R (this includes the case that there are no parameters by taking
R =7 and the case that there are no free variables by taking n =0). Let A be an R-
algebra and let a = (ay,...,a,) be a tuple with entries from A. We will give meaning
to the expression a satisfies the formula ¢(&) in A (sometimes abbreviated to ¢(a)
holds in A or is true in A) by induction on the number of quantifiers. Suppose first
that ¢ (&) is quantifier free, given by the Boolean expression (1.2). Then ¢(a) holds
in A, if for some jo, all f;j,(a) =0 and all g;,(a) # 0. For the general case, suppose
(&) is of the form (3&) w(&, &) (respectively, (V&) w(€,&)), where the satisfaction
relation is already defined for the formula y(&, ). Then ¢(a) holds in A, if there is
some b € A such that y(a,b) holds in A (respectively, if y(a,b) holds in A, for all
b € A). The subset of A" consisting of all tuples satisfying ¢(&) will be called the
subset defined by ¢, and will be denoted ¢(A). Any subset that arises in such way
will be called a definable subset of A”.

Note that if » = 0, then there is no mention of tuples in A. In other words, a
sentence is either true or false in A. By convention, we set A° equal to the singleton
{0} (that is to say, A° consists of the empty tuple 0). If ¢ is a sentence, then the set
defined by it is either {0} or 0, according to whether ¢ is true or false in A.

Constructible Sets. There is a connection between definable sets and Zariski-
constructible sets, where the relationship is the most transparent over algebraically
closed fields, as we will explain below. In general, we can make the following ob-
servations. Note, however, that the material in this section already assumes the
terminology from Chapter 2 below.

Let R be a ring. Let ¢(&) be a quantifier free formula with parameters from R,
given as in (1.2). Let X, denote the constructible subset of A} (see page 32)
consisting of all prime ideals p of Spec(R[&]) which for some j, contain all f;;, and
do not contain any g;;,. In particular, if n =0, so that A% is by definition Spec(R), then
the constructible subset X, associated to ¢ is a subset of Spec(R).
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Let A be an R-algebra and assume moreover that A is a domain (we will never
use constructible sets associated to formulae if A is not a domain). For an n-
tuple a over A, let p, be the (prime) ideal in A[{] generated by the & — a;, where
& =(&,...,&). Since A[§]/pa =2 A, we call such a prime ideal an A-rational point. It
is not hard to see that this yields a bijection between n-tuples over A and A-rational
points in A[£], which we therefore will identify with one another. In this terminology,
¢(a) holds in A if and only if the corresponding A-rational point p, lies in the con-
structible set Xy ¢ (strictly speaking, we should say that it lies in the base change
Zo(g) Xspec(r) SPec(A), but for notational clarity, we will omit any reference to base
changes). If we denote the collection of A-rational points of the constructible set
Zo(e) by Zye)(A), then there is a one-one correspondence between this latter set
and the definable subset @(A). If ¢ is a sentence, then Z, is a constructible sub-
set of Spec(R) and hence its base change to Spec(A) is a constructible subset of
Spec(A). Since A is a domain, Spec(A) has a unique A-rational point (corresponding
to the zero-ideal) and hence ¢ holds in A if and only if this point belongs to X,.

Conversely, if X is an R-constructible subset of A}, then we can associate to it
a quantifier free formula ¢z (&) with parameters from R as follows. However, here
there is some ambiguity, as a constructible set is more intrinsically defined than
a formula. Suppose first that X is the Zariski closed subset V(I), where I is an
ideal in R[{]. Choose a system of generators, so that I = (fi,...,fs)R[§] and set
¢z (&) equal to the quantifier free formula f1(€) = --- = f;(§) = 0. Let A be an R-
algebra without zero-divisors. It follows that an n-tuple a is an A-rational point of £
if and only if a satisfies the formula ¢s. Therefore, if we make a different choice of
generators I = (f{,..., f/)R[&], although we get a different formula ¢’, it defines in
any R-algebra A without zero-divisors the same definable set, to wit, the collection of
A-rational points of Z. To associate a formula to an arbitrary constructible set, we do
this recursively by letting ¢z A 0w, @5 V g and =@y correspond to the constructible
sets ZNY¥, ZUY and —X respectively.

We say that two formulae ¢(&) and w(€) in the same free variables & =
(&1,...,&,) are equivalent over a ring A, if they hold on exactly the same tuples
from A (that is to say, if they define the same subsets in A"). In particular, if ¢ and
v are sentences, then they are equivalent in A if they are simultaneously true or
false in A. If (&) and y(&) are equivalent for all rings A in a certain class %, then
we say that ¢(&) and y(&) are equivalent modulo the class ¢ . In particular, if £
is a constructible set in A%, then any two formulae associated to it are equivalent
modulo the class of all R-algebras without zero-divisors. In this sense, there is a
one-one correspondence between constructible subsets of A} and quantifier free
formulae with parameters from R modulo the above equivalence relation.

Quantifier Elimination. For certain rings (or classes of rings), every formula
is equivalent to a quantifier free formula; this phenomenon is known under the name
Quantifier Elimination. We will only encounter it for the following class.

Theorem 1.2.1 (Quantifier Elimination for algebraically closed fields). If 7" is
the class of all algebraically closed fields, then any formula without parameters is
equivalent modulo ¢ to a quantifier free formula without parameters.

More generally, if F is a field and 2¢ (F) the class of all algebraically closed fields
containing F, then any formula with parameters from F is equivalent modulo % (F)
to a quantifier free formula with parameters from F.

Proof (Sketch of proof). These statements can be seen as translations in model-
theoretic terms of Chevalley’s Theorem which says that the projection of a con-
structible set is again constructible. | will only explain this for the first assertion.
As already observed, a quantifier free formula ¢(&) (without parameters) corre-
sponds to a constructible set X, ) in A7 and the tuples in K" satisfying ¢(&) are



8 1 Ultraproducts and tos’ Theorem

precisely the K-rational points X, ¢)(K) of Z, . The key observation is now the fol-
lowing. Let y(&,§) be a quantifier free formula and put y(§) := (3§) w(§, ), where
E=(&,...,&) and £ = (&1,...,Gn)- Let W := y(K) be the subset of K" defined
by w(&,8) and let I' := y(K) be the subset of K" defined by y(£). Therefore, if we
identify K"t™ with the collection of K-rational points of Axt™, then

=Xy (K).

Moreover, if p: A% — A% is the projection onto the first n coordinates then p(¥) =
I'. By Chevalley’s Theorem (see for instance [18, Corollary 14.7] or [24, II. Exercise
3.19]), p(Zye,¢)) (as a subset in A7) is again constructible, ands therefore, by our
previous discussion, of the form Z, ¢ for some quantifier free formula x(&). Hence
I =X, (K), showing that. y(€) is equnv.alent modulo K to x(&). Since x(&) does
not depend on K, we have in fact an equivalence of formulae modulo the class 7.
To get rid of an arbitrary chain of quantifiers, we use induction on the number of
quantifiers, noting that the complement of a set defined by (V§) w(&, () is the set
defined by (3¢) ~y(&, &), where —(-) denotes negation.

For some alternative proofs, see [34, Corollary A.5.2] or [39, Theorem 1.6]. O

1.3 Los’ Theorem

Thanks to Quantifier Elimination (Theorem 1.2.1), when dealing with algebraically
closed fields, we may forget altogether about formulae and use constructible sets
instead. However, we will not always be able to work just in algebraically closed
fields and so we need to formulate a general transfer principle for ultraproducts. For
most of our purposes, the following version suffices:

Theorem 1.3.1 (Equational L.os’ Theorem). Suppose each A,, is an R-algebra,
and let Ay denote their ultraproduct. Let & be an n-tuple of variables, let f € R[E],
and let a,, be n-tuples in A,, with ultraproduct a,. Then f(a;) = 0 in Ay if and only
if f(a,,) =0in A, for almost all w.

Moreover, instead of a single equation f = 0, we may take in the above statement
any system of equations and negations of equations over R.

Proof. Let me only sketch a proof of the first assertion. Suppose f(a;) = 0. One
checks (do this!), making repeatedly use of (1.1), that f(a;) is equal to the ultra-
product of the f(a, ). Hence the former being zero simply means that almost all
f(a,,) are zero. The converse is proven by simply reversing this argument. O

On occasion, we might also want to use the full version of £os’ Theorem, which re-
quires the notion of a formula as defined above. Recall that a sentence is a formula
without free variables.

Theorem 1.3.2 (Los’ Theorem). Let R be a ring and let A,, be R-algebras. If ¢ is
a sentence with parameters from R, then ¢ holds in almost all A,, if and only if ¢
holds in the ultraproduct A;.

More generally, let ¢(&,...,&,) be a formula with parameters from R and let a,,
be an n-tuple in A,, with ultraproduct a,. Then ¢(a,,) holds in almost all A,, if and
only if p(ay) holds in A;.
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The proof is tedious but not hard; one simply has to unwind the definition of
formula (see [34, Theorem 9.5.1] for a more general treatment). Note that A; is
naturally an R-algebra, so that it makes sense to assert that ¢ is true or false in A;.
Applying Los’ Theorem to a quantifier free formula proves Theorem 1.3.1.

1.4 Ultra-rings

An ultra-ring is simply an ultraproduct of rings. These rings will form the main tool
in these notes, but for the moment we only establish some very basic facts about
them.

Ultra-fields. Let K,, be a collection of fields and K} their ultraproduct, which is
again a field by 1.1.5 (or by an application of f.os’ Theorem). Any field which
arises in this way is called an ultra-field.'. Since an ultraproduct is either finite or
uncountable, Q is an example of a field which is not an ultra-field.

1.4.1 If for each prime number p, only finitely many K,, have characteristic p,
then K has characteristic zero.

Indeed, for every prime number p, the equation p& — 1 = 0 has a solution in all
but finitely many of the K,, and hence it has a solution in Ky, by Theorem 1.3.1.
We will call an ultra-field K}, of characteristic zero which arises as an ultraproduct
of fields of positive characteristic, a Lefschetz field (the name is inspired by Theo-
rem 1.4.3 below); and more generally, an ultra-ring of characteristic zero given as
the ultraproduct of rings of positive characteristic will be called a Lefschetz ring (see
page 159 for more).

1.4.2 If almost all K,, are algebraically closed fields, then so is K.

The quickest proof is by means of Los’ Theorem, although one could also give an
argument using just Theorem 1.3.1 (which is no surprise in light of Exercise 1.5.13).

Proof. For each n > 2, consider the sentence o, given by

(Yo, G) (3E) Eu=0 Vv §&"+ -+ L&+ L =0.

This sentence is true in any algebraically closed field, whence in almost all K,,,
and therefore, by Los’ Theorem, in K;. However, a field in which every o, holds is
algebraically closed. o

We have the following important corollary which can be thought of as a model
theoretic Lefschetz Principle (here F,l,]g denotes the algebraic closure of the p-
element field).

! In case the K,, are finite but of unbounded cardinality, their ultraproduct K is also called a
pseudo-finite field; in these notes, however, we prefer the usage of the prefix ultra-, and so we
would call such fields instead ultra-finite fields
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Theorem 1.4.3 (Lefschetz Principle). Let W be the set of prime numbers, endowed
with some non-principal ultrafilter. The ultraproduct of the fields IFZIg is isomorphic
with the field C of complex numbers, that is to say, we have an isomorphism

ulimF4% = C.

p—oo

Proof. Let IFy denote the ultraproduct of the fields IFZlg. By 1.4.2, the field IFy is
algebraically closed, and by 1.4.1, its characteristic is zero. Using elementary set
theory, one calculates that the cardinality of F is equal to that of the continuum.
The theorem now follows since any two algebraically closed fields of the same un-
countable cardinality are (non-canonically) isomorphic by Steinitz’s Theorem (see
[34] or Theorem 1.4.5 below). O

Remark 1.4.4. We can extend the above result as follows: any algebraically closed
field K of characteristic zero and cardinality 2*, for some infinite cardinal x, is
a Lefschetz field. Indeed, for each p, choose an algebraically closed field K, of
characteristic p and cardinality k. Since the ultraproduct of these fields is then an
algebraically closed field of characteristic zero and cardinality 2¥, it is isomorphic
to K by Steinitz’s Theorem (Theorem 1.4.5). Under the generalized Continuum Hy-
pothesis, any uncountable cardinal is of the form 2%, and hence any uncountable
algebraically closed field of characteristic zero is then a Lefschetyz field.

Theorem 1.4.5 (Steinitz’s Theorem). If K and L are algebraically closed fields of
the same characteristic and the same uncountable cardinality, then they are isomor-
phic.

Proof (Sketch of proof). Let k be the common prime field of K and L (that is to say,
either Q in characteristic zero, or F, in positive characteristic p). Let I and A be
respective transcendence bases of K and L over k. Since K and L have the same
uncountable cardinality, I and A have the same cardinality, and hence there exists
a bijection f: I' — A. This naturally extends to a field isomorphism k(I") — k(A).
Since K is the algebraic closure of k(I"), and similarly, L of k(A), this isomorphism
then extends to an isomorphism K — L. 0

Ultra-rings. Let A,, be a collection of rings. Their ultraproduct Ay will be called,
as already mentioned, an ultra-ring.

1.4.6 IfeachA,, is local with maximal ideal m,, and residue field k,, := A,, /m,,,
then Ay, is local with maximal ideal my, := ulimm,, and residue field k;, :=
ulimk,,,.

Indeed, a ring is local if and only if the sum of any two non-units is again a
non-unit. This statement is clearly expressible by means of a sentence, so that by
Los’ Theorem, (Theorem 1.3.2) Ay is local. Again we can prove this also directly, or
using the equational version, Theorem 1.3.1. The remaining assertions now follow
easily from 1.1.6. In fact, the same argument shows that the converse is also true: if
Ay is local, then so are almost all A,,,.
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1.4.7 IfA,, are local rings of embedding dimension e, then so is Ay.

Recall that the embedding dimension of a local ring is the minimal number of
generators of its maximal ideal. Hence, by assumption almost all m,, are generated
by e elements x;,,. It follows from 1.1.6 that my is generated by the e ultraproducts
x,-h.

1.4.8 Almost all A,, are domains (respectively, reduced) if and only if A, is a
domain (respectively, reduced).

Indeed, being a domain is captured by the fact that the equation £ = 0 has no
solution by non-zero elements; and being reduced by the fact that the equation &2 =
0 has no non-zero solutions. In particular, using 1.1.6, we see that an ultraproduct
of ideals is a prime (respectively, radical, maximal) ideal if and only if almost all
ideals are prime (respectively, reduced, maximal).

1.4.9 If I,, are ideals in the local rings (A,,,m,,), such that in (Ay,my), their
ultraproduct Iy is my-primary, then almost all 1,, are m,,-primary.

Recall that an ideal [ in a local ring (R, m) is called m-primary if its radical is
equal to m. Note that here the converse may fail to hold: not every ultraproduct of
m,,-primary ideals need to be my-primary (see Exercise 1.5.10).

As will become apparent later on, the following ideal plays an important role in
the study of local ultra-rings.

Definition 1.4.10 (Ideal of infinitesimals). For an arbitrary local ring (R, m), define
its ideal of infinitesimals, denoted Jg, as the intersection

Jg = ﬂ m”.

n>0

The m-adic topology (see page 91) on R is Hausdorff (=separated) if and only if
Jg = 0. Therefore, we will refer to the residue ring R/Jg as the separated quotient
of R. In commutative algebra, the ideal of infinitesimals hardly ever appears simply
because of:

Theorem 1.4.11 (Krull’s Intersection Theorem). If R is a Noetherian local ring,
then Jg = 0.

Proof. This is an immediate consequence of the Artin-Rees Lemma (for which see
[41, Theorem 8.5] or [7, Proposition 10.9]), or of its weaker variant proven in The-
orem 11.2.1 below. Namely, for x € Jg, there exists some ¢ such that xRNm¢ C xm.
Since x € m¢ by assumption, we get x € xm, that is to say, x = ax with « € m. Hence
(I1—a)x=0.As 1—aisaunitin R, we getx=0. O

Corollary 1.4.12. In a Noetherian local ring (R,m), every ideal is the intersection
of m-primary ideals.
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Proof. For I C R an ideal, an application of Theorem 1.4.11 to the ring R/I shows
that [ is the intersection of all / +m”, and the latter are indeed m-primary. a

Almost all local ultra-rings have a non-zero ideal of infinitesimals.

1.4.13 If R,, are local rings with non-nilpotent maximal ideal, then the ideal of
infinitesimals of their ultraproduct Ry, is non-zero. In particular, Ry is not
Noetherian.

Indeed, by assumption, we can find non-zero a,, € m" (let us for the moment
assume that the index set is equal to N) for all w. Hence their ultraproduct aj is
non-zero and lies inside jRn'

Ultra-exponentation. Let Ay be an ultra-ring, given as the ultraproduct of rings A,,.
Let Ny be the ultrapower of the natural numbers, and let o € Ny with approximations
a,,. The ultra-exponentation map on A with exponent o is given by sending x € A

to the ultraproduct, denoted x*, of the x?éw, where x,, is an approximation of x. One
easily verifies that this definition does not depend on the choice of approximation
of x or a. If A is local and x a non-unit, then x* is an infinitesimal for any o in Ny
not in N. In these notes, the most important instance will be the ultra-exponentation
map obtained as the ultra-product of Frobenius maps. More precisely, let Ay be a
Lefschetz ring, say, realized as the ultraproduct of rings A, of characteristic p (here
we assumed for simplicity that the underlying index set is just the set of prime
numbers, but this is not necessary). On each A, we have an action of the Frobenius,
given as F,(x) := x” (for more, see §8.1).

Definition 1.4.14 (Ultra-Frobenius). The ultraproduct of these Frobenii yields an
endomorphism F., on Ay, called the ultra-Frobenius, given by Fe, (x) := ™, where
7 € Ny is the ultraproduct of all prime numbers.

1.5 Exercises

Ex 1.5.1
Prove properties 1.1.1-1.1.7.

Ex 1.5.2
Prove 1.4.6 in detail, using only Theorem 1.3.1. Show that if p,, are prime ideals in A,,, then
their ultraproduct py is a prime ideal in Ay, and the ultraproduct of the (Ay),,, is equal to

(Ag)p,-

Ex1.5.3
Show that an ultrafilter on W is the same as a filter which is maximal (with respect to
inclusion) among all filters containing the Frechet filter. Recall that a filter on a set W
is a collection of non-empty sets closed under finite intersection and supersets, and that
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the Frechet filter is the collection of all co-finite subsets, that is to say, all subsets whose
complement is finite.
Also, describe the maximal filters not containing the Frechet filter.

Ex1.54
In the statement of 1.4.1, we tacitly assume that the underlying set is countable. Prove the
following more general version which works over an arbitrary infinite index set: if for each
prime number p, almost no field K,, has characteristic p, then their ultraproduct K, has
characteristic zero, whence is a Lefschetz field.

*Ex 1.5.5
Fill in the details in the proof of the following result due to Ax ([8]):

Theorem. If a polynomial map C" — C" is injective, then it is surjective.

Here we call amap ¢ : C" — C" polynomial if there exist n polynomials py(&),...,p.(€) €
CI[€] in the n variables & := (&,...,&,) such that ¢ (w) = (p1(w),...,pu()) forallu e C*
(in the language of Chapter 2 this is just a morphism of affine space At to itself).

Proof. By the Pigeon Hole Principle, the result is true if we replace C by any finite field;
since IFZIg is a union of finite fields, the assertion also holds upon replacing C by leg ; hence
we are done by Theorem 1.4.3. O

Ex 1.5.6

True or false: any homomorphic image of an ultra-ring is again an ultra-ring (you may
want to take a peek at the next exercise).

Ex 1.5.7
Suppose I,, C Ay, are ideals, and let Iy C Ay be their ultraproduct. Show that if H,, is a set of
generators of I,,, then the ultraproduct Hy := ulim H,, generates I,. Suppose next that all H,,
are finite, say Hy, = { fiw, - -; fin(w),w}» and for each i € N, let fi; be the ultraproduct of the
fiw,» where we put f;,, := 0 whenever m(w) < i. Let m be the supremum of all m(w) (allowing
m = o). Show that if m < oo, then the fy; for i =1,...,m generate Iy. Use the example
I, := (&,8)"A, (with W = N) where A,, := K[§, (], to show that the same statement is
false if m = co.

Conclude that if I is a finitely generated ideal in a ring A, then its ultrapower in the ultra-
power Ay of A is equal to IA;. Give a counterexample to this assertion if I is not finitely
generated.

Ex 1.5.8
Prove the following more general version of the last assertion in Exercise 1.5.7: let N C M
be modules and let Ny and My be their ultrapowers. If N is finitely generated, then Ny is
equal to the submodule of My generated by N.

Ex 1.5.9

Let A — B be a finite, injective homomorphism. Show, using induction on the number of
A-algebra generators, that if A is an ultraring, then so is B.

13
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Ex 1.5.10
Show that the ultraproduct of rings of length l is again a ring of length [ (see page 44 for the
notion of length). Use this to prove 1.4.9. Give a counterexample to the converse of 1.4.9.

Ex 1.5.11
Show the following sharper version of 1.4.13: if R,, are local rings whose length is un-
bounded (meaning that for every N, the length ((R,,) > N for almost all w—see page 44
for the notion of length), then, and only then, their ultraproduct Ry has a non-zero ideal of
infinitesimals.

Ex 1.5.12
By an ultra-discrete valuation ring, we mean an ultraproduct of discrete valuation rings.
Show that the ideal of infinitesimals Jy of an ultra-discrete valuation ring V is an infinitely
generated prime ideal. Show that an ultra-discrete valuation ring is a valuation domain (=a
domain such that for all a in the field of fractions of V, at least one of a or 1/a belongs to
V). Show that the separated quotient V /3y is a discrete valuation ring—in Chapter 11 we
will call this a cataproduct of discrete valuation rings.

Additional exercises.

Ex 1.5.13
Derive tos’ Theorem (Theorem 1.3.2) from its equational version, Theorem 1.3.1.

Ex 1.5.14
Give a counterexample to Theorem 1.4.5 if we allow the common cardinality to be
countable. Can you formulate a version which also works in the countable case?

Ex 1.5.15
Give a detailed proof of Theorem 1.4.5.

Ex 1.5.16
Let k be a field and k; its ultrapower. Use Maclane’s criterion for separability (see
for instance [41, Theorem 26.4] or [18, Theorem A1.3]) to show that the natural
extension k — k, is separable.

Ex 1.5.17
Recall from model-theory that a class of structures over a language L is axioma-
tizable or first-order definable, if there exists a theory T in the language L whose
models are precisely the members of this class. Show that an axiomatizable class
is closed under ultraproducts. Deduce from this and 1.4.13 that the class of Noe-
therian rings is not first order-definable in the language of rings.
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1.6 Project: ultrarings as stalks

Prerequisites: sheaf-theory (for instance, [24, II.1], or the rudimentary discussion
on page 28).

Let W be an infinite set and give it the discrete topology (in which all sets are
open). Let W" be the Stone-Cech compactification of W consisting of all ultrafilters
on W. Embed W in WV (and henceforth view it as a subset) by sending an element
to the principal ultrafilter it generates.

1.6.1 Show that taking for open sets all sets of the form t(U) for U C W,
where t(U) consists of all ultrafilters containing U, constitutes a topol-
ogy on W". Show that W is dense in WV, that WV is compact Hausdorff,
and that any continuous map W — X into a compact Hausdorff space X
factors through WV (this then justifies WV being called a ‘compactifica-
tion’).

1.6.2 Show that T(U) is homeomorphic to U, for any infinite subset U C W.

Let A, be rings, indexed by w € W. Define a sheaf of rings .2# on W by taking for
stalk @7, := A,, in each point w € W (note that since W is discrete, this completely
determines the sheaf 7). Leti: W — WY be the above embedding and let &7V :=
i/ be the direct image sheaf of <7 under i. By general sheaf theory, this is a sheaf
on WV,

1.6.3 Show that the stalk of <7V in a boundary point % € WY \ W is isomor-
phic to the ultraproduct ulimA,, with respect to the non-principal ultra-
filter % .
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Chapter 2

Commutative Algebra versus Algebraic
Geometry

Historically, algebraic geometry was developed over the complex numbers C. How-
ever, because of its algebraic nature, it can be carried out over any algebraically
closed field. Therefore, in this chapter, we fix an algebraically closed field K, and
we let A := K[&] be the polynomial ring in n indeterminates & := (i,...,&,). Let
us first take a look at classical or ‘naive’ algebraic geometry. Gradually we will
move to an algebraization of the concepts, which we then will study by means of
the algebraic theory developed in the subsequent chapters.

2.1 Classical algebraic geometry

Affine space. One defines affine n-space over K to be the topological space whose
underlying set is K", and in which the closed sets are the algebraic sets. Recall that
by an algebraic set we mean any solution set of a system of polynomial equations.
More precisely, given a subset X C A, let V(X) be the collection of all tuples u such
that p(u) = 0 for all p € X. Note that if ] := XA denotes the ideal generated by Z,
then V(I) = V(X), so that in the definition, we may already assume that X is an
ideal. In particular, if py,..., ps are generators of I, then V(I) = V((p1,...,ps)A) =
V(pi,...,ps). A subset of the form V(I), for some ideal I C A, is then what is
called an algebraic set (also called a Zariski closed subset). That this forms indeed
a topology on K", called the Zariski topology, is an immediate consequence of the
next lemma (the proof of which is deferred to the exercises):

Lemma 2.1.1. Given ideals I1,J,1, C A, we have

1.v(1)=0, V(0)=K";

2.VIHUV() =V({I-J)=V(InJ);

3. V(I])QV(IQ)Q-“ = V(Il —|—Iz—|—...),

where in the last equality, the intersection and the sum are allowed to be infinite as
well. a

19
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Conversely, given a closed subset V C K", we define the ideal of definition of V,
denoted J(V), to be the collection of all p € A such that p is identical zero on V. We
have:

2.1.2 ThesetJ(V) is aradical ideal, V(J(V)) =V, and 3(V) is maximal among
all ideals I such that V(I) =V.

Recall that an ideal I C R is called radical if x" € I implies x € I. This is equivalent
with R/I being reduced, that is to say, without nilpotent elements. The radical of an
ideal 1, denoted rad([), is the ideal of all x € R such that some power belongs to .
Immediately from 2.1.2 we get:

2.1.3 Every singleton in K" is closed, and its ideal of definition is a maximal
ideal.

Indeed, let u := (uy,...,u,) € K". Let my be the ideal in A generated by the linear
polynomials & — u;. One verifies that the “evaluation at w” map A — K: p — p(u)
is surjective and has kernel equal to my,. Hence A/m, = K, showing that m,, is a
maximal ideal. Clearly, V(my) = {u}.

Noetherian spaces. A topological space X is called Noetherian if there are no infi-
nite strictly descending chains of closed subsets (one says: X admits the descending
chain condition on closed subsets). A topological space X is called irreducible if it
is not the union of two proper closed subsets. We call a subset V C X irreducible
if it so in the topology induced from X. An easy but important fact of Noetherian
spaces is:

Proposition 2.1.4. Any closed subset V of a Noetherian space X is a finite union of
irreducible closed subsets.

Proof. The argument is typical for Noetherian spaces, and often is therefore re-
ferred to as Noetherian induction. Namely, in a Noetherian space, every collection
of closed subsets has a minimal element (prove this!). Now, if the assertion is false,
let V be a minimal closed counterexample. In particular, V cannot be irreducible,
and hence can be written as V =V, UV,, with V|, V, G V closed. By minimality, each
V; is a finite union of irreducible closed subsets, but then so is their union V =V, UV3,
contradiction. O

Hence any closed subset V admits an irreducible decomposition V. =V, U---UVj
with the V; irreducible closed subsets. We may always omit any V; that is contained
in some other V;, and hence arrive at a minimal irreducible decomposition. One can
show (see Exercise 2.8.2) that such a decomposition is unique (up to a renumbering
of its components), and the V; in this decomposition are then called the irreducible
components of V.

Definition 2.1.5 (Dimension). The dimension of a Noetherian space X is the max-
imal length! of a chain of irreducible closed subsets (this can be infinite), and is
denoted dim(X).

1 Whenever one talks about the length of a chain one means one less than the number of distinct
sets in the chain.
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2.2 Hilbert-Noether theory

To develop (classical) algebraic geometry, three results are of crucial importance.
We will prove them after first reformulating them as algebraic problems.

Hilbert’s basis theorem. Hilbert proved the following result by a constructive
method. We will provide a more streamlined version of this below.

Theorem 2.2.1. Affine n-space is a Noetherian space of dimension n.

In particular, any collection of Zariski closed subsets has a minimal element, any
chain of irreducible Zariski closed subsets has length at most n, and any Zariski
closed subset is the finite union of irreducible closed subsets. In order to prove
Hilbert’s basis theorem, we will translate it to an algebraic result (Theorem 2.3.5
below).

Nullstellensatz. We have already seen that a closed subset is given by an ideal as
the locus V(I), and conversely, to a closed subset V is associated its ideal of defini-
tion J(V). The next result, also due to Hilbert, describes the precise correspondence:

Theorem 2.2.2. The operator J(-) induces an (order-reversing) bijection between
(singletons of) K" and maximal ideals of A; between closed subsets of K" and rad-
ical ideals of A; and between irreducible closed subsets of K" and prime ideals of
A.

More generally, if V C K" is a closed subset, and I :=J(V) its ideal of definition,
then under the above correspondence, points in V correspond to maximal ideals
containing I; closed subsets in V to radical ideals containing I; and irreducible
closed subsets of V to prime ideals containing I.

Affine varieties and coordinate rings. The ‘algebraic leap’ to make now is that the
three collections of ideals described in the second part of Theorem 2.2.2 correspond
naturally to respectively the maximal, radical and prime ideals of the ring A /I (verify
this!). We call A/I the coordinate ring of V and denote it K[V] (see Exercise 2.8.4 for
a justification of this notation). But this then again prompts us to view V' as an object
on its own, without immediate reference to its ambient affine space. Therefore, we
will call any closed subset of K", for some n, an affine variety2 over K, and we view
it as a topological space via the induced topology.

The previous definition brings to the fore an algebraic object closely associated
to a variety, to wit, its coordinate ring. To study it, we introduce some further ter-
minology. By an affine algebra over K, or a K-affine ring or algebra, we mean a
finitely generated K-algebra. Later on, we will work over other base rings than just
fields, so it is apt to generalize this definition already now: let Z be an arbitrary ring.
By a Z-affine ring or algebra we mean a finitely presented Z-algebra, that is to say, a
Z-algebra of the form Z[&]/I with & a finite tuple of indeterminates and I a finitely
generated ideal. It follows from (the algebraic version of) Theorem 2.2.1 that both

2 Be aware that some authors, unlike me, insist that varieties should also be irreducible.
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our definitions agree in the case Z is a field. If Z is moreover a local ring with max-
imal ideal p, then by a local Z-affine ring (or algebra) R we mean a localization of a
Z-affine ring with respect to a prime ideal containing p, that is to say R = (Z[]/I) g
with [ finitely generated and 9 a prime ideal of Z[&] containing p. In particular,
Z — R is a local homomorphism. By a homomorphism of Z-affine rings A — B, we
mean a Z-algebra homomorphism making B into an A-affine algebra (that is to say,
the homomorphism A — B itself is of finite type). Similarly, by a local homomor-
phism of local Z-affine rings R — S, we mean a local homomorphism of Z-algebras
making S into a local R-affine ring.

Returning to our discussion about coordinate rings, we see that each K[V] is a
reduced K-affine ring. In Exercise 2.8.6, you will show that every reduced K-affine
ring arises as a coordinate ring, and that different affine varieties have different
coordinate rings. Hence we established the following ‘duality’ between geometric
and algebraic objects:

2.2.3 Associating the coordinate ring to an affine variety yields a one-one cor-
respondence between affine varieties over K and reduced K -affine rings.

To make this into an equivalence of categories, we must define morphisms be-
tween affine varieties. First off, a morphism between affine spaces is a polynomial
map ¢: K" — K™, that is to say, a map given by m polynomials p;(&),...,pu(§) €
A, sending an n-tuple u to the m-tuple

¢(u):= (pr(w),.... pm(w)).

Note that ¢ also induces a K-algebra homomorphism ¢: B — A by mapping ; to
pi, where B:=: K[{] and § := ({1,..., ) are the indeterminates on K™. Now, let
V and W be affine varieties, that is to say, V is a closed subset of K" and W a closed
subset of K™, say. Then a morphism V. — W is the restriction of a polynomial map
¢: K" — K™ for which ¢ (V) C W, which we will just denote againas ¢: V — W.
Let /:=3(V) CA and J := J(W) C B be the respective ideals of definition. We
already noticed that ¢ induces a K-algebra homomorphism ¢@: B — A. One verifies
thatif ¢ : V — W is a morphism, then ¢(J) C I, so that we get an induced K-algebra
homomorphism K[W] = B/J — K[V] = A/I. With this notion of morphism, 2.2.3
gives an anti-equivalence of categories (‘anti’ since the morphisms V — W yield
homomorphisms K[W] — K[V] going the other way). An isomorphism of affine
varieties, as always, is a morphism admitting an inverse which is also a morphism.

The Krull dimension of a ring R is by definition the maximal length of a chain of
prime ideals in R (see §3.1). Using Theorem 2.2.2, we therefore get:

Corollary 2.2.4. For every affine variety V, its dimension is equal to the Krull di-
mension of its coordinate ring K[V]. O

Noether normalization. To formulate the last of our ‘great’ theorems, we call a
morphism of affine varieties V. — W finite if the induced homomorphism K[W] —
K[V] is finite (meaning that K[V] is finitely generated as a module over K[W]).
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Theorem 2.2.5. Each variety V admits a finite and surjective morphism onto some
affine space K°.

Proof. We will actually prove the slightly stronger algebraic form of this statement:
any K-affine ring C (not necessarily reduced) admits a finite and injective homomor-
phism K[¢1,..., &) C C (see 3.3.7 below). We prove this by induction on z, the num-
ber of variables £ used to define C. Write C as A/I for some ideal I with A := K[&].
There is nothing to show if I is zero, so assume f is a non-zero polynomial in 1. The
trick is to find a change of coordinates such that f becomes monic in the last coor-
dinate &,, that is to say, when viewed as a polynomial in A’[&,], the highest degree
term of f is equal to &}, where A’ :=K[&’] and &' := (&,...,&,—1). Such a change
of coordinates does indeed exist (Exercise 2.8.23), and in fact, can be taken to be
linear in case K is infinite (which is the case if K is algebraically closed). So we may
assume f is monic in &, of degree s. By Euclidean division in A’[&,], any polyno-
mial g can be written as g = fq+ r with g,r € A such that the ,-degree of r is at
most s — 1. This means that A/fA is generated as an A’-module by 1,&,,...,& L.
Let I’ :=INA’. It follows that the extension A’/I' C A/I is again finite. By induction,
A'/I' is a finite K[{]-module for some tuple of variables ¢ := (&i,..., ). Hence the
composition K[§] CA’/I' CA/I = C is the desired Noether normalizationof C. O

We will see later (in Corollary 3.3.9) that d is actually equal to the dimension of
V. In particular, this then proves the second statement in Theorem 2.2.1 (see also
Corollary 3.3.3); the first statement will be covered in Theorem 2.3.5 below. Let us
next prove the Nullstellensatz. We start with:

Proposition 2.2.6 (Weak Nullstellensatz). If E C F is an extension of fields such
that F is finitely generated as an E-algebra, then E C F is a finite extension.

Proof. By Theorem 2.2.5, we can find a finite, injective homomorphism E[{] C F.
The result now follows from Lemma 2.2.7, since the only way E[{] can be a field
is for { to be the empty tuple of variables, showing that E C F itself is finite, as
claimed. O

Lemma 2.2.7. If R C F is a finite, injective homomorphism (or more generally, an
integral extension) with F a field, then R is also a field.

Proof. Let a be a non-zero element of R. By assumption, 1/a € F is integral over R,
whence satisfies an equation

(1/a) +r(1/a) '+ 4rg=0

with r; € R. Multiplying with o, we get 1 +a(ry + ra+---+rga®"') = 0, showing that
a has an inverse in R. O

Proof of the Nullstellensatz, Theorem 2.2.2

We already observed (in 2.1.3) that J(u) = m, is a maximal ideal of A. So we
need to prove conversely that any maximal ideal of A is realized in this way. Let m
be a maximal ideal. By Proposition 2.2.6, the field A/m is a finite extension of K,
and since K is algebraically closed, it must in fact be equal to it. If u; denotes the
image of & under the composition A — A/m = K, then my Cm for u:= (uy,...,u,),
whence both ideals must be equal as they are maximal. This proves the one-one
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correspondence between K" and the maximal ideals of A. By 2.1.2, the operator J
is injective. To prove it is surjective, we have to show that / = 3(V (/1)) for any radical
ideal 7 C A. In fact, the stronger equality

I(V(I)) = rad(1), (2.1)

holds for any ideal I C A. Equality (2.1) translates (do this!) into the fact that rad(7) is
equal to the intersection of all maximal ideals containing /. Replacing A by A/rad(I),
we reduce to showing that the Jacobson radical of a reduced K-affine ring C is
zero (one says that C is a Jacobson ring), where the Jacobson radical of C is by
definition the intersection of all of its maximal ideals. This amounts to showing that
given any non-zero element f of C, there exists a maximal ideal not containing f.
By Theorem 2.2.5, we can find a finite, injective homomorphism B := K[{] C C. Let

FAbif ™ by =0 (2.2)

be an integral equation of minimal degree with all b; € B. By minimality, b, # 0. By
Exercise 2.8.283, there exists v such that b,(v) # 0. In other words, my is @ maximal
ideal of B not containing b,. Since m,C is not the unit ideal (this follows for instance
from Theorem 3.3.8, or can be proven directly), we can find a maximal ideal m of
C containing my. In particular, my C mN B and hence this must be an equality by
maximality. In particular, it follows then from (2.2) that f ¢ m.

This establishes the one-one correspondence between closed subsets and rad-
ical ideals. In Exercise 2.8.2 you are asked to show that J(V) is a prime ideal if
and only if V is irreducible. This then concludes the proof of the first part of Theo-
rem 2.2.2. The second part, however, simply follows from this by identifying ideals
of A/I with the ideals of A containing 1. O

2.3 Affine schemes

There are several motivations for generalizing the classical perspective, by introduc-
ing a larger class of ‘geometric’ objects. Let us look at two of these motivations.

Generic points. Firstly, geometers often reason by ‘general’, or ‘generic’, points.
They will for instance say that a “general point on a variety is non-singular” (see
2.6.5 below for the exact meaning of this phrase). But what is a ‘generic’ point. We
can give a topological definition:

Definition 2.3.1 (Generic point). A point x of an irreducible topological space X is
called generic if the closure of {x} is all of X.

More generally, for X an arbitrary Noetherian topological space, one calls x € X
generic, if its closure (or more accurately, the closure of the singleton determined
by x) is an irreducible component (see page 20) of X.

In view of 2.1.3, the only closed subsets of K" having a generic point are the
singletons themselves. So how do we get generic points? There is a simple topo-
logical construction. Given a Noetherian space X, let Jtt(X) be the collection of all
irreducible closed subsets of X. Define a topology on Jrr(X) by taking for closed
subsets the sets of the form Jre(V) for V C X closed. There is a continuous map
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X — Jre(X) sending a point x € X to its closure (note that the closure of a singleton
is always irreducible). Exercise 2.8.7 explores how this creates plenty of generic
points.

If we apply this construction to K", then by Theorem 2.2.2, the resulting space
Jre(K") is equal to [Spec(A)|, the collection of all prime ideals of A.> A (Zariski)
closed subset of |[Spec(A)| is then a closed subset in the above defined topology, and
hence is of the form V(I), for some ideal I, where V(I) denotes the collection of
all prime ideals containing /. In particular, if p is a prime ideal, then p is the unique
generic point of V(p).

More generally, given a ring R, let |Spec(R)| be the collection of all its prime
ideals and make this into a topological space by taking for closed subsets the V(I)
for I C R. Note that each V(1) is naturally identified with |Spec(R/I)|, and often we
will equate both subsets. That this forms indeed a topology, the so-called Zariski
topology, follows by the same argument that proves Lemma 2.1.1. We call Jre(K")
the enhanced affine n-space. It has a unique generic point given by the zero ideal
(check this). This extends by Theorem 2.2.2 to any affine variety:

2.3.2 Given an affine variety V with coordinate ring K[V], the space Jrr(V)
is homeomorphic to |Spec(K[V])|, where the latter carries the Zariski
topology. The generic points of the enhanced affine variety Jve(V) then
correspond to the minimal primes of K[V].

Henceforth, we will therefore identify Jve(V) with [Spec(K[V])|. The canonical
map V — Jve(V) = |Spec(K[V])] is given by identifying a point u € V with its (max-
imal) ideal of definition my; it is easily seen to be injective. A point in |Spec(K[V])|
coming from V is called a closed point. Indeed, these are the only points which are
equal to their closure. Note that the intersection of the minimal primes of K[V] is
equal to the zero ideal (recall that K[V] is reduced). At this point, there is no need to
stick to K-affine rings, and so we call any topological space of the form |Spec(R)|
with R any ring, an enhanced affine variety. A closed point then corresponds to a
maximal ideal of R.

Base change Coming back to our discussion of generic points, 2.3.2 shows that
every enhanced affine variety has only finitely many generic points, which is not
what we would expect of a ‘general’ point. To get around this obstruction, we need
to work over a larger algebraically closed field L containing K. The base change of
an affine variety V over K to L is defined as the (Zariski) closure V;, of V in L". One
shows (Exercise 2.8.10) that if V has ideal of definition I C A, then IA; is the ideal
of definition of V;, where Ay := L[£]. In particular, V. is an affine variety over L,
and its coordinate ring is

L[V;) =AL/IAL = K[V]®k L.

We use:

3 The reason for the awkward notation will become clear in the next section.
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2.3.3 If R — S is a (ring) homomorphism, then |Spec(S)| — |Spec(R)| given
by the rule q — qNR is a continuous map of topological spaces.

Note that we have used the slightly misleading notation for the contraction of an
ideal / C S'in R as JNR (even if R is not a subset of S); by definition J C § is the
ideal of all r € R such that the image of r in § lies inside J. Hence if ¢ denotes the
homomorphism R — S, then JN S is actually ¢! (/). Returning to our discussion on
generic points, the natural homomorphism A — Ay (called the base change) induces
a homomorphism K[V]| — L[V;], whence a map of enhanced affine varieties

Jee(Ve) = |Spec(L[VL])| — Tee(V) = |Spec(K[V])].

Now, a point v € Vy, is generic with respect to K if its image under the above map is
a generic point of Jve(V). This is equivalent with my N K[V] being a minimal prime
of K[V].

Example 2.3.4. The point with coordinates (e, ) is (probably) a generic point of the
affine plane over Q2. Similarly, the point (0,7) is a generic point over Q2 of the
y-axis.

Using 2.3.2, we can now also prove Theorem 2.2.1 as it translates immediately
to the following algebraic result (recall that a ring is Noetherian if there exists no
infinite strictly ascending chain of ideals, or equivalently, if every ideal is finitely
generated):

Theorem 2.3.5 (Hilbert Basis Theorem-algebraic form). The polynomial ring A
over a field K in n variables is Noetherian.

Proof. We induct on n, where the case n =0 is trivial, so that we may assume n > 0.
Let a be a non-zero ideal of A and let p € a be non-zero. By Theorem 2.2.5, there
exists a finite extension B := K[{] C A/pA, where { is a tuple of variables of length
at most n— 1 (and in fact equal to n — 1). By induction, B is Noetherian. Since A/pA
is a finite B-module, it too is Noetherian (see for instance [7, Proposition 6.5]). In
particular, a(A/pA) is finitely generated, and hence so is a (by the liftings of the
generators of a(A/pA) together with p). 0

Nilpotent structure. A second draw-back of the classical approach is that if we in-
tersect two closed subsets, the resulting closed subset does not take into account the
finer structure of this intersection. For instance, a circle C in the affine plane with ra-
dius one and center (0, 1) intersects the x-axis L in a single point, the origin O. How-
ever, if we look at equations (or, equivalently, ideals of definitions), where C is given
by I:=(E2+¢%—2()A, and L by J := {A, then we get a system of equations which
reduces to &2 = 0, = 0 (equivalently, the ideal I +J = (£2,{)A), which suggests
that we should count the intersection point O twice (accounting for the tangency of
L to C). Hence, instead of looking at the ideal rad(/ +J) =rad(£2,§) = (£,{)A, or
equivalently, to the coordinate ring K[O] = A/(&,{)A = K, we should not ‘forget’
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the nilpotent structure of A/(I +J). However, enhanced affine varieties cannot cap-
ture this phenomenon. Namely, if B is an arbitrary K-affine ring, then as a topolog-
ical spaces |Spec(B)| and |Spec(Breq)| are homeomorphic, where Bieq := B/ nil(B)
and nil(B) := rad(0) is the nil-radical of B. In particular, |Spec(A/(I+J))| and
|Spec(K)| are the same. To resolve this problem, we have to resort to a finer struc-
ture, that of an (affine) scheme. Roughly speaking, an affine scheme is an enhanced
affine variety X together with a sheaf of functions 0. I will only provide a sketch
of the general definitions. To this end, we must first discuss Zariski open subsets.

Open subsets. Let R be a ring and f an element in R. The localization of R at f,
denoted Ry or R[1/f], is the ring R[E]/(f& — 1)R[E] obtained by inverting f (this
includes the degenerate case that f = 0 in which case Ry is the zero ring). Equiv-
alently, it is the collection of all fractions r/f" with r € R up to the equivalence
relation identifying two fractions r/f" and s/f™ if there exists some k such that
f*"r = f&™ms in R. This definition becomes much more straightforward if we as-
sume f # 0 and R to be a domain: Ry is then the subring of the field of fractions
Frac(R) of R consisting of all fractions r/f" with r € R. Let V := |Spec(R)| be an
enhanced affine variety and let f € R. Let D(f) be the complement of the closed
subset V(fR) = |Spec(R/fR)| of V. We refer to D(f) as a basic open subset. In-
deed, given an arbitrary open subset U, say given as the complement of a closed
subset V(I), we have
U=V-V(I)=|JD(f).
fel

In particular, if R is Noetherian, then any open subset is a finite union of basic open
subsets.

2.3.6 The basic open D(f) is homeomorphic with ’Spec(R 7) |, whence in par-
ticular is an enhanced affine variety.

See Exercise 2.8.15. Note that not every open subset can be realized as an (en-
hanced) affine variety: for instance the plane with the origin removed is an open
which is not affine (see Exercise 2.8.5). Here is an example of a basic open subset
with some additional structure.

Example 2.3.7. Let GL(K,n) be the general linear group consisting of all invert-
ible n x n-matrices over K. If we identify an n X n-matrix with a tuple in K"z,
then GL(K,n) is the open subset D(det), where det(-) is the polynomial repre-
senting the determinant function. In particular, we may view GL(K,n) as an en-
hanced affine variety. In Exercise 2.8.16, you will show that the multiplication map
GL(K,n) x GL(K,n) — GL(K,n) is a morphism, and so is the map sending a matrix
to its inverse.

2.4 SEC
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Sections. To define sections, let us first look at these on an affine variety V C K".
We already observed that any f € K[V] induces a function 67: V — K: u+— f(u).
We call such a map a section on V. If f is identically zero, or more generally, if
f €3(V), then oy is just the zero section. So assume f ¢ J(V), that is to say, f is
non-zero in K[V]. If f(u) # 0, then 1/f(u) is defined. Hence 1/f can be viewed as
a section on D(f) NV. More generally, we see that every element of Ry is a section
on D(f).

For an arbitrary enhanced affine variety V := |Spec(R)
is more involved. We need a definition:

, the definition of a section

Definition 2.4.1 (Residue field). Given a point x € V with corresponding prime
ideal p, C R, its residue field x(x) is by definition the field of fractions of the domain

R/py.

Note that if R is a K-affine ring, and x a closed point, then k(x) = K by The-
orem 2.2.2. However, in general the various residue fields are no longer the same
(they even may have different characteristic; see Exercise 2.8.12). Hence we cannot
expect a section to take values in a fixed field. Let Q(V) be the disjoint union of all
K (x) where x runs over all points x € V.

A (reduced) section 6: V — Q(V) is amap such that o(x) € k(x) for every point
x € V. Let us denote the collection of all sections on an enhanced affine variety V
by Sect(V), which we may view as a ring, since we can add and multiply sections.
Any element f € R induces a section 6y on V, simply by letting 67(x) be the image
of f in k(x). More generally, any element of R induces a section on D(f), since
f is invertible in k(x) for x € D(f). In particular, we have a homomorphism Ry —
Sect(D(f)). However, in general this map can have a kernel (see Exercise 2.8.15):

2.4.2 The kernel of R — Sect(|Spec(R)|) is the nil-radical of R.

To define a scheme structure on V, we now have to declare, for each open subset
U C V, which sections are to be viewed as ‘continuous’ sections on U. But we
also want to incorporate nilpotent elements, which are ‘invisible’ in Sect(U) by
2.4.2. So for each open U, we define a ring I' (U, Oy ) (also denoted Oy (U)) and a
surjective homomorphism I"(U, Oy ) — Sect(U). Without given all the details, we
declare I'(V, Oy) to be R (the so-called global sections of V'), and we put

I'(D(f),0v) =Ry (2.3)

(note that the first case is just a special case of (2.3), by taking f = 1). For each open
U the elements of I' (U, Oy ) are still called sections on U (in fact, this is the correct
terminology in view of our discussion on page 37).

Sheafs.

Of course, the sections on the various open subsets of V have to be related to
one another. The correct definition is that &y has to be a sheaf on X. In general,
a sheaf of rings (or of groups, sets, ...) &/ on a topological space X is a functor
associating to each open subset U C X a ring (group, set, etc.) «7(U), and to each
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inclusion U C U’ a restriction homomorphism sending f € </ (U’) to an element
fly € #(U) (being a functor means, among other things, that if U C U’ C U” then
the composition of the restriction maps /' (U") — &/ (U') — «/(U) is equal to the
restriction map «7(U") — </ (U)), satisfying the following two properties for every
open subset U C X and every open covering {U;} of U:

1. if f,g € &/ (U) are such that their restriction to each U; is the same, then f =g;
2. if fi € &/(U;) are given such that the restriction of f; and f; to U;NU; coincide,
for all i, j, then there exists f € /(U) such that f|,, = f; for all i.

One can show that there exists a unique sheaf &y on V = |Spec(R)| for which
conditions (2.3) hold, that is to say, such that I'(D(f),0v) = Ry. Moreover, each
g € I'(U,0y) then induces a section on U, that is to say, we have a homo-
morphism I'(U,0y) — Sect(U). In fact, this gives rise to a natural transformation
I'(-,0v) — Sect(-) of functors. For the ‘official’ definition of 0y, see page 37 below.

The category of affine schemes. An affine scheme X = Spec(R), therefore, is an
enhanced affine variety |Spec(R)| (with R an arbitrary ring) together with a sheaf
of sections O on |Spec(R)| satisfying (2.3), called the structure sheaf of X. Note
that we can recover R from its associated affine scheme as the ring of global sec-
tions R = I' (X, Ox). We often refer to R still as the coordinate ring of X. A mor-
phismY — X between affine schemes X := Spec(R) and Y := Spec(S) is given by a
ring homomorphism R — S: it induces a continuous map ¢ : |Spec(S)| — |Spec(R)|
by 2.3.3, as well as ring homomorphisms O (U) — Oy (¢~ (U)), for every open
U C |Spec(R)]. To define the latter, it suffices to do this on a basic open subset D(f),
where it just the induced homomorphism Ry — S, for any f € R. In particular, on X,
the induced ring homomorphism between global sections is the original homomor-
phism R — S. Moreover, these homomorphisms are compatible with the restriction
maps. The morphism ¥ — X is called of finite type if the corresponding homomor-
phism A — B is of finite type, that is to say, if B is finitely generated as an A-algebra.
Note that any K-affine ring R induces a morphism X := Spec(R) — Spec(K) of fi-
nite type, sometimes called the structure map of X. Note that the underlying set
of Spec(K) is just a singleton, and hence |X| — |Spec(K)]| is the trivial map. One
additional advantage to this formalism is that there is no need anymore to have K
algebraically closed: we can define affine schemes of finite type over any field. Gen-
eralizing 2.2.3 we now get:

2.4.3 Associating to an affine scheme X its ring of global sections I' (X, Ox)
induces an anti-equivalence of categories between the category of affine
schemes and the category of rings. Under this anti-equivalence, affine
schemes of finite type over a field K correspond to K -affine rings.

Here is one more reason why we should work with the enhanced space of all
prime ideals of a ring, not just its maximal ideals: namely, in general the contraction
of a maximal ideal, although prime, need not be maximal. For instance in K[[£]][{]
the ideal generated by £& — 1 is maximal as its residue ring is the field K((&))
of Laurent series. However, its contraction to K[[£]] is the zero ideal. In classical
algebraic geometry, this complication however is absent:
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Proposition 2.4.4. If Y — X is a morphism of finite type of affine schemes of finite
type over K, then the image of a closed point is again closed.

Proof. The algebraic translation says that if C — D is a K-algebra homomorphism
of K-affine rings, and if n C D is a maximal ideal, then so is m := nNC. To prove
this, note that D/n is again a K-affine ring, whence K C D/n is finite by Proposi-
tion 2.2.6. Since A/m is a subring of D/n, it is also finite over K, whence Artinian,
whence a field. O

Intersections of closed subschemes. Returning to our discussion on intersections,
the correct way of viewing the intersection of two affine varieties V,W C K" with
respective ideals of definition 7 := J(V) and J := J(W) is as the affine scheme
Spec(A/(I+J)). To define this also for arbitrary affine schemes, we must make
precise what it means to be a ‘subscheme’. The next result gives an indication of
what this should mean (its proof is relegated to Exercise 2.8.17).

Lemma 2.4.5. Let X := Spec(R) be an affine scheme and let V be a closed subset
of |X|. If I C R is an ideal such that V(I) =V, then Spec(R/I) is an affine scheme
with underlying set equal to V.

The ‘smallest’ scheme structure on'V is given by the ideal Iy obtained by inter-
secting all prime ideals in V. More precisely, if Y is an affine scheme with |Y| =V,
then there exists an injective morphism Spec(R/Iy) — Y. O

One refers to Spec(R/Iy) as the induced reduced scheme structure on V. Note
that Iy is a radical ideal, and that any ideal I such that V(I) =V satisfies rad(I) = Iy .
More generally, a closed subscheme of an affine scheme X := Spec(R) is an affine
scheme of the form Y := Spec(R/I) for some ideal I C R. By the previous lemma,
the underlying set |Y| is a closed subvariety of the underlying set |X|. Moreover,
the inclusion ¥ C X is a morphism of affine schemes, called a closed immersion.
In analogy with vector spaces, we call the collection of all closed subschemes of
an affine scheme X the Grassmanian of X and denote it Grass(X). We can define
a (partial) order on Grass(X) by letting ¥ C Z stand for ‘Y is a closed subscheme
of Z’. It is important to note that in spite of the notation, ¥ C Z does not just mean
an inclusion of underlying sets. In fact, if I and J are the ideals of R such that Y =
Spec(R/I) and Z = Spec(R/J), then Y C Z if and only if J C I. For this reason, we
also define the Grassmanian Grass(R) of a ring R as the collection of all its ideals,
ordered by reverse inclusion. Hence there is a one-one correspondence between
Grass(R) and Grass(Spec(R)).

Given two closed subschemes Y := Spec(R/I}) of X, for k = 1,2, we now define
their scheme-theoretic intersection Y1 NY, as the closed subscheme Spec(R/(I) +
b)). In particular, ¥; NY, C ¥;,Y,. In fact, intersection is the minimum (or join)
operation in the Grassmanian Grass(X ). Note that we have an identity

R/(]] —|—]2) %R/I] ®RR/12.

This prompts a further definition:
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Fiber products. Given two morphisms of affine schemes Y] — X and ¥, — X, we
define the fiber product of Y| and Y» over X to be the affine scheme

Y1 xx Y2 := Spec(S1 ®r S2)

where R = I'(Ox,X) and Sy = I'(Y;, Oy,) are the corresponding rings. By Exer-
cise 2.8.25, the fiber product is in fact a product (in the categorical sense) on the
category of affine schemes over X (see below for more on this category). Note that
our previous definition of scheme-theoretic intersection is a special case, where the
two morphisms are just the closed immersions ¥; C X. Put differently, the intersec-
tion of two closed subschemes Y; C X is just their fiber product:

Yin, =Y xx 1.

Relative schemes.

The formalism of schemes immediately allows one to relativize the notion of a
scheme in the following sense. Let Z be a ring. An affine scheme over Z or affine
Z-scheme is then simply an affine scheme Spec(R) given by a Z-algebra R, together
with the canonical morphism Spec(R) — Spec(Z) (induced by the natural homomor-
phism Z — R). A morphism of affine Z-schemes Spec(S) — Spec(R), for some Z-
algebra S, is then determined by a Z-algebra homomorphism R — S. Note that this
gives rise to a commutative diagram

Spec(Z)

(2.4)

Spec(S)

Spec(R)

of morphisms of affine schemes. Of course, if we take Z = Z, we recover the cat-
egory of all affine schemes (since any ring homomorphism is a Z-algebra homo-
morphism). We say that an affine scheme Spec(R) is of finite type over Z, if the
morphism Spec(R) — Spec(Z) is of finite type, that is to say, if R is of the form Z[£]/I
for some finite tuple of indeterminates & and some ideal 1. Recall that we called
such an algebra Z-affine if I is moreover finitely generated. This double usage of
the term ‘affine’ will hopefully not cause too much confusion.

Fibers. A morphism of affine schemes ¢: ¥ — X can also be viewed as a family
of affine schemes: for each point x € X, the fiber ¢ ~!(x) admits the structure of an
affine scheme as follows. If R — S is the corresponding ring homomorphism and p
the prime ideal corresponding to x, then

¢~ (x) = [Spec(Sp /pSp)| - (2.5)

In view of this, we call Spec(Sy, /pSy) the (scheme-theoretic) fiber of ¢ at p. Refor-
mulated in the terminology of fiber products, (2.5) says that
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¢! (x) =Y xx Spec(x(x)) (2.6)
(recall that k(x) is the residue field of x); see Exercise 2.8.13 for the proofs.

Example 2.4.6. The family of all circles is encoded by the following morphism. Let
Y be the hypersurface in A3 given by the equation

pi=(E—u?+(l—v)?—w’ =0,

let X := A}, and let ¢: ¥ — X be induced by the projection K> — K3: —
(&,8,u,v,w) — (u,v,w), that is to say, given by the natural K-algebra homomor-
phism

Klu,v,w] — K[E, &, u,v,w|/pK[E, E,u,v,w].

If P is a closed point of X corresponding to a triple (a,b,r) € K 3, that is to say, given
by the maximal ideal mp = (u—a,v—b,w —r)K[u,v,w], then ¢ ~! (P) is isomorphic
to the circle with center (a,b) and radius r.

Constructible subsets.

Recall that a subset X of a toplogical space X is called constructible if it is a finite
Boolean combination of closed subsets. It follows that any constructible set is a
finite union of locally closed subsets, where we call a subset locally closed if it is of
the form VNU with V closed and U open.

If R is any ring, then we can now easily define affine n-space over R as the affine
scheme A}, := SpecR[&] with § = (&1,...,&,) indeterminates. We argued on page 6
that any quantifier free formula in the variables &, with parameters from R, defines
a constructible subset of A%, and conversely.

Rational points.

Recapitulating, given an affine variety V C K", we have embedded it as a dense
subset of the enhanced affine variety Jee(V), which in turn is the underlying set of
the affine scheme X := Spec(K[V]). Since K[V] is a K-algebra, X is in fact an affine
K-scheme. We can recover V from X as the collection of K-rational points, defined
as follows. Let X := Spec(R) be an affine Z-scheme and let S be a Z-algebra. An
S-rational point of X over Z is by definition a morphism Spec(S) — X of Z-schemes,
that is to say, an element of Morz(Spec(S),X). We denote the set of all S-rational
points of X over Z also by Xz(S), or X(S), when Z is clear from the context. In other
words, we actually view X as a functor, namely Mor(-,X), on the category of Z-
algebras (see Exercise 2.8.26). By definition of a morphism, we have an equality

Xz(S) = Morz(Spec(S),X ) = Homg(R, S)

where the latter set denotes the collection of Z-algebra homomorphisms R — S.
Returning to our example, where we take S=Z =K and R=K[V]| =A/I with I :=
J(V), a K-rational point x € X(K) then corresponds to a K-algebra homomorphism
R — K. Now, any K-algebra homomorphism is completely determined by the image
of the variables, say & — u;, since the image of a polynomial p is then simply p(u)
where u = (uy,...,u,). To be well-defined, we must have p(u) =0 for all p € I, that
is to say, u € V(I) = V. Conversely, substitution by any element of vV induces a
K-algebra homomorphism R — K whence a K-rational point of X. We therefore
showed that V = X (K), as claimed.
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In the sequel, we will sometimes confuse the underlying set |Spec(R)| of an affine
scheme with the scheme itself, and denote it also by Spec(R).

2.5 Projective schemes

Most schemes we will encounter are affine, and in fact, often we work with the
associated ring of global sections, or with their local rings (see §2.6). Nonetheless,
we also will need projective schemes, which are a special case of a general scheme.

The category of schemes. Roughly speaking, a scheme X is a topological space | X|
together with a structure sheaf O of sections on |X|, with the property that there
exists an open covering {X;} of X by affine schemes Spec(R;) (for short, an open
affine covering) such that I'(X;, Ox ) = R;. Put differently, a scheme is obtained by
gluing together affine schemes (for a more precise definition, consult any textbook
in algebraic geometry, such as [24] or [37]). A morphism of schemes f: Y — X is
a continuous map |Y| — |X| of underlying spaces which is ‘locally a morphism of
affine schemes’ in the sense that there exist open affine coverings {¥;} and {X;} of Y
and X respectively such that f maps each |Y;| inside |X;| thereby inducing for each i
a morphism Y; — X; of affine schemes. If U C X is any open, then we define a sheaf
of sections Oy := Ox|;; on U by restriction: for W C U open, let I'(W, 0y) be the
ring of all sections Ox (W) on W. From the definitions (not all of which have been
stated here), the next result follows almost immediately.

2.5.1 AnopenU C X in a scheme X together with the restriction Oy is again a
scheme, and the embedding U C X is a morphism of schemes, called an
open immersion.

For example, the ‘punctured plane’ D C A% obtained by removing the origin, is
a scheme. One can show that I'(D, 0p) = K[&, {], showing that D is not affine (see
Exercise 2.8.5).

Here is an example of an actual gluing together of two affine schemes. Let X; := Ak

for k = 1,2 be two copies of the affine line, and let U C X; be the open obtained by
removing the origin. Note that U is again affine, namely equal to Spec(K[&,E71]).
Let X be the result of gluing together X; and X, along their common open subset
U. The resulting scheme is called the affine line with the origin doubled. It requires
some more properties of schemes to see that it is in fact not affine. A more clever
choice of gluing the above data together leads to the projective line, as we will now
explain.

Projective varieties. To discuss projective schemes, let us first introduce projec-
tive n-space over K as the set of equivalence classes K1\ {0}/ ~, where u ~ v if
and only if there exists a non-zero k € K such that u = kv. An equivalence class of
an n+ 1-tuple u = (uo, ..., u,), that is to say, a point in projective n-space, will be
denoted @ = (ug : uj : - : u,). Alternatively, we may view projective n-space as the
collection of lines in affine n 4 1-space going through the origin. The relevant al-
gebraic counterpart, in fact the homogeneous coordinate ring of projective n-space,
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is the polynomial ring A := K[, . .., &,]. However, A cannot be viewed as ring of
sections, for given p € A, we can no longer unambiguously evaluate it at a projective
point @i. Nonetheless, if p is homogeneous, say of degree m, then p(ku) = k" p(u),
so that p vanishes on some n 4+ 1-tuple if and only if it vanishes on all n + 1-tuples
~-equivalent to it. Hence, for a given projective point i1, it makes sense to say that
it is a zero of the homogeneous polynomial p, if p(u) = 0.

We can now make projective n-space into a topological space by taking for closed
subsets the sets of the form V(I), where V([ is the collection of all projective points
i that are a zero of each homogeneous polynomial in the ideal /. The analogue of
Lemma 2.1.1 also holds, so that we get indeed a topology. Any closed subset of
projective n-space is called a projective variety. Given such a closed subset V of
projective n-space, we define its ideal of definition J(V) as the ideal generated by all
homogeneous forms p € A that vanish on V, and we call A/J(V) the homogeneous

coordinate ring of V, denoted K[V]. Note that J(V) is a homogeneous ideal (an ideal
I is called homogeneous, if p € I implies that every homogeneous component of p
lies in 7 too).

2.5.2 The homogeneous coordinate ring K[V] of a projective variety V is a
graded ring, and V has dimension equal to dim(K[V]) — 1.

Recall that a ring S is called graded, if it admits a direct sum decomposition
S = @;S; with each S; an additive subgroup (called the i-th graded part of S) with
the additional condition that S;-S; C S;1; (meaning that if a € S; and b € S, then
ab € S; ;). Here the index set of all i can in principal be any ordered, Abelian
(semi-)group, but for our purposes, we will only work with N-graded rings (with
an occasional occurrence of a Z-graded ring). In an N-graded ring S, the zero-th
part S is always a subring of S, and S := @®;>(S; is an ideal such that S/S, =
So. In case S = K[V], then Sy = K, and S is generated over Sy by finitely many
linear forms. An N-graded ring with these two properties is called a standard graded
(K-)algebra (also called a homogeneous graded ring). In particular, S is then a
maximal ideal, called the irrelevant maximal ideal. The terminology comes from
the fact that V(S.) = 0. For example, if S = A viewed as a (standard) graded K-
algebra, then ({p, ..., {,)S is its irrelevant maximal ideal.

Projective schemes. To define enhanced projective varieties, let S = @;S; be a
standard graded K-algebra (for this construction to work, K = Sy need not be al-
gebraically closed—although we will not treat this, Sy does not even need to be a
field), and define |Proj(S)| to be the collection of all homogeneous prime ideals of
S not containing S . In analogy with the affine case, we get a topological space by
taking as closed subsets the subsets V(I) of all homogeneous prime ideals contain-
ing the ideal 1, for various (homogeneous) ideals /. If V is a projective variety and
S := K[V] its projective coordinate ring, then V embeds in |Proj(S)| by mapping a
projective point i to its ideal of definition J(ii). The latter is indeed a (homoge-
neous) prime ideal, generated by the linear forms u;{; —u;{; forall i < j. As before,
(the image of) V is dense in |Proj(S)|, so that any projective variety determines a
unique enhanced projective variety. Conversely, every (enhanced) projective variety
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is a closed subset of some (enhanced) projective space, since any standard graded
K-algebra is of the form A /I for some homogeneous ideal / (and some appropriate
choice of n). Unfortunately, unlike the affine case, non-isomorphic standard graded
algebras might give rise to isomorphic (enhanced) projective varieties.

Finally, we define the projective scheme associated to S, denoted as Proj S, as the
scheme with underlying set |Proj(S)| and with structure sheaf &, roughly speaking,
‘induced by S’. Let me only explain this, and then still omitting most details, for
projective n-space P := Proj(A). Once more we must turn our attention to open
subsets. Similarly as in the affine case, given a homogeneous element f € A of
degree m, we define the basic open D(f) as the complement of V(fA). As before,
these basic opens form a basis for the topology. Define I'(D( f):Opr) to be the
graded localization A( ) defined as the collection of all fractions of the form s :=
p/f' with p homogeneous of degree ml. Put differently, A~( ) 1s the degree zero
part of the Z-graded localization A r- Since we are trying to construct a structure
sheaf, it should consist of sections, and this is indeed the case. Namely, given @
such that f(i1) # 0, the value s(u) is independent from the choice of representative
of the projective point @, for s a section as above: if v & u, say v = ku, then s(v) =
K" p(u) /(K" f(0))! = s(u). Herjce we can define s(@i) := s(u), so that I"(D(f), Opy. )
consists indeed of sections on D(f).

2.5.3 Each basic open D(f) with f a non-zero homogeneous form is homeo-
morphic to the enhanced affine variety ’Spec(A(f)) ‘

Indeed, define a map ¢ : D(f) — ‘Spec(& f))| by sending a homogeneous prime
ideal p not containing f to the ideal ¢(p) := pAf HA( 7)- One checks that ¢(p) is
indeed a prime ideal. We leave it as an exercise (see 2.8.15) to show that this map is
a homeomorphism. In particular, if we let f be one of the variables, say {y to make
our notation easy, then one checks that A & A@O) by sending &; to §;/{y. Hence each
D(§;) has affine n-space as underlying set. We can now make P into a scheme by
gluing together the n+ 1 affine schemes Spec(A(gi)) = A% (again we must leave
details to more specialized works). A similar construction applies to any standard
graded K-algebra S, thus defining the scheme structure on Proj(S).

Proposition 2.5.4. For any projective scheme X := Proj(S) and any homogeneous
element f € S, we have I'(D(f), Ox) = S(y). Moreover, I'(X,0x) =K.

Proof. The last assertion is a special case of the first by taking f = 1, since then
S(1y = So = K. The first assertion is basically how we defined the scheme structure
on X. O

The last assertion shows that unlike in the affine case, the global sections on a
scheme in general do not determine the scheme. In fact, two non-isomorphic graded
K-algebras can give rise to isomorphic projective schemes, so that even the ‘coor-
dinate ring’ S is not determined by the scheme (but also depends on the embedding
of X as a closed subscheme of some [P%). We will have more to say about projective
schemes, and their relation to affine schemes, when we discuss singularities: see
page 57.



36 2 Algebra versus Geometry

2.6 Local theory

We have now associated to each geometric object (be it an affine variety, a projective
variety or a scheme) an algebraic object, its coordinate ring, or more precisely, a
collection of rings, the sheaf of sections on each open subset. If x is a closed point
(that is to say, {x} is closed) of an affine scheme X := Spec(R), then {x} itself is
an affine scheme by Lemma 2.4.5, with associated ring k(x) = R/m,, the residue
field of x. Put pedantically, x = Spec(x(x)). Clearly, this point of view ignores the
embedding {x} C X, and hence gives us no information on the nature of X in the
neighborhood of x.

Local rings. We therefore introduce the local ring of X at an arbitrary point x,
denoted O ., as the ring of germs of sections at x. This means that a typical element
of Ox x is a pair (U, o) with U an open containing x and o € I' (U, O ), modulo the
equivalence relation (U,0) ~ (U’,0’) if and only if there exists a common open
x € U"” CUNU’ such that ¢ and ¢’ agree on U".

Recall from page 28 that part of &x being a sheaf is the fact that for each inclusion

U’ C U, we have a restriction homomorphism I'(U,0x) — I'(U’,0x). Hence the
I'(U, 0x) together with the restriction homomorphisms form a direct system, and
we can now state the previous definition more elegantly as

Ox »=1limI (U, Oy). 2.7)
xeU
Unlike the ring of sections on an arbitrary open, the local ring at a point has a
very concrete description:

Proposition 2.6.1. If X := Spec(R) is an affine scheme, and x a point in X with
corresponding prime ideal p, C R, then Ox » = Ry,. In particular, Ox « is a local
ring with residue field equal to the residue field k(x) of x.

Proof. To simplify the proof, | will assume that R is moreover a domain (the general
case is not much harder; see Exercise 2.8.30). In this case, each I'(U,0x) is a
subring of the field of fractions Frac(R) and the direct limit (2.7) is simply a union.
Since the D(f) are a basis of opens, it suffices to only consider the contributions
in this union given by the U of the form D(f) with f ¢ p,. Hence, in view of (2.3),
the local ring O . is the union of all Ry with f ¢ p,, which is easily seen to be the
localization Ry,,. The last assertion is immediate from the definition of the residue
field (see Definition 2.4.1). O

The maximal ideal of O ,, that is to say, p, Oy ., will be denoted my .

Tangent spaces. The local ring of a point x captures quite a lot of information of
the geometry of X near x. For instance, one might formally define the rangent space
T . at x as the the dual of the Kk(x)-vector space my ,/m% .. Without proof we state
the following (for a proof see for instance [37, Lemma 6.3.10] or [24, I. Theorem
5.3]):
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Theorem 2.6.2. Let X := Spec(R) be an affine scheme of finite type over K and
assume R is a domain (whence X is irreducible). Then there exists a non-empty
open U C X such that the tangent space Tx x has dimension equal to the dimension
of X, for every closed point x € U.

Under the stated conditions, the local ring Ox , of x has the same dimension as X
(see Exercise 3.4.14). The dimension of this local ring, even if x is not assumed to
be a closed point, is called the local dimension of X at x, or put less accurately, the
dimension of X in the neighbourhood of x. Immediate from Nakayama’s lemma, we
get:

2.6.3 The embedding dimension of the local ring O x of a point x on an affine
scheme X, that is to say, the local dimension of X at x, is equal to the
dimension of its tangent space Ty .

It follows that the dimension of the tangent space of an arbitrary point is always
at least the local dimension at that point. Points were this is an equality are special
enough to deserve a name (we shall return to this concept and study it in more detail
in §4 below):

Definition 2.6.4 (Non-singular point). A point x on an affine scheme X := Spec(R)
is called non-singular if its tangent space Ty , has the same dimension as the local
dimension of X at the point. A point where the dimension inequality is strict is called
singular.

Returning to a phrase quoted on page 24, we can now prove:
2.6.5 An affine variety is non-singular at its generic points.

Indeed, by 2.3.2, a generic point P of V corresponds to a minimal prime ideal g of
B:=K][V]. Since B is reduced, By is areduced local ring of dimension zero, whence
a field (see our discussion on page 44). Hence the maximal ideal of Oy p = By
is zero, whence Ty p = 0, and the embedding dimension of By is also zero. More
generally, this proves that if B is a reduced ring, then the generic points of Spec(B)
are non-singular. This also implies that any K-generic point of V;, where V;, denotes
the base change of V over an algebraically closed overfield L of K (see page 25), is
non-singular, but the proof requires some deeper results beyond the scope of these
notes.

2.7 CTU

Continuous sections.

We can now give a better definition of a section on an open of an affine scheme
X := Spec(R). Instead of letting a section take values in Q(|X|), the disjoint union
of all residue fields, we should take for target the disjoint union Loc(X) of all local
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rings Ox . with x € X: a (generalized) section on an open U C X is then a map
0: U — Loc(X) such that o(x) € Ox, for all x € X. With this new notion we can
now formally define I"(U, Ox) for an arbitrary open U as the set of all continuous
sections on U, where we call a section o continuous if it is locally represented by
a fraction, that is to say, if for each x € U, we can find an open U’ C U containing x,
and elements a, f € R such that, for all y € U’, in 0%, the element f is a unit and
o(y)=a/f.
Stalks.

One can extend the concept of a local ring to arbitrary schemes. This is just a
special case of a stalk </, of a sheaf o/ at a point x on a topological space X,
defined similarly as

o =limI"(U, o).
—
xeU

However, even if <7 is a sheaf of rings, <7 need not be a local ring, but it is so if X
is a scheme and .7 = O its structure sheaf. An argument similar to the one in the
proof of Proposition 2.6.1 yields:

Proposition 2.7.1. Let X := Proj(S) be a projective scheme and let x be a point of

X corresponding to the homogeneous prime ideal p,. The local ring O . is equal to
the degree zero part S,  of the localization Sy, .

2.8 Exercises

Ex 2.8.1
Verify Lemma 2.1.1. Show that the same properties hold for the operation V(-) on any affine
scheme, and for the operation V (-) on any projective scheme.

Ex 2.8.2
Show that if Vi U--- UV, = V] U---UV/ are two minimal irreducible decompositions of a
Noetherian space V, then s =t, and after renumbering, V; = V/ for all i.

Show that for a closed subset V. C K", its ideal of definition J(V) is prime if and only if V
is irreducible.

Ex 2.8.3
Show that the Zariski topology on K" is compact Hausdorff. More generally, any affine
variety is compact Hausdorff. Hint: you could use 2.3.6.

Ex 2.8.4
Let V C K" be a variety and let I :== J(V) be its ideal of definition. Every p € A induces a
polynomial map K" — K by the rule w— p(u). Show that the collection of restrictions p|,
of polynomial maps on'V is in one-one correspondence with the coordinate ring K[V] of V.

Ex 2.8.5
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Show that the punctured plane K2\ {O} (where O denotes the origin), is not an affine
variety, for if it were, then its ideal of definition would be zero, contradiction. In fact, by the
discussion on page 33 there is a scheme D with underlying set this punctured plane. It can
be realized as the union of the two affine opens D(E) and D(§) of A%, where A := K[E, (]
is the coordinate ring of A%. Show that I' (D, Op) = Ag NAg = A. Conclude that D is not
affine.

Ex 2.8.6
Prove 2.2.3 in detail. In particular, given a reduced K-affine ring B, construct an affine
variety whose coordinate ring is B. Prove that the correspondence in 2.2.3 induces an anti-
equivalence of categories. In particular, show that if two affine varieties are isomorphic,
then so are their coordinate rings. Using this equivalence, show that a parabola is isomor-
phic to a straight line.

Ex 2.8.7
Show that if X is Noetherian, then Jve(X) is a toplogical space in which every irreducible
closed subset has a generic point; if X is moreover Hausdorff, then every irreducible closed
subset has a unique generic point. In particular, in the latter case, the map X — Jre(X) is
an embedding, and (the image of) X is dense in Jve(X).

Ex 2.8.8
Let K C L be an extension of algebraically closed fields. Show that a point u € L" is generic
over K if and only if K(u) has transcendence degree n over K. This shows that generic
points are plentiful. Explain now the enigmatic adverb ‘probably’ used in Example 2.3.4.

Ex 2.8.9
Show that if R is Noetherian, then the associated enhanced affine variety |Spec(R)| is also
Noetherian. It is irreducible if and only if R has a unique minimal prime ideal (and if R is
moreover reduced, this is then equivalent to R being a domain). The Krull dimension of R
is equal to the dimension of |Spec(R)|.

Can you give an example where |Spec(R)| is Noetherian, yet R is not Noetherian?

Ex 2.8.10
Show that if K C L is an extension of algebraically closed fields and V C K" is an affine
variety over K, then its closure in L" is an affine variety over L with coordinate ring K[V @k
L.

Ex 2.8.11
Let R be a domain and X := Spec(R) the associated affine scheme. Let 1 be the (unique)
generic point of X. Show that the residue field x(1), the local ring Ox y at 1, and the field
of fractions Frac(R) are all equal. This field is often called the function field of the scheme.

Ex 2.8.12
Calculate all residue fields of Spec(Z). What are the residue fields of Spec(R[&]) for & a
single variable?
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Ex 2.8.13
Prove that (2.5) is a homeomorphism. Use this to prove (2.6).

Ex 2.8.14
Show that a finite morphism of affine schemes has finite fibers.

Ex 2.8.15
Prove 2.3.6, 2.4.2 and 2.5.3.

Ex 2.8.16
Work out Example 2.3.7 in detail.

Ex 2.8.17
Prove Lemma 2.4.5.

Ex 2.8.18

Show that an ideal I in a graded ring S is homogeneous if and only if it is generated by
homogeneous elements. For an arbitrary ideal I, let I be the ideal generated by all homo-
geneous components of all elements in I. Show that V(I) = V(I).

Ex 2.8.19
Prove 2.5.2 (where you might need some results from Chapter 3 to prove the dimension
equality).

Ex 2.8.20 —_
Let V be a projective variety over K, with homogeneous coordinate ring S := K[V]. Show
that Jve(V) = |Proj(S)|.

Ex 2.8.21
Let C be the affine scheme determined by the ring

R:=K[£,C]/(8% ~ C)KIE. L],

a so-called cusp (see page 54). Let x be the origin, that is to say, the (closed) point deter-
mined by the maximal ideal (&,§)R. Show that the tangent space Tc x has dimension two,
whereas C itself has dimension one (showing that x is singular). What about the point y
given by the maximal ideal (§ —1,§ —1)R?
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Additional exercises

Ex 2.8.22
Show that the geometric form of the Noether normalization as stated in Theo-
rem 2.2.5 is indeed equivalent to the algebraic form formulated in the proof.

Ex 2.8.23
We want to prove the assertion in the proof of Theorem 2.2.5 that states that after
a change of coordinates, a polynomial becomes monic in one of the variables. Let
p € A be a non-constant polynomial of degree s, and let p;(&) be its homogeneous
part of degree s. Put p’ .= p(&',1) where &' := (&,...,&,—1). Show that ifK is infinite,
then there existsu’ := (uy,...,u, 1) € K"~ such that p'(w') #0. This is clear ifn—1=
1 since a non-zero polynomial has only finitely many roots. Reason by induction to
show this also for more variables. Now define a change of coordinates &; +— & —u;&,
and show that the image of p under this map is monic in &,.

If K is arbitrary, show that the change of variables &; — & — E¢ fori < n also trans-
forms p into a monic polynomial if e > s (examine the transforms of each monomial
inp).

Ex 2.8.24
Prove the following generalization of Lemma 2.2.7: if R C S is a finite (or integral)
extension of domains, then R is a field if and only if S is.

Ex 2.8.25
The product of two objects M and N in a category € is the (necessarily unique)
object M x N together with two morphisms M x N — M and M x N — N (called
projections), satisfying the following universal property: if K — M and K — N are
morphisms, then there exists a unique morphism K — M x N which composed with
the two projections yield the original morphisms K — M and K — N. Show that in
the category of affine schemes over a fixed affine scheme X, the fiber product - x x -
is a product in the above sense.

Ex 2.8.26
Show that given an (affine) Z-scheme X, the rule assigning to a Z-algebra S the
set Xz(S) of S-rational points of X over Z, constitutes a functor on the category of
Z-algebras.

Ex 2.8.27
Show that the definition of I' (U, Ox) as all continuous sections given on page 37
makes Ox into a sheaf.

Ex 2.8.28
Prove Proposition 2.7.1.
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Ex 2.8.29
Let S :=K[C]/C2K[8] be the ring of dual numbers over K (where { is a single vari-
able). Let X be an affine variety of finite type over K. Show that to give an S-rational
point of X over K is the same as to give a K-rational point x of X together with an
element of the tangent space Ty .

Ex 2.8.30
Show, without relying on Proposition 2.6.1, that if Y is a closed subscheme of X :=
Spec(R) with corresponding ideal I C R, then Oy, = Ox ,/10x , for everyy €Y. Use
this then to derive the non-domain case in the proposition.



Chapter 3
Dimension theory

3.1 Krull dimension

Height. The height of a prime ideal p in aring R is by definition the maximal length
of a proper chain of prime ideals inside p, and is often denoted ht(p). Hence a prime
ideal is minimal if and only if its height is zero. The supremum of the heights of
all prime ideals in R is called the (Krull) dimension of R and is denoted dim(R).
More generally, the height ht(I) of an ideal I is the minimum of the heights of all
prime ideals containing I. The following inequality is almost immediate from the
definitions (see Exercise 3.4.1).

3.1.1 For every prime ideal p C R, we have an inequality

dim(R/p) +ht(p) < dim(R).

Almost immediate from the definitions (see Exercise 2.8.9), we get the following
generalization of Corollary 2.2.4:

3.1.2 The Krull dimension of a ring R is equal to the dimension of the associ-
ated enhanced affine variety |Spec(R)|.

Dimension, although seemingly a global invariant, has a strong local character:

3.1.3 The height of a prime ideal p C R is equal to the dimension of Ry,. In par-
ticular, the dimension of R is equal to the supremum of the dimensions of
its localizations Ry, at maximal ideals m. Similarly, the dimension of an
affine variety X := Spec(R) is equal to the supremum of the dimensions
of its local rings O , at (closed) points x € X.

The first assertion is proven in Exercise 3.4.5, and the second is an immediate
consequence of this (since maximal ideals have the largest height). The last assertion
then follows from Proposition 2.6.1.
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Artinian rings. Recall that a ring is called respectively Noetherian or Artinian if
the collection of ideals satisfies the ascending or the descending chain condition
respectively. Without proof we state the following structure theorem for Artinian
rings (for a proof see for instance [4 |, Theorem 3.2] or [7, Theorems 8.5 and 8.7]):

3.1.4 Any Artinian ring R is Noetherian, and has only finitely many prime
ideals py,...,ps. Each p; is moreover maximal, so that R has dimension
zero,and R=R,, @ --- D Ry,.

In fact, a ring R is Artinian if and only if it has finite length | = {(R), meaning
that any proper chain of ideals has length at most /, and there is a chain with this
length. It follows that any finitely generated R-module M also has finite length,
denoted ¢(M), and defined as the maximal length of a proper chain of submodules.
An Artinian ring of length one is a field. Length is a generalization of vector space
dimension; for instance, you will be asked to prove the following characterization
of length in Exercise 3.4.3:

3.1.5 IfR is finitely generated (as a module) over an algebraically closed field
K, then ((R) is equal to the vector space dimension of R over K.

3.2 Hilbert series

Although we are interested in the study of local rings, it turns out that graded rings
play an important role in dimension theory. The connection between the two is pro-
vided by the graded ring Gr(R) associated to a local ring R (see page 45). So we first
study the graded case.

Let R be an Artinian local ring and let S be a standard graded R-algebra. Recall
that this means that S = @;cnS; is N-graded, the degree zero part Sy is equal to R,
and S is generated as an R-algebra by finitely many linear forms (=elements in Sp).
Let M be a finitely generated N-graded S-module, meaning that M = @®;cnM; and
S,'Mj - M,'+j for all l,]

3.2.1 Every M, is a finitely generated R-module, whence in particular has finite
length.

Indeed, we may choose homogenous generators U, ..., s of M as an S-module.
If k; is the degree of u;, then M, = S, _i, 1 + - - - + S—i, s (With the understanding
that §; = 0 for j < 0). Furthermore, if ay, ..., a, are the linear forms generating S as
an R-algebra, then S, is generated as an R-module by all monomials of degree 7 in
the a;. Therefore, M, is finitely generated over R, and therefore has finite length.

Hilbert series. In view of 3.2.1, we can now define the Hilbert series of a finitely
generated S-module M, with S a standard graded algebra over an Artinian local ring
R, as the formal power series

Hilby (1) := ) €(M,)r". (3.1)

n>0
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As rings will be our primary objective in these notes, rather than modules, we will
be mainly interested in the properties of Hilbg(¢). However, it is more convenient to
work in the larger module setup for inductive proofs to go through. The key result
on Hilbert series is:

Theorem 3.2.2. Let S be a standard graded algebra over an Artinian local ring
R. The Hilbert series of any finitely generated S-module M is rational. In fact, for
some d = d(M) €N, the power series (1—1)¢ -Hilby(t) is a polynomial with integer
coefficients.

Proof. We will prove the last assertion by induction on the minimal number » of
linear R-algebra generators of S. If r = 0, then S = R, so that M is a finitely generated
module over an Artinian ring, whence has finite length. It follows that M, = 0 for
n > 0 and we are done in this case. So assume r > 0 and let x be one of the linear
forms generating § as an R-algebra. Multiplication by x induces maps M, — M, 4+
for all n. Let K, and L,1 be the respective kernel and cokernel of these maps (with
Ly := My). Define two new graded S-modules K := &, K,, and L := &, L,,. It follows
that K C M and M /xM = L, proving that both modules are finitely generated over S.
By construction, xK = xL = 0, so that both K and L are actually modules over S /xS,
and hence we may apply our induction hypothesis to them. Since we have an exact
sequence (see page 65 for the notion of an exact sequence)

0 — Ky — My—My i1 — Lyy1 — 0

we get £(K,) — (M) + {(My+1) — £(Ly+1) = 0 by Exercise 3.4.2. Multiplying this
equality with /! and adding all terms together, we get an identity

tHilbg (¢) — t Hilbyy (¢) + Hilby, () — Hilby,(¢) = 0.
Using the induction hypothesis for K and L then yields the desired result. a

Corollary 3.2.3. For every finitely generated graded module M over a standard
graded algebra over an Artinian local ring, there exists a polynomial Py (t) € Zlt],
such that {(My,) = Py (n) for all n sufficiently large.

Proof. By Theorem 3.2.2 we can write Hilby(¢) = ¢(t)/(1 — )¢ for some poly-
nomial ¢(¢) € Z[t]. Using the Taylor expansion of (1 —¢)~¢ and then comparing
coefficients at both sides, the result follows readily (see Exercise 3.4.8). Note that
we have equality for all n > deg(q). O

Associated graded ring. For a given Noetherian ring (R, m), define its associated
graded ring as
Gr(R) := EBm"/m"+1
n>0

Note that this is a standard graded algebra over the residue field R/m of R (as always
mY stands for the unit ideal). Applying Corollary 3.2.3 to M = S = Gr(R) we can
find a polynomial Pg() such that
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Pr(n) = ((m" /m" ") (32)

for all n > 0. For various reasons, one often works with the ‘iterate’ of this function:

Hilbert-Samuel polynomial. We define the Hilbert-Samuel function of R as the
function n — ¢(R/m"*1). By induction, one easily shows that

((R/m"t 1) = i £(mk /mA . (3.3)
k=0

It follows from (3.2) that there then exists a polynomial yg(¢) with integer coeffi-
cients, called the Hilbert-Samuel polynomial, such that

((R/m™ ) = xr(n) (3.4)

forall n > 0.

3.3 Local dimension theory

In this section, (R, m) denotes a local ring, which is most of the time also Noetherian.
The Krull dimension of R will be denoted dim(R). We introduce two more variants,
and show that they agree on Noetherian local rings.

Definition 3.3.1 (Geometric dimension). We define the geometric dimension of R,
denoted geodim(R), as the least number of elements generating an m-primary ideal
(see 1.4.9 for the definition of m-primary ideal). We let Hilbdim(R) denote the de-
gree of the Hilbert-Samuel polynomial xg(7) of R given by (3.4).

As dim(R) equals the dimension of the topological space V := |Spec(R)], it is es-
sentially a topological invariant. On the other hand, geodim(R) is the least number
of hypersurfaces' Hy,...,H; CV such that H; N ---N Hy is a singleton (necessarily
equal to the closed point x corresponding to the maximal ideal m), and hence is a
geometric invariant. Note that the definition of geometric dimension makes sense
for any local ring R (unlike the definition of Hilbert dimension which assumes the
rationality of the Hilbert series), and that it is finite if and only if R has finite embed-
ding dimension. Finally, Hilbdim(R) is by definition a combinatorial invariant. It
follows that both geometric dimension and Hilbert dimension are finite for Noethe-
rian local rings, but this is less obvious for Krull dimension. Nonetheless, all three
seemingly unrelated invariants are always equal for Noetherian local rings (whence
in particular Krull dimension is always finite):

Theorem 3.3.2. If R is a Noetherian local ring, then

! In these notes, a hypersurface in an affine variety V is any closed subset of the form V(I) with I
a proper principal ideal (this does not mean that its ideal of definition is principal!) Be aware that
some authors have a far more restrictive usage for this term.
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dim(R) = geodim(R) = Hilbdim(R).

Proof. Ttis not hard to verify this equality whenever one of them is zero: R has Krull
dimension zero if and only if its maximal ideal is nilpotent (in other words, (0) is
m-primary) if and only if its Hilbert-Samuel function is constant.
So we may assume that all three invariants are non-zero. First we show by induc-
tion on & that
¢ := Hilbdim(R) < 6 := geodim(R). (3.5)

LetI:= (aj,...,as)R be an m-primary ideal, and put S := R/a;R. It is not hard so
see that then necessarily geodim(S) = § — 1, so that by induction, Hilbdim(S) <
6 — 1. We have, for n sufficiently large,

xs(n) = 0(S/m"'S) = 6(R/aiR+m"™t)
= ((R/m" ) —(R/(m"*" 2 ay))
> ((R/m" ™) —L(R/m") = xr(n) — xr(n—1)

(where we used (5.9) below in the second line). Note that yg(n) — xg(n — 1) has
degree t — 1 (verify this!), and hence xs(n), a polynomial dominating the latter dif-
ference, must have degree at least  — 1. Putting everything together, we therefore
gett— 1 <deg(yxs) <6 —1, as we wanted to show.

For the remainder of the proof, we induct on the Krull dimension d := dim(R),
and so we assume that the theorem is proven for rings of smaller Krull dimension.
Let po & p1 & --+ & pg = m be a chain of prime ideals in R of maximal length.
Choose x outside all minimal prime ideals but inside p;. By prime avoidance (see
[7, Proposition 1.11] or the more general version [ |8, Lemma 3.3]), such an element
must exist. Put S := R/xR. Since p;S are distinct prime ideals, for i > 0, we get
dim(S) = d — 1. Hence by induction, geodim(S) = d — 1, so that there exists an mS-
primary ideal I C § generated by d — 1 elements. Let J := I N R. Any lifting of the
d —1 generators of / in R together with x therefore generate J. Moreover, J is clearly
m-primary, so that we showed geodim(R) <d—1+1=d.

Let R := R/po and § := §/poS. Tensoring the exact sequence

— x = -

0—-R—R—-S—0
with R/m" !, we get an exact sequence
0— H, — R/m"""RER/m" IR — §/m" 1§ — 0.

Hence, the two outer modules have the same length, so that x5(n) = ¢(H,) for suf-
ficiently large n. On the other hand, using 5.6.15, we have an exact sequence

0— H, —» R/m""R—R/(m""'R:x) =0

from which it follows that ys(n) = xz(n) — ¢@(n), where @(n) denotes the length of
the last module in the previous exact sequence (showing incidentally that ¢(n) too
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is a polynomial for n > 0). To estimate @(n), we use the Artin-Rees Lemma (see
[41, Theorem 8.5] or [7, Proposition 10.9]).2 By that theorem, there exists some ¢
such that

M RNXR C m™H %R

for all n > c. Hence if s € (m"t1R : x), that is to say, if sx € m""!R, then sx €
m" 1 =¢xR. Since R is a domain, this yields s € m"*!~¢R, and hence we have inclu-
sions m"* 1R C (m" 1R : x) C m"+1=¢R for all n > c. Therefore, for n > 0, we get
inequalities

Xr(n—c) < @(n) < xz(n).

This shows that the (polynomial representing) ¢ has the same leading term as
Xz and hence their difference, which is x5, has degree strictly less. Clearly,
xz(n) < xr(n) and hence Hilbdim(R) < Hilbdim(R). Since S has dimension d — 1

by choice of x, induction yields Hilbdim(S) = d — 1. Putting everything together,
we get Hilbdim(R) > d. In summary, we proved the inequalities

geodim(R) < d < Hilbdim(R)

and hence we are done by (3.5). O

From this important theorem, various properties of dimension can now be de-
duced. We start with a loose end: the dimension of affine n-space (as stated in The-
orem 2.2.1), or equivalently, the dimension of a polynomial ring.

Corollary 3.3.3. If K is a field and A is either the polynomial ring or the power
series ring over K in n variables &, then dim(A) = n.

Proof. The chain of prime ideals

0)CEHAC (E1,8)AC - Cm:=(&,...,6)A

shows that m has height at least n (and, in fact, equal to n). Hence dim(A) and
dim(Ay,) are at least n. In the power series case (so that A is local), m witnesses
the estimate geodim(A) < n. Hence we are done in the power series case by Theo-
rem 3.3.2.

Let me only prove the polynomial case when K is algebraically closed (the gen-
eral case is treated in Exercise 3.4.6). By Theorem 2.2.2, any maximal ideal is of
the form m,, for some u € K". Hence An,, = A, by a linear change of coordinates.
Therefore, it suffices in view of 3.1.3 to show that A, has dimension n. However,
again mA,, witnesses that geodim(Ay,) < n, and we are done once more by Theo-
rem 3.3.2. a

The next application is another famous theorem due to Krull:

Theorem 3.3.4 (Hauptidealensatz/Principal Ideal Theorem). Any proper ideal in
a Noetherian ring generated by h elements has height at most h.

2 Unfortunately, the weak variant of Artin-Rees that we will prove in Theorem 11.2.1 below, is not
sufficiently strong for the present argument to work.
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Proof. LetI C B be an ideal generated by % elements, let p be a minimal prime of 7,
and put R := By,. Since IR is then pR-primary, geodim(R) < h. Hence p has height
at most s by Theorem 3.3.2 and 3.1.3. Since this holds for all minimal primes of I,
the height of I is at most A. a

Let (R,m) be a Noetherian local ring of dimension d. By Theorem 3.3.2, there
exists a d-tuple x generating an m-primary ideal. We give a name to such a tuple:

Definition 3.3.5 (System of parameters). Any tuple of length equal to the dimen-
sion of R and generating an m-primary ideal will be called a system of parameters of
R (sometimes abbreviated as s.o.p); the ideal it generates is then called a parameter
ideal.

In other words, a parameter ideal is an m-primary ideal requiring the least possible
number of generators, namely d = dim(R). The next result will enable us to con-
struct systems of parameters. To this end, we define the dimension of an ideal I C B
as the dimension of its residue ring B/I. In particular, any d-dimensional prime ideal
in a d-dimensional Noetherian local ring is a minimal prime ideal, whence there are
only finitely many such ideals.

Corollary 3.3.6. If R is a d-dimensional Noetherian local ring and x a non-unit in
R, then d — 1 < R/xR < d. The lower bound is attained if and only if x lies outside
all d-dimensional prime ideals of R.

Proof. The second inequality is obvious (from the point of view of Krull dimen-
sion). Towards a contradiction, suppose S := R/xR has dimension strictly less than
d — 1. By Theorem 3.3.2 there exists a system of parameters (xj,...,x.) in S with
e < d— 1. However, any liftings of the x; to R together with x then generate an m-
primary ideal, contradicting Theorem 3.3.2. It is now not hard to see that x lies in a
d-dimensional prime ideal if and only if S admits a chain of prime ideals of length
d, from which the last assertion follows. O

If R has dimension d, then element outside any d-dimensional prime is called
a parameter. Since there are only finitely many d-dimensional prime ideals, pa-
rameters exist as soon as d > 0. We can now reformulate (see Exercise 3.4.10):
(x1,...,x4) is a system of parameters if and only if each x; is a parameter in
R/(x1,...,xi—1)R.

Finite extensions. Recall that a homomorphism R — S is called finite if S is finitely
generated as an R-module. Similarly, a morphism of affine schemes ¥ — X is called
finite if the induced homomorphism on the coordinate rings is finite. Any surjective
ring homomorphism R — R/I is finite.

3.3.7 A finite morphism Y — X of affine schemes is surjective if the corre-
sponding homomorphism of coordinate rings is injective.

Indeed, assume R — S is a finite and injective homomorphism, and let p be a
prime ideal of R. Let n be a maximal ideal in Sy := Ry, ® S, and put m :=nNR,.



50 3 Dimension theory

Since R, /m C Sy /n is again finite, and the latter ring is a field, so is the former
by Lemma 2.2.7. Hence m is a maximal ideal, necessarily equal to pRy,. If we put
g :=nNS, then an easy calculation shows p = q N R (verify this!). By 2.3.3, this
means that the morphism Spec(S) — Spec(R) is surjective. O

Theorem 3.3.8. Let R C S be a finite homomorphism of Noetherian rings. If R has
dimension d, then so does S.

Proof. Put d := dim(R) and e := dim(S). To see the inequality e < d, choose a
maximal ideal n in S of height e, and put m := nNR. Since R, has dimension at
most d, there exists an mRy,-primary ideal I C Ry, generated by at most d elements
by Theorem 3.3.2. Since Sy /ISy is then a finitely generated Ry,/I-module, it is
Artinian. Hence IS, is nS,-primary, showing that geodim(S,,) < d. Since the left
hand side is equal to e by Theorem 3.3.2, we showed e < d.

We prove the converse inequality by induction on d (where the case d = 0 is
clearly trivial). Choose a d-dimensional prime ideal p C R. Using 3.3.7, we can
find a prime ideal q C S lying above p, that is to say, p = qNR. Put R := R/p and
§:=S/q. In particular, R C S is again finite and injective. By the same argument,
we can take a d — 1-dimensional prime ideal  C R, and a prime ideal Q C § lying
above it. By the induction hypothesis applied to the finite extension R/ C §/1,
we get d — 1 = dim(R/) < dim(S/Q). However, since any non-zero element in a
domain is a parameter (see Corollary 3.3.6), the dimension of §/9 is strictly less
than the dimension of S, which itself is less than or equal to e. Hence d — 1 < e—1,
as we wanted to show. a

Corollary 3.3.9. If V — K% is a Noether normalization of an affine variety V, then
V has dimension d.

Proof. By definition of Noether normalization, we have a finite, injective homo-
morphism K[{] C K[V] with { = ({,..., ;). By Corollary 3.3.3, the first ring has
dimension d, whence so does the second by Theorem 3.3.8. This in turn means that
V has dimension d. a

3.4 Exercises

Ex 3.4.1
Prove the inequality in 3.1.1. In fact, this is often an equality, for instance if R is a poly-
nomial ring over a field, but this is already a much less trivial result. Verify it when R is a
polynomial ring over a field in a single indeterminate.

Ex 3.4.2

Show that length is additive in the sense that if 0 - K — M — N — 0 is a short exact
sequence of A-modules, then {(M) = {(K) + {(N).



3.4 Exercises

Ex 3.4.3
Prove 3.1.5. More generally, show that if R is an Artinian local ring with residue field k,
then the length of R is equal to its vector space dimension over k. For the latter, you need
to know that k is a subfield of R, and this is proven in Theorem 6.4.2 and Remark 6.4.3, but
you can just assume for the moment that this is the case.

Ex 3.4.4
Let S be a standard graded R-algebra. Show that S is Noetherian if R is.

Ex 3.4.5
Show the first assertion in 3.1.3: the height of a prime ideal p C R is equal to the dimension
of Ry.

Ex 3.4.6
Show that any maximal ideal in K[&1,...,&,] is generated by at most n elements, even if K
is not algebraically closed. Use this to complete the proof of Corollary 3.3.3.

Ex 3.4.7
Generalize Corollary 3.3.3 by replacing the field by any Artinian local ring. Moreover, in
the power series case, formulate a result with the base ring any Noetherian local ring. Such
a result also holds in the polynomial case, but the proof requires some more powerful tools
such as flatness, discussed in §5; for a proof, see for instance [41, Theorem 15.4].

Ex 3.4.8
Work out the details of the proof of Corollary 3.2.3.

“Ex 3.4.9
Develop the theory of Hilbert-Samuel polynomials also for finitely generated R-modules M
and for m-primary ideals I, by using the graded algebra

Gry(R) := @, 0" /1"

and the graded module
Gry (M) := @, I"M /"' M
Ex 3.4.10
Show that (x1,...,x4) is a system of parameters in R if and only if x; is a parameter in
R/(x1,...,xi_1)R foreveryi=1,...,d.
Ex 3.4.11

Show that if X is a tuple of length e in a Noetherian local ring R such that XR has height e,
then x can be extended to a system of parameters of R. Using the same technique, also show
that if p is a prime ideal of height h, then there exists a system of parameters (y1,...,yq)
such that p is a minimal prime of (y1,...,yn)R.
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Ex 3.4.12
Prove the following more precise form of 3.3.7: a finite morphism Y = Spec(S) — X =
Spec(R) is surjective if and only if the kernel of the corresponding ring homomorphism
R — S is nilpotent. In fact, the only if direction is true for any morphism.

“Ex 3.4.13
For non-Noetherian rings, Krull dimension and geometric dimension need not agree; here’s
an example. Let R be the power series ring K[[E]] in d > 0 variables &, and let Ry be its
ultrapower. Show that geodim(R;) = d = Hilbdim(R;) but dim(Ry) > d. To establish the
latter inequality, show that the ideal of infinitesimals of Ry is a prime ideal. In fact, Ry has
infinite Krull dimension, but proving this requires some more work.

*Ex 3.4.14
Show using Noether Normalization and Exercise 3.4.13 that any affine domain C is equi-
dimensional, in the sense that every maximal ideal of C has the same height.

Additional exercises.

Ex 3.4.15
Show that a finite injective homomorphism A C B satisfies the going-up theorem,
meaning that given any inclusion of prime ideals p C q C A and any prime ideal
B C B lying over p, we can find a prime ideal Q C B containing 3 and lying over q.



Chapter 4
Singularity theory

We gave a formal definition of a singular point in Definition 2.6.4. In this chapter,
we investigate the algebraic theory behind this phenomenon. In particular, we will
identify a certain type of singularity, the Cohen-Macaulay singularity, which plays
an important role in the later chapters.

4.1 Regular local rings

According to our ‘algebraization paradigm’, geometric properties of points are re-
flected by their local rings. Before we make this translation, we first explore a little
the classical notion, using plane curves as example.

Multiple points on a plane curve. A plane curve C is an irreducible affine variety
given by a non-constant, irreducible polynomial f(&,{) € A :=KIE, (], for K some
algebraically closed field, that is to say, C = V(f). By Corollary 3.3.6, a plane curve
has dimension one. So we arrive at the more general concept of a curve as a one-
dimensional, irreducible scheme. The degree 7 of f is also called the degree of the
plane curve C. If t = 1, then C is just a line. So from now on, we will moreover
assume ¢t > 1. An easy form of Bezout’s theorem states:

4.1.1 Any line intersects the plane curve C of degree t in at most t distinct
points, and there exist lines which have exactly ¢ distinct intersection
points with C.

The proof is elementary: the general equation of a line L is a& +b{ + ¢ = 0 and
hence the intersection |C N L] is given by the radical of the ideal (a& +b& +c, f)A
(or, viewed as an affine scheme C N L by the ideal itself; see page 30). In terms of
equations, assuming b = 1 for the sake of simplicity, this means that the (§-values of
the) intersection points are given by the equation f (&, —a& —c) = 0, a polynomial of
degree ¢ or less, which therefore has at most ¢ solutions. Choosing a, b, ¢ sufficiently
general, we can moreover guarantee that this polynomial has ¢ distinct roots. We
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54 4 Singularity theory

can now state when a point P on C is singular, but to not confuse with our formal
definition 37, we use a different terminology:

Definition 4.1.2. A point P on a plane curve C of degree ¢ is called multiple, if every
line through P intersects C in less than ¢ distinct points. More precisely, we say that
P is an n-tuple point on C, or multc(P) = n, if n is the number of points absorbed at
P in each intersection with a line, that is to say,

ltc(P) := i t—card(|CNL 1).
mu tc( ) LlineIgllrf)lughP( car (| |)+ )

Here |[C N L| denotes the (naive) intersection as sets, not as schemes. A point which
is not multiple, i.e., a 1-tuple point, is called a simple point.

Let us look at two examples of multiple points:

An example of a node. Let f:= &2 — {2 —3¢3 and let P be the origin. Hence a
line L, through P has equation { = a& for some a € K (for sake of simplicity, we
ignore the §-axis; the reader should check that this makes no difference in what
follows). Substituting this in the equation, the intersection points with C are given
by the equations { = a& and 2 — (a&)? —3(a€)? = 0. The second equation reduces
to & =0or & = (1 —a?)/3a>, thus giving only two intersection points, contrary to
the expected value of three. In conclusion, P is a double point. One can check that it
is the only multiple point on C (check this for instance for the point with coordinates
(2,1).

Moreover, note that the two diagonals L intersect C in exactly one point, that is
to say, the lines y = +x have even higher contact with C; they are often refered to as
the tangent lines of C at P. To formally define a tangent line, one needs to introduce
the intersection number i(L,C; P) of a line L with C at P, and then call L a tangent
line if i(L,C; P) > multc(P). One way of doing this is by defining the intersection
number i(L,C; P) as the length of R/LR, where R := (A/fA)n, is the local ring of P
at C and where we identify the line L with its defining linear equation. One checks
that i(L,,C; P) equals two for a # +1, and three for a = +1.

To calculate the tangent space T p as defined on page 36, let m := (&, {)A be the
maximal ideal corresponding to the origin. Since mR is generated by two elements,
the embedding dimension of R is two, whence so is the dimension of the tangent
space Tc p by 2.6.3. Hence, since the tangent space has higher dimension than the
scheme, P is singular on C.

An example of a cusp. For our next example, let f := E* — {3, a curve of degree
four, and let P be the origin as before. The intersection with L, is given by the equa-
tion £* — (a&)® = 0, which yields two intersection points: namely P and (a*,a*).
Hence P is a triple point of C. Moreover, there is now only one value of a which
leads to a higher contact, namely a = 0, showing that the £-axis is the only tangent
line (double-check that the {-axis does not have higher contact). A multiple point
with a unique tangent line is called a cusp. A similar calculation as before shows
that T¢ p is again two-dimensional, whence P is singular. Let us now prove this in
general:
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Proposition 4.1.3. A point on a plane curve is a multiple point if and only if it is
singular.

Proof. Let f be the equation, of degree ¢, defining the curve C, and let P be a point
on C. After a change of coordinates, we may assume P is the origin, defined by the
maximal ideal m := (&, {)A. If P is non-singular, then the embedding dimension of
Ocp = (A/fA)n is one. Hence either & or { generates mR. So, after interchanging
& and { if necessary, we can write { as a fraction (g + fg)/h in Ap, for some
g,8,h € A with h ¢ m. Hence the intersection with L, is given by { = a& and

at = Eg(&E,al) + f(E,a&)3(E,ak)

h(G,ag) '
Since f has no constant term, we may divide out &, so that the last equation becomes
ah(§,a8) = g(&,a5) + f(5) 4.1

for some f € K[&]. If P would be a multiple point of C, then & = 0 should still be
a solution of (4.1). However, this can only happen if a = (g(0,0) + £(0))/4(0,0)
(note that ~(0,0) # 0 by assumption). In other words, a general line has only one
intersection point at P, and hence P is a simple point. Note that it has exactly one
tangent line, given by the above exceptional value of a.

Conversely, assume P is simple, and write f = u& +v{ + f with u,v € K and
f € m?. By assumption, the equation u& +va& + f(&,a€) = 0 should have in general
t — 1 solutiuons different from & = 0. For this to be true, at least one of u or v must
be non-zero. So assume, without loss of generality, that u # 0, and then multiplying

with its inverse, we may even assume u = 1. It follows that & = —v{ — f in R,
showing that mR = {R by Nakayama’s Lemma, and therefore that R has embedding
dimension one. O

By the above argument, in order for P to be simple, Ay, /fAm has to have em-
bedding dimension one, which by Nakayama’s lemma is equivalent with f being a
minimal generator of mA,,, that is to say, f € mAy, — m2A.,. In Exercise 4.3.4 you
will prove the following generalization:

4.1.4 A point P is an n-tuple point on a plane curve C := V(f) if and only if
n is the maximum of all k such that f € m¥A,, where m := mp is the
maximal ideal of P.

Geometrically, a closed point x is singular on an affine variety, or more generally,
on an affine scheme X, if the dimension of its tangent space is larger than the local
dimension of X at x. In particular, singularity is a local property, completely captured
by the local ring of the point. Since the dimension of the tangent space is equal
to embedding dimension of the local ring by 2.6.3, we can now formulate non-
singularity entirely algebraically:

Definition 4.1.5 (Regular local ring). We call a Noetherian local ring (R, m) regu-
lar if and only if its dimension is equal to its embedding dimension.
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In view of Theorem 3.3.2, regularity is equivalent with the maximal ideal being
generated by the least possible number of elements. In particular, some system of
parameters generates the maximal, and any such system is called a regular system
of parameters. Geometrically, a point x on a scheme X is regular, or non-singular,
if Oy x is regular. An Artinian local ring is regular if and only if it is a field. By
Corollary 3.3.3, a power series ring over a field is regular. Using that same theorem
in conjunction with the Nullstellensatz (Theorem 2.2.2), we also get a similar result
over an algebraically closed field K (for a more general version, see Exercise 4.3.6):

4.1.6 Each closed point of affine n-space A% is regular.

To formulate a stronger result, let us call a ring B regular if each localization at
a maximal ideal is regular. Similarly, we call a scheme X regular if all of its closed
points are regular. Hence we may reformulate 4.1.6 as: A% is regular. This begs
the question: what about the non-closed points of A% ? As it turns out, they too are
regular, and in fact, this is a general property of regular rings:

4.1.7 Any localization of a regular ring is again regular.

To prove this, however, one needs a different characterization, homological in
nature, of regular rings due to Serre (it was only after he proved his theorem that
the above result became available). We will not provide all details, but 4.1.7 will
be proved in Corollary 5.5.8 below. Another property is more readily available:
geometric intuition predicts that at an intersection point of two distinct components,
the scheme ought to be singular. Put differently, a variety should be irreducible
in ‘the neighbourhood of” a non-singular point. This translates into the following
property of the local ring of the point:

4.1.8 A regular local ring is a domain.
To prove this, we need another characterization of regular local rings:

Theorem 4.1.9. Let (R, m) be a d-dimensional Noetherian local ring with residue
field k, and let S := Gr(R) be its associated graded ring. Then R is regular if and
only if S is isomorphic to a polynomial ring over k in d variables.

Proof. Let A := k[§] with & := (§1,...,&,), viewed as a standard graded k-algebra
in the obvious way. If A = §, then A; = §; has k-vector space dimension d. Since
Si=m/ m?, Nakayama’s lemma shows that R has embedding dimension d, whence
is regular. To prove the converse, assume R is regular, and we need to show that § =
A. By assumption, m is generated by d elements, x1, . .. ,x;. Define a homomorphism
@: k[E] — S of graded k-algebras by the rule & — x;. Since m = (x1,...,x4)R, the
homomorphism ¢ is surjective (verify this!). Let I be its kernel. Hence A/l = S.
Now, A has dimension d by Corollary 3.3.3. I claim that S has dimension at least d.
However, if I £ 0, then by Corollary 3.3.6, the dimension of A/I is strictly less than
d. Hence I = 0, as we wanted to show (and $ has actually dimension equal to d).
To prove the claim, it suffices to show that the maximal ideal n := S has height
d. Since 0! = @, we get /0"t =2 Sy @ ... P S, and its length is equal
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to £(R/m"*1) by (3.3). Since §/n"t! =2 5, /n"*1S, (check this!), we see that R
and S, have the same Hilbert-Samuel polynomial, whence the same dimension by
Theorem 3.3.2, as we wanted to show. O

Incidentally, in the last part of the proof, we did not use our hypothesis on the reg-
ularity of the ring, so that we showed one inequality in the next result; the converse
will not be needed here and can be found in for instance [4 1, Theorem 13.9].

4.1.10 The dimension of a Noetherian local ring is equal to the dimension of its
associated graded ring.

Proof of 4.1.8. Given two non-zero elements a,b € R, we need to show that their
product is non-zero too. By Theorem 1.4.11, there exist k,/ € N such that a € m¥\
m**1 and b € m! \ m’*!. Hence a and b induce two non-zero elements @ € S and
b € S; respectively. Since S is a domain by Theorem 4.1.9, their product @b € Sy,
is non-zero, whence a fortiori so is ab. O

Why we need projective space. Above, we have seen examples of plane curves
having a multiple point. Of course, some curves are regular. The simplest example
is obviously a line. Another is given by the so-called elliptic curves, defined by an

equation
=& -1)(E~u

with u # 0, 1. You can use the criterion from Exercise 4.3.3 to show that every point
on an elliptic curve is simple, provided the characteristic of K is not 2, whence reg-
ular by Proposition 4.1.3 (see also Exercise 4.3.9). Another example of a regular
curve is the one defined by the equation &{? = 1 (again easily verified by means of
Exercise 4.3.3). However, in this latter case, we are overlooking the ‘points at infin-
ity’. More precisely, recall that IP)%( is obtained by glueing together three copies of
A%( (see page 35), each corresponding by inverting one of the ‘projective’ variables.
So we may view A%, with coordinates (&, {) as the copy corresponding to inverting
the last variable, and embed it in }P’%(. Given a plane curve C = V(f) (or rather, the
affine scheme Spec(B) with B := A/ fA determined by it), let C be the closure of C
inside IP’%(. We can endow C with the structure of a projective variety as follows: let
f be the homogenization of f, that is to say, if f has degree 7, then

f&, &) :=n"f(&/n,¢/n). (4.2)

I claim that the underlying space of C := Proj(B) is equal to C, where A := K[&, £, 1]
and B:=A/fA. Since Ay =Aby 2.5.3, we get E(n) 2 B by (4.2), showing that

AxNC=D(n)nC=cC.

Our claim now follows, since the closure of A%( is just IP’%(. We call C the projectifi-
cation or completion of C.

Returning to our question on singularities: any point of C\ C will be called a
point at infinity of C. To check whether such a point is non-singular, we have to
‘re-coordinatize’, that is to say, look at one of the two other copies of A% C P%. Let
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us do this on the example with equation f := & {? — 1. Following the recipe in (4.2),
we get f = E¢? —n3. On the copy D(E) = AZ, the intersection with C is the affine
scheme given by {? —n?, the equation of a cusp with a singular pointat { =1 =0
(note that it is straightforward to undo the homogenization (4.2): just replace the
pertinent variable, here &, by 1). Hence C is not regular. In Exercise 4.3.10, you will
show that in contrast, the projectification of any elliptic curve remains regular.

In the above discussion, we used curves merely as an illustration: a similar
treatment can be given for higher dimensional affine schemes as well (see Exer-
cise 4.3.11): any closed affine subscheme X C A% can be projectified to a projective
scheme X C P%. So, even if an affine scheme itself is regular, it might not be as
‘good’ as we believe it to be, as we do not see its points at infinity. For that we need
to go to its projectification.

4.2 Cohen-Macaulay rings

Algebraic geometry has developed for a large part in an attempt to gain a better
understanding of singularities, and if possible, to classify them. As it turns out,
certain singularities have nicer properties than others. Our goal is to identify such a
class of singularities, or equivalently, by passing to their local ring, such a class of
Noetherian local rings, which are more amenable to algebraic methods: the ‘Cohen-
Macaulay’ singularities. In order to do this, we must first study an invariant called
‘depth’.

Regular sequences. Recall that an element in a ring R is called a non-zero divisor
if multiplication with this element is injective; more generally, an element x is a non-
zero divisor on an R-module M if multiplication by x is injective on M. Recall that a
prime ideal in a Noetherian ring R is called an associated prime of R (respectively,
of a finitely generated R-module M), if it is of the form Anng(x) for some x € R
(respectively, of the form Anng(ut) for some u € M). Moreover, R (respectively, M)
admits only finitely many associated prime ideals, among which are all the minimal
prime ideals, and an element is a non-zero divisor if and only if it is not contained
in any associated prime ideal (for all this, see for instance [4 1, §6]).

A non-zero divisor of R which is not a unit is called a regular element in R, or
R-regular (do not confuse with the notion of a regular local ring!). Similarly, we
say that x is M-regular if it is a non-zero divisor on M and xM # M (be aware
that some authors might use a slightly different definition for these notions). More
generally, a sequence (x,...,xy) is called a regular sequence in R, or R-regular,
(respectively, M-regular) if each x; is regular in R/(xy,...,x;—1)R (respectively, in
M/(x1,...,x;i—1)M) for i =1,...,d. Here, and elsewhere, we do not distinguish no-
tationally between an element in a ring R and its image in any residue ring R/I, or
for that matter, in any R-algebra S. If (x1,...,xy) is an R-regular sequence, then by
assumption (xi,...,x;)R is a proper ideal of R. In particular, if R is local, then all
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x; belong to the maximal ideal. To be a regular sequence in a local ring is quite a
strong property:

4.2.1 In a Noetherian local ring R, any regular sequence can be enlarged to a
system of parameters. In particular, a regular sequence can have length
at most dim(R). In fact, if x is a regular sequence of length e, then XR has
height e.

To see this, we only need to show by induction on the length of the sequence that
a regular element generates a height one prime ideal and is a parameter. However,
since a regular element x does not belong to any associated prime, whence in partic-
ular not to any minimal prime, the ideal xR has height one by Theorem 3.3.4. Since
x then neither belongs to any prime ideal of maximal dimension, it is a parameter.
Using this in conjunction with Corollary 3.3.6, we get:

4.2.2 Ifx is a regular sequence of length e in a d-dimensional Noetherian local
ring R, then R/XR has dimension d — e.

Cohen-Macaulay local rings. A d-dimensional Noetherian local ring is called
Cohen-Macaulay if it admits a regular sequence of length d. Trivially, any Artinian
local ring is Cohen-Macaulay. The next result justifies calling the Cohen-Macaulay
property a type of singularity.

Proposition 4.2.3. Any regular local ring is Cohen-Macaulay.

Proof. Let us induct on the dimension d of the regular local ring R. The case d =0
is trivial since R is then a field. By assumption, the maximal ideal m is generated
by d elements xp,...,x;. I will show by induction on d that (xi,...,x;) is in fact
a regular sequence. Since R is a domain by 4.1.8, the element x; is regular. Put
R :=R/xiR. It is a Noetherian local ring of dimension d — 1 by Corollary 3.3.6,
and its maximal ideal mR; is generated by at most d — 1 elements. Hence R| is again
regular. By induction, (x3,...,x4) is a regular sequence in R;, from which it follows
that (xp,...,x4) is a regular sequence in R. O

Depth. As we will see, being Cohen-Macaulay is a natural property, and many
non-regular local rings are still Cohen-Macaulay. Since the notion hinges upon the
length of a regular sequence, let us give this a name: the maximal length of a reg-
ular sequence in a Noetherian local ring R is called the depth of R, and is denoted
depth(R). More generally, the depth of an ideal I is the maximal length of a regular
sequence lying in I. We proved depth(R) < dim(R) with equality precisely when R
is Cohen-Macaulay. Immediately from our discussion on associated primes, we get:

4.2.4 A Noetherian local ring has depth zero if and only if its maximal ideal is
an associated prime.

In particular, the one-dimensional local ring R/(&2,E )R is not Cohen-Macau-
lay, where R := Ay, is the local ring of the origin in A%(.

4.2.5 A one-dimensional Noetherian local domain is Cohen-Macaulay. In par-
ticular, any closed point on a (plane) curve is Cohen-Macaulay.
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As the reader might have surmised, we call a point x on a scheme X Cohen-Mac-
aulay if Ox , is Cohen-Macaulay. For an example of a non-Cohen-Macaulay local
domain, necessarily of dimension at least two, see Exercise 4.3.14.

If R is Cohen-Macaulay, and x is a regular sequence of length d := dim(R), then x
is automatically a system of parameters by 4.2.1. This raises the following question:
what about arbitrary systems of parameters?

Theorem 4.2.6. In a Cohen-Macaulay local ring, every system of parameters is a
regular sequence. In particular, any regular sequence is permutable, meaning that
an arbitrary permuation is again regular.

Proof. The second statement is immediate from the first since in a system of pa-
rameters, order plays no role. However, we need it to prove the first assertion. And
before we can prove this, we need to establish yet another special case of the first
assertion: taking powers of the elements in a regular sequence gives again a regu-
lar sequence, and for this to hold, we do not even need the ring to be Cohen-Mac-
aulay. Although both results have relatively elementary proofs, the combinatorics
are a little involved, and so we will only present the argument for d = 2. Hence as-
sume (x,y) is a regular sequence in some Noetherian local ring S. We claim that
both (x*,y!) and (y*,x*) are S-regular sequences, for any k, > 1. We first show that
(x*,y) is S-regular, for all k > 1. By induction, we only need to treat the case k = 2.
Clearly, x? is S-regular, so we need to show that y is S/x?S-regular. Hence suppose
by € x2S, say by = ax*. Since y is S/xS-regular, b € xS, say b = cx. Hence, cxy = ax?,
and using that x is S-regular, cy = ax. Using again that y is S/xS-regular then yields
¢ € xS, which proves that b = cx € x2S, as we wanted to show.

Next, we show that (y,x) is S-regular. To show that y is S-regular, let by = 0. By
our previous result, (x",y) is a regular sequence for every n, which means that y is
S/x"S-regular. Applied to by =0, we get b € x"S. Since this holds for all n, we get
b € Js=0Dby Theorem 1.4.11. So remains to show that x is S/yS-regular. Suppose
ax € yS, say ax = by. Since y is S/xS-regular, b € xS, say, b = cx. From ax = c¢xy and
the fact that x is S-regular, we get a = cy, as we needed to show. Finally, to prove
that (x*,y') and (y/,x) are S-regular, observe that the following sequences are S-
regular: (x*,y) by the first property, (y,x*) by the second, (y/,x*) by the first, and
finally (x*,y') by the second.

So, with these two properties proven for d = 2, and assuming them for arbitrary
d, let us turn to the proof of the theorem. Let (R,m) be a Cohen-Macaulay local ring
of dimension d, and let (xi,...,x;) be a regular sequence. We prove by induction
on d that any system of parameters (yi,...,yq) is a regular sequence. There is
nothing to show if d = 0, so assume d > 0. Put I := (xi,...,x4—1)R. Since x, is by
assumption R/I-regular, m(R/I) is not an associated prime. Let p,...,p, be prime
ideals in R such that their image in R/I are precisely the associated primes of
the latter ring. Since J := (y1,...,y4)R is m-primary, it cannot be contained in any
of the p;, whence by prime avoidance, we can find y € J notin mJ and not in any
p;. In particular, y = Y u;y; with at least one u; a unit in R. After renumbering, we
may assume that u, is a unit. It follows that (yi,...,ys—1,y) is again a system of
parameters. Moreover, y is R/I-regular, showing that (xi,...,xs—1,y) is a regular
sequence. Since we established already that any permutation is again a regular
sequence, (y,xi,...,x4—1) is R-regular. Hence (xi,...,x4—1) is R/yR-regular. Since
R/yR has dimension d — 1 by Corollary 3.3.6, it is therefore Cohen-Macaulay. Hence
(v1,---,¥4—1), being a system of parameters in this ring, is by induction a regular
sequence. In other words, (y,y1,...,y4—1) is a regular sequence, whence so is the
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permuted sequence (yi,...,yqs—1,y). Finally, we show that y, is R/J'-regular with
J := (y1,---,y4-1)R, which then completes the proof that (yi,...,y4) is a regular
sequence. So assume ay, € J'. Since y = ugy, modJ’, we get auyy € J'. Since we
already showed that y is R/J'-regular, we get uya € J', and since u, is a unit, we
finally get a € J, proving our claim. 0

Corollary 4.2.7. Let R be a Noetherian local ring, and let X be a regular sequence
of length e. Then R is Cohen-Macaulay if and only if R/XR is.

Proof. Letd := dim(R). By 4.2.2, the residue ring R/xR has dimension d — e. If it
is Cohen-Macaulay, then there exists a regular sequence y of that length, and then
(x,y) (where we still write y for some lifting of that tuple to R) is a regular sequence
of length d, showing that R is Cohen-Macaulay. Conversely, if R is Cohen-Mac-
aulay, let y be a system of parameters in R/xR. It follows that (x,y) is a system
of parameters in R, whence is a regular sequence by Theorem 4.2.6. Hence y is a
regular sequence in R/XR of maximal length, proving that R/xR is Cohen-Macau-
lay. a

Corollary 4.2.8. A Cohen-Macaulay local ring has no embedded primes, that is to
say, any associated prime is minimal.

Proof. Let R be a Cohen-Macaulay local ring and p an associated prime. If p has
positive height, we can find x € p such that xR has height one. By Exercise 3.4.11,
we can extend x to a system of parameters of R, which is then a regular sequence
by Theorem 4.2.6. In particular, x is R-regular, contradicting that it belongs to an
associated prime. a

In fact, Corollary 4.2.7 holds in far more greater generality: without assuming
that R is Cohen-Macaulay, we have that the depth of R is equal to the depth of R/xR
plus e. However, to prove this, one needs a different characterization of depth (using
Ext functors), which we will not discuss in these notes. Another property that we
can now prove is that any localization of a Cohen-Macaulay local ring is again Coh-
en-Macaulay (recall that we also still have to resolve this issue with regards to being
regular).

Corollary 4.2.9. If R is a Cohen-Macaulay local ring, then so is any localization
Ry at a prime ideal p C R.

Proof. Let h be the height of p. Let us show by induction on % that p contains a
regular sequence of length % (that is to say, p has depth £). It is not hard to check that
the image of this sequence is then a regular sequence in Ry, showing that the latter
is Cohen-Macaulay. Obviously, we may take i > 0. Since p cannot be contained in
an associated prime of R by Corollary 4.2.8, it contains an R-regular element x. Put
S := R/xR, which is again Cohen-Macaulay by Corollary 4.2.7. As pS has height
h— 1 (check this), it contains an S-regular sequence y of length 4 — 1. But then (x,y)
is an R-regular sequence inside p, as we wanted to show. ad
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We can now say that a Noetherian ring A is Cohen-Macaulay if every localization
at a maximal ideal is Cohen-Macaulay, and this is then equivalent by the last result
with every localization being Cohen-Macaulay. Similarly, a scheme X is Cohen-
Macaulay, if every local ring Oy , at a (closed) point x € X is Cohen-Macaulay. In
particular, any reduced curve is Cohen-Macaulay.

4.3 Exercises

Ex 4.3.1

Verify all the claims made on page 54 about the given node and cusp.

“Ex 4.3.2
Prove the following more general version of Bezout’s theorem: if C := V(f) and D :==V(g)
are two distinct plane curves of degree t and u respectively, then their scheme-theoretic
intersection, given by the (Artinian) K-algebra A/ (f,g)A has K-vector space dimension tu.
To do this, carry out effectively the proof of Noether Normalization, to get a handle on this
vector space dimension.

To see how this implies the usual statement of Bezout’s theorem, namely that the set-
theoretic intersection |CN\D| has cardinality at most tu, show that any Artinian ring of
length | has at most | maximal ideals.

Ex 4.3.3
From the proof of Proposition 4.1.3, you can extract the following criterion for f to have a
simple point at the origin: its linear part should not vanish. Use this to prove that a point
P on a plane curve C := V(f) is a multiple point if and only if df/d& and df/d& both
vanish on P. Conclude that a plane curve has at most finitely many multiple points, and find
an upperbound for their number (you will need some elimination theory for this, as given,
for instance, in [ 15, pp. 308-309]).

Ex 4.3.4
Extend the argument in the proof of Proposition 4.1.3 to prove 4.1.4.

Ex 4.3.5
Show that if R is a regular local ring, then so is the power series ring R[|&]] in finitely many
indeterminates. Prove that the ring of convergent power series over C (a formal power
series is called convergent if it converges on a small open disk around the origin) is regular.

Ex 4.3.6
Use Exercise 3.4.6 to show that we may drop the condition in 4.1.6 that K is algebraically
closed.
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Ex 4.3.7
From the proof of 4.1.8, it is clear that any local ring whose associated graded ring is a
domain, is itself a domain. Show that the coordinate ring of a cusp gives a counterexample
to the converse.

Ex 4.3.8

Show that a one-dimensional Noetherian local ring R is regular if and only if it is a discrete
valuation ring, that is to say, if and only if it admits a valuation v: R\ {0} — Z.

Ex 4.3.9

Using the criterion from Exercise 4.3.3, show that a plane curve with equation " = f(&)
with f a polynomial without double roots, defines a regular plane curve if the characteristic
of K does not divide n. In particular, elliptic curves are regular in all characteristics other
than 2 (and in fact, also in characteristic 2, but one needs to define them by means of a dif-
ferent cubic polynomial). Moreover, show that if f has a double root, then the corresponding
plane curve has a singularity.

Ex 4.3.10

Use the homogenization of the equation of an elliptic curve and Exercise 4.3.3 to show that
the projectification of an elliptic curve is regular if the characteristic is not 2.

“Ex 4.3.11
Show that the discussion on page 57 generalizes to arbitrary affine schemes : if X =
Spec(R) C A} is a closed affine subscheme, then the closure of |X| in P can be endowed
with the structure of a projectice scheme X := Spec(R), such that X = X N A, (as schemes).
To this end, generalize the notion of ‘homogenization’ as described in (4.2) to arbitrary
ideals.

Ex 4.3.12
Show that a prime ideal p in a Noetherian ring B is associated if and only if there exists an
injective B-algebra homomorphism B/p — B.

“Ex 4.3.13
Show that a regular ring A is a finite direct sum of regular domains as follows. Let py,. .., ps
be the minimal primes of A. Show that A is the direct sum of the A/p;, and each A/p; is
regular.

Ex 4.3.14
Let B:=K[N1,...,MN4], and let p be the kernel of the K-algebra homomorphism

B—K[ES:m—Em—E 8 ¢t

and let R be the localization of B/p at the maximal ideal corresponding to the origin.
Clearly, R is a domain, so that 14 is a regular element. Show that the annihilator of n;
in R/M4R is equal to the maximal ideal of that ring, showing that the depth of R/MaR is
zero. Conclude that R is not Cohen-Macaulay.
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“Ex 4.3.15

We call a tuple x := (x1,...,x,) in a ring A quasi-regular if for any k and any homogeneous

form of degree k in A[E] with & := (&1,...,&,), if F(x) € I then all coefficients of F lie

inl:=(x1,...,x,)A. Show that a regular sequence is quasi-regular. To this end, first show
that if y is a zero-divisor modulo 1, then it is also a zero-divisor modulo any I¥, then show
the assertion by induction on n.

Show that X is quasi-regular if and only if the associated graded ring Gry(A) := @, I" /I"*!
of 1 is isomorphic to (A/I)[].

“Ex 4.3.16
Give a complete proof of Theorem 4.2.6 in every dimension. To this end, you must prove
that powers and permutations preserve regular sequences (the latter is also proven in Ex-
ercise 4.3.17).

*Ex 4.3.17
Show that in a Noetherian local ring R, a sequence (xy,...,xq) is regular if and only if it
is quasi-regular, by induction on d as follows. Only the converse requires proof, and to this
end, first show that x; is R-regular by proving by induction on k that x,z = 0 implies z € I*,
where I := (x1,...,x4)R, and then using Krull’s Intersection Theorem (Theorem 1.4.11).
Conclude by showing that (xy,...,x;) is R/x| R-quasi-regular.

In particular, a regular sequence in a Noetherian local ring is permutable.

Ex 4.3.18
Use Corollary 4.2.8 to prove the ‘unmixedness’ theorem: if I is an ideal of height e in a
Cohen-Macaulay local ring R, and if I is generated by e elements, then I has no embedded
primes, that is to say, any associated prime of R/I is minimal. Also show the converse: if a
Noetherian local ring has the above unmixedness property, then it is Cohen-Macaulay.



Chapter 5
Flatness

In this chapter we will study a very important and useful property, called ‘flatness’.
It is best studied by homological means, so we start off with developing some ho-
mological algebra.

5.1 Homological algebra

The main tool of homological algebra is the ‘homology of a complex’, so let’s define
this notion first.

Complexes. Let A be aring. By a complex we mean a (possibly infinite) sequence
of A-module homomorphisms M; i>M,-,1, for i € Z, such that the composition of
any two consecutive maps is zero. We often simply will say that

diyy d; d;_ di_»
MM ——— My — ... (M)

is a complex. The d; are called the the boundary maps of the complex, and often
are omitted from the notation. Of special interest are those complexes in which all
modules from a certain point on, either on the left or on the right, are zero (which
forces the corresponding maps to be zero as well). Such a complex will be called
bounded from the left or right respectively. In that case, one often renumbers so that
the first non-zero module is labeled with i = 0. If M, is bounded from the left, one
also might reverse the numbering, indicate this notationally by writing M*®, and refer
to this situation as a co-complex (and more generally, add for emphasis the prefix
‘co-’ to any object associated to it).

Homology. Since the composition d;;| o d; is zero, we have in particular an in-
clusion Im(d;1 1) C Ker(d;). To measure in how far this fails to be an equality, we
define the homology He(M,) of M, as the collection of modules

Hl‘(M.) = Ker(d,-)/lm(diH )
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If all homology modules are zero, M, is called exact. More generally, we say that
M, is exact at i (or at M;) if H;(M,) = 0. Note that M, d—l>M0 — 0 is exact (at

zero) if and only if d; is surjective, and 0 — M d—°>M_1 is exact if and only if dy
is injective. An exact complex is often also called an exact sequence. In particular,
this terminology is compatible with the nomenclature for short exact sequence. If
M, is bounded from the right (indexed so that the last non-zero module is M), then
the cokernel of M, is the cokernel of d|: M| — M. Put differently, the cokernel
is simply the zero-th homology module Hy(M,). We say that M, is acyclic, if all
H;(M,) = 0 for i > 0. In that case, the augmented complex obtained by adding the
cokernel of M, to the right is then an exact sequence.

5.2 Flatness

We have arrived at the main notion of this chapter. Let A be a ring and M an A-
module. Recall that - ®4 M, that is to say, tensoring with respect to M, is a right
exact functor, meaning that given an exact sequence

0—=N,— N —Ny—0 5.1
we get an exact sequence
No@aM — N Qa M — No®a M — 0. 5.2)

See [7, Proposition 2.18], where one also can find a good introduction to tensor
products. We now call a module M flat if any short exact sequence (5.1) remains
exact after tensoring, that is to say, we may add an additional zero on the left of
(5.2). Put differently, M is flat if and only if N’ ®4 M — N ®4 M is injective whenever
N’ — N is an injective homomorphism of A-modules. By breaking down a long exact
sequence into short exact sequences (see Exercise 5.7.1), we immediately get:

5.2.1 IfM is flat, then any exact complex N, remains exact after tensoring with
M.

The easiest examples of flat modules are the free modules:
5.2.2 Any free module, and more generally, any projective module, is flat.

Assume first that M is a free A-module, say of the form, M = AU ), where I is a
possibly infinite index set (recall that an element of A(') is a sequence a := (ailiel)
such that all but finitely many a; are zero; the ‘unit’ vectors e; form a basis of AU ),
where all entries in e; are zero except the i-th, which equals one; and, any free A-
module is isomorphic to some A(!)). For any A-module H, we have H @4 M =~ H!).
Since direct sums preserve injectivity, we now easily conclude that M is flat. The
same argument applies if M is merely projective, meaning that it is a direct summand
of a free module, say M & M’ = F with F free. This completes the proof of the
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assertion. In particular, A[£], being free over A, is flat as an A-module. The same
is true for power series rings, at least over Noetherian rings, but the proof is a bit
more involved (see Exercise 5.7.11). Flatness is preserved under base change in the
following sense (the proof is left as Exercise 5.7.3):

5.2.3 If M is a flat A-module, then M /IM is a flat A/I-module for each ideal
I C A. More generally, if A — B is any homomorphism, then M @4 B is a
flat B-module.

5.2.4 Any localization of a flat A-module is again flat. In particular, for every
prime ideal p C A, the localization Ay, is flat as an A-module.

The last assertion follows from the first and the fact that A, being free, is flat as
an A-module by 5.2.2. The first assertion is not hard and is left as Exercise 5.7.3.
Our next goal is to develop a homological tool to aid us in our study of flatness.

Tor modules. Let M be an A-module. A projective resolution of M is a complex
P,, bounded from the right, in which all the modules P; are projective, and such that
the augmented complex

P—P_1—--—P—>M-—0

is exact. Put differently, a projective resolution of M is is an acyclic complex P, of
projective modules whose cokernel is equal to M. Tensoring this augmented com-
plex with a second A-module N, yields a (possibly non-exact) complex

P®AN —P_1®@aN— -+ - Py@aN—->M®sN — 0.

The homology of the non-augmented part P, @ N (that is to say, without the final
module M ® N), is denoted

Tor{ (M,N) := H;(Ps @4 N).

As the notation indicates, this does not depend on the choice of projective resolution
P,. Moreover, we have for each i an isomorphism Tor! (M,N) = Tor! (N,M). We
will not prove these properties here (the proofs are not that hard anyway, see for
instance [18, Appendix 3] or [4], Appendix B]). Since tensoring is right exact, a
quick calculation shows that

Tory (M,N) =M@, N.

The next result is a general fact of ‘derived functors’ (Tor is indeed the derived
functor of the tensor product as discussed for instance in [4], Appendix B]; for a
proof of the next result, see Exercise 5.7.22).
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525 If
0N —-N—-N'—0

is a short exact sequence of A-modules, then we get for every A-module
M a long exact sequence

5.
e Tor (M, N") 2 Tor (b1, —
Tor (M,N) — Tor (M,N") - Tor} | (M,N') — ...

where the 6; are the so-called connecting homomorphisms, and the re-
maining maps are induced by the original maps.

Tor-criterion for flatness. We can now formulate a homological criterion for flat-
ness. More flatness criteria will be discussed in §5.6 below.

Theorem 5.2.6. For an A-module M, the following are equivalent

1. M is flat;
2. Tor(M,N) = 0 for all i > 0 and all A-modules N;
3. Tor{ (M,A/I) = 0 for all finitely generated ideals I C A.

Proof. Let P, be a projective resolution of N. If M is flat, then P, ®4 M is again exact
by 5.2.1, and hence its homology Tor? (N, M) = H;(P. ®a N) vanishes. Conversely,
if (2) holds, then tensoring the exact sequence 0 — N’ — N — N/N' — 0 with M
yields in view of 5.2.5 an exact sequence

0=Tor{ (M,N/N') = M&sN — M&4N

showing that the latter map is injective.

Remains to show (3) = (1), which for simplicity I will only do in the case A
is Noetherian; the general case is treated in Exercise 5.7.6. We must show that
if N’ C N is an injective homomorphism of A-modules, then M @4 N' — M @4 N
is again injective, and we already observed that this follows once we showed that
Tor{ (M,N/N') = 0. I claim that it suffices to show this for N finitely generated:
indeed, if N is arbitrary and 7 := m; @ ny + - - - + my; @ ng is an element in M Q N’
which is sent to zero in M ® N, then by definition of tensor product, there exists a
finitely generated submodule Ny C N containing all ; such that # = 0 as an element
of M ® Ny. In particular, 7 is an element of M ® N{, where Nj := N’ N N;, whose
image in M ® N is zero. Assuming momentarily that the finitely generated case is
already proven, ¢ is therefore zero in M ® N|, whence a fortiori in M @ N'.

So we may assume that N is finitely generated. We prove by induction on r, the
number of generators of N/N’, that Tor} (M,N/N') = 0. If r = 1, then N/N' is of
the from A/I with I C A an ideal, and the result holds by assumption. For > 1, let
t € N be such that its image in N/N’ is a minimal generator. Put H := N’ + At, so
that N/H is generated by r — 1 elements, and H/N’ is cyclic. Tensoring the short
exact sequence

0—H/N —N/N —N/H—0
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yields by 5.2.5 an exact sequence

Tor{ (M,H/N') — Tor} (M,N/N') — Tor} (M,N/H).
By induction, the two outer modules vanish, whence so does the inner. O

For Noetherian rings we can even restrict the test in (3) to prime ideals (but see
also Theorem 5.6.7 below, which reduces the test to a single ideal):

Corollary 5.2.7. Let A be a Noetherian ring and M an A-module. If Tor} (M,A/p)
vanishes for all prime ideals p C A, then M is flat. More generally, if, for some
i > 1, every Tor!(M,A/p) vanishes for p running over the prime ideals in A, then
Tor? (M, N) vanishes for all (finitely generated) A-modules N.

Proof. The first assertion follows from the last by (3). The last assertion, for finitely
generated modules, follows from the fact that every such module N admits a prime
filtration, that is to say, a finite ascending chain of submodules

0=NgCNCN,C---CN, =N (5.3)

such that each successive quotient N;/N;_; is isomorphic to the (cyclic) A-module
A/p; for some prime ideal p; C A, for j=1,...,e (see Exercise 5.7.8). By induction
on j, one then derives from the long exact sequence (5.2.5) that Tor? (M,N i) =
0, whence in particular Tor! (M,N) = 0. To prove the same result for N arbitrary
(which we will not be needing in the sequel), use an argument similar to the one in
the proof of Theorem 5.2.6 (see Exercise 5.7.6). O

Corollary 5.2.8. Let
0O—-M —F—-M-—0

be an exact sequence of A-modules. If F is flat, then
Tor! (M,N) = Tor? | (M;,N)
foralli> 2 and all A-modules N.
Proof. From the long exact sequence of Tor (see 5.2.5), we get exact sequences
0 = Tor (F,N) — Tor}(M,N) — Tor{ ,(M;,N) — Tor} ;(F,N)=0
where the two outer most modules vanish because of Theorem 5.2.6. a

Note that in case F is actually projective in the above sequence, then M is called
a (first) syzygy of M. Therefore, the previous result is particularly useful when work-
ing with syzygies (for a typical application, see the proof of 5.5.1.)
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5.3 Faithful flatness

We call an A-module M faithful, if mM # M for all (maximal) ideals m of A.' By
Nakayama’s Lemma, we immediately get:

5.3.1 Any finitely generated module over a local ring is faithful.

Of particular interest are the faithful modules which are moreover flat, called
faithfully flat modules (see Exercise 5.7.23 for a homological characterization). It
is not hard to see that any free or projective module is faithfully flat. On the other
hand, no proper localization of A is faithfully flat.

5.3.2 IfM is a taithfully flat A-module, then M ®4 N is non-zero, for every non-
zero A-module N. Moreover, if A — B is an arbitrary homomorphism,
then M ®4 B is a faithtully flat B-module.

Indeed, for the first assertion, let N # 0 and choose a non-zero element n € N.
Since I := Anny(n) is then a proper ideal, it is contained in some maximal ideal
m C A. Note that An = A/I. Tensoring the induced inclusion A/I — N with M gives
by assumption an injection M /IM — M ®4 N. The first of these modules is non-
zero, since IM C mM # M, whence so is the second, as we wanted to show. To
prove the second assertion, M ®4 B is flat over B by 5.2.3. Let n be a maximal ideal
of B, and let p := nNA be its contraction to A. In particular, M /pM is flat over A/p,
and an easy calculation then shows that it is faithfully flat. Therefore, by the first
assertion, M /pM ©,/, B/n is non-zero. As the latter is just (M ®4 B)/n(M ®4 B),
we showed that M ®4 B is also faithful.

In most of our applications, the A-module has the additional structure of an A-
algebra. In particular, we call a ring homomorphism A — B (faithfully) flat if B is
(faithfully) flat as an A-module. Since by definition a local homomorphism of local
rings (R,m) — (S,n) is a ring homomorphism with the additional property that
m C n, we get immediately:

5.3.3 Any local homomorphism which is flat, is faithfully flat. O

Proposition 5.3.4. If A — B is faithfully flat, then for every ideal I C A, we have
I =IBNA, and hence in particular, A — B is injective.

Proof. For I equal to the zero ideal, this just says that A — B is injective. Suppose
this last statement is false, and let a € A be a non-zero element in the kernel of
A — B, that is to say, a = 0 in B. However, by 5.3.2, the module aA ®4 B is non-
zero, say, containing the non-zero element x. Hence x is of the form ra ® b for some
r € A and b € B, and therefore equal to r ® ab = r ® 0 = 0, contradiction.

! The reader be warned that this is a less conventional terminology: “faithful’ often is taken to
mean that the annihilator of the module is zero. However, in view of the (well-established) term
‘faithfully flat’, our usage seems more reasonable: faithfully flat now simply means faithful and
flat.
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To prove the general case, note that B/IB is a flat A/I-module by 5.2.3. It is
clearly also faithful, so that applying our first argument to the natural homomor-
phism A/I — B/IB yields that it must be injective, which precisely means that
I =I1BNA. O

A ring homomorphism A — B such that / = /BN A for all ideals  C A is called
cyclical pure. Hence faithfully flat homomorphisms are cyclically pure (for an other
example see 8.5.4 below). We can paraphrase this as ‘faithful flatness preserves the
ideal structure of a ring’, that is to say, in terms of Grassmanians (see page 30), we
have:

5.3.5 If A — B is faithfully flat, or more generally, cyclically pure, then the
induced map Grass(A) — Grass(B): I — IB on the Grassmanians is in-
Jjective. O

Since a ring A is Noetherian if and only if its Grassmanian Grass(A) is well-
ordered (i.e., has the descending chain condition; recall that the order on Grass(A)
is given by reverse inclusion), we get immediately the following Noetherianity cri-
terion from 5.3.5:

Corollary 5.3.6. Let A — B be a faithfully flat, or more generally, a cyclically pure
homomorphism. If B is Noetherian, then so is A. a

A similar argument shows:

5.3.7 If R — S is a faithfully flat homomorphism of local rings, and if I C R is
minimally generated by e elements, then so is IS.

Clearly, IS is generated by at most e elements. By way of contradiction, suppose
it is generated by strictly fewer elements. By Nakayama’s lemma, we may choose
these generators already in /. So there exists an ideal J C I, generated by less than e
elements, such that JS = IS. However, by cyclic purity (Proposition 5.3.4), we have
J=JSNR=ISNR =1, contradicting that I requires at least e generators. a

If A — B is a flat or faithfully flat homomorphism, then we also will call the
corresponding morphism Y := Spec(B) — X := Spec(A) flat or faithfully flat re-
spectively. In Exercise 5.7.14, you are asked to prove that:

5.3.8 A morphism f: Y — X of affine schemes is flat if and only if for every
(closed) pointy € Y, the induced homomorphism O r(,) — Oy y is flat.

Theorem 5.3.9. A morphism Y — X of affine schemes is faithfully flat if and only if
it is flat and surjective.

Proof. Let A — B be the corresponding homomorphism. Assume A — B is faithfully
flat, and let p C A be a prime ideal. Surjectivity of the morphism amounts to showing
that there is at least one prime ideal of B lying over p. Now, by 5.3.2, the base change
Ap — By is again faithfully flat, and hence in particular pBy, # By. In other words,
the fiber ring By, /pB,, is non-empty, which is what we wanted to prove (indeed, take
any maximal ideal n of By, /pBy, and let q := nN B; then verify that qNA = p.)
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Conversely, assume ¥ — X is flat and surjective, and let m be a maximal ideal of
A. Let q C B be an ideal lying over m. Hence mB C q # B, showing that B is faithful
over A. a

5.4 Flatness and regular sequences

The first fundamental fact regarding regular sequences and flat homomorphisms is:

Proposition 5.4.1. I[f A — B is a flat homomorphism and X is an A-regular sequence,
then X is also B-regular.

Proof. We induct on the length n of x := (x1,...,x,). Assume first n = 1. Multipli-

cation by x1, that is to say, the homomorphism AZLA, s injective, whence remains
so after tensoring with B by 5.2.3. It is not hard to see that the resulting homo-

morphism is again multiplication B-L.B, showing that x; is B-regular. For n > 1,
the base change A/xjA — B/x)B is flat, so that by induction (x,...,x,) is B/x|B-
regular. Hence we are done, since x is B-regular by the previous argument. a

Tor modules behave well under deformation by a regular sequence in the follow-
ing sense.

Proposition 5.4.2. Let x be a regular sequence in a ring A, and let M and N be two
A-modules. If X is M-regular and XN = 0, then we have for each i an isomorphism

Tor?(M,N) =] Tor?/XA(

M /XM ,N).

Proof. By induction on the length of the sequence, we may assume that we have
a single A-regular and M-regular element x. Put B := A/xA. From the short exact
sequence

0—-A5A—B—0

we get after tensoring with M, a long exact sequence of Tor-modules as in 5.2.5.
Since Tor!(A,M) vanishes for all i, so must each Tor? (M,B) in this long exact
sequence for i > 1. Furthermore, the initial part of this long exact sequence is

0 — Tor{ (M,B) — M~>M — M /xM — 0

proving that Tor’l4 (M, B) too vanishes as x is M-regular. Now, let P, be a projective
resolution of M. The homology of P, := P, ®4 B is by definition Tor{ (M, B), and
since we showed that this is zero, P, is exact, whence a projective resolution of
M /xM. Hence we can calculate Tor? (M /xM,N) as the homology of P, @ N (note
that by assumption, N is a B-module). However, the latter complex is equal to P, ®4
N (which we can use to calculate Tor? (M, N)), and hence both complexes have the
same homology, as we wanted to show. a
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5.5 Projective dimension

If an A-module M has a projective resolution P, which is also bounded from the left,
that is to say, is of the form

O—=P—-—=P—-M—0

then we say that M has finite projective dimension. The smallest length e of such an
exact sequence is called the projective dimension of M and is denoted projdim(M); if
M does not have a finite projective resolution, then we set projdim(M) := co. Clearly,
the projective dimension of a module is zero if and only if it is projective. The
connection with Tor is immediate by virtue of the latter’s definition as the homology
of the tensor product with a projective resolution:

5.5.1 If M is an A-module of projective dimension e, then Tor (M,N) = 0 for
all i > e and all A-modules N. Moreover, if

O—-H—P,—P,_|—-—P—M-—0

is exact, with all P, projective, then H is flat (and in fact projective).

Only the second assertion requires explanation. By Corollary 5.2.8, the vanishing
of Tor4, | (M, N) is equivalent with the vanishing of Tor{ (H,N). Hence H is a flat
A-module by Theorem 5.2.6. To prove that it is actually projective, one needs Ext-
functors, which we will not treat.

If x is an A-regular element, then A /xA has projective dimension one, as is clear
from the exact sequence

0—-ASA—A/xA— 0. (5.4)

In fact, this is also true for regular sequences of any length, but to prove this we
need a new tool:

Minimal resolutions. A complex M, over a local ring (R, m) is called minimal if
the kernel of each boundary d;: M; — M;_; lies inside mM;. The next result is easily
derived from Nakayama’s lemma and induction (see Exercise 5.7.9):

5.5.2 Every finitely generated module over a Noetherian local ring admits a
minimal free resolution, consisting of finitely generated free modules.

Corollary 5.5.3. Over a Noetherian local ring, a finitely generated module is flat if
and only if it is projective if and only if it is free.

Proof. The converse implications are all trivial. So remains to show that if G is a
finitely generated flat R-module, then it is free. By 5.5.2 (or Nakayama’s lemma),
we can find a finitely generated free A-module F, and a surjective map F — G
whose kernel H lies inside mF. In other words, F/mF = G/mG. On the other hand,
tensoring the exact sequence 0 — H — F — G — 0 with k := R/m yields by 5.2.5
an exact sequence
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0= Torf(G,k) = H/mH — F/mF — G/mG — 0

where we used the flatness of G to obtain the vanishing of the first module. Since
the last arrow is an isomorphism, H /mH = 0, which by Nakayama’s lemma implies
H =0, that is to say, F = G is free. O

Minimal resolutions are essentially unique:

Proposition 5.5.4. Let (R, m) be a Noetherian local ring with residue field k. Let M
be a finitely generated R-module, and let

=k ==K —-M—=0 (Fo)

be a minimal free resolution. For each i > 0, the i-th Betti number of M, that is to
say, the k-vector space dimension of Torf(M ,k), is equal to the rank of F;.

Moreover, the projective dimension of M is equal to the supremum of all i for
which TorR (M k) # 0, and hence is less than or equal to projdim(k).

Proof. By definition, TorR(M, k) is the homology of F, ® k. Since F, is minimal,
the boundaries in F, ®g k are all zero, so that H;(F, ®g k) = F; Qg k. This shows that
the Betti numbers of M coincide with the ranks of the free modules in F, (and hence
the latter are uniquely determined). The second assertion follows immediately from
this and from 5.5.1. O

Put differently, the previous result yields a criterion for a finitely generated mod-
ule to have finite projective dimension, namely that some Betti number be zero. We
can now prove (5.4) for any regular sequence:

Corollary 5.5.5. If x is a regular sequence in a Noetherian local ring R, then R/XR
has finite projective dimension.

Proof. We prove by induction on the length / of the sequence that R/XR has pro-
jective dimension at most /, where the case / = 1 is (5.4). Write x = (y,x) with y a
regular sequence of length / — 1. The short exact sequence

0 — R/YR>R/yR— R/xR — 0
when tensored with the residue field k yields by 5.2.5 a long exact sequence
Tor® (R/yR,k) — Torf (R/xR.k) — Tork | (R/yR.k)

For i — 1 > I, both outer modules are zero by induction and Proposition 5.5.4,
whence so is the inner module. Using Proposition 5.5.4 once more, we see that
R/XR therefore has projective dimension at most /. ad

In fact, the projective dimension of R/xR is exactly /. Moreover, this result re-
mains true if the ring is not local, nor even Noetherian. This more general result is
proven by means of a complex called the Koszul complex, whose homology actually
measures the failure of a sequence being regular. For all this, see for instance [41,
§16] or [18, §171.
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Theorem 5.5.6 (Serre). A d-dimensional Noetherian local ring R is regular if and
only if its residue field k has finite projective dimension (equal to d). If this is the
case, then any module has projective dimension at most d.

Proof (partim). Regarding the first statement, we will only prove the direct impli-
cation. Since a regular local ring R is Cohen-Macaulay by Proposition 4.2.3, its
maximal ideal is generated by a regular sequence x. Hence k = R/XR has finite pro-
jective dimension by Corollary 5.5.5. To prove the converse, some additional tools
(like Ext-functors) are required, and we refer the reader to the literature (see for
instance [4 1, Theorem 19.2] or [ 18, Theorem 19.12]).

The second assertion for finitely generated modules now follows immediately
from the first and Proposition 5.5.4. To also prove this for non-finitely generated
modules, again Ext-functors are needed (see for instance [41, §19 Lemma 2] or [ 18,
Theorem A3.18]). a

Although we did not give a complete proof, we did prove most of what we will
use, with the most notable exception Corollary 5.5.8 below. We can even formulate
a global version, which was first proven by Hilbert in the case A is a polynomial
ring over a field.

Theorem 5.5.7. Over a d-dimensional regular ring A, any finitely generated A-
module M has projective dimension at most d.

Proof. Choose an exact sequence
0—-H—A"M — AN AN > M—0

for some n; and some finitely generated module H, the d-th syzygy of M, given as the
kernel of the homomorphism A — A"-1. Since Ay, is flat over A, for m a maximal
ideal of A, we get an exact sequence

0— Hy — AR — .. AM — A — My, — 0.

By Theorem 5.5.6, the Ay,-module My, has finite projective dimension, and hence,
H,, is flat by 5.5.1. Therefore, H is projective by Exercise 5.7.16. a

Corollary 5.5.8. If A is a regular ring, then so is any of its localizations.

Proof. A moment’s reflection yields that we only need to prove this when A is al-
ready local, and p is some (non-maximal) prime ideal. By Theorem 5.5.6, the residue
ring A/p admits a finite free resolution. Since localization is flat, tensoring this res-
olution with A, gives a finite free resolution of A, /pA, viewed as an A,-module.
Hence Ay is regular by Theorem 5.5.6 (this is the one spot where we use the un-
proven converse from that theorem). ad
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5.6 Flatness criteria

Because flatness will play such a crucial role in our later work, we want several
ways of detecting it. In this section, we will see five such criteria.

Equational criterion for flatness Our first criterion is very useful in applications
(see for instance Theorem 7.4.3), and works without any hypothesis on the ring or
module. To give a streamlined presentation, let us introduce the following terminol-
ogy: given an A-module N, and tuples b; in A", by an N-linear combination of the
b;, we mean a tuple in N" of the form n;b; +- - - +nsbs; where n; € N. Of course, if N
has the structure of an A-algebra, this is just the usual terminology. Given a (finite)
homogeneous linear system of equations

Li(t)=---=Ls(t) =0 (2)

over A in the n variables 7, we denote the A-submodule of N” consisting of all so-
lutions of (.£) in N by Soly(.%), and we let fo: N* — N* be the map given by

substitution x — (L;(X),...,Ls(x)). In particular, we have an exact sequence
0 — Soly(.Z) — N" ZZ.Ns. (T )

Theorem 5.6.1. A module M over a ring A is flat if and only if every solution in M
of a homogeneous linear equation in finitely many variables over A is an M-linear
combination of solutions in A. Moreover, instead of a single linear equation, we may
take any finite system of linear equations in the above criterion.

Proof. We will only prove the first assertion, and leave the second for the exercises
(Exercise 5.7.10). Let L = 0 be a homogeneous linear equation in n variables with
coefficients in A. If M is flat, then the exact sequence (f7/4) remains exact after
tensoring with M, that is to say,

0 — Sola (L)@ M — M" L2opm,

and hence by comparison with (7 /), we get
SO]M(L) = Soly (L) RaM.

From this it follows easily that any tuple in Soly/(L) is an M-linear combination of
tuples in Sol4 (L), proving the direct implication.

Conversely, assume the condition on the solution sets of linear forms holds. To
prove that M is flat, we will verify condition (3) in Theorem 5.2.6. To this end,
let I := (ay,...,ar)A be a finitely generated ideal of A. Tensor the exact sequence
0—1—A— A/l — 0 with M to get by 5.2.5 an exact sequence

0 = Tor{ (A,M) — Tor} (A/I,M) — 1@s M — M. (5.6)
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Suppose y is an element in / ® M that is mapped to zero in M. Writing y = a; @ m; +
-+ a; @ my, for some m; € M, we get aymi + - - - +apm; = 0. Hence by assumption,
there exist solutions b)), . .. ,b(S) € A* of the linear equation at; + --- + aty = 0,
such that
(myy...,mg) = mb 4. +nb®)

for some n; € M. Letting blw be the i-th entry of b(/), we see that

l( ®n, ZO@n]—O

j=1

||M»

k s
v=Yaem=1 Faon’ =L

i=1 i=1j=

Hence I ®4 M — M is injective, so that Tor} (A/I, M) must be zero by (5.6). Since
this holds for all finitely generated ideals I C A, we proved that M is flat by Theo-
rem 5.2.6(3). O

It is instructive to view the previous result from the following perspective. To a
homogeneous linear equation L = 0, we associated an exact sequence (T, /N). The
image of f7 is of the form /N where [ is the ideal generated by the coefficients of
the linear form defining L. In case N = B is an A-algebra, this leads to the following
extended exact sequence

0 — Solg(L) — B"!--B — B/IB — 0. i)

This justifies calling Solg(L) the module of syzygies of IB (one checks that it only
depends on the ideal 7). Therefore, we may paraphraze the equational flatness crite-
rion for algebras as follows:

5.6.2 A ring homomorphism A — B is flat if and only if taking syzygies com-
mutes with extension in the sense that the module of syzygies of IB is
the extension to B of the module of syzygies of I.

Here is one application of the equational flatness criterion.

Corollary 5.6.3. The canonical embedding of a Noetherian ring inside its ultra-
power is faithfully flat.

Proof. Let A be a ring and Ay an ultrapower of A. Recall that A — Ay is given by
sending an element a € A to the ultraproduct ulim,,_,.. a of the constant sequence. If
m C A is a maximal ideal, then mAy is its ultraproduct (since m is finitely generated)
whence again maximal, showing that A; is faithful. To show it is also flat, we use the
equational criterion. Let L = 0 be a homogeneous linear equation with coefficients
inA. Letae A’h’ be a solution of L = 0 in A;. Write a as an ultraproduct of tuples
a, € A". By Los’ Theorem (Theorem 1.3.1), almost each a,, € Sol4(L). Hence a
lies in the ultrapower of Sols(L). By Noetherianity, Sols(L) is finitely generated,
and hence, its ultrapower is simply the A;-module generated by Sols (L) (see Exer-
cise 1.5.8), so that we are done by Theorem 5.6.1. a
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Coherency criterion

We can turn this into a criterion for coherency. Recall that a ring A is called co-
herent, if the solution set of any homogeneous linear equation over A is finitely
generated. Clearly, Noetherian rings are coherent. We have:

Theorem 5.6.4. A ring A is coherent if and only if the canonical embedding into one
of its ultrapowers is flat.

Proof. The direct implication is proven by the same argument that proves Corol-
lary 5.6.3, since we really only used that A is coherent in that argument. Conversely,
suppose A — Ay is flat. Towards a contradiction, assume L is a linear form (in n inde-
terminates) over A whose solution set Sols (L) is infinitely generated. In particular,
we can choose a sequence a,, in Sols (L) which is contained in no finitely gener-
ated submodule of Sols(L) (see Exercise 5.7.25). The ultraproduct a, € A} of this
sequence lies in Soly, (L) by tos’ Theorem. Hence, by Theorem 5.6.1, there exists
a finitely generated submodule H C Sol, (L) such that ay € H - A;. Therefore, almost
all a; lie in H by tos’ Theorem, contradiction. ]

Quotient criterion for flatness. The next criterion is derived from our Tor-criterion
(Theorem 5.2.6):

Theorem 5.6.5. Let A — B be a flat homomorphism, and let I C B be an ideal. The
induced homomorphism A — B/I is flat if and only if aBN1I = al for all finitely
generated ideals a C A.

Moreover, if A is Noetherian, we only need to check the above criterion for a a
prime ideal of A.

Proof. From the exact sequence 0 — I — B — B/I — 0 we get after tensoring with
A/a an exact sequence

0 = Tor{ (B,A/a) — Tor} (B/I,A/a) — I/al — B/aB

where we used the flatness of B for the vanishing of the first module. The kernel
of I/al — B/aB is easily seen to be (aBN1)/al. Hence Tor} (B/I,A/a) vanishes if
and only if aBNI = al. This proves by Theorem 5.2.6 the stated equivalence in the
first assertion; the second assertion follows by the same argument, this time using
Corollary 5.2.7. a

To put this criterion to use, we need another definition (for further applications,
see Theorem 11.2.1 and Exercise 11.3.11 below). The (A-)content of a polynomial
f € A[E] (or a power series f € A[[&]]) is by definition the ideal generated by its
coefficients.

Corollary 5.6.6. Let A be a Noetherian ring, let & be a finite tuple of indeterminates,
and let B denote either A[E] or A[[E]]. If f € B has content one, then B/ fB is flat
over A.

Proof. By 5.2.2 or Exercise 5.7.11, the natural map A — B is flat. To verify the
second criterion in Theorem 5.6.5, let p C A be a prime ideal. The forward inclusion
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in the to be proven equality p fB = pBN fB is immediate. To prove the other, take
g € pBN fB. In particular, g = fh for some i € B. Since p C A is a prime ideal, so
is pB (this is a property of polynomial or power series rings, not of flatness!). Since
f has content one, f ¢ pB whence h € pB. This yields g € pfB, as we needed to
prove. O

Local criterion for flatness. For finitely generated modules, we have the
following criterion:

Theorem 5.6.7 (Local flatness theorem—finitely generated case). Let R be a
Noetherian local ring with residue field k. If M is a finitely generated R-module
whose first Betti number vanishes, that is to say, if Torf (M, k) = 0, then M is flat.

Proof. Take a minimal free resolution
= F—=Fh—=M-—0.

of M. By Proposition 5.5.4, the rank of F} is zero, so that M = F; is free whence
flat. O

There is a much stronger version of this result, where we may replace the con-
dition that M is finitely generated over R by the condition that M is finitely generated
over a Noetherian local R-algebra S. Since we will not really need this result, we
refer the reader either to the literature (see for instance [41, Theorem 22.3] or [18,
Theorem 6.8]), or to Project 5.8.

Cohen-Macaulay criterion for flatness. To formulate our next criterion, we need
a definition.

Definition 5.6.8 (Big Cohen-Macaulay modules). Let R be a Noetherian local
ring, and let M be an arbitrary R-module. We call M a big Cohen-Macaulay module,
if there exists a system of parameters on R which is M-regular. If moreover every
system of parameters is M-regular, then we call M a balanced big Cohen-Macaulay.

It has become tradition to add the somehow redundant adjective ‘big’ to empha-
size that the module is not necessarily finitely generated. It is one of the greatest
open problems in homological algebra to show that every Noetherian local ring has
at least one big Cohen-Macaulay module, and this is known to be the case for any
Noetherian local ring containing a field (see §9.4 and §10.4).> A Cohen-Macaulay
local ring is clearly a balanced big Cohen-Macaulay module over itself, so the prob-
lem of the existence of these modules is only important for deriving results over
Noetherian local rings with ‘worse than Cohen-Macaulay’ singularities.

Once one has a big Cohen-Macaulay module, one can always construct, using
completion (for which, see Chapter 6), a balanced big Cohen-Macaulay module

2 A related question is even open in these cases: does there exist a ‘small” Cohen-Macaulay module,
i.e., a finitely generated one, if the ring is moreover complete? For the notion of a complete local
ring, see §6.2; there are counterexamples to the existence of a small Cohen-Macaulay module if
the ring is not complete.
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from it (see for instance [13, Corollary 8.5.3]). Here is a criterion for a big Cohen-
Macaulay module to be balanced taken from [6, Lemma 4.8]; its proof is a simple
modification of the proof of Theorem 4.2.6 and is worked out in Exercise 5.7.12
(recall that a regular sequence is called permutable if any permutation is again reg-
ular).

Proposition 5.6.9. A big Cohen-Macaulay module M over a Noetherian local ring
is balanced, if every M-regular sequence is permutable.

If R is a Cohen-Macaulay local ring, and M a flat R-module, then M is a balanced
big Cohen-Macaulay module, since every system of parameters in R is R-regular
by Theorem 4.2.6, whence M-regular by Proposition 5.4.1. We have the following
converse:

Theorem 5.6.10. If M is a balanced big Cohen-Macaulay module over a regular
local ring, then it is flat. More generally, over an arbitrary local Cohen-Macaulay
ring, if M is a balanced big Cohen-Macaulay module of finite projective dimension,
then it is flat.

Proof. The first assertion is indeed a special case of the second by Theorem 5.5.6.
For simplicity, we will just prove the first, and refer to Exercise 5.7.13 for the sec-
ond. So let M be a balanced big Cohen-Macaulay module over the d-dimensional
regular local ring R. Since a finitely generated R-module N has finite projective
dimension by the (proven part of) Theorem 5.5.6, all TorX(M,N) = 0 for i > 0
by 5.5.1. Let e be maximal such that Tor®(M,N) # 0 for some finitely gener-
ated R-module N. If e = 0, then we are done by Theorem 5.2.6. So, by way of
contradiction, assume e > 1. By Corollary 5.2.7, there exists a prime ideal p C R
such that Tor® (M, R/p) # 0. Let h be the height of p. By Exercise 3.4.11, we can
choose a system of parameters (xy,...,xs) in R such that p is a minimal prime of
I:=(xi,...,x,)R. Since (the image of) p is then an associated prime of R/I, we can
find by Exercise 4.3.12 a short exact sequence

0—R/p—R/I-C—0

for some finitely generated R-module C. The relevant part of the long exact Tor
sequence from 5.2.5, obtained by tensoring the above exact sequence with M, is

Tor®, | (M,C) — Tor® (M, R /p) — Tor®(M,R/I). (5.8)

The first module in (5.8) is zero by the maximality of e. The last module is zero too
since it is isomorphic to TorX/! (M/IM,R/I) = 0 by Proposition 5.4.2 and the fact
that (xp,...,x;) is by assumption M-regular. Hence the middle module in (5.8) is
also zero, contradiction. O

We derive the following criterion for Cohen-Macaulayness:

Corollary 5.6.11. If X is an irreducible affine scheme of finite type over an alge-
braically closed field K, and ¢ : X — A?{ is a Noether normalization, that is to say,
a finite and surjective morphism, then X is Cohen-Macaulay if and only if ¢ is flat.
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Proof. Suppose X = Spec(B), so that ¢ corresponds to a finite and injective homo-
morphism A — B, with A := K[&;,...,&,] (see our discussion on page 22) and B a
d-dimensional affine domain. Let n be a maximal ideal of B, and let m :=nNA be
its contraction to A. Since A/m — B/n is finite and injective, and since the second
ring is a field, so is the former by Lemma 2.2.7. Hence m is a maximal ideal of
A, and Ay, is regular by 4.1.6. By Exercise 3.4.14, the height of n is d. Choose an
ideal I := (xj,...,x4)A whose image in A, is a parameter ideal. Since the natural
homomorphism A/I — B/IB is finite, the latter ring is Artinian since the former is
(note that A/I = Ay /IAw). It follows that By, is a parameter ideal in By,.

Now, if B, whence also B, is Cohen-Macaulay, then (x1,...,x4), being a system
of parameters in By, is By -regular by Theorem 4.2.6. This proves that By, is balanced
big Cohen-Macaulay module over A,, whence is flat by Theorem 5.6.10. Hence ¢
is flat by 5.3.8.

Conversely, assume X — Aﬁl{ is flat. Therefore, A, — B, is flat, and hence
(x1,...,x4) is By-regular by Proposition 5.4.1. Since we already showed that this
sequence is a system of parameters, we see that B, is Cohen-Macaulay. Since this
holds for all maximal prime ideals of B, we proved that B is Cohen-Macaulay. O

Remark 5.6.12. The above argument proves the following more general result in
the local case: if A C B is a finite and faithfully flat extension of local rings with
A regular, then B is Cohen-Macaulay. For the converse, we can even formulate a
stronger criterion.

Theorem 5.6.13. Let (R, m) — (S, n) be a local homomorphism of Noetherian local
rings. If R is regular of dimension d, if S is Cohen-Macaulay of dimension e, and if
S/mS has dimension e — d, then R — S is flat.

Proof. Let (x1,...,x4) be a system of parameters of R. Since S/mS has dimension
e —d, there exist x411,...,X, in S such that their image in S/mS is a system of
parameters. Hence (xi,...,x.) is a system of parameters in S, whence is S-regular
by Theorem 4.2.6. In particular, (xi,...,x4) is S-regular, showing that S is a balanced
big Cohen-Macaulay R-module, and therefore is flat by Theorem 5.6.10. a

The residue ring S/mS is called the closed fiber of R — S. Note that the affine
scheme defined by it is indeed the fiber of Spec(S) — Spec(R) of the unique closed
point of Spec(R); see (2.5). Exercise 5.7.17 establishes that flatness in turn forces
the dimension equality in the theorem, without any singularity assumptions on the
rings. We conclude with an application of the above Cohen-Macaulay criterion:

Corollary 5.6.14. Any hypersurface in A% is Cohen-Macaulay.

Proof. Recall that a hypersurface Y is an affine closed subscheme of the form
Spec(A/fA) with A := K[&;,...,&,] and f € A. Moreover, Y has dimension n—1 (by
an application of Corollary 3.3.6), whence its Noether normalization is of the form
Y — A"K’l. In fact, after a change of coordinates (see the proof of Theorem 2.2.5),
we may assume that f is monic in &, of degree d. It follows that A/fA is free over
A :=K[&,...,& 1] with basis 1,&,,...,E971. Hence A/fA is flat over A’ by 5.2.2,
whence Cohen-Macaulay by Corollary 5.6.11. O



82 5 Flatness

Colon criterion for flatness. Recall that (I : a) denotes the colon ideal of all x € A
such that ax € I. Colon ideals are related to cyclic modules in the following way:

5.6.15 For any ideal I C A and any element a € A, we have an isomorphism
a(A/I)=2A/(I:a).

Indeed, the homomorphism A — A/I: x — ax has image a(A/I) whereas its ker-
nel is (1 : a). We already saw that faithfully flat homomorphisms preserve the ideal
structure of a ring (see 5.3.5). Using colon ideals, we can even give the following
criterion:

Theorem 5.6.16. A homomorphism A — B is flat if and only if
(IB:a)=(I:a)B

for all elements a € A and all (finitely generated) ideals I C A.

Proof. Suppose A — B is flat. In view of 5.6.15, we have an exact sequence
0—A/(I:a) > A/l -A/(I+aA)—0 (5.9

which, when tensored with B gives the exact sequence

0— B/(I:a)B—B/IB-LB/(IB+aB) — 0.

However, the kernel of f is easily seen to be a(B/IB), which is isomorphic to B/ (IB :
a) by 5.6.15. Hence the inclusion (I : a)B C (IB : a) must be an equality.

For the converse, we need in view of Theorem 5.2.6 to show that Tor{' (B,A/J) =
0 for every finitely generated ideal / C A. We induct on the minimal number s of
generators of J, where the case s = O trivially holds. Write J = I 4+ aA with [ an
ideal generated by s — 1 elements. Tensoring (5.9) with B, we get from 5.2.5 an
exact sequence

0= Tor’(B,A/I) — Tor’(B,A/J)>~B/(I : a)B — B/IB--B/JB — 0,

where the first module vanishes by induction. As above, the kernel of g is easily
seen to be B/(IB : a), so that our assumption on the colon ideals implies that J is
the zero map, whence Tor{ (B,A/J) = 0 as we wanted to show. O

Here is a nice ‘descent type’ application of this criterion:

Corollary 5.6.17. Let A — B — C be homomorphisms whose composition is flat. If
B — C s cyclically pure, then A — B is flat. In fact, it suffices that B — C is cyclically
pure with respect to ideals extended from A, that is to say, that JB = JC N B for all
ideals J C A.

Proof. Given an ideal I C A and an element a € A, we need to show in view of
Theorem 5.6.16 that (IB : a) = (I : a)B. One inclusion is immediate, so take y in
(IB: a). By the same theorem, we have (IC:a) = (I :a)C, so thatyliesin (/: a)CNB
whence in (1 : a)B by cyclical purity. O
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The next criterion will be useful when dealing with non-Noetherian algebras in
the next chapter. Here we call an ideal J in a ring B finitely related, if it is of the
form J = (I : b) with I C B a finitely generated ideal and b € B.

Theorem 5.6.18. Let A be a Noetherian ring and B an arbitrary A-algebra. Suppose
P is a collection of prime ideals in B such that every proper, finitely related ideal
of B is contained in some prime ideal belonging to 2. If A — By, is flat for every
pE P, then A — B is flat.

Proof. By Theorem 5.6.16, we need to show that (IB:a) = (I :a)B forall I C A
and a € A. Put J := (I : a). Towards a contradiction, let x be an element in (/B : a)
but not in JB. Hence (JB : x) is a proper, finitely related ideal, and hence contained
in some p € &2. However, (IBy : a) = JB,, by flatness and another application of
Theorem 5.6.16, so that x € JBy, contradicting that (JB: x) C p. O

5.7 Exercises

Ex 5.7.1
Show that if N, is an exact sequence, then there exist short exact sequences 0 — Z; | —
N; — Z; — 0 for some submodules Z; C N; and all i. Use this to deduce 5.2.1.

Ex 5.7.2
Give a complete proof of 5.2.2, including the infinitely generated case.

Ex5.7.3
Prove 5.2.3 and 5.2.4.

Ex5.7.4
Show that if A — B is flat, and I,J C A are ideals, then IBNJB = (INJ)B.

Ex 5.7.5
Show that if A — B is a flat homomorphism and M,N are A-modules, then

Tor! (M,N) ®4 B = Tor® (M ©4 B,N ®4 B)

foralli.

Ex 5.7.6
Show directly that for a given A-module M, if | ®4 M — M is injective for every finitely
generated ideal 1, then the same holds for every ideal. Use this to give a proof of (3) = (1)
in Theorem 5.2.6 in case A is not Noetherian. Prove the infinitely generated case in Corol-
lary 5.2.7 by using syzygies and Corollary 5.2.8, in combination with a modification of the
argument in Theorem 5.2.6.
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Ex 5.7.7
Show that a homomorphism A — B is cyclically pure with respect to prime ideals, meaning
that pPBNA = p for all prime ideals p C A, if and only if the induced map of affine schemes
Spec(B) — Spec(A) is surjective.

Ex 5.7.8

Show using Exercise 4.3.12 that any finitely generated module N over a Noetherian ring ad-
mits a prime filtration (5.3). Use this to work out the details in the proof of Corollary 5.2.7.

Ex 5.7.9

Prove 5.5.2 by constructing inductively a minimal resolution using Nakayama’s lemma.

Ex 5.7.10
Generalize the proof of the first part of Theorem 5.6.1 to prove the second assertion in that
theorem.

Ex 5.7.11

Mimic the proof of Corollary 5.6.3 to show that any power series ring in finitely many
indeterminates over a Noetherian ring is flat.

Ex 5.7.12
Modify the argument in the last part of the proof of Theorem 4.2.6 to prove Proposi-
tion 5.6.9.

Ex 5.7.13

Make the necessary adjustments in the proof of the first assertion of Theorem 5.6.10 to
derive the second.

Ex 5.7.14
Show that an A-module M is flat if and only if My, is flat as an A, -module for every maximal
ideal m C A. Prove 5.3.8 (note that if X is moreover Noetherian, then this follows already
from Theorem 5.6.18).

Ex 5.7.15
By 3.1.4, any Artinian ring is a finite direct sum of local rings. This no longer holds true
for an arbitrary Noetherian semi-local ring S, that is to say, a Noetherian ring with finitely
many maximal ideals my, ..., ms. Show that nonetheless there is always a natural homo-
morphism S — Sy, @ -+ - D Sw,, which is moreover faithfully flat.

“Ex 5.7.16
Show that if M is a finitely generated module over a Noetherian ring A such that My, is flat
over A, for every maximal ideal m, then M is projective as an A-module.
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*Ex 5.7.17
Show that if A — B is a flat homomorphism, then the going-down theorem holds for A — B,
meaning that if p & q is a chain of prime ideals in A, and if Q is a prime ideal in B lying over
q, then there exists a prime ideal B3 G Q lying over p. Use this to prove that if (R,m) — (S,n)
is a flat and local homomorphism of Noetherian local rings, then

dim(R) + dim(S/mS) = dim(S).

Ex 5.7.18
Use the Colon criterion, Theorem 5.6.16, to show that every overring without zero-divisors,
or more generally, any torsion-free overring, of a discrete valuation ring is flat.

Ex 5.7.19

Show that every finitely related ideal in an ultra-ring is an ultra-ideal.

“Ex 5.7.20
Prove a version of Theorem 5.6.16 for modules, that is to say, by replacing the A-algebra B
by an A-module M.

Additional exercises.

Ex 5.7.21
Show that a module P is projective (=direct summand of a free module) if and only
if any map P — N /N' lifts to a map P — N, where N' C N are arbitrary modules.

Ex 5.7.22
Show that if

0—-M Lm, LM —0

is an exact sequence of complexes, meaning that for each i, we have an exact
sequence

0— M, Lo m £ my o,

such that the maps f; and g; commute with the maps in the various complexes, then
we get a long exact sequence

S i i i
Lo M) L v (M) S B (M) 2 (ML) —

where the f; and g; are used to denote the corresponding induced homomorphisms,
and where the §; are the connecting homomorphisms defined as follows: for ii €
H;(M), choose a lifting u € Ker(d!") C M]' and an element v € M; such that g;(v) = u.
Since g(d;(v)) =0, there exists a well-defined w € M;_, for which f;_;(w) = d;(v) and
di—1(w) =0. Show that assigning the class of w in H;_;(M,) to i gives a well-defined
homomorphism §;, making the above sequence exact.

Use this result to now give a complete proof of 5.2.5.
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Ex 5.7.23
Show that for an A-module M to be faithfully flat, it is necessary and sufficient that
an arbitrary complex N, is exact if and only if Ny ®4 M is exact.

Ex 5.7.24
LetA — B — C be homomorphisms. Show that if A — C is flat, then A — B is cyclically
pure. Show using Exercise 5.7.23 that if both A — C and B — C are faithfully flat,
then so isA — B.

Ex 5.7.25
Show that a module is finitely generated if and only if any countably generated
submodule is contained in a finitely generated submodule.

Ex 5.7.26
Prove the following version of a theorem due to Chase ([14]): a ring is coherent if
and only if every finitely related ideal is finitely generated. The direct implication is a
simple application of the coherency condition; for the converse use Theorem 5.6.4
and the Colon Criterion for flatness, Theorem 5.6.16.

Use this to extend Theorem 5.6.18 to the case that A is only assumed to be coher-
ent.

Ex 5.7.27
Show that an ultra-Dedekind domain R, that is to say, an ultraproduct of Dedekind
domains, is coherent. In fact, prove the stronger fact that any finitely related ideal in
R is generated by two elements, and then use Exercise 5.7.26.

5.8 Project: local flatness criterion via nets

Let (R,m) be a Noetherian local ring with residue field k, and let modg be the class
of all finitely generated R-modules (up to isomorphism). In [58], a subset N C modg
is called a ner if it is closed under extension (i.e., if 0 — H — M — N — 0 is an exact
sequence in modg with H,N € N, then also M € N), and under direct summands
(i.e.,if M = H & N belongs to N, then so do H and N). Clearly, mody, itself is a net.

5.8.1 Show that any intersection of nets is again a net. Conclude that any class
K C modp, sits inside a smallest net, called the net generated by K.

5.8.2 Show that the net generated by the singleton {k} consists of all modules
of finite length. Show that mody is generated as a net by all R/p with
p C R a prime ideal.

A net N is called deformational, if for every M € modg and every M-regular
element x, if M /xM € N then M € N.
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5.8.3 Show that the deformational net generated by the singleton {k} is equal
to modpg.

The goal is to prove the following version of the local flatness criterion:

5.8.4 If R — S is a local homomorphism of Noetherian local rings, and Q a
finitely generated S-module such that Tor’f (Q,k) =0, then Q is flat as an
R-module.

To this end, for M € modg, put F(M) := TorX(Q,M). In view of Theorem 5.2.6,
we need to show that F is zero on modg.

5.8.5 Show that F (M) carries a natural structure of an S-module, and as such
is finitely generated, for any finitely generated R-module M.

5.8.6 Show that if F is zero on a class K C modg, then F' is zero on the net
generated by K, and, in fact, even zero on the deformational net gener-
ated by K. For the first assertion, use 5.2.5, and for the second, show that
for any N € modg and any x € m, ifxF(N) = F(N) then F(N) = 0, using
5.8.5. Finally, conclude the proof of 5.8.4 by using 5.8.3.






Chapter 6
Completion

6.1 Complete normed rings

Normed rings. In these notes, a quasi-normed ring (A,||-||) will mean a ring A
together with a real-valued function A — [0,1]: @ — ||a|| such that ||0|| = 0 and
such that for all a,b € A we have

1. [|a+b|| < max{|lal], [[b]|};
2. [labl] < lal[-||]l.

We normally exclude the case that || - || is identical zero (the so-called degenerated
case). Inequality (1) is called the non-archimedean triangle inequality, as opposed
to the usual, weaker triangle inequality in the reals (note that (1) implies indeed that
[la+b|| <|la]|+ ||p|]). An immediate consequence of this triangle inequality is:

3. if [|al| < [[b]], then [la+b[| = [|b],

which often is paraphrased by saying that “every triangle is isosceles”. If moreover
|la|] = 0 implies a = 0, then we call (A,]]| - ||) a normed ring (or, we simply say that
[|-|| is a norm). The value ||a|| will also be called the norm of a, even if || - || is only
a quasi-norm. If in (2) we always have equality, then we call the norm multiplicative
(be aware that some authors tacitly assume that a norm is always multiplicative;
moreover, it is common to allow elements to also have norm bigger than one). Some
immediate consequences of this definition (see Exercise 6.5.1):

6.1.1 Any unit in a quasi-normed ring has norm equal to one, the elements
of norm equal to zero form an ideal Iy, and so do the elements of norm
strictly less than one. If || - || is multiplicative, then I is prime. In partic-
ular, a multiplicatively normed ring is a domain.

There is also a very canonical procedure to turn the quasi-norm into a norm:

6.1.2 If A is a quasi-normed ring, and Iy its ideal of elements of norm zero,
then || - || factors through A /Iy , making the latter into a normed ring.

89
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Indeed, using (3) we have ||a|| = ||a + w|| for all w € Iy, so that letting ||a|| := | |a]|
is well-defined, where a denotes the image of a in A/Iy. The remaining properties
are now easily checked. The normed ring A/l is called the Hausdorffication or
separated quotient of A. The name is justified by the following considerations: any
quasi-normed ring inherits a topology, called the norm topology, simply by taking
for opens the inverse images of the opens of [0, 1] under the norm map A — [0, 1].
Now, by Exercise 6.5.3, the topology on A is Hausdorff if and only if || - || is a norm.

Let (A,||-]4) and (B, ||-||5) be two quasi-normed rings. A homomorphism A —
B is called a homomorphism of quasi-normed rings if ||a||z < ||al|, for all a. We
may also express this fact by saying that B is a quasi-normed A-algebra. If I C A is
an ideal, define a quasi-norm on A/I by letting ||a + I|| be the infimum of all ||a +i||
with i € I. By Exercise 6.5.4, we have

6.1.3 For any ideal I C A, the pair (A/1,||-||) is a quasi-normed ring, and the
residue map A — A/I is a homomorphism of quasi-normed rings.

Cauchy sequences. Let (A,||-||) be a quasi-normed ring. We will represent se-
quences in A as functions a: N — A. Any element a € A defines a sequence, the
constant sequence with value a defined as a(n) := a. We will identify an element
a € A with the constant sequence it defines.

We say that a sequence a is a null-sequence if for each € > 0, there exists N :=
N(¢€) such that ||a(n)|| < € for all n > N. In particular, a constant sequence a is null
if and only if ||a|| = 0. The twist a* of a sequence a is the sequence defined by
at(n) :=a(n+1). We say that a is a Cauchy sequence, if a—a™ is a null-sequence.
We say that an element b € A is a limit of a sequence a, if a — b is a null-sequence.
A sequence admitting a limit is called a converging sequence. We have:

6.1.4 Any converging sequence is Cauchy. If b is a limit of a sequence a, then
so0 is b+ w for any w of norm zero. In particular, if || - || is a norm, then a
Cauchy sequence has at most one limit.

If the converse also holds, that is to say, if any Cauchy sequence is convergent,
then we say that (A, || - ||) is quasi-complete. We call (A, || - ||) complete if it is quasi-
complete and || -|| is a norm, that is to say, if any Cauchy sequence has a unique
limit.

6.1.5 If A is quasi-complete and I C A is a proper ideal, then A/I is again
quasi-complete.

This is proven in Exercise 6.5.4. In particular, we can turn any quasi-complete
ring into a complete one: simply consider its Hausdorffication A /Iy. A sequence b is
called a subsequence of a sequence a if there exists some strictly increasing function
f+ N — N such that a(f(n)) = b(n) for all n. The following is left as an exercise
(Exercise 6.1.6):

6.1.6 Any subsequence of a Cauchy sequence is a Cauchy sequence, and any
limit of a sequence is also a limit of any of its subsequences. Moreover,
for a Cauchy sequence to be convergent it suffices that some subsequence
is convergent.
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Note that a (non-Cauchy) sequence can very well have a converging subsequence
without itself being convergent.

Adic norms. Let A be any ring, and / an ideal. We can associate a quasi-norm to
this situation, called the I-adic quasi-norm defined as ||a||, := exp(—n) where n is
the supremum of all k for which a € I¥. We allow for this supremum to be infinite,
with the understanding that exp(—eo) = 0. By Exercise 6.5.6 this is indeed a quasi-
norm, which is degenerated if and only if / is the unit ideal. Hence || - ||, is a norm if
and only if the intersection of all I¥ is zero. The only case of interest to us is when
(R,m) is local viewed in its m-adic quasi-norm, which we then call the canonical
quasi-norm of R, or when there is no confusion, the quasi-norm of R. By what we
just said, the quasi-norm of (R, m) is a norm if and only if its ideal of infinitesimals,
Jr (see Definition 1.4.10), is equal to zero. By Exercise 6.5.6, we have:

6.1.7 Any polynomial f € A[] in a single indeterminate & defines a contin-
uous function A — A: a — f(a) in the topology induced by an I-adic
quasi-norm.

If A — Bis ahomomorphism and / C A an ideal, then A — B is a homomorphism
of quasi-normed rings if we take the /-adic quasi-norm on A and the /B-adic quasi-
norm on B.

6.2 Complete local rings

We call a local ring R (quasi-)complete, if it is (quasi-)complete with respect to its
m-adic quasi-norm. By Exercise 6.5.7, we have

6.2.1 A local ring (R,m) is quasi-complete if and only if every sequence a
satisfying a(n) = a(n+1) mod m” for all n, has a limit, and for this it
suffices that we can find a subsequence b of a and an element b € R such
thatb =b(n) mod m”.

Fields are obviously complete local rings, and more generally, so are Artinian lo-
cal rings. Any power series ring over a field (or an Artinian local ring) in finitely
many indeterminates is complete. This follows by induction from the following
more general result.

Proposition 6.2.2. If R is a quasi-complete local ring, then so is R[[E]] with & a
single variable.

Proof. The maximal ideal n of R[[£]] is generated by & and the maximal ideal m of
R. By (6.2.1), we need to show that a sequence f in R[[£]] such that

f(k) =f(k+1) mod n* (6.1)

for all k, has a limit. Write each f(n) =} ; a;(n)&/. Expanding (6.1) and comparing
coefficients, we get a;(k) =a;(k—1) mod m*~/ for all j < k. In particular, each a;
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is Cauchy, whence admits a limit 5; € R. | claim that g(&) := Zjbj!;f is a limit of f.
To verify this, fix some k. By assumption, there exists for each j some N;(k) such
that b; = a;(n) mod m* for all n > N;(k). Let N(k) be the maximum of all N;(k) with
j <k.Forn>N(k), the terms in g — f(n) of degree at least k clearly lie inside n*. The
coefficient of the term of degree j < k is b; —a;(n), which lies in m* by the choice of
N(k). Hence g = f(n) mod n* for all n > N(k), proving the claim. O

Immediately from 6.1.5 we get:

6.2.3 Any homomorphic image of a quasi-complete local ring is again quasi-
complete.

In particular, the Hausdorffication of a quasi-complete local ring R, that is to say,
the separated quotient R/Jg, is a complete local ring.

Hensel’s lemma. The next result is a formal version of Newton’s method for find-
ing approximate roots.

Theorem 6.2.4. Let (R, m) be a complete local ring with residue field k. Let f € R[€]
be a monic polynomial in the single variable &, and let f € k[E] denote its reduction
modulo mR[E]. For every simple root u € k of f =0, we can find a € R such that
f(a) =0 and u is the image of a in k.

Proof. Let a; € R be any lifting of u. Since f(u) =0, we get f(a;) =0 mod m. We
will define elements a, € R recursively such that f(a,) =0 mod m" and a, = a,_;

mod m"~! for all n > 1. Suppose we already defined ay,...,a, satisfying the above
conditions. Conisder the Taylor expansion
fla,+8) :f(an)JFf/(an)é+£28n(6) (6.2)

where g, € R[] is some polynomial. Since the image of a, in k is equal to u, and
since f'(u) # 0 by assumption, f'(a,) does not lie in m whence is a unit, say, with
inverse u,. Define a,1 := a, —u, f(a,). Substituting this in f and using (6.2), we get

flan1) € (”nf(an))ZR Cm”,

as required.

To finish the proof, note that the sequence a given by a(n) := a, is by construction
Cauchy, and hence by assumption admits a limit a € R (whose residue is necessarily
again equal to «). By continuity, f(a) is equal to the limit of the f(a,) whence is zero.

0

There are sharper versions of this result, where the root in the residue field
need not be simple (See Exercise 6.5.13), or even involving systems of equations.
Any local ring satisfying the hypothesis of the above theorem is called a Henselian
ring. From a model-theoretic point of view, it is sometimes more convenient to work
with Henselian local rings than with complete ones, since they form a first-order
definable class (as is clear from the defining condition).

As with completion, there exists a ‘smallest’ Henselian overring. More precisely,
for each Noetherian local ring R, there exists a Noetherian local R-algebra R™, its
Henselization, satisfying the following universal property: any local homomorphism
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R — H with H a Henselian local ring, factors uniquely through an R-algebra ho-
momorphism R~ — H. The existence of such a Henselization will be proven in
Project 6.6. Note that Theorem 6.2.4 and the universal property imply that R~ is a
subring of R, and in particular, the latter is the completion of the former.

Let A := k[&] be a polynomial ring over a field k. For simplicity, we will denote
the Henselization of the localization of A with respect to the variables also by A™. It
can be shown that A~ = k[[£]]¢, the ring of algebraic power series over k, where
we call a power series in k[[E]] algebraic if it is algebraic over k[&], that is to say,
satisfies a non-zero polynomial equation with coefficients in k[&] (for a discussion
see [2] or 6.6.4 below).

Lifting generators. The next property of quasi-complete local rings, a generaliza-
tion of Nakayama’s lemma, is also quite useful.

Theorem 6.2.5. Let (R,m) be a quasi-complete local ring, and let M be an R-
module which is m-adically Hausdorff, in the sense that the intersection of all m"M
is zero. If M /mM has vector space dimension e over the residue field R/m, then M
is generated as an R-module by e elements. In fact, any lifting of a set of generators
of M /mM generates M.

Proof. Let vy,...,V, € M be liftings of the generators of M/mM and let N be the
submodule they generate. In particular, M = N + mM. Take an arbitrary u € M. We
can find some ago) €Asuchthatpu =Y, ago) v+ u) with u") € mM. Applying the

same to (1), we can find al(l) € m such that V) = Z,-al(l)vi—i-u(z) with u® € m2M.
(n)

Continuing this way, we find @;”" € m" such that

a,(j))vi mod m" T M. (6.3)

U

N

( Y

1

vk

1

Putting b;(n) := ¥ <, al(j ), it follows that each b; is a Cauchy sequence, whence
has a limit a; € R. Using (6.3), one easily verifies that u — Y a;V; lies in every m"M
whence is zero, showing that i € N, and therefore M = N. a

6.3 Completions

We have seen in the previous section that complete local rings satisfy many good
properties. In this section, we will describe how to construct complete local rings
from arbitrary local rings. Let again start in a more general setup.

Quasi-completion of a quasi-norm. Let (A,||-||) be a quasi-normed ring. Let
% (A) be the collection of all Cauchy sequences. We make % (A) into a ring by
adding and multiplying sequences coordinate wise. In this way, ' (A) becomes an
A-algebra, via the canonical map A — % (A) sending an element to the constant
sequence it determines. Note that this is in fact an embedding.
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6.3.1 A sequence a in A is Cauchy if and only if ||a(n)|| converges in R as
n — oo, This latter limit is denoted ||a||; it induces a quasi-norm on €' (A).
A Cauchy sequence has norm zero if and only if it is a null-sequence.

From now on, we view % (A) as a quasi-normed ring with the above norm.

Proposition 6.3.2. The ring of Cauchy sequences € (A) of A is quasi-complete.
Moreover, A is dense in €(A), and the following universal property holds: if we
have a homomorphism of quasi-normed rings A — B with B complete, then A — B
extends uniquely to a homomorphism € (A) — B of quasi-normed rings.

Proof. Let a be a Cauchy sequence in A, that is to say, an element in € (A). It
follows that the limit of ||a(n) —al| is zero, for n +— o, proving that the sequence
a(n) converges to the element a € ¢’(A). This already shows that A is dense in
% (A). Let B be a Cauchy sequence in € (A), so that B(m) is a Cauchy sequence
in A, for each m. Replacing B by a subsequence if necessary, we may assume
[|B(m) —B(m+1)|| < exp(—m) for all m. Moreover, by the previous observation,
for each m, there exists g(m) such that ||B(m)(g(m)) —B(m)|| < exp(—m). Define
a sequence c¢ by the rule ¢(m) := B(m)(g(m)). Since ||e(m) — ¢(m+1)|| is equal to

[lc(m) —B(m)+B(m) —B(m—+1)+B(m+1) —c(m+1)|| < exp(—m)

we conclude that ¢ is a Cauchy sequence. In particular, for a fixed n we can find
N > n such that ||c(m) —¢|| < exp(—n) for all m > N. To show that ¢ is the limit of
B, we use the estimate

[1B(m) || = [|B(m) — c(m) + c(m) — c]
< max{exp(—m),exp(—n)} = exp(—n),

for all m > N. This proves that c is the limit of B.

To prove the last assertion, we define ¢: € (A) — B as follows. Let a be a Cauchy
sequence in A. From the definition of homomorphism of quasi-normed rings, it fol-
lows that a is a Cauchy sequence in B. Since B is complete, a has a unique limit
b € B. The assignment a — b is now easily seen to be an A-algebra homomorphism
of quasi-normed rings. a

In view of this result, we call € (A) the quasi-completion of A. The completion
of A is then the Hausdorffication of €’ (A), that is to say, the ring €' (A)/.%, where
S is the ideal of all null-sequences. If the quasi-norm is understood, as will be the
case with the canonical quasi-norm of a local ring, we denote the completion by A.
From Proposition 6.3.2, we get the following universal property of completion:

6.3.3 If B is a normed A-algebra which is complete, then there exists a unique
A-algebra homomorphism of normed rings A — B.

Completion of a Noetherian local ring. We now apply the previous theory to the
canonical norm on a Noetherian local ring R. Its completion €'(R)/-% is denoted R.
It is easy to see that m%’(R) cannot be the unit ideal, whence neither is mR. We will
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shortly show that R is in fact a Noetherian local ring with maximal ideal mR, and in
its adic norm, it is complete. Moreover, the norm inherited from the norm on € (R)
is identical to the mR-adic norm. To prove all these claims, we resort to flatness.

Theorem 6.3.4. The canonical homomorphism R — R of a Noetherian local ring
into its completion is faithfully flat. Moreover, R is a Noetherian local ring with the
same residue field as R.

Proof. Since mR * R, it suffices to show that R — R is flat. Let x := (X15---,Xe)
generate the maximal ideal m of R, and let & := (&,...,&,) be a tuple of indeter-
minates. Define an R-algebra homomorphism § := R[[£]] — R as follows. Let f be
a power series and let f;, be is its truncation consisting of all terms up to degree n.
The sequence a defined by a(n) := f,(x) is easily seen to be a Cauchy sequence in
R, whence has a unique limit in R, which we simply denote by f(x). The homomor-
phism S — Ris given by the rule f — f(x). A moment’s reflection shows that its
kernelis I := (& —x1,...,& —x.)S. I claim that S — Ris surjective, so that R= S/,
showing already that it R is a Noetherian local ring with the same residue field as
R. To prove surjectivity, let a be a Cauchy sequence, that is to say, an element of
%'(R). Since any subsequence of a has the same image in R, we may assume that
a(n)=a(n+1) mod m" for all n. Hence we can write

a(n+1)= Z ryx”

[V[=n

where the sum runs over all e-tuples v such that |v| := v; +---+V, = n. Define
f(8) =a(0)+} r&"
v

where the sum is now over all non-zero e-tuples v. Hence f,(x) = a(n) for all n
(where as before f, is the n-th degree truncation of f), showing that f(x) = a.
Since R — § is flat by Exercise 5.7.11, the flatness of R — R will follow
from Thereom 5.6.5 once we show that /N aS = al for every ideal a C R. Let
a:=(ay,...,a,)R. Let f € INas$ so that we can write it in two different ways as

f:alsl + -+ apsy :tl(‘il _xl) +"'+te(€e _xe) (6.4)

for some s;,#; € S. We want to show that s; € /. By Taylor expansion, we can write
each s; as s; = b; + s. with b; € R and s; € I. Hence f = ¢ mod al where ¢ :=
arby + -+ + ayb,. However, R — R is injective (since Jg = 0), so that /N R = (0).
Since c lies in /N R it is therefore zero, showing that f € al. a

Corollary 6.3.5. Let (R,m) be a Noetherian local ring with completion R. For all
n we have an isomorphism R/m"R = R / m'R. In particular, R is a complete Noe-
therian local ring, that is to say, is complete in its canonical mR-adic norm, of the
same dimension as R.

Proof. LetR,:=R/m" andlet S, := R / m"R. Note that R, is Artinian, whence com-
plete. As S,/mS, is equal to the residue field of R whence of R, by Theorem 6.3.4,
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we get S, = R, by Theorem 6.2.5. In particular, R and R have the same Hilbert-
Samuel polynomial, whence the same dimension by Theorem 3.3.2.

I claim that if a is a Cauchy sequence such that a(k) € m” for all k£ > 0, then
a € m"R. Indeed, by what we just proved, we have R = R+m"R. Hence if we
choose generators x for m, then we can write

a=r+ ) x'by (6.5)

[v|=n

with 7 € R and by € R. Substituting & such that a(k) € m” in (6.5) shows that r €
m'R. Since m"RNR =m" by faithful flatness (or the above isomorphism), we get
ac m"R as claimed. It follows that the mR-adic norm of an element is at most its

norm as a Cauchy sequence. The converse is easy, thus proving the last assertion.
O

Immediate from 6.2.3 we get:

6.3.6 If1 is an ideal in a Noetherian local ring R, then R /Iﬁ is the completion
of R/I.

Another extremely useful property of completion is that it “transfers singulari-
ties” in the following sense:

Corollary 6.3.7. A Noetherian local ring is regular or Cohen-Macaulay if and only
if its completion is.

Proof. Let (R,m) be a d-dimensional Noetherian local ring. The completion RofR
also has dimension d by Corollary 6.3.5. If R is regular, then m is generated by d
elements, whence so is mR, showing that Ris regular. Conversely, if Ris regular, so
that mR is generated by a d-tuple x, then by Nakayama’s lemma, we may choose
these generators already in m. From xR = mR, the cyclic purity of faithfully flat
homomorphisms (Proposition 5.3.4) yields xR = m, showing that R is regular. If R is
Cohen-Macaulay and x is an R-regular sequence of length d, then x is also ﬁ—regular
by faithful flatness and Proposition 5.4.1, showing that R is also Cohen-Macau-
lay. Conversely, assume R is Cohen-Macaulay, and let x := (xj,...,x;) be a system
of parameters of R. Using Corollary 6.3.5, we get R/XR = I?/xl? showing that x

is also a system of parameters in R, whence R-regular. Since R/(x1,...,% )R —
R/(x1,...,x.)R for all e by faithful flatness and Proposition 5.3.4, it follows easily
that x is also R-regular. a

For those that know inverse limits (also called projective limits), one can give the
following alternative construction of the completion:

Proposition 6.3.8. The completion of a Noetherian local ring (R,m) is equal to the
inverse limit imR /m".

Proof. Here we view the R, := R/m" as an inverse system via the canonical residue
maps R,, — R, for all m > n. A typical element of the inverse limit is represented by
a sequence a in R such that a(m) +m™ is mapped to a(n) + m" under the residue
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map R,, — R, for all m > n; two sequences a and a’ then give rise to the same
element in the inverse limit if a(m) = a’(m) modm™ for all m. The first of these
conditions simply translates into a(m) = a(n) mod m” for all m > n, showing that a
is a Cauchy sequence; the second condition says that a—a’ is a null-sequence.
Hence we have a map limR, — ¢’(R)/ %) = R. The reader can check that this gives
indeed an isomorphism of rings. |

6.4 Complete Noetherian local rings

Classifying Noetherian local rings is a daunting task, but under the additional com-
pleteness assumption, we can say much more, as we will now explore. This will even
aid us in the study of non-complete Noetherian local rings by the faithful flatness of
completion proven in Theorem 6.3.4.

Cohen’s structure theorem. A local ring (R, m) may or may not contain a field. In
the former case, we say that R has equal characteristic; the remaining case is refered
to as mixed characteristic. The name is justified in Exercise 6.5.10: a ring has equal
characteristic if and only if has the same characteristic as its residue field. A subfield
kK C R which under the canoncial residue map R — k := R/m maps surjectively,
whence isomorphically, onto k, is called a coefficient field. These might not always
exist, but we do have a weaker version:

Lemma 6.4.1. Let R be an equal characteristic local ring with residue field k. Then
there exists a subfield k C R, such that k is algebraic over the image n(K) of K under
the residue map w: R — k.

Proof. The collection of subfields of R is non-empty by assumption, and is clearly
closed under chains. Hence by Zorn’s lemma there exists a maximal subfield k¥ C
R. Let u be an arbitrary element in k \ 7(x), and choose a € R with (a) = u. In
particular, a ¢ k. Put S := Kk[a], the k-subalgebra of R generated by a, and let p :=
mNS. Since Sp C R, it cannot be a field by maximality of k, and hence p # 0.
Choose a non-zero element b € p, and write it as b = f(a) for some f € x[£]. If we
let /™ € m(k)[&] be the (non-zero) polynomial obtained from f by applying 7 to its
coefficients, then f”(u) = 0, showing that u is algebraic over m (k). O

Theorem 6.4.2 (Equal characteristic). Let (R,m) be a local ring of equal char-
acteristic. If R is complete, then it admits a coefficient field x. If R has moreover
finite embedding dimension e, then R is Noetherian, and in fact isomorphic to a
homomorphic image of a power series ring in e variables over k.

Proof. To prove the existence of a coefficient field in positive characteristic, one
normally resorts to the theory of etale extensions (as the proof in [4], Theorem
28.3]) or differential bases (as in [ 18, Theorem 16.14]); an alternative proof is given
below in Remark 6.4.3. Here I will only give the proof in equal characteristic zero,
that is to say, when the residue field of k has characteristic zero. By (the proof of)
Proposition 6.4.1, if k¥ C R is a maximal subfield, then k is algebraic over m(x),
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where 7: R — k is the residue map. Towards a contradiction, assume there is some
u € k\ n(x). Let f € k[£] be such that f* is a minimal polynomial of u. Since
we are in characteristic zero, u must be a simple root of ™. Hence by Hensel’s
Lemma, Theorem 6.2.4, we can find a € R such that f(a) = 0 and ©(a) = u. Since
clearly a ¢ k., the strictly larger field k(a) = k[§]/fKk[&] embeds into R, violating
the maximality of k.

To prove the last assertion (in either characteristic), assume the maximal ideal
is finitely generated, say, m = (xi,...,x.)R. By Exercise 6.5.11, every element of R
can be expanded as a power series in (xp,...,x.) with coefficients in k. In particular,
R is a homomorphic image of the regular local ring x[[&;,...,&]] (for the regularity
of this latter ring, see Exercise 4.3.5). O

Remark 6.4.3 (CORRECT?). To prove the existence of coefficient fields in equal
characteristic p > 0, we may reason as follows. First assume R is Artinian (indeed
an instance of a complete local ring). We induct on the length I of R, where the
case [ =1 is trivial. Suppose we have proven that any equal characteristic ring of
length two admits an embedding of its residue field, and let R have length [ > 2.
Choose some non-zero x in the socle of R, that is to say, such that xm =0, and
let #: R — R/xR denote the canonical surjection. By assumption, there exists a
homomorphism : k — R/xR, where k is the residue field of R. Let S := n~!(i(k)) C R.
| claim that xR = xS C S is the maximal ideal of S. To verify the equality, let rx be a
non-zero element with r € R. In particular, » must be a unit in R, whence z(r) in
R/xR. Since k embeds in the latter, we can write n(r) = i(c) + n(m), for some m
in the maximal ideal of R. Hence, r —m € S. Since rx = (r — m)x, we showed that
xR = xS. Now, S/xS clearly equals (k) = k, proving that xS is maximal. Since x> =0,
the length of S is two, and hence by assumption, there exists an embedding k — S,
which composed with the inclusion S C R yields the desired embedding into R.

So remains to treat the case that R has length two. In particular, its maximal
ideal is of the form xR with x2 = 0. Let, as before, n: R — R/xR = k be the residue
map. By the argument in the characteristic zero case, if k C R is a maximal subfield,
then the extension (k) C k is purely inseparable. Towards a contradiction, assume
it is non-trivial. For any a € R, some p-th power of (a) lies in w(x). In other words,
a4 =c+rxforsome c € x, some r € R, and some power q of p. Taking the p-th power
of this equality, we get a?? = ¢ 4+ rPxP = ¢P. In other words, any element of R has
some p-th power inside «. In particular, R is integral over k. Let S:= k+xR. It is easy
to verify that this is a subring of R, and that xR is its maximal ideal (however, it is in
general not generated by x, and a priori even infinitely generated in S). Nonetheless,
S C Ris integral, and by assumption proper.

Let ¢ be minimal among all p-th powers so that there exists a € R\ S such that
a9 € S. If ¢ > p, then by minimality b := a%/? does not belong to S, yet b” does. Hence
q = p, and a” = ¢+ rx for some ¢ € x and some r € R. Let D be the x-subalgebra of
R generated by a. Since aP” = c? € k, the dimension of D over  is at most p?. Since
D is a purely inseparable algebra over x, its dimension is therefore either p or p?.
If the latter, consider the x-subalgebra generated by 4. If this is equal to D, then
a = f(a?), for some polynomial f € x[£]. Taking reductions then shows that 7(a)
satisfies a separable equation over 7(x), whence must belong to it, since n(x) C k
is purely inseparable. This in turn implies a € S, contradiction. Hence the subalgebra
generated by > has dimension strictly less than D, whence equal to p. Therefore,
upon replacing a by a? if necessary, we may assume that D has dimension p over k.
Hence a? € k, say a? =c. If c=dP for some d € k, then 0 =a” —d? = (a—d)?, proving
that @ —d € Rx and hence a € S. Hence &P — ¢ is an irreducible polynomial over «.
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Therefore, the field x[£]/(&” — ¢)k[£] embeds in R, contradicting the maximality of
K.

For arbitrary R of equal characteristic p, now use that we can embed k in each
R, := R/m" by the above argument. Moreover, one checks that these embeddings
are compatible with the residue maps R,, — R, for m > n. Hence we get a homo-
morphism k — limR,. This gives the required embedding, since limR, is equal to

R = R by Proposition 6.3.8.

The analogue in mixed characteristic requires even more work, and so again we
only quote the result here (see [41, Theorem 29.4] for a proof).

Theorem 6.4.4 (Mixed characteristic). Let (R,m) be a complete local ring of mixed
characteristic, with residue field k of characteristic p > 0. If R has embedding dimen-
sion e, then there exists a complete discrete valuation ring V with with maximal ideal
pV and residue field k, and there exists an ideal  CV[[&]] with & = (&,...,&.—1) such
that R = V|[[&]]/1. In particular, R is Noetherian.

The complete discrete valuation ring V from the statement is in fact uniquely
determined by p and k, and called the complete p-ring with residue field k (see [41,
Theorem 29.2 and Corollary]).

Immediately some important corollaries follow from these structure theorems.

Theorem 6.4.5. A complete regular local ring of equal characteristic is isomorphic
to a power series ring over a field.

Proof. Let R be a d-dimensional complete regular local ring with residue field k.
By definition, R has embedding dimension d, so that R = k[[£]] /I by Theorem 6.4.2,
with & =(&;,...,&;) and I C k[[&]]. Since k[[£]] has dimension d by Corollary 3.3.3,
the ideal 7 must be zero by Corollary 3.3.6. a

There is also a structure theorem for complete regular local rings of mixed char-
acteristic, but it is less straightforward and we will omit it.

Cohen normalization. The next result is the analogue for complete local rings of
Noether normalization. Again we will only give the proof in equal characteristic.

Theorem 6.4.6. If R is a d-dimensional Noetherian local ring, then there exists a
(complete) d-dimensional regular local subring S C R over which R is finite.

Proof. Assume R has equal characteristic, and view its residue field k as a coefficient
field of R (see Theorem 6.4.2). Let x := (xj,...,x;) be a system of parameters of
R. Let k[[E]] — R be the k-algebra homomorphism given by & +— x;, where & =
(&1,...,&4), let I be the kernel of this homomorphism, and let S be its image. Hence
S 2 k[[E]]/I. Since R/XR is Artinian by definition of system of parameters, it is
a finite dimensional vector space over S/&S = k. Since S is also complete, R is a
finite S-module by Theorem 6.2.5 (notice that Jg = 0 by Theorem 1.4.11 so that the
Hausdorff condition is satisfied). In particular, by Theorem 3.3.8, both rings have
the same dimension d. However, this then forces by Corollaries 3.3.3 and 3.3.6 that
I =0, so that S is regular (by Exercise 4.3.5). a
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Complete scalar extensions. Sometimes it is desirable to have a residue field with
some additional properties. We finish with discussing a technique of extending the
residue field in equal characteristic (for the mixed characteristic case, we refer to

[62]).

Theorem 6.4.7. Let (R,m) be a Noetherian local ring of equal characteristic with
residue field k. Every extension k C K of fields can be lifted to a faithfully flat exten-
sion R — R%, inducing the given extension on the residue fields, with Ry a complete
local ring with maximal ideal mRy and residue field K. In fact, R is a solution to
the following universal property: any complete Noetherian local R-algebra T with
residue field K has a unique structure of a local Rg-algebra. In particular, Ry is
uniquely determined by R and K up to isomorphism, and is called the complete
scalar extension of R along K.

Proof. By Theorem 6.4.2, the completion R of R is isomorphic to k[[£]] /I for some
ideal I and some tuple of indeterminates §. Put Ry := K[[E]]/IK[[§]]. By Theo-
rem 6.3.4 and base change, S has all the required properties.

To prove the universal property, let 7 be any complete Noetherian local R-
algebra, given by the local homomorphism R — 7. By the universal property of
completions, we have a unique extension k[[€]]/] = R — T, and by the univer-
sal property of tensor products, and this uniquely extends to a homomorphism
Ry = K[[E])/IK[[E)] - T. 0

Note that complete scalar extension is actually a functor, that is to say, any local
homomorphism R — § of Noetherian local rings whose residue fields are subfields
of K extends to a local homomorphism R — S%. In particular, complete scalar
extension commutes with homomorphic images:

(R/I)x =Ry /IR, (6.6)

for all ideals / C R. By Exercise 6.5.12, the complete scalar extension R has the
same dimension as R, and one is respectively regular or Cohen-Macaulay if and only
if the other is.

6.5 Exercises

Ex 6.5.1
Prove the statements in 6.1.1. Show moreover that the set I, of all elements of norm at most
r, and the set I of all elements of norm strictly less than r, are ideals, for all r € [0,1]
(called norm-ideals).

Ex 6.5.2

Show that the canonical norm on a regular local ring is multiplicative.
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Ex 6.5.3
Show that all norm-ideals (see Exercise 6.5.1) in a quasi-normed ring A are open in the
norm topology. Show that A is Hausdorff if and only if || - || is a norm.

Ex 6.54
Prove the statements in 6.1.3 and 6.1.5. Prove that I is closed in the norm topology if and
only if the quasi-norm on A/I is a norm.

Ex 6.5.5
Prove 6.1.6.
Ex 6.5.6
Show that the I-adic quasi-norm ||-||; is indeed a quasi-norm. Show that I and any of its

powers define equivalent quasi-norms, in the sense that both norms are mutually bounded.
Prove 6.1.7.

Ex 6.5.7

Prove 6.2.1 by finding for each Cauchy sequence an appropriate subsequence satisfying the
hypothesis, and a subsequence of this satisfying the conclusion.

“Ex 6.5.8

Show that the Jacobson radical (:=intersection of all maximal ideals) in a quasi-complete
ring is the ideal of all elements of norm strictly less than one.

Ex 6.5.9
Formulate, and then prove a generalization of Theorem 6.2.5 which works for any ring
which is quasi-complete in its I-adic quasi-norm. In fact, you can even formulate a version
for any quasi-complete ring (A,||-|).

Ex 6.5.10

Show that a local ring R has equal characteristic if and only if it has the same characteristic
as its residue field.

Ex 6.5.11
Show that if K is a coefficient field of a local ring (R,m) and m = xR is finitely generated,
then for every a € R and each n € N, we can find a polynomial f, € k[ such that a =
fa(x) mod m". Deduce from this the assertion about power series expansions in the last
paragraph of the proof of Theorem 6.4.2.

Ex 6.5.12
Show using Exercise 5.7.17 that R and its complete scalar extension Ry have the same
dimension. Prove that R is regular or Cohen-Macaulay if and only if R is.
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Additional exercises.

Ex 6.5.13
Show the following more general version of Hensel's lemma for a complete local
ring R: if f € RIE], c € N and a € R are such that f(a) lies in the ideal f'(a)*m¢, then
there exists b € R with f(b) =0 andb=a mod m®.

6.6 Project: Henselizations

There are many ways to construct Henselizations (see for instance [42, 43, 46]),
most of which rely on some more sophisticated notions, such as etale extensions,
etc. There is, however, also a direct construction, which we will now discuss. Let
(R, m) be a Noetherian local ring. By a Hensel system over R of size N, we mean a
pair (7, u) consisting of a system (.7¢) of N polynomial equations fi,..., fy € R[t]
in the N unknowns ¢ := (f1,...,ty), and an approximate solution u modulo m in R
(meaning that f;(u) =0 mod m for all i), such that associated Jacobian matrix

dfi/oty df1/dtr ... dfi/dty

8f2/8t1 8f2/8t2 afz/at}\]

Jac() .= (6.7)

afNﬁH afN./atZ afN./gtN

evaluated at u is invertible over R (that is to say, its determinant is a unit in R). An N-
tuple x in some local R-algebra S is called a solution of the Hensel system (57, u),
if it is a solution of the system () and x =u mod mS. Note that a Hensel system
of size N =1 is just a Hensel equation together with a solution in the residue field,
as in the statement of Hensel’s lemma. In fact, R is Henselian (that is to say, satisfies
Hensel’s lemma) if and only if any Hensel system over R has a solution in R. The
proof of this equivalence is not that easy (one can give for instance a proof using
standard etale extensions; see [42] or [ 18, Exercise 7.26]). However, you can modify
the proof of Theorem 6.2.4 to show that complete local rings have this property. In
fact, using multivariate Taylor expansion, show the following stronger version (it is
instructive to try this first for a single Hensel equation).

6.6.1 Any Hensel system (42 ,a) over R admits a unique solution in the com-
pletion R.

We call an element s € R a Hensel element if there exists a Hensel system (77, u)
over R such that s is the first entry of the (unique) solution of this system in R. Let
R~ be the subset of R of all Hensel elements. For given Hensel elements s and
t, construct from their associated Hensel systems a new Hensel system for s+ ¢

(respectively, for st), and use this to prove:

6.6.2 The collection of all Hensel elements is a local ring R~ with maximal
ideal mR"~. Moreover, R~ is Henselian, with completion equal to R.
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It is unfortunately less easy to prove that R™ is also Noetherian. One way is to
first show that R™ — R is faithfully flat, and then use this to deduce the Noetherianity
of R™ from that of R.

6.6.3 Show that R~ satisfies the universal property of Henselization: any
Henselian local R-algebra S admits a unique structure of R~ -algebra.

You could also try to prove:

6.6.4 A power series over a field k in n indeterminates & is a Hensel element
over the localization of k[E] with respect to the maximal ideal gener-
ated by the & if and only if it is algebraic over that ring. In other words,

k[E]™ = K[[E]).
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Chapter 7
Uniform bounds

In this chapter, we will discuss our first application of ultraproducts: the existence
of uniform bounds over polynomial rings. The method goes back to A. Robinson,
but really gained momentum by the work of Schmidt and van den Dries in [52],
where they brought in flatness as an essential tool. Most of our applications will be
concerned with affine algebras over a field. So let us fix an ultra-field K, realized
as the ultraproduct of fields K,, for w € W. For a concrete example, one may take

K:=CandK,:= IF?,lg by Theorem 1.4.3 (with W the set of prime numbers).

7.1 Ultra-hulls

Ultra-hull of a polynomial ring. In this section, we let A := K[&], where & :=
(&,...,&,) are indeterminates. We define the ultra-hull (called the non-standard
hull in the earlier papers [53, 54, 57]) of A as the ultraproduct of the A,, := K, [€],
and denote it U(A). The inclusions K,, C A,, induce an inclusion K C U(A). Let &;
also denote the ultraproduct ulim,, &; of the constant sequence &;. By Los” The-
orem, Theorem 1.3.1, the & are algebraically independent over K. Hence, we
may view them as indeterminates over K in U(A), thus yielding an embedding
A =KI[E] C U(A). To see why this is called an ultra-hull, let us introduce the cat-
egory of ultra-K-algebras: a K-algebra By is called an ultra-K-algebra if it is the
ultraproduct of K,-algebras B,,; a morphism of ultra-K-algebras By, — Cj is any
K-algebra homomorphism obtained as the ultraproduct of K,,-algebra homomor-
phisms B,, — C,,. It follows that any ultra-K-algebra is a K-algebra. The ultra-hull
U(A) is clearly an ultra-K-algebra. We have:

7.1.1 The ultra-hull U(A) satisfies the following universal property: if By is an
ultra-K -algebra, and A — By is any K-algebra homomorphism, then there
exists a unique ultra-K-algebra homomorphism U(A) — B, extending
A —B.

107
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Indeed, by assumption, By is the ultraproduct of K,,-algebras B,,. Let b;; be the
image of & under the the homomorphism A — By, and choose b;,, € B,, whose
ultraproduct equals b;y. Define K,,-algebra homomorphisms A,, — B,, by the rule
& — b;y,. The ultraproduct of these homomorphisms is then the required ultra-K-
algebra homomorphism U(A) — By. Its uniqueness follows by an easy application
of Los’” Theorem.

An intrinsic characterization of A as a subset of U(A) is provided by the next
result (in the terminology of Chapter 12, this exhibits A as a certain protoproduct):

7.1.2 An ultraproduct fy = ulim f,, in U(A) belongs to A if and only if the
fw €A, have bounded degree, meaning that there is a d such that almost
all f,, have degree at most d.

Indeed, if f € A has degree d, then we can write it as f =Y., u,&" for some
uy € K, where v runs over all n-tuples with |v| < d. Choose uy,, € K,, such that
their ultraproduct is uy, and put

Swi="Y uywé". (7.1)

lvi<d

An easy calculation shows that the ultraproduct of the f,, is equal to f, viewed as
an element in U(A). Conversely, if almost each f,, has degree at most d, so that we
can write it in the form (7.1), then

ulim f,, = Z (ulimuy,,)EY

Ww—oo

is a polynomial (of degree at most d).

Ultra-hull of an affine algebra. More generally, let C be a K-affine ring, that is to
say, a finitely generated K-algebra, say of the form C = A/I for some ideal I C A.
We define the ultra-hull of C to be U(A)/IU(A), and denote it U(C). It is clear
that the canoncial embedding A C U(A) induces by base change a homomorphism
C — U(C). Less obvious is that this is still an injective map, which we will prove
in Corollary 7.2.3 below. To show that the construction of U(C) does not depend on
the choice of presentation C = A/I, we verify that U(C) satisfies the same universal
property 7.1.1 as U(A): any K-algebra homomorphism C — Bj; to some ultra-K-
algebra B, extends uniquely to a homomorphism U(C) — By of ultra-K-algebras
(recall that any solution to a universal property is necessarily unique). To see why
the universal property holds , apply 7.1.1 to the composition A — A/I = C — Bj to
get a unique extension U(A) — By. Since any element in / is sent to zero under the
composition A — By, this homomorphism factors through U(A)/IU(A), yielding
the required homomorphism U(C) — By of ultra-K-algebras. Uniqueness follows
from the uniqueness of U(A) — B;.

Since TU(A) is finitely generated, it is an ultra-ideal, that is to say, an ultraprod-
uct of ideals I,, C A,,. By 1.1.6, the ultraproduct of the C,, := A,,/I,, is equal to
U(C) = U(A)/IU(A). If C = A’/ is a different presentation of C as a K-algebra
(with A" a polynomial ring in finitely many indeterminates), and C’,, := A’,,/I’,, the
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corresponding K, -algebras, then their ultraproduct U(A") /I’ U(A’) is another way
of defining the ultra-hull of C, whence it must be isomorphic to U(C). Without loss
of generality, we may assume A C A’ and hence A,, C A',,. Since U(A)/1U(A) =
U(C) =2 U(A")/T'U(A’), the homomorphisms A,, C A’,, induce homomorphisms
C,, — C',, and by Los’ Theorem, almost all are isomorphisms. This justifies the
usage of calling the C,, approximations of C (in spite of the fact that they are not
uniquely determined by C).

7.1.3 The ultra-hull U(-) is a functor from the category of K-affine rings to the
category of ultra-K -algebras.

The only thing which remains to be verified is that an arbitrary K-algebra homo-
morphism C — D of K-affine rings induces a homomorphism of ultra-K-algebras
U(C) — U(D). However, this follows from the universal property applied to the
composition C — D — U(D), admitting a unique extension so that the following
diagram is commutative

(7.2)

u(c) - U(D).

Ultra-hull of a local affine algebra. Recall that a K-affine local ring R is simply
the localization C, of a K-affine algebra C at a prime ideal p. Let us call R geometric,
if p is a maximal ideal m of C. By Proposition 2.6.1, a geometric K-affine local ring,
in other words, is the local ring of a closed point on an affine scheme of finite
type over K. Note that a K-affine local ring is in general not finitely generated as
a K-algebra; one usually says that R is essentially of finite type over K. The next
result will enable us to define the ultra-hull of a geometric affine local ring; we shall
discuss the general case on page 112 below:

7.1.4 Let C be a K-affine ring. If m is a maximal ideal in C, then mU(C) is a
maximal ideal in U(C), and C/m = U(C) /mU(C).

By our previous discussion, U(L) := U(C)/mU(C) is the ultra-hull of the field
L := C/m. By Proposition 2.2.6, the extension K C L is finite. It follows by Exer-
cise 1.5.9 that L is an ultra-field. By the universal property L is equal to its own
ultra-hull, and hence mU(C) is a maximal ideal. O

We can now define the ultra-hull of a K-affine local ring R = Cy, as the localiza-
tion U(R) := U(C)nu(c)- Note that U(R) is again an ultra-ring: let C,, be approx-
imations of C, and let m,, C C,, be ideals whose ultraproduct is equal to mU(C).
Since the latter is maximal, so are almost all m,,. For those w, set R, := (Cw)mw
(and arbitrary for the remaining w). By Exercise 1.5.2, the ultraproduct of the R, is
equal to U(R), and for this reason we call them again approximations of R. We can
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formulate a similar universal property which is satisfied by U(R), and then show that
any local homomorphism R — § of K-affine local rings induces a unique homomor-
phism U(R) — U(S). Moreover, any two approximations agree almost everywhere
(see Exercise 7.5.1). In particular, for homomorphic images we have:

7.1.5 If1 C Cisanideal in a K-affine (local) ring, then U(C/I) = U(C)/IU(C).

We extend our naming practice also to elements or ideals: if a € C is an element
or I C Cisanideal, and a,, € C,, and I,, C C,, are such that their ultraproduct equals
a € U(C) and 1U(C) respectively, then we call the a,, and the I,, approximations of
a and I respectively. In particular, by 7.1.4, the approximations of a maximal ideal
are almost all maximal. The same holds true with ‘prime’ instead of ‘maximal’, but
the proof is more involved, and we have to postpone it until Theorem 7.3.4 below.

7.2 Schmidt-van den Dries theorem

The ring U(A) is highly non-Noetherian. In particular, although each mU(A) is a
maximal ideal for m a maximal ideal of A, these are not the only maximal ideals of
U(A) (see Exercise 7.5.2). Nonetheless, they somehow ‘cover’ enough of U(A) so
that we can apply Theorem 5.6.18. More precisely:

7.2.1 If almost all K,, are algebraically closed, then any proper finitely related
ideal of U(A) is contained in some mU(A) withm C A a maximal ideal.

Indeed, this is even true for any proper ultra-ideal I C U(A) (and finitely related
ideals are ultra-ideals by Exercise 5.7.19). Namely, let / be the ultraproduct of ideals
I, CA,. By Los’ Theorem, almost each I, is a proper ideal whence contained in
some maximal ideal m,,. By the Nullstellensatz 2.2.2, we can write m,, as (& —
Ul - -« En — Upyy)A,, fOr some u;y, € K. Let u; € K be the ultraproduct of the u;,,,
so that the ultraproduct of the m,, is equal to (&; —uy, ..., &, —u,)U(A), and by Los’
Theorem it contains /. O

Theorem 7.2.2. For any K-affine ring, the canonical homomorphism C — U(C) is
faithfully flat, whence in particular injective.

Proof. If we have proven this result for the ultra-hull U(A) of A, then it will fol-
low from 5.2.3 for any C — U(C), since the latter is just a base change C =A/I —
U(A)/TU(A) = U(C), where C = A/I is some presentation of C. The faithfulness of
U(A) is immediate from 7.1.4. So remains to show the flatness of A — U(A), and for
this we may assume that K and all K,, are algebraically closed. Indeed, if K’ is the
ultraproduct of the algebraic closures of the K, then A — A’ := K'[£] is flat by 5.2.3.
By Exercise 7.5.3, the canonical homomorphism U(A) — U(A’) is cyclically pure
with respect to ideals extended from A, where U(A’) is the ultra-K’-hull of A. Hence
if we showed that A" — U(A’) is flat, then so is A — U(A) by Corollary 5.6.17.
Hence we may assume all K,, are algebraically closed. By Theorem 5.6.18 in con-
junction with 7.2.1, we only need to show that R := Ay — U(R) = U(A)nyn)
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is flat for every maximal ideal m C A. After a translation, we may assume m =
(&1,...,&0)A. By Los” Theorem, (&1, ...,&,) is U(A)-regular whence U(R)-regular.
This proves that U(R) is a big Cohen-Macaulay R-module. By Proposition 5.6.9
it is therefore a balanced big Cohen-Macaulay module, since any regular sequence
in U(R) is permutable by £.os’ Theorem, because this is so in the Noetherian local
rings (A, )m,, (see Theorem 4.2.6). Hence U(R) is flat over R by Theorem 5.6.10.
O

Immediately from this and the cyclic purity of faithfully flat homomorphisms
(Proposition 5.3.4) we get:

Corollary 7.2.3. The canonical map C — U(C) is injective, and IU(C)NC =1 for
any ideal I C C. a

7.3 Transfer of structure

We will use ultra-hulls in our definition of tight closure in characteristic zero (see
§9), and to this end, we need to investigate more closely the relation between an
affine algebra and its approximations. We start with the following far reaching gen-
eralization of 7.1.4.

Finite extensions.

Proposition 7.3.1. If C — D is a finite homomorphism of K-affine rings, then
U(D) = U(C) ®c D, and hence U(C) — U(D) is also finite.

Proof. By Exercise 1.5.9, the tensor product U(C) ®¢ D is an ultra-K-algebra, since
it is finite over U(C). By the universal property of the ultra-hull of D, we therefore
have a unique homomorphism U(D) — U(C) ®c¢ D of ultra-K-algebras. On the other
hand, by the universal property of tensor products, we have a unique homomorphism
U(C)®¢cD — U(D). It is no hard to see that the latter is in fact a morphism of ultra-
K-algebras. By uniqueness of both homomorphisms, they must be therefore each
other’s inverse. O

Corollary 7.3.2. If C is a K-affine Artinian ring, then C = U(C).

Proof. Since C is a direct product of local Artinian rings by 3.1.4, and since ultra-
hulls are easily seen to commute with direct products, we may assume C is moreover
local, with maximal ideal m, say. Let L := C/m, so that L =2 U(L) by 7.1.4. Note that
the vector space dimension of C over L is equal to the length of C by Exercise 3.4.3.
In any case, C is a finite L-module, so that by Proposition 7.3.1 we get U(C) =
ULye,C=C. O

Corollary 7.3.3. The dimension of a K-affine ring is equal to the dimension of al-
most all of its approximations.
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Proof. Let C be an n-dimensional K-affine ring, with approximations C,,. The as-
sertion is trivial for C = A a polynomial ring. For the general case, let A C C
be a finite extension, as given by Theorem 2.2.5. The induced homomorphism
U(A) — U(C) = U(A) ®4 C is finite, by Proposition 7.3.1, and injective since
A — U(A) is flat by Theorem 7.2.2. By Los’ Theorem, almost all A,, — C,, are
finite and injective. Hence almost all C,, have dimension n by Theorem 3.3.8. O

Prime ideals. We return to our discussion on the behavior of prime ideals under
the ultra-hull, and we are ready to prove the promised generalization of 7.1.4.

Theorem 7.3.4. A K-affine ring C is a domain if and only if U(C) is, if and only
if almost all of its approximations are. In particular, if p is a prime ideal in an
arbitrary K-affine ring D, then pU(D) is again a prime ideal, and so are almost all
of its approximations p,,.

Proof. By Los’ Theorem, almost all C,, are domains if and only if U(C) is a domain.
If this holds, then C too is a domain since it is a subring of U(C) by Corollary 7.2.3.
Conversely, assume C is a domain, and let A C C be a Noether normalization of
C, that is to say a finite and injective extension. Let A,, C C,, be the correspond-
ing approximations implied by Proposition 7.3.1. Let p,, be a prime ideal in C,,
of maximal dimension, and let 3 be their ultraproduct, a prime ideal in U(C). An
easy dimension argument shows that p,, NA,, = (0) and hence by f.os’ Theorem,
PNUA) = (0). Let p:=PNC. Since pNA is contained in P N U(A), it is also
zero. Hence A — C/p is again finite and injective. Since C is a domain, a dimension
argument using Theorem 3.3.8 yields that p = 0. On the other hand, we have an
isomorphism U(C) = U(A) ®4 C, so that by general properties of tensor products

U(C)/B=U@A)/(BNUA)) @aypru) C/(BNC) = U(A) ®4 C = U(C)

showing that ‘B is zero, whence so are almost all p,,. Hence almost all C,, are do-
mains, and hence by £.os’ Theorem, so is U(C).
The last assertion is immediate from the first applied to C := D/p. a

This allows us to define the ultra-hull of an arbitrary local K-affine ring C, as
the localization U(C), y(c)- To show that a local affine ring has the same dimension
as almost all of its approximations, one can use either some deeper results on the
dimension of an affine ring (see Exercise 7.5.6), or we proceed with some further
transfer results.

Recall (see Definition 3.3.1) that the geometric dimension geodim(R) of a lo-
cal ring (R, m) of finite embedding dimension is by definition the least number of
generators needed to generate an m-primary ideal.

Proposition 7.3.5. If (R,m) is a d-dimensional local K-affine ring, then U(R) has
geometric dimension d.

Proof. We induct on the dimension d, where the case d = 0 follows from Corol-
lary 7.3.2. So assume d > 0, and let x be a parameter in R. Hence, R/xR has di-
mension d — 1, so that by induction, U(R/xR) has geometric dimension d — 1. Since
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U(R/xR) = U(R)/xU(R) by 7.1.5, we see that U(R) has geometric dimension at
most d. By way of contradiction, suppose its geometric dimension is at most d — 1.
In particular, there exists an mU(R)-primary ideal 91 generated by d — 1 elements.
Put n:=9NR, and let n be such that m"U(R) C 1. By faithful flatness, that is to
say, by Corollary 7.2.3, we have an inclusion m” C n, showing that n is m-primary.
Hence R/n =2 U(R/n) = U(R)/nU(R) by Corollary 7.3.2. Hence U(R) /M is a ho-
momorphic image of R/n whence equal to it by definition of n. In conclusion,
9 = nU(R). By Theorem 3.3.2, the geometric dimension of R is d, so that n re-
quires at least d generators. Since R — U(R) is flat by Theorem 7.2.2, also nU(R)
requires at least d generators by 5.3.7, contradiction. a

Corollary 7.3.6. The dimension of a local K-affine ring R is equal to the dimen-
sion of almost all of its approximations R,,. Moreover, if X is a sequence in R with
approximations X,,, then X is a system of parameters if and only if almost all x,, are.

Proof. The second assertion follows immediately from the first and f.os’ Theorem.
By Proposition 7.3.5, the geometric dimension of U(R) is equal to d := dim(R). Let
R,, be approximations of R, so that their ultraproduct equals U(R). If  is an mU(R)-
primary ideal generated by d elements, then its approximation /,, is an m,,-primary
ideal generated by d elements for almost all w by 1.4.9. Hence almost all R,, have
geometric dimension at most d, whence dimension at most d by Theorem 3.3.2.
Let po & --- & pg = m be a chain of prime ideals in R of maximal length. By
faithfull flatness (in the form of Corollary 7.2.3), this chain remains strict when
extended to U(R), and by Theorem 7.3.4, it consists again of prime ideals. Hence if
piw € R, are approximations of p;, then by Los’ Theorem, we get a strict chain of
prime ideals po,, & -+ & pgyw = my, for almost all w, proving that almost all R,, have
dimension at least d. d

Note that it is not true that if x,, are systems of parameters in the approximations,
then their ultraproduct (which in general even lies outside R) does not necesarily
generate an mU(R)-primary ideal.

Singularities. Now that we know how dimension behaves under ultra-hulls, we can
investigate singularities.

Theorem 7.3.7. A local K-affine ring is respectively regular or Cohen-Macaulay if
and only if almost all its approximations are.

Proof. Let R be a d-dimensional local K-affine ring, and let R, be its approxima-
tions. If R is regular, then its embedding dimension is d, whence so is the embedding
dimension of U(R), and by Los’ Theorem, then so is the embedding dimension of
R,, for almost each w, and conversely. This proves the assertion for regularity. As for
the Cohen-Macaulay condition, let x be a system of parameters with approximation
x,,. Hence almost each x,, is a system of parameters in R, by Corollary 7.3.6. If R is
Cohen-Macaulay, then x is R-regular, hence U(R)-regular by flatness (see Proposi-
tion 5.4.1), whence almost each x,, is R,,-regular by L.os’ Theorem, and conversely.

O
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7.4 Uniform bounds

In this last section, we are ready to deduce some applications of ultraproducts to
the study of rings. The results as well as the proof method via ultraproducts are
due to Schmidt and van den Dries from their seminal paper [52], and were further
developped in [51, 53, 54, 64].

Linear equations. The proof of the next result is very typical for an argument
based on ultraproducts, and will be the template for all future proofs.

Theorem 7.4.1. There exists a function N: N> — N with the following property. If
k is a field, and if fo, ..., fs € k[E] are polynomials of degree at most d in at most n
indeterminates & such that fy € (f1,...,fs)k[E], then there exist g1,...gs € k|&] of
degree at most N(d,n) such that fo = g1f1+- + & fs-

Proof. By way of contradiction, suppose this result is false for some pair (d,n). This
means that we can produce counterexamples requiring increasingly high degrees.
Before we write these down, observe that the number s of polynomials in these
counterexamples can be taken to be the same by Lemma 7.4.2 below (by adding
zero polynomials if necessary). So, for each w € N, we can find counterexamples
consisting of a field Ky, and polynomials fo,,..., fsw € Ay := K,,[E] of degree at
most d, such that f,, can be written as an A,,-linear combination of the fi,,,..., fsw,
but any such linear combination involves a polynomial of degree at least w. Let
fi be the ultraproduct of the f;,. This is again a polynomial of degree d in A by
7.1.2. Moreover, by Los” Theorem, fy € (fi,...,fs)U(A). We use the flatness of
A — U(A) via its corollary in 7.2.3, to conclude that fy € (f1,...,f;)) UA)NA =
(f1,--.,fs)A. Hence we can find polynomials g; € A such that

fo=gufi 4 +8&fs (7.3)

Let e be the maximum of the degrees of the g;. By 7.1.2 again, we can choose
approximations g;,, € A,, of g, of degree at most e. By Los’ Theorem, (7.3) yields
Jow = Yi &iwfiw, contradicting our assumption. O

Lemma 7.4.2. Any ideal in A generated by polynomials of degree at most d requires
at most N := (d : n) generators.

Proof. Note that N is equal to the number of monomials of degree at most d in
n variables. Let I := (fi,...,f;)A be an ideal in A with each f; of degree at most
d. Choose some (total) ordering < on these monomials (e.g., the lexicographical
ordering on the exponent vectors), and let I(f) denote the largest monomial ap-
pearing in f with non-zero coefficient, for any f € A a polynomial of degree at most
d (where we put [(0) := —eo). If [(f;) = [(f;) for some non-zero f;, f; with i < j, then
I(ufi —vf;) < I(f;) for some non-zero elements u,v € K, and we may replace the
generator f; by the new generator uf; —vf;. Doing this recursively for all i, we arrive
at a situation in which all non-zero f; have different I(f;), and hence there can be at
most N of these. O
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We can reformulate the result in Theorem 7.4.1 to arrive at some further general-
izations. The ideal membership condition in that theorem is really about solving an
(inhomogeneous) linear equation in A: the equation fy = fit; + - - - + fsts, where the
t; are the unknowns of this equation (as opposed to &, which are indeterminates).
This is the perspective taken in Exercise 7.5.5, which shows there exists a bound,
only depending on the degree and the number of variables, for every system of linear
equations. In the homogeneous case we can say even more:

Theorem 7.4.3. There exists a bound N := N(d,n) such that for any field k, any ho-
mogeneous system of equations in k|&,. .., &, all of whose coefficients have degree
at most d, admits a finite number of solutions of degree at most N such that any
other solution is a linear combination of these finitely many solutions.

Proof. The proof once more is by contradiction. Assume the statement is false for
the pair (n,d). Hence we can find for each w € N, a field K, and a system of linear
homogeneous equations

)L]w(t):"':/lsw(t)zo (gw)

in the variables ¢t = (71,...,%,) with coefficients in A,,, such that the module of so-
lutions Soly,, (%) C A¥, requires at least one generator one of whose entries is
a polynomial of degree at least w. Here, we may again take the number m of ¢-
variables as well as the number s of equations to be the same in all counterexam-
ples, by another use of Lemma 7.4.2. The ultraproduct of each A;,, is, as before by
7.1.2, an element A; € A[t] which is a linear form in the ¢-variables (and has degree
at most d in &). By the equational criterion for flatness, Theorem 5.6.1, the flat-
ness of A — U(A), proven in Theorem 7.2.2, amounts to the existence of solutions
by,...,b; € Soly (%) such that any solution of the homogeneous linear system (.%)
of equations A; = --- = A, = 01in U(A) lies in the U(A)-module generated by the b;.
Let e be the maximum of the degrees occuring in the b;. In particular, we can find
approximations b;,, € A, of b; whose entries all have degree at most e. I claim that
almost each Soly (&) is equal to the submodule H,, generated by by,,...,by,,
which would then contradict our assumption.

To prove the claim, one inclusion is clear, so assume by way of contradiction that
we can find for almost all w a solution q,, € Sol, ,(-Z,) outside H,,. Letq; € U(A)™
be its ultraproduct (note that this time, we cannot guarantee that its entries lie in
A since the degrees might be unbounded). By t.os’ Theorem, q; € SolU(A)(.i”),
whence can be written as an U(A)-linear combination of the b;. Writing this out and
using Los” Theorem once more, we conclude that q,, lies in H,, for almost all w,
contradiction. O

Primality testing.

Theorem 7.4.4. There exists a function N: N> — N with the following property. If
kis afield, and if p is an ideal in k[&,, .. ., &) generated by polynomials of degree at
most d, then p is a prime ideal if and only if for any two polynomials f,g of degree
at most N(d,n) which do not belong to p, neither does their product.
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Proof. One direction in the criterion is obvious. Suppose the other is false for the
pair (d,n), so that we can find for each w € N, a field K, and a non-prime ideal a,, C
A,, generated by polynomials of degree at most d, such that any two polynomials of
degree at most w not in a,, have their product also outside a,,. Taking ultraproducts
of the generators of the a,, of degree at most d gives polynomials of degree at most
din A by 7.1.2, and by Los’ Theorem if a C A is the ideal they generate, then aU(A)
is the ultraproduct of the a,,. I claim that a is a prime ideal. However, this implies
that almost all a,, must be prime ideals by Theorem 7.3.4, contradiction.

To verify the claim, let f,g ¢ a. We want to show that fg ¢ a. Let e be the
maximum of the degrees of f and g. Choose approximations f,g, € A, of degree
at most e, of f and g respectively. By Los’ Theorem, f,,, g, ¢ a,, for almost all w.
For w > e, our assumption then implies that f,,g, ¢ a,,, whence by £.0s’ Theorem,
their ultraproduct fg ¢ aU(A). A fortiori, then neither does fg belong to a, as we
wanted to show. a

The pattern by now must become clear: prove a particular property of ideals is
preserved under ultra-hulls, and use this to deduce uniform bounds. For instance
you are asked in Exercise 7.5.7 to prove the following two results.

Proposition 7.4.5. The image of a radical ideal in the ultra-hull remains radical.

Since the radical of an ideal is the intersection of its minimal overprimes, we
derive from this the following uniform bounds property:

Theorem 7.4.6. There exists a function N: N*> — N with the following property. If
k is a field, and if I is an ideal in k[&;,...,&,] generated by polynomials of degree
at most d, then its radical J := rad(I) is generated by polynomials of degree at most
N := N(n,d). Moreover, JN C I and I has at most N distinct minimal overprimes,
all of which are generated by polynomials of degree at most N.

7.5 Exercises

Ex7.5.1
Call a ring Sy an ultra-local K-algebra, if it is an ultraproduct of local K,,-algebras S,,;
any ultraproduct of local K,,-algebra homomorphisms S,, — T, is called a morphism of
ultra-local K-algebras. Show that if R is a local K-affine ring, then its ultra-hull U(R) is an
ultra-local K-algebra. Moreover, we have the following universal property: if R — Sy is a
local K-algebra homomorphism into an ultra-local K-algebra Sy, then there exists a unique
morphism U(R) — Sy of ultra-local K-algebras. Prove 7.1.5 and the assertions preceding
it.

Ex 7.5.2
The maximal ideals of U(A) that are not extended from A are harder to describe. To show
that they at least exist, we reason as follows. For each w, choose a polynomial f,, € A, of
degree w with distinct roots (assuming K,, has at least size w), and let f € U(A) be their
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ultraproduct. Let a be the ideal generated by all f/h where h runs over all elements in
A such that f € hU(A). Show that a is not the unit ideal, and hence is contained in some
maximal ideal M of U(A). Show that a cannot be inside a maximal ideal of the form mU(A)
with m C A, showing that 9 is not of the latter form. Give an example, assuming that the
K\, are not algebraically closed, of a maximal ultra-ideal of U(A) which is not extended
from A.

Ex7.5.3
Show that if Cy, — Dy is an ultraproduct of cyclically pure homomorphisms C,, — D, then
Cy, — Dy is cyclically pure with respect to ultra-ideals. Deduce from this the claim in the
proof of Theorem 7.2.2 about the cyclical purity of U(A) — U(A") with respect to ideals
extended from A.

Ex7.54

Show the ‘global’ counterparts of Theorem 7.3.7, that is to say, a K-affine ring is respec-
tively regular or Cohen-Macaulay if and only if almost all of its approximations are.

Ex 7.5.5
Show that there exists a bound N := N(d,n) such that for any field k, and for any (not
necessarily homogeneous) linear system (.£) of equations Ay = - -- = Ay = O with A; € k[ ,1]

of &-degree at most d and t-degree at most one, where & is an n-tuple of indeterminates and
t is a finite tuple of variables, if the system admits a solution in K[&), then it admits a
solutions all of whose entries have degree at most N.

Ex 7.5.6
In a K-affine domain D, we always have an equality dim(D/p) + ht(p) = dim(D) (for a
special case, see Exercise 3.4.14). Assuming this result, use it to give an alternative proof of
Corollary 7.3.6 which does not rely on Proposition 7.3.5, but instead uses Corollary 7.3.3.

Ex 7.5.7
Prove Proposition 7.4.5 and derive Theorem 7.4.6 from it by the typical ultraproduct argu-
ment.

Ex7.5.8
Use Theorem 5.6.16, the Colon Criterion, to show that there exists a bound N := N(d,n)
such that for any field k, any ideal I C k[E] generated by polynomials of degree at most d,
and any a € k[&] of degree at most d, where & is an n-tuple of indeterminates, the ideal
(I : a) is generated by polynomials of degree at most N.






Chapter 8
Tight closure in positive characteristic

In this chapter, p is a fixed prime number, and all rings are assumed to have char-
acteristic p, unless explicitly mentioned otherwise. We review the notion of tight
closure due to Hochster and Huneke (as a general reference, we will use [36]).

8.1 Frobenius

The major advantage of rings of positive characteristic is the presence of an alge-
braic endomorphism: the Frobenius. More precisely, let A be a ring of characteristic
p, and let F,, or more accurately, F, 4, be the ring homomorphism A — A: a > a”,
called the Frobenius on A. Recall that this is indeed a ring homomorphism, where
the only thing to note is that the coefficients in the binomial expansion

p
N
Fyla+b)=Y (*,)a'b" ™" =Fp(a)+ Fy(b)
i=0
are divisible by p for all 0 < i < p whence zero in A, proving that F, is additive.

When A is reduced, F, is injective whence yields an isomorphism with its image
AP :=Im(F,) consisting of all p-th powers of elements in A (and not to be confused
with the p-th Cartesian power of A). The inclusion A” C A is isomorphic with the
Frobenius on A because we have a commutative diagram

A

/ & (8.1)
c

AP ————— A

119
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When A is a domain, then we can also define the ring A!/? as the subring of the
algebraic closure of the field of fractions of A consisting of all elements b satisfying
bP € A. Hence A C A'/7 is integral. Since, F,(A!/?) = A and F,, is injective, we get
Al/P = A. Moreover, we have a commutative diagram

R

N —

showing that the Frobenius on A is also isomorphic to the inclusion A C AVP. It
is sometimes easier to work with either of these inclusions rather than with the
Frobenius itself, especially to avoid notational ambiguity between source and target
of the Frobenius (instances where this approach would clarify the argument are the
proofs of Theorem 8.1.2 and Corollary 8.1.3 below).

Often, the inclusion A? C A is even finite, and hence so is the Frobenius itself.
One can show (see Exercise 8.7.11) using Noether normalization (Theorem 2.2.5)
or Cohen normalization (Theorem 6.4.6) that this is true when A is respectively an
affine k-algebra or a complete Noetherian local ring with residue field &, and & is
perfect, or more generally, (k : kP) < eo.

Frobenius transforms. Given anideal I C A, we will denote its extension under the
Frobenius by F,,(I)A, and call it the Frobenius transform of I. Note that F,(1)A C I?,
but the inclusion is in general strict. In fact, one easily verifies that

8.1.1 If1 = (x1,...,x,)A, then F,(I)A = (x,....xD)A.

If we repeat this process, we get the iterated Frobenius transforms F),(I)A of 1,
generated by the p”-th powers of elements in /, and in fact, of generators of /. In
tight closure theory, the simplified notation

" :=F(DA

is normally used, but for reasons that will become apparent once we defined tight
closure as a difference closure (see page 138), we will use the ‘heavier’ notation.
On the other hand, since we fix the characteristic, we may omit p from the notation
and simply write F: A — A for the Frobenius.

Kunz’s theorem. The next result, due to Kunz, characterizes regular local rings in
positive characteristic via the Frobenius. We will only prove the direction that we
need.

Theorem 8.1.2. Let R be a Noetherian local ring. If R is regular, then ¥, is flat.
Conversely, if R is reduced and F), is flat, then R is regular.

Proof. We only prove the direct implication; for the converse see [40, §42]. Let x
be a system of parameters of R, whence an R-regular sequence by Proposition 4.2.3.
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Since F(x) is also a system of parameters, it too is R-regular (Theorem 4.2.6).
Hence, R viewed as an R-algebra via F is a balanced big Cohen-Macaulay mod-
ule, and therefore flat by Theorem 5.6.10. O

Corollary 8.1.3. If R is a regular local ring, I C R an ideal, and a € R an arbitrary
element, then a € I if and only if F(a) € F(I)R.

Proof. One direction is of course trivial, so assume F(a) € F(I)R. However, since
F is flat by Theorem 8.1.2, the contraction of the extended ideal F(I)R along F is
again I by Proposition 5.3.4, and a lies in this contraction (recall that F(I)RNR
stands really for F~!(F(I)R).) O

8.2 Tight closure

The definition of tight closure, although not complicated, is at first hard to grasp,
and only by working with it enough, and realizing its versatility, does one get a
knack of it. The idea is inspired by the ideal membership test of Corollary 8.1.3.
Unfortunately, that test only works over regular local rings, so that it will be no
surprise that whatever test we design, it will have to be more involved. Moreover,
the proposed test will in fact fail in general, that is to say, the elements satisfying
the test form an ideal which might be strictly bigger than the original ideal. But not
too much bigger, so that we may view this bigger ideal as a closure of the original
ideal, and as such, it is a ‘tight’ fit.

In the remainder of this section, A is a Noetherian ring, of characteristic p. A first
obvious generalization of the ideal membership test from Corollary 8.1.3 is to allow
iterates of the Frobenius: we could ask, given an ideal I C A, what are the elements x
such that F"(x) € F"(I)A for some power n? They do form an ideal and the resulting
closure operation is called the Frobenius closure. However, its properties are not
sufficiently strong to derive all the results tight closure can.

Tight closure. The adjustment to make in the definition of Frobenius closure, al-
though minor, might at first be a little surprising. To make the definition, we will call
an element a € A a multiplier, if it is either a unit, or otherwise generates an ideal of
positive height (necessarily one by Theorem 3.3.4). Put differently, a is a multiplier
if it does not belong to any minimal prime ideal of A. In particular, the product of
two multipliers is again a multiplier. In a domain, a situation we can often reduce
to, a multiplier is simply a non-zero element.

The name ‘multiplier’ comes from the fact that we will use such elements to
multiply our test condition with. However, for this to make sense, we cannot just
take one iterate of the Frobenius, we must take all of them, or at least all but finitely
many. So we now define: an element x € A belongs to the tight closure cla(I) of an
ideal I C A, if there exists a multiplier ¢ € A and a positive integer N such that

cF'(x) e F'(I)A (8.3)
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for all n > N. Note that the multiplier ¢ and the bound N may depend on x and 1,
but not on n. We will write cl(I) for cls () if the ring A is clear from the context. In
the literature, tight closure is invariably denoted I*, but again for reasons that will
become clear in the next chapter, our notation better suits our purposes. Let us verify
some elementary properties of this closure operation:

8.2.1 The tight closure of an ideal I in a Noetherian ring A is again an ideal, it
contains I, and it is equal to its own tight closure. Moreover, we can find
a multiplier ¢ and a positive integer N which works simultaneous for all
elements in cl(1) in criterion (8.3).

It is easy to verify that cl(/) is closed under multiples, and contains /. To show
that it is closed under sums, whence an ideal, assume x,x’ € A both lie in cl(1),
witnessed by the equations (8.3) for some multipliers ¢ and ¢/, and some positive
integers N and N’ respectively. However, cc'F"(x +x’) then lies in F*(I)A for all
n > max{N,N'}, showing that x +x" € cl(I) since cc’ is again a multiplier. Let
J :=cl(I) and choose generators yi,...,ys of J. Let ¢; and N; be the corresponding
multiplier and bound for y;. It follows that ¢ := cjc, - - - ¢, is a multiplier such that
(8.3) holds for all n > N := max{Nj,...,N;} and all x € J, since any such element is
a linear combination of the y;. In particular, cF"(J)A C F"(I)A for all n > N. Hence
if z lies in the tight closure of J, so that dF"(z) € F"(J)A for some multiplier d and
for all n > M, then cd F"(z) € F"(I)A for all n > max{M,N} whence z € cl(I). The
last assertion now easily follows from the above analysis. In the sequel, we will
therefore no longer make the bound N explicit and instead of “for all n > N we
will just write “for all n > 0.

Example 8.2.2. Tt is instructive to look at an example. Let K be a field of charac-
teristic p > 3, and let A := K[&,{,n]/(E3 — &3 —n?)K[E, £, n] be the projective
coordinate ring of the cubic Fermat curve. Let us show that &2 is in the tight closure
of I:=({,n)A. For a fixed e, write 2p° = 3h+r for some i € N and some remainder
r € {1,2}, and let ¢ be the multiplier &3. Hence

CFe(gZ) _ é3(h+1)+r :ér(€'3+n3)h+l'

A quick calculation shows that any monomial in the expansion of ({3 4 n3)"*1 is
a multiple of F¢({) or of F¢(n), showing that (8.3) holds for all e, and hence that
(£2,5,m)A Cel(D).

It is often much harder to show that an element does not belong to the tight
closure of an ideal. Shortly, we will see in Theorem 8.3.6 that any element outside
the integral closure is also outside the tight closure. Since (£2,¢,1)A is integrally
closed, we conclude that it is equal to cl (7).

We will encounter many operations similar to tight closure, and so we formally
define:

Definition 8.2.3 (Closure operation). A closure operation on aring A is any order-
preserving, contractive, idempotent endomorphism of the Grassmanian Grass(A)
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(recall that Grass(A) is ordered by reverse inclusion, so that contractive means that
1 lies in its own closure).

For instance, taking the radical of an ideal is a closure operation, and so is integral
closure discussed below. Tight closure too is a closure operation on A, since it clearly
also preserves inclusion: if 7 C I’, then cl(I) C cl(I’). An ideal that is equal to its
own tight closure is called tightly closed. Recall that the colon ideal (I : J) is the
ideal of all elements a € A such that aJ C I; here I C A is an ideal, but J C A can be
any subset, which, however, most of the time is either a single element or an ideal.
Almost immediately from the definitions, we get

8.2.4 IfI is tightly closed, then so is (I : J) for any J C A.

One of the most outstanding open problems in tight closure theory is its behavior
under localization: do we always have

cla(D)Ap = cla, (IAp) (8.4)

for every prime ideal p C A. This disturbing gap in our knowledge explains the
awkward terminology in the next definition.

Definition 8.2.5. A Noetherian ring A is called weakly F-regular if each of its ideals
is tightly closed. If all localizations of A are weakly F-regular, then A is called F-
regular.

It is sometimes cumbersome to work with multipliers in arbitrary rings, but in do-
mains they are just non-zero elements. Fortunately, we can always reduce to the
domain case when calculating the tight closure:

Proposition 8.2.6. Let A be a Noetherian ring, let p.,...,ps be its minimal primes,
and put A; :==A/p;. For all ideals I C A we have

s

cla(l) = [ clg, (IA;)) NA. (8.5)
i=1

Proof. The same equations which exhibit x as en element of cl4 () also show that
itis in clg, (14;) since any multiplier in A remains, by virtue of its definition, a multi-
plier in A; (moreover, the converse also holds: by prime avoidance, we can lift any
multiplier in A; to one in A). So one inclusion in (8.5) is clear.

Conversely, suppose x lies in the intersection on the right hand side of (8.5). Let
¢; € A be a multiplier in A (so that its image is a multiplier in 4;), such that

CiF:}Ai ()C) S F%i (I)A,'

for all n > 0. This means that each ¢;F’; (x) lies in F} (I)A+p; for n>> 0. Choose for
each i, an element #; € A inside all minimal primes except p;, and let c:=¢j#; +-- -+
csts. A moment’s reflection yields that ¢ is again a multiplier. Moreover, since #;p; C n,
where n := nil(R) is the nil-radical of A, we get

cFi(x) e FR(DA+n
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for all n>> 0. Choose m such that n”" is zero, whence also the smaller ideal F4(n).
Apply F/}' to the previous equations, yielding

Fi (c)Fy ™" (x) e Fy (1A

for all n > 0, which means that x € cl4 (1) since F}(c) is again a multiplier. O

8.3 Five key properties of tight closure

In this section we derive five key properties of tight closure, all of which admit
fairly simple proofs. It is important to keep this in mind, since these five properties
will already suffice to prove in the next section some deep theorems in commutative
algebra. In fact, as we will see, any closure operation with these five properties
on a class of Noetherian local rings would establish these deep theorems for that
particular class (and there are still classes for which this is not known to be true).
Moreover, the proofs of the five properties themselves rest on a few simple facts
about the Frobenius, so that this will allow us to also carry over our arguments to
characteristic zero in Chapters 9 and 10.

The first property, stated here only in its weak version, is merely an observation.
Namely, any equation (8.3) in a ring A extends to a similar equation in any A-algebra
B. In order for the latter to calculate tight closure, the multiplier ¢ € A should remain
a multiplier in B, and so we proved:

Theorem 8.3.1 (Weak Persistence). Let A — B be a ring homomorphism, and let
1 C A be an ideal. If A — B is injective and B is a domain, or more generally, if
A — B preserves multipliers, then cls(I) C clg(IB). O

The remarkable fact is that this is also true if A — B is arbitrary and A is of finite
type over an excellent Noetherian local ring (see [36, Theorem 2.3]). We will not
need this stronger version, the proof of which requires another important ingredi-
ent of tight closure: the notion of a test element. A multiplier ¢ € A is called a test
element for A, if for every a € cl(I), we have cF"(a) € F*(I)A for all n. The exis-
tence of test elements is not easy, but once one has established their existence, many
arguments become even more streamlined.

Theorem 8.3.2 (Regular closure). In a regular local ring, every ideal is tightly
closed. In fact, a regular ring is F-regular.

Proof. Let R be a regular local ring. By Corollary 5.5.8, any localization of R is
again regular, so that the second assertion follows from the first. To prove the first,
let 7 be an ideal and x € cl(J). Towards a contradiction, assume x ¢ /. In particular,
we must have (7 : x) C m. Choose a non-zero element ¢ such that (8.3) holds for all
n>> 0. This means that ¢ lies in the colon ideal (F"(I)R : F"(x)), for all n > 0. Since
F is flat by Theorem 8.1.2, the colon ideal is equal to F*(I : x)R by Theorem 5.6.16.
Since (I:x) Cm, we get c € F*(m)R C m?”". Since this holds for all n>> 0, we get
¢ =0 by Theorem 1.4.11, clearly a contradiction. a
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Theorem 8.3.3 (Colon Capturing). Let R be a Noetherian local domain which
is a homomorphic image of a regular (or even Cohen-Macaulay) local ring, and
let (x1,...,x4) be a system of parameters in R. Then for each i, the colon ideal
((x1,...,%)R : xi11) is contained in c1((x1,...,x;)R).

Proof. Let S be a local Cohen-Macaulay ring such that R = S/p for some prime
ideal p C S of height 4. By prime avoidance, we can lift the x; to elements in
S, again denoted for simplicity by x;, and find elements yi,...,y; € p such that
(V1y-++sYn,X1,- .. ,Xq) is a system of parameters in S, whence an S-regular sequence
(see Exercise 8.7.3). Since p contains the ideal J := (yy,...,y;)S of the same height
(see 4.2.1), it is a minimal prime of J. Let J = g; N... g, be a minimal primary de-
composition of J, with g; the p-primary component of J. In particular, some power
of p lies in g;, and we may assume that this power is of the form p™ for some m.
Choose c inside all g; with i > 1, but outside p (note that this is possible by prime
avoidance). Putting everything together, we have

cp?" C . (8.6)

Fix some i, let I := (x1,...,x;)S and assume zx;;1 € IR, for some z € S. Lifting this
to S, we get zx;+1 € I +p. Applying the n-th power of Frobenius to this for n > m,
we get F*(2)F" (x;+1) € F*(I)S+F"(p)S. By (8.6), this means that cF"(z)F" (x;41)
lies in F*(1)S +F""(J)S. Since the F"~"(y;) together with the F"(x;) form again
an S-regular sequence, we conclude that

cF'(z) € FY(I)S+F""™(J)S CF(I)S+J

whence ¢F"(z) € F*(I)R for all n > m. By the choice of ¢, it is non-zero in R, so
that the latter equations show that z € cl(/R). O

The condition that R is a homomorphic image of a regular local ring is satisfied
either if R is a local affine algebra, by 4.1.6, or if R is complete, by Theorems 6.4.2
and 6.4.4. These are the two only cases in which we will apply the previous theorem.
There is a more general version which does not require R to be a domain, but only
to be equidimensional, meaning that all minimal primes have the same dimension
(Exercise 8.7.13).

Theorem 8.3.4 (Finite extensions). [f A — B is a finite, injective homomorphism of
domains, and I C A be an ideal, then clg(IB) NA = cla(I).

Proof. One direction is immediate by Theorem 8.3.1. For the converse, there exists
an A-module homomorphism ¢: B — A such that ¢ := ¢(1) # 0, by Lemma 8.3.5
below. Suppose x € clg(IB) NA, so that for some non-zero d € B, we have dF"(x) €
F"(I)B for n > 0. Since B is finite over A, some non-zero multiple of d lies in A,
and hence without loss of generality, we may assume d € A . Applying ¢ to these
equations, we get

cdF"(x) e F'(I)A

showing that x € cla (7). O
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Lemma 8.3.5. IfA C B is a finite extension of domains, then there exists an A-linear
map ¢: B— A with ¢(1) #0.

Proof. Suppose B is generated over A by the elements b;,...,b,. Let K and L be
the fields of fractions of A and B respectively. Since B is a domain, it lies inside
the K-vector subspace V C L generated by the ;. Choose an isomorphism y: V —
K' of K-vector spaces. After renumbering, we may assume that the first entry of
y(1) is non-zero. Let 7: K" — K be the projection onto the first coordinate, and let
d € A be the common denominator of the n(y(b;)) for i = 1,...,s. Now define an
A-linear homomorphism ¢ by the rule ¢(y) = dn(y(y)) for y € B. Since y is an A-
linear combination of the »; and since dx(y(b;)) € A, also ¢(y) € A. Moreover, by
construction, ¢(1) # 0. 0

Note that a special case of Theorem 8.3.4 is the fact that tight closure measures
the extent to which an extension of domains A C B fails to be cyclically pure: IBNA
is contained in the tight closure of I, for any ideal I C A. In particular, in view of
Theorem 8.3.2, this reproves the well-known fact that if A C B is an extension of
domains with A regular, then A C B is cyclically pure. The next and last property
involves another closure operation, integral closure. It will be discussed in more
detail below (§8.4), and here we just state its relationship with tight closure:

Theorem 8.3.6 (Integral closure). For every ideal I C A, its tight closure is con-
tained in its integral closure. In particular, radical ideals, and more generally inte-
grally closed ideals, are tightly closed.

Proof. The second assertion is an immediate consequence of the first. We verify
condition (4) of Theorem 8.4.1 to show that if x belongs to the tight closure cl4 (1),
then it also belongs to the integral closure I. Let A — V be a homomorphism into a
discrete valuation ring V, such that its kernel is a minimal prime of A. We need to
show that x € IV. However, this is clear since x € cly (IV) by Theorem 8.3.1 (note
that A — V preserves multipliers), and since cly (IV) = IV, by Theorem 8.3.2 and
the fact that V is regular (Exercise 4.3.8). a

It is quite surprising that there is no proof, as far as I am aware of, that a prime
ideal is tightly closed without reference to integral closure.

8.4 Integral closure

The integral closure I of an ideal [ is the collection of all elements x € A satisfying
an integral equation of the form

a4+ 4, =0 (8.7)

with a; € I for all j=1,...,d. We say that I is integrally closed if I = I. Since
clearly I C rad(I), radical ideals are integrally closed. It follows from either charac-
terization (2) or (4) below that [ is an ideal.
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Theorem 8.4.1. Let A be an arbitrary Noetherian ring (not necessarily of charac-
teristic p). For an ideal I C A and an element x € A, the following are equivalent

1. x belongs to the integral closure, I;

2. there is a finitely generated A-module M with zero annihilator such that xM C
IM;

3. there is a multiplier ¢ € A such that cx* € I" for infinitely many n;

4. for every homomorphism A — V into a discrete valuation ring V with kernel
equal to a minimal prime of A, we have x € IV ;

Proof. We postpone the proof to Exercise 8.7.14, except for the equivalence of (1)
with (4) (note that this is the only equivalence used so far, in the proof of Theo-
rem 8.3.6). By Exercise 8.7.12, we may reduce to the case that A is moreover a
domain.

To prove (1) = (4), suppose x € I and A C V is an injective homomorphism
into a discrete valuation ring V. Let v be the valuation on V. Suppose towards a
contradiction that x ¢ 1V, and therefore m := v(x) < n:=v(IV). By assumption, x
satisfies an integral equation (8.7). For all i = 1,...,d, we have v(ax‘~") > ni+ (d —
i)m > dm. However, this is in contradiction with v(x¢) = md.

To prove the converse, assume x € IV for every embedding A C V into a discrete
valuation ring V. Let I = (ay,...,a,)A, and consider the homomorphism A[§] — A,
given by & — a;/x, where & := (&;,...,&,). Let B be its image, so that A C B C A,
(one calls B the blowing-up of I +xA at x). Let m := (&;,...,&,)A[&]. | claim that
mB = B. Assuming the claim, we can find f € m such that f(a/x) =1 in A,, where
a:=(ay,...,a,). Write f = fi +---+ f; in its homogeneous parts f; of degree j, so
that

L=x""fi(@)+-+xfs(a).
Multiplying with x4, and observing that f;(a) € I/, we see that x satisfies an integral
equation (8.7), and hence x € I.

To prove the claim ex absurdum, suppose mB is not the unit ideal, whence is
contained in a maximal ideal n of B. By Exercise 8.7.15, there exists an injective,
local homomorphism B, C V with V a discrete valuation ring. Hence also A C V.
Since mV lies in the maximal ideal nV, we get a; € xzV for all i. Hence IV C xaV
contradicting that x € IV. O

From this we readily deduce (see Exercise 8.7.10):

Corollary 8.4.2. A domain A is normal (=integrally closed) if and only if each prin-
cipal ideal is integrally closed if and only if each principal ideal is tightly closed.

In one of our applications below (Theorem 8.5.1), we will make use of the fol-
lowing nice application of the chain rule:

Proposition 8.4.3. Let K be a field of characteristic zero, and let R be either the
power series ring K[[&]], the ring of convergent power series K{E} (assuming K is
a normed field), or the localization of K[| at the ideal generated by the indetermi-
nates & := (&1,...,&,). If f is a non-unit, then it lies in the integral closure of its

Jacobian ideal Jac(f) := (0 f/d&1,...,0f/I&)R.
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Proof. Recall that K{£} consists of all formal power series f such that f(u) is
a convergent series for all u in a small enough neighborhood of the origin. Put
J :=Jac(f). In view of (4) in Theorem 8.4.1, we need to show that given an em-
bedding R C V into a discrete valuation ring V, we have f € JV. Since completion
is faithfully flat by Theorem 6.3.4, we may replace V by its completion, and hence
already assume V is complete. By Theorem 6.4.2 therefore, V is a power series ring
k[[£]] in a single variable over a field extension x of K. Viewing the image of f in
k[[£]] as a power series in {, the multi-variate chain rule yields

df df dsi
¢ ,Ziaé a ©

However, since f has order e > 1 in V, its derivative df/d{ has order e — 1, and
hence f € (df/d{)V C JV. Note that for this to be true, however, the characteristic
needs to be zero. For instance, in characteristic p, the power series €7 would already
be a counterexample to the proposition. a

Since the integral closure is contained in the radical closure, we get that some
power of f lies in its Jacobian Jac(f). A famous theorem due to Briangon-Skoda
states that in fact already the n-th power lies in the Jacobian (where n is the num-
ber of variables; we will prove this via an elegant tight closure argument in Theo-
rem 8.5.1 below).

8.5 Applications

We will now discuss three important applications of tight closure. Perhaps surpris-
ingly, the original statements all were in characteristic zero (with some of them in
their original form plainly false in positive characteristic), and their proofs required
deep and involved arguments, some even based on transcendental/analytic methods.
However, they each can be reformulated so that they also make sense in positive
characteristic, and then can be established by surprisingly elegant tight closure ar-
guments. As for the proofs of their characteristic zero counterparts, they must wait
until we have developed the theory in characteristic zero in Chapters 9 and 10 (or
one can use the ‘classical’ tight closure in characteristic zero discussed in §8.6).

The Briancon-Skoda theorem. We already mentioned this famous result, proven
firstin [12].

Theorem 8.5.1 (Briancon-Skoda). Let R be either the ring of formal power series
C[[&]], or the ring of convergent power series C{E}, or the localization of the poly-
nomial ring C[E] at the ideal generated by &, where & := (&,...,&,) are some
indeterminates. If f is not a unit, then " € Jac(f) := (df/d&i,...,df/dE,)R.

This theorem will follow immediately from the characteristic zero analogue of
the next result (with / = 1), in view of Proposition 8.4.3 and Exercise 4.3.5; we will
do this in Theorem 9.2.5 below.
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Theorem 8.5.2 (Briancon-Skoda—tight closure version). Let A be a Noetherian
ring of characteristic p, and I C A an ideal generated by n elements. Then we have
foralll > 1 an inclusion

[+H=1C el (1.

In particular, if A is a regular local ring, then the integral closure of I'""'~! lies
inside I' foralll > 1.

Proof. For simplicity, I will only prove the case [ = 1 (see Exercise 8.7.7 for the
general case). Assume z € I". By (3) in Theorem 8.4.1, there exists a multiplier
¢ € A such that czX € I for all k> 0. Since I := (fi,..., f,)A, we have an inclusion
I C (fF,..., fX)A. Hence with k equal to p™, we get cF"(z) € F"(I)A for all
m > 0. In conclusion, z € cl(I). The last assertion then follows from Theorem 8.3.2.

O

The Hochster-Roberts theorem. We will formulate the next result without defin-
ing in detail all the concepts involved, except when we get to its algebraic formula-
tion. A linear algebraic group G is an affine subscheme of the general linear group
GL(K,n) over an algebraically closed field K (see Example 2.3.7) such that its K-
rational points form a subgroup of the latter group. When G acts (as a group) on
a closed subscheme X C A% (more precisely, for each algebraically closed field L
containing K, there is an action of the L-rational points of G(L) on X (L)), we can
define the quotient space X /G, consisting of all orbits under the action of G on X,
as the affine space Spec(R%), where R denotes the subring of G-invariant sections
in R:=T'(X,0x) (the action of G on X induces an action on the sections of X,
and hence in particular on R). For this to work properly, we also need to impose a
certain finiteness condition: G has to be linearly reductive. Although not usually its
defining property, we will here take this to mean that there exists an RC-linear map
R — RY which is the identity on R, called the Reynold operator of the action. For
instance, if K = C, then an algebraic group is linearly reductive if and only if it is
the complexification of a real Lie group, where the Reynolds operator is obtained
by an integration process. This is the easiest to understand if G is finite, when the
integration is just a finite sum

1
p:R—RC:ar— — Zaa,
|G|6€G

where a® denotes the effect of 6 € G acting on a € R. In fact, as indicated by the
above formula, a finite group is linearly reductive over a field of positive character-
istic, only if its cardinality is not divisible by the characteristic. If X is non-singular
and G is linearly reductive, then we will call X /G a quotient singularity.' The cele-
brated Hochster-Roberts theorem now states:

Theorem 8.5.3. Any quotient singularity is Cohen-Macaulay.

! The reader should be aware that other authors might use the term more restrictively, only allowing
X to be affine space A%, or G to be finite.
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To state a more general result, we need to take a closer look at the Reynolds
map. A ring homomorphism A — B is called split, if there exists an A-linear map
0: B — A which is the identity on A (note that ¢ need not be multiplicative, that is
to say, is not a ring homomorphism, only a module homomorphism). We call ¢ the
splitting of A — B. Hence the Reynold map is a splitting of the inclusion R® C R.
The only property of split maps that will matter is the following:

8.5.4 A split homomorphism A — B is cyclically pure.

See the discussion following Proposition 5.3.4 for the definition of cyclic purity.
Leta € IBNA with I = (fi,..., fs)A an ideal in A. Hence a = f1b; + - -- + fibs for
some b; € B. Applying the splitting 6, we get by A-linearity a = fio(b1) +---+
f50(bs) € I, proving that A is cyclically pure in B. O

We can now state a far more general result, of which Theorem 8.5.3 is just a
special case (see Exercise 8.7.9).

Theorem 8.5.5. If R — S is a cyclically pure homomorphism and if S is regular, then
R is Cohen-Macaulay.

Proof. In fact, we can split the proof in two parts. Namely, we first show that R is
F-regular, and then show that any F-regular ring is Cohen-Macaulay.

8.5.6 A cyclically pure subring of a regular ring is F-regular.

Indeed, since both cyclic purity and regularity are preserved under localization,
we only need to show that every ideal in R is tightly closed. To this end, let
I C R and x € cl(I). Hence x lies in the tight closure of IS by (weak) persistence
(Theorem 8.3.1), and therefore in IS by Theorem 8.3.2. Hence by cyclic purity,
x € I =ISNR, proving that R is weakly F-regular. Note that we actually proved that
a cyclically pure subring of a (weakly) F-regular ring is again (weakly) F-regular.

8.5.7 An F-regular domain is Cohen-Macaulay.

Without loss of generality, we may assume R is local. Assume R is F-regular and
let (x1,...,x4) be a system of parameters in R. To show that x; 1| is R/(xy,...,x;)R-
regular, assume zx; ;1 € (xi,...,x;)R. Colon Capturing (Theorem 8.3.3) yields that
z lies in the tight closure of (xi,...,x;)R, whence in the ideal itself since R is F-
regular. a

In fact, R is then also normal (this follows easily from 8.5.6 and Corollary 8.4.2).
A far more difficult result is that R is then also pseudo-rational (a concept that lies
beyond the scope of these notes; see for instance [36, 65] for a discussion of what
follows). This was first proven by Boutot in [11] for C-affine algebras by means of
deep vanishing theorems. The positive characteristic case was proven by Smith in
[68] by tight closure methods, where she also showed that pseudo-rationality is in
fact equivalent with the weaker notion of F-rationality (a local ring is F-rational if
some parameter ideal is tightly closed). The general characteristic zero case was
proven in [65] by means of ultraproducts (as described in §10). In fact, being F-
regular is equivalent under the Q-Gorenstein assumption with having log-terminal
singularities (see [23, 59]). It should be noted that ‘classical’ tight closure theory
in characteristic zero (see §8.6 below) is not sufficiently versatile to derive these
results: so far, only our present ultraproduct method seems to work.
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The Ein-Lazardsfeld-Smith theorem. If P is a point in the affine plane K2, and
f €K&, L], then we say that f has multiplicity k at P if P is a k-multiple point of the
curve V(f) (as defined in Definition 4.1.2). The next result, although elementary in
its formulation, was only proven recently in [17] using quite complicated methods
(which only work over C), but then soon after in [32] by an elegant tight closure
argument (see also [55]), which proves the result over any field K.

Theorem 8.5.8. Let V C K? be a finite subset with ideal of definition I := 3(V). For
each k, let Ji.(V) be the ideal of all polynomials f having multiplicity at least k at
each point x € V. Then Jo (V) C I¥, for all k.

To formulate the more general result of which this is just a corollary, we need
to introduce symbolic powers. We first do this for a prime ideal p: its k-th symbolic
power is the contracted ideal p(¥) := p*R, NR. In general, the inclusion p* C p*) may
be strict, and in fact, p*) is the p-primary component of pX. If a is a radical ideal
(we will not treat the more general case), then we define its k-th symbolic power a®
as the intersection pgk) n---N pék) , where the p; are all the minimal overprimes of a.
The connection with Theorem 8.5.8 is given by:

8.5.9 The k-th symbolic power of the ideal of definition I := J(V) of a finite
subset V C K? is equal to the ideal Ji(V) of all polynomials that have
multiplicity at least k at any point of V.

Indeed, for x € V, let m := my be the corresponding maximal ideal. By 4.1.4, a
polynomial f has multiplicity at least k at each x € V, if f € m*A, for all maximal
ideals m containing /. The latter condition simply means that f € m(*), so that the
claim follows from the definition of symbolic power. a

Hence, in view of this, Theorem 8.5.8 is an immediate consequence of the fol-
lowing theorem (at least in positive characteristic; for the characteristic zero case,
see Theorems 9.2.6 and 10.2.4 below):

Theorem 8.5.10. Let A be a regular domain of characteristic p. Let a C A be a
radical ideal and let h be the maximal height of its minimal overprimes. Then we
have an inclusion a™ Ca”, forall n.

Proof. We start with proving the following useful inclusion:
al?’) C F¢(a)A (8.8)

forall e. Let py,...,p,, be the minimal prime ideals of a. We first prove (8.8) locally
at one of these minimal primes p. Since Ay, is regular and aA, = pAp, we can find
fi € asuch that aAp = (f1,..., f)Ap. By definition of symbolic powers, Ct“”’(’)A,J =
a’”’eAp. On the other hand, ahf”eA;J consists of monomials in the f; of degree hp°®,
and hence any such monomial lies in F¢(a)Ay. This establishes (8.8) locally at p.
To prove this globally, take z € alhr?). By what we just proved, there exists s; ¢ p;
such that s;z € F¢(a)A foreach i = 1,...,m. For each i, choose an element 7; in all p j
except p;, and put s := #1571 + - - - + Sty It follows that s multiplies z inside F¢(a)A,
whence a fortiori, so does F¢(s). Hence
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z€ (F(a)A : F¢(s)) = F¢(a: 5)A

where we used Theorem 5.6.16 and the fact that F is flat on A by Theorem 8.1.2.
However, s does not lie in any of the p;, whence (a : s) = a, proving (8.8).

To prove the theorem, let f € a™) and fix some e. We may write p¢ = an+ r for
some a,r € N with 0 < r < n. Since the usual powers are contained in the symbolic
powers, and since r < n, we have inclusions

ahnfa C c‘hrfa C a(han+hr) — a(hp“) C Fe(a)A (8.9)

where we used (8.8) for the last inclusion. Taking n-th powers in (8.9) shows that
ahm® S lies in the n-th power of F¢(a)A, and this in turn lies inside F¢(a")A. Choose

some non-zero ¢ in ™. Since p¢ > an, we get ¢cF°(f) € F¢(a")A for all e. In
conclusion, f lies in cl(a") whence in a” by Theorem 8.3.2. O

One might be tempted to try to prove a more general form which does not assume
A to be regular, replacing a” by its tight closure. However, we used the regularity as-
sumption not only via Theorem 8.3.2 but also via Kunz’s theorem that the Frobenius
is flat. Hence the above proof does not work in arbitrary rings.

8.6 Classical tight closure in characteristic zero

To prove the previous three theorems in a ring of equal characteristic zero,
Hochster and Huneke also developed tight closure theory for such rings. One of
the precursors to tight closure theory was the proof of the Intersection Theorem by
Peskine and Szpiro in [44]. They used properties of the Frobenius together with a
method to transfer results from characteristic p to characteristic zero, which was
then generalized by Hochster in [26]. This same technique is also used to obtain a
tight closure theory in equal characteristic zero, as we will discuss briefly in this sec-
tion. However, using ultraproducts, we will bypass in Chapters 9 and 10 this rather
heavy-duty machinery, to arrive much quicker at proofs in equal characteristic zero.

Let A be a Noetherian ring containing the rationals. The idea is to associate to
A some rings in positive characteristic, its reductions modulo p, and calculate tight
closure in the latter. More precisely, let a C A be an ideal, and z € A. We say that z
lies in the HH-tight closure of a (where “HH” stands for Hochster-Huneke), if there
exists a Z-affine subalgebra R C A containing z, such that (the image of) z lies in the
tight closure of I(R/pR) for all primes numbers p, where I := anR.

It is not too hard to show that this yields a closure operation on A (in the sense
of Definition 8.2.3). Much harder is showing that it satisfies all the necessary prop-
erties from §8.3. For instance, to prove the analogue of Theorem 8.3.2, want needs
some results on generic flathess, and some deep theorems on Artin Approximation
(see for instance [36, Appendix 1] or [31]; for a brief discussion of Artin Approxi-
mation, see §10.1 below; for an example of the technique, see Project 10.6 below).
In contrast, using ultraproducts, one can avoid all these complications in the affine
case (Chapter 9), or get by with a more elementary version of Artin Approximation
in the general case (Chapter 10).
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8.7 Exercises

Ex 8.7.1
Let A be the coordinate ring of the hypersurface in K> given by the equation £ — 3 —n" =
0. Show that & lies in the tight closure of (,n)A.

A far more difficult result is to show that this is not true if we replace 17 by 1° in the above
equation. In fact this new coordinate ring is F-regular, but this is a deep fact, following from
it being log-terminal (see also the discussion following Theorem 8.5.5).

Ex 8.7.2

Show that any regular ring of prime characteristic is F-regular.

Ex 8.7.3
Prove the existence of the y; in the proof of Theorem 8.3.3.

Ex 8.7.4
Work out the details of the following alternative proof of Colon Capturing for a local domain
R admitting Noether Normalization with parameters, meaning that for any system of param-
eters (xi,...,xg) in R, there exists a regular local subring S C R containing the x; such that
S C R is finite and (x1,...,x4)S is the maximal ideal of S. Suppose z € ((x1,...,%)R : xi+1)
and let A be the S-subalgebra of R generated by z. Show that A is a hypersurface ring and
hence is Cohen-Macaulay, by modifying the proof of Corollary 5.6.14. By Lemma 8.3.5,
there exists an R-linear map @: R — A with ¢ := (1) # 0. Apply the n-th iterate of Frobe-

nius to the relation zxj 41 € (x1,...,x;)R and then apply @ to get ideal membership relations
in A. Use that ¥"(x;) is a regular sequence in A to derive from these relations that 7 lies in
the tight closure of (x1,...,x;)A, and finish with an application of weak persistence (Theo-
rem 8.3.1).

Show using Theorem 2.2.5 that any affine local domain admits Noether Normalization with
parameters (see for instance [18, Theorem 13.3]). Prove similarly, using the argument in
Theorem 6.4.6, that so does any complete Noetherian local domain.

Ex 8.7.5
Prove, using tight closure, that a Noether normalization A C B of an affine algebra B over
a field of positive characteristic is cyclically pure. Use this, together with Corollary 5.6.11,
to give an example of a finite cyclically pure homomorphism of local rings which is not flat.

Ex 8.7.6
Show that if 7 € I satisfies an integral equation (8.7) of degree d, then I'~1z* € I* for all k.

Ex 8.7.7

Prove the general version of Theorem 8.5.2.

Ex 8.7.8
Give an alternative proof that E* € cl (I) in Example 8.2.2 using the Briangon-Skoda Theo-
rem instead.



134 8 Tight closure in characteristic p

Ex 8.7.9
Derive Theorem 8.5.3 from Theorem 8.5.5 using 8.5.4.

Additional exercises.

Ex 8.7.10
Prove Corollary 8.4.2.

Ex 8.7.11
Prove that if A is an affine k-algebra, or a complete Noetherian local ring with
residue field k, and if k is perfect, or more generally, if (k : k”) < oo, thenF,: A — A
is finite.

Ex 8.7.12
Show that x lies in the integral closure of an ideal I if and only if it lies in the integral
closure of each I(A/p), forp a minimal prime of A.

Ex 8.7.13
Prove Theorem 8.3.3 under the weaker assumption that R is an equidimensional
homomorphic image of a Cohen-Macaulay local ring.

Ex 8.7.14
To show the equivalence of (1) with (2) in Theorem 8.4.1, use in one direction the
ideal J .= x* A+ x?"2]+ ...+ I, and in the other use a ‘determinantal trick’. Use
the ideal J to also prove (1) = (3), and finish the proof of Theorem 8.4.1 by showing
(3) = (4). See also Exercise 8.7.6.

Ex 8.7.15
Let (R,m) be a Noetherian local domain. We want to show that there exists a dis-
crete valuation ring V and a local injective homomorphism R — V. Let (xi,...,x,)
be a generating tuple of m and let R’ be the R-algebra generated by the fractions
x;/x; withi=1,...,n (one often refers to B as a blowing-up of R at m). Show that mB
is principal, and using Krull's Principal Ideal Theorem (Theorem 3.3.4), that there
exists a height one prime ideal p in B containing mB. LetV be the integral closure of
By. Show thatV is a discrete valuation ring, and that the natural embedding R — V
is local.

Ex 8.7.16
In this exercise, we will explore some of the concepts of invariant theory briefly
mentioned at the beginning of our discussion on the Hochster-Roberts Theorem.
Let K be an algebraically closed field, let X = Spec(R) C A% be an irreducible, re-
duced closed subscheme, and let G be a linearly reductive algebraic group acting
on X. In particular, the K-rational points G(K) of G form an (abstract) group acting
on the variety X (K) C K" consisting of the K -rational points of X (see page 27). For
a given section p: X(K) — K, and an element g € G(K), define a new section p$
given by the rule p?(u) = p(g-u). Show that we may identify R with the sections on
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X(K), and the above then defines an action of G(K) on R. Let R® be the subring
of invariants of R under this action, that is to say, all a € R such that a8 = a for all
g € G(K) (notationally, one often confuses the algebraic group G with its K -rational
points G(K)). Without proof, we state that RC is again K-affine, that is to say, a
finitely generated K -algebra. LetY := Spec(R®). Show, using Exercise 5.7.7 and the
Reynolds operator, that the induced map X — Y is surjective. Show furthermore
that the induced surjective map of K-rational points X(K) — Y (K) factors through
the orbit space X (K)/G(K). It requires some more work though to show that this
actually induces an isomorphism X (K)/G(K) =Y (K).






Chapter 9
Tight closure in characteristic zero. Affine case

We will develop a tight closure theory in characteristic zero which is different from
the Hochster-Huneke approach discussed briefly in §8.6. In this chapter we treat the
affine case, that is to say, we develop the theory for algebras of finite type over an
uncountable algebraically closed field K of characteristic zero; the general local case
will be discussed in Chapter 10. Recall that under the Continuum Hypothesis, any
uncountable algebraically closed field K of characteristic zero is a Lefschetz field,
that is to say an ultraproduct of fields of positive characteristic, by Theorem 1.4.3
and Remark 1.4.4. In particular, without any set-theoretic assumption, C, the field
of complex numbers, is a Lefschetz field. The idea now is to use the ultra-Frobenius,
that is to say, the ultraproduct of the Frobenii (see Definition 1.4.14), in the same
manner in the definition of tight closure as in positive characteristic. However, the
ultra-Frobenius does not act on the affine algebra but rather on its ultra-hull, so that
we have to introduce a more general setup. It is instructive to do this first in an
axiomatic manner, and then specialize to the situation at hand.

9.1 Difference hulls

A ring C together with an endomorphism ¢ on C is called a difference ring, and for
emphasis, we denote this as a pair (C, o). If (C,0) and (C'0’) are difference rings,
and ¢ : C — C’ aring homomorphism, then we call ¢ a morphism of difference rings
if it commutes with the endomorphisms, that is to say, if (o (a)) = 6’ (¢(a)) for all
a € C. The example par excellence of a difference ring is any ring of positive char-
acteristic endowed with his Frobenius. We will now reformulate tight closure from
this perspective, but anticipating already the fact that the ultra-Frobenius acts only
on a certain overring of the affine algebra, to wit, its ultra-hull defined in §7.1. Since
we also want the theory to be compatible with ring homomorphisms (‘Persistence’),
we need to work categorically. Let € be a category of Noetherian rings closed un-
der homomorphic images (at this point we do not need to make any characteristic
assumption). Often, the category will also be closed under localization, and we will
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tacitly assume this as well. In summary, € is a collection of Noetherian rings so that
for any A in ¢ any localization S~!A and any residue ring A/I belongs again to €
(and the canonical maps A — S~'A and A — A/I are morphisms in €).

Definition 9.1.1 (Difference hull). A difference hull on € is a functor D(-) from €
to the category of difference rings, and a natural transformation 7] from the identity
functor to D(-) (that is to say, for each A in €, we have a difference ring D(A)
with endomorphism 64 and a ring homomorphism 14: A — D(A), and for each
morphism A — B in €, we get an induced morphism of difference rings D(A) —
D(B) such that the diagram

A i - D(A)

9.1)

B 5 ~ D(B)

commutes), with the following three additional properties:

1. each ns: A — D(A) is faithfully flat;
2. the endomorphism o, of D(A) preserves D(A)-regular sequences;
3. for any ideal I C A, we have o4 (I) C I*’D(A).

Since 14 is in particular injective (Proposition 5.3.4), we will henceforth view A
as a subring of D(A) and omit, as usual, 14 from our notation.

Difference closure. Given a difference hull D(-) on some category €, we define
the difference closure c1P(I) of an ideal I C A of a member A of € as follows: an
element z € A belongs to 1P (1) if there exists a multiplier ¢ € A and a number N € N
such that

co"(z) € 6™(I)D(A) 9.2)

for all n > N. Here, 6" (I)D(A) denotes the ideal in D(A) generated by all 6" (y)
with y € I, where o is the endomorphism of the difference ring D(A). It is crucial
here that the multiplier ¢ already belongs to A, although the membership relations
in (9.2) are inside the bigger ring D(A). We leave it as an exercise to show that
the difference closure is indeed a closure operation in the sense of Definition 8.2.3
(see Exercise 9.5.1). An ideal that is equal to its difference closure will be called
difference closed.

Example 9.1.2 (Frobenius hull). It is clear that our definition is inspired by the mem-
bership test (8.3) for tight closure, and indeed, this is just a special case. Namely, for
a fixed prime number p, let €, be the category of all Noetherian rings of character-
istic p and let D(+) be the functor assigning to a ring A the difference ring (A,F4).
It is easy to see that this makes D(-) a difference hull in the above sense, and the
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difference closure with respect to this hull is just the tight closure of the ideal; we
will refer to this construction as the Frobenius hull.

In the next section, we will view tight closure in characteristic zero as a difference
closure too. For the remainder of this section, we fix a category ¢ endowed with a
difference hull D(-), and study the corresponding difference closure on the members
of €. For a given member A of €, we let oy, or just 6, be the endomorphism of D(-).
In fact, we are mostly interested in the restriction of o to A, and we also denote this
homomorphism by ¢ (of course, this restriction is no longer an endomorphism).

Five key properties of difference closure. To derive the necessary properties of
this closure operation, namely the the analogues of the five key properties of §8.3, we
again depart from a flatness result, the analogue of Kunz’s theorem (Theorem 8.1.2).

Proposition 9.1.3. If A is a regular local ring in €, then 6: A — D(A) is faithfully

Slat.
Proof. By Theorem 5.6.10, it suffices to show that D(A) is a balanced big Coh-
en-Macaulay algebra under o. To this end, let (xj,...,x;) be an A-regular se-

quence. Since A C D(A) is by assumption faithfully flat, (xi,...,xz) is D(A)-
regular by Proposition 5.4.1. By Condition (2) of Definition 9.1.1, the sequence
(o(x1),...,0(xy)) is also D(A)-regular, as we wanted to show. O

Corollary 9.1.4. Any ideal of a regular ring in € is difference closed.

Proof. Suppose first that (R,m) is a regular local ring in €, and z lies in the dif-
ference closure of an ideal I C R. Hence, with ¢ and N as in (9.2), the multiplier ¢
lies in (6" (I)D(R) : 0" (z)) for n > N, and hence by flatness (Proposition 9.1.3) and
the Colon Criterion (Theorem 5.6.16), it lies in 6”(I : z) D(R). If z does not belong
to 1, then (7 : z) C m, and hence ¢ belongs to 6" (m)D(R) which in turn lies inside
m?" D(R) by Condition (3) of Definition 9.1.1. By faithful flatness, ¢ therefore lies in
mzn, for every n > N, contradicting, in view of Krull’s Intersection Theorem 1.4.11,
that it is a multiplier whence non-zero.

For the general case, assume z lies in the tight closure of an ideal I in a regular
ring A in €. By weak persistence and the local case, z € IA, for any maximal ideal
m of A. It follows that (I : z) cannot be a proper ideal, whence z € I. a

Remark 9.1.5. Let us call a difference hull simple if instead of Condition 9.1.1(3)
we have the stronger condition that ¢(I) is contained in all powers of ID(A), for
1 C A. In that case, we can define a variant of the difference closure, called simple
difference closure, by requiring condition (9.2) to hold only for n = 1, that is to say, a
single test suffices. Inspecting the above proof, one sees that for a simple difference
hull, any ideal 7 in a regular ring is equal to its simple difference closure. We leave
it to the reader (see Exercise 9.5.6) to show that simple difference closure satisfies
all the properties below of its non-simple counterpart.

Weak persistence holds for the same reasons as it does for tight closure, so for
the record we state:
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9.1.6 If A — B is an injective morphism in € with A and B domains, then
cP(1) C c1PUB).

Proposition 9.1.7 (Colon Capturing). Let R be a Noetherian local domain which

is a homomorphic image of a Cohen-Macaulay local ring in €, and let (x1,...,x4)
be a system of parameters in R. Then for each i, the colon ideal ((x1,...,x))R: xi+1)
is contained in c1°((x1,...,x;)R).

Proof. Let S be alocal Cohen-Macaulay ring in € such that R = S/p for some prime
ideal p C §, and assume the x; already belong to S. As in the proof of Theorem 8.3.3,
we can find an S-regular sequence (y1,...,Vn,X1,-..,Xg) With y1,...,y, € p, an ele-
ment ¢ ¢ p, and a number m € N such that

cp® CJi= (31,308 (9.3)

Let 7 denote the endomorphism of D(S). By assumption, the canonical epimorphism
S — R induces a morphism of difference rings D(S) — D(R). In particular, pD(R) =
0.

Fix some i, let I := (xy,...,x;)S and assume zx;1; € IR some z € S. Hence
zxiy1 € I +p. Applying 7" to this for n > m, we get t"(z)t"(x;41) € T"(I)D(S) +
" (p)D(S). By (9.3) and 9.1.1(3), this means that 1" (z) 7" (x;+1) lies in 7" (I) D(S) +
7" "(J)D(S). Since the "™ (y;) together with the 7"(x;) form again an S-regular
sequence by a stronger version of 9.1.1(2) proven in Exercise 9.5.2, we conclude
that

t'(z) € T"(1)D(S) + """ (J)D(S "(I)D(S)+JD(S).

)C1
Therefore, under the induced morphism D(S) — D(R), we get
)

cc"(z) € o"(1)D(R
for all n > m, showing that z € c1°(IR). O

To prove the remaining two properties (the analogues of Theorems 8.3.4 and
8.3.6 respectively), some additional assumptions are needed. To compare with in-
tegral closure, we have to make a rather technical assumption on the underlying
category €. We say that € has the Néron property if for any homomorphism A — V
with A in € and V a discrete valuation ring (not necessarily belonging to €), there
exists a faithfully flat extension V. — W and a morphism A — Rin € withR€ Ca
regular local ring such that the following diagram commutes

A -V

94
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Clearly the Frobenius hull in prime characteristic trivially satisfies this property
since we then may take R=V =W.

Proposition 9.1.8. If € is a difference hull satisfying the Néron property, then the
difference closure of any ideal is contained in its integral closure.

Proof. Letl C Abeanideal of aring A in €, and let z € A be in the difference closure
of /. In order to show that z lies in the integral closure of /, we use criterion (4) in
Theorem 8.4.1. To this end, let A — V be a homomorphism into a discrete valuation
ring V whose kernel is a minimal prime of A. We need to show that z € IV. Since
¢ has the Néron property, we can find a faithfully flat extension V — W and a mor-
phism A — R in € with R a regular local ring, yielding a commutative diagram (9.4).
By assumption, there exists a multiplier ¢ € A and a number N such that (9.2) holds
in D(A). Since ¢ does not lie in the kernel of A — V, its image in R must, a fortiori,
be non-zero. Hence the same ideal membership relations viewed in D(R) show that
z lies in the difference closure of /R. By Corollary 9.1.4, this implies that z already
lies in /R whence in /W. By faithful flatness and Proposition 5.3.4, we get z € IV,
as we wanted to show. a

Let us say that the difference hull D(-) commutes with finite homomorphisms if
for each finite homomorphism A — B in €, the canonical homomorphism D(A) ®4
B — D(B) is an isomorphism of D(A)-algebras. Once more, this property holds
trivially for the Frobenius hull.

Proposition 9.1.9. If D(-) commutes with finite homomorphisms, and if A C B is a
finite extension of domains, then c1°(I) = c1P(IB) N A for any ideal I C A.

Proof. As in the proof of Theorem 8.3.4, we have an A-linear map ¢: B — A
with (1) # 0. By base change, this yields a D(A)-linear map D(A) ®4 B — D(A),
whence a D(A)-linear map D(B) — D(A). The remainder of the argument is now as
in the proof of Theorem 8.3.4, and is left to the reader. ad

9.2 Tight closure

Our axiomatic treatment in terms of difference closure now only requires us to iden-
tify the appropriate difference hull. For the remainder of this chapter, K denotes a
fixed algebraically closed Lefschetz field, and €k is the category of K-affine alge-
bras (that is to say, the algebras essentially of finite type over K). By definition, we
can realize K as an ultraproduct of fields K, of characteristic p, where for simplic-
ity we index these fields by their characteristic although this is not necessary. We
remind the reader that K = C is an example of a Lefschetz field (Theorem 1.4.3).
As difference hull, we now take the ultra-hull as defined in §7.1, viewing it as a
difference ring by means of its ultra-Frobenius (see Definition 1.4.14).

Theorem 9.2.1. The category €k has the Néron property, and the ultra-hull consti-
tutes a simple difference hull which commutes with finite homomorphisms.
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Proof. We defer the proof of the Néron property to Proposition 9.2.2 below. The
ultra-hull is functorial by 7.1.3. Property (1) in Definition 9.1.1 holds by Theo-
rem 7.2.2, and the two remaining properties (2) and (3) hold trivially. By Los’ The-
orem, the ultra-hull is a simple difference hull as defined in Remark 9.1.5; and it
commutes with finite homomorphisms by Proposition 7.3.1. a

Proposition 9.2.2. The category €k has the Néron property.

Proof. Assume A — V is a homomorphism from a K-affine ring A into a discrete
valuation ring V. Replacing A by its image in V, we may view A as a subring of
V. By Theorem 6.4.5, the completion of V is isomorphic to L[[¢]] for some field
L extending K and for ¢ a single indeterminate. Let L be the algebraic closure of L
and put W :=L[[r]]. By Theorem 6.3.4 and base change, the natural homomorphism
V — W is faithfully flat (see also Theorem 6.4.7). The image of A in W has the same
(uncountable) cardinality as K, whence is already contained in a subring of the
form k[[r]] with k an algebraically closed subfield of L of the same cardinality as
K. By Theorem 1.4.5, we have an isomorphism k = K, and so we may assume
that the composition A — W factors through K[[r]]. Let B’ be the A-subalgebra of W
generated by ¢, and let B be its localization at W N B’, so that B is a local V;-affine
ring, where V; is the localization of K|[¢] at the ideal generated by . By Néron p-
desingularization (see for instance [2, §4]), the embedding B C K[[t]] factors through
a regular local Vy-algebra R. Since R is then also a K-affine local ring, it satisfies all
the required properties. O

The difference closure obtained from this choice of difference hull on €x will
simply be called again tight closure (in the paper [57] it was called non-standard
tight closure). For ease of reference, we repeat its definition here: an element z in
a K-affine ring A belongs to the tight closure of an ideal / C A if there exists a
multiplier ¢ € A such that

cFlL(z) eFL(HU(A) 9.5)

for all n > 0. We will denote the tight closure of I by cls (1) or simply cl(/), and
we adopt the corresponding terminology from positive characteristic. Immediately
from Theorem 9.2.1 and the results in the previous section we get:

Theorem 9.2.3. Tight closure on K-affine rings satisfies the five key properties:

1. ifA — B is an extension of K -affine domains, or more generally, a homomorphism
of K-affine rings preserving multipliers, then cly(I) C clg(IB) for every ideal
I1CA;

2. if A is a K-affine regular ring, then any ideal in A is tightly closed, and in fact, A
is F-regular;

3. if R is a K-affine local ring and (x1,...,x;) a system of parameters in R, then
((x1y-- s x)R 2 xip1) Cel((xq,...,x)R) forall i;

4. the tight closure of an ideal is contained in its integral closure;

5. if A C B is a finite extension of K-affine domains, then cla(I) = clg(IB) NA.

O
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Of all five properties, only (4) relies on a deeper theorem, to wit Néron p-
desingularization (which, nonetheless, is a much weaker form of Artin Approxi-
mation than needed for the HH-tight closure as discussed in §8.6). Is there a more
elementary argument, at least for proving that tight closure is inside the radical of
an ideal? On the other hand, property (5) is not such a very impressive fact in char-
acteristic zero by Exercise 9.5.9 (see also the discussion following Theorem 9.4.1
below).

Since the ultra-hull is a simple difference hull, we can also define simple tight
closure by requiring that (9.5) only holds for n = 1 (this was termed non-standard
closure in [57]). For more on this closure, see Exercise 9.5.6. As already remarked,
the five key properties form the foundation for deriving several deep theorems, as
we now will show.

Theorem 9.2.4 (Hochster-Roberts—affine case). I[f R — S is a cyclically pure ho-
momorphism of K-affine local rings and if S is regular, then R is Cohen-Macaulay.

The argument is exactly as in positive characteristic: one shows first that R is
weakly F-regular, and then that any weakly F-regular ring is Cohen-Macaulay be-
cause we have Colon Capturing (in fact, one can prove an analogue of this result in
any difference hull, see Exercise 9.5.5). Note that by our discussion on page 129,
we have now completed the proof of Theorem 8.5.3 (to prove the result, we may
always extend the base field to a Lefschetz field). The next result, however, cannot
be proven—it seems—within the framework of difference hulls, although its proof
is still elementary.

Theorem 9.2.5 (Briancon-Skoda—affine case). Let A be a K-affine ring, and let
I C A be an ideal generated by n elements. If I has positive height, then we have for
all | > 1 an inclusion

[H=1C el (1.

In particular, if A is a K-affine regular local ring, then the integral closure of
"=V lies inside I' for all | > 1.

Proof. Again we only proof the case [ = 1. Let z be in the integral closure of I”, and
let A, z, and I, be approximations of A, z and I respectively. The integral equation
(similar to (8.7)), say, of degree d, witnessing that z lies in the integral closure of
I", shows by Los’ Theorem that almost each z,, satisfies a similar integral equation
of degree d, and hence, in particular, z, belongs to the integral closure of /7. By
Exercise 8.7.6, for those p we have

Ik e

for all k. As in the proof of Theorem 8.5.2, this implies that /"
tained in FZ([ p)A, for all e. Taking ultraproducts then yields

F(zp) is con-

"aDFe (z) C (D U(A).
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Since [ has positive height, we can find by prime avoidance a multiplier ¢ € -1,
In particular, cF¢,(z) € FS (1) U(A) for all e, whence z € cl(I), as we wanted to show.
The last assertion then follows from Theorem 9.2.3. a

We would of course prefer a version in which no assumption on / needs to be
made. This indeed exists, but requires an intermediary closure operation, ultra-
closure (see §9.3 below and Exercise 9.5.16). Using the previous result, we have
now proven the polynomial case in the Briangon-Skoda theorem (Theorem 8.5.1).
The last of our applications, the Ein-Lazardsfeld-Smith Theorem, can neither be
carried out in the purely axiomatic setting of difference closure, but relies on some
additional properties of the ultra-hull.

Theorem 9.2.6. Let A be a K-affine regular domain, and let a C A be a radical ideal,
given as the intersection of finitely many prime ideals of height at most h. Then for
all n, we have an inclusion a™ Ca".

Proof. Let z € a(h”), and let A, z,, and a, be approximations of A, z and a respec-
tively. By Theorem 7.3.7 (or rather Exercise 7.5.4), almost all A, are regular, and
by Corollary 7.3.3 and Theorem 7.3.4, almost each a,, is the intersection of finitely
many prime ideals of height at most 4. As in the proof of Theorem 8.5.10, for those

p we therefore have aﬁ"zFf,(zp) C F¢(a})A, for all e. Taking ultraproducts then

yields a""’F¢, (z) CF(a")U(A), showing that z lies in cl(a”) whence in a” by The-
orem 9.2.3. ad

9.3 Ultra-closure

In the two last proofs, we derived some membership relations in the approximations

of an affine algebra and then took ultraproducts to get the same relations in its ultra-
hull. However, each time the relations in the approximations already established
tight closure membership in those rings. This suggests the following definition. Let
A be a K-affine algebra, I C A an ideal and z € A. We say that z lies in the ultra-
closure ultra-cl(I) of I (called the generic tight closure in [57, 59]), if z, lies in the
tight closure of 7, for almost all p, where A, z, and I,, are approximations of A, z
and I respectively. Put differently

ultra-cl(I) = (ulimely , (7,)) NA,
p—roo

where we view the ultraproduct of the tight closures as an ideal in U(A).
With little effort (Exercise 9.5.15) one shows:

Proposition 9.3.1. Ultra-closure is a closure operation satisfying the five key prop-
erties listed in Theorem 9.2.3.

To relate ultra-closure with tight closure, some additional knowledge of the the-
ory of test elements (see the discussion following Theorem 8.3.1) is needed. Since
we did not discuss these in detail, | quote the following result without proof.
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Proposition 9.3.2 ([57, Proposition 8.4]). Given a K -affine algebra A, there exists
a multiplier c € A with approximation c, € A, such that c, is a test element in A, for
almost all p. O

Theorem 9.3.3. The ultra-closure of an ideal is contained in its tight closure (and
also in its simple tight closure).

Proof. Let z € ultra-cl(1), with I an ideal in a K-affine algebra A. Let A, z, and I, be
approximations of A, z and I respectively. By definition, z,, lies in the tight closure of
I, for almost all p. Let ¢ be a multiplier as in Proposition 9.3.2, with approximations
¢p- For almost all p for which ¢, is a test element, we get ¢, F},(z,) € F;,(1,)A,, for all
e > 0. Taking ultraproducts then yields ¢F<,(z) € F, (I)U(A) for all e, showing that z
lies in the (simple) tight closure of 1. O

Without proof, we state the following comparison between our theory and the
classical theory due to Hochster and Huneke (see §8.6); for a proof see [57, Theo-
rem 10.4].

Proposition 9.3.4. The HH-tight closure of an ideal is contained in its ultra-closure,
whence in its tight closure. O

9.4 Big Cohen-Macaulay algebras

Although the material in this section is strictly speaking not part of tight closure
theory, the development of the latter was germane to the discovery by Hochster and
Huneke of Theorem 9.4.1 below.

Big Cohen-Macaulay algebras in prime characteristic. Recall that the absolute
integral closure AT of a domain A with field of fractions F, is the integral closure
of A inside an algebraic closure of F. Since algebraic closure is unique up to iso-
morphism, so is absolute integral closure. Nonetheless it is not functorial, and we
only have the following quasi-functorial property: given a homomorphism A — B of
domains, there exists a (not necessarily unique) homomorphism A* — B* making
the diagram

A - B

9.6)

AT ~ Bt
commute (see Exercise 9.5.10).

Theorem 9.4.1 ([29]). For every excellent local domain R in characteristic p, the
absolute integral closure R is a balanced big Cohen-Macaulay algebra.



146 9 Tight closure—Affine case

The condition that a Noetherian local ring is ‘excellent’ is for instance satisfied
when R is either K-affine or complete (see [4 1, §32]). The proof of the above result is
beyond the scope of these notes (see for instance [36, Chapters 7& 8]) although we
will present a ‘dishonest’ proof shortly. It is quite a remarkable fact that the same
result is completely false in characteristic zero: in fact any extension of a normal
domain is split, and hence provides a counterexample as soon as R is not Cohen-
Macaulay (see Exercise 9.5.9). One can use the absolute integral closure to define a
closure operation in an excellent local domain R of prime characteristic as follows.
For an ideal I, let the plus-closure of I be the ideal I := IRT N R. One can show
(see Exercise 9.5.12) that I is a closure operation in the sense of Definition 8.2.3,
satisfying the five key properties listed in Theorem 9.2.3. Moreover, unlike tight
closure, it is not hard to show that it commutes with localization.

Proposition 9.4.2. In an excellent local domain R of prime characteristic, the plus-
closure of an ideal I C R is contained in its tight closure.

Proof. Letz € I't. By definition, there exists a finite extension R C S C R" such that
z € IS (note that R™ is the direct limit of all finite extensions of R by local domains).
Hence z € cl(I) by Theorem 8.3.4. O

It is conjectured that plus closure always equals tight closure (and hence in partic-
ular this would answer the localization problem for tight closure in the affirmative).
Smith has verified this conjecture for a special, but important class of ideals:

Theorem 9.4.3 ([67]). Any ideal generated by part of a system of parameters in an
excellent local domain of prime characteristic has the same plus closure as tight
closure.

Proof of Theorem 9.4.1 assuming Theorem 9.4.3.

The proof we will present here is dishonest in the sense that Smith made heavy use
of Theorem 9.4.1 to derive her result. However, here is how the converse direction
goes. Let (x1,...,x4) be a system of parameters in an excellent local domain R of
characteristic p, and suppose zx;11 € IRT for some z € R and I := (x1,...,x;)R.
Hence there already exists a finite extension R C S C R containing z such that
zxiy1 € IS. Since R C S is finite, (xj,...,x4) is also a system of parameters in S
by Theorem 3.3.8. By Colon Capturing (Theorem 8.3.3), we get z € cl(IS). By
Theorem 9.4.3, this implies that z lies in the plus closure of IS, whence in IS™.
However, it is not hard to see that R = ST, proving that (xi,...,x,) is RT-regular.

O

9.4.4 IfR is an excellent regular local ring of prime characteristic, then R is
faithfully flat over R.

This follows immediately from Theorem 9.4.1 and the Cohen-Macaulay criterion
for flatness (Theorem 5.6.10). Interestingly enough, it also provides an alternative
strategy to prove Theorem 9.4.1.
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Proposition 9.4.5. Let k be a field of positive characteristic. Suppose we can show
that any k-affine (respectively, complete) regular local ring has a faithfully flat abso-
lute integral closure, then the absolute integral closure of any k-affine (respectively,
complete Noetherian) local domain is a balanced big Cohen-Macaulay algebra.

Proof. 1 will only treat the affine case and leave the complete case to Exer-
cise 9.5.18. Let R be a k-affine local domain, and let x be a system of parameters in R.
By Noether Normalization with parameters (see the second part of Exercise 8.7.4),
we can find a k-affine regular local subring S C R, such that § C R is finite and xS
is the maximal ideal of S. By assumption, S* is faithfully flat over S, and hence
(X1,...,Xq) is ST-regular. Finiteness yields ST = R™, and so we are done. O

Big Cohen-Macaulay algebras in characteristic zero. As already mentioned, if
R is a K-affine local domain of characteristic zero, then R* will in general not be
a big Cohen-Macaulay algebra. However, we can still associate to any such R (in
a quasi-functorial way) a canonically defined balanced big Cohen-Macaulay alge-
bra as follows. Let R, be an approximation of R. By Theorem 7.3.4, almost all R,
are domains. Let B(R) be the ultraproduct of the R;; this is independent form the
choice of approximation (see Exercise 9.5.19). By Los’ Theorem, there is a canoni-
cal homomorphism R — B(R).

Theorem 9.4.6. If R is a K-affine local domain, then B(R) is a balanced big Coh-
en-Macaulay algebra over R.

Proof. Since almost each approximation R), is a K ,-affine (whence excellent) local
domain, R;,r is a balanced big Cohen-Macaulay R-algebra by Theorem 9.4.1. Let x
be a system of parameters of R, with approximation x,. By Corollary 7.3.6, almost
each x,, is a system of parameters in R,,, whence R;-regular. By Los’ Theorem, X is
therefore B(R)-regular, as we wanted to show. O

Hochster and Huneke ([30]) arrive differently at balanced big Cohen-Macaulay
algebras in characteristic zero, via their lifting method discussed in §8.6. However,
their construction, apart from being rather involved, is far less canonical. In contrast,
although it appears that B(R) depends on R, we have in fact:

9.4.7 For each d, there exists a ring B, such that for any K -affine local domain
R, we have B(R) = B, if and only if R has dimension d. In other words,
B, is a balanced big Cohen-Macaulay algebra for R if and only if R has
dimension d.

Indeed, by Noether Normalization (with parameters, see Exercise 8.7.4), R is fi-
nite over the localization of K[&] at the ideal generated by the indeterminates
& :=(&1,...,84). By Los’ Theorem, the approximation R, is finite over the cor-
responding localization of K ,[&]. If B,, is the absolute integral closure of this local-
ization, then B, = R;,r. Hence the ultraproduct of the B, only depends on d and is
isomorphic to B(R). O

In analogy with plus closure, we define the B-closure clB(I) of an ideal / in
a K-affine local domain R as the ideal /B(R) N R. As in positive characteristic,
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it is a closure operation satisfying the five key properties of Theorem 9.2.3 (see
Exercise 9.5.12). Using Proposition 9.4.2 and Los’ Theorem, together with Theo-
rem 9.3.3 we get:

9.4.8 For any ideal I in a K -affine local domain R, we have inclusions c1® (I C
ultra-cl(I) C cI(1). O

Like tight closure theory, the existence of balanced big Cohen-Macaulay alge-
bras does have many important applications. To illustrate this, we give an alternative
proof of the Hochster-Roberts theorem, as well as a proof of the Monomial Conjec-
ture (as far as I am aware of, no tight closure argument proves the latter). We will
treat only the affine characteristic zero case here, but the same argument applies in
positive characteristic, and, once we have developed the theory in Chapter 10, for
arbitrary equicharacteristic Noetherian local rings.

Alternative proof of Theorem 9.2.4. Let R — S be a cyclically pure homomor-
phism of K-affine local domains with S regular, and let x := (x1,...,x;) be a system
of parameters in R. To show that this is R-regular, assume zx; 1| € I := (x1,...,x;)R.
Since x is B(R)-regular by Theorem 9.4.6, we get z € IB(R). By quasi-functoriality
(after applying Los” Theorem to (9.6)) we get a homomorphism B(R) — B(S) mak-
ing the diagram

R )

9.7

B(R) - B(S)

commute. In particular, z € IB(S). Since S is regular, S — B(S) is flat by the Coh-
en-Macaulay criterion for flatness (Theorem 5.6.10) and Theorem 9.4.6. Hence z
belongs to 1S by Proposition 5.3.4 whence to / by cyclical purity. a

As promised, we conclude with an application of the existence of big Cohen-
Macaulay algebras to one of the Homological Conjectures (for further discussion,
especially the still open mixed characteristic case, see Chapter 13). Let us call a
tuple (x1,...,Xg) in a ring R monomial, if for all k, we have

(e --xg) g (kL )R, (9.8)

We say that the Monomial Conjecture holds for a Noetherian local ring R, if R
satisfies the hypothesis in the next result:

Theorem 9.4.9 (Monomial Conjecture). If R is a local K-affine algebra, then any
system of parameters is monomial.

Proof. Let (x1,...,x;) be a system of parameters, let x be the product of the x; and
suppose X! € I := (x%,. .., xk)R for some k. Let p be a d-dimensional prime ideal.
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Since (x1,...,x4) is then also a system of parameters in R/p, and x*~! € I (R/p), we
may after replacing R by R/p assume that R is a domain. Hence (x,...,x4) is B(R)-
regular by Theorem 9.4.6. However, it is easy to see that for a regular sequence we
can never have x*~! € I, B(R) (see Exercise 9.5.13). O

Remark 9.4.10. By an argument on local cohomology, one can show that given any
system of parameters (xp,...,xs) in a Noetherian local ring R, there exists some
t such that (x},...,x,) is monomial. Hence the real issue as far as the Monomial
Conjecture is concerned is the fact that one can always take t = 1.

9.5 Exercises

Ex 9.5.1
Given a difference hull D(-) on a category €, and given an ideal I C A in a ring A in €, show

that c1°(1) is an ideal in A containing I, and c1°(c1P(I)) = c1P(I), that is to say, c1°(1) is
difference closed. Conclude that ch(-) is a closure operation in the sense of Definition 8.2.3.

Ex 9.5.2
In this exercise, you are asked to prove that if D(R) is a difference hull of a local
ring R in € with endomorphism o, and if (xi,...,x;) is an R-regular sequence, then

(o1 (x1),...,0%(xp)) is D(R)-regular, for any e; > 0. First prove the case when e| > ey >
.-+ > ey, by induction on the length h, and using that an arbitrary element a € R divides
o(a) by Condition 9.1.1(3). To prove the general case, show that in an arbitrary ring A,
if (a1by,...,asby) is a permutable A-regular sequence (meaning that any permutation is
A-regular), then so is (a,...,ds).

Ex 9.5.3

Show that any Lefschetz ring is a difference ring.

Ex 9.54
Complete the proof of Proposition 9.1.9.

Ex 9.5.5
Let D(-) be a difference hull on €. Show that if R — S is a cyclically pure homomorphism
of local rings in &, if R is a homomorphic image of a Cohen-Macaulay ring in €, and if S is
regular, then R is Cohen-Macaulay.

Ex 9.5.6
Show that simple tight closure is a closure operation satisfying the five key properties of
Theorem 9.2.3. In fact, you can prove the same for simple difference closure, with the nec-
essary assumptions on the difference hull. See also Exercise 9.5.7 for more variants.
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Ex 9.5.7
Proposition 8.2.6 essentially reduces the study of tight closure in arbitrary rings to do-
mains. Unfortunately, for both difference closure and ultra-closure, I cannot yet prove this
in general, the problem being that the endomorphism/ultra-Frobenius does not preserve
multipliers. To circumvent this problem, the following variant—which I only explain for
difference closure—is probably the ‘correct’ definition. Say that z lies in the stable differ-
ence closure of an ideal I C A, if there exists a multiplier ¢ € A and some N € N, such that
o™V (c)o"(z) € 6™(I)D(A) for all n > N. Prove that stable difference closure is a closure op-
eration in the sense of Definition 8.2.3, verify that the analogue of Proposition 8.2.6 holds,
and show that it satisfies the five key properties. Define the analogue stable variant for sim-
ple tight closure, and prove the same properties. Show that stable tight closure is always
contained in stable simple tight closure.

Ex 9.5.8
Give an alternative proof of the flatness of F. on a K-affine regular local ring, by means of
the equational criterion for flatness (Theorem 5.6.1), Theorem 7.3.7, and Los’ Theorem.

“Ex 9.5.9
Let A be a Noetherian normal domain(=integrally closed in its field of fractions L) con-
taining the rationals, and let A C B be a finite extension. Show that A — B is split (see
the discussion following Theorem 8.5.3) as follows. Argue that after taking a homomorphic
image, we may assume that B is a domain, with field of fractions L. We then we may replace
B and L in such way that L is a Galois extension of K, say of degree d. Show that the trace
map L — K (=the sum of all conjugates), followed by division by d, is a splitting of A C B.
Use this to show that if R is K-affine local domain which is normal but not Cohen-Macaulay,
then R is not a big Cohen-Macaulay algebra.

“Ex 9.5.10
Show the existence of a map AT — B making diagram (9.6) commute. To this end, factor
A — B as a surjection followed by an inclusion, and then treat each of these two cases
separately.

Ex 9.5.11
Show that for any K-affine local domain R, the canonical map R — B(R) factors through
the ultra-hull U(R). Argue that B(R) is no longer integral over R if R is non-Artinian. Show
that if R C S is a finite extension of affine local domains, then B(R) = B(S).

Ex 9.5.12
Show that plus closure and B-closure are closure operations in the sense of Definition 8.2.3,
satisfying the five key properties listed in Theorem 9.2.3. In fact, quasi-functoriality (in the
sense of (9.6)) yields persistence under arbitrary homomorphisms of local domains.

Ex 9.5.13

Show that a permutable regular sequence X in an arbitrary ring A is monomial. In particu-
lar, any local Cohen-Macaulay ring satifies the Monomial Conjecture.
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*Ex 9.5.14
Let Z := Z[&] with & = (&1,...,&,). Let us say that a tuple X in a ring A is strongly
monomial, if I # J implies IA # JA for any two monomial ideals I,J C Z (that is to say,
ideals generated by monomials), where we view A as a Z-algebra via the homomorphism
Z — A: & — x;. Show that a regular sequence, and more generally, a quasi-regular se-
quence, is always strongly monomial (use Exercise 4.3.15). This proves in particular the
claim in Exercise 9.5.13 for any regular sequence. Modify the argument in the proof of The-
orem 9.4.9 to deduce that a system of parameters in a K-affine local ring, or in a Noetherian
local ring of prime characteristic, is strongly monomial.

Additional exercises.

Ex 9.5.15
Prove Proposition 9.3.1.

Ex 9.5.16
Show that if A is a K-affine ring and I C A an ideal generated by at most n elements,
then ["+1=1 C ultra-cl(I') for all I.

Ex9.5.17
Show that if R is a K-affine local domain and p a prime ideal in R, then

B(Ry) = B(R) @yr) U(Ry).

Use this to prove that ifI C R and p a minimal prime of I, then B(IR,) = B(I)R,. | do
not know whether B-closure commutes in general with localization.

Ex 9.5.18
Prove the complete case in Proposition 9.4.5 using the Cohen structure theorems
of Chapter 6.

Ex 9.5.19
Our goal is to give an alternative description of B(A) for A a K -affine local domain,
showing that its construction is canonical. Let N, be the ultrapower of the set of
natural numbers, and lett be an indeterminate. For an element f € U(A[t]), define
its ultra-degree « € Ny (with respect to t) to be the ultraproduct of the t-degrees
o, of the f,, where f, is an approximation of f. Call an element f € U(Ar]) ultra-
monic if there exists a € Ny such that f —t* has ultra-degree strictly less than o
(see page 12 for the ultra-exponent notation). By aroot of g € U(A[t]) in a Lefschetz
field L containing K we mean an element a € L such that g € (t —a)U(AL[t]), where
A :=A®g L and its ultra-hull is taken in the category €.

Show that there exists an algebraically closed Lefschetz field L containing K such
that B(A) is isomorphic to the ring of all a € L that are a root of some ulfra-monic
polynomial in U(A[t]).
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Ex 9.5.20
Part of the descent theory of Hochster and Huneke for defining their HH-tight clo-
sure in characteristic zero (see §8.6), is the following special case: given a complete
Noetherian local ring R containing a field K, a system of parameters x in R, and a
finite subset X C R, we can find a K-affine local subring S C R containing x and X,
such that x is part of a system of parameters of S (see for instance [36, App. 1,
Theorem 5.1]; this is also explained in more detail in Exercise 10.6.3 below). Use
this to deduce the Monomial Conjecture (and even the stronger version discussed
in Exercise 9.5.14) for any Noetherian local ring R of equal characteristic zero as
follows. Assume that we have a counterexample to (9.8) for some k. Argue, using
Theorem 6.4.7, that we may assume that R is complete with an algebraically closed
Lefschetz residue field. Use the previous property to obtain a counterexample in-
side a K-affine local ring, and then finish with Theorem 9.4.9. A more direct proof
can be given using the construction from §10.4 below.



Chapter 10
Tight closure in characteristic zero. Local case

The goal of this chapter is to extend the tight closure theory from the previous chap-
ter to include all Noetherian rings containing a field. However, the theory becomes
more involved, especially if one wants to maintain full functoriality. We opt in these
notes to forego this cumbersome route (directing the interested reader to the joint
paper [6] with Ashenbrenner), and only develop the theory minimally as to still
obtain the desired applications. In particular, we will only focus on the local case.

From our axiomatic point of view, we need to define a difference hull on the
category of Noetherian local rings containing Q. The main obstacle is how to de-
fine an ultra-hull-like object, on which we then have automatically an action of
the ultra-Frobenius. By Cohen’s structure theorems, the problem can be reduced to
constructing a difference hull for the power series ring R := K[[£]] in a finite num-
ber of indeterminates & over an algebraically closed Lefschetz field K. A candidate
presents itself naturally: let U(R) be the ultraproduct of the K,[[]], where the K,
are algebraically closed fields of characteristic p whose ultraproduct is K. However,
unlike in the polynomial case, there is no obvious homomorphism from R to U(R),
and in fact, the very existence of such a homomorphism implies already some form
of Artin Approximation. It turns out, however, that we can embed R in an ultrapower
of U(R), and this is all we need, since the latter is still a Lefschetz ring. So we start
with a discussion of this construction.

10.1 Artin Approximation

Constructing algebra homomorphisms. In this section, we study the following
problem: Given two A-algebras S and 7', when is there an A-algebra homomorphism
S — T? We will only provide a solution to the weaker version in which we are
allowed to replace T by one of its ultrapowers. Since we want to apply this problem
when T is equal to U(R), we will merely have replaced one type of ultraproduct
with another.

153



154 10 Tight closure—Local case

Theorem 10.1.1. For a Noetherian ring A, and A-algebras S and T, the following
are equivalent:

1. every system of polynomial equations with coefficients from A which is solvable
in S, is solvable in T

2. for each finitely generated A-subalgebra C of S, there exists an A-algebra homo-
morphism ¢c: C — T

3. there exists an A-algebra homomorphism 1 : S — Ty, where Ty is some ultra-
power of T.

Proof. Suppose that (1) holds, and let C C S be an A-affine subalgebra. Hence C
is isomorphic to A[€]/I with & a finite tuple of indeterminates and I some ideal in
A[€]. Let x be the image of £ in S, so that x is a solution of the system of equations
fi=--=f;=0,where I = (f1,...,fs)A|E]. By assumption, there exists therefore
a solution y of this system of equations in 7. Hence the A-algebra homomorphism
A[&] — T given by sending & to y factors through an A-algebra homomorphism
¢c: C — T, proving implication (1) = (2).

Assume next that (2) holds. Let W be the collection of all A-affine subalgebras of
S (there is nothing to show if S itself is A-affine, so we may assume W is in particular
infinite). For each finite subset X C S let (X) be the subset of W consisting of all
A-affine subalgebras C C § containing X. Any finite intersection of sets of the form
(X) is again of that form. Hence we can find an ultrafilter on W containing each
(Z), where X runs over all finite subsets of S. Let T'; be the ultrapower of 7" with
respect to this ultrafilter. For each A-affine subalgebra C C S, let ¢¢c: S — T be the
map which coincides with ¢¢ on C and which is identically zero outside C. (This is
of course no longer a homomorphism.) Define 11: § — T to be the restriction to S
of the ultraproduct of the @¢. In other words,

N(x) 1= ulim Ge(x)

for any x € S. It remains to verify that 1) is an A-algebra homomorphism. For x,y € S,
we have for each C € ({x,y}) that

Pc(x+y) = oc(x+y) = @c(x) + ¢c(y) = ¢c(x) + @c(y),

since @c and @¢ agree on elements in C. Since this holds for almost all C, Los’
Theorem yields 11 (x+y) = n(x) +n(y). By a similar argument, one also shows that
N(xy) = n(x)n(y) and n(ax) = an(x) for a € A, proving that 1 is an A-algebra
homomorphism.

Finally, suppose that 1) : § — T is an A-algebra homomorphism, for some ultra-
power Ty of T. Let fi = --- = f; = 0 be a system of polynomial equations with co-
efficients in A, and let x be a solution in S. Since 1 is an A-algebra homomorphism,
1 (x) is a solution of this system of equations in 7. Hence by Los’ Theorem, this
system must have a solution in 7', proving (3) = (1). a

Artin Approximation. We already got acquainted with Artin Approximation in
our discussion of HH-tight closure, or in the guise of Néron p-desingularization as
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used in Proposition 9.2.2. The time has come, however, to present a more detailed
discussion. Let S be a Noetherian local ring. We say that S satisfies the Artin Ap-
proximation property if any system of polynomial equations with coefficients in S
which is solvable in S is already solvable in S (for some equivalent conditions, see
Exercise 10.5.3). So immediately from Theorem 10.1.1, or rather by the embedding
version of Exercise 10.5.2, we get:

10.1.2 A Noetherian local ring S has the Artin Approximation property if and
only if its completion embeds in some ultrapower of S.

Not any Noetherian local ring can have the Artin Approximation property:

Proposition 10.1.3. A Noetherian local ring (S,m) with the Artin Approximation
property is Henselian.

Proof. Recall that this means that S satisfies Hensel’s Lemma: any simple root @
in R/m of a monic polynomial f € S[¢] lifts to a root in the ring itself. By Theo-
rem 6.2.4, we can find such a root in §, and therefore by Artin Approximation, we
then also must have a root in S itself (see Exercise 10.5.3 for how to ensure that it is
a lifting of a). a

Artin conjectured in [2] that the converse also holds if S is moreover excellent
(it can be shown that any ring having the Artin Approximation property must be
excellent). Although one has now arrived at a positive solution by means of very
deep tools ([45, 69, 70]), the ride has been quite bumpy, with many false proofs ap-
pearing during the intermediate decades. Luckily, we only need this in the following
special case due to Artin himself, admitting a fairly simple proof (which nonetheless
is beyond the scope of these notes; see page 92 for the notion of Henselization).

Theorem 10.1.4 ([2, Theorem 1.10]). The Henselization k[E]™, with k a field and
& a finite tuple of indeterminates, admits the Artin Approximation property. a

Embedding power series rings. From now on, unless stated otherwise, K de-
notes an arbitrary ultra-field, given as the ultraproduct of fields K,, (for simplic-
ity we assume m € N). We fix a tuple of indeterminates & := (&;,...,¢&,), define
A:=K[E] and R :=K[[£]], and let m := (&4,...,&,)Z[&]. Similarly, for each m, we
let A, := K,,[€] and R, := K4 [[£]], and in accordance with our notation from §7.1,
we denote their respective ultraproducts by U(A) and U(R). By Los’ Theorem, we
get a homomorphism U(A) — U(R) so that U(R) is in particular an A-algebra, but
unlike the affine case, it is no longer clear how to make U(R) into an R-algebra.
Note that U(R) is only quasi-complete (see the proof of Theorem 11.1.4), so that
limits are not unique. In particular, although the truncations f,, € A of a power series
f € R form a Cauchy sequence in U(R), there is no obvious choice for their limit.

Theorem 10.1.5. There exists an ultrapower L(R) of U(R) and a faithfully flat A-
algebra homomorphism Ng: R — L(R).
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Proof. We start with proving the existence of an A-algebra homomorphism 7 from
R to some ultrapower of U(R). To this end, we need to show in view of Theo-
rem 10.1.1 that any polynomial system of equations (.¥) over A which is solvable
in R, is also solvable in U(R). By Theorem 10.1.4, the system has a solution y in
A™. Since the complete local rings R, are Henselian by Theorem 6.2.4, so is U(R)
by Los’ Theorem. By the universal property of Henselization, the canonical homo-
morphism A — U(R) extends to a (unique) A-algebra homomorphism A~ — U(R).
Hence the image in U(R) of y is a solution of (.£) in U(R), as we wanted to show.

Let L(R) be the ultrapower of U(R) given by Theorem 10.1.1 with corresponding
A-algebra homomorphism 1 : R — L(R). Since (&) = &, the maximal ideal of L(R)
is generated by &, and so 7 is local. By the Cohen-Macaulay criterion for flatness
(Theorem 5.6.10), it suffices to show that L(R) is a balanced big Cohen-Macau-
lay algebra. Since & is an R,,-regular sequence, so is its ultraproduct (&) = & in
L(R). This proves that L(R) is a big Cohen-Macaulay algebra, and we can now use
Proposition 5.6.9 and Los’ Theorem, to conclude that it is balanced, and hence that
N: R — L(R) is faithfully flat. O

Being an ultrapower of an ultraproduct, U(R) itself is an ultra-ring. More pre-
cisely (see Exercise 10.5.4):

10.1.6 There exists an index set W and an N-valued function assigning to each
w € W an index m(w), such that

L(R) = ulimRm(W> .

W-—o0

Strong Artin Approximation. We say that a local ring (S,n) has the strong Artin
Approximation property if the following holds: given a system (.£) of polynomial
equations f; = --- = f; = 0 with coefficients in S, if (.¥) has an approximate so-
lution in § modulo n” for all m, then (.£) has a (true) solution in S. Here by an
approximate solution of (%) modulo an ideal a C S, we mean a tuple x in S such
that the congruences fi(x) =--- = f;(x) =0 mod a hold.

We start with the following observation regarding the connection between R and
its Lefschetz hull L(R) (this will be explored in more detail in §11.1 where we will
call the separated quotient the cataproduct of the R,;,).

Proposition 10.1.7. The separated quotient U(R)/Tygy of U(R) is isomorphic to
R.

Proof. We start by defining a homomorphism U(R) — R as follows. Given f €
U(R), choose approximations f,, € R,, and expand each as a power series

Sm= Z avngv

veN"?

for some ay , € K,,. Let ay € K be the ultraproduct of the ay ,, and define
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f=1Y aé&'er

veN?

One checks that the map f +— f is well-defined (that is to say, independent of the
choice of approximation), and is a ring homomorphism. It is not hard to see that it is
moreover surjective. So remains to show that its kernel equals the ideal of infinites-
imals Jy(g). Suppose f =0, whence all a, = 0. For fixed d, almost all ay;m =0
whenever |v| < d. Hence f,, € m?R,, for almost all m, and therefore f € m?U(R)
by £os’ Theorem. Since this holds for all d, we see that f* € Ty g). Conversely, any
infinitesimal is easily seen to lie in the kernel by simply reversing this argument. O

In [10], a paper the methods of which are germane in the development of the
present theory, the following ultraproduct argument was used to derive a strong
Artin Approximation result.

Theorem 10.1.8. The ring R := K[[&]], for K an arbitrary algebraically closed
ultra-field and & a finite tuple of indeterminates, has the strong Artin Approxima-
tion.

Proof. Let (£) be a system of equations over R, and for each m, let x,, be an
approximate solution of (.#’) modulo m”R. Let R, be the ultrapower of R, and let
x be the ultraproduct of the x,,. By Los” Theorem, x is an approximate solution
of (.£) modulo any m”R;, whence modulo Jg , the ideal of infinitesimals of R,
(see Definition 1.4.10). By Proposition 10.1.7 (or rather by a variant admitting a
similar argument), the separated quotient Ry / Jg, is isomorphic to K, [[£]], where K
is the ultrapower of K. The image of x in K;[[&]] is therefore a solution of the system
(&). Let k C K be a countable algebraically closed subfield such that (%) is already
defined over k, and let L C K}, be the algebraic closure of the field generated over
K by all the coefficients of the entries in the image of x in K;[[£]]. Since L has the
same cardinality as K, they are isomorphic as fields by Theorem 1.4.5, and in fact,
by a simple modification of its proof, these fields are isomorphic over their common
countable subfield k. In particular, the image of x under the induced k[[£]]-algebra
isomorphism of L[[{]] with K[[&]], gives the desired solution of (.£) in R = K[[&]].

O

Any version in which the same conclusion as in the strong Artin Approxima-
tion property can be reached just from the solvability modulo a single power n"
of the maximal ideal n, where N only depends on (some numerical invariants of)
the system of equations, is called the uniform strong Artin Approximation property.
In [10], the uniform strong Artin Approximation for certain Henselizations was de-
rived from the Artin Approximation property of those rings via ultraproducts. To
get a uniform version in more general situations, additional restrictions have to be
imposed on the equations (see [2, Theorem 6.1] or [ 10, Theorem 3.2]) and substan-
tially more work is required [15, 16]. We will here present a version which requires
the equations to have polynomial coefficients as well.

Theorem 10.1.9 (Uniform strong Artin Approximation). There exists a function
N: N? — N with the following property. Let k be a field, put A := k[E] with & an
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n-tuple of indeterminates, and let m be the ideal generated by these indeterminates.
Let (£) be a polynomial system of equations with coefficients from A, in the n
unknowns t, such that each polynomial in (.£) has total degree (with respect to both
& and t) at most d. If () admits an approximate solution in A modulo m" (nd)g,
then it admits a true solution in k[[&]].

Proof. Towards a contradiction, assume such a bound does not exist for the pair
(d,n), so that for each m € N we can find a counterexample consisting of a field
K, and of polynomials f;,, fori = 1,...,s over this field of total degree at most d
in the indeterminates £ and #, such that viewed as a system of equations (.£,,) in
the unknowns 7, it has an approximate solution X, in A, := K,;[§] modulo m™A,,
but no actual solution in R, := K,[[£]]. Note that by Lemma 7.4.2 we may assume
that the number of equations s is independent from m. Let K, U(A) and U(R) be the
ultraproduct of the K,,,, A,,, and R,, respectively, and let f; and x be the ultraproduct
of the f;,, and x,, respectively. By 7.1.2, the f; are polynomials over K, and by Los’
Theorem, f;(x) =0 mod Jy). By Proposition 10.1.7, we have an epimorphism
U(R) — R. In particular, the image of x in R is a solution of the system (.£) given
by fi=--=f=0.

Since we have an A-algebra homomorphism R — L(R) by Theorem 10.1.5, the
image of x in L(R) remains a solution of the system (.¢’), and hence by L.os’ The-
orem, we can find for almost each w, a solution of (-Z,,)) in R, contradicting
our assumption on the systems (.Z,). O

Note that the above proof only uses the existence of a homomorphism from R
to some ultrapower of U(R), showing that mere existence is already a highly non-
trivial result, and hence it should not come as a surprise that we needed at least
some form of Artin Approximation to prove the latter. Of course, by combining
this with Theorem 10.1.4, we may even conclude that (.¢) has a solution in A™,
thus recovering the original result [2, Theorem 6.1] (see also [10, Theorem 3.2]).
If instead we use the filtered version of Theorem 10.1.5, to be discussed briefly
after Proposition 10.3.2 below, we get filtered versions of this uniform strong Artin
Approximation property, as explained in [6] (for a special case, see Exercise 10.5.8).

We conclude with the non-linear analogue of Theorem 7.4.3 (or rather of the
version given in Exercise 7.5.5). We cannot simply expect the same conclusion as
in the linear case to hold: there is not bound on the degree of polynomial solutions
in terms of the degrees of the system of equations (a counterexample is discussed
in [54, Theorem 9.1]). However, we can recover bounds when we allow for power
series solutions. Of course degree makes no sense in this context, and so we define
the following substitute. By Project 6.6, a power series y lies in the Henselization A™
if there exists an N-tuple y in R with first coordinate equal to y, and a Hensel system
(), consisting of N polynomials fi,..., fy € A[t] in the N unknowns ¢ such that
the Jacobian matrix Jac(#) evaluated at x is invertible in R. We say that y has etale
complexity as most d, if we can find such a Hensel system of size N < d with all f;
of total degree at most d (in € and 1).

Theorem 10.1.10. There exists a function N: N> — N with the following property.
Let k be a field and put A := k[E] with & an n-tuple of indeterminates. Let ()
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be a system of polynomial equations in Alt] in the n unknowns t, such that each
polynomial in (X£) has total degree (with respect to & and t) at most d. If (£) is
solvable in k[[E]], then it has a solution in A~ of etale complexity at most N(d,n).

Proof. Suppose no such bound on the etale complexity exists for the pair (d,n),
yielding for each m a counterexample consisting of a field K,,, and a system of
polynomial equations (.%,,) over K,, of total degree at most d with a solution y,, in
the power series ring R,,, such that, however, any solution in A, has etale complexity
at least m (notation as before). Let (.Z) be the ultraproduct of the (%), a system
of polynomial equations over K by 7.1.2 (and an application of Lemma 7.4.2), and
let y be the ultraproduct of the y,,, a solution of (.£) in U(R) by Los’ Theorem. By
Proposition 10.1.7, under the canonical epimorphism U(R) — R, we get a solution
of (Z) in R, whence in A~ by Theorem 10.1.4. Let (%) be a Hensel system for this
solution x viewed as a tuple in A™ (note that one can always combine Hensel systems
for each entry of a tuple to a Hensel system for the whole tuple), and let d be its total
degree. Since the ultraproduct Hy, of the A, is a Henselian local ring containing A,
the universal property of Henselizations yields an A-algebra homomorphism A~ —
H;. Viewing therefore x as a solution of (.¢) in Hy, we can find approximations
X;; in A}, which are solutions of (.%Z,,) for almost all m. If we let (7,,) be an
approximation of (.7#), then by Los’ Theorem, for almost all m, it is a Hensel system
for x,, of degree at most d, thus contradicting our assumption. a

10.2 Tight closure

For the remainder of this chapter, we specify the previous theory to the case that K is
an algebraically closed Lefschetz field, given as the ultraproduct of the algebraically
closed fields K, of characteristic p.

Lefschetz hulls. In particular, L(R) is a Lefschetz ring, given as the ultraproduct
of the power series rings R, ) := K ,(,,)[[§]], where p(w) is equal to the underlying
characteristic. The ultraproduct F., of the F () acts on L(R), making it a difference
ring. This immediately extends to homomorphic images:

Corollary 10.2.1. The assignment R/I — L(R/I) := L(R)/IL(R) constitutes a dif-
ference hull on the category of all homomorphic images of R. a

Note that any complete Noetherian local ring with residue field K and embedding
dimension at most n is a homomorphic image of R by Theorem 6.4.2. However, a
local homomorphism between two such rings is not necessarily an epimorphism, so
that the previous statement is much weaker than obtaining a difference hull on the
category of complete Noetherian local ring with residue field K. We will address
this issue further in §10.3 below.

We can easily extend the previous construction to include any Noetherian lo-
cal ring S of equal characteristic zero. Our definition though will depend on some
choices. We start by taking K sufficiently large so that it contains the residue field
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k of S as a subfield. Let S be the complete scalar extension of S along K as given
by Theorem 6.4.7. By Cohen’s Theorem (Theorem 6.4.2), we may write Sk as R/a
for some ideal a C R (assuming that the number n of indeterminates & is at least the
embedding dimension of S). We now define L(S) := L(S%) = L(R)/aL(R). Since
S — S% is faithfully flat by Theorem 6.4.7, this assignment is a difference hull on
the category of all homomorphic images of S by Corollary 10.2.1 and Exercise 9.5.3,
called a Lefschetz hull of S (for another type of Lefschetz hull, see page 163 below).

Tight closure. The tight closure of an ideal I C S is by definition the difference
closure of  with respect to a (choice of) Lefschetz hull, and is again denoted cls(/)
or simply cl(7) (although technically speaking, we should also include the Lefschetz
hull in the notation). In other words, z € cl(I) if and only if there exists a multiplier
¢ € S such that

cFo(z) e FE(I)L(S) (10.1)

for all e >> 0 (again we suppress the embedding ng: S — L(S) in our notation).

By our axiomatic treatment of difference closure, we therefore immediately ob-
tain the five key properties of Theorem 9.2.3 for this category. However, this is a
severely limited category, and the only two properties that do not rely on any func-
toriality with respect to general homomorphisms are:

10.2.2 Any regular local ring of equal characteristic zero is F-regular, and any
complete local domain S (or more generally, any equidimensional homo-
morphic image of a Cohen-Macaulay local ring) of equal characteristic
zero admits Colon Capturing: for any system of parameters (x,...,x;)
in S, we have ((x1,...,%)S : xiy1) Ccl((x1,...,x;)S) for all i.

Inspecting the proofs of Theorems 9.2.5 and 9.2.6, we see that these carry over
immediately to the present case, and hence we can now state:

Theorem 10.2.3 (Briancon-Skoda—local case). Ler S be a Noetherian local ring
of equal characteristic zero, and let I C S be an ideal generated by n elements. If I
has positive height, then we have for all | > 1 an inclusion

=1 Cel(Ih).

In particular, if S is moreover regular, then the integral closure of I""'=! lies
inside I' foralll > 1. O

Theorem 10.2.4. Let S be a regular local ring of equal characteristic zero, and let
a C S be the intersection of finitely many prime ideals of height at most h. Then for
all n, we have an inclusion alhn) Ca".

In particular, we also proved the original version of the Briangon-Skoda theorem
(Theorem 8.5.1).
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10.3 Functoriality

Unfortunately, the last of our three applications, the Hochster-Roberts Theorem, re-
quires functoriality beyond the one provided by Corollary 10.2.1. In Project 10.6 we
will describe an alternative strategy to prove the Hochster-Roberts theorem in the
general case. Here, we discuss briefly how to extend some form of functoriality to
the whole category of all Noetherian local rings of equal characteristic zero, which
suffices to derive the theorem. As we will see shortly, functoriality requires a ‘fil-
tered’” version of Theorem 10.1.1. To show that this version holds for power series
rings over K, we require the following more sophisticated Artin Approximation re-
sult due to Rotthaus (its proof is still relatively simple in comparison with those of
the general Artin Conjecture needed in the Hochster-Huneke version). As before,

R:= K[[E]].

Theorem 10.3.1 ([49]). The Henselization R[{]™ of the localization of R[] at the
maximal ideal generated by all the indeterminates admits the Artin Approximation

property.

We extend the terminology used in §7.1: given an ultra-ring Cy, realized as the
ultraproduct of rings Cy,, then by an ultra-Cy-algebra Dy, we mean an ultraproduct
Dy of Cy-algebras D,,. If almost each C,, is local and D,, is a local C,-algebra
(meaning that the canonical homomorphism C,, — D,, is a local homomorphism),
then we call Dy an ultra-local Cy-algebra. Similarly, a morphism of ultra-(local)
Cy-algebras is by definition an ultraproduct of (local) C\,-algebra homomorphisms.

For our purposes, we only will need the following quasi-functorial version of the
Lefschetz hull.

Proposition 10.3.2. Let S be a Noetherian local ring of equal characteristic zero
with a given choice of Lefschetz hull ns: S — L(S). For every Noetherian local S-
algebra T whose residue field embeds in K, there exists a choice of Lefschetz hull
Nr: T — L(T) on T, having in addition the structure of an ultra-local L(S)-algebra.

Proof. By taking an isomorphic copy of the S-algebra T, we may assume that the
induced homomorphism on the residue fields is an inclusion of subfields of K.
In that case, one easily checks that the complete scalar extension Sx — T of
the canonical homomorphism § — T is in fact a K-algebra homomorphism. Tak-
ing n sufficiently large, S% and 7% are homomorphic images of R, and the K-
algebra homomorphism S — T lifts to a K-algebra endomorphism ¢ of R by
an application of Theorem 6.4.2. So without loss of generality, we may assume
S=T=R. Letx:= (xq,...,%,) be the image of & under @, so that in particular,
each x; is a power series without constant term. Note that the K-algebra local homo-
morphism ¢ is completely determined by this tuple, namely ¢(f) = f(x) for any
f € R (see Exercise 10.5.5). Let R’ := R[[{]], where { is another n-tuple of inde-
terminates, and put R, := R,[[{]]. Note that ¢ is isomorphic to the composition
R C R — R'/J = K][[{]], where the first map is just inclusion, and where J is the
ideal generated by all &; — x;. Since Lefschetz hulls commute with homomorphic im-
ages, we reduced the problem to finding a Lefschetz hull ng : R" — L(R'), together
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with a morphism L(R) — L(R') of ultra-local K-algebras extending the inclusion
RCR.

By Theorem 10.1.5, there exists some ultrapower of U(R) which is faithfully
flat over R. Since we will have to further modify this ultrapower, we denote it
by Z,. Recall that it is in fact an ultraproduct of the R, by 10.1.6. Let Z'; de-
note the corresponding ultraproduct of the R’ p(w)- In particular, we get a morphism
Z, — 7'y, of ultra-local K-algebras. Moreover, Z'; is an R-algebra via the composi-
tion R — Z; — Z';, whence also an R[{]-algebra, since in Z';, the indeterminates {
remain algebraically independent over R. We will obtain L(R') as a (further) ultra-
power of Z'; from an application of Theorem 10.1.1, which at the same time then
also provides the desired R-algebra homomorphism R’ — L(R'). So, given a polyno-
mial system of equations (.%’) with coefficients in R having a solution in R’, we need
to find a solution in Z’;. By Theorem 10.3.1, we can find a solution in R[{]™, since
R’ is the completion of the latter ring. By the universal property of Henselizations,
we get a local R[{]-algebra homomorphism R[{]™~ — Z';, and hence via this homo-
morphism, we get a solution for (.#) in Z';, as we wanted to show. Let " — L(R’)
be the homomorphism given by Theorem 10.1.1, which is then faithfully flat by
Theorem 10.1.5. Let L(R) be the corresponding ultrapower of Z, so that R — L(R)
too is faithfully flat. Moreover, the homomorphism Z; — Z’; then yields, after tak-
ing ultrapowers, a morphism of ultra-local K-algebras L(R) — L(R'). We leave it to
the reader to verify that it extends the inclusion R C R’, and admits all the desired
properties. a

In [6], a much stronger form of functoriality is obtained, by making the ad
hoc argument in the previous proof more canonical. In particular, we construct
Nr: R — L(R) in such way that it maps each of the subrings K[[&,...,&]] to the
corresponding subring of L(R) of all elements depending only on the indetermi-
nates &y, ..., &;, that is to say, the ultraproduct of the K ,,,[[&1,- .-, &]] (our treat-
ment of the inclusion R C R’ in the previous proof is a special instance of this).
However, this is not a trivial matter, and caution has to be exercised as to how much
we can preserve. For instance, in [0, §4.33], we show that ‘unnested’ subrings can-
not be preserved, that is to say, there cannot exist an Mg which maps any subring
K[[&,,...,&;]] into the corresponding subring of all elements depending only on
the indeterminates &;,, ..., &; (the concrete counterexample requires n = 6, and it
would be of interest to get already a counterexample for n = 2).

Proposition 10.3.2 is sufficiently strong to get the following form of weak per-
sistence: if S — T is a local homomorphism of Noetherian local domains of equal
characteristic zero, then we can define tight closure operations clg(-) and cly(-) on
S and T respectively, such that clg(I) C clp(IT) for all I C S (see the argument in
the next proof).

Theorem 10.3.3 (Hochster-Roberts). If S — T is a cyclically pure homomorphism
of Noetherian local rings of equal characteristic, and if T is regular, then S is Coh-
en-Macaulay.

Proof. We already dealt with the positive characteristic case, so assume the char-
acteristic is zero. By Exercise 10.5.10, we may assume S and 7' are complete, and



10.4 Big Cohen-Macaulay algebras 163

by Proposition 10.3.2, we may assume that L(7') is an ultra-L(S)-algebra (by taking
K sufficiently large). Let (xj,...,x;) be a system of parameters in S, and assume
z2xip1 € I:= (x1,...,x;)S. By Colon Capturing (10.2.2), we get z € cl(I), so that
(10.1) holds for all e > 0. However, we may now view these relations also in L(T")
via the S-algebra homomorphism L(S) — L(T'), showing that z € cI(IT). By 10.2.2
therefore, z € IT whence by cyclic purity, z € I, as we wanted to show. a

We can now also tie up another loose end, the last of our five key properties,
namely the connection with integral closure (recall that 9.2.3(5) is not really an
issue in characteristic zero by Exercise 9.5.9):

Theorem 10.3.4. The tight closure of an ideal lies inside its integral closure.

Proof. LetI C S be an ideal in a Noetherian local ring (S, n) of equal characteristic
zero, and let z € cl(I). By Exercise 10.5.11, we may reduce to the case that [ is n-
primary. In view of 8.4.1(4), we need to show that z € IV, for every homomorphism
S — V into a discrete valuation ring V with kernel a minimal prime ideal of S. There
is nothing to show if nV =V whence IV =V, so that we may assume S — V is
local. Moreover, by a similar cardinality argument as in Proposition 9.2.2, we may
replace V by a sub-discrete valuation ring whose residue field embeds in K. By
Proposition 10.3.2, there exists a Lefschetz hull L(V) on V which is an ultra-local
L(S)-algebra. In particular, z lies in the tight closure of IV with respect to this choice
of Lefschetz hull, and so we are done by an application of 10.2.2 to the regular ring
V. O

10.4 Big Cohen-Macaulay algebras

As in the affine case, we can also associate to each Noetherian local domain of equal
characteristic zero a balanced big Cohen-Macaulay algebra. However, to avoid some
complications caused by the fact that the completion of a domain need not be a
domain, I will only discuss this in case S is a complete Noetherian local domain
with residue field K (for the general case, see [0, §7]). But even in this case, the
Lefschetz hull defined above does not have the desired properties: we do not know
whether the approximations of S are again domains. So we discuss first a different
construction of a Lefschetz hull.

Relative hulls. Fix some Noetherian local ring (S,n) with residue field k contained
in K, and let L(S) be a Lefschetz hull for § with approximations S,,. We want to
construct a Lefschetz hull on the category of S-affine algebras, extending the Lef-
schetz hull defined on page 159. Let us first consider the polynomial ring B := S[{]
in finitely many indeterminates §. Let Lg(B) be defined as the ultraproduct of the
B,, :=S[{], so that Lg(B) is an ultra-L(S)-algebra. The homomorphism S — Lg(B)
extends naturally to a homomorphism B — Lg(B), since the { remain algebraically
independent over L(S). We call Lg(B) the relative Lefschetz hull of B (with respect
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to the Lefschetz hull § — L(S)). Similarly, if C = B/I is an arbitrary S-affine al-
gebra, then we define Lg(C) as the residue ring Ls(B)/ILg(B), and we call this the
relative Lefschetz hull of C (with respect to the choice of Lefschetz hull L(S)). By
base change the homomorphism B — Lg(B) induces a homomorphism C — Lg(C).
Moreover, Lg(C) is an ultra-L(S)-algebra, since [ is finitely generated.

It is instructive to calculate Lg(B)/nls(B) = Lg(B/nB) = Lg(k[{]), where k is
the residue field of S. Since nS7% is the maximal ideal in S, we get L(S)/nL(S) =
L(k) = L(K), and this field is just an ultrapower of K = U(K). Hence B,,/n,,B,, =
K p(w)[&], and we see that Ls(B) /nLs(B) is an ultrapower of U(K[{]). Next, suppose
T is a local S-affine algebra, say of the form By /IBp, with p C B a prime ideal
containing I. Moreover, since we assume that S — T is local, nB C p. In order to
define the relative Lefschetz hull Lg(T) of T as the localization of Lg(B/IB) with
respect to pLs(B/IB), we need:

10.4.1 Ifyp is a prime ideal in B containing nB, then pLg(B) is prime.

We need to show that Lg(B/p) is a domain. Since B/p is a homomorphic im-
age of B/nB, it suffices to show that p extends to a prime ideal in Lg(B/nB). By
Theorem 7.3.4, the extension of p to U(K[{]) remains prime. Since Lg(B/nB) is
an ultrapower of U(K[{]), the extension of p to the former is again prime by Los’
Theorem. O

To prove that these are well-defined objects, that is to say, independent of the
choice of presentation C = B/I (or its localization), we prove (see Exercise 10.5.12)
a similar universal property as for ultra-hull:

10.4.2 Any S-algebra homomorphism C — Dy with Dy an ultra-L(S)-algebra,
extends uniquely to a morphism Lg(C) — Dy of ultra-L(S)-algebras. Sim-
ilarly, any local L(S)-algebra homomorphism T — Dy with D, an ultra-
local L(S)-algebra, extends uniquely to a morphism Ls(T') — Dy of ultra-
local L(S)-algebras.

Proposition 10.4.3. On the category of S-affine algebras, Lg(-) is a difference hull.

Proof. Let T be a local S-affine algebra (for the global case see Exercise 10.5.13).
Clearly, the ultra-Frobenius F.., acts on each Lg(7T), making the latter into a dif-
ference ring. So remains to show that the canonical map T — Lg(T) is faithfully
flat. By Cohen’s structure theorem, S% is a homomorphic image of R := K[[§]]. A
moment’s reflection shows that Lg(T) = Lg(T %), so that by an application of Theo-
rem 6.4.7, we may reduce to the case that S = R. By another application of Cohen’s
structure theorem, T is a homomorphic image of a localization of R[{], and hence
without loss of generality, we may assume that 7' is moreover regular. Flatness of
T — Lg(T) then follows from the Cohen-Macaulay criterion of flatness in the same
way as in the proof of Theorem 7.2.2 (see Exercise 10.5.13). a

Big Cohen-Macaulay algebras. For the remainder of this section, S is a complete
Noetherian local domain with residue field K. By Theorem 6.4.6, we have a finite
extension R C S (for an appropriate choice of n and R := K[[£]] as before). The
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Lefschetz hull we will use for S to construct a balanced big Cohen-Macaulay algebra
is the relative hull Lg(S) (with respect to a fixed Lefschetz hull for R). Let S,, be
the approximations of S with respect to this choice of Lefschetz hull, that is to
say, S, are the complete local K ,(,,)-algebras whose ultraproduct is Lg(S). By the
above discussion, Lg(S) is a domain, whence so are almost all S,,. Let B(S) be the
ultraproduct of the S/, so that B(S) is in particular an ultra-Lg(S)-algebra whence
an S-algebra. In Exercise 10.5.14, you are asked to prove:

Theorem 10.4.4. For each complete Noetherian local domain S with residue field
K, the S-algebra B(S) is a balanced big Cohen-Macaulay algebra. a

Theorem 10.4.5 (Monomial Conjecture). The Monomial Conjecture holds for any
Noetherian local ring S of equal characteristic, that is to say, any system of param-
eters is monomial.

Proof. 1will only explain the equal characteristic zero case; the positive characteris-
tic case is analogous, using instead Theorem 9.4.1. Towards a contradiction, suppose
(x1,-..,x4) is a counterexample, that is to say, a system of parameters which fails
(9.8) for some k. After taking a complete scalar extension (which preserves the sys-
tem of parameters), we may assume that S is complete with residue field K. After
killing a prime ideal of maximal dimension (which again preserves the system of
parameters), we then may assume moreover that S is a domain. The counterexample
then also holds in B(S), contradicting that (xi,...,x,) is B(S)-regular by Theo-
rem 10.4.4. a

As before, we can also define the B-closure of an ideal I C S by the rule clB (I):=
IB(S) NS and prove that it satisfies the five key properties (see Exercise 9.5.12).

10.5 Exercises

Ex 10.5.1
One can make the choice of ultrapower in Theorem 10.1.1 independent from the particular
choices of A-algebra homomorphisms ¢c: C — T as follows. Let W' be the set of all A-
algebra homomorphisms C — T whose domain C is an A-affine subalgebra of S. Define an
appropriate ultrafilter on this set, let T}, be the ultrapower of T with respect to this ultrafilter,
and modify the argument in the proof of the theorem accordingly.

Ex 10.5.2

To obtain embeddings rather than just homomorphisms, prove that the following are equiv-
alent for algebras S and T over a Noetherian ring A:

1. every finite system of polynomial equations and inequalities with coefficients from A
which is solvable in S, is solvable in T ;

2. given an A-affine subalgebra C C S and finitely many non-zero elements cy,...,c, of C
there exists an A-algebra homomorphism C — T sending each c; to a non-zero element
of T;
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3. there exists an embedding S — Ty of A-algebras into an ultrapower T, of T.

Ex 10.5.3

Let (R,m) be a Noetherian local ring. Show that given finitely many congruence relations
fi =0 modm with f; € R[t] can be turned in to a system of equations, such that the
congruences are solvable in RorR if and only if the equations are. Prove the same for a
system of equations and negations of equations. Conclude that to admit Artin Approximation

is equivalent with either of the following two apparently stronger conditions:

1. any system of polynomial equations and negations of equations over R which is solvable
inRis already solvable in R;

2. given some c and a system of equations over R with a solution X in R, we can find a
solution X in R such that x =X mod m°R, that is to say, a solution in R can be ‘approx-
imated’ arbitrarily close by solutions in R.

The last condition also explains the name of this property.

Ex 10.5.4
Prove 10.1.6.

Ex 10.5.5
Show that a K-algebra endomorphism of R := K|[|€]] is completely determined by the image
of &. More generally, if S is a complete local K-algebra, then there is a one-one correspon-
dence between local K-algebra homomorphisms R — S, and tuples in S with entries in the
maximal ideal. This is no longer true if S is only quasi-complete, and hence explains why
we needed the more elaborate theory using Theorem 10.1.1.

Ex 10.5.6
Show that (R, m) has the strong Artin Approximation property if and only if the product of
allR/ mk embeds in some ultrapower of R. Use this to then prove that R has the strong Artin
Approximation property if and only if R has the Artin Approximation property and R has
the strong Artin Approximation property.

Ex 10.5.7
Show the following more general ‘approximating’ version of Theorem 10.1.9 by modifying
its proof accordingly (see (2) in Exercise 10.5.3): There exists a function N : N> — N with
the following property. Let k be a field and let () be a polynomial system of equations in
the n unknowns t with coefficients in k[&], such that the total degree (with respect to & and
t) is at most d. If (L) has an approximate solution X in R := k[[£]] modulo mN4R, then
there exists a solution'y in R such that x =y modulo m°R.

Ex 10.5.8
Prove the following one-nested generalization of [10, Theorem 4.3] (the latter only treats
the case s = 1): There exists a function N: N> — N with the following property. Let k be
a field and let (£) be a polynomial system of equations in the n unknowns t with coef-
ficients in A := k[E] with & an n-tuple of indeterminates, such that the total degree (with
respect to & and t) is at most d. If (£) has an approximate solution (xy,...,x,) in A
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modulo w46 A with X1,...,X; depending only on &, ... &, then there exists a solution
15+ -»yn) in k[[E]] with y1,...,y; depending only on &i,...,&. Start as always with as-
suming towards a contradiction that there exist counterexamples (£ ) over Ay, := Ky |[[€]]
of degree at most d with an approximate solution modulo m"A,, whose first | entries be-
long to A'yy := K&, ..., &), but having no solution in Ry, := K,[[E]] whose first | entries
belong to Ry, := K[[&1,. .., &]]. Use Proposition 10.3.2 to get a commutative diagram of
corresponding Lefschetz hulls

R > R

(10.2)

L(R") - L(R)

where R := K[[€]] and R’ = K[[&,,...,&]], and where K is the ultraproduct of the K,,. Use
the existence of these embeddings in the same way as in the proof of Theorem 10.1.9 to
derive the desired contradiction.

Ex 10.5.9
Give a proof of Corollary 10.2.1.

Ex 10.5.10

Show that the completion of a cyclically pure homomorphism is again cyclically pure.

“Ex 10.5.11
Show that the integral closure I of an ideal I in a local ring (S,m) is equal to the intersection
of the integral closures of the m-primary ideals I +w". Show how this allows us to reduce
to the m-primary case in the proof of Theorem 10.3.4.

Ex 10.5.12
Show the universal property 10.4.2 of the relative hull.

Ex 10.5.13
Fill in the details of the proof of Proposition 10.4.3.

Ex 10.5.14
To prove Theorem 10.4.4, you first need to show that S has the same dimension as almost all
of its approximations S,,, by an argument similar to the one in Corollary 7.3.3. In particular,
almost each approximation of a system of parameters is again a system of parameters. Now
apply Theorem 9.4.1.
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Additional exercises

Ex 10.5.15
Show that condition (1) in Theorem 10.1.1 is equivalent with the model-theoretic
assertion that T is a model of the positive existential theory of S in the language
Z(A) of rings with constant symbols for the elements in A. Similarly, condition (1)
in Exercise 10.5.2 is equivalent with T being a model of the (full) existential £ (A)-
theory of S.

Ex 10.5.16
We can even relax the hypothesis of Theorem 10.1.10 so that the system of equa-
tions (.£) has only to be of the form f, = --- = f; = 0 with each f; € A™|t] of r-degree

at most d, and each coefficient of f; of etale complexity at most d. Namely, given
such a more general system, replace each coefficient with a new indeterminate,
and add a new Hensel system for that coefficient (with first variable corresponding
to the new indeterminate). For this you also will need the uniqueness of a Hensel
solution, proved in 6.6.1.

Ex 10.5.17
Generalize the construction of the relative hull on page 163 as follows. Let Sy be the
ultraproduct of rings S,,, let B,, := S,,[{], and define the relative S;-hull of B := §;[{]
as the the ultraproduct of the B,,, denoted Ls, (B). Argue that the relative hull Ls(B)

as defined page 163 is just the relative S,-hull of B.
Show that LSu (B) satisfies the following universal property: any S;-algebra homo-

morphism B — Dy, into an ultra-S, -algebra D, extends uniquely to a homomorphism
Ls,(B) — Dy of ultra-S;-algebras. Define similarly the relative S;-hull of an S;-affine
algebra C (recall that this means by definition—see page 21—that C = B/I with I
finitely generated), and prove again a universal property. Do the same in case S is
local and T is a local S, -affine algebra.

10.6 Project: proof of Hochster-Roberts Theorem

Our goal is to give a different proof of Theorem 10.3.3. By an argument similar
to that in the text, we may reduce the problem to complete local domains. Hence
let S be an arbitrary complete Noetherian local domain containing the algebraically
closed Lefschetz field K. Define a closure operation on S as follows: an element
z € S lies in the inductive tight closure cl’"d(a) of an ideal a C S, if there exists a
local K-affine subalgebra C C S containing z, and an ideal / C C, such that a = IS
and z € cle(I) (where we take tight closure cle(+) in C in the sense of Chapter 9).
Show that weak persistence holds:

10.6.1 IfS — T is an injective local K -algebra homomorphism of complete Noe-
therian local domains, then c1"(a) C c1™(aT') for all a C S.
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Call S inductively F-regular, if every ideal in § is equal to its own inductive tight
closure. To prove the Hochster-Roberts Theorem, we again split the proof into two
parts. The easy part is:

10.6.2 If S — T is cyclically pure, and T is inductively F-regular, then so is S.

To prove the analogue of 10.2.2, we need to understand how arbitrary K-algebras
are approximated by K-affine algebras. You may take the following theorem for
granted, but see below for how to prove it.

10.6.3 Let S be a complete Noetherian local domain containing K, and let C
be a local K-affine subalgebra of S. Then the embedding C C S factors
through a local K-affine domain D, satisfying the following additional
conditions

1. if § is regular, then we may take D to be regular too;
2. ifxy,...,xq € C are a system of parameters in S, then D can be chosen
in such way that (xy,...,x;) is part of a system of parameters in D.

The dimension of D will in general be larger than d, the dimension of S. Note
also that we are not requiring that the canonical map D — § has to be injective.
After reduction to the case S = R := K[[£]], assertion (1) follows from the Artin-
Rotthaus theorem ([3])—a stronger form of p-desingularization, of which also The-
orem 10.1.4 is an immediate consequence. To prove (2), apply Theorem 6.4.6 to S
to get a finite extension R C S sending &; to x;, then apply [3] to obtain a finite exten-
sion D’ C D of K-affine algebras with D’ flat over A (and regular), and a factorization
C — D — §. Using 10.6.3, derive the analogues of 10.2.2:

10.6.4 Any regular local ring containing K is inductively F-regular.

10.6.5 If S is a complete Noetherian local domain containing K, then Colon
Capturing holds in S: if (xy,...,xq) is a system of parameters, then (I :
Xer1) C cl(L) for every k, where I, = (x1, ... ,x;)S.

To conlcude, combine all these results to give an alternative proof of the Hochster-
Roberts theorem.






Chapter 11
Cataproducts

11.1 Cataproducts

Recall from 1.4.7 that the ultraproduct of local rings of bounded embedding dimen-
sion is again a local ring of finite embedding dimension. In this chapter, we will be
mainly concerned with the following subclass.

Definition 11.1.1 (Ultra-Noetherian ring). We call a local ring Ry ultra-Noetherian
if it is the ultraproduct of Noetherian local rings of bounded embedding dimension,
that is to say, of Noetherian local rings R,, such that the embedding dimension of
R,, is at most e, for some e independent of w.

The Noetherian local rings R,, will be called approximations of Ry (note the more
liberal use of this term than in the previous chapters, which, however, should not
cause any confusion). It is important to keep in mind that approximations are not
uniquely determined by R;.

We introduced the geometric dimension of a Noetherian local ring in our study of
Krull dimension, see Theorem 3.3.2. This notion carries over naturally to any local
ring (S,n) of finite embedding dimension, namely, geodim(S) is the least number d
of elements x1, ..., x; in its maximal ideal such that S/(xj,...,x;)S is Artinian, that
is to say, such that (xy,...,x4)S is n-primary. Any tuple (xi,...,x;) with this prop-
erty is then called a system of parameters of R." Any element of R which belongs to
some system of parameters will be called a parameter. We immediately get:

11.1.2 The geometric dimension of a local ring is at most its embedding dimen-
sion, whence in particular is finite for any ultra-Noetherian local ring.

By Exercise 11.3.1, the geometric dimension of an ultra-Noetherian local ring is
larger than or equal to the (geometric) dimension of its Noetherian approximations,
and this inequality can be strict (for an example see Exercise 11.3.3). To study this
phenomenon as well as further properties of ultra-Noetherian local rings, we first
introduce a new kind of product:

I'In [56, 61, 63] such a tuple was called generic.

171
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Cataproducts. In 1.4.13 we saw that most ultra-Noetherian rings are not Noethe-
rian (in model-theoretic terms this means that the class of Noetherian local rings of
fixed embedding dimension is not first order definable; see Exercise 1.5.17). How-
ever, there is a Noetherian local ring closely associated to any ultra-Noetherian local
ring. Fix an ultra-Noetherian local ring

Ry :=ulimR,,,

W—00
and define the cataproduct of the R,, as the separated quotient of Ry, that is to say,
Rt = Ru/th .

If all R,, are equal to a fixed Noetherian local ring (R, m), then we call Ry the cat-
apower of R. In this case, the natural (diagonal) embedding R — R; induces a natural
homomorphism R — R;. Since mR; is the maximal ideal of Ry, likewise, mR; is the
maximal ideal of R;. The relationship between the rings R,, and their cataproduct
Ry is much less strong than in the ultraproduct case, as the following example illus-
trates.

11.1.3 The catapower of a Noetherian local ring (R,m) is isomorphic to the
cataproduct of the Artinian local rings R/m".

Indeed, if R; and S, denote the ultrapower of R and the ultraproduct of the R/m”"
respectively, then we get a surjective homomorphism R, — S;. However, any ele-
ment in the kernel of this homomorphism is an infinitesimal, so that the induced
homomorphism Ry — S; is an isomorphism. a

Nonetheless, as before, we will still refer to the R,, as approximations of Ry, and
given an element x € R;, we call any choice of elements x,, € R, whose ultraproduct
is a lifting of x to Ry, an approximation of x.

Theorem 11.1.4. The cataproduct of Noetherian local rings of bounded embedding
dimension is complete and Noetherian.

Proof. In almost all our applications,” the ultrafilter lives on a countable index set
W, but nowhere did we exclude larger cardinalities. For simplicity, however, I will
assume countability, and treat the general case in a separate remark below. Hence,
we may assume W = N. Let (R, m) be the ultraproduct of Noetherian local rings R,,
of embedding dimension at most e. It follows that R; too has embedding dimension
at most e. Let us first show that Ry, is quasi-complete (note that it is not Hausdorff in
general, because Jg_# 0). To this end, we only need to consider by 6.2.1 a Cauchy
sequence a in Ry such that a(n) = a(n+ 1) mod m"R;. Choose approximations
a, (n) € R,, such that
a(n) = ulima,,(n)

w—o0

for each n € N. By Los’ Theorem, we have for a fixed » that

2 A notable exception is the construction of a Lefschetz hull given in Theorem 10.1.5.
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a,(n)=a,(n+1) modm], (11.1)

for almost all w, say, for all w in D,,. I claim that we can modify the a,,(n) in such
way that (11.1) holds for all n and all w. More precisely, for each n there exists an
approximation ,,(n) of a(n), such that

a,(n)=a,(n+1) modm], (11.2)

for all n and w. We will construct the a,,(n) recursively from the a,,(n). When n =
0, no modification is required (since by assumption m’, = R,,), and hence we set
a,(0) := a,(0) and a,,(1) := a,,(1). So assume we have defined already the a,,(;)
for j < n such that (11.2) holds for all w. Now, for those w for which (11.1) fails
for some j < n, that is to say, for w ¢ (DoU---UD,), let &,,(n+ 1) be equal to
a,,(n); for the remaining w, that is to say, for almost all w, we make no changes:
ay(n+1):=a,(n+1). It is now easily seen that (11.2) holds for all w, and &,,(n)
is another approximation of a(n), for all n, thus establishing our claim.

So we may assume (11.1) holds for all j and w. Define b := ulima,,(w). Since
a,(w) =a,(n) modm, forall w>n, Los’ Theorem yields b = a(n) mod m"R;,
showing that b is a limit of a.

Since the cataproduct R; of the R, is a homomorphic image of Ry, it is again
quasi-complete by 6.1.5. By construction, Ry is Hausdorff and therefore even com-
plete. Since Ry has finite embedding dimension, it is therefore Noetherian by Theo-
rem 6.4.2 (or, in mixed characteristic, by Theorem 6.4.4). O

Remark 11.1.5. In order for the above argument to work for arbitrary index sets
W, we need to make one additional assumption on the ultrafilter % : it needs to
be countably incomplete, meaning that there exists a function f: W — N such that
for each n, almost all f(w) are greater than or equal to n. Of course, if W =N
such a function exists, namely the identity will already work. Countably incomplete
ultrafilters exist on any infinite set. In fact, it is a strong set-theoretic condition to
assume that not every ultrafilter is countable incomplete! Now, the only place where
we need this assumption is to build the limit element 5. This time we should take it to
be the ultraproduct of the a,,(f(w)). The reader can verify that this one modification
makes the proof work for any index set.

Proposition 11.1.6. Let Ry be an ultra-Noetherian local ring with separated quo-
tient Ry. For any ideal I C Ry, its m-adic closure is equal to I+ Jg . In particular,
the separated quotient of R, /I is Ry /IRy.

Proof. 1t suffices to show the first assertion. Clearly, I 4 Jg_is contained in the m-
adic closure of /. To prove the other inclusion, assume a lies in the m-adic closure
of 1. Hence its image in Ry lies in the m-adic closure of /Ry, and this is just IRy
by Theorem 1.4.11, since R; is Noetherian by Theorem 11.1.4. Therefore, a lies in
IRﬁﬂRh=I+th. O

From a model-theoretic point of view, L.os’ Theorem explicates which properties
are preserved in ultraproducts, to wit, any first-order property. Since cataproducts
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are residue rings, they, therefore, inherit any positive first-order property from their
components (Exercise 11.3.12). However, we do not want to derive properties of
the cataproduct via a syntactical analysis, but instead use an algebraic approach.
The first issue to address is the way dimension behaves under cataproducts. We
already mentioned that the geometric dimension of an ultra-Noetherian ring can
exceed that of its components (see Exercise 11.3.3). The same phenomenon occurs
for cataproducts because we have:

11.1.7 For an ultra-Noetherian local ring (Ry,m) its geometric dimension is
equal to the dimension of its separated quotient R;.

Let x := (x1,...,x4) be a system of parameters in Ry, (recall that this means that
(X1,...,Xq)Ry is an m-primary ideal, with d the geometric dimension of Ry). So
Sy := Ry /xRy is an Artinian local ring, whence must be equal to its separated quotient
Sy (see Exercise 11.3.5). By Proposition 11.1.6, we have Sy = R; /XR;, showing that
Ry has geometric dimension at most d. Since Ry is Noetherian by Theorem 11.1.4, it
has dimension at most d by Theorem 3.3.2. Moreover, we may reverse the argument,
for if Sy is Artinian, then necessarily Sy = Sy (again by Exercise 11.3.5). a

To investigate when the dimension of a cataproduct is equal to the dimension of
almost all of its approximations, we need to introduce a new invariant.

Definition 11.1.8 (Parameter degree). Given a local ring (R, m) of finite embed-
ding dimension, its parameter degree, denoted pardeg(R), is by definition the least
possible length of the residue rings R/XR, where x runs over all systems of parame-
ters.

Note that by definition of geometric dimension, the parameter degree of R is
always finite. Closely related to this invariant, is the parameter degree pdegg(x) of
an element x € R, defined as follows: if x is a unit, then we set pdegg(x) equal to
zero, and if x is not a parameter, then we set pdegg(x) equal to ; in the remaining
case, we let pdegp(x) be the parameter degree of R/xR. In Exercise 11.3.6, you are
asked to prove:

11.1.9 Let R be a d-dimensional Noetherian local ring, or more generally, a
local ring of geometric dimension d, and let x € R. Then the parameter
degree of x is equal to the minimal length of any residue ring of the form
R/(xR+1I), where I runs over all ideals generated by d — 1 non-units.

In [63, Proposition 2.2 and Theorem 3.4] we prove the following generalization of
Theorem 11.1.4: the completion of a local ring R of finite embedding dimension is
Noetherian, and has dimension equal to the geometric dimension d of R; moreover,
both rings have the same Hilbert polynomial whence their Hilbert dimension is also
d by Theorem 3.3.2. We define the muiltipliciy of R to be the leading coefficient
of its Hilbert polynomial times d! (this coincides with the classical definition in the
Noetherian case). The multiplicity of R is always at most its parameter degree, and
provided R is Noetherian with infinite residue field, both are equal if and only if R is
Cohen-Macaulay (see [60, Lemma 3.3] for the Noetherian case, and [63, Lemma
6.10] for a generalization).
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Theorem 11.1.10. Let R,, be d-dimensional Noetherian local rings of embedding
dimension at most e. Their cataproduct Ry has dimension d if and only if almost all
Ry, have bounded parameter degree (that is to say, pardeg(R,,) < r for some r and
for almost all w).

Proof. Assume almost all R,, have parameter degree at most r, so that their exists a
d-tuple x,, in R,, such that S,, := R, /x,,R,, has length at most r. Hence the cataprod-
uct S has length at most r by Exercise 11.3.5. By Proposition 11.1.6, the cataproduct
Sy is isomorphic to R;/XR;, where X is the ultraproduct of the x,,. Hence Ry, being
Noetherian by Theorem 11.1.4, has dimension at most d by Theorem 3.3.2, whence
equal to d by Exercise 11.3.1.

Conversely, suppose R; has dimension d, and let x be a system of parameters of
R;. Let r be the length of Ry /XR;. Let x,, be approximations of x. By Exercise 11.3.5,
almost all R,,/x,,R,, have length at most r. It follows that almost each x,, is a system
of parameters, and hence that R,, has parameter degree at most . a

Catapowers. We can apply this to catapowers. In the next result, the first state-
ment is immediate from Theorem 11.1.4 and Proposition 11.1.6; the second follows
immediately from Theorem 11.1.10.

Corollary 11.1.11. Let R be a Noetherian local ring with catapower Ry. For any
ideal I C R, the catapower of R/I is Rﬁ/IRﬁ. Moreover, R and Ry have the same
dimension. O

Corollary 11.1.12. The catapower of a regular local ring is again regular (of the
same dimension).

Proof. Let (R,m) be a d-dimensional regular local ring. If d = 0, then R is a field,
and Ry is equal to the ultrapower R, whence a field. So we may assume d > 0. Let
x be a minimal generator of m. Hence R/xR is regular of dimension d — 1, so that
by induction, its catapower is also regular of dimension d — 1. But this catapower
is just Ry /xRy by Corollary 11.1.11. It follows that mR; is generated by at most d
elements. Since Ry has dimension d by Corollary 11.1.11, it is regular. O

Flatness of catapowers. To further explore the connection between a ring and its
catapower, we require a flatness result.

Theorem 11.1.13. For each Noetherian local ring R, the induced homomorphism
R — Ry into its catapower Ry is faithfully flat.
Proof. Since R — Ry is local, we only need to verify flatness. Moreover, since R; is
complete by Theorem 11.1.4, we get (ﬁ)ﬁ = Ry by a double application of 11.1.3,
whence an induced homomorphism R— Ry. AsR— Ris flat by Theorem 6.3.4, we
only need to show that R— Ry is flat, and hence we may already assume that R is
complete.

Suppose first that R is moreover regular. By Corollary 11.1.12, so is then Ry.
In particular, the generators of m are R;-regular, so that Ry is flat over R by Theo-
rem 5.6.10. For R arbitrary, note that R = §/I for some regular local ring S and some
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ideal I C S by Theorems 6.4.2 and 6.4.4. By our previous argument the ultrapower
Sy of S is flat, whence so is R = S /I — S; /1S; = R; by 5.2.3 (where we used Corol-
lary 11.1.11 for the last equality). a

The reader who is willing to use some heavier commutative algebra can prove the
following stronger fact:

Corollary 11.1.14. If R is an excellent local ring, then the natural map R — Ry is
regular.

Proof. For the notion of excellence and regular maps, see [41, §32]. By Theo-
rem 11.1.13, the map R — R; is flat. It is also unramified, in the sense that mR;
is the maximal ideal of R;. If R is a field k, then Ry is just its ultrapower k. Using
Maclane’s criterion for separability, one shows that the extension k — k; is separa-
ble (Exercise 1.5.16). For R arbitrary, this shows in view of Corollary 11.1.11 that
R — R; induces a separable extension of residue fields. Hence R — R; is formally
smooth by [41, Theorem 28.10], whence regular by [1]. O

We can now generalize the fact that catapowers preserve regularity (Corol-
lary 11.1.12) to:

Corollary 11.1.15. If R is an excellent local ring, then R is regular, normal, reduced
or Cohen-Macaulay, if and only if Ry is.

Proof. Immediate from Corollary 11.1.14 and the fact that regular maps preserve
these properties in either direction (see [41, Theorem 32.2]). O

Corollary 11.1.16. If R is a complete Noetherian local domain, then so is its cat-
apower Ry.

Proof. Let S be the normalization of R (that is to say, the integral closure of R inside
its field of fractions). By [41, §33], the extension R C S is finite, and S is also a com-
plete Noetherian local ring. | claim that the induced homomorphism of catapowers
R; — Sy is again finite and injective. Since S; is normal by Corollary 11.1.15, it is a
domain, whence so it its subring R;.

So remains to prove the claim. By the weak Artin-Rees Lemma applied to the
finite R-module S (see Exercise 11.3.4), we can find for each m a bound e(m) such
that m*™SNR C m™ for all m. Let n be the maximal ideal of S. Since S/mS is finite
over R/m by base change, it is Artinian, and hence n' C mS for some [. Together
with the weak Artin-Rees bound, this yields

nle(m) AR C m™ (1 1 3)

for all m.

Let S, be the ultrapower of S, so that S, is a finite R;-module. The inclusion
Jr, € Js, MRy is clear, and we need to prove the converse, for then R; — S; will be
injective. So let z € R, be be such that it is an infinitesimal in Sy, and let z,, € R be
approximations of z. Fix some m. Since z € n*t")s,, by kos’ Theorem z,, € n/¢(" for
almost all w, whence z,, € m™ by (11.3). By another application of £os’ Theorem,
we get z € m"Ry, and since this holds for all m, we get z € Jg , as we wanted to
show. O



11.2 Uniform behavior 177

Theorem 11.1.17. Let R be a Noetherian local ring of equal characteristic, with
residue field k, and let Ry and k; be their respective catapowers. Then Ry is isomor-
phic to the complete scalar extension R’k\t over ky.

Proof. Since a ring and its completion have the same complete scalar extensions,
we may assume R is complete. By Cohen’s structure theorem, R is a homomorphic
image of a power series ring k[[£]], with & an n-tuple of indeterminates. Since com-
plete scalar extensions (by (6.6)) as well as catapowers (Corollary 11.1.11) com-
mute with homomorphic images, we may assume R = k[[£]]. So remains to show
that R; = k;[[]]. However, this is clear by Theorem 6.4.5, since Ry is regular by
Corollary 11.1.12, with residue field ky, having dimension n by Corollary 11.1.11.
O

11.2 Uniform behavior

In Chapter 7 we amply illustrated how ultraproducts can be used to prove several
uniformity results. This section contains more results derived by this technique.

Weak Artin-Rees. The Artin-Rees lemma is an important tool in commutative al-
gebra, especially when using ‘topological’ arguments. Its proof is not that hard, but
we have not given it in these notes. However, there is a weaker form of Artin-Rees,
which is often really the only property one uses (a notable exception is the proof of
Theorem 3.3.2) and which we can now prove easily by non-standard methods.

Theorem 11.2.1. Let (R, m) be a Noetherian local ring, and let a C R be an ideal.
For each m, there exists e :== e(a,m) such that

anm® C m"a.

Proof. Suppose not, so that for some m, none of the intersections a \m’” is contained
in m™a. Hence we can find elements a, € aNm” outside m™a. Let R; and R; be the
respective ultrapower and catapower of R. The canonical homomorphisms R — R
and R — Ry are both flat by Corollary 5.6.3 and Theorem 11.1.13 respectively. Since
Ry =Ry /g, the intersection criterion, Theorem 5.6.5, yields aRy NJg = aJg. Let
a be the ultraproduct of the a,, so that by Los” Theorem, a € aR; N Jg = aJg. The
latter ideal is in particular contained in am™R;, and hence by £os’ Theorem once
more, a, € m"a for almost all n, contradiction. O

Uniform arithmetic in a complete Noetherian local ring. In what follows, our in-
variants are allowed to take values in N := NU {co}. To an n-ary N-valued function
F: N' — N, we associate its extension at infinity, defined as the map F: N' — N
sending any tuple outside N" to co. Any such extended map will be called a numer-
ical function. By the order ordg(x) of an element x in a local ring (R, m) we mean
the supremum of all m such that x € m™ (so that in particular ordg(x) = o if and
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only if x € Jg; in the terminology of page 91, the order of x is the negative logarithm
of its adic norm).

Theorem 11.2.2. A complete Noetherian local ring R is a domain if and only if there
exists a binary function F such that

ordg(xy) < F(ordg(x),ordg(y)) (11.4)

forallx,y € R.

Proof. Assume first that (11.4) holds for some F. If x and y are non-zero, then their
order is finite by Theorem 1.4.11. Hence F(ord(x),ord(y)) is finite by definition of
F'. In particular, xy must be non-zero, showing that R is a domain.

Conversely, assume towards a contradiction that no such function F can be de-
fined on a pair (a,b) € N2, This implies that there exist for each 7, elements x,, and
¥ in R of order at most a and b respectively, but such that their product x,y, has
order at least n. Let Ry and Ry be the ultrapower and catapower of R respectively, and
let x and y be the ultraproducts of x,, and y, respectively. It follows from Los’ Theo-
rem that orth (x) <aand ordRh (y) < b, and hence in particular, x and y are non-zero
in Ry. By Corollary 11.1.16, the catapower R; is again a domain. In particular, xy
is a non-zero element in Ry, and hence has finite order, say, ¢, by Theorem 1.4.11.
However, then also ordg, (xy) = ¢ whence ordg(x,y,) = ¢ for almost all n by Los’
Theorem, contradiction. O

Remark 11.2.3. Theorem 11.2.2 is classically proven by a valuation argument. By
[71, Theorem 3.4] and [35, Proposition 2.2], we may take F' linear, or rather, of the
form F(a,b) := cmax{a,b}, for some ¢ € N (one usually expresses this by saying
that R has c-bounded multiplication.

Theorem 11.2.4. A d-dimensional Noetherian local ring (R, m) is Cohen-Macaulay
if and only if there exists a binary function G such that

ordg;(xy) < G(pdegR/I(x)vordR/I(y)) (11.5)

for all x,y € R and all ideals I C R generated by part of a system of parameters of
length d — 1.

Proof. Suppose a function G satisfying (11.5) exists, and let (zj,...,z4) be a system
of parameters in R. Fix some i and lety € (J : z;41) with J := (z1,...,z;)R. We need
to show that y € J. For each m, let I, :=J + (zﬁz,...,zzl”)R, and put x := zjy1.
Since xy € J C I, the left hand side in (11.5) for I = I, is infinite, whence so must
the right hand side be. However, x is a parameter in R/I,,, and therefore has finite
parameter degree. Hence, the second argument of G must be infinite, that is to say,
ordg/;, (v) = . In other words, y € I,,, and since this holds for all m, we gety € J
by Theorem 1.4.11, as we wanted to show.

Conversely, towards a contradiction, suppose R is Cohen-Macaulay but no such
function G can be defined on the pair (a,b) € N2. This means that there exist el-
ements x,,y, € R and a d — 1-tuple z, which is part of a system of parameters
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in R, such that pdegg (x,) < a and ordg, (y,) < b, but x,y, has order at least n in
Sp :=R/z,R. Let Ry and Ry be the respective ultrapower and catapower of R. Since
R is Cohen-Macaulay, so is Ry by Corollary 11.1.15 (or Exercise 11.3.7). Let x, y
and z be the ultraproduct of the x,, y, and z, respectively. By Proposition 11.1.6,
the cataproduct of the S, is equal to S; := R;/zR;. Since each S, has dimension one,
and parameter degree at most a by assumption on x,, the dimension of S; is again
one by Theorem 11.1.10. Since Ry has dimension d by 11.1.7, the d — 1-tuple z is
part of a system of parameters in R;, whence is Ry-regular by Theorem 4.2.6. This
in turn implies that Sy = R;/zR; is Cohen-Macaulay. Moreover, by Los’ Theorem,
y has order b in Ry/zR; whence also in Sy, and x has parameter degree a in S;. In
particular, x is a parameter in Sy whence Sy-regular. On the other hand, by f.os” The-
orem, xy is an infinitesimal in R, /zR,, whence zero in S;. Since x is S;-regular, y is
zero in Sy, contradicting that its order in that ring is b. a

11.3 Exercises

Ex 11.3.1

Let R be an ultraproduct of d-dimensional Noetherian local rings of embedding dimension
at most e, and let 8 be its geometric dimension. Show thatd < 6 < e.

Ex 11.3.2
Let Ry be an ultra-Noetherian ring and Ry its separated quotient. Show that x € R, is a
parameter if and only if its image in Ry is a parameter if and only if it is not contained in
any prime ideal of Ry obtained as the pre-image of a maximal dimensional prime ideal of
R;.

Ex 11.3.3
Let R, := K[[&]]/E"K[E] with & a single indeterminate over the field K. Show that their
ultraproduct Ry has geometric dimension at least one.

Ex 11.34
Given finitely generated modules N C M over a Noetherian local ring (R,m), apply Exer-
cise 5.7.8 to the module M /N and use Theorem 11.2.1 to show that for each m, there exists
e:=e(N,M,m) such that NNm°M C m"N.

Ex 11.3.5
Show that the separated quotient of a local ring of finite embedding dimension is Artinian
if and only if the ring itself is Artinian. More generally, show that the ultraproduct of local
rings R,, is Artinian of length | if and only if the cataproduct is Artinian of length [ if and
only if almost all R,, are Artinian of length l (see also Exercise 1.5.10).
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Ex 11.3.6
Prove 11.1.9.

Ex 11.3.7

Prove without using Corollary 11.1.15, but relying only on Theorem 11.1.13, that a Noethe-
rian local ring is Cohen-Macaulay if and only if its catapower is.

Ex 11.3.8
Show that a Noetherian local ring R admits a function satisfying (11.4) if and only if its com-
pletion does. Use this to show that one can weaken the assumption on R in Theorem 11.2.2
from being a ‘complete domain’ to being analytically irreducible (meaning that its comple-
tion is a domain).

Ex 11.3.9
Show that if R,, are domains admitting the same function F satisfying (11.4), then so does
their cataproduct, and hence the cataproduct is in particular a domain. Show by a coun-
terexample that the cataproduct of complete Noetherian local domains of fixed dimension
and parmeter degree is not necesarily a domain.

“Ex 11.3.10
Show that a complete Noetherian local ring is a domain if and only if there is a unary
function H such that pdegg(x) < H(ordg(x)) for all x € R.

Additional exercises.

Ex 11.3.11
Prove the following converse of Theorem 11.2.1: if R is a coherent local ring (see
Theorem 5.6.4) such that for each finitely generated ideal a« C R and each m, there
exists some e := e(a,m) such that anm® C a”m, then R is Noetherian. You will also
need the flatness criterion from Theorem 5.6.5 and the Noetherianity criterion from
Corollary 5.3.6.

Ex 11.3.12
Let ¢ be a positive sentence in the language of rings, that is to say, equivalent with
a quantification of a disjunction of systems of polynomial equations. Show that if ¢
holds for almost all R,,, then it holds for their cataproduct R.

Ex 11.3.13
Given a Noetherian local ring R, show that R is regular if and only if ordg(x) =
pdegg(x) for all x € R.



Chapter 12
Protoproducts

In Chapter 7, we used ultraproducts to derive uniform bounds for various algebraic
operations, where the bounds are given in terms of the degrees of the polynomials
involved. This was done by constructing a faithfully flat embedding of the poly-
nomial ring A into an ultraproduct U(A) of polynomial rings, called its ultra-hull.
Moreover, A is characterized as the subring of U(A) of all elements of finite degree.
In this chapter, we want to put these uniformity results in a more general context,
by replacing the degree on A by what we will call a profo-grading. However, as
the notion of ultra-hull is no longer available, we must replace the latter by the ul-
trapower A;. Moreover, there now may be elements of finite proto-grading in Ay
outside A, leading to the notion of the protopower A, of A, sitting in between A and
its ultrapower, and these embeddings may or may not be (faithfully) flat. The exis-
tence of uniform bounds in terms of the proto-grading follow from good properties
of this protopower. This can be extended to several rings simultaneously by using
protoproducts instead.

12.1 Protoproducts

Whereas as cataproducts are homomorphic images of ultraproducts, protoproducts
will be subrings. To define them, we need to formalize the notion of the degree of a
polynomial.

Proto-graded rings. By a pre-proto-grading I,(A) on a ring A, we mean an as-
cending chain of subsets

I(4) S Li(A) SBA) C ...
and a unary function F: N — N such that

1—;1(14) +Fm(A) - I_}?(n+m) (A) and I_;,(A) Fm(A) C I}(ner) (A)
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for all n,m € N, and such that for any unit u € A, if u lies in I;(A), then its inverse
lies in Iy, (A). The following terminology will prove to be quite convenient when
discussing proto-gradings: we will say that an element x € A has proto-grade at most
n, if it lies in I, (A). The minimal value n such that x has proto-grade at most n will
occasionally be called the proto-grade of x, allowing the case that x lies in no I,(A),
in which case it is said to have infinite proto-grade. In this terminology, the above
conditions read: for any x of proto-grade at most n and any y of proto-grade at most
m, their sum, x+ y, and product, xy, both have proto-grade at most F (n+m); and if,
moreover, x is a unit, then its inverse has proto-grade at most F'(n). A less accurate
but more telling paraphrase of these conditions is that the arithmetic of the ring
(addition, product, and inverse) is uniformily bounded with respect to proto-grade.
If we want to emphasize the function F, we call I3 (A) a pre-proto-F-grading. We
call I,(A) a proto-F-grading, or simply a proto-grading, if moreover the union of
all I;;(A) is equal to A, that is to say, if there are no elements of infinite proto-grade.
In Exercise 12.5.1 we prove:

12.1.1 IfI;(A) is a pre-proto-F -grading on A, then the collection of all elements
of finite proto-grade form a subring A’ of A, called the proto-graded sub-
ring associated to the pre-proto-grading, and I;,(A’) := I},(A) defines a
proto-F -grading on this subring.

A proto-graded ring (A,I') is a ring endowed with a proto-grading I4(A). Two
proto-gradings I3 (A) and ©,(A) are equivalent if there exists a unary function G
such that I;(A) € O, (A) and ©,(A) C I, (A) for all n. For all intent and pur-
poses, as we shall see, we may replace any proto-grading by an equivalent one. For
instance, since any proto-grading is equivalent with a proto-grading I4(A) such that
0,£1 € IH(A), there is no harm in assuming this already from the start.

Any polynomial ring A := Z[&] over an arbitrary ring Z is proto-F-graded by
letting I,;(A) consist of all elements of degree at most n, where F is now just the
identity function. Note that in particular Z C Ij(A), or put differently, all coefficients
have proto-grade zero. We will shortly generalize this, and refer to this situation as
the Z-affine proto-grading, or simply affine proto-grading on A. The following are
some other immediate examples.

If A = @®,A, is an N-graded ring, then letting I;,(A) be equal to the direct sum
Ag®A & ---BA,, makes A into a proto-graded ring. A different generalization,
proven in Exercise 12.5.2, is:

12.1.2 Let (A,I") be a reduced proto-graded ring, let & be a (finite) tuple of
indeterminates, and put B := A[E]. Let I,(B) be the set of all polynomials
of degree at most n each coefficient of which has proto-grade at most n.
Then I, (B) is a proto-grading on B, called the extended degree proto-
grading.

In particular, the affine proto-grading on A[&] is the extended degree proto-
grading where A is given the trivial proto-grading in which any element has proto-
grade zero. Note that the protopower of a trivially proto-graded ring is simply its
ultrapower.
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For a given subring A of R, let I};(A) be the set of all elements a € A of absolute
value at most n. In order for this to be a proto-grading, we need to exclude the
possibility that there exist units in A converging to zero. For instance, if A is not
dense at zero (that is to say, if there exists € > 0 such that AN[—¢g, €] = {0}), then the
absolute value yields a proto-grading on A. In particular, this defines a proto-grading
on the ring of integers Z. The degree proto-grading on Z[&] extending this absolute
value proto-grading, as defined in 12.1.2, will be called the Kronecker proto-grading
on Z[&], and will be studied further in §12.3.

The category of proto-graded rings. A morphism of proto-graded rings (A,I") —
(B,®) is a ring homomorphism A — B for which there exists a unary function
G: N — N such that I;(A) € Og,(B), for all n. In particular, if I" and I'" are
equivalent proto-gradings on A, then the identity on A induces an isomorphism of
proto-graded rings. These definitions give rise to the category of proto-graded rings.

Let (A,I') be a proto-F-graded ring, and let ¢ : A — B be a ring homomorphism.
We define the push-forward of I' by the rule I, (B) := ¢(I,(A)) for all n. In gen-
eral, Is(B) is only a pre-proto-F-grading, since elements outside the image of the
homomorphism have infinite proto-grade. In particular, the push-forward is a proto-
grading if ¢ is surjective, that is to say, if B is of the form A /I for some ideal I C A.
We call this proto-grading the residual proto-grading on A/I. As for localizations,
we can show:

12.1.3 Let (A,I') be a proto-graded rings and let S C A be a multiplicative sub-
set. There exists a natural proto-grading on the localization S~'A, such
that the natural map A — S~'A is a morphism of proto-gradings.

Indeed, suppose I is a proto-F-grading. On B := S™!A, define a proto-grading
by the rule that x/s has proto-grade at most n, for x € A and s € S, if both x and s
have proto-grade at most n. This yields a proto-G-grading on B, where G = F o F
(see Exercise 12.5.3 for details).

In view of 12.1.2, we can now extend a given proto-grading on a ring A to any A-
affine algebra B. Namely, write B as A[£]/I and give B the residual proto-grading of
the extended degree proto-grading on A[£] (and similarly, for local A-affine algebras,
using 12.1.3). In Exercise 12.5.4, we show that any two presentations of B as an A-
affine algebra yield equivalent proto-gradings. In case the base ring Z is trivially
proto-graded, then we refer to the thus obtained proto-grading on a (local) Z-affine
algebra B as the Z-affine proto-grading, or simply, the affine proto-grading on B.

Protopowers. Let (A,I") be a proto-graded ring, and let A; be some ultrapower of
A. We define a pre-proto-grading on A by letting I, (A;) be the ultrapower of I,(A)
(viewed as a subset of Ay). The protopower A, of A is defined as the proto-graded
subring associated to this pre-proto-grading, that is to say,

A, = JL(Ay).

n

By 12.1.1, the protopower is again a ring, and I" induces a proto-grading on A,. The
following characterization of A, easily follows from L.os’ Theorem:
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12.1.4 An element in the ultraproduct Ay lies in the protopower A, if and only if
for some n, almost all of its approximations have proto-grade at most n.

We may express this more simply by saying that x € Ay, belongs to A, if and only
if some (equivalently, any) approximation of x has bounded proto-grade. Some care
has to be exercised when working with residual proto-gradings.

12.1.5 Let (A,I') be a proto-graded ring, and let I C A be a finitely generated
ideal. With respect to the residual proto-grading on A/I, the protopower
of A/l is equal to A, /(IA; N A).

Indeed, let A, and Ay, be the respective protopower and ultrapower of A. Since the
ultrapower of A/I is equal to A;/IA; by Exercise 1.5.7, an element x € A, viewed
as an element of Ay /IA; has an approximation x,, of bounded proto-grade in A /I if
and only if almost all x,, € I;;(A) for some n. This in turn is equivalent with x € A,.
Hence the protopower of A/I is equal to the image of A, in A, /IA;, and this is just
A,/(IA;NA,). Note, however, that in general A, — A, will not be cyclically pure,
and therefore IA; N A, can be strictly larger than IA,. a

We have now completed the chromatic scale of a proto-graded Noetherian local
ring A: there exist natural local A-algebra homomorphisms

A=Ay Ay Ay (12.1)

Protoproducts. To define protoproducts, we need to make an assumption on the
sequence of proto-graded rings A,,. We say that the A,, are uniformly proto-graded
if there exists a unary function F, such that the proto-grading on A,, is equivalent
with a proto-F-grading I3(A,,) for (almost) all w. If this is the case, let A, be the
ultraproduct of the A,,, and for each n, let I,(A;) be the subset of A, given as the
ultraproduct of the I (A,,). By Los’ Theorem, I3(Ay) is a pre-proto-F-grading on
Ay. The associated proto-graded subring A, is called the protoproduct of the A,,. One
checks that this definition does not depend on the choice of the unary function F', or
the particular equivalent proto-F-grading. Of course, a protopower is just a special
instance of a protoproduct where all the rings are equal to a single proto-graded
ring. The protoproduct of trivially proto-graded rings is just their ultrapower, so that
protoproducts generalize the notion of ultraproduct.

Lemma 12.1.6. The protoproduct of uniformly proto-graded local rings is a local
ring.

Proof. Let (Rp,m,,) be proto-F-graded local rings, and let (R, m) be their ultra-
product. I claim that m N R, is the unique maximal ideal of the protoproduct R,. To
this end, we have to show that if x € R, does not belong to m, then it is invertible in
R,. Let x,, be an approximation of x. In particular, almost all x,, are units, and have
proto-grade at most n, for some n independent of w. Hence their respective inverses
yw have proto-grade at most F(n). The ultraproduct y of the y,, lies therefore also
in R,. By Los’ Theorem, xy = 1 holds in R, whence also in the subring R,, as we
wanted to show. a
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Protoproducts commute with the formation of a polynomial ring in the following
sense:

Proposition 12.1.7. Let A,, be uniformly proto-graded rings, which we assume to be
either reduced or Noetherian, let & be a finite tuple of indeterminates, and view each
B, := A, [E] with its extended degree proto-grading. If A, and By, are the respective
protoproducts of A,, and B,,, then B, = A, [&].

Proof. Note that it follows from Exercise 12.5.2 that all B, are also uniformly proto-
graded, so that it makes sense to talk about their protoproduct. Let Ay C By be the
ultraproducts of the A,, and B,, respectively. By definition of the extended degree
proto-grading, an element f in the ultraproduct By of the B,, has an approximation
fw of bounded proto-grade if and only if, for some n, almost all f,, have degree at
most n with coefficients of proto-grade at most n in A,,. Hence such an f belongs to
A;[&] by an argument similar to the one used for 7.1.2. Moreover, by £.os’ Theorem,
the coefficients of f are then all in I;(A,), showing that f € A,[]. Reversing the
argument yields the converse inclusion. a

For instance, the protopower of Z[&] with respect to its Kronecker proto-grading
is Z[&] itself, whereas with respect to its affine proto-grading we get Z;[§], where
Zy is the ultrapower of Z. It is instructive to revisit our construction of an ultra-hull
in this new formalism: let K be the ultraproduct of fields K,, each of which we view
with its trivial proto-grading. In particular, the protoproduct of the K, is just K, and
hence by the above result, the protoproduct of the A,, := K,,[£] in their affine proto-
grading, is A := K[£], whereas the ultraproduct of the A,, is the ultra-hull U(A) of
A.

12.2 Uniform bounds

In Chapter 7, the main tool for deriving uniform bounds was the faithful flatness
of the ultra-hull. In the more general setup of proto-gradings, this is no longer a
property holding automatically, but rather an hypothesis, and so we have to inves-
tigate when it is satisfied. Ideally, we would derive uniform bounds for a class of
uniformly proto-graded rings (with the bounds only depending on some numerical
invariants of the ring and the data), and for this we will need good properties of
protoproducts. An example of this method will be discussed in §13.2 in the next
chapter. In this chapter, however, we content ourselves with bounds that work for a
single proto-graded ring, for which it suffices to work with protopowers.

In what follows A is a proto-graded ring, with proto-grading I3 (A), protopower
A, and ultrapower A;. We need to study the properties of the inclusions A C A, C A;.
If A is Noetherian, then A — Ay is faithfully flat by Corollary 5.6.3, and hence A C A,
is cyclically pure (in fact, this remains true without the Noetherianity assumption;
see Exercise 12.5.8). It is natural to ask under which conditions will A C A, be faith-
fully flat, and we will see criteria for that below (see for instance Exercise 12.5.9).
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However, keeping the example of an ultra-hull in the above discussion in mind, the
more important question is the nature of the embedding A, C Ay (recall that this
corresponds in the ultra-hull case precisely to the embedding A C U(A)). Unlike the
ultra-hull case, this embedding may fail to be faithfully flat, an a priori obstruction
for deriving uniform bounds a la Chapter 7, and so we make the following definition.

Definition 12.2.1. A proto-grading on a ring A is called respectively flat, faithful,
Jfaithfully flat or cyclically pure, if the natural embedding A, C Ay has the corre-
sponding property.

To better formulate the next results, we introduce the following terminology. Let
A be a proto-graded ring, with A, and A its respective protopower and ultrapower.
An ideal I C A is said to have proto-grade at most n, if it can be generated by n
elements of proto-grade at most # (note the bound on the number of generators!). In
particular, for any n > 1, an element has proto-grade at most # if and only if the ideal
it generates has proto-grade at most n. The usefulness of this concept is exhibited
by the following result:

12.2.2 Let I,, C A be ideals of proto-grade at most n, for some n independent
from w. Then there exists a finitely generated ideal I C A, such that IA
is equal to the ultraproduct I, of the I,,.

Indeed, if fi,...,f,w are generators of [,, of proto-grade at most n, and if
fi,..., fu € Ay are they respective ultraproducts, belonging therefore to the subring
Ay, then we may take I := (f1,..., fn)A, (see Exercise 1.5.7). O

A note of caution: the ideal / is not uniquely determined by the /,,, and neither is
it necesarily equal to I; N A,. We will return to this issue in Definition 12.4.1 below.

Noetherian proto-gradings. Trivial proto-gradings are automatically faithfully
flat, for then protopower and ultrapower agree. However, to derive meaningful
bounds, some finiteness assumptions are required, the most natural of which is that
the protopower should also be Noetherian. Let us therefore call a proto-grading Noe-
therian if its protopower A, is a Noetherian ring. If the proto-grading on A is Noe-
therian, then A itself must also be Noetherian by Corollary 5.3.6, since A — A, is
cyclically pure by Exercise 12.5.8. The trivial proto-grading shows that the converse
fails in general. So of real interest to us will be the proto-gradings which are at the
same time Noetherian and faithfully flat. The example par excellence, of course, is
the ultra-hull as discussed above. For technical purposes, we also need the following
definition: a proto-grading on A is coherent if A, is a coherent ring (see page 78).

Proposition 12.2.3. IfA has a Noetherian proto-grading, then for each n there exists
a bound n' such that any ideal generated by elements of proto-grade at most n has
itself proto-grade at most n' (and whence in particular can be generated by at most
n' elements).

Proof. Suppose no such bound exists for n, so that we can find counterexamples I,
which are ideals of proto-grade at least w but generated by elements of proto-grade
at most n. Let I, be the ultraproduct of the /,,. By Exercise 1.5.7, there exists an ideal
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I C A, such that Iy = IA;. Since A, is Noetherian, we can write I = (fi,..., f;)A;.
Choose n > s so that all f; have proto-grade at most n, and let f;,, be approximations
, also of proto-grade at most n. By the same exercise, we get I,, = (fiw,. .., fiw)A
for almost all w, showing that ,, has proto-grade at most n, contradiction. a

The existence of certain uniform bounds also characterizes Noetherianity via the
following generalization of a theorem due to Seidenberg in [66].

Theorem 12.2.4. For a proto-graded ring A, the following are equivalent:

1. the proto-grading is Noetherian;

2. there exists for each function A: N — N, a bound n := n(A) with the property
that given a sequence of elements f; of proto-grade at most A (i) for alli € N, then
for some i <n, we can write f; = qofo+ -+ +qi—1fi-1 with all q; of proto-grade
at most n.

Proof. By way of contradiction, assume that A, is Noetherian, but that for some A,
no such bound exists. Therefore, we can find for each w, a counterexample consist-
ing of the following data: elements f;,, € A of proto-grade at most A (i), for i < w,
such that no f;,, can be written as a linear combination of the fy,,,..., fi—1w With
coefficients of proto-grade at most w. For i > w, set f;,, equal to zero, and, for each
i, let f; be the ultraproduct of the f;,, so that by construction, f; € A,. Since A, is
Noetherian, the ideal generated by all the f; is equal to (fy, ..., fiu—1)A, for some m.
In particular, there exist ¢; € A, such that f,,, = qofo+---+qm—1fm—1. Choose n > m
such that all g; for i < m have proto-grade at most n. Hence, by L.os’ Theorem, f,,,
is a linear combination of fy,, ..., f,—1,» With coefficients of proto-grade at most n,
for almost all w, contradicting our assumption for w > n.

Conversely, assume that (2) holds but that there exists an infinite strictly ascend-
ing chain of ideals ag & a1 & a2 & ... in A,. Choose for each i, an element f; in
a; but not in a;_;. Let I be the ideal in A, generated by these f;. For each i, choose
A (i) so that f; has proto-grade at most A(i). Let f;,, be an approximation of f; of
proto-grade at most A (i). By assumption, there is a bound n := n(4) such that for
some i < n and some g j,, of proto-grade at most n, we have

fiw = qOWfOW + - +q#1,wfi71,w-

Let g; € A, be the ultraproduct of the g;,,. Since there are only finitely many possi-
bilities for i < n, there is one such which holds for almost all w. For this i, we have
therefore by L.os” Theorem that

fi=qofo+ - +qi-1fi-1 (12.2)

in Ay. Since all elements in (12.2) belong to the subring Ay, this equation itself holds
in this subring, showing that f; € a;_{, contradiction. O

Applying this to a constant function yields:
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Corollary 12.2.5. If A has a Noetherian proto-grading, then for any n there exists
n' > n with the property that any ideal generated by elements of proto-grade at most
n is generated already by n' of these generators, that is to say, is an ideal of proto-
grade at most n'. O

We already mentioned that the affine proto-grading on a polynomial ring K[&]
over a field K is Noetherian, and in this case, one can give a more explicit bound in
the previous Corollary 12.2.5: namely we may take n’ equal to the number of mono-
mials of degree at most 7 in the & (Lemma 7.4.2). Nonetheless, I am not aware of
such an explicit characterization for other functions A in Theorem 12.2.4, that is
to say, for the result that: for each field K, any function A admits a bound n, such
that if f; are polynomials in & over K of degree at most A (i), then for some i < n,
the polynomial f; is a linear combination of the previous f; with coefficients them-
selves polynomials of degree at most n. In Project 12.6, we will show that the ring
of algebraic power series K[[]]%2 over a field K admits a faithfully flat, Noethe-
rian proto-grading, called the etale proto-grading. Here, even the bound given by
Corollary 12.2.5 seems no longer to admit a straightforward argument.

Corollary 12.2.6. Let A have a Noetherian proto-grading and let & be a finite tuple
of indeterminates. For each function A : N — N, there exists a bound n :=n(A) with
the property that given a sequence of polynomials f; of degree at most A (i) as well
as each coefficient of proto-grade at most A(i), for all i € N, then for some i < n,
we can write fi = qofo+ -+ qi—1fi—1 with all q; polynomials of degree at most n
having coefficients of proto-grade at most n.

Proof. Let A, be the protopower of A, which by assumption is Noetherian. Since A
itself is in particular Noetherian, the extended degree proto-grading on B := A[&] is
well-defined by Exercise 12.5.2. By Proposition 12.1.7, the protopower of Bis A, [&],
again a Noetherian ring. Therefore the extended degree proto-grading is Noetherian
and the bound now follows from Theorem 12.2.4. a

Another example of a Noetherian proto-grading to which we may apply the pre-
vious corollary is the Kronecker proto-grading on Z (since the protopower is trivial),
yielding:

Corollary 12.2.7. Given a tuple of indeterminates &, for each function A : N — N,
there exists a bound n := n() with the property that if f; are polynomials of degree
at most A(i) with integer coefficients of absolute value at most A(i), for all i € N,
then for some i < n, we can write f; = qofo+---+ qi—1 fi—1 with all q; polynomials
of degree at most n having integer coefficients of absolute value at most n. a

Faithful proto-gradings. We start with discussing faithful proto-gradings. By
Corollary 12.1.6, any proto-grading on a local ring is faithful. We can character-
ize faithful proto-gradings by a uniformity result:

Theorem 12.2.8. A proto-grading on a ring A is faithful if and only if for each pair
(n,s) there exists a bound m := m(n,s) with the property that if (f1,...,fs)A is the
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unit ideal, with each f; of proto-grade at most n, then there exist g; of proto-grade
at most m such that 1 = f1g1+ -+ f;&s.

If the proto-grading is faithful and Noetherian, then m can be taken to be inde-
pendent from s.

Proof. The last assertion follows from the first and Proposition 12.2.3. Suppose first
that proto-grading is faithful, so that the natural embedding A, — A, is faithful, but
towards a contradiction, suppose no bound exists for the pair (n,s). Hence for each
w, we have a counterexample consisting of s elements f;,, of proto-grade at most n
generating the unit ideal, but any linear combination of the f;,, equal to 1 requires at
least one of the coefficients to have proto-grade at least w. Let f; be the ultraproduct
of the f;,,. By construction, f; € A,, and by Los’ Theorem, (f1,..., f;)A; = A;. Since
A, — Ay is faithful, this implies that necessarily (fi,..., f;)A, = A,. Choose g; € A,
such that f1g; +--- + figs = 1, and let m large enough so that all g; have of proto-
grade at most m. For each i, choose an approximation g;,, of g; of proto-grade at
most m. Since by Los’ Theorem,

Siwgiw + -+ fywgsw =1 (12.3)

for almost all w, we get the desired contradiction for any of those w > m.
Conversely, suppose a bound as above exists for all pairs (n,s), and let / be an
ideal in A, such that JA; = A;. We want to show that / = A,. By assumption, there
exist f1,..., fy €land hy, ..., hy € Ay such that f1h) +- -+ fihy = 1. Choose n large
enough so that all f; have proto-grade at most n. Let f;,, be an approximation of f; of
proto-grade at most n. By Los’ Theorem, (fi, ..., fsw)A = A for almost all w, and
hence by assumption, we can find g;,, of proto-grade at most m satisfying (12.3), for
some m independent of w. By construction, the ultraproduct g; of g;,, belongs to A,,
and by Los’ Theorem, fig1 +---+ fygs = 1 in Ay, whence already in the subring A,
as we wanted to show. a

For affine proto-gradings (recall that these are essentially given by the degree),
being faithful is already a very restrictive assumption as the next result shows (recall
that a ring A is called von Neumann regular if for each non-zero x there exists a non-
zero y € A such that xy? = y, and that this is equivalent with A being absolutely flat,
meaning that any A-module is flat):

Theorem 12.2.9. For a reduced ring A, the following are equivalent:

1. A is von Neumann regular;

2. the A-affine proto-grading on A|E] is faithful, for all finite tuples & of indetermi-
nates;

3. every A-affine proto-grading is faithful.

Proof. The equivalence of (1) and (2) is an immediate consequence of Theo-
rem 12.2.8 and the characterization of von Neumann regularity given in the proof
of [50, Proposition 5]. The equivalence of (2) and (3) follows by base change. O
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In view of Proposition 12.1.7, condition (2) is equivalent with the canonical map
Ap[€] — By being faithful, where By is the ultrapower of A[&]. For a non-reduced
example where this property holds, let A be an Artinian local ring: the embedding
A;[E] — By is then in fact faithfully flat by [64, Theorem 1.2] (note that A, is again
an Artinian local ring). In our current terminology, any affine proto-grading over an
Artinian local ring is Noetherian and faithfully flat (see Exercise 12.5.15).

A reduced Noetherian ring is von Neumann regular if and only if it is a direct sum
of fields. In particular, the affine proto-grading on A := Z[£] is not faithful. This
is exemplified by the following ideal: let @ := ulim, ..n € Ny, and let I := (1 —
2£,29)A, (recall that A, = Z,[&] by Proposition 12.1.7). Since each (1 —2&,2")A
is the unit ideal, so is /A; by Los’ Theorem. However, in order to write 1 as linear
combination of 1 —2& and 2", we require a polynomial of degree at least n, namely,

(1-28)(}.(28)) +2"(&") =1,

i<n

and so [ is proper ideal in A,.

If we replace the faithfulness assumption in Theorem 12.2.8 by the stronger as-
sumption that the proto-grading is cyclically pure, then virtually an identical proof
yields (see Exercise 12.5.12):

Theorem 12.2.10. A proto-grading on a ring A is cyclically pure if and only if for
each pair (n,s), there exists a bound m := m(n,s) such that if fo, ..., fs are elements
in A of proto-grade at most n, with fy in the ideal generated by the remaining f;,
then fo = fig1+ -+ fsgs for some g; of proto-grade at most m.

Moreover, the bound m can be chosen independent from s if the proto-grading is
cyclically pure and Noetherian.

Flat proto-gradings. The following theorem generalizes the results on page 114.

Theorem 12.2.11. For a proto-graded ring A, consider the following conditions:

1. for each n there exists a bound n' such that if I,J C A are ideals of proto-grade
at most n, then their colon ideal (I :J) is generated

a. by elements of proto-grade at most n';
b. by n elements of proto-grade at most ', that is to say, (I : J) has proto-grade
at most n';

2. for each triple (n,s,m), there exists a bound n" .= n" (n,s,m) such that if (L) is
a homogeneous linear system of s equations in m variables with coefficients of
proto-grade at most n, then the A-module of solutions of (£) is generated

a. by solutions with entries of proto-grade at most n';
b. by n"" solutions with entries of proto-grade at most n';

3. for each n, there exists a bound n'’ with the property that if I is an ideal of proto-

grade at most n, then its module of syzygies is generated

a. by syzygies with entries of proto-grade at most n';
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b. by 0" syzygies with entries of proto-grade at most n''.

If the proto-grading is flat, then (1a), (2a) and (3a) hold. If the proto-grading is
moreover Noetherian, or more generally, coherent, then the proto-grading is flat if
and only if (2b) holds if and only if (3b) holds. If on the other hand, the proto-
grading is cyclically pure, then (1b) holds if and only if the proto-grading is faith-
fully flat and coherent.

Proof. Note that in view of (i;5), conditions (3a) and (3b) are a special instance of
(2a) and (2b) respectively, with s = 1 and m = n. We start by proving that flatness
implies (1a). By way of contradiction, assume that for some 7, no bound as asserted
exists. Hence for each w, we can construct a counterexample consisting of two ideals
I,, and J,, of proto-grade at most n, such that (I, : J,,) cannot be generated by
elements of proto-grade at most w. In particular, there exists x,, € (I, : J,,) not
belonging to the ideal generated by (1, : J,,) NI;,(A). Let A, and Ay, be the respective
protopower and ultrapower of A. By 12.2.2, we can find finitely generated ideals
I,J C A, (in fact, of proto-grade at most n), such that /A, and JA; are the respective
ultraproducts of the /,, and J,,. By Los” Theorem, the ultraproduct f € A, of the
fw belongs to (IA; : JA;). By assumption, A, — A, is flat, so that f € (I : J)A, by
Theorem 5.6.16. Let g1, ...,&; € (I :J) be such that f is a linear combination in A,
of the g;, and choose N > n large enough so that all g; have proto-grade at most
N. Let g;,, be an approximation of g;. Hence by Los’ Theorem, almost each g;,,
has proto-grade at most N and belongs to (1, : J,,). Moreover, almost each f), is a
linear combination of the g;,,, contradicting our assumption whenever w > N. Note
that if A, is coherent, then we may choose the g; so that they generate (I : J) (see
for instance [22, Theorem 2.3.2] or Exercise 5.7.26). In that case, any element in
(I, : Jyy) is a linear combination of the approximations g;,, that is to say, has proto-
grade at most N for almost all w, from which we can now derive (1b) by a similar ad
absurdum argument. That flatness implies (2a) and, under the additional coherency
assumption, (2b) are proven in the same way, using instead Theorem 5.6.1.

To prove that (3b) yields flatness, we will verify the equational criterion for flat-
ness as stated in Theorem 5.6.1. To this end, let X be a solution in Ay of a linear
equation ajf| + --- + asty = 0 with a; € A,. Choose n > s sufficiently large such
that each a; has proto-grade at most n, and choose approximations a;,, of each a; of
proto-grade at most 7, and an approximation x,, of x. By L.os’ Theorem, x,, is a solu-
tion of aj 11 + - - - +asts = 0, and hence in view of (§;3) and (3b), there exists some
n"” such that x,, is a linear combination of n” solutions all of whose entries have
proto-grade at most n””’. Hence the ultraproduct of these n’”’ solutions are solutions
of ajt; +---+ast; = 0 in A,, and x is an Aj-linear combination of these solutions,
as we wanted to show.

So remains to show is that if (1b) holds and the proto-grading is cyclically pure,
then it is also flat and coherent. To show that A, — A; is flat, we verify the colon
criterion (Theorem 5.6.16). Let I := (hy,...,hs)A, be a finitely generated ideal, and
leta € A,. We need to show that (IA; : a) = (I : a)A;. Choose n > s so that both I and
a have proto-grade at most n. Let I, := (hyy,...,hu)A and a,, be approximations
of proto-grade at most n of I and a respectively. By (1b), almost all (/,, : a,,) have
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proto-grade at most 7', say, generated by the n’ elements f;,, of proto-grade at most
n'. By Theorem 12.2.10, there exists a bound n” only depending on n’ whence on n,
and elements g;,, of proto-grade at most n” such that

aw fiw = itwhiw + - + Giswhsw

for all i = 1,...,n" and all w. Taking the respective ultraproducts of the f;,, and
gijw yield elements f; and g;; in A,. Moreover, by Los’ Theorem, we have, for all
i, an identity af; = gj1h1 + - + gishs in Ay, whence in the subring A,. This shows
that f; € (1 : a). On the other hand, an easy argument on Los’ Theorem shows that
(IAy :a) = (f1,..., fw)Ay, from which it follows that (IA; : a) = (I : a)Ay, as we
wanted to show. This also shows that (I : a) is finitely generated, from which it
follows that A, is coherent by Exercise 5.7.26. a

Theorem 12.2.12. Let (R, m) be a local ring with a faithfully flat, Noetherian proto-
grading. For each n, there exists a bound e := e(n) with the property that for any
Jo,- -+, fs of proto-grade at most n, if fy lies in (fi,...,fs)R+m¢ then f lies already

in (fi,...,fs)R

Proof. Suppose that for some 7, no such bound exists, so that for each w, we can find
a counterexample consisting of an ideal /,, generated by elements of proto-grade at
most n and an element f,, of proto-grade at most n, so that f,, lies in 7,, +m" but not
in I,,. By Proposition 12.2.3, the I,, are generated by at most n’ elements of proto-
grade at most 7', for some n’ only depending on n. By 12.2.2, there exists I C R,
such that IRy, is the ultraproduct of the I,,. By £os” Theorem, the ultraproduct f of
the £, does not belong to IRy, whence a fortiori f ¢ I. On the other hand, by Los’
Theorem, f € IR, + mV Ry for every N. By assumption R, — Ry is faithfully flat, so
that f belongs to I +m"R,, for all N. Since R, is Noetherian, the Krull Intersection
Theorem (Theorem 1.4.11) yields f € I, contradiction. a

12.3 Proto-gradings over the integers

In this section, we will discuss briefly the existence of some bounds over the integers
originally due to Seidenberg (for instance, the bound proven in Corollary 12.3.1
below is shown to actually be doubly exponential in [66]), with improved bounds
given by Aschenbrenner (the same bound is proven to be polynomial in [4]). More
precisely, let A := Z[&], viewed in its Kronecker proto-grading. Since A = A, C A,
is faithfully flat by Corollary 5.6.3, the Kronecker proto-grading is faithfully flat,
and therefore combining the previous results (see Exercise 12.5.14) yield:

Corollary 12.3.1. There exists for each pair (m,n) a bound n' .= n'(m,n), such that
1= (f1,....fs)A with A=17[&,...,&y), is an ideal of Kronecker proto-grade at
most n (that is to say, generated by n polynomials of degree at most n with coef-
ficients of absolute value at most n), then the module of syzygies of I is generated
by n' syzygies with entries of Kronecker proto-grade at most n'. Moreover, if f has
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Kronecker proto-grade at most n and belongs to I, then there exist g; of Kronecker
proto-grade at most n’ such that f = g1f1+--- + fsgs. a

We already argued that the above is false if we take the degree proto-grading on
Z[€&], since this proto-grading fails to be faithful. However, Aschenbrenner observed
that 12.2.11(2b) holds in this case, proving that the degree proto-grading is flat. I
will give here an independent, direct proof of flatness, and hence via (2b), recover
Aschenbrenner’s result.

Theorem 12.3.2. The affine proto-grading on Z[&) is flat. In particular, the module
of syzygies of a tuple of polynomials of degree at most n is generated by n' tuples
whose entries have degree at most n' for some n' only depending on n and the num-
ber of indeterminates.

Proof. The last assertion follows from the first and Theorem 12.2.11. By Proposi-
tion 12.1.7, the protopower of A := Z[&] is A, = Z;[£], and we have to show that
Zy|&] — Ay is flat. We will do this by means of the Tor criterion (Theorem 5.2.6), that
is to say, by showing that

T :=Tor,” (A, A, /1)

vanishes for every finitely generated ideal I C A,. Towards a contradiction, suppose
that 7 is a non-zero element in T. Let Q, be the ultrapower of Q, so that by tos’
Theorem, itis the field of fractions of Z;. Viewing B := Q[¢] in its affine proto-grading,
we have B, = Q,[§] =4, ®z, Q;. Moreover, since any polynomial in B is of the form
af witha € Q and f € A, we have B; = A; ®z, Q;. Since B, — By is faithfully flat by
Theorem 7.2.2, and since this is just the base change of A, — A, with respect to Q,
by our previous calculations, we get T®z,Q;=0 by Exercise 5.7.5. Therefore, there
exists some non-zero a € Zy such that at = 0 in T. Since Z, is a Prifer domain by
Exercise 12.5.20, the polynomial ring A, = Z.[&] is coherent by [50, Proposition 3]
or [22, Corollary 7.3.4]. In particular, I has a finitely generated module of syzygies,
and hence there exists an exact sequence

AL an A A 10,

By definition of a Tor module (see page 67), we can calculate T as the homology of

the tensored complex
d

Ag’d—2>Ag—>Ah.
In particular, 7 is the image of a tuple x € A such that d, (x) = 0. Moreover, x does
not belong to Im(d,), but ax does. Let a,, € Z, x,, € A" and d;,, be approximations of
a, x and d; respectively, yielding for almost all w a complex

A diw Al daw A

such that x,, lies in the kernel of d;,, and not in the image of d,,,, whereas a,,x,, does
lie in the image. Hence we can find tuples y,, and prime numbers p,, € Z, such that
almost each y,, lies in the kernel of d;,, but not in the image of 4,,,, yet p,y,, does.
Let 7 € Z; and y € A} be the respective ultraproducts of the p,, and the y,,. Since y
lies in the kernel of d; but outside the image of d, by Los’ Theorem, its image in T
is a non-zero element, annihilated by .
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On the other hand, since Z;/nZ; is the ultraproduct of the fields Z/p,Z, the
base change of A,/mA, — A;/mA is faithfully flat by Theorem 7.2.2. Since = is an
A,-regular element, we have a short exact sequence

0— Ay LAt%At/ﬂAh—)O (12.4)

and by Exercise 12.5.21, also an exact sequence (derived from a degenerated
spectral sequence)
Tor ™ (Az/ Az, A, /(I 7)) — Tor” (Ay /mAq, Ay /1)
— Tor/™ (A, /1A, A, /(I + A, )

For i = 2, the two outer modules are zero by the flatness of A,/7A, — A,/7A;,
whence so is the inner module. Therefore, the relevant part of the long exact Tor
sequence (5.2.5) associated to (12.4) becomes

0 = Tor)’ (Ay /TA, Ay /T) — TZT

showing that = is T-regular, contradicting the fact that 7y =0in 7. O

Inspecting the above proof, we see that we may replace Z by an arbitrary one-
dimensional normal unique factorization domain Z (note that Z is then in particular
a Dedekind domain), and so we proved:

Corollary 12.3.3. Let Z be a one-dimensional normal unique factorization domain
and & a finite tuple of indeterminates. For each n, there exists a bound n' such that if
1 is an ideal in Z|&] generated by polynomials of degree at most n, then the module
of syzygies of I is generated by n' many tuples all of whose entries have degree at
most 1. O

The present proof seems to require that Z is a unique factorization domain, but per-
haps this can be circumvented by using [64, Theorem 2] instead of Theorem 7.2.2,
so that we may derive Corollary 12.3.3 for any Dedekind domain, or even for any
Prifer domain, thus recovering the result in [5, Theorem A].

12.4 Prime bounded proto-gradings

Let A be a proto-graded ring, with protopower A, and ultrapower A;. Since the proto-
grading may fail to be cyclically pure, not every ideal of A, is the contraction of an
ideal of Ay. Among the contracted ideals in A;, the following class is particularly
nice:

Definition 12.4.1. An ideal a C A, is called finitary if it is of the form IA; N A, for
some finitely generated ideal  C A,.

Note that a finitary ideal need not be finitely generated. If the proto-grading is
cyclically pure and Noetherian, then any ideal in the protopower is finitary.

Any finitely generated ideal I C A, admits an approximation I, C A, that is to
say, ideals whose ultraproduct is equal to /A;. We can extend this construction to
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finitary ideals of the form a :=IA;NA, with I C A, finitely generated, by defining an
approximation /,, of a to be any approximation of /. This makes sense since aA; =
IA;. Note that for some n, almost all 1,, have proto-grade at most n. Conversely,
if 1,, is a collection of ideals of proto-grade at most n, for some n, then I; N A, is
finitary by 12.2.2, with approximation /,,, where I is the ultraproduct of the /,,. On
occasion, we may refer to Iy N A, as the finitary protoproduct of the I,,. Note that,
unlike the ideal given by 12.2.2, the finitary protoproduct is uniquely determined by
the 1,,.

The next definition generalizes the uniform primality results obtained previously
in the case of a polynomial ring over a field (see page 115).

Definition 12.4.2. We call the proto-grading on A prime bounded if the extension
of any finitary prime ideal of A, remains prime in Ay.

An easy example of a prime bounded proto-grading is the Kronecker proto-
grading on Z[&]: since the proto-power is then just Z[&] (by Proposition 12.1.7),
the result follows from the general fact that any prime ideal in a ring remains prime
in its ultrapower. In view of Theorem 7.3.4, the degree proto-grading on a polyno-
mial ring over a field is prime bounded. The property of being prime bounded is
again characterized by a certain uniformity result:

Theorem 12.4.3 (Uniform Primality). For a proto-graded ring A, the following
are equivalent:

1. The proto-grading is prime bounded;

2. for each n, there exists a bound n' with the following property: given an ideal I
of proto-grade at most n, the ideal is prime if and only if for any two elements f
and g of proto-grade at most 1, if both do not belong to I, then neither does their
product.

Proof. Suppose the proto-grading is prime bounded, but no bound as in (2) exists.
Hence for some n, we can find non-prime ideals 7,, C A of proto-grade at most 7,
having the property that if a product of two elements of proto-grade at most w be-
longs to I, then already one of them belongs to /,,. Let a be the finitary protoproduct
of the /,,, that is to say, let / C A, be an ideal given by 12.2.2, and put a := IA; NA,.
I claim that a is prime. Indeed, suppose we have elements f,g € A, such that fg € a.
Choose n' large enough so that f and g have both proto-grade at most #’. Let £, g,
be respective approximations of f and g of proto-grade at most »’. Since fg € IA;,
almost each f,g,, lies in I,,. For those w which are also bigger than n’, we then have
by assumption that one of the two, say f,,, belongs to I,,. It follows that f lies in
IAy, whence in a, proving the claim. By definition of prime boundedness, aA, = IA;
is then also a prime ideal. However, since the latter ideal is the ultraproduct of the
I,,, almost all of these ideals must be prime ideals by L.os” Theorem, contradiction.

Conversely, suppose a bound to test primality as asserted in (2) exists and let p be
a finitary prime ideal in A;,. We want to show that pA; is also prime. Let p,, C A be an
approximation of p. If almost no p,, is prime, then since almost all have uniformily
bounded proto-grade, for some n, there exist elements f,,,g, € A of proto-grade
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at most n not belonging to p,, but whose product does. If f,g are their respective
ultraproducts, then f and g already lie in A,. Moreover, by Los’ Theorem, f and g
do not belong to pA; but their product does. Since p is finitary, it is equal to pA; N A,
and hence fg € p. Therefore, at least one among f or g belongs to p, contradiction.
Hence almost all p,, must be prime ideals, whence so is their ultraproduct pAg, as
we wanted to show. a

Theorem 12.4.4. Let A be a ring with a faithfully flat, prime bounded, Noetherian
proto-grading, then there exists for each n a bound e := e(n), such that for any
choice of elements ay,... a5 of proto-grade at most n, the ideal I := (ay,...,a5)A
has at most e minimal prime ideals, each of proto-grade at most e, its radical radl
has proto-grade at most e, and (radI)® lies inside I.

Proof. We will prove both properties simultaneously. Assume no bound exists for
some n, so that we can construct, after an application of Proposition 12.2.3, for each
w, a counterexample I,, of proto-grade at most n with radical J,,, so that, respec-
tively, J,, cannot be realized as the intersection of w prime ideals of proto-grade at
most w, has proto-grade at least w, or (J,,)" is not contained in I,,. Let a be the
finitary protoproduct of the /,,, and let b be its radical. Since the protopower A, is by
assumption Noetherian, we can find some e such that b® C a. From the inclusions
b°Ay C aAy C bA,, we conclude that both aA; and bAy have the same radical. Let p;
be the (finitely many) minimal prime ideals of a. Since b =p; N---Np; and A, — Ay
is flat by assumption, Exercise 5.7.4 yields

bAthlAuﬂ'--ﬁpsAh. (12.5)

Furthermore, each p; is finitary (since by faithful flatness it is equal to p;A; NA,),
and hence by prime boundedness, p;A; is again a prime ideal. In particular, (12.5)
shows that the extended ideal bA; is also radical.

Let by, and p;,, be approximations of b and p; respectively. By Los’ Theorem,
by =Pp1wN---Npsy, almost all p;,, are prime, and almost all b,, are radical. More-
over, by Los’ Theorem, b, C I,, C b,,, for almost all w. This shows that almost each
b,, is equal to the radical J,, of I,, and the p;,, are minimal prime ideals of /,,, con-
tradicting either of our assumptions. a

The next result provides a larger class of prime bounded proto-gradings, to which
we therefore may apply the previous results.

Theorem 12.4.5. Let Z be a one-dimensional domain and & a finite tuple of inde-
terminates. Then the affine proto-grading on Z|&] is prime bounded.

Proof. Set A := Z[£], so that by Proposition 12.1.7 its protopower A, is equal to
Zy[&], where Z; is the ultrapower of Z. Let p be a finitary prime ideal of Z;[¢]
and let g := pNZ. Choose an approximation p,, C A of p. Let q,, := p,, NZ. By Los’
Theorem, the ultraproduct of the g,, is equal to pA;NZ; = (pA;NA,)NZy =pNZy =
q.

We give a different argument, depending on whether g is zero or not. In the first
case, let Oy be the field of fractions of Z;. In other words, Qy is the ultrapower of
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the field of fractions Q of Z. Since pNZ; = (0), the extended ideal pQ,[&] is also
prime. Let B; be the ultrapower of the polynomial ring Q[]. By Theorem 7.3.4, the
extension pBy, remains prime. Hence we are done in this case if we can show that

pAy = pBy NA;.

To this end, let f be in the right hand side and let f,, € A be an approximation of
f- Tt follows that almost each f,, lies in p,,Q[£]. Hence, for some non-zero s,, € Z,
Swfw € Py for almost all w. Since s,, cannot belong to p,,, as almost all g,, are zero,
we must have f,, € p,,, and therefore f € pAy, as we wanted to show.

In the remaining case, almost all Z/q,, are fields, since Z is one-dimensional.
Since Ay /qAy is then the ultraproduct of polynomial rings over fields, p(A;/qA;) is
prime, again by Theorem 7.3.4, whence so is pA, as we wanted to show. O

To extend this result to higher dimensions, using induction on the dimension,
we need a version for protoproducts rather than just protopowers. The above proof,
however, can easily be adjusted to accomodate for this more general setting; see
Exercise 12.5.17. It is worthwhile to formulate the application of Theorem 12.4.3
to Theorem 12.4.5, or to its generalization to higher dimensions given by Exer-
cise 12.5.17, as a separate theorem:

Theorem 12.4.6. For every finite-dimensional domain A, for every finite tuple of
indeterminates &, and for every postive integer n, there exists a bound n' with the
Sollowing property: given an ideal p C A[E] generated by n polynomials of degree at
most n, if for any two polynomials of degree at most n' outside p, neither does their
product belong to p, then p is prime. a

We can now also give an example of a prime-bounded proto-grading which is not
faithfull: the affine proto-grading on Z[&] with & a single variable. Namely, in Z;[&],
let p be the ideal generated by 1 —2& and the intersection of all powers 2"Z;[&]. One
checks that p is a prime ideal, but its extension to the ultrapower Ay of Z[&] is the
unit ideal. In particular, this implies that p cannot be a finitary ideal.

We finish this section with a uniform elimination result. To this end, we must first
prove some form of transfer result:

Proposition 12.4.7. Let A have a Noetherian, faithfully flat, prime bounded proto-
grading and let I C A, be an ideal in its protopower, with approximation I,, C A.

1. I is prime (radical) if and only if almost all I, are prime (radical).
2. I has height h if and only if almost all I,, have height h.

Proof. Note that since the proto-grading is Noetherian and faithfully flat, / is fini-
tary. If 1 is prime, then so is JA; by prime boundedness, and hence by £.0s’ Theorem,
so are almost all 1,,. Conversely, if almost all /,, are prime, then so is their ultraprod-
uct JA;, whence so is I = IA; NA,.

If I is radical, then it can be written as I = p; N --- N p, with all p; prime ideals in
A,. Choose an approximation p;,, of the p;. Since
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IA; = p1Ay N ---NpAy

by Exercise 5.7.4, Los’ Theorem yields /,, = p1,, N --- NPy, for almost all w. By
the previous case, almost all p;,, are prime, showing that almost all ,, are radical.
Conversely, suppose almost all /,, are radical and a" € I. Choose a,, € R whose
ultraproduct is a. By Los” Theorem, /,, contains aj},, whence a,,, for almost all w.
Hence a lies in JA;, and hence by faithful flatness, in /, showing that / is radical.

To prove (2), assume first that / is prime, and hence, by the previous argument,
so are then almost all 7,,. We induct on the height / of 1. If h = 0, then [ is a minimal
prime of A, and hence the extension of a minimal prime of A by Exercise 12.5.24. It
follows that almost all 7,, are equal to this minimal prime, and the assertion is clear
in this case. So assume & > 0 and choose a height 4 — 1 prime ideal p inside /. If p,,
is an approximation of p, then by induction almost all are height 2 — 1 prime ideals.
By Los’ Theorem, p,, & I,,, so that almost all /,, have height at least 4. Choose some
a in I but not in p and let a,, € A be an approximation. In particular, / is a minimal
prime of p +aA,. Let g,, be a minimal prime ideal of p,, +a,,A contained in /,, (note
that by Los” Theorem, a,, lies in /,,, for almost all w). By the Krull Principal Ideal
Theorem, almost all g,, have height /. Choose n sufficiently large so that / and a both
have proto-grade at most n, whence so do almost all /,, and a,,. By Theorem 12.4.4,
therefore, almost all g,, have proto-grade at most ', for some n’ depending only on
n. Let g be their finitary protoproduct, that is to say, the ideal gy N A, where g is the
ultraproduct of the g,,. By (1), the ideal g is prime. By Los’ Theorem and faithful
flatness, p+aA, C g C I, so that g and /, both being minimal prime ideals of p +aA;,
must be equal. Hence also almost all g,, = I, are equal, whence have height /. This
proves (2) for I a prime ideal

Assume finally that [ is arbitrary, of height A, and let p be a minimal prime of I,
with approximation p,,. By Los’ Theorem and what we already established, p,, is
a height & prime ideal containing /,,, for almost all w. It follows that almost each
I,, has height at most A. If almost all /,, would have height less than &, then we
can choose for each w, a minimal prime g,, of /,, of that height and of proto-grade
at most n, for some n independent from w, by Theorem 12.4.4, so that the same
argument as before, the finitary protoproduct of these g,, would be a prime ideal of
height less than 4 containing /, contradiction. ad

Theorem 12.4.8 (Uniform Elimination). Let A have a Noetherian, faithfully flat,
prime bounded proto-grading. Let & be a finite tuple of indeterminates and view
A[€] in its extended degree proto-grading. For each n, there exists a bound n' so that
any prime ideal 3 C A[&] of proto-grade at most n contracts to a prime ideal PNR
of proto-grade at most n'.

Proof. By induction on the number of indeterminates, we only need to treat the
case that € is a single variable. Suppose that for some 7, no bound as claimed exists.
Hence we can find prime ideals 3,, C A[&] of proto-grade at most  such that g,, :=
9B, NA has proto-grade at least w. Let By denote the ultrapower of A[§]. Recall that
the protopower of A[£] is equal to A,[E] by Proposition 12.1.7. Let B, and P :=
Py NA,[E] be the respective ultraproduct and finitary protoproduct of the 9,, and
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put p :=‘PNA,. Whence both ‘B3 and p are prime ideals. Choose an approximation
Py € A of p. It follows from Proposition 12.4.7 and Los’ Theorem that almost each
P is a prime ideal contained in g,,, of proto-grade at most n, for some n independent
of w.

If gy is the ultraproduct of the g,,, then by £.0s’ Theorem,

gy = PByNA;. (12.6)

Let & be the height of . By [18, Exercise 10.2], the contraction p has height &
if and only if P8 = pA,[£]. Assuming that this is the case, we have by (12.6) that
g; = pB; NA;. However, by Los” Theorem, this means that g,, = p,A[§]NA = p,,
contradicting that the g,, have unbounded proto-grade.

The remaining possibility is for p to have height 2 — 1. By Proposition 12.4.7,
then so have almost all p,,. If p,, # g, then g,, has height at least 4. On the other
hand, almost all 13, have height # by Proposition 12.4.7, so that by another applica-
tion of [18, Exercise 10.2], we have PB,, = g,,A[£]. By Exercise 12.5.18, almost all
gy then have proto-grade at most n, contradiction. a

Corollary 12.4.9. Let A have a Noetherian, faithfully flat, prime bounded proto-
grading. For each n, there exists n' such that if I and J are ideals of proto-grade at
most n, then I NJ has proto-grade at most n'.

Proof. Let B:=A[&] with & a single indeterminate and set a:= EIB+ (1—&£)JB. By
construction, a has proto-grade at most n+ 1 in the extended degree proto-grading
on B. Hence by Theorem 12.4.8, the proto-grade of aNA is at most #’, for some n’
independent from I and J. However, it is easy to see that I NJ = aNA. Indeed, if
aclnJ,thena=Ea+ (1—E&)a € a. Conversely, ifa€ anNA, thena=Ef+(1—&)g
with f € IB and g € JB. Putting & equal to 0 and 1 respectively gives a = g(0) € J
anda=f(1) el O

12.5 Exercises

Ex 12.5.1
Prove 12.1.1.

Ex 12.5.2
Prove 12.1.2. More explicitly, if A is a proto-F-graded reduced ring, construct a unary
function G (only depending on F) such that B := A[&] is proto-G-graded. Show that we
may weaken the assumption that A is reduced to A having finite nilpotency degree N, that
is to say, if x € A is nilpotent, then x¥ = 0 (this always holds if A is Noetherian). Construct
a counterexample of infinite nilpotency degree such that extended degree does not yield a
proto-grading.
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Ex 12.5.3
Prove the assertions about the category of proto-graded rings from page 183. In particular,
prove 12.1.3.

Show that taking protopowers is a functor on the category of proto-graded rings.

Ex 12.54
Let A be a proto-graded ring, and let B be an A-affine algebra. Let B = A[]/I and B =
A[&]/J be two presentations of B as an A-affine algebra. Show that the affine proto-gradings
on B induced by either presentation are equivalent.

Ex 12.5.5
Let (A,I") and (A,I"") be two equivalent proto-gradings on A. Show that their respective
protopowers are the same. Disprove by means of a counterexample the analogue for pro-
toproducts, that is to say, a protoproduct which is no longer the same when we replace the
proto-grading on each component by an equaivalent one.

Ex 12.5.6

Formulate and prove an analogue of 12.1.5 for protoproducts.

Ex 12.5.7
Show that a local ring with a Noetherian proto-grading has the same dimension as its
protopower. In fact, the geometric dimension of an arbitrary proto-graded local ring is the
same as the geometric dimension of its protopower.

Ex 12.5.8
Show that the embedding of a ring inside its ultrapower is always cyclically pure. Conclude
that the same is therefore true for the embedding of a proto-graded ring in its protopower.

Ex 12.5.9

Use the criterion from Corollary 5.6.17 to show that for a cyclically pure proto-grading on
a Noetherian ring A, the embedding A — A, is faithfully flat.

Ex 12.5.10

Give details for all unproven implications in Theorem 12.2.11.

Ex 12.5.11
Prove the following stronger version of Corollary 12.4.9 directly using Exercise 5.7.4: for
any ring A with a Noetherian, flat proto-grading, there exists, for each n, a bound n' such
that if 1,J C A are ideals of proto-grade at most n, then their intersection I NJ has proto-
grade at most n'.

Ex 12.5.12
Prove Theorem 12.2.10.
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Ex 12.5.13
Show the following partial converse to Proposition 12.2.3: if, for each n, there exists a
bound n' such that any ideal generated by elements of proto-grade at most n has proto-
grade at most n', then for any m, any ideal in A, generated by elements of proto-grade at
most m is finitely generated.

Ex 12.5.14
Let A be a ring with a Noetherian, faithfully flat proto-grading. Prove by combining the
results of this chapter that there exists, for each n, a bound n', such that if I = (f1,..., fs)A
is an ideal of proto-grade at most n, then the module of syzygies of I (see the discussion
following Corollary 5.2.8) is generated by n' syzygies with entries of proto-grade at most n.
Moreover, if f € I and has proto-grade at most n, then there exist g; of proto-garde at most
n' such that f = g1 fi + -+ fs8s-

*Ex 12.5.15
Let R be an Artinian local ring. Show using [64, Theorem 1.2], that the R-affine proto-
grading on an R-affine algebra B is faithfully flat and Noetherian.

Ex 12.5.16
Prove the following more general version of Theorem 12.2.12: for a ring A with a faithfully
flat, Noetherian proto-grading, there exists, for each n, some e := e(n) with the property
that if I C J are ideals of proto-grade at most n, and f € 1+ J¢ has proto-grade at most n,
then there is some s € J of proto-frade at most e such that (1+s)f € I.

*Ex 12.5.17
Show the following more general version of Theorem 12.4.5 (including the higher dimen-
sional case): let & be a finite tuple of indeterminates and let Z,, be domains of dimension
at most d. Since all Z,,[E]| are uniformily proto-graded in their affine proto-grading, we
can take their protoproduct A, as defined on page 184, which is therefore equal to Z;[&],
where Z; is the ultraproduct of the Z,,, by Proposition 12.1.7. Show, using induction on d
in combination with the argument in the proof of the theorem, that any finitary prime ideal
of A, extends to a prime ideal in the ultraproduct Ay (with the obvious generalization of the
notion finitary to this more general setup). Now deduce Theorem 12.4.6.

Ex 12.5.18
Show that given a proto-graded ring A and a finite tuple & of indeterminates, any ideal
I C A has proto-grade at most the proto-grade of its extension IA[E], where we view A[E]in
its extended degree proto-grading.

Additional exercises.

Ex 12.5.19
Show that if ¢ is a universal formula in the language of rings, and A,, are proto-F -
graded rings satisfying ¢, then their protoproduct A, also satisfies ¢.
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Ex 12.5.20
Show that an ultraproduct of Dedekind domains is a Prifer domain, meaning that
any localization at a maximal ideal is a valuation ring (or, equivalently by [22, §1.4],
that every finitely generated ideal is projective).

Ex 12.5.21
(To solve this problem, some knowledge of spectral sequences is required). Let
A — B be a ring homomorphism, M an A-module, and x an element in the kernel of
A — B. By [18, Exercise A3.45], there exists a spectral sequence

Tor,/* (B, Tor} (4 /xA,M)) = ; Tor}, ;(B,M).

Show that if x is A-regular, then this spectral sequence is degenerated, and hence
yields a long exact sequence

A/xA

-+ — Tory || (B,M/xM) — Tor?f”fA(B, (0 11 x)) — Tor? (B, M)

— Tor?/XA(B,M/xM) — Tor?f;A(B, (041 x)) — Tord | (B,M) — ...
for alli > 2, where (0 :); x) denotes the submodule of all m € M such that xm = 0.

Use this to prove that if x is an A-regular element in the kernel of A — B such that
the induced map A/xA — B is flat, then Tor? (B, -) is identical zero for all i > 2.

Ex 12.5.22
Show, using Exercises 12.5.7 and 12.5.9, that if R is a regular local ring with a
faithfully flat, Noetherian proto-grading, then R, is a regular local ring.

Ex 12.5.23
Given a proto-graded local ring R of finite embedding dimension, apart from the
chromatic powers, we can also take certain ‘diatonic’ powers. Define the catapro-
topower of R to be the separated quotient of the protopower R,. Show that it is a
Noetherian local ring, and if the proto-grading is faithfully flat, then its completion is
equal to Ry. In that case, R is regular if and only if its cataprotopower is.

Ex 12.5.24
Let A be a faithfully flat, Noetherian proto-graded ring with protopower A,. Show
that any associated prime ideal of A, is the extension of an associated prime ideal
of A, whence its extension to the ultrapower A, remains prime. Conclude that any
faithfully flat, Noetherian proto-grade on a one-dimensional Noetherian local ring is
prime bounded.

12.6 Project: etale proto-gradings

This project is in essence the proto-graded version of Project 6.6: we will construct
a proto-grading on the Henselization of a proto-graded Noetherian local ring (R, m),
and give conditions under which this proto-grading is Noetherian and faithfully flat.
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Define a proto-grading on R~ by the condition that a Hensel element y € R™
lies in I;,(R™) if it admits a Hensel system (7, u) of length N < n, in which all
polynomials have degree at most n, and all coefficients as well as all entries of u
have proto-grade at most 7.

12.6.1 Show that this yields a proto-grading on R™, called the etale proto-
grading on R~ extending the proto-grading on R. Show that R — R”~
is a morphism of proto-graded rings.

The following result enables us to calculate protopowers:

12.6.2 Show that if R is a proto-graded Noetherian local ring and R™ is viewed
with its etale proto-grading extending the proto-grading on R, then we
have an isomorphism

(R™), = (R,)"™.

In particular, this already yields the first assertion in the next result:

12.6.3 If R is a proto-graded local ring with a Noetherian proto-grading, then
the etale proto-grading on R™ is also Noetherian. If R is moreover regular
and the proto-grading on R is faithfully flat, then the etale proto-grading
is faithfully flat too.

To prove the second assertion, you also need Exercise 12.5.22 and the Cohen-
Macaulay criterion for flatness (Theorem 5.6.16). Conclude with the following re-
sult on uniform bounds in the ring of algebraic power series. More precisely, assum-
ing 6.6.4, we now have the etale proto-grading on an algebraic power series ring
k[[E]]*'¢ extending the affine proto-grading on the localization of k[£] with respect
to the maximal ideal generated by the indeterminates &, and we have:

12.6.4 For each pair (n,m) there exists a bound n’ := n'(n,m) with the property
that if k is an arbitrary field, R := k[[E]]%¢ with & an m-tuple of indeter-
minates, and I := (fi,..., f;)R an ideal generated by elements f; of etale
proto-grade at most n, then the module of syzygies of I is generated by
n' syzygies with entries of proto-grade at most n’. Moreover, if f € I has
etale proto-grade at most n, then there exist algebraic power series g; of
etale proto-grade at most n’ such that f = g1 f1 +--- + fgs.






Chapter 13
Asymptotic homological conjectures in mixed
characteristic

In this final chapter, we discuss some of the homological conjectures.! We already
encountered one of these conjectures—and proved it in equal characteristic; see
Theorems 9.4.9 and 10.4.5—, when discussing big Cohen-Macaulay algebras: the
Monomial Conjecture. In fact, Hochster has established most of the homological
conjectures in equal characteristic by means of the existence of big Cohen-Macau-
lay modules. Hence probably the ‘mother’ of all homological conjectures in mixed
characteristic is the very existence of a (balanced) big Cohen-Macaulay module (or,
preferably, algebra); the best result to date is the existence of these up to dimension
three (see [28], based upon the positive solution of the Direct Summand Conjecture
in mixed characteristic in dimension three due to Heitmann [25]).

The ultraproduct method is a priori insufficiently powerful to derive the full ver-
sions of these conjectures from their equal characteristic counterparts. The idea is to
transfer the proven theorems in equal characteristic to the mixed characteristic case
via ultraproducts, but since properties only hold almost everywhere on the compo-
nents, we will only be able to deduce ‘asymptotic’ versions. This roughly means
that the conjecture holds for a particular ring of mixed characteristic if its residue
characteristic is sufficiently large with respect to some other invariants associated to
the particular problem. The first successful application of the ultraproduct method,
however, goes back to the work of Ax-Kochen ([9]), in which they solve a conjecture
of Artin over the p-adics (see Theorem 13.1.3). Inspired by this method, I derived
asymptotic versions of various homological conjecturtes in mixed characteristic in
[56, 61] where the lower bounds on the residue characteristic are in terms of the de-
grees of the polynomials defining the data. In the terminology of these notes, this is
in essence a protoproduct method and will be discussed in §13.2. However, in [63],
using instead cataproducts, lower bounds in terms of much more natural invariants
(dimension, multiplicity, etc.) can be derived, and this will be discussed in §13.3.
Since most of the arguments are outside the scope of these notes, we will most of

! Although now theorems in equal characteristic, many remain conjectures in mixed characteristic.
Although there may be no consensus as to which conjectures count as ‘homological’, an extensive
list of these conjectures and their interconnection can be found in Hochster’s autorative treatise

[26].
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the time only discuss the method, and leave the details of the proofs to the cited
sources.

13.1 The Ax-Kochen-Ershov principle

One normally states this model-theoretic principle in terms of valued fields, but
for our purposes, it is more natural to phrase it as a certain Lefschetz principle
for discrete valuation rings, formulated as an isomorphism of certain ultra-discrete
valuation rings (recall that the latter are simply ultraproducts of discrete valuation
rings). In this formalism, the principle states:

Theorem 13.1.1 ([9, 19, 20]). If V and V' are two Henselian ultra-discrete valu-
ation rings of the same uncountable cardinality with isomorphic residue fields of
characteristic zero, then V =2 V',

We will use this principle in the following form. For each p, let V, be a complete
discrete valuation ring of mixed characteristic, with residue field k,, of characteristic
p. Let € be a single indeterminate, and put

Vel =k, (€] (13.1)
We have:

Corollary 13.1.2. The ultraproduct of the V , is isomorphic to the ultraproduct of
the V3.

Proof. As stated, one might need to assume the continuum hypothesis, but this
can be avoided by taking an ultraproduct with respect to a larger underlying set
than just the prime numbers. All we need is that the ultraproduct V, of the V, has
the same cardinality as the ultraproduct W of the V39, and so we will for sake of
simplicity just assume this. Since the residue field of both V; and W, is the field of
characteristic zero &, given as the ultraproduct of the &, the desired isomorphism
now follows immediately from Theorem 13.1.1. O

Artin’s problem. A field K is called C; if for every homogeneous polynomial
f(&) € K[&] of degree d in more than d? variables &, there exists a non-trivial solu-
tion in K. Lang proved in [38] that the field of fractions of F,[[]] is C», and Artin
conjectured that the field of p-adics Q, too is C,. However, some counterexamples
to the latter conjecture were found, and the optimal result is now:

Theorem 13.1.3. For each d, there is a bound d’' so that if p is a prime number big-
ger than d', then any homogeneous equation of degree d in more than d* variables
has a non-trivial solution in Q,,.
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Proof. The existence of a non-trivial solution of f =0in Q,, yields after clearing de-
nominators a non-trivial solution in ring of p-adic integers, Z,,. By Corollary 13.1.2,
the ultraproduct of all Z,, is equal to the ultraproduct of the I, [[{]]. Since the asser-
tion can be formulated by a first-order sentence (depending on d), which holds for
all F,[[£]], it holds in their ultraproduct, whence in almost all Z,,, by a double appli-
cation of Los’ Theorem. This shows that the exceptional set of prime numbers for
this fixed d must lie outside any ultrafilter, whence must be finite by Exercise 1.5.3.

O

13.2 Asymptotic homological conjectures via protoproducts

The extent to which Artin’s question has been answered is indicative of what fol-
lows: the truth of a certain property can only be established for sufficiently large p,
depending on the complexity of the data. This is best described using the formalism
of proto-gradings from Chapter 12.

Affine proto-grade. We will work inside the class €pyr of local affine algebras
over a complete discrete valuation ring. More precisely, a local ring (R, m) belongs
to €pyR, if its a local V-affine algebra with V a complete discrete valuation ring (re-
call that this means that R is a localization, with respect to a prime ideal containing
the maximal ideal of V, of a finitely generated V-algebra). We will view R with its
V-affine proto-grading. For instance, if R is the localization of V[&] at the maximal
ideal generated by the uniformizing parameter of V and the indeterminates &, then
I(R) consists of all fractions f/g with f,g € V[&] of degree at most n and g(0) a
unitin V.

Although any sequence of rings in €pyr is uniformly proto-graded (namely,
proto-F-graded for the function F(m,n) := m+ n), and hence their protoproduct
is well-defined, we cannot expect in general for it to capture much of the informa-
tion stored in the sequence. For instance, let S be the localization of V[&, {] at the
maximal ideal generated by the indeterminates and the uniformizing parameter of
the discrete valuation ring V, and put R, := S/(E" — {"~1)S. By Exercise 13.4.1,
the protoproduct R, of the R, is isomorphic to the protopower §,. Of course, what
goes wrong in this example is that the defining ideals (£” — {"~!)S have unbounded
proto-grade.

As we will shall see shortly, we can avoid this phenomenon by introducing
the following terminology. For an arbitrary member R of Cpyr, say of the form
(V[E]/I)p, we say that R itself has affine proto-grade at most n, if the number of
indeterminates & is at most n, and both I and p have proto-grade at most n (recall
that the latter means that they are generated by at most n elements of degree at most
n).” There is some ambiguity here in our definition of the affine proto-grade of a
ring, because different affine presentations might yield different values. However,
since we are only interested in uniform behavior, this will not matter. Depending on

2 In the articles [56, 61] the affine proto-grade of R was called its (degree) complexity.
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the situation, we will also make explicit what it means for some additional data to
have bounded affine proto-grade.

Approximations and transfer. The method to derive asymptotic properties is a
mixture of the methods from Chapter 7, using ultra-hulls, and Chapter 12, using
protoproducts. Crucial to either method in deriving bounds was a certain flatness
result, which in the present context becomes:

Theorem 13.2.1. If R,, are members of Cpyr of affine proto-grade at most n, for
some n, then the protoproduct R, is a local Vy-affine algebra, with Vi, an ultra-
discrete valuation ring, and the canonical map R, — Ry to the ultraproduct is faith-

fully flat.

Proof. Since R, — Ry is by construction local, we only need to show its flatness.
Since this is a local question, I claim that we may reduce to the following case: for
each w, let V,, be a complete discrete valuation ring, and let A,, := V,[&], viewed
with its affine proto-grading, then the natural homomorphism A, — A; is flat. In-
deed, assuming this flatness result, let I,, C p,, have affine proto-grade at most n, so
that Ry, = (Ay/Iv)y, - By 12.2.2, there exist ideals I C p C A, whose extension to
Ay are the ultraproducts of respectively the /,, and p,,. Since each p,, contains the
uniformizing parameter «,, of V,,, an application of Theorem 7.3.4 over the fields
Vy/m, V., yields that p is prime. By base change, (4,), — (Ah)PAu is then faithfully
flat. By an argument similar to the one proving 12.1.5 (see Exercise 13.4.1), the pro-
toproduct of the A,/I,, is equal to A, /(IA;NA;). Since I(Ag)pa, N (Ay)p = 1(A5)p
by faithful flatness, we showed that R, = (A, /), Since R, = (A;/IA;),4,, flatness
follows by base change. Note that A, = V;[£] by Proposition 12.1.7, where V is the
ultraproduct of the V,, proving that R, is a local V-affine algebra.

So remains to show that A, — Ay is flat, and this can be done by a straightforward
modification of the proof of Theorem 12.3.2 (see Exercise 13.4.2). a

As we have observed before, the converse process of an ultraproduct is an ap-
proximation. This also applies here. Let as above V,, be complete discrete valuation
rings with ultraproduct V. Given an Vy-affine (local) algebra R := (V[&]/I),, with
& a finite tuple of indeterminates, I a finitely generated ideal, and p a prime ideal
lying above the maximal ideal of V; and containing /. We define the approximations
of R as follows. Put A,, :=V,,[£], and let I,, C p,, C A,, be respective approxima-
tions of I and p. By the argument in the above proof, almost each p,, is prime (see
Exercise 13.4.4). Moreover, if R has affine proto-grade at most n, then almost all
I,, and p,, have proto-grade at most n. Hence almost all R,, := (V,,[€]/1),, are
well-defined members of €pyr and have proto-grade at most n. It is easy to check
that their protoproduct R, is equal to R (see Exercise 13.4.5). We will therefore refer
to the R,, as approximations of R. These approximations, however, depend on the
choice of components V,, of V', a fact that has to be borne in mind.

We can also look at this construction from an ultra-hull perspective as follows.
In this point of view, the ultraproduct Ry of the R,, functions as an ultra-hull of
R, called the ultra-Vy-hull of R (or more correctly, the relative V;-hull Ly, (R) in
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the terminology of Exercise 10.5.17). By Theorem 13.2.1, this ultra-hull is faith-
fully flat . Note that V} is no longer Noetherian, which will account for some of
the difficulties below in developing the theory, but it is still a valuation domain (by
Exercise 1.5.12) of embedding dimension one since its maximal ideal is generated
by the ultraproduct 7 of the uniformizing parameters 7,,. In particular, V;,/zV is
a field whence Noetherian, and hence any ideal in the above protoproduct R, con-
taining 7 is finitely generated. This applies in particular to the maximal ideal of the
protoproduct, showing that it has finite embedding dimension.

Let us specialize to the case we will encounter shortly. For each prime number
p, let V, be a complete discrete valuation ring of mixed characteristic with residue
characteristic p, and let V; be their ultraproduct. Let R, be a local V ,-affine alge-
bra of affine proto-grade at most n, and let R, be their protoproduct. As we just
proved, R, is a local V;-affine algebra with approximations R, and ultra-V-hull R;.
By Corollary 13.1.2, we may realize V; also as the ultraproduct of the complete
discrete valuation rings V;’,q of equal characteristic p (see (13.1)). Hence from this
point of view, R, has approximations defined over the various V', which we there-
fore denote by R}, and call equal characteristic approximations of the R, (note
that they have also bounded affine proto-grade). The ultraproduct of the Rf,q will
be denoted qu. To distinguish it from Ry, we will call qu the equal characteristic
ultra-hull of Ry, and Ry its mixed characteristic ultra-hull. Similarly, if x € R, then
an equal characteristic approximation of x means an approximation of x viewed as
an element in R;%, that is to say, elements x, € R),' with ultraproduct equal to x.

Since by construction R, is also the protoproduct of the R}, the canonical embed-
ding R, — R:? is again faithfully flat by Theorem 13.2.1. Of course, we may also
reverse the process, going from equal to mixed characteristic instead, as explained
in more detail in Exercise 13.4.3.

The fact that both ultra-hulls are faithfully flat over the (common) protoproduct
will guarantee a fair amount of transfer between the R, and their equal characteristic
approximations. The following result is but an example of this.

Theorem 13.2.2. For some n and for each prime number p, let R, be a local V -
affine algebra of affine proto-grade at most n over a mixed characteristic complete
discrete valuation ring V , of residue characteristic p, and let R} be an equal char-
acteristic approximation of the Ry. Almost all R, are regular if and only if almost
all R are regular.

Proof. Because of symmetry, it suffices to show only one direction, and so we may
assume that almost all R, are regular. Since by assumption R, has embedding di-
mension less than or equal to its affine proto-grade n, there are only finitely many
possibilities for its dimension, and hence almost all R, will have the same dimen-
sion, say, d. Let x,, be a regular system of parameters of R, (see Definition 4.1.5).
Note that in particular each x, is an R-regular sequence (of length d) minimally
generating the maximal ideal, by Proposition 4.2.3 and Theorem 4.2.6. By con-
struction, we may choose its entries to be of proto-grade (=degree) at most n, for
all p. Hence their ultraproduct x := (xj,...,x,) has entries in the protoproduct R;.
By faithfull flatness, moreover, XR, = XR; MR, is the maximal ideal of R,. Let R}’
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be equal characteristic approximations of the R, let R; and qu be the respective

ultraproducts of R, and R}, and let xp,! := (x1},...,X4p') be equal characteristic
approximations of x, that is to say, tuples in Rf,q whose ultraproduct is equal to X,

where we view the latter as a tuple over R via the canonical embedding R, — R{".

By Los’ Theorem, almost each x),' generates the maximal ideal of R},!. So remains to
show that almost each x},! is a regular sequence, whence a regular system of param-
eters. Fix some i < d, let I)' := (x15',...,x;_1,p})R), and, towards a contradiction,
assume 2, x;p,' € I}, for some zj, notin I). Let I := (x1,...,x;_1)R,. Since x is an
R;-regular sequence by Los” Theorem, (IR; : x;) = IR;. Since R, — R; is faithfully
flat by Theorem 13.2.1, we get (IR; : x;) = (I : x;)R; by Theorem 5.6.16. Faithful
flatness then yields (I : x;) = I. On the other hand, by Los’ Theorem, the ultraprod-
uct z € R of the z," belongs to (IR : x;) but not to IR, Since also R, — R* is
faithfully flat, another application of Theorem 5.6.16 yields (IR;" : x;) = (I : xi)REq,

which is then equal to /R;? by what we just proved. Hence, z lies in /R;", contradic-
tion. a

To formulate analoguous transfer results for arbitrary rings, we have to also face
the complications encountered in Chapter 11, where the ultraproduct (and hence the
protoproduct and the equal characteristic approximations) may have larger geomet-
ric dimension than the components. To control this bad behavior, one has to also
bound the parameter degree. In the present setup, this is in fact easier, as the below
domain case shows; we refer to [61, §6] for a discussion of the general case.

Proposition 13.2.3. For some n and for each prime number p, let R, be a local V -
affine algebra of affine proto-grade at most n over a mixed characteristic complete
discrete valuation ring V , of residue characteristic p, and let R} be an equal char-
acteristic approximation of the Rp. Then almost all R, are domains if and only if
almost all R, are. Moreover if this is the case, then almost all R, and Ry have the
same dimension.

Proof. 1Tt suffices to show that the protoproduct R, is a domain if and only if its ap-
proximations (of either type) are, and that almost all have the same dimension, equal
to the geometric dimension of R,. Since R, C Ry, one direction in the equivalence
is immediate. So assume R, is a domain of geometric dimension d, and we need to
show that then so is Ry. Let V be the ultraproduct of the V,, let 7 € V be a generator
of its maximal ideal with approximations 7, €V, and let Q be the field of fractions
of V.If # =0 in Ry, then R, is in fact a local affine algebra over the residue field
V /aV, and hence Ry is a domain by Theorem 7.3.4. Moreover, the R, are then the
approximations of R;,, whence almost all have dimension d by Corollary 7.3.3. So
we may assume 7 # 0 in R,. Since R, is a domain, 7 is then R,-regular, whence R,
is torsion-free over V by Exercise 13.4.7. In particular, R, ®y Q is again a domain.
By Theorem 7.3.4 once more, R; ®y O being the ultra-hull of R, ®y Q, is a domain
too. On the other hand, since R, — R, is faithfully flat, R, is torsion-free over V
by Theorem 5.6.16. Hence the natural map Ry — R, ®y Q is injective, showing that
Ry is a domain. Since 7 is R,-regular, it is part of a system of parameters in R, by
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Exercise 13.4.7. In particular, R, /7R, has (geometric) dimension d — 1. By Corol-
lary 7.3.3 once more, almost all R,/7,R, have dimension d — 1. Since almost all
R, are domains, almost all of them must therefore have dimension 4. O

Asymptotic Direct Summand Conjecture. Let & be a property of Noetherian lo-
cal rings and some additional finite amount of data (to be made precise in each case).
In the terminology of page 207, we can now define what it means for a property to
hold asymptotically.

Definition 13.2.4. We will say that property & holds asymptotically in mixed char-
acteristic, if for each n, there exists n’ only depending on n, such that a Noetherian
local ring of mixed characteristic R in Cpyg satisfies & provided its residue char-
acteristic p is at least n’, where R and the additional data have affine proto-grade at
most n.

We will illustrate this terminology by means of the Direct Summand Conjecture,
which states that given a finite extension of local rings R — S, if R is regular, then
R is a direct summand of the R-module S (the reader should convince him/herself
that this is weaker than saying that R — § is split). The Direct Summand Conjecture
is related to another of the homological conjectures, to wit the Monomial Conjec-
ture, which we already encountered before (see Theorems 9.4.9 and 10.4.5, and also
13.2.8 below):

Theorem 13.2.5 (Direct Summand Conjecture). If S is a Noetherian local ring
for which the Monomial Conjecture holds, then for any finite extension R C S with
R regular, R is a direct summand of S.

In particular, the Direct Summand Conjecture holds for any Noetherian local
ring of equal characteristic.

Proof. The second assertion follows from the first, in view of Theorem 10.4.5. To
prove the first, one shows that R is a direct summand of S if and only if some
regular system of parameters of R is monomial when viewed as a tuple in S; see
[13, Lemma 9.2.2]. O

In mixed characteristic, the Direct Summand Conjecture is still wide open, but
we can now show:

Theorem 13.2.6. The Direct Summand Conjecture holds asymptotically in mixed
characteristic.

Proof. Let us be more precise as to the exact statement. There exists for each n a
bound n’ with the following property. Let V be a complete discrete valuation ring of
mixed characteristic, let R and S be local V-affine algebras of affine proto-grade at
most n, such that R C S'is a finite extension and R is regular. Now, if the residue char-
acteristic of R is at least 7/, then R is a direct summand of S. Here we must view the
affine proto-grade of S via its presentation as a finite R-module. In order to prove
this, we suppose by way of contradiction that no such bound exists for n. Hence
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we can find for each prime number p a counterexample consisting of a complete
discrete valuation ring V, of residue characteristic p, and local V ,-affine algebras
R, C S, of affine proto-grade at most n with R, regular and S, finitely generated
as an R,-module, such that R, is not a direct summand of §,. Let R, C S, be the
respective protoproducts. It is not hard to show that this is again a finite extension.
Let V, be the ultraproduct of the V , so that by the above discussion R, and S, are
local V-affine algebras. Let R;’,q and Sf,q be the equal characteristic approximations

of the R, and S, respectively, and let R?q and qu be their respective ultraproducts.

By Theorem 13.2.2, almost all R, are regular. Moreover, it is not hard to show
that ;! — 3! is a finite extension for almost all p (see Exercise 13.4.6). By The-
orem 13.2.5, almost each R‘;’,q is a direct summand of Sf,q, and by Los’ Theorem,
this in turn implies that qu is a direct summand of qu. By faithful flatness (Theo-
rem 13.2.1), this then yields that R, is a direct summand of S, whence R is a direct
summand of Sy, and by f.os” Theorem, we finally derive the desired contradiction
that almost each R, is a direct summand of S, (see Exercise 13.4.6). a

The asymptotic weak Monomial Conjecture and big Cohen-Macaulay alge-
bras. To prove an asymptotic version of the Monomial Conjecture, we introduce
the following terminology. Let (R,m) be a local ring of finite embedding dimen-
sion. Recall that the Monomial Conjecture holds in R if every system of parameters
is monomial (see the discussion preceeding Theorem 9.4.9). In case R is an ultra-
ring, we say that the Ultra-monomial Conjecture holds in R, if for every system of
parameters (xp,...,x;) we have

(1 -xa) 1 ¢ (6, DR, (13.2)

for all o € Ny (for the definition of ultra-exponentation, see page 12).

By a strong system of parameters X in R, we mean a system of parameters of
R which is also part of a minimal system of generators of m. In other words, if R
has geometric dimension d and embedding dimension e, then a d-tuple X is a strong
system of parameters if and only if R/xR has geometric dimension zero and embed-
ding dimension e — d. We say that the weak Monomial Conjecture holds in R if some
strong system of parameters is monomial. Even this weak version is not known to
hold in general for Noetherian local rings of mixed characteristic (the monomial
systems of parameters given by Remark 9.4.10 never generate the maximal ideal
whent > 1).

Before we prove an asymptotic version of this weaker conjecture, we must intro-
duce big Cohen-Macaulay algebras in the present setup. We call an R-algebra B a big
Cohen-Macaulay algebra if some system of parameters is B-regular, and a balanced
big Cohen-Macaulay algebra if any system of parameters is B-regular. The Mono-
mial Conjecture holds in any local ring admitting a balanced big Cohen-Macaulay
algebra by the argument in proof of Theorem 9.4.9.

Proposition 13.2.7. For some n and for each prime number p, let R, be a local V -
affine domain of affine proto-grade at most n over a mixed characteristic complete
discrete valuation ring V , of residue characteristic p. Then the protoproduct R, of
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the R, admits a balanced big Cohen-Macaulay algebra B(R,). In particular, the
Ultra-monomial Conjecture holds in R,,.

Proof. Let Rf,q be equal characteristic approximations of the R,. By Proposi-
tion 13.2.3, almost all R;q are domains, and hence almost each (Rf,q)Jr is a balanced
big Cohen-Macaulay algebra by Theorem 9.4.1. Let B(R,) be the ultraproduct of
the (R}')". Let d be the geometric dimension of R,, and let x be a system of param-
eters in R, with equal characteristic approximation x,’ (so that each x,' is a d-tuple
in Rf,q). By Proposition 13.2.3, almost all Rf,q have dimension d, and hence an easy
application of Eos’ Theorem yields that almost each X, is a system of parameters in
R}, whence (R},')*-regular. By Los” Theorem, x is therefore B(R,)-regular, as we
wanted to show. The last assertion now easily follows by the usual argument (see
Exercise 13.4.10). O

Theorem 13.2.8. The weak Monomial Conjecture holds asymptotically in mixed
characteristic for domains.

Proof. Suppose not, so that for some n, we can find for each p, a mixed charac-
teristic complete discrete valuation ring V, of residue characteristic p, and a local
V p-affine domain R, of affine proto-grade at most #, such that any strong system of
parameters fails to be monomial. Let R, and R; be the respective protoproduct and
ultraproduct of the R,,. By Exercise 13.4.11, the embedding dimension of R, is equal
to that of almost all R,,. Since almost all R, have also the same geometric dimen-
sion as R, by Proposition 13.2.3, it follows that a strong system of parameters X in
R, has an approximation x,, almost each of which is a strong system of parameters
in R,. Hence, by assumption, almost each x,, fails to satisfy (9.8) for at least one
exponent, say k = o). Let & be the ultraproduct of the ), so that by Los’ Theorem,
(13.2) fails in Ry, for the ultra-exponent . By faithful flatness, this failure already is
witnessed in R),, contradicting that the Ultra-monomial Conjecture holds in that ring
by Proposition 13.2.7. ad

In the papers [56, 61] many more homological conjectures are proven to hold
asymptotically, including the Hochster-Roberts Conjecture (see §13.5).

13.3 Asymptotic homological conjectures via cataproducts

We now discuss a second method for obtaining asymptotic properties in mixed
characteristic, via cataproducts. Moreover, this method, when applicable, will give
sharper results, where the residue characteristic has to be only large with respect
to some more natural invariants than the affine proto-grade, and where in fact we
no longer need to assume that the ring is affine. Moreover, there is a second ver-
sion, where this time not the residue characteristic, but the ramification index (see
page 214 below) has to be sufficiently large. Unfortunately, asymptotic versions of
some of the homological conjectures, like the Direct Summand and the Monomial
Conjecture that were treated by the previous method, elude at present treatment by
the cataproduct method.
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Ramification. Let us first discuss how to go from mixed to equal characteristic by
means of cataproducts. One way, of course, is already quite familiar to us: the cat-
aproduct of local rings of different residue characteristic has (residue) characteristic
zero. However, there is a second way. Given a local ring (R, m) of residue charac-
teristic p, we call the m-adic order of p its ramification index, that is to say, the
ramification index of R is the largest n such that p € m”. If the ramification index is
one, we call R unramified, and if the ramification index is infinite (that is to say, p is
an infinitesimal, including the case that p = 0, the equal characteristic case), we say
that it is infinitely ramified. Since a Noetherian local ring does not have non-zero in-
finitesimals, being infinitely ramified is the same as having equal characteristic, but
not so for arbitrary local rings, and here lies the clue to obtain equal characteristic
cataproducts:

13.3.1 LetR,, be mixed characteristic local rings of bounded embedding dimen-
sion, with residue characteristic p. If the R,, have unbounded ramification
index (that is to say, for all n, almost all R,, have ramification index at
least n), then the cataproduct Ry has equal characteristic p.

Indeed, the ultraproduct is infinitely ramified by L.os’ Theorem, whence the cat-
aproduct has equal characteristic p, as it is Noetherian by Theorem 11.1.4. Balanced
big Cohen-Macaulay algebras are available in this setup too:

13.3.2 If an ultra-Noetherian local ring R has either equal characteristic or is in-
finitely ramified, then it admits a balanced big Cohen-Macaulay algebra
B(R).

Indeed, under either assumption, the separated quotient Ry is an equal charac-
teristic Noetherian local ring by Theorem 11.1.4. If p is a maximal dimensional
prime ideal in Ry, then any system of parameters in R remains one in Ry whence in
R;/p, and therefore is B(R; /p)-regular by Theorem 10.4.4. Hence B(R) := B(R;/p)
yields the desired balanced big Cohen-Macaulay algebra. a

Asymptotic Improved New Intersection Conjecture. The last of the homological
conjectures we will discuss is an ‘intersection’ conjecture. The original conjecture,
called the Intersection Conjecture was proven by Peskine and Szpiro in [44], using
properties of the Frobenius in positive characteristic, and lifting the result to charac-
teristic zero by means of Artin Approximation (virtually the same lifting technique
as for HH-tight closure discussed in §8.6). Hochster and others (see, for instance,
[21, 26, 27, 33]) formulated and subsequently proved generalizations of this result
in equal characteristic, called ‘new’ and ‘improved’ intersection theorems. In fact,
the New Intersection Theorem (whence also the original one) was established in
mixed characteristic as well by Roberts in [47]. However, the most general of them
all, the so-called Improved New Intersection Conjecture is only known to hold in
equal characteristic. It is concerned with the length of a finite free complete with
finite homology. Its asymptotic version reads:

Theorem 13.3.3 (Asymptotic Improved New Intersection Theorem). For each
triple of non-negative integers (m,r,l), there exists a bound e(m,r,1) with the fol-
lowing property. Let R be a Noetherian local ring of mixed characteristic and let F,
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be a finite complex of finitely generated free R-modules. Assume R has embedding
dimension at most m and each module in Fy has rank at most r.

If each H;(F,), for i > 0, has length at most | and if Hy(F,) has a non-zero
minimal generator generating a submodule of length at most [, then the dimension
of R is less than or equal to the length of the complex F,, provided R has either
residue characteristic or ramification index at least e(m,r,1).

Proof. We will give the proof modulo one result, Theorem 13.3.4 below. Since the
dimension of R is at most m, there is nothing to show for complexes of length m
or higher. Suppose the result is false for some triple (m,r,), so that we can find
for each w a counterexample consisting of a d,,-dimensional mixed characteristic
Noetherian local ring R,, of embedding dimension at most m such that each R, has
either residue characteristic or ramification index at least w, and a complex F, of
length s,, < m consisting of finitely generated free R,,-modules of rank at most r
such that all its higher homology has length at most / and such that its cokernel ad-
mits a non-zero minimal generator [,, generating a submodule of length at most /,
but such that s,, < d,,. Let Ry and R; be the respective ultraproduct and cataproduct
of the R,,, and let u, s and d be the ultraproduct of the u,,, s,, and d,, respectively. In
particular, s < d < m and almost all s,, and d,, are equal to s and d respectively. By
Exercise 11.3.1, the geometric dimension of Ry is at least d. Let F, be the ultraprod-
uct of the complexes F,,. Since the ranks are at most r, each module in F, will be a
free Ry-module of rank at most . Since ultraproducts commute with homology and
preserve uniformly bounded length by Exercise 1.5.10, the higher homology H;(Fs)
has finite length (at most /) and so has the R;-submodule of Hy(F,) generated by .
In particular, F, is acyclic when localized at a non-maximal prime ideal, so that s is
at least the geometric dimension of Ry by Theorem 13.3.4 below, and hence s > d,
contradiction. ad

For the homological terminology used in the next result, see page 65.

Theorem 13.3.4. Let (R,m) be an ultra-Noetherian local ring, and assume R has
either equal characteristic or is infinitely ramified. Let F, be a finite complex of
finitely generated free R-modules, and let M be its cokernel. If Fy is acyclic when
localized at any prime ideal of R different from m, and if there exists a non-zero min-
imal generator of M whose annihilator is m-primary, then the geometric dimension
of R is less than or equal to the length of F,.

Proof. The proof is really just a modification of the classical proof (see [63, Corol-
lary 10.9] for details). As with most homological conjectures, they become easy to
prove if the ring is moreover Cohen-Macaulay, and in this particular instance, this
is because of the Buchsbaum-Eisenbud Acyclicity criterion ([13, Theorem 9.1.6]).
It was Hochster’s ingenious observation that instead of the ring being Cohen-Mac-
aulay, it suffices for the proofs to to through that there exists a balanced big Cohen-
Macaulay module. In the present situation, this is indeed the case due to 13.3.2. O
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13.4 Exercises

Ex 13.4.1
Let V,, be discrete valuation rings with uniformizing parameter T,, let & be a finite tuple of
indeterminates, and let S, be the localization of V ,|€] at the maximal ideal generated by &
and Ty. Let I, C Sy be ideals and put Ry, := S/I,,. Show that the protoproduct R, of the R,
is isomorphic to the image of S, inside the ultraproduct Ry. Use this to prove the claim on
page 207 about the protoproduct of the given sequence, by showing that in this example the
natural map V4[&,{] — Ry is in fact injective.

Ex 134.2
Give the details of the proof of Theorem 13.2.1.

Ex 13.4.3

Show, using Cohen’s structure theorem, that any ultraproduct of complete discrete valuation
rings W, of equal characteristic p is the ultraproduct of complete discrete valuation rings
W™ of mixed characteristic, and that to any collection of local W p-affine algebras S),

of affine proto-grade at most d, for some d, we can associate local W;,”i"—aﬁﬁne algebras
S;,”"X, called mixed characteristic approximations of the S,. Show that the S, are the equal
characteristic approximations of the S;”ix.

Ex 13.4.4
Use the argument in the proof of Theorem 13.2.1 to show that if p is a prime ideal in a
V-affine algebra lying above the maximal ideal of an ultra-discrete valuation ring V, then
almost all of its approximations p,, are prime. Show also that p is finitary in the sense used
in Exercise 12.5.17.

We may paraphrase these results by saying that the affine proto-grading on the category
Cpyr is prime bounded above the maximal ideal of the discrete valuation ring.

Ex 134.5
Show that given an V-affine local algebra R, with V an ultra-discrete valuation ring, is
isomorphic to the protoproduct of its approximations as defined in our discussion following
Theorem 13.2.1.

Ex 13.4.6
Show that if R — S is a local homomorphism of local V-affine algebras over an ultra-
discrete valuation ring V, with respective approximations R, and S, then R — S is a finite
extension if and only if almost all R, — S, are; moreover, under these assumptions, R is a
direct summand of S if and only if almost each R, is a direct summand of S.

Ex 13.4.7
Show that if V is an ultra-discrete valuation rings with maximal ideal generated by m, and R
is a local V-affine algebra, then R is torsion-free over V (meaning that any non-zero element
of V is R-regular) if and only if 7 is R-regular.
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Show that if this is the case, then Tt is part of a system of parameters of R, or more concretely,
that R/TR has dimension d — 1, where d is the geometric dimension of R. To this end,
show that the separated quotient R/Jg is isomorphic to R/JyR, whence in particular is
Noetherian, and that T is also R/Jg-regular.

Ex 13.4.8
Show using Theorem 11.1.10, in conjunction with 11.1.7 and Proposition 13.2.3, that there
exists for each n a bound n' such that if R € €pyg is a domain of proto-grade at most n, then
its parameter degree is at most n'.

*Ex 13.4.9
For each p, let R, be a local V ,-affine algebra of affine proto-grade at most n over a
mixed characteristic complete discrete valuation ring V, of residue characteristic p, and
let R;q be an equal characteristic approximation of the R,. Show that R, and Rf,q have
isomorphic cataproducts. In order to prove this, generalize Exercise 12.5.23, by showing
that both cataproducts are equal to the completion of the cataprotoproduct, that is to say,
the separated quotient of the protoproduct R,,.

Ex 13.4.10

Prove in detail the last assertion of Proposition 13.2.7.

Ex 13.4.11

Show that a local Vy-affine ring over an ultra-discrete valuation ring V has the same em-
bedding dimension as almost all of its approximations.

13.5 Project: Asymptotic Hochster-Roberts Conjecture

The goal of this project is to prove the following asymptotic version of the Hochter-
Roberts Theorem.

Theorem 13.5.1. For each n, there exists a bound n' such that if R — S is a cyclically
pure homomorphism of mixed characteristic local rings in Cpyg of affine proto-
grade at most n, and if S is regular, then R is Cohen-Macaulay provided its residue
characteristic is at least n'.

In what follows, V denotes an ultra-discrete valuation ring and 7 is a generator of
its maximal ideal. Let R be a local V-affine ring with approximations R,,. Again, a
flatness result underlies the entire method, which you can prove using the equational
criterion (Theorem 5.6.1):

13.5.2 If almost all R,, are regular, then the natural map R — B(R) is faithfully
flat.
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In [56, 61, 63], we introduced the following terminology: a local ring R is called
pseudo-regular if it has the same embedding dimension as geometric dimension,
and pseudo-Cohen-Macaulay if it has the same depth as geometric dimension, that
is to say, if R admits a system of parameters which is also an R-regular sequence
(here we use the naive definition of depth as being the maximal length of a regular
sequence—in a more general setup this is the wrong definition, but it is fine in the
present situation). Show the following two transfer results:

13.5.3 If almost all R,, are regular, then R is pseudo-regular.

13.5.4 IfR is a domain, then almost all R,, are Cohen-Macaulay if and only if R
is pseudo-Cohen-Macaulay.

Use the existence of balanced big Cohen-Macaulay algebras (and show a weak
functoriality property for them) to prove the following:

13.5.5 Let R — S be a local homomorphism of local V -affine domains. If
R/mR — S/7wS is cyclically pure and S is pseudo-regular, then R is
pseudo-Cohen-Macaulay.

Combining these results, we can now prove Theorem 13.5.1 by the usual ultra-
product method ad absurdum. The key point is to show that R,/TR, — S,/xS, is
cyclically pure for the protoproducts R, and S, of the respective counterexamples.
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