Hans Schoutens

The Use of Ultraproducts in Commutative Algebra

May 17, 2020

Springer

Contents

1 Ultraproducts and Łos’ Theorem 1
1.1 Ultraproducts 1
1.2 Model-theory in rings 4
1.3 Łos’ Theorem 6
1.4 Ultra-rings 7
1.5 Algebraic definition of ultra-rings 11
1.6 Exercises 12
1.7 Project: ultra-rings as stalks 16
2 Commutative Algebra versus Algebraic Geometry 17
2.1 Classical algebraic geometry 17
2.2 Hilbert-Noether theory 19
2.3 Affine schemes 22
2.4 Projective schemes 31
2.5 Local theory 34
2.6 Exercises 36
3 Dimension theory 41
3.1 Krull dimension 41
3.2 Hilbert series 42
3.3 Filtrations 44
3.4 Local dimension theory 46
3.5 Exercises 51
4 Singularity theory 55
4.1 Regular local rings 55
4.2 Cohen-Macaulay rings 60
4.3 Exercises 64
5 Flatness 69
5.1 Homological algebra 69
5.2 Flatness 70
5.3 Faithful flatness 74
5.4 Flatness and regular sequences 76
5.5 Projective dimension 76
5.6 Flatness criteria 79
5.7 Exercises 87
5.8 Project: local flatness criterion via nets 89
6 Completion 91
6.1 Complete normed rings 91
6.2 Complete local rings 93
6.3 Completions 96
6.4 Complete Noetherian local rings 100
6.5 Exercises 103
6.6 Project: Henselizations 105
7 Uniform bounds 107
7.1 Ultra-hulls 107
7.2 The Schmidt-van den Dries theorem 110
7.3 Transfer of structure 111
7.4 Uniform bounds 114
7.5 Exercises 116
8 Tight closure in characteristic p 119
8.1 Frobenius 119
8.2 Tight closure 121
8.3 Five key properties of tight closure 124
8.4 Integral closure 127
8.5 Applications 128
8.6 HH-tight closure in characteristic 0 132
8.7 Exercises 133
9 Tight closure-Affine case 137
9.1 Difference hulls 137
9.2 Tight closure 141
9.3 Ultra-closure 144
9.4 Big Cohen-Macaulay algebras 145
9.5 Exercises 149
10 Tight closure-Local case 153
10.1 Artin Approximation 153
10.2 Tight closure 159
10.3 Functoriality 161
10.4 Big Cohen-Macaulay algebras 163
Contents vii
10.5 Exercises 165
10.6 Project: proof of Hochster-Roberts Theorem 169
11 Cataproducts 171
11.1 Cataproducts 171
11.2 Uniform behavior 179
11.3 Exercises 181
Index 183
References 187

Chapter 1
 Ultraproducts and Los’ Theorem

In this chapter, W denotes an infinite set, always used as an index set, on which we fix a non-principal ultrafilter. Given any collection of (first-order) structures indexed by W, we can define their ultraproduct. However, in this book, we will be mainly concerned with the construction of an ultraproduct of rings, an ultra-ring for short, which is then defined as a certain residue ring of their Cartesian product. From this point of view, the construction is purely algebraic, although it is originally a model-theoretic one (we only provide some supplementary background on the model-theoretic perspective). We review some basic properties (deeper theorems will be proved in the later chapters), the most important of which is Łos’ Theorem, relating properties of the approximations with their ultraproduct. When applied to algebraically closed fields, we arrive at a result that is pivotal in most of our applications: the Lefschetz Principle (Theorem 1.4.3), allowing us to transfer many properties between positive and zero characteristic.

1.1 Ultraproducts

Non-principal ultrafilters. By a non-principal ultrafilter ω on W, we mean a collection of infinite subsets of W closed under finite intersection, with the property that for any subset $D \subseteq W$, either D or its complement $-D$ belongs to ω. In particular, the empty set does not belong to ω, and if $D \in \omega$ and E is an arbitrary set containing D, then also $E \in \omega$, for otherwise $-E \in \omega$, whence $\emptyset=D \cap-E \in \omega$, contradiction. Since every set in ω must be infinite, it follows that any co-finite set belongs to ω. The existence of non-principal ultrafilters is equivalent with the Axiom of Choice, and we make this set-theoretic assumption henceforth. It follows that for any infinite subset of W, we can find a non-principal ultrafilter containing this set. If we drop the requirement that all sets in ω must infinite, then some singleton must belong to ω; such an ultrafilter is called principal.

In the remainder of these notes, unless stated otherwise, we fix a non-principal ultrafilter ω on W, and (almost always) omit reference to this fixed ultrafilter from
our notation. No extra property of the ultrafilter is assumed, with the one exception described in Remark 11.1.5, which is nowhere used in the rest of our work anyway. Non-principal ultrafilters play the role of a decision procedure on the collection of subsets of W by declaring some subsets 'large' (those belonging to ω) and declaring the remaining ones 'small'. More precisely, let o_{w} be elements indexed by $w \in W$, and let \mathscr{P} be a property. We will use the expressions almost all o_{w} satisfy property \mathscr{P} or o_{w} satisfies property \mathscr{P} for almost all w as an abbreviation of the statement that there exists a set D in the ultrafilter ω, such that property \mathscr{P} holds for the element o_{w}, whenever $w \in D$. Note that this is also equivalent with the statement that the set of all $w \in W$ for which o_{w} has property \mathscr{P}, lies in the ultrafilter (read: is large). Similarly, we say that the o_{w} almost never satisfy property \mathscr{P} (or almost no o_{w} satisfies \mathscr{P}), if almost all o_{w} do not satisfy property \mathscr{P}.
Ultraproducts. Let O_{w} be sets, for $w \in W$. We define an equivalence relation on the Cartesian product $O_{\infty}:=\Pi O_{w}$, by calling two sequences $\left(a_{w}\right)$ and $\left(b_{w}\right)$, for $w \in W$, equivalent, if a_{w} and b_{w} are equal for almost all w. In other words, if the set of indices $w \in W$ for which $a_{w}=b_{w}$ belongs to the ultrafilter. We will denote the equivalence class of a sequence $\left(a_{w}\right)$ by

$$
\operatorname{ulim}_{w \rightarrow \infty} a_{w}, \quad \text { or } \quad \operatorname{ulim} a_{w}, \quad \text { or } \quad a_{\natural} .
$$

The set of all equivalence classes on ΠO_{w} is called the ultraproduct of the O_{w} and is denoted

$$
\operatorname{ulim}_{w \rightarrow \infty} O_{w}, \quad \text { or } \quad \operatorname{ulim} O_{w}, \quad \text { or } \quad O_{\mathfrak{4}}
$$

Note that the element-wise and set-wise notations are reconciled by the fact that

$$
\operatorname{ulim}_{w \rightarrow \infty}\left\{o_{w}\right\}=\left\{\operatorname{ulim}_{w \rightarrow \infty} o_{w}\right\} .
$$

The more common notation for an ultraproduct one usually finds in the literature is O^{*}; in the past, I also have used O_{∞}, which in this book is reserved to denote Cartesian products. The reason for using the particular notation O_{\natural} in these notes is because we will also introduce the remaining "chromatic" products O_{b} and O_{\sharp} (at least for certain local rings; see Chapters ?? and 11 respectively).

We wil also often use the following terminology: if o is an element in an ultraproduct O_{\natural}, then any choice of elements $o_{w} \in O_{w}$ with ultraproduct equal to o will be called an approximation of o. Although an approximation is not uniquely determined by the element, any two agree almost everywhere. Below we will extend our usage of the term approximation to include other objects as well.
Properties of ultraproducts. For the following properties, the easy proofs of which are left as an exercise, let O_{w} be sets with ultraproduct $O_{\mathrm{\natural}}$.
1.1.1 If Q_{w} is a subset of O_{w} for each w, then $\operatorname{ulim} Q_{w}$ is a subset of $\operatorname{ulim} O_{w}$.

In fact, $\operatorname{ulim} Q_{w}$ consists of all elements of the form $\operatorname{ulim} o_{w}$, with almost all o_{w} in Q_{w}.
1.1.2 If each O_{w} is the graph of a function $f_{w}: A_{w} \rightarrow B_{w}$, then O_{\natural} is the graph of a function $A_{\natural} \rightarrow B_{\natural}$, where A_{\natural} and B_{\natural} are the respective ultraproducts of A_{w} and B_{w}. We will denote this function by

$$
\operatorname{ulim}_{w \rightarrow \infty} f_{w} \quad \text { or } \quad f_{\text {দ }} .
$$

Moreover, we have an equality

$$
\begin{equation*}
\operatorname{ulim}_{w \rightarrow \infty}\left(f_{w}\left(a_{w}\right)\right)=\left(\operatorname{ulim}_{w \rightarrow \infty} f_{w}\right)\left(\operatorname{ulim}_{w \rightarrow \infty} a_{w}\right), \tag{1.1}
\end{equation*}
$$

for $a_{w} \in A_{w}$.
1.1.3 If each O_{w} comes with an operation $*_{w}: O_{w} \times O_{w} \rightarrow O_{w}$, then

$$
*_{\natural}:=\operatorname{ulim}_{w \rightarrow \infty} *_{w}
$$

is an operation on $O_{\mathfrak{b}}$. If all (or, almost all) O_{w} are groups with multiplication $*_{w}$ and unit element 1_{w}, then O_{\natural} is a group with multiplication $*_{\natural}$ and unit element $1_{\natural}:=\operatorname{ulim} 1_{w}$. If almost all O_{w} are Abelian groups, then so is O_{4}.
1.1.4 If each O_{w} is a (commutative) ring under the addition $+_{w}$ and the multiplication \cdot_{w}, then O_{\natural} is a (commutative) ring with addition $+_{\natural}$ and multiplication $\cdot \mathrm{b}$.

In fact, in that case, O_{\natural} is just the quotient of the product $O_{\infty}:=\prod O_{w}$ modulo the null-ideal, the ideal consisting of all sequences $\left(o_{w}\right)$ for which almost all o_{w} are zero (for more on this ideal, see $\S 1.5$ below). From now on, we will drop subscripts on the operations and denote the ring operations on the O_{w} and on O_{\natural} simply by + and \cdot
1.1.5 If almost all O_{w} are fields, then so is O_{\natural}.

Just to give an example of how to work with ultraproducts, let me give the proof: if $a \in O_{\natural}$ is non-zero, with approximation a_{w} (recall that this means that ulim $a_{w}=$ a), then by the previous description of the ring structure on O_{\natural}, almost all a_{w} will be non-zero. Therefore, letting b_{w} be the inverse of a_{w} whenever this makes sense, and zero otherwise, one verifies that ulim b_{w} is the inverse of a.
1.1.6 If C_{w} are rings and O_{w} is an ideal in C_{w}, then O_{\natural} is an ideal in $C_{\natural}:=\operatorname{ulim} C_{w}$. In fact, O_{\natural} is equal to the subset of all elements of the form ulim o_{w} with almost all $o_{w} \in O_{w}$. Moreover, the ultraproduct of the C_{w} / O_{w} is isomorphic to $C_{\natural} / O_{\natural}$.

In other words, the ultraproduct of ideals $O_{w} \subseteq C_{w}$ is equal to the image of the ideal ΠO_{w} in the product $C_{\infty}:=\Pi C_{w}$ under the canonical residue homomorphism $C_{\infty} \rightarrow C_{\text {b }}$.
1.1.7 If $f_{w}: A_{w} \rightarrow B_{w}$ are ring homomorphisms, then the ultraproduct f_{\natural} is again a ring homomorphism. In particular, if σ_{w} is an endomorphism on A_{w}, then the ultraproduct σ_{\natural} is a ring endomorphism on $A_{\natural}:=\operatorname{ulim} A_{w}$.

1.2 Model-theory in rings

The previous examples are just instances of the general principle that 'algebraic structure' carries over to the ultraproduct. The precise formulation of this principle is called Łos' Theorem (Łos is pronounced 'wôsh') and requires some terminology from model-theory. However, for our purposes, a weak version of Łos’ Theorem (namely Theorem 1.3.1 below) suffices in almost all cases, and its proof is entirely algebraic. Nonetheless, for a better understanding, the reader is invited to indulge in some elementary model-theory, or rather, an ad hoc version for rings only (if this not satisfies him/her, (s)he should consult any textbook, such as [24, 28, 37]).

Formulae. By a quantifier free formula without parameters in the free variables $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$, we will mean an expression of the form

$$
\begin{equation*}
\varphi(\xi):=\bigvee_{j=1}^{m} f_{1 j}=0 \wedge \ldots \wedge f_{s j}=0 \wedge g_{1 j} \neq 0 \wedge \ldots \wedge g_{t j} \neq 0 \tag{1.2}
\end{equation*}
$$

where each $f_{i j}$ and $g_{i j}$ is a polynomial with integer coefficients in the variables ξ, and where \wedge and \vee are the logical connectives and and or. If instead we allow the $f_{i j}$ and $g_{i j}$ to have coefficients in a ring R, then we call $\varphi(\xi)$ a quantifier free formula with parameters in R. We allow all possible degenerate cases as well: there might be no variables at all (so that the formula simply declares that certain elements in \mathbb{Z} or in R are zero and others are non-zero) or there might be no equations or no negations or perhaps no conditions at all. Put succinctly, a quantifier free formula is a Boolean combination of polynomial equations using the connectives \wedge, \vee and \neg (negation), with the understanding that we use distributivity and De Morgan's Laws to rewrite this Boolean expression in the (disjunctive normal) form (1.2).

By a formula without parameters in the free variables ξ, we mean an expression of the form

$$
\varphi(\xi):=\left(\mathrm{Q}_{1} \zeta_{1}\right) \cdots\left(\mathrm{Q}_{p} \zeta_{p}\right) \psi(\xi, \zeta),
$$

where $\psi(\xi, \zeta)$ is a quantifier free formula without parameters in the free variables ξ and $\zeta=\left(\zeta_{1}, \ldots, \zeta_{p}\right)$ and where Q_{i} is either the universal quantifier \forall or the existential quantifier \exists. If instead $\psi(\xi, \zeta)$ has parameters from R, then we call $\varphi(\xi)$ a formula with parameters in R. A formula with no free variables is called a sentence.

Satisfaction. Let $\varphi(\xi)$ be a formula in the free variables $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ with parameters from R (this includes the case that there are no parameters by taking $R=\mathbb{Z}$ and the case that there are no free variables by taking $n=0)$. Let A be an R algebra and let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a tuple with entries from A. We will give meaning to the expression a satisfies the formula $\varphi(\xi)$ in A (sometimes abbreviated to $\varphi(\mathbf{a})$ holds in A or is true in A) by induction on the number of quantifiers. Suppose first that $\varphi(\xi)$ is quantifier free, given by the Boolean expression (1.2). Then $\varphi(\mathbf{a})$ holds in A, if for some j_{0}, all $f_{i j_{0}}(\mathbf{a})=0$ and all $g_{i j_{0}}(\mathbf{a}) \neq 0$. For the general case, suppose $\varphi(\xi)$ is of the form $(\exists \zeta) \psi(\xi, \zeta)$ (respectively, $(\forall \zeta) \psi(\xi, \zeta))$, where the satisfaction relation is already defined for the formula $\psi(\xi, \zeta)$. Then $\varphi(\mathbf{a})$ holds in A, if there is some $b \in A$ such that $\psi(\mathbf{a}, b)$ holds in A (respectively, if $\psi(\mathbf{a}, b)$ holds in A, for all $b \in A)$. The subset of A^{n} consisting of all tuples satisfying $\varphi(\xi)$ will be called the
subset defined by φ, and will be denoted $\varphi(A)$. Any subset that arises in such way will be called a definable subset of A^{n}.

Note that if $n=0$, then there is no mention of tuples in A. In other words, a sentence is either true or false in A. By convention, we set A^{0} equal to the singleton $\{\emptyset\}$ (that is to say, A^{0} consists of the empty tuple \emptyset). If φ is a sentence, then the set defined by it is either $\{\emptyset\}$ or \emptyset, according to whether φ is true or false in A.
Constructible Sets. There is a connection between definable sets and Zariskiconstructible sets, where the relationship is the most transparent over algebraically closed fields, as we will explain below. In general, we can make the following observations. Note, however, that the material in this section already assumes the terminology from Chapter 2 below.

Let R be a ring. Let $\varphi(\xi)$ be a quantifier free formula with parameters from R, given as in (1.2). Let $\Sigma_{\varphi(\xi)}$ denote the constructible subset of \mathbb{A}_{R}^{n} (see page ??) consisting of all prime ideals \mathfrak{p} of $\operatorname{Spec}(R[\xi])$ which, for some j_{0}, contain all $f_{i j_{0}}$ and do not contain any $g_{i j_{0}}$. In particular, if $n=0$, so that \mathbb{A}_{R}^{0} is by definition $\operatorname{Spec}(R)$, then the constructible subset Σ_{φ} associated to φ is a subset of $\operatorname{Spec}(R)$.

Let A be an R-algebra and assume moreover that A is a domain (we will never use constructible sets associated to formulae if A is not a domain). For an n-tuple a over A, let $\mathfrak{p}_{\mathbf{a}}$ be the (prime) ideal in $A[\xi]$ generated by the $\xi_{i}-a_{i}$, where $\xi=$ $\left(\xi_{1}, \ldots, \xi_{n}\right)$. Since $A[\xi] / \mathfrak{p}_{\mathbf{a}} \cong A$, we call such a prime ideal an A-rational point of $A[\xi]$. It is not hard to see that this yields a bijection between n-tuples over A and A-rational points of $A[\xi]$, which we therefore will identify with one another. In this terminology, $\varphi(\mathbf{a})$ holds in A if and only if the corresponding A-rational point $\mathfrak{p}_{\mathbf{a}}$ lies in the constructible set $\Sigma_{\varphi(\xi)}$ (strictly speaking, we should say that it lies in the base change $\Sigma_{\varphi(\xi)} \times \operatorname{Spec}(R) \operatorname{Spec}(A)$, but for notational clarity, we will omit any reference to base changes). If we denote the collection of A-rational points of the constructible set $\Sigma_{\varphi(\xi)}$ by $\Sigma_{\varphi(\xi)}(A)$, then this latter set corresponds to the definable subset $\varphi(A)$ under the identification of A-rational points of $A[\xi]$ with n-tuples over A. If φ is a sentence, then Σ_{φ} is a constructible subset of $\operatorname{Spec}(R)$ and hence its base change to $\operatorname{Spec}(A)$ is a constructible subset of $\operatorname{Spec}(A)$. Since A is a domain, $\operatorname{Spec}(A)$ has a unique A-rational point (corresponding to the zero-ideal) and hence φ holds in A if and only if this point belongs to Σ_{φ}.

Conversely, if Σ is an R-constructible subset of \mathbb{A}_{R}^{n}, then we can associate to it a quantifier free formula $\varphi_{\Sigma}(\xi)$ with parameters from R as follows. However, here there is some ambiguity, as a constructible set is more intrinsically defined than a formula. Suppose first that Σ is the Zariski closed subset $\mathrm{V}(I)$, where I is an ideal in $R[\xi]$. Choose a system of generators, so that $I=\left(f_{1}, \ldots, f_{s}\right) R[\xi]$ and set $\varphi_{\Sigma}(\xi)$ equal to the quantifier free formula $f_{1}(\xi)=\cdots=f_{s}(\xi)=0$. Let A be an R algebra without zero-divisors. It follows that an n-tuple a is an A-rational point of Σ if and only if a satisfies the formula φ_{Σ}. Therefore, if we make a different choice of generators $I=\left(f_{1}^{\prime}, \ldots, f_{s}^{\prime}\right) R[\xi]$, although we get a different formula φ^{\prime}, it defines in any R-algebra A without zero-divisors the same definable set, to wit, the collection of A-rational points of Σ. To associate a formula to an arbitrary constructible set, we do this recursively by letting $\varphi_{\Sigma} \wedge \varphi_{\Psi}, \varphi_{\Sigma} \vee \varphi_{\Psi}$ and $\neg \varphi_{\Sigma}$ correspond to the constructible sets $\Sigma \cap \Psi, \Sigma \cup \Psi$ and $-\Sigma$ respectively.

We say that two formulae $\varphi(\xi)$ and $\psi(\xi)$ in the same free variables $\xi=$ $\left(\xi_{1}, \ldots, \xi_{n}\right)$ are equivalent over a ring A, if they hold on exactly the same tuples from A (that is to say, if they define the same subsets in A^{n}). In particular, if φ and ψ are sentences, then they are equivalent in A if they are simultaneously true or false in A. If $\varphi(\xi)$ and $\psi(\xi)$ are equivalent for all rings A in a certain class \mathscr{K}, then we say that $\varphi(\xi)$ and $\psi(\xi)$ are equivalent modulo the class \mathscr{K}. In particular, if Σ is a constructible set in \mathbb{A}_{R}^{n}, then any two formulae associated to it are equivalent modulo the class of all R-algebras without zero-divisors. In this sense, there is a
one-one correspondence between constructible subsets of \mathbb{A}_{R}^{n} and quantifier free formulae with parameters from R upto equivalence.

Quantifier Elimination. For certain rings (or classes of rings), every formula is equivalent to a quantifier free formula; this phenomenon is known under the name Quantifier Elimination. We will only encounter it for the following class.

Theorem 1.2.1 (Quantifier Elimination for algebraically closed fields). If \mathscr{K} is the class of all algebraically closed fields, then any formula without parameters is equivalent modulo \mathscr{K} to a quantifier free formula without parameters.

More generally, if F is a field and $\mathscr{K}(F)$ the class of all algebraically closed fields containing F, then any formula with parameters from F is equivalent modulo $\mathscr{K}(F)$ to a quantifier free formula with parameters from F.

Proof (Sketch of proof). These statements can be seen as translations in modeltheoretic terms of Chevalley's Theorem which says that the projection of a constructible set is again constructible. I will only explain this for the first assertion. As already observed, a quantifier free formula $\varphi(\xi)$ (without parameters) corresponds to a constructible set $\Sigma_{\varphi(\xi)}$ in $\mathbb{A}_{\mathbb{Z}}^{n}$ and the tuples in K^{n} satisfying $\varphi(\xi)$ are precisely the K-rational points $\Sigma_{\varphi(\xi)}(K)$ of $\Sigma_{\varphi(\xi)}$. The key observation is now the following. Let $\psi(\xi, \zeta)$ be a quantifier free formula and put $\gamma(\xi):=(\exists \zeta) \psi(\xi, \zeta)$, where $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ and $\zeta=\left(\zeta_{1}, \ldots, \zeta_{m}\right)$. Let $\Psi:=\psi(K)$ be the subset of K^{n+m} defined by $\psi(\xi, \zeta)$ and let $\Gamma:=\gamma(K)$ be the subset of K^{n} defined by $\gamma(\xi)$. Therefore, if we identify K^{n+m} with the collection of K-rational points of \mathbb{A}_{K}^{n+m}, then

$$
\Psi=\Sigma_{\psi(\xi, \zeta)}(K)
$$

Moreover, if $p: \mathbb{A}_{K}^{n+m} \rightarrow \mathbb{A}_{K}^{n}$ is the projection onto the first n coordinates then $p(\Psi)=$ Γ. By Chevalley's Theorem (see for instance [15, Corollary 14.7] or [17, II. Exercise 3.19]), $p\left(\Sigma_{\psi(\xi, \zeta)}\right)$ (as a subset in $\left.\mathbb{A}_{\mathbb{Z}}^{n}\right)$ is again constructible, ands therefore, by our previous discussion, of the form $\Sigma_{\chi(\xi)}$ for some quantifier free formula $\chi(\xi)$. Hence $\Gamma=\Sigma_{\chi(\xi)}(K)$, showing that $\gamma(\xi)$ is equivalent modulo K to $\chi(\xi)$. Since $\chi(\xi)$ does not depend on K, we have in fact an equivalence of formulae modulo the class \mathscr{K}. To get rid of an arbitrary chain of quantifiers, we use induction on the number of quantifiers, noting that the complement of a set defined by $(\forall \zeta) \psi(\xi, \zeta)$ is the set defined by $(\exists \zeta) \neg \psi(\xi, \zeta)$, where $\neg(\cdot)$ denotes negation.

For some alternative proofs, see [24, Corollary A.5.2] or [28, Theorem 1.6].

1.3 Łos' Theorem

Thanks to Quantifier Elimination (Theorem 1.2.1), when dealing with algebraically closed fields, we may forget altogether about formulae and use constructible sets instead. However, we will not always be able to work just in algebraically closed fields and so we need to formulate a general transfer principle for ultraproducts. For most of our purposes, the following version suffices:

Theorem 1.3.1 (Equational Los' Theorem). Suppose each A_{w} is an R-algebra, and let A_{\downarrow} denote their ultraproduct. Let ξ be an n-tuple of variables, let $f \in R[\xi]$, and let \mathbf{a}_{w} be n-tuples in A_{w} with ultraproduct \mathbf{a}_{4}. Then $f\left(\mathbf{a}_{4}\right)=0$ in A_{\natural} if and only if $f\left(\mathbf{a}_{w}\right)=0$ in A_{w} for almost all w.

Moreover, instead of a single equation $f=0$, we may take in the above statement any system of equations and negations of equations over R.

Proof. Let me only sketch a proof of the first assertion. Suppose $f\left(\mathbf{a}_{4}\right)=0$. One checks (do this!), making repeatedly use of (1.1), that $f\left(\mathbf{a}_{4}\right)$ is equal to the ultraproduct of the $f\left(\mathbf{a}_{w}\right)$. Hence the former being zero simply means that almost all $f\left(\mathbf{a}_{w}\right)$ are zero. The converse is proven by simply reversing this argument.

On occasion, we might also want to use the full version of Łos' Theorem, which requires the notion of a formula as defined above. Recall that a sentence is a formula without free variables.

Theorem 1.3.2 (Łos' Theorem). Let R be a ring and let A_{w} be R-algebras. If φ is a sentence with parameters from R, then φ holds in almost all A_{w} if and only if φ holds in the ultraproduct A_{\natural}.

More generally, let $\varphi\left(\xi_{1}, \ldots, \xi_{n}\right)$ be a formula with parameters from R and let \mathbf{a}_{w} be an n-tuple in A_{w} with ultraproduct \mathbf{a}_{4}. Then $\varphi\left(\mathbf{a}_{w}\right)$ holds in almost all A_{w} if and only if $\varphi\left(\mathbf{a}_{\natural}\right)$ holds in A_{\natural}.

The proof is tedious but not hard; one simply has to unwind the definition of formula (see [24, Theorem 9.5.1] for a more general treatment). Note that A_{\natural} is naturally an R-algebra, so that it makes sense to assert that φ is true or false in A_{\natural}. Applying Łos’ Theorem to a quantifier free formula proves Theorem 1.3.1.

1.4 Ultra-rings

An ultra-ring is simply an ultraproduct of rings. Probably the first examples of ultrarings appearing in the literature are the so-called non-standard integers, that is to say, the ultrapowers \mathbb{Z}_{\natural} of $\mathbb{Z} .{ }^{1}$ Ultra-rings will be our main protagonists, but for the moment we only establish some very basic facts about them.

Ultra-fields. Let K_{w} be a collection of fields and K_{\nmid} their ultraproduct, which is again a field by 1.1.5 (or by an application of Łos’ Theorem). Any field which arises in this way is called an ultra-field. ${ }^{2}$ Since an ultraproduct is either finite or uncountable, \mathbb{Q} is an example of a field which is not an ultra-field.
1.4.1 If for each prime number p, only finitely many K_{w} have characteristic p, then K_{\natural} has characteristic zero.

Indeed, for every prime number p, the equation $p \xi-1=0$ has a solution in all but finitely many of the K_{w} and hence it has a solution in K_{\natural}, by Theorem 1.3.1. We will call an ultra-field K_{\natural} of characteristic zero which arises as an ultraproduct

[^0]of fields of positive characteristic, a Lefschetz field (the name is inspired by Theorem 1.4.3 below); and more generally, an ultra-ring of characteristic zero given as the ultraproduct of rings of positive characteristic will be called a Lefschetz ring (see page 159 for more).
1.4.2 If almost all K_{w} are algebraically closed fields, then so is K_{\natural}.

The quickest proof is by means of Łos' Theorem, although one could also give an argument using just Theorem 1.3.1 (which is no surprise in light of Exercise 1.6.17).

Proof. For each $n \geq 2$, consider the sentence σ_{n} given by

$$
\left(\forall \zeta_{0}, \ldots, \zeta_{n}\right)(\exists \xi) \zeta_{n}=0 \vee \zeta_{n} \xi^{n}+\cdots+\zeta_{1} \xi+\zeta_{0}=0 .
$$

This sentence is true in any algebraically closed field, whence in almost all K_{w}, and therefore, by Łos’ Theorem, in K_{\natural}. However, a field in which every σ_{n} holds is algebraically closed.

We have the following important corollary which can be thought of as a model theoretic Lefschetz Principle (here $\mathbb{F}_{p}^{\text {alg }}$ denotes the algebraic closure of the p element field; and, more generally, $\mathbb{F}^{\text {alg }}$ denotes the algebraic closure of a field F).

Theorem 1.4.3 (Lefschetz Principle). Let W be the set of prime numbers, endowed with some non-principal ultrafilter. The ultraproduct of the fields $\mathbb{F}_{p}^{\text {alg }}$ is isomorphic with the field \mathbb{C} of complex numbers, that is to say, we have an isomorphism

$$
\operatorname{ulim}_{p \rightarrow \infty} \mathbb{F}_{p}^{a l g} \cong \mathbb{C}
$$

Proof. Let \mathbb{F}_{\natural} denote the ultraproduct of the fields $\mathbb{F}_{p}^{\text {alg }}$. By 1.4.2, the field \mathbb{F}_{\natural} is algebraically closed, and by 1.4.1, its characteristic is zero. Using elementary set theory, one calculates that the cardinality of $\mathbb{F}_{\mathfrak{b}}$ is equal to that of the continuum. The theorem now follows since any two algebraically closed fields of the same uncountable cardinality and the same characteristic are (non-canonically) isomorphic by Steinitz's Theorem (see [24] or Theorem 1.4.5 below).

Remark 1.4.4. We can extend the above result as follows: any algebraically closed field K of characteristic zero and cardinality 2^{κ}, for some infinite cardinal κ, is a Lefschetz field. Indeed, for each p, choose an algebraically closed field K_{p} of characteristic p and cardinality κ. Since the ultraproduct of these fields is then an algebraically closed field of characteristic zero and cardinality 2^{κ}, it is isomorphic to K by Steinitz's Theorem (Theorem 1.4.5). Under the generalized Continuum Hypothesis, any uncountable cardinal is of the form 2^{κ}, and hence any uncountable algebraically closed field of characteristic zero is then a Lefschetz field. We will tacitly assume this, but the reader can check that nowhere this assumption is used in an essential way.

Theorem 1.4.5 (Steinitz's Theorem). If K and L are algebraically closed fields of the same characteristic and the same uncountable cardinality, then they are isomorphic.

Proof (Sketch of proof). Let k be the common prime field of K and L (that is to say, either \mathbb{Q} in characteristic zero, or \mathbb{F}_{p} in positive characteristic p). Let Γ and Δ be respective transcendence bases of K and L over k. Since K and L have the same uncountable cardinality, Γ and Δ have the same cardinality, and hence there exists a bijection $f: \Gamma \rightarrow \Delta$. This naturally extends to a field isomorphism $k(\Gamma) \rightarrow k(\Delta)$. Since K is the algebraic closure of $k(\Gamma)$, and similarly, L of $k(\Delta)$, this isomorphism then extends to an isomorphism $K \rightarrow L$.

Ultra-rings. Let A_{w} be a collection of rings. Their ultraproduct A_{\natural} will be called, as already mentioned, an ultra-ring.
1.4.6 If each A_{w} is local with maximal ideal \mathfrak{m}_{w} and residue field $k_{w}:=A_{w} / \mathfrak{m}_{w}$, then A_{\natural} is local with maximal ideal $\mathfrak{m}_{\natural}:=\operatorname{ulim} \mathfrak{m}_{w}$ and residue field $k_{\natural}:=$ $\operatorname{ulim} k_{w}$.

Indeed, a ring is local if and only if the sum of any two non-units is again a non-unit. This statement is clearly expressible by means of a sentence, so that by Łos’ Theorem (Theorem 1.3.2), A_{\natural} is local. Again we can prove this also directly, or using the equational version, Theorem 1.3.1. The remaining assertions now follow easily from 1.1.6. In fact, the same argument shows that the converse is also true: if A_{\natural} is local, then so are almost all A_{w}.
1.4.7 If A_{w} are local rings of embedding dimension e, then so is A_{\natural}.

Recall that the embedding dimension of a local ring is the minimal number of generators of its maximal ideal. Hence, by assumption almost all \mathfrak{m}_{w} are generated by e elements $x_{i w}$. It follows from 1.1.6 that \mathfrak{m}_{\natural} is generated by the e ultraproducts $x_{i 匕}$.
1.4.8 Almost all A_{w} are domains (respectively, reduced) if and only if A_{\natural} is a domain (respectively, reduced).

Indeed, being a domain is captured by the fact that the equation $\xi \zeta=0$ has no solution by non-zero elements; and being reduced by the fact that the equation $\xi^{2}=$ 0 has no non-zero solutions. In particular, using 1.1.6, we see that an ultraproduct of ideals is a prime (respectively, radical, maximal) ideal if and only if almost all ideals are prime (respectively, reduced, maximal).
1.4.9 If I_{w} are ideals in the local rings $\left(A_{w}, \mathfrak{m}_{w}\right)$, such that in $\left(A_{\natural}, \mathfrak{m}_{\natural}\right)$, their ultraproduct I_{\natural} is \mathfrak{m}_{\natural}-primary, then almost all I_{w} are \mathfrak{m}_{w}-primary.

Recall that an ideal I in a local ring (R, \mathfrak{m}) is called \mathfrak{m}-primary if its radical is equal to \mathfrak{m}. Note that here the converse may fail to hold: not every ultraproduct of \mathfrak{m}_{w}-primary ideals need to be \mathfrak{m}_{\natural}-primary (see Exercise 1.6.10).

As will become apparent later on, the following ideal plays an important role in the study of local ultra-rings.

Definition 1.4.10 (Ideal of infinitesimals). For an arbitrary local ring (R, \mathfrak{m}), define its ideal of infinitesimals, denoted \Im_{R}, as the intersection

$$
\mathfrak{I}_{R}:=\mathfrak{m}^{\infty}:=\bigcap_{n \geq 0} \mathfrak{m}^{n}
$$

The \mathfrak{m}-adic topology (see page 93) on R is Hausdorff (=separated) if and only if $\mathfrak{I}_{R}=0$. Therefore, we will refer to the residue ring R / \mathfrak{I}_{R} as the separated quotient of R. In commutative algebra, the ideal of infinitesimals hardly ever appears simply because of:

Theorem 1.4.11 (Krull's Intersection Theorem). If R is a Noetherian local ring, then $\mathfrak{I}_{R}=0$.

Proof. This is an immediate consequence of the Artin-Rees Lemma (for which see [30, Theorem 8.5] or [5, Proposition 10.9]), or of its weaker variant proven in Theorem 11.2.1 below. Namely, for $x \in \mathfrak{I}_{R}$, there exists, according to the latter theorem, some c such that $x R \cap \mathfrak{m}^{c} \subseteq x \mathfrak{m}$. Since $x \in \mathfrak{m}^{c}$ by assumption, we get $x \in x \mathfrak{m}$, that is to say, $x=a x$ with $a \in \mathfrak{m}$. Hence $(1-a) x=0$. As $1-a$ is a unit in R, we get $x=0$.

Corollary 1.4.12. In a Noetherian local ring (R, \mathfrak{m}), every ideal is the intersection of \mathfrak{m}-primary ideals.

Proof. For $I \subseteq R$ an ideal, an application of Theorem 3.3.4 to the ring R / I shows that I is the intersection of all $I+\mathfrak{m}^{n}$, and the latter are indeed \mathfrak{m}-primary.

Most local ultra-rings have a non-zero ideal of infinitesimals.
1.4.13 If R_{w} are local rings with non-nilpotent maximal ideal, then the ideal of infinitesimals of their ultraproduct R_{\natural} is non-zero. In particular, R_{\natural} is not Noetherian.
Indeed, by assumption, we can find non-zero $a_{w} \in \mathfrak{m}^{w}$ (let us for the moment assume that the index set is equal to \mathbb{N}) for all w. Hence their ultraproduct a_{\natural} is non-zero and lies inside $\mathfrak{I}_{R_{\natural}}$.
Ultra-exponentation. Let A_{\natural} be an ultra-ring, given as the ultraproduct of rings A_{w}. Let \mathbb{N}_{\natural} be the ultrapower of the natural numbers, and let $\alpha \in \mathbb{N}_{\natural}$ with approximations α_{w}. The ultra-exponentation map on A with exponent α is given by sending $x \in A$ to the ultraproduct, denoted x^{α}, of the $x_{w}^{\alpha_{w}}$, where x_{w} is an approximation of x. One easily verifies that this definition does not depend on the choice of approximation of x or α. If A is local and x a non-unit, then x^{α} is an infinitesimal for any α in \mathbb{N}_{t} not in \mathbb{N}. In these notes, the most important instance will be the ultra-exponentation map obtained as the ultra-product of Frobenius maps. More precisely, let A_{\natural} be a Lefschetz ring, say, realized as the ultraproduct of rings A_{p} of characteristic p (here we assumed for simplicity that the underlying index set is just the set of prime numbers, but this is not necessary). On each A_{p}, we have an action of the Frobenius, given as $\mathbf{F}_{p}(x):=x^{p}$ (for more, see $\S 8.1$).

Definition 1.4.14 (Ultra-Frobenius). The ultraproduct of these Frobenii yields an endomorphism \mathbf{F}_{\natural} on A_{\natural}, called the ultra-Frobenius, given by $\mathbf{F}_{\natural}(x):=x^{\pi}$, where $\pi \in \mathbb{N}_{\natural}$ is the ultraproduct of all prime numbers.

1.5 Algebraic definition of ultra-rings

Let A_{w}, for $w \in W$, be rings with Cartesian product $A_{\infty}:=\prod_{w} A_{w}$ and direct sum $A_{(\infty)}:=\bigoplus A_{w}$. Note that $A_{(\infty)}$ is an ideal in A_{∞}. Call an element $a \in A_{\infty}$ a strong idempotent if each of its entries is either zero or one. For any ideal $\mathfrak{I} \subseteq A_{\infty}$, let \mathfrak{I}° be the ideal generated by all strong idempotents in \mathfrak{I}. Let \mathfrak{P} be a prime ideal of A_{∞}, and let $\omega_{\mathfrak{P}}$ be the collection of $D \subseteq W$ such that $1-1_{D} \in \mathfrak{P}$, where 1_{D} denotes the characteristic function of D, that is to say, the strong idempotent whose entries are one for $w \in D$ and zero otherwise (note that $1=1_{W}$).
1.5.1 Each $\omega_{\mathfrak{P}}$ is an ultrafilter, which is principal if and only if the ideal \mathfrak{P}° is principal, if and only if \mathfrak{P} does not contain the ideal $A_{(\infty)}$.

Indeed, given an idempotent e, its complement $1-e$ is again idempotent, and the product of both is zero. It follows that any prime ideal contains exactly one among e and $1-e$. Hence $\omega_{\mathfrak{P}}$ also consists of those subsets $D \subseteq W$ such that $1_{D} \notin \mathfrak{P}$. Since $1-1_{D}$ is the characteristic function of the complement of D, it follows that either D or its complement belongs to $\omega_{\mathfrak{P}}$. Moreover, if $D \in \omega_{\mathfrak{P}}$ and $D \subseteq E$, then $1_{D} \cdot 1_{E}=1_{D}$ does not belong to \mathfrak{P}, whence neither does 1_{E}, showing that $E \in \omega_{\mathfrak{P}}$. This proves that $\omega_{\mathfrak{P}}$ is an ultrafilter. It is not hard to see that if \mathfrak{P}° is principal, then it must be generated by the characteristic function of the complement of a singleton, and hence $\omega_{\mathfrak{P}}$ must be principal (the other direction is immediate). For the last equivalence, see Exercise 1.6.14.

We can now formulate the following entirely algebraic characterization of an ultra-ring.
1.5.2 The ultraproduct of the A_{w} with respect to the ultrafilter $\omega_{\mathfrak{P}}$ is equal to $A_{\infty} / \mathfrak{P}^{\circ}$, that is to say, \mathfrak{P}° is the null-ideal determined by $\omega_{\mathfrak{P}}$. Furthermore, any ultra-ring having the A_{w} as approximations is of this form, for some prime ideal containing the direct sum ideal $A_{(\infty)}$.

Let \mathfrak{I} be the null-ideal determined by $\omega_{\mathfrak{P}}$. If $D \in \omega_{\mathfrak{P}}$, then almost all entries of $1-1_{D}$ are zero, and hence $1-1_{D} \in \mathfrak{I}$. Since this is a typical generator of \mathfrak{P}°, we
 some $D \in \omega_{\mathfrak{P}}$. Since $1-1_{D} \in \mathfrak{P}^{\circ}$ and $a=a\left(1-1_{D}\right)$, we get $a \in \mathfrak{P}^{\circ}$.

Conversely, if ω is an ultrafilter with corresponding null-ideal $\mathfrak{I} \subseteq A_{\infty}$, then any prime ideal \mathfrak{P} containing \mathfrak{I} satisfies $\mathfrak{I}=\mathfrak{P}^{\circ}$ (Exercise 1.6.13).

In fact, if $\mathfrak{P} \subseteq \mathfrak{Q}$ then $\mathfrak{P}^{\circ}=\mathfrak{Q}^{\circ}$, showing that already all minimal prime ideals of A_{∞} determine all possible ultrafilters (see Exercise 1.6.13). For the geometric notions mentioned in the next result, see Chapter 2.

Corollary 1.5.3. If all A_{w} are domains, then A_{\natural} is the coordinate ring of an irreducible component of $\operatorname{Spec}\left(A_{\infty}\right)$. More precisely, the residue rings $A_{\infty} / \mathfrak{G}$, for $\mathfrak{G} \subseteq A_{\infty}$ a minimal prime, are precisely the ultraproducts having the domains A_{w} for approximations. Moreover, these ireducible components are then also the connected components of $\operatorname{Spec}\left(A_{\infty}\right)$, that is to say, they are mutually disjoint.

Proof. Since the ultraproduct A_{\natural} determined by \mathfrak{G} is equal to $A_{\infty} / \mathfrak{G}^{\circ}$, and a domain by 1.4.8 or Łos' Theorem, \mathfrak{G}° is also a prime ideal. By minimality, $\mathfrak{G}^{\circ}=\mathfrak{G}$. To prove the last assertion, let \mathfrak{G}_{1} and \mathfrak{G}_{2} be two distinct minimal prime ideals of A_{∞}. Suppose $\mathfrak{G}_{1}+\mathfrak{G}_{2}$ is not the unit ideal. Hence there exists a maximal ideal $\mathfrak{M} \subseteq A_{\infty}$ such that $\mathfrak{G}_{1}, \mathfrak{G}_{2} \subseteq \mathfrak{M}$, and hence

$$
\mathfrak{G}_{1}=\mathfrak{G}_{1}^{\circ}=\mathfrak{M}^{\circ}=\mathfrak{G}_{2}^{\circ}=\mathfrak{G}_{2}
$$

contradiction. Hence $\mathfrak{G}_{1}+\mathfrak{G}_{2}=1$. This shows that any two irreducible components of $\operatorname{Spec}\left(A_{\infty}\right)$ are disjoint.

In the following structure theorem, $\mathbb{Z}_{\infty}:=\mathbb{Z}^{W}$ denotes the Cartesian power of \mathbb{Z}. Any Cartesian product $A_{\infty}:=\Pi A_{w}$ is naturally a \mathbb{Z}_{∞}-algebra.

Theorem 1.5.4. Any ultra-ring is a base change of a ring of non-standard integers \mathbb{Z}_{\natural}. More precisely, the ultra-rings with approximation A_{w} are precisely the rings of the form $A_{\infty} / \mathfrak{G} A_{\infty}$, where \mathfrak{G} is a minimal prime of \mathbb{Z}_{∞} containing the direct sum ideal.

Proof. If \mathfrak{P} is a prime ideal in A_{∞} containing the direct sum ideal, then the generators of \mathfrak{P}° already live in \mathbb{Z}_{∞}, and generate the null-ideal in \mathbb{Z}_{∞} corresponding to the non-principal ultrafilter $\omega_{\mathfrak{P}}$. By Corollary 1.5.3, the latter ideal therefore is a minimal prime ideal $\mathfrak{G} \subseteq \mathbb{Z}_{\infty}$, and hence $\mathfrak{G} A_{\infty}=\mathfrak{P}^{\circ}$, so that one direction is clear from 1.5.2. Conversely, again by Corollary 1.5.3, any minimal prime ideal $\mathfrak{G} \subseteq \mathbb{Z}_{\infty}$ is the null-ideal determined by the ultrafilter $\omega_{\mathfrak{G}}$, and one easily checks that the same is therefore true for its extension $\mathfrak{G} A_{\infty}$.

1.6 Exercises

Ex 1.6.1

Prove properties 1.1.1-1.1.7.

Ex 1.6.2
Prove 1.4.6 in detail, using only Theorem 1.3.1. Show that if \mathfrak{p}_{w} are prime ideals in A_{w}, then their ultraproduct \mathfrak{p}_{\natural} is a prime ideal in A_{\natural}, and the ultraproduct of the $\left(A_{w}\right)_{\mathfrak{p}_{w}}$ is equal to $\left(A_{\natural}\right)_{\mathfrak{p}_{\natural}}$.

Ex 1.6.3

Show that an ultrafilter on W is the same as a filter which is maximal (with respect to inclusion) among all filters containing the Frechet filter. Recall that a filter on a set W is a collection of non-empty sets closed under finite intersection and supersets, and that the Frechet filter is the collection of all co-finite subsets, that is to say, all subsets whose complement is finite.
Use this to show that any collection of subsets of Whaving the finite intersection property (meaning that the intersection of finitely many is never empty) is contained in some ultrafilter. If any finite intersection is infinite, then we can choose this ultrafilter to be nonprincipal.

Ex 1.6.4

In the statement of 1.4.1, we tacitly assume that the underlying set is countable. Prove the following more general version which works over an arbitrary infinite index set: if for each prime number p, almost no field K_{w} has characteristic p, then their ultraproduct K_{\square} has characteristic zero, whence is a Lefschetz field.

*Ex 1.6.5

Fill in the details in the proof of the following result due to $A x$ ([6]): If a polynomial map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is injective, then it is surjective.
Here we call a map $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ polynomial if there exist n polynomials $p_{1}(\xi), \ldots, p_{n}(\xi) \in$ $\mathbb{C}[\xi]$ in the n variables $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right)$ such that $\phi(\mathbf{u})=\left(p_{1}(\mathbf{u}), \ldots, p_{n}(\mathbf{u})\right)$ for all $\mathbf{u} \in \mathbb{C}^{n}$ (in the language of Chapter 2 this is just a morphism of affine space $\mathbb{A}_{\mathbb{C}}^{n}$ to itself).

Proof. By the Pigeon Hole Principle, the result is true if we replace \mathbb{C} by any finite field; since $\mathbb{F}_{p}^{\text {alg }}$ is a union of finite fields, the assertion also holds upon replacing \mathbb{C} by $\mathbb{F}_{p}^{\text {alg }}$; hence we are done by Theorem 1.4.3.

Ex 1.6.6

True or false: any homomorphic image of an ultra-ring is again an ultra-ring (you may want to take a peek at the next exercise).

Ex 1.6.7

Suppose $I_{w} \subseteq A_{w}$ are ideals, and let $I_{\natural} \subseteq A_{\natural}$ be their ultraproduct. Show that if H_{w} is a set of generators of I_{w}, then the ultraproduct $H_{\square}:=\operatorname{ulim} H_{w}$ generates I_{\natural}. Suppose next that all H_{w} are finite, say $H_{w}=\left\{f_{1 w}, \ldots, f_{m(w), w}\right\}$, and for each $i \in \mathbb{N}$, let $f_{i \sharp}$ be the ultraproduct of the $f_{i w}$, where we put $f_{i w}:=0$ whenever $m(w)<i$. Let m be the supremum of all $m(w)$ (allowing $m=\infty$). Show that if $m<\infty$, then the $f_{i \natural}$ for $i=1, \ldots, m$ generate I_{\natural}. Use the example $I_{w}:=(\xi, \zeta)^{w} A_{w}($ with $W=\mathbb{N})$ where $A_{w}:=K[\xi, \zeta]$, to show that the same statement is false if $m=\infty$.
Conclude that any finitely generated ideal in an ultra-ring A is an ultra-ideal. Moreover, if I is a finitely generated ideal in a ring A, then its ultrapower in the ultrapower A_{\natural} of A is equal to $I A_{\mathfrak{\natural}}$. Give a counterexample to this assertion if I is not finitely generated.

Ex 1.6.8

Prove the following more general version of the last assertion in Exercise 1.6.7: let $N \subseteq M$ be modules and let N_{\natural} and M_{\natural} be their ultrapowers. If N is finitely generated, then \bar{N}_{\natural} is equal to the submodule of M_{\natural} generated by N.

Ex 1.6.9

Let $A \rightarrow B$ be a finite, injective homomorphism. Show, using induction on the number of A-algebra generators of B, that if A is an ultra-ring, then so is B.

Ex 1.6.10

Show that the ultraproduct of rings of length l is again a ring of length l (see page 42 for the notion of length). Use this to prove 1.4.9. Give a counterexample to the converse of 1.4.9.

Ex 1.6.11

Show that if the ideal of infinitesimals in an ultraproduct of Noetherian local rings is finitely generated, then it is zero. Give an example where the latter case occurs. Also show the following generalization of 1.4.13: any ultraproduct of local rings of unbounded nilpotency degree has a non-zero infinitesimal, where the nilpotency degree of a local ring (R, \mathfrak{m}) is the largest n such that $\mathfrak{m}^{n} \neq 0$ (with the understanding that it is ∞ when no power is zero).

Ex 1.6.12

By an ultra-discrete valuation ring, we mean an ultraproduct of discrete valuation rings. Show that the ideal of infinitesimals \mathfrak{I}_{V} of an ultra-discrete valuation ring V is an infinitely generated prime ideal. Show that an ultra-discrete valuation ring is a valuation domain ($=a$ domain such that for all a in the field of fractions of V, at least one of a or $1 / a$ belongs to $V)$. Show that the separated quotient V / \Im_{V} is a discrete valuation ring-in Chapter 11 we will call this a cataproduct of discrete valuation rings.

Ex 1.6.13

Show that if $\mathfrak{I} \subseteq A_{\infty}:=\prod A_{w}$ is the null-ideal determined by an ultrafilter ω, and if \mathfrak{P} is a prime ideal containing \mathfrak{I}, then $\omega_{\mathfrak{F}} \subseteq \omega$, whence both must be equal, and $\mathfrak{I}=\mathfrak{P}^{\circ}$. Show that if $\mathfrak{P} \subseteq \mathfrak{Q}$ are prime ideals in A_{∞}, then $\mathfrak{P}^{\circ}=\mathfrak{Q}^{\circ}$, so that they determine the same ultraproduct.

Ex 1.6.14

Given a prime ideal \mathfrak{P} in an infinite product $A_{\infty}=\Pi A_{w}$, show that \mathfrak{P}° is not principal if and only if \mathfrak{P} contains the direct sum ideal $A_{(\infty)}:=\oplus A_{w}$, in which case it is infinitely generated.

Ex 1.6.15

Use the characterization of 1.5 .2 to prove 1.1.5 without relying on Los' Theorem as follows: a Cartesian product of fields has the property that any element has an idempotent multiple (this is basically stating that the product is von Neuman regular), and any idempotent is strong. In particular, $\mathfrak{I}=\mathfrak{I}^{\circ}$ for any ideal \mathfrak{I} in the product, and the result follows from Exercise 1.6.13.

Ex 1.6.16

Theorem 1.5.4 allows us also to give an entirely algebraic definition of the ultraproduct of modules: show that if M_{w} are modules (over some rings A_{w}), then their ultraproduct M_{\natural} is equal to $M_{\infty} / \mathfrak{G} M_{\infty}$, where \mathfrak{G} is a minimal prime ideal of \mathbb{Z}_{∞} (containing the direct sum ideal), and where M_{∞} is the Cartesian product of the M_{w} (with its natural structure of \mathbb{Z}_{∞}-module).

Additional exercises.

Ex 1.6.17
Derive Łos' Theorem (Theorem 1.3.2) from its equational version, Theorem 1.3.1.

Ex 1.6.18

Give a counterexample to Theorem 1.4.5 if we allow the common cardinality to be countable. Can you formulate a version which also works in the countable case?

Ex 1.6.19

Give a detailed proof of Theorem 1.4.5.

Ex 1.6.20

Let k be a field and k_{b} its ultrapower. Use Maclane's criterion for separability (see for instance [30, Theorem 26.4] or [15, Theorem A1.3]) to show that the natural extension $k \rightarrow k_{\natural}$ is separable.

Ex 1.6.21

Recall from model-theory that a class of structures over a language L is axiomatizable or first-order definable, if there exists a theory T in the language L whose models are precisely the members of this class. Show that an axiomatizable class is closed under ultraproducts. Deduce from this and 1.4.13 that the class of Noetherian rings is not first order-definable in the language of rings.

Ex 1.6.22
Show that all A_{w} for $w \in W$ are connected (=have no non-trivial idempotents) if and only if any idempotent in the Cartesian product $A_{\infty}:=\Pi A_{w}$ is strong.

Ex 1.6.23
For a proper ideal \mathfrak{I} in a Cartesian product A_{∞}, define $\omega_{\mathfrak{J}}$ analogously as the collection of all subsets $D \subseteq W$ such that $1-1_{D} \in \mathfrak{I}$. Show that $\omega_{\mathfrak{J}}$ is a filter (see Exercise 1.6.3). Show that if \mathfrak{I} contains some power of a prime ideal, then $\omega_{\mathcal{J}}$ is an ultrafilter.

Ex 1.6.24

As in Exercise 1.6.23, let \mathfrak{I} be a proper ideal in a Cartesian product A_{∞}. The residue ring $A_{\infty} / \mathfrak{I}^{\circ}$ is called a reduced product (and \mathfrak{I}° is the null-ideal with respect to the filter $\left.\omega_{\mathfrak{J}}\right)$. Show that if all A_{w} are reduced, then \mathfrak{I}° is radical.
This last property is just a special case of the following more general result due to Chang ([24, Theorem 9.4.3]): let $\varphi(\xi)$ be a Horn formula in the n free variables ξ, that is to say, a first-order formula consisting of a (possibly empty) string of quantifiers followed by a finite conjunction of formulas of the form $\mathbf{f}=0 \rightarrow \mathbf{g}=0$, where \mathbf{f}, \mathbf{g} are finite tuples of polynomials with integer coefficients (in some quantified variables together with the free variables ξ). Show that if $\mathbf{a}_{w} \in\left(A_{w}\right)^{n}$ and $D \in \omega_{\mathcal{J}}$ such that $\varphi\left(\mathbf{a}_{w}\right)$ holds in A_{w} for all $w \in D$, then $\varphi(\mathbf{a})$ holds in the reduced product $A_{\infty} / \mathfrak{J}^{\circ}$, where \mathbf{a} is the product of the \mathbf{a}_{w}. (When applied to the Horn sentence $\forall \zeta: \zeta^{2}=0 \rightarrow \zeta=0$, we get our previous assertion.)

1.7 Project: ultra-rings as stalks

Prerequisites: sheaf-theory (for instance, [17, II.1], or the rudimentary discussion on page 27).

Let W be an infinite set and give it the discrete topology (in which all sets are open). Let W^{\vee} be the Stone-Čech compactification of W consisting of all ultrafilters on W. Embed W in W^{\vee} (and henceforth view it as a subset) by sending an element to the principal ultrafilter it generates.
1.7.1 Show that taking for open sets all sets of the form $\tau(U)$ for $U \subseteq W$, where $\tau(U)$ consists of all ultrafilters containing U, constitutes a topology on W^{\vee}. Show that W is dense in W^{\vee}, that W^{\vee} is compact Hausdorff, and that any continuous map $W \rightarrow X$ into a compact Hausdorff space X factors through W^{\vee} (this then justifies W^{\vee} being called a 'compactification').
1.7.2 Show that $\tau(U)$ is homeomorphic to U^{\vee}, for any infinite subset $U \subseteq W$.

Using the ideas from $\S 1.5$, prove the following geometric realization of W^{\vee}. Let $B:=\mathscr{P}(W)$ be the power set of W, viewed as a Boolean algebra (with addition given by the symmetric difference, and multiplication by intersection).
1.7.3 Show that the assignment $\mathfrak{P} \mapsto \omega_{\mathfrak{P}}$ defined in $\S 1.5$ yields a homeomorphism between the affine scheme $X:=\operatorname{Spec}(B)$ (in its Zariski toplogy) and W^{\vee} (Hint: B is isomorphic to the Cartesian power \mathbb{F}_{2}^{W}).

Let A_{w} be rings, indexed by $w \in W$. Define a sheaf of rings \mathscr{A} on W by taking for stalk $\mathscr{A}_{w}:=A_{w}$ in each point $w \in W$ (note that since W is discrete, this completely determines the sheaf \mathscr{A}). Let $i: W \rightarrow W^{\vee}$ be the above embedding and let $\mathscr{A}^{\vee}:=$ $i_{*} \mathscr{A}$ be the direct image sheaf of \mathscr{A} under i. By general sheaf theory, this is a sheaf on W^{\vee}.
1.7.4 Show that the stalk of \mathscr{A}^{\vee} in a boundary point $\omega \in W^{\vee}-W$ is isomorphic to the ultraproduct ulim A_{w} with respect to the non-principal ultrafilter ω.

Prove the following reformulation of this result in terms of schemes, using 1.7.3 and the terminology from Chapter 2. As above, we let X be the affine scheme with coordinate ring the Boolen algebra $B:=\mathscr{P}(W)$.
1.7.5 Let \mathscr{A} be a sheaf on X. If the tangent space at a point $x \in X$ is infinite, then the stalk \mathscr{A}_{x} is an ultra-ring, given as the ultraproduct of the stalks \mathscr{A}_{y} at points $y \in X$ having finite tangent space (with respect to the ultrafilter given as the image of x under the homeomorphism $X \cong W^{\vee}$). Show that the set of all points of X with infinite tangent space is a closed subset with ideal of definition given by the ideal of finite subsets.

Chapter 2
 Commutative Algebra versus Algebraic Geometry

Historically, algebraic geometry was developed over the complex numbers, \mathbb{C}. However, because of its algebraic nature, it can be carried out over any algebraically closed field. Therefore, in this chapter, we fix an algebraically closed field K, and we let $A:=K[\xi]$ be the polynomial ring in n indeterminates $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right)$. We start with taking a look at classical or 'naive' algebraic geometry. Gradually we then move to an algebraization of the concepts (Hilbert-Noether theory, local properties, singularities, ...), which we will study subsequently by means of the algebraic theory developed in the next chapters. Obviously, this chapter can only be a summary treatment of the vast subject that is Algebraic Geometry. It is intended mainly to provide some background for the algebraic topics discussed later in these notes.

2.1 Classical algebraic geometry

Affine space. One defines affine n-space over K to be the topological space whose underlying set is K^{n}, and in which the closed sets are the algebraic sets. Recall that by an algebraic set we mean any solution set of a system of polynomial equations. More precisely, given a subset $\Sigma \subseteq A$, let $\mathrm{V}(\Sigma)$ be the collection of all tuples \mathbf{u} such that $p(\mathbf{u})=0$ for all $p \in \Sigma$. Note that if $I:=\Sigma A$ denotes the ideal generated by Σ, then $\mathrm{V}(I)=\mathrm{V}(\Sigma)$, so that in the definition, we may already assume that Σ is an ideal. In particular, if p_{1}, \ldots, p_{s} are generators of I, then $\mathrm{V}(I)=\mathrm{V}\left(\left(p_{1}, \ldots, p_{s}\right) A\right)=$ $\mathrm{V}\left(p_{1}, \ldots, p_{s}\right)$. A subset of the form $\mathrm{V}(I)$, for some ideal $I \subseteq A$, is then what is called an algebraic set (also called a Zariski closed subset). That this forms indeed a topology on K^{n}, called the Zariski topology, is an immediate consequence of the next lemma (the proof of which is deferred to the exercises):

Lemma 2.1.1. Given ideals $I, J, I_{n} \subseteq A$, we have

1. $\mathrm{V}(1)=\emptyset, \quad \mathrm{V}(0)=K^{n}$;
2. $\mathrm{V}(I) \cup \mathrm{V}(J)=\mathrm{V}(I \cdot J)=\mathrm{V}(I \cap J)$;
3. $\mathrm{V}\left(I_{1}\right) \cap \mathrm{V}\left(I_{2}\right) \cap \cdots=\mathrm{V}\left(I_{1}+I_{2}+\ldots\right)$,
where in the last equality, the intersection and the sum are allowed to be infinite as well.

Conversely, given a closed subset $V \subseteq K^{n}$, we define the ideal of definition of V, denoted $\mathfrak{I}(V)$, to be the collection of all $p \in A$ such that p is identical zero on V. We have:
2.1.2 The set $\mathfrak{I}(V)$ is a radical ideal, $\mathrm{V}(\mathfrak{I}(V))=V$, and $\mathfrak{I}(V)$ is maximal among all ideals I such that $\mathrm{V}(I)=V$.

Recall that an ideal $I \subseteq R$ is called a radical ideal if $x^{n} \in I$ implies $x \in I$. This is equivalent with R / I being reduced, that is to say, without nilpotent elements. The radical of an ideal I, denoted $\operatorname{rad}(I)$, is the ideal of all $x \in R$ such that some power belongs to I. Immediately from 2.1.2 we get:
2.1.3 Every singleton in K^{n} is closed, and its ideal of definition is a maximal ideal.
Indeed, let $\mathbf{u}:=\left(u_{1}, \ldots, u_{n}\right) \in K^{n}$. Let $\mathfrak{m}_{\mathbf{u}}$ be the ideal in A generated by the linear polynomials $\xi_{i}-u_{i}$. One verifies that the "evaluation at \mathbf{u} " map $A \rightarrow K: p \mapsto p(\mathbf{u})$ is surjective and has kernel equal to $\mathfrak{m}_{\mathbf{u}}$. Hence $A / \mathfrak{m}_{\mathbf{u}} \cong K$, showing that \mathfrak{m}_{u} is a maximal ideal. Clearly, $\mathrm{V}\left(\mathfrak{m}_{\mathbf{u}}\right)=\{\mathbf{u}\}$.
Noetherian spaces. A topological space X is called a Noetherian space if there are no infinite strictly descending chains of closed subsets (one says: X admits the descending chain condition on closed subsets). A topological space X is called $i r$ reducible if it is not the union of two proper closed subsets. We call a subset $V \subseteq X$ irreducible if it so in the topology induced from X. An easy but important fact of Noetherian spaces is:

Proposition 2.1.4. Any closed subset V of a Noetherian space X is a finite union of irreducible closed subsets.

Proof. The argument is typical for Noetherian spaces, and often is therefore referred to as Noetherian induction. Namely, in a Noetherian space, every collection of closed subsets has a minimal element (prove this!). Now, if the assertion is false, let V be a minimal closed counterexample. In particular, V cannot be irreducible, and hence can be written as $V=V_{1} \cup V_{2}$, with $V_{1}, V_{2} \varsubsetneqq V$ closed. By minimality, each V_{i} is a finite union of irreducible closed subsets, but then so is their union $V=V_{1} \cup V_{2}$, contradiction.

Hence any closed subset V admits an irreducible decomposition $V=V_{1} \cup \cdots \cup V_{s}$ with the V_{i} irreducible closed subsets. We may always omit any V_{i} that is contained in some other V_{j}, and hence arrive at a minimal irreducible decomposition. One can show (see Exercise 2.6.2) that such a decomposition is unique (up to a renumbering of its components), and the V_{i} in this decomposition are then called the irreducible components of V.

Definition 2.1.5 (Dimension). The dimension of a Noetherian space X is the maximal length ${ }^{1}$ of a chain of irreducible closed subsets (this can be infinite), and is denoted $\operatorname{dim}(X)$.

2.2 Hilbert-Noether theory

To develop (classical) algebraic geometry, three results are of crucial importance. We will prove them after first reformulating them as algebraic problems.

Hilbert's basis theorem. Hilbert proved the following result by a constructive method. We will provide a more streamlined version of this below.

Theorem 2.2.1. Affine n-space is a Noetherian space of dimension n.
In particular, any collection of Zariski closed subsets has a minimal element, any chain of irreducible Zariski closed subsets has length at most n, and any Zariski closed subset is the finite union of irreducible closed subsets. In order to prove Hilbert's basis theorem, we will translate it into an algebraic result (Theorem 2.3.5 below).

Nullstellensatz. We have already seen that a closed subset is given by an ideal as the locus $\mathrm{V}(I)$, and conversely, to a closed subset V is associated its ideal of definition $\mathfrak{I}(V)$. The next result, also due to Hilbert, describes the precise correspondence:

Theorem 2.2.2. The operator $\mathfrak{I}(\cdot)$ induces an (order-reversing) bijection between (singletons of) K^{n} and maximal ideals of A; between closed subsets of K^{n} and radical ideals of A; and between irreducible closed subsets of K^{n} and prime ideals of A.

More generally, if $V \subseteq K^{n}$ is a closed subset, and $I:=\Im(V)$ its ideal of definition, then under the above correspondence, points in V correspond to maximal ideals containing I; closed subsets in V to radical ideals containing I; and irreducible closed subsets of V to prime ideals containing I.

Affine varieties and coordinate rings. The 'algebraic leap' to make now is that the three collections of ideals described in the second part of Theorem 2.2.2 correspond naturally to respectively the maximal, radical and prime ideals of the ring A / I (verify this!). We call A / I the coordinate ring of V and denote it $K[V]$ (see Exercise 2.6 .4 for a justification of this notation). But this then again prompts us to view V as an object on its own, without immediate reference to its ambient affine space. Therefore, we will call any closed subset of K^{n}, for some n, an affine variety ${ }^{2}$ over K, and we view it as a topological space via the induced topology.

[^1]The previous definition brings to the fore an algebraic object closely associated to a variety, to wit, its coordinate ring. To study it, we introduce some further terminology. By an affine algebra over K, or a K-affine ring or algebra, we mean a finitely generated K-algebra. Later on, we will work over other base rings than just fields, so it is apt to generalize this definition already now: let Z be an arbitrary ring. By a Z-affine ring or algebra we mean a finitely presented Z-algebra, that is to say, a Z-algebra of the form $Z[\xi] / I$ with ξ a finite tuple of indeterminates and I a finitely generated ideal. It follows from (the algebraic version of) Theorem 2.2.1 that both our definitions agree in the case Z is a field. If Z is moreover a local ring with maximal ideal \mathfrak{p}, then by a local Z-affine ring (or algebra) R we mean a localization of a Z-affine ring with respect to a prime ideal containing \mathfrak{p}, that is to say, $R \cong(Z[\xi] / I)_{\mathfrak{P}}$ with I finitely generated and \mathfrak{P} a prime ideal of $Z[\xi]$ containing \mathfrak{p}. In particular, $Z \rightarrow R$ is a local homomorphism. By a homomorphism of Z-affine rings $A \rightarrow B$, we mean a Z-algebra homomorphism making B into an A-affine algebra (that is to say, the homomorphism $A \rightarrow B$ itself is of finite type). Similarly, by a local homomorphism of local Z-affine rings $R \rightarrow S$, we mean a local homomorphism of Z-algebras making S into a local R-affine ring (such a homomorphism is also said to be essentially of finite type).

Returning to our discussion about coordinate rings, we see that each $K[V]$ is a reduced K-affine ring. In Exercise 2.6.6, you will show that every reduced K-affine ring arises as a coordinate ring, and that different affine varieties have different coordinate rings. Hence we established the following 'duality' between geometric and algebraic objects:

2.2.3 Associating the coordinate ring to an affine variety yields a one-one cor-

 respondence between affine varieties over K and reduced K-affine rings.To make this into an equivalence of categories, we must define morphisms between affine varieties. First off, a morphism between affine spaces is a polynomial $\operatorname{map} \phi: K^{n} \rightarrow K^{m}$, that is to say, a map given by m polynomials $p_{1}(\xi), \ldots, p_{m}(\xi) \in$ A, sending an n-tuple \mathbf{u} to the m-tuple

$$
\phi(\mathbf{u}):=\left(p_{1}(\mathbf{u}), \ldots, p_{m}(\mathbf{u})\right) .
$$

Note that ϕ also induces a K-algebra homomorphism $\varphi: B \rightarrow A$ by mapping ζ_{i} to p_{i}, where $B:=: K[\zeta]$ and $\zeta:=\left(\zeta_{1}, \ldots, \zeta_{m}\right)$ are the indeterminates on K^{m}. Now, let V and W be affine varieties, that is to say, V is a closed subset of K^{n} and W a closed subset of K^{m}, say. Then a morphism $V \rightarrow W$ is the restriction of a polynomial map $\phi: K^{n} \rightarrow K^{m}$ for which $\phi(V) \subseteq W$, which we will just denote again as $\phi: V \rightarrow W$. Let $I:=\mathfrak{I}(V) \subseteq A$ and $J:=\mathfrak{I}(W) \subseteq B$ be the respective ideals of definition. We already noticed that ϕ induces a K-algebra homomorphism $\varphi: B \rightarrow A$. One verifies that if $\phi: V \rightarrow W$ is a morphism, then $\varphi(J) \subseteq I$, so that we get an induced K-algebra homomorphism $K[W]=B / J \rightarrow K[V]=A / I$. With this notion of morphism, 2.2.3 gives an anti-equivalence of categories ('anti' since the morphisms $V \rightarrow W$ yield homomorphisms $K[W] \rightarrow K[V]$ going the other way). An isomorphism of affine varieties, as always, is a morphism admitting an inverse which is also a morphism. It
follows that $V \rightarrow W$ is an isomorphism if and only if so is the K-algebra homomorphism $K[W] \rightarrow K[V]$.

The Krull dimension of a ring R is by definition the maximal length of a chain of prime ideals in R (see §3.1). Using Theorem 2.2.2, we therefore get:

Corollary 2.2.4. For every affine variety V, its dimension is equal to the Krull dimension of its coordinate ring $K[V]$.

Noether normalization. To formulate the last of our 'great' theorems, we call a morphism of affine varieties $V \rightarrow W$ a finite morphism if the induced homomorphism $K[W] \rightarrow K[V]$ is finite (meaning that $K[V]$ is finitely generated as a module over $K[W]$).

Theorem 2.2.5. Each variety V admits a finite and surjective morphism onto some affine space K^{d}.

Proof. We will actually prove the slightly stronger algebraic form of this statement: any K-affine ring C (not necessarily reduced) admits a finite and injective homomorphism $K\left[\zeta_{1}, \ldots, \zeta_{d}\right] \subseteq C$ (see 3.4.7 below). We prove this by induction on n, the number of variables ξ used to define C. Write C as A / I for some ideal I with $A:=K[\xi]$. There is nothing to show if I is zero, so assume f is a non-zero polynomial in I. The trick is to find a change of coordinates such that f becomes monic in the last coordinate ξ_{n}, that is to say, when viewed as a polynomial in $A^{\prime}\left[\xi_{n}\right]$, the highest degree term of f is equal to ξ_{n}^{s}, where $A^{\prime}:=K\left[\xi^{\prime}\right]$ and $\xi^{\prime}:=\left(\xi_{1}, \ldots, \xi_{n-1}\right)$. Such a change of coordinates does indeed exist (Exercise 2.6.23), and in fact, can be taken to be linear in case K is infinite (which is the case if K is algebraically closed). So we may assume f is monic in ξ_{n} of degree s. By Euclidean division in $A^{\prime}\left[\xi_{n}\right]$, any polynomial g can be written as $g=f q+r$ with $q, r \in A$ such that the ξ_{n}-degree of r is at most $s-1$. This means that $A / f A$ is generated as an A^{\prime}-module by $1, \xi_{n}, \ldots, \xi_{n}^{s-1}$. Let $I^{\prime}:=I \cap A^{\prime}$. It follows that the extension $A^{\prime} / I^{\prime} \subseteq A / I$ is again finite. By induction, A^{\prime} / I^{\prime} is a finite $K[\zeta]$-module for some tuple of variables $\zeta:=\left(\zeta_{1}, \ldots, \zeta_{d}\right)$. Hence the composition $K[\zeta] \subseteq A^{\prime} / I^{\prime} \subseteq A / I=C$ is the desired Noether normalization of C.

We will see later (in Corollary 3.4.9) that d is actually equal to the dimension of V. In particular, this then proves the second statement in Theorem 2.2.1 (see also Corollary 3.4.3); the first statement will be covered in Theorem 2.3.5 below. One calls a surjective morphism of affine varieties sometimes a cover, and hence we may paraphrase the above result as: an affine variety has dimensiond if and only if it is a finite cover of some affine d-space.

Next, we prove the Nullstellensatz. We start with:
Corollary 2.2.6 (Weak Nullstellensatz). If $E \subseteq F$ is an extension of fields such that F is finitely generated as an E-algebra, then $E \subseteq F$ is a finite extension.

Proof. By Theorem 2.2.5, we can find a finite, injective homomorphism $E[\zeta] \subseteq F$. The result now follows from Lemma 2.2.7, since the only way $E[\zeta]$ can be a field is for ζ to be the empty tuple of variables, showing that $E \subseteq F$ itself is finite, as claimed.

Lemma 2.2.7. If $R \subseteq F$ is a finite, injective homomorphism (or more generally, an integral extension) with F a field, then R is also a field.

Proof. Let a be a non-zero element of R. By assumption, $1 / a \in F$ is integral over R, whence satisfies an equation

$$
(1 / a)^{d}+r_{1}(1 / a)^{d-1}+\cdots+r_{d}=0
$$

with $r_{i} \in R$. Multiplying with a^{d}, we get $1+a\left(r_{1}+r_{2} a+\cdots+r_{d} a^{d-1}\right)=0$, showing that a has an inverse in R.

Proof of the Nullstellensatz, Theorem 2.2.2

We already observed (in 2.1.3) that $\mathfrak{J}(\mathbf{u})=\mathfrak{m}_{\mathbf{u}}$ is a maximal ideal of A. So we need to prove conversely that any maximal ideal of A is realized in this way. Let \mathfrak{m} be a maximal ideal. By Corollary 2.2.6, the field A / \mathfrak{m} is a finite extension of K, and since K is algebraically closed, it must in fact be equal to it. If u_{i} denotes the image of ξ_{i} under the composition $A \rightarrow A / \mathfrak{m} \cong K$, then $\mathfrak{m}_{\mathbf{u}} \subseteq \mathfrak{m}$ for $\mathbf{u}:=\left(u_{1}, \ldots, u_{n}\right)$, whence both ideals must be equal as they are maximal. This proves the one-one correspondence between K^{n} and the maximal ideals of A. By 2.1.2, the operator \mathfrak{I} is injective. To prove it is surjective, we have to show that $I=\mathfrak{I}(\mathrm{V}(I))$ for any radical ideal $I \subseteq A$. In fact, the stronger equality

$$
\begin{equation*}
\mathfrak{I}(\mathrm{V}(I))=\operatorname{rad}(I), \tag{2.1}
\end{equation*}
$$

holds for any ideal $I \subseteq A$. Equality (2.1) translates (do this!) into the fact that $\operatorname{rad}(I)$ is equal to the intersection of all maximal ideals containing I. Replacing A by $A / \operatorname{rad}(I)$, we reduce to showing that the Jacobson radical of a reduced K-affine ring C is zero (one says that C is a Jacobson ring), where the Jacobson radical of C is by definition the intersection of all of its maximal ideals. This amounts to showing that given any non-zero element f of C, there exists a maximal ideal not containing f. By Theorem 2.2.5, we can find a finite, injective homomorphism $B:=K[\zeta] \subseteq C$. Let

$$
\begin{equation*}
f^{s}+b_{1} f^{s-1}+\cdots+b_{s}=0 \tag{2.2}
\end{equation*}
$$

be an integral equation of minimal degree with all $b_{i} \in B$. By minimality, $b_{s} \neq 0$. By Exercise 2.6.23, there exists \mathbf{v} such that $b_{s}(\mathbf{v}) \neq 0$. In other words, $\mathfrak{m}_{\mathbf{v}}$ is a maximal ideal of B not containing b_{s}. Since $\mathfrak{m}_{\mathrm{v}} C$ is not the unit ideal by Nakayama's Lemma, we can find a maximal ideal \mathfrak{m} of C containing $\mathfrak{m}_{\mathrm{v}}$. In particular, $\mathfrak{m}_{\mathbf{v}} \subseteq \mathfrak{m} \cap B$ and hence this must be an equality by maximality. In particular, it follows then from (2.2) that $f \notin \mathfrak{m}$.

This establishes the one-one correspondence between closed subsets and radical ideals. In Exercise 2.6.2 you are asked to show that $\mathfrak{I}(V)$ is a prime ideal if and only if V is irreducible. This then concludes the proof of the first part of Theorem 2.2.2. The second part, however, simply follows from this by identifying ideals of A / I with the ideals of A containing I.

2.3 Affine schemes

There are several motivations for generalizing the classical perspective, by introducing a larger class of 'geometric' objects. Let us look at two of these motivations.

Generic points. Firstly, geometers often reason by 'general' or 'generic' points. They will for instance say that a "general point on a variety is non-singular" (see 2.5.5 below for the exact meaning of this phrase). But what is a 'generic' point? We can give a topological definition:

Definition 2.3.1 (Generic point). A point x of an irreducible topological space X is called generic if the closure of $\{x\}$ is all of X.

More generally, for X an arbitrary Noetherian space, one calls $x \in X$ generic, if its closure (or more accurately, the closure of the singleton determined by x) is an irreducible component (see page 18) of X.

In view of 2.1.3, the only closed subsets of K^{n} having a generic point are the singletons themselves. So how do we get generic points? There is a simple topological construction. Given a Noetherian space X, let $\mathfrak{I r v}(X)$ be the collection of all irreducible closed subsets of X. Define a topology on $\mathfrak{I r r}(X)$ by taking for closed subsets the sets of the form $\mathfrak{I r v}(V)$ for $V \subseteq X$ closed. There is a continuous map $X \rightarrow \operatorname{Irr}(X)$ sending a point $x \in X$ to its closure (note that the closure of a singleton is always irreducible). Exercise 2.6 .7 explores how this creates plenty of generic points.

If we apply this construction to K^{n}, then by Theorem 2.2.2, the resulting space $\mathfrak{I r r}\left(K^{n}\right)$ is equal to $|\operatorname{Spec}(A)|$, the collection of all prime ideals of $A .{ }^{3} \mathrm{~A}$ (Zariski) closed subset of $|\operatorname{Spec}(A)|$ is then a closed subset in the above defined topology, and hence is of the form $\mathrm{V}(I)$, for some ideal I, where $\mathrm{V}(I)$ denotes the collection of all prime ideals containing I. In particular, if \mathfrak{p} is a prime ideal, then \mathfrak{p} is the unique generic point of $\mathrm{V}(\mathfrak{p})$.

More generally, given a ring R, let $|\operatorname{Spec}(R)|$ be the collection of all its prime ideals and make this into a topological space by taking for closed subsets the $\mathrm{V}(I)$ for $I \subseteq R$. Note that each $\mathrm{V}(I)$ is naturally identified with $|\operatorname{Spec}(R / I)|$, and often we will equate both subsets. That this forms indeed a topology, the so-called Zariski topology, follows by the same argument that proves Lemma 2.1.1. We call $\mathfrak{I r r}\left(K^{n}\right)$ the enhanced affine n-space. It has a unique generic point given by the zero ideal (check this). This extends by Theorem 2.2.2 to any affine variety:
2.3.2 Given an affine variety V with coordinate ring $K[V]$, the space $\mathfrak{I r v}(V)$ is homeomorphic to $|\operatorname{Spec}(K[V])|$, where the latter carries the Zariski topology. The generic points of the enhanced affine variety $\mathfrak{I r v}(V)$ then correspond to the minimal primes of $K[V]$.

Henceforth, we will therefore identify $\mathfrak{I r v}(V)$ with $|\operatorname{Spec}(K[V])|$. The canonical $\operatorname{map} V \rightarrow \mathfrak{I r v}(V)=|\operatorname{Spec}(K[V])|$ is given by identifying a point $\mathbf{u} \in V$ with its (maximal) ideal of definition $\mathfrak{m}_{\mathbf{u}}$; it is easily seen to be injective. A point in $|\operatorname{Spec}(K[V])|$ coming from V is called a closed point. Indeed, these are the only points which are equal to their closure. Note that the intersection of the minimal primes of $K[V]$ is equal to the zero ideal (recall that $K[V]$ is reduced). At this point, there is no need to stick to K-affine rings, and so we call any topological space of the form $|\operatorname{Spec}(R)|$

[^2]with R any ring, an enhanced affine variety. A closed point then corresponds to a maximal ideal of R; and a generic point to a minimal prime.
Base change Coming back to our discussion of generic points, 2.3.2 shows that every enhanced affine variety has only finitely many generic points, which is not what we would expect of a 'general' point. To get around this obstruction, we need to work over a larger algebraically closed field L containing K. The base change of an affine variety V over K to L is defined as the (Zariski) closure V_{L} of V in L^{n}. One shows (Exercise 2.6.10) that if V has ideal of definition $I \subseteq A$, then $I L[\xi]$ is the ideal of definition of V_{L}. In particular, V_{L} is an affine variety over L, and its coordinate ring is
$$
L\left[V_{L}\right]=L[\xi] / I L[\xi]=K[V] \otimes_{K} L
$$

We use:
2.3.3 If $R \rightarrow S$ is a (ring) homomorphism, then $|\operatorname{Spec}(S)| \rightarrow|\operatorname{Spec}(R)|$ given by the rule $\mathfrak{q} \mapsto \mathfrak{q} \cap R$ is a continuous map of topological spaces.
Note that we have used the slightly misleading notation $J \cap R$ for the contraction of an ideal $J \subseteq S$ to R (even if R is not a subset of S); by definition $J \cap R$ is the ideal of all $r \in R$ such that the image of r in S lies inside J. Hence if φ denotes the homomorphism $R \rightarrow S$, then $J \cap R$ is actually $\varphi^{-1}(J)$. Returning to our discussion on generic points, the natural homomorphism $K[\xi] \rightarrow L[\xi]$ (called the base change) induces a homomorphism $K[V] \rightarrow L\left[V_{L}\right]$, whence a map of enhanced affine varieties

$$
\mathfrak{I r r}\left(V_{L}\right)=\left|\operatorname{Spec}\left(L\left[V_{L}\right]\right)\right| \rightarrow \mathfrak{I r r}(V)=|\operatorname{Spec}(K[V])|
$$

Now, a point $\mathbf{v} \in V_{L}$ is generic with respect to K if its image under the above map is a generic point of $\operatorname{Irr}(V)$. This is equivalent with $\mathfrak{m}_{\mathbf{v}} \cap K[V]$ being a minimal prime of $K[V]$.

Example 2.3.4. The point with coordinates (e, π) is (probably) a generic point of the affine plane over $\mathbb{Q}^{\text {alg }}$. Similarly, the point $(0, \pi)$ is a generic point over $\mathbb{Q}^{\text {alg }}$ of the y-axis.

Using 2.3.2, we can now also prove Theorem 2.2.1 as it translates immediately to the following algebraic result (recall that a ring is Noetherian if there exists no infinite strictly ascending chain of ideals, or equivalently, if every ideal is finitely generated):
Theorem 2.3.5 (Hilbert Basis Theorem-algebraic form). The polynomial ring A over a field K in n variables is Noetherian.

Proof. We induct on n, where the case $n=0$ is trivial, so that we may assume $n>0$. Let \mathfrak{a} be a non-zero ideal of A and let $f \in \mathfrak{a}$ be non-zero. By Theorem 2.2.5, there exists a finite extension $B:=K[\zeta] \subseteq A / f A$, where ζ is a tuple of variables of length at most $n-1$ (and in fact equal to $n-1$). By induction, B is Noetherian. Since $A / f A$ is a finite B-module, it too is Noetherian (see for instance [5, Proposition 6.5]). In particular, $\mathfrak{a}(A / f A)$ is finitely generated, and hence so is \mathfrak{a} (by the liftings of the generators of $\mathfrak{a}(A / f A)$ together with f).

Nilpotent structure. A second draw-back of the classical approach is that if we intersect two closed subsets, the resulting closed subset does not take into account the finer structure of this intersection. For instance, a circle C in the affine plane with radius one and center $(0,1)$ intersects the x-axis L in a single point, the origin O. However, if we look at equations (or, equivalently, ideals of definitions), where C is given by $I:=\left(\xi^{2}+\zeta^{2}-2 \zeta\right) A$, and L by $J:=\zeta A$, then we get a system of equations which reduces to $\xi^{2}=0, \zeta=0$ (equivalently, the ideal $I+J=\left(\xi^{2}, \zeta\right) A$), which suggests that we should count the intersection point O twice (accounting for the tangency of L to C). Hence, instead of looking at the ideal $\operatorname{rad}(I+J)=\operatorname{rad}\left(\xi^{2}, \zeta\right)=(\xi, \zeta) A$, or equivalently, to the coordinate ring $K[O]=A /(\xi, \zeta) A=K$, we should not 'forget' the nilpotent structure of $A /(I+J)$. However, enhanced affine varieties cannot capture this phenomenon. Namely, if B is an arbitrary K-affine ring, then as a topological spaces $|\operatorname{Spec}(B)|$ and $\left|\operatorname{Spec}\left(B_{\text {red }}\right)\right|$ are homeomorphic, where $B_{\text {red }}:=B / \operatorname{nil}(B)$ and $\operatorname{nil}(B):=\operatorname{rad}(0)$ is the nil-radical of B. In particular, $|\operatorname{Spec}(A /(I+J))|$ and $|\operatorname{Spec}(K)|$ are the same. To resolve this problem, we have to resort to a finer structure, that of an (affine) scheme. Roughly speaking, an affine scheme is an enhanced affine variety X together with a sheaf of functions \mathscr{O}_{X}. I will only provide a sketch of the general definitions. To this end, we must first discuss Zariski open subsets.

Open subsets. Let R be a ring and f an element in R. The localization of R at f, denoted R_{f} or $R[1 / f]$, is the ring $R[\xi] /(f \xi-1) R[\xi]$ obtained by inverting f (this includes the degenerate case that f is zero, or, more generally, nilpotent, in which case R_{f} is the zero ring). Equivalently, it is the collection of all fractions r / f^{n} with $r \in R$ up to the equivalence relation identifying two fractions r / f^{n} and s / f^{m}, if there exists some k such that $f^{k-n} r=f^{k-m} s$ in R. This definition becomes much more straightforward if we assume $f \neq 0$ and R to be a domain: R_{f} is then the subring of the field of fractions $\operatorname{Frac}(R)$ of R consisting of all fractions r / f^{n} with $r \in R$. Let $V:=|\operatorname{Spec}(R)|$ be an enhanced affine variety and let $f \in R$. Let $\mathrm{D}(f)$ be the complement of the closed subset $\mathrm{V}(f R)=|\operatorname{Spec}(R / f R)|$ of V. We refer to $\mathrm{D}(f)$ as a basic open subset. Indeed, given an arbitrary open subset U, say given as the complement of a closed subset $\mathrm{V}(I)$, we have

$$
\begin{equation*}
U=V-\mathrm{V}(I)=\bigcup_{f \in I} \mathrm{D}(f) \tag{2.3}
\end{equation*}
$$

In particular, if R is Noetherian, then any open subset is a finite union of basic open subsets.
2.3.6 The basic open $\mathrm{D}(f)$ is homeomorphic with $\left|\operatorname{Spec}\left(R_{f}\right)\right|$, whence in particular is an enhanced affine variety.
See Exercise 2.6.15. Note that not every open subset can be realized as an (enhanced) affine variety: for instance the plane with the origin removed is an open which is not affine (see Exercise 2.6.5). Here is an example of a basic open subset with some additional structure.
Example 2.3.7. Let $\mathrm{GL}(K, n)$ be the general linear group consisting of all invertible $n \times n$-matrices over K. If we identify an $n \times n$-matrix with a tuple in $K^{n^{2}}$,
then $\operatorname{GL}(K, n)$ is the open subset $\mathrm{D}(\operatorname{det})$, where $\operatorname{det}(\cdot)$ is the polynomial representing the determinant function. In particular, we may view $\mathrm{GL}(K, n)$ as an enhanced affine variety. In Exercise 2.6.16, you will show that the multiplication map $\mathrm{GL}(K, n) \times \mathrm{GL}(K, n) \rightarrow \mathrm{GL}(K, n)$ is a morphism, and so is the map sending a matrix to its inverse.

Sections. To define sections, let us first look at these on an affine variety $V \subseteq K^{n}$. We already observed that any $f \in K[V]$ induces a function $\sigma_{f}: V \rightarrow K: \mathbf{u} \mapsto f(\mathbf{u})$. We call such a map a section on V. If f is identically zero, or more generally, if $f \in \mathfrak{I}(V)$, then σ_{f} is just the zero section. So assume $f \notin \mathfrak{I}(V)$, that is to say, f is non-zero in $K[V]$. If $f(\mathbf{u}) \neq 0$, then $1 / f(\mathbf{u})$ is defined. Hence $1 / f$ can be viewed as a section on $\mathrm{D}(f) \cap V$. More generally, we see that every element of R_{f} is a section on $\mathrm{D}(f)$.

For an arbitrary enhanced affine variety $V:=|\operatorname{Spec}(R)|$, the definition of a section is more involved. We need a definition:

Definition 2.3.8 (Residue field). Given a point $x \in V$ with corresponding prime ideal $\mathfrak{p}_{x} \subseteq R$, its residue field $\kappa(x)$ is by definition the field of fractions of the domain R / \mathfrak{p}_{x}.

Note that if R is a K-affine ring, and x a closed point, then $\kappa(x)=K$ by Theorem 2.2.2. However, in general the various residue fields are no longer the same (they even may have different characteristic; see Exercise 2.6.12). Hence we cannot expect a section to take values in a fixed field. Let $Q(V)$ be the disjoint union of all $\kappa(x)$ where x runs over all points $x \in V$.

A (reduced) section $\sigma: V \rightarrow Q(V)$ is a map such that $\sigma(x) \in \kappa(x)$ for every point $x \in V$. Let us denote the collection of all sections on an enhanced affine variety V by $\operatorname{Sect}(V)$, which we may view as a ring, since we can add and multiply sections. Any element $f \in R$ induces a section σ_{f} on V, simply by letting $\sigma_{f}(x)$ be the image of f in $\kappa(x)$. More generally, any element of R_{f} induces a section on $\mathrm{D}(f)$, since f is invertible in $\kappa(x)$ for $x \in \mathrm{D}(f)$. In particular, we have a homomorphism $R_{f} \rightarrow$ $\operatorname{Sect}(\mathrm{D}(f))$. However, in general this map can have a kernel (see Exercise 2.6.15):

2.3.9 The kernel of $R \rightarrow \operatorname{Sect}(|\operatorname{Spec}(R)|)$ is the nil-radical of R.

To define a scheme structure on V, we now have to declare, for each open subset $U \subseteq V$, which sections are to be viewed as 'continuous' sections on U. But we also want to incorporate nilpotent elements, which are 'invisible' in $\operatorname{Sect}(U)$ by 2.3.9. So for each open U, we define a ring $\Gamma\left(U, \mathscr{O}_{V}\right)$ (also denoted $\mathscr{O}_{V}(U)$) and a surjective homomorphism $\Gamma\left(U, \mathscr{O}_{V}\right) \rightarrow \operatorname{Sect}(U)$. Without given all the details, we declare $\Gamma\left(V, \mathscr{O}_{V}\right)$ to be R (the so-called global sections of V), and we put

$$
\begin{equation*}
\Gamma\left(\mathrm{D}(f), \mathscr{O}_{V}\right):=R_{f} \tag{2.4}
\end{equation*}
$$

(note that the first case is just a special case of (2.4), by taking $f=1$). For each open U the elements of $\Gamma\left(U, \mathscr{O}_{V}\right)$ are still called sections on U (in fact, this is the correct terminology in view of our discussion below on page 35).

Sheafs.

Of course, the sections on the various open subsets of V have to be related to one another. The correct definition is that \mathscr{O}_{V} has to be a sheaf on X. In general, a sheaf of rings (or of groups, sets, \ldots) \mathscr{A} on a topological space X is a functor associating to each open subset $U \subseteq X$ a ring (group, set, etc.) $\mathscr{A}(U)$ (also denoted $\Gamma(U, \mathscr{A})$), and to each inclusion $U \subseteq U^{\prime}$ a restriction map sending $f \in \mathscr{A}\left(U^{\prime}\right)$ to an element $\left.f\right|_{U} \in \mathscr{A}(U)$ (being a functor means, among other things, that if $U \subseteq U^{\prime} \subseteq U^{\prime \prime}$ then the composition of the restriction maps $\mathscr{A}\left(U^{\prime \prime}\right) \rightarrow \mathscr{A}\left(U^{\prime}\right) \rightarrow \mathscr{A}(U)$ is equal to the restriction map $\mathscr{A}\left(U^{\prime \prime}\right) \rightarrow \mathscr{A}(U)$), satisfying the following two additional properties for every open subset $U \subseteq X$ and every open covering $\left\{U_{i}\right\}$ of U :

1. if $f, g \in \mathscr{A}(U)$ are such that their restriction to each U_{i} is the same, then $f=g$;
2. if $f_{i} \in \mathscr{A}\left(U_{i}\right)$ are given such that the restriction of f_{i} and f_{j} to $U_{i} \cap U_{j}$ coincide, for all i, j, then there exists $f \in \mathscr{A}(U)$ such that $\left.f\right|_{U_{i}}=f_{i}$ for all i.
One can show that there exists a unique sheaf \mathscr{O}_{V} on $V=|\operatorname{Spec}(R)|$ for which conditions (2.4) hold, that is to say, such that $\Gamma\left(\mathrm{D}(f), \mathscr{O}_{V}\right)=R_{f}$. Moreover, each $g \in \Gamma\left(U, \mathscr{O}_{V}\right)$ then induces a section on U, that is to say, we have a homomorphism $\Gamma\left(U, \mathscr{O}_{V}\right) \rightarrow \operatorname{Sect}(U)$. In fact, this gives rise to a natural transformation $\Gamma\left(\cdot, \mathscr{O}_{V}\right) \rightarrow \operatorname{Sect}(\cdot)$ of functors. For the 'official' definition of \mathscr{O}_{V}, see page 35 below.

The category of affine schemes. An affine scheme $X=\operatorname{Spec}(R)$, therefore, is an enhanced affine variety $|\operatorname{Spec}(R)|$ (with R an arbitrary ring) together with a sheaf of sections \mathscr{O}_{X} on $|\operatorname{Spec}(R)|$ satisfying (2.4), called the structure sheaf of X. Note that we can recover R from its associated affine scheme as the ring of global sections $R=\Gamma\left(X, \mathscr{O}_{X}\right)$. We often refer to R still as the coordinate ring of X. A morphism $Y \rightarrow X$ between affine schemes $X:=\operatorname{Spec}(R)$ and $Y:=\operatorname{Spec}(S)$ is given by a ring homomorphism $R \rightarrow S$: it induces a continuous map $\phi:|\operatorname{Spec}(S)| \rightarrow|\operatorname{Spec}(R)|$ by 2.3.3, as well as ring homomorphisms $\mathscr{O}_{X}(U) \rightarrow \mathscr{O}_{Y}\left(\phi^{-1}(U)\right)$, for every open $U \subseteq|\operatorname{Spec}(R)|$. To define the latter, it suffices to do this on a basic open subset $\mathrm{D}(f)$, where it just the induced homomorphism $R_{f} \rightarrow S_{f}$, for any $f \in R$. Observe that $\varphi^{-1}(\mathrm{D}(f))$ is the basic open subset $\mathrm{D}(f)$ in $|\operatorname{Spec}(S)|$. In particular, on X, the induced ring homomorphism between global sections is the original homomorphism $R \rightarrow S$. Moreover, these homomorphisms are compatible with the restriction maps. The morphism $Y \rightarrow X$ is called of finite type if the corresponding homomorphism $A \rightarrow B$ is of finite type, that is to say, if B is finitely generated as an A-algebra. Note that any K-affine ring R induces a morphism $X:=\operatorname{Spec}(R) \rightarrow \operatorname{Spec}(K)$ of finite type, sometimes called the structure map of X. Note that the underlying set of $\operatorname{Spec}(K)$ is just a singleton, and hence $|X| \rightarrow|\operatorname{Spec}(K)|$ is the trivial map. One additional advantage to this formalism is that there is no need anymore to have K algebraically closed: we can define affine schemes of finite type over any field, and even over any base ring. Generalizing 2.2.3 we now get:
2.3.10 Associating to an affine scheme X its ring of global sections $\Gamma\left(X, \mathscr{O}_{X}\right)$ induces an anti-equivalence of categories between the category of affine schemes and the category of rings. Under this anti-equivalence, affine schemes of finite type over a field K correspond to K-affine rings.
Here is one more reason why we should work with the enhanced space of all prime ideals of a ring, not just its maximal ideals: namely, in general the contraction
of a maximal ideal, although prime, need not be maximal. For instance in $K[[\xi]][\zeta]$ the ideal generated by $\xi \zeta-1$ is maximal as its residue ring is the field $K((\xi))$ of Laurent series. However, its contraction to $K[[\xi]]$ is the zero ideal. In classical algebraic geometry, this complication however is absent:

Proposition 2.3.11. If $Y \rightarrow X$ is a morphism of finite type of affine schemes of finite type over K, then the image of a closed point is again closed.

Proof. The algebraic translation says that if $C \rightarrow D$ is a K-algebra homomorphism of K-affine rings, and if $\mathfrak{n} \subseteq D$ is a maximal ideal, then so is $\mathfrak{m}:=\mathfrak{n} \cap C$. To prove this, note that D / \mathfrak{n} is again a K-affine ring, whence $K \subseteq D / \mathfrak{n}$ is finite by Corollary 2.2.6. Since A / \mathfrak{m} is a subring of D / \mathfrak{n}, it is also finite over K, whence an Artinian domain, or, in other words, a field.

Intersections of closed subschemes. Returning to our discussion on intersections, the correct way of viewing the intersection of two affine varieties $V, W \subseteq K^{n}$ with respective ideals of definition $I:=\mathfrak{I}(V)$ and $J:=\mathfrak{I}(W)$ is as the affine scheme $\operatorname{Spec}(A /(I+J))$. To define this also for arbitrary affine schemes, we must make precise what it means to be a 'subscheme'. The next result gives an indication of what this should mean (its proof is relegated to Exercise 2.6.17).

Lemma 2.3.12. Let $X:=\operatorname{Spec}(R)$ be an affine scheme and let V be a closed subset of $|X|$. If $I \subseteq R$ is an ideal such that $\mathrm{V}(I)=V$, then $\operatorname{Spec}(R / I)$ is an affine scheme with underlying set equal to V.

The 'smallest' scheme structure on V is given by the ideal $\mathscr{I}(V)$ obtained by intersecting all prime ideals in V. More precisely, if Y is an affine scheme with $|Y|=V$, then there exists an injective morphism $\operatorname{Spec}(R / \mathscr{I}(V)) \rightarrow Y$.

One refers to $\operatorname{Spec}(R / \mathscr{I}(V))$ as the induced reduced scheme structure on V. Note that $\mathscr{I}(V)$ is a radical ideal, and that any ideal I such that $\mathrm{V}(I)=V$ satisfies $\operatorname{rad}(I)=$ $\mathscr{I}(V)$. More generally, we define a closed subscheme of an affine scheme $X:=$ $\operatorname{Spec}(R)$ as an affine scheme of the form $Y:=\operatorname{Spec}(R / I)$, for some ideal $I \subseteq R$. By the previous lemma, the underlying set $|Y|$ is a closed subvariety of the underlying set $|X|$. Moreover, the inclusion $Y \subseteq X$ is a morphism of affine schemes, called a closed immersion. In analogy with vector spaces, we call the collection of all closed subschemes of an affine scheme X the Grassmanian of X and denote it Grass (X). We can define a (partial) order on $\operatorname{Grass}(X)$ by letting $Y \subseteq Z$ stand for ' Y is a closed subscheme of Z '. It is important to note that in spite of the notation, $Y \subseteq Z$ does not just mean an inclusion of underlying sets. In fact, if I and J are the ideals of R such that $Y=\operatorname{Spec}(R / I)$ and $Z=\operatorname{Spec}(R / J)$, then $Y \subseteq Z$ if and only if $J \subseteq I$. For this reason, we also define the Grassmanian $\operatorname{Grass}(R)$ of a ring R as the collection of all its ideals, ordered by reverse inclusion. Hence there is a one-one correspondence between $\operatorname{Grass}(R)$ and $\operatorname{Grass}(\operatorname{Spec}(R))$.

Given two closed subschemes $Y_{k}:=\operatorname{Spec}\left(R / I_{k}\right)$ of X, for $k=1,2$, we now define their scheme-theoretic intersection $Y_{1} \cap Y_{2}$ as the closed subscheme $\operatorname{Spec}\left(R /\left(I_{1}+\right.\right.$ $\left.I_{2}\right)$). In particular, $Y_{1} \cap Y_{2} \subseteq Y_{1}, Y_{2}$. In fact, intersection is the minimum (or join) operation in the $\operatorname{Grassmanian} \operatorname{Grass}(X)$. Note that we have an identity

$$
R /\left(I_{1}+I_{2}\right) \cong R / I_{1} \otimes_{R} R / I_{2}
$$

This prompts a further definition:
Fiber products. Given two morphisms of affine schemes $Y_{1} \rightarrow X$ and $Y_{2} \rightarrow X$, we define the fiber product of Y_{1} and Y_{2} over X to be the affine scheme

$$
Y_{1} \times_{X} Y_{2}:=\operatorname{Spec}\left(S_{1} \otimes_{R} S_{2}\right)
$$

where $R=\Gamma\left(\mathscr{O}_{X}, X\right)$ and $S_{k}=\Gamma\left(Y_{k}, \mathscr{O}_{Y_{k}}\right)$ are the corresponding rings. By Exercise 2.6.26, the fiber product is in fact a product (in the categorical sense) on the category of affine schemes over X (see below for more on this category). Note that our previous definition of scheme-theoretic intersection is a special case, where the two morphisms are just the closed immersions $Y_{k} \subseteq X$. Put differently, the intersection of two closed subschemes $Y_{k} \subseteq X$ is just their fiber product:

$$
Y_{1} \cap Y_{2}=Y_{1} \times_{X} Y_{2} .
$$

Relative schemes.

The formalism of schemes immediately allows one to relativize the notion of a scheme in the following sense. Let Z be a ring. An affine scheme over Z or affine Z-scheme is then simply an affine scheme $\operatorname{Spec}(R)$ given by a Z-algebra R, together with the canonical morphism $\operatorname{Spec}(R) \rightarrow \operatorname{Spec}(Z)$ (induced by the natural homomorphism $Z \rightarrow R$. A morphism of affine Z-schemes $\operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$, for some Z algebra S, is then determined by a Z-algebra homomorphism $R \rightarrow S$. Note that this gives rise to a commutative diagram

of morphisms of affine schemes. Of course, if we take $Z=\mathbb{Z}$, we recover the category of all affine schemes (since any ring homomorphism is a \mathbb{Z}-algebra homomorphism). We say that an affine scheme $\operatorname{Spec}(R)$ is of finite type over Z, if the morphism $\operatorname{Spec}(R) \rightarrow \operatorname{Spec}(Z)$ is of finite type, that is to say, if R is of the form $Z[\xi] / I$ for some finite tuple of indeterminates ξ and some ideal I. Recall that we called such an algebra Z-affine if I is moreover finitely generated. This double usage of the term 'affine' will hopefully not cause too much confusion.

Fibers. A morphism of affine schemes $\phi: Y \rightarrow X$ can also be viewed as a family of affine schemes: for each point $x \in X$, the fiber $\phi^{-1}(x)$ admits the structure of an affine scheme as follows. If $R \rightarrow S$ is the corresponding ring homomorphism and \mathfrak{p} the prime ideal corresponding to x, then

$$
\begin{equation*}
\phi^{-1}(x) \cong\left|\operatorname{Spec}\left(S_{\mathfrak{p}} / \mathfrak{p} S_{\mathfrak{p}}\right)\right| \tag{2.6}
\end{equation*}
$$

In view of this, we call $\operatorname{Spec}\left(S_{\mathfrak{p}} / \mathfrak{p} S_{\mathfrak{p}}\right)$ the (scheme-theoretic) fiber of ϕ at \mathfrak{p}. Reformulated in the terminology of fiber products, (2.6) says that

$$
\begin{equation*}
\phi^{-1}(x)=Y \times_{X} \operatorname{Spec}(\kappa(x)) \tag{2.7}
\end{equation*}
$$

(recall that $\kappa(x)$ is the residue field of x); see Exercise 2.6.13 for the proofs.
Example 2.3.13. The family of all circles is encoded by the following morphism. Let Y be the hypersurface in \mathbb{A}_{K}^{5} given by the equation

$$
p:=(\xi-u)^{2}+(\zeta-v)^{2}-w^{2}=0
$$

let $X:=\mathbb{A}_{K}^{3}$, and let $\phi: Y \rightarrow X$ be induced by the projection $K^{5} \rightarrow K^{3}: \mapsto$ $(\xi, \zeta, u, v, w) \mapsto(u, v, w)$, that is to say, given by the natural K-algebra homomorphism

$$
K[u, v, w] \rightarrow K[\xi, \zeta, u, v, w] / p K[\xi, \zeta, u, v, w] .
$$

If P is a closed point of X corresponding to a triple $(a, b, r) \in K^{3}$, that is to say, given by the maximal ideal $\mathfrak{m}_{P}=(u-a, v-b, w-r) K[u, v, w]$, then $\phi^{-1}(P)$ is isomorphic to the circle with center (a, b) and radius r.

Rational points.

Recapitulating, given an affine variety $V \subseteq K^{n}$, we have embedded it as a dense subset of the enhanced affine variety $\mathfrak{J r r}(V)$, which in turn is the underlying set of the affine scheme $X:=\operatorname{Spec}(K[V])$. Since $K[V]$ is a K-algebra, X is in fact an affine K-scheme. We can recover V from X as the collection of K-rational points, defined as follows. Let $X:=\operatorname{Spec}(R)$ be an affine Z-scheme and let S be a Z-algebra. An S-rational point of X over Z is by definition a morphism $\operatorname{Spec}(S) \rightarrow X$ of Z-schemes, that is to say, an element of $\operatorname{Mor}_{Z}(\operatorname{Spec}(S), X)$. We denote the set of all S-rational points of X over Z also by $X_{Z}(S)$, or $X(S)$, when Z is clear from the context. In other words, we actually view X as a functor, namely $\operatorname{Mor}_{Z}(\cdot, X)$, on the category of Z algebras (see Exercise 2.6.27). By definition of a morphism, we have an equality

$$
X_{Z}(S)=\operatorname{Mor}_{Z}(\operatorname{Spec}(S), X)=\operatorname{Hom}_{Z}(R, S)
$$

where the latter set denotes the collection of Z-algebra homomorphisms $R \rightarrow S$. Returning to our example, where we take $S=Z=K$ and $R=K[V]=A / I$ with $I:=$ $\mathfrak{I}(V)$, a K-rational point $x \in X(K)$ then corresponds to a K-algebra homomorphism $R \rightarrow K$. Now, any K-algebra homomorphism is completely determined by the image of the variables, say $\xi_{i} \mapsto u_{i}$, since the image of a polynomial p is then simply $p(\mathbf{u})$ where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$. To be well-defined, we must have $p(\mathbf{u})=0$ for all $p \in I$, that is to say, $\mathbf{u} \in \mathrm{V}(I)=V$. Conversely, substitution by any element of V induces a K-algebra homomorphism $R \rightarrow K$ whence a K-rational point of X. We therefore showed that $V=X(K)$, as claimed.

In the sequel, we will sometimes confuse the underlying set $|\operatorname{Spec}(R)|$ of an affine scheme with the scheme itself, and denote it also by $\operatorname{Spec}(R)$.

2.4 Projective schemes

Most schemes we will encounter are affine, and in fact, often we work with the associated ring of global sections, or with their local rings (see $\S 2.5$). Nonetheless, we also will need projective schemes, which are a special case of a general scheme.

The category of schemes. Roughly speaking, a scheme X is a topological space $|X|$ together with a structure sheaf \mathscr{O}_{X} of sections on $|X|$, with the property that there exists an open covering $\left\{X_{i}\right\}$ of X by affine schemes $\operatorname{Spec}\left(R_{i}\right)$ (for short, an open affine covering) such that $\Gamma\left(X_{i}, \mathscr{O}_{X}\right)=R_{i}$. Put differently, a scheme is obtained by gluing together affine schemes (for a more precise definition, consult any textbook in algebraic geometry, such as [17] or [27]). A morphism of schemes $f: Y \rightarrow X$ is a continuous map $|Y| \rightarrow|X|$ of underlying spaces which is 'locally a morphism of affine schemes' in the sense that there exist open affine coverings $\left\{Y_{i}\right\}$ and $\left\{X_{i}\right\}$ of Y and X respectively such that f maps each $\left|Y_{i}\right|$ inside $\left|X_{i}\right|$ thereby inducing for each i a morphism $Y_{i} \rightarrow X_{i}$ of affine schemes. If $U \subseteq X$ is any open, then we define a sheaf of sections $\mathscr{O}_{U}:=\left.\mathscr{O}_{X}\right|_{U}$ on U by restriction: for $W \subseteq U$ open, let $\Gamma\left(W, \mathscr{O}_{U}\right)$ be the ring of all sections $\mathscr{O}_{X}(W)$ on W. From the definitions (not all of which have been stated here), the next result follows almost immediately.
2.4.1 An open $U \subseteq X$ in a scheme X together with the restriction \mathscr{O}_{U} is again a scheme, and the embedding $U \subseteq X$ is a morphism of schemes, called an open immersion.

For example, the 'punctured plane' $D \subseteq \mathbb{A}_{K}^{2}$ obtained by removing the origin, is a scheme. One can show that $\Gamma\left(D, \mathscr{O}_{D}\right)=K[\xi, \zeta]$, showing that D is not affine (see Exercise 2.6.5).

> Here is an example of an actual gluing together of two affine schemes. Let $X_{k}:=\mathbb{A}_{K}^{1}$ for $k=1,2$ be two copies of the affine line, and let $U \subseteq X_{k}$ be the open obtained by removing the origin. Note that U is again affine, namely equal to $\operatorname{Spec}\left(K\left[\xi, \xi^{-1}\right]\right)$. Let X be the result of gluing together X_{1} and X_{2} along their common open subset U. The resulting scheme is called the affine line with the origin doubled. It requires some more properties of schemes to see that it is in fact not affine. A more clever choice of gluing the above data together leads to the projective line, as we will now explain.

Projective varieties. To discuss projective schemes, let us first introduce projective n-space over K as the set of equivalence classes $K^{n+1} \backslash\{0\} / \approx$, where $\mathbf{u} \approx \mathbf{v}$ if and only if there exists a non-zero $k \in K$ such that $\mathbf{u}=k \mathbf{v}$. An equivalence class of an $n+1$-tuple $\mathbf{u}=\left(u_{0}, \ldots, u_{n}\right)$, that is to say, a point in projective n-space, will be denoted $\tilde{\mathbf{u}}=\left(u_{0}: u_{1}: \cdots: u_{n}\right)$. Alternatively, we may view projective n-space as the collection of lines in affine $n+1$-space going through the origin. The relevant algebraic counterpart, in fact the homogeneous coordinate ring of projective n-space, is the polynomial ring $\tilde{A}:=K\left[\zeta_{0}, \ldots, \zeta_{n}\right]$. However, \tilde{A} cannot be viewed as ring of sections, for given $p \in \tilde{A}$, we can no longer unambiguously evaluate it at a projective point $\tilde{\mathbf{u}}$. Nonetheless, if p is homogeneous, say of degree m, then $p(k \mathbf{u})=k^{m} p(\mathbf{u})$, so that p vanishes on some $n+1$-tuple if and only if it vanishes on all $n+1$-tuples
\approx-equivalent to it. Hence, for a given projective point $\tilde{\mathbf{u}}$, it makes sense to say that it is a zero of the homogeneous polynomial p, if $p(\mathbf{u})=0$.

We can now make projective n-space into a topological space by taking for closed subsets the sets of the form $\tilde{\mathrm{V}}(I)$, where $\tilde{\mathrm{V}}(I)$ is the collection of all projective points $\tilde{\mathbf{u}}$ that are a zero of each homogeneous polynomial in the ideal I. The analogue of Lemma 2.1.1 also holds, so that we get indeed a topology. Any closed subset of projective n-space is called a projective variety. Given such a closed subset V of projective n-space, we define its ideal of definition $\tilde{\mathfrak{I}}(V)$ as the ideal generated by all homogeneous forms $p \in \tilde{A}$ that vanish on V, and we call $\tilde{A} / \tilde{\mathfrak{I}}(V)$ the homogeneous coordinate ring of V, denoted $\widetilde{K[V]}$. Note that $\widetilde{\mathfrak{I}}(V)$ is a homogeneous ideal (an ideal I is called homogeneous, if $p \in I$ implies that every homogeneous component of p lies in I too).
2.4.2 The homogeneous coordinate ring $\widetilde{K[V]}$ of a projective variety V is a graded ring, and V has dimension equal to $\operatorname{dim}(\widetilde{K[V]})-1$.
Recall that a ring S is called a graded ring, if it admits a direct sum decomposition $S=\oplus_{i} S_{i}$ with each S_{i} an additive subgroup (called the i-th graded or homogeneous part of S) with the additional condition that $S_{i} \cdot S_{j} \subseteq S_{i+j}$ (meaning that if $a \in S_{i}$ and $b \in S_{j}$, then $a b \in S_{i+j}$). Here the index set of all i can in principal be any ordered, Abelian (semi-)group, but for our purposes, we will only work with \mathbb{N} graded rings (with an occasional occurrence of a \mathbb{Z}-graded ring). In an \mathbb{N}-graded ring S, the zero-th part S_{0} is always a subring of S, and $S_{+}:=\oplus_{i>0} S_{i}$ is an ideal
 finitely many linear forms. An \mathbb{N}-graded ring with these two properties is called a standard graded algebra (also called a homogeneous graded ring). In particular, S_{+} is then a maximal ideal, called the irrelevant maximal ideal. The terminology comes from the fact that $\tilde{\mathrm{V}}\left(S_{+}\right)=\emptyset$. For example, if $S=\tilde{A}$ viewed as a (standard) graded K-algebra, then $\left(\zeta_{0}, \ldots, \zeta_{n}\right) S$ is its irrelevant maximal ideal.
Projective schemes. To define enhanced projective varieties, let $S=\oplus_{i} S_{i}$ be a standard graded K-algebra (for this construction to work, $K=S_{0}$ need not be algebraically closed-although we will not treat this, S_{0} does not even need to be a field), and define $|\operatorname{Proj}(S)|$ to be the collection of all homogeneous prime ideals of S not containing S_{+}. In analogy with the affine case, we get a topological space by taking as closed subsets the subsets $\tilde{\mathrm{V}}(I)$ of all homogeneous prime ideals containing the ideal I, for various (homogeneous) ideals I. If V is a projective variety and $S:=\widetilde{K[V]}$ its projective coordinate ring, then V embeds in $|\operatorname{Proj}(S)|$ by mapping a projective point $\tilde{\mathbf{u}}$ to its ideal of definition $\tilde{\mathfrak{I}}(\tilde{\mathbf{u}})$. The latter is indeed a (homogeneous) prime ideal, generated by the linear forms $u_{i} \zeta_{j}-u_{j} \zeta_{i}$ for all $i<j$. As before, (the image of) V is dense in $|\operatorname{Proj}(S)|$, so that any projective variety determines a unique enhanced projective variety. Conversely, every (enhanced) projective variety is a closed subset of some (enhanced) projective space, since any standard graded K-algebra is of the form \tilde{A} / I for some homogeneous ideal I (and some appropriate choice of n). Unfortunately, unlike the affine case, non-isomorphic standard graded algebras might give rise to isomorphic (enhanced) projective varieties.

Finally, we define the projective scheme associated to S, denoted as $\operatorname{Proj} S$, as the scheme with underlying set $|\operatorname{Proj}(S)|$ and with structure sheaf \mathscr{O}_{X}, roughly speaking, 'induced by S '. Let me only explain this, and then still omitting most details, for projective n-space $\mathbb{P}_{K}^{n}:=\operatorname{Proj}(\tilde{A})$. Once more we must turn our attention to open subsets. Similarly as in the affine case, given a homogeneous element $f \in \tilde{A}$ of degree m, we define the basic open $\tilde{\mathrm{D}}(f)$ as the complement of $\tilde{\mathrm{V}}(f \tilde{\mathrm{~A}})$. As before, these basic opens form a basis for the topology. Define $\Gamma\left(\tilde{\mathrm{D}}(f), \mathscr{C}_{\mathbb{P}_{K}^{p}}\right)$ to be the graded localization $\tilde{A}_{(f)}$, defined as the collection of all fractions of the form $s:=$ p / f^{l} with p homogeneous of degree $m l$. Put differently, $\tilde{A}_{(f)}$ is the degree zero part of the \mathbb{Z}-graded localization \tilde{A}_{f}. Since we are trying to construct a structure sheaf, it should consist of sections, and this is indeed the case. Namely, given $\tilde{\mathbf{u}}$ such that $f(\widetilde{\mathbf{u}}) \neq 0$, the value $s(\mathbf{u})$ is independent from the choice of representative of the projective point $\tilde{\mathbf{u}}$, for s a section as above: if $\mathbf{v} \approx \mathbf{u}$, say $\mathbf{v}=k \mathbf{u}$, then $s(\mathbf{v})=$ $k^{m l} p(\mathbf{u}) /\left(k^{m} f(\mathbf{u})\right)^{l}=s(\mathbf{u})$. Hence we can define $s(\tilde{\mathbf{u}}):=s(\mathbf{u})$, so that $\Gamma\left(\tilde{\mathrm{D}}(f), \mathscr{O}_{\mathbb{P}_{K}^{n}}\right)$ consists indeed of sections on $\tilde{\mathrm{D}}(f)$.
2.4.3 Each basic open $\tilde{\mathrm{D}}(f)$ with f a non-zero homogeneous form is homeomorphic to the enhanced affine variety $\left|\operatorname{Spec}\left(\tilde{A}_{(f)}\right)\right|$.

Indeed, define a map $\phi: \tilde{\mathrm{D}}(f) \rightarrow\left|\operatorname{Spec}\left(\tilde{A}_{(f)}\right)\right|$ by sending a homogeneous prime ideal \mathfrak{p} not containing f to the ideal $\phi(\mathfrak{p}):=\mathfrak{p} \tilde{A}_{f} \cap \tilde{A}_{(f)}$. One checks that $\phi(\mathfrak{p})$ is indeed a prime ideal. We leave it as an exercise (see 2.6.15) to show that this map is a homeomorphism. In particular, if we let f be one of the variables, say ζ_{0} to make our notation easy, then one checks that $A \cong \tilde{A}_{\left(\zeta_{0}\right)}$ by sending ξ_{i} to ζ_{i} / ζ_{0}. Hence each $\tilde{\mathrm{D}}\left(\zeta_{i}\right)$ has affine n-space as underlying set. We can now make \mathbb{P}_{K}^{n} into a scheme by gluing together the $n+1$ affine schemes $\operatorname{Spec}\left(\tilde{A}_{\left(\xi_{i}\right)}\right) \cong \mathbb{A}_{K}^{n}$ (again we must leave details to more specialized works). A similar construction applies to any standard graded algebra S, thus defining the scheme structure on $\operatorname{Proj}(S)$.

Proposition 2.4.4. For any projective scheme $X:=\operatorname{Proj}(S)$ and any homogeneous element $f \in S$, we have $\Gamma\left(\tilde{\mathrm{D}}(f), \mathscr{O}_{X}\right)=S_{(f)}$. Moreover, $\Gamma\left(X, \mathscr{O}_{X}\right)=K$.

Proof. The last assertion is a special case of the first by taking $f=1$, since then $S_{(1)}=S_{0}=K$. The first assertion is basically how we defined the scheme structure on X.

The last assertion shows that unlike in the affine case, the global sections on a scheme in general do not determine the scheme. In fact, two non-isomorphic graded K-algebras can give rise to isomorphic projective schemes, so that even the 'coordinate ring' S is not determined by the scheme (but also depends on the embedding of X as a closed subscheme of some \mathbb{P}_{K}^{n}). We will have more to say about projective schemes, and their relation to affine schemes, when we discuss singularities: see page 59.

2.5 Local theory

We have now associated to each geometric object (be it an affine variety, a projective variety or a scheme) an algebraic object, its coordinate ring, or more precisely, a collection of rings, the sheaf of sections on each open subset. If x is a closed point (that is to say, $\{x\}$ is closed) of an affine scheme $X:=\operatorname{Spec}(R)$, then $\{x\}$ itself is an affine scheme by Lemma 2.3.12, with associated ring $\kappa(x)=R / \mathfrak{m}_{x}$, the residue field of x. Put pedantically, $x=\operatorname{Spec}(\kappa(x))$. Clearly, this point of view ignores the embedding $\{x\} \subset X$, and hence gives us no information on the nature of X in the neighborhood of x.
Local rings. We therefore introduce the local ring of X at an arbitrary point x, denoted $\mathscr{O}_{X, x}$, as the ring of germs of sections at x. This means that a typical element of $\mathscr{O}_{X, x}$ is a pair (U, σ) with U an open containing x and $\sigma \in \Gamma\left(U, \mathscr{O}_{X}\right)$, modulo the equivalence relation $(U, \sigma) \approx\left(U^{\prime}, \sigma^{\prime}\right)$ if and only if there exists a common open $x \in U^{\prime \prime} \subseteq U \cap U^{\prime}$ such that σ and σ^{\prime} agree on $U^{\prime \prime}$.

Recall from page 27 that part of \mathscr{O}_{X} being a sheaf is the fact that for each inclusion $U^{\prime} \subseteq U$, we have a restriction homomorphism $\Gamma\left(U, \mathscr{O}_{X}\right) \rightarrow \Gamma\left(U^{\prime}, \mathscr{O}_{X}\right)$. Hence the $\Gamma\left(\bar{U}, \mathscr{O}_{X}\right)$ together with the restriction homomorphisms form a direct system, and we can now state the previous definition more elegantly as

$$
\begin{equation*}
\mathscr{O}_{X, x}=\lim _{x \in U} \Gamma\left(U, \mathscr{O}_{X}\right) . \tag{2.8}
\end{equation*}
$$

Unlike the ring of sections on an arbitrary open, the local ring at a point has a very concrete description:

Proposition 2.5.1. If $X:=\operatorname{Spec}(R)$ is an affine scheme, and x a point in X with corresponding prime ideal $\mathfrak{p}_{x} \subseteq R$, then $\mathscr{O}_{X, x}=R_{\mathfrak{p}_{x}}$. In particular, $\mathscr{O}_{X, x}$ is a local ring with residue field equal to the residue field $\kappa(x)$ of x.

Proof. To simplify the proof, I will assume that R is moreover a domain (the general case is not much harder; see Exercise 2.6.31). In this case, each $\Gamma\left(U, \mathscr{O}_{X}\right)$ is a subring of the field of fractions $\operatorname{Frac}(R)$ and the direct limit (2.8) is simply a union. Since the $\mathrm{D}(f)$ are a basis of opens, it suffices to only consider the contributions in this union given by the U of the form $\mathrm{D}(f)$ with $f \notin \mathfrak{p}_{x}$. Hence, in view of (2.4), the local ring $\mathscr{O}_{X, x}$ is the union of all R_{f} with $f \notin \mathfrak{p}_{x}$, which is easily seen to be the localization $R_{\mathfrak{p}_{x}}$. The last assertion is immediate from the definition of the residue field (see Definition 2.3.8).

The maximal ideal of $\mathscr{O}_{X, x}$, that is to say, $\mathfrak{p}_{x} \mathscr{O}_{X, x}$, will be denoted $\mathfrak{m}_{X, x}$.
Tangent spaces. The local ring of a point x captures quite a lot of information of the geometry of X near x. For instance, one might formally define the tangent space $T_{X, x}$ at x as the the dual of the $\kappa(x)$-vector space $\mathfrak{m}_{X, x} / \mathfrak{m}_{X, x}^{2}$. Without proof we state the following (for a proof see for instance [27, Lemma 6.3.10] or [17, I. Theorem 5.3]):

Theorem 2.5.2. Let $X:=\operatorname{Spec}(R)$ be an affine scheme of finite type over K and assume R is a domain (whence X is irreducible). Then there exists a non-empty open $U \subseteq X$ such that the tangent space $T_{X, x}$ has dimension equal to the dimension of X, for every closed point $x \in U$.

Under the stated conditions, the local ring $\mathscr{O}_{X, x}$ of x has the same dimension as X (see Exercise 3.5.17). The dimension of this local ring, even if x is not assumed to be a closed point, is called the local dimension of X at x, or put less accurately, the dimension of X in the neighborhood of x. Immediate from Nakayama's Lemma, we get:
2.5.3 The embedding dimension of the local ring $\mathscr{O}_{X, x}$ of a point x on an affine scheme X, that is to say, the minimal number of generators of the maximal ideal $\mathfrak{m}_{X, x}$, is equal to the dimension of its tangent space $T_{X, x}$.
It follows that the dimension of the tangent space of an arbitrary point is always at least the local dimension at that point. Points were this is an equality are special enough to deserve a name (we shall return to this concept and study it in more detail in $\S 4$ below):

Definition 2.5.4 (Non-singular point). A point x on an affine scheme $X:=\operatorname{Spec}(R)$ is called non-singular if its tangent space $T_{X, x}$ has the same dimension as the local dimension of X at the point. A point where the dimension inequality is strict is called a singularity.

Returning to a phrase quoted on page 22, we can now prove:

2.5.5 An affine variety is non-singular at its generic points.

Indeed, by 2.3.2, a generic point P of V corresponds to a minimal prime ideal \mathfrak{g} of $B:=K[V]$. Since B is reduced, $B_{\mathfrak{g}}$ is a reduced local ring of dimension zero, whence a field (see our discussion on page 42). Hence the maximal ideal of $\mathscr{O}_{V, P}=B_{\mathfrak{g}}$ is zero, whence $T_{V, P}=0$, and the embedding dimension of $B_{\mathfrak{g}}$ is also zero. More generally, this proves that if B is a reduced ring, then the generic points of $\operatorname{Spec}(B)$ are non-singular. This also implies that any K-generic point of V_{L}, where V_{L} denotes the base change of V over an algebraically closed overfield L of K (see page 24), is non-singular, but the proof requires some deeper results beyond the scope of these notes.

Continuous sections.

We can now give a better definition of a section on an open of an affine scheme $X:=\operatorname{Spec}(R)$. Instead of letting a section take values in $Q(|X|)$, the disjoint union of all residue fields, we should take for target the disjoint union $\operatorname{Loc}(X)$ of all local rings $\mathscr{O}_{X, x}$ with $x \in X$: a (generalized) section on an open $U \subseteq X$ is then a map $\sigma: U \rightarrow \operatorname{Loc}(X)$ such that $\sigma(x) \in \mathscr{O}_{X, x}$ for all $x \in X$. With this new notion we can now formally define $\Gamma\left(U, \mathscr{O}_{X}\right)$ for an arbitrary open U as the set of all continuous sections on U, where we call a section σ continuous if it is locally represented by a fraction, that is to say, if for each $x \in U$, we can find an open $U^{\prime} \subseteq U$ containing x, and elements $a, f \in R$ such that, for all $y \in U^{\prime}$, in $\mathscr{O}_{X, y}$, the element f is a unit and $\sigma(y)=a / f$.

Stalks.

One can extend the concept of a local ring to arbitrary schemes. This is just a special case of a stalk \mathscr{A}_{x} of a sheaf \mathscr{A} at a point x on a topological space X, defined similarly as

$$
\mathscr{A}_{x}:=\underset{x \in U}{\lim } \Gamma(U, \mathscr{A}) .
$$

However, even if \mathscr{A} is a sheaf of rings, \mathscr{A}_{x} need not be a local ring, but it is so if X is a scheme and $\mathscr{A}=\mathscr{O}_{X}$ its structure sheaf. An argument similar to the one in the proof of Proposition 2.5.1 yields:

Proposition 2.5.6. Let $X:=\operatorname{Proj}(S)$ be a projective scheme and let x be a point of X corresponding to the homogeneous prime ideal \mathfrak{p}_{x}. The local ring $\mathscr{O}_{X, x}$ is equal to the degree zero part $S_{\left(\mathfrak{p}_{x}\right)}$ of the localization $S_{\mathfrak{p}_{x}}$.

2.6 Exercises

Ex 2.6.1

Verify Lemma 2.1.1. Show that the same properties hold for the operation $\mathrm{V}(\cdot)$ on any affine scheme, and for the operation $\tilde{\mathrm{V}}(\cdot)$ on any projective scheme.

Ex 2.6.2

Show that if $V_{1} \cup \cdots \cup V_{s}=V_{1}^{\prime} \cup \cdots \cup V_{t}^{\prime}$ are two minimal irreducible decompositions of a Noetherian space V, then $s=t$, and after renumbering, $V_{i}=V_{i}^{\prime}$ for all i.
Show that for a closed subset $V \subseteq K^{n}$, its ideal of definition $\mathfrak{I}(V)$ is prime if and only if V is irreducible.

Ex 2.6.3

Show that the Zariski topology on K^{n} is compact Hausdorff. More generally, any affine variety is compact Hausdorff. Hint: you could use 2.3.6.

Ex 2.6.4

Let $V \subseteq K^{n}$ be a variety and let $I:=\Im(V)$ be its ideal of definition. Every $p \in A$ induces a polynomial map $K^{n} \rightarrow K$ by the rule $\mathbf{u} \mapsto p(\mathbf{u})$. Show that the collection of restrictions $\left.p\right|_{V}$ of polynomial maps on V is in one-one correspondence with the coordinate ring $K[V]$ of V.

Ex 2.6.5

Show that the punctured plane $K^{2} \backslash\{O\}$ (where O denotes the origin), is not an affine variety, for if it were, then its ideal of definition would be zero, contradiction. In fact, by the discussion on page 31 there is a scheme D with underlying set this punctured plane. It can be realized as the union of the two affine opens $\mathrm{D}(\xi)$ and $\mathrm{D}(\zeta)$ of \mathbb{A}_{K}^{2}, where $A:=K[\xi, \zeta]$ is the coordinate ring of \mathbb{A}_{K}^{2}. Show that $\Gamma\left(D, \mathscr{O}_{D}\right)=A_{\xi} \cap A_{\zeta}=A$. Conclude that D is not affine.

Ex 2.6.6

Prove 2.2 .3 in detail. In particular, given a reduced K-affine ring B, construct an affine variety whose coordinate ring is B. Prove that the correspondence in 2.2.3 induces an antiequivalence of categories. In particular, show that if two affine varieties are isomorphic, then so are their coordinate rings. Using this equivalence, show that a parabola is isomorphic to a straight line.

Ex 2.6.7

Show that if X is Noetherian, then $\mathfrak{I r v}(X)$ is a topological space in which every irreducible closed subset has a generic point; if X is moreover Hausdorff, then every irreducible closed subset has a unique generic point. In particular, in the latter case, the map $X \rightarrow \mathfrak{I r v}(X)$ is an embedding, and (the image of) X is dense in $\mathfrak{I r v}(X)$.

Ex 2.6.8

Let $K \subseteq L$ be an extension of algebraically closed fields. Show that a point $\mathbf{u} \in L^{n}$ is generic over K if and only if $K(\mathbf{u})$ has transcendence degree n over K. This shows that generic points are plentiful. Now explain the enigmatic adverb 'probably' used in Example 2.3.4.

Ex 2.6.9

Show that if R is Noetherian, then the associated enhanced affine variety $|\operatorname{Spec}(R)|$ is also Noetherian. It is irreducible if and only if R has a unique minimal prime ideal (and if R is moreover reduced, this is then equivalent to R being a domain). The Krull dimension of R is equal to the dimension of $|\operatorname{Spec}(R)|$.
Can you give an example where $|\operatorname{Spec}(R)|$ is Noetherian, yet R is not Noetherian?

Ex 2.6.10

Show that if $K \subseteq L$ is an extension of algebraically closed fields and $V \subseteq K^{n}$ is an affine variety over K, then its closure in L^{n} is an affine variety over L with coordinate ring $K[V] \otimes_{K}$ L.

Ex 2.6.11

Let R be a domain and $X:=\operatorname{Spec}(R)$ the associated affine scheme. Let η be the (unique) generic point of X. Show that the residue field $\kappa(\eta)$, the local ring $\mathscr{O}_{X, \eta}$ at η, and the field of fractions $\operatorname{Frac}(R)$ are all equal. This field is often called the function field of the scheme.

Ex 2.6.12

Calculate all residue fields of $\operatorname{Spec}(\mathbb{Z})$. What are the residue fields of $\operatorname{Spec}(\mathbb{R}[\xi])$ for ξ a single variable?

Ex 2.6.13

Prove that (2.6) is a homeomorphism. Use this to prove (2.7).

Ex 2.6.14
Show that a finite morphism of affine schemes has finite fibers.

Prove 2.3.6, 2.3.9 and 2.4.3.

Ex 2.6.15

\qquad

Ex 2.6.16

Work out Example 2.3.7 in detail.

Ex 2.6.17

Prove Lemma 2.3.12.

Ex 2.6.18
Show that an ideal I in a graded ring S is a homogeneous ideal if and only if it is generated by homogeneous elements. For an arbitrary ideal I, let \tilde{I} be the ideal generated by all homogeneous components of all elements in I. Show that $\tilde{\mathrm{V}}(I)=\tilde{\mathrm{V}}(\tilde{I})$.

Ex 2.6.19

Prove 2.4.2 (where you might need some results from Chapter 3 to prove the dimension equality).

Ex 2.6.20

Let V be a projective variety over K, with homogeneous coordinate ring $S:=\widetilde{K[V]}$. Show that $\mathfrak{I r t}(V)=|\operatorname{Proj}(S)|$.

Ex 2.6.21

Let C be the affine scheme determined by the ring

$$
R:=K[\xi, \zeta] /\left(\xi^{2}-\zeta^{3}\right) K[\xi, \zeta]
$$

a so-called cusp (see page 56). Let x be the origin, that is to say, the (closed) point determined by the maximal ideal $(\xi, \zeta) R$. Show that the tangent space $T_{C, x}$ has dimension two, whereas C itself has dimension one (showing that x is singular). What about the point y given by the maximal ideal $(\xi-1, \zeta-1) R$?

Additional exercises

Ex 2.6.22
Show that the geometric form of the Noether normalization as stated in Theorem 2.2.5 is indeed equivalent to the algebraic form formulated in the proof.

Ex 2.6.23
We want to prove the assertion in the proof of Theorem 2.2.5 that states that after a change of coordinates, a polynomial becomes monic in one of the variables. Let $p \in A$ be a non-constant polynomial of degree s, and let $p_{s}(\xi)$ be its homogeneous part of degree s. Put $p^{\prime}:=p\left(\xi^{\prime}, 1\right)$ where $\xi^{\prime}:=\left(\xi_{1}, \ldots, \xi_{n-1}\right)$. Show that if K is infinite, then there exists $\mathbf{u}^{\prime}:=\left(u_{1}, \ldots, u_{n-1}\right) \in K^{n-1}$ such that $p^{\prime}\left(\mathbf{u}^{\prime}\right) \neq 0$. This is clear if $n-1=$ 1 since a non-zero polynomial has only finitely many roots. Reason by induction to
show this also for more variables. Now define a change of coordinates $\xi_{i} \mapsto \xi_{i}-u_{i} \xi_{n}$ and show that the image of p under this map is monic in ξ_{n}.
If K is arbitrary, show that the change of variables $\xi_{i} \mapsto \xi_{i}-\xi_{n}^{e^{i}}$ for $i<n$ also transforms p into a monic polynomial if $e>s$ (examine the transforms of each monomial in p).

Ex 2.6.24

Prove the following generalization of Lemma 2.2.7: if $R \subseteq S$ is a finite (or integral) extension of domains, then R is a field if and only if S is.

Ex 2.6.25

Show that if an algebra is generated by n elements over a field, then any of its maximal ideals is also generated by at most n elements. Reduce first to the polynomial case, and then use the Weak Nullstellensatz (Corollary 2.2.6) to show that any maximal ideal is generated by n polynomials.

Ex 2.6.26
The product of two objects M and N in a category \mathfrak{C} is the (necessarily unique) object $M \times N$ together with two morphisms $M \times N \rightarrow M$ and $M \times N \rightarrow N$ (called projections), satisfying the following universal property: if $K \rightarrow M$ and $K \rightarrow N$ are morphisms, then there exists a unique morphism $K \rightarrow M \times N$ which composed with the two projections yield the original morphisms $K \rightarrow M$ and $K \rightarrow N$. Show that in the category of affine schemes over a fixed affine scheme X, the fiber product $\cdot \times_{X}$. is a product in the above sense.

Ex 2.6.27

Show that given an (affine) Z-scheme X, the rule assigning to a Z-algebra S the set $X_{Z}(S)$ of S-rational points of X over Z, constitutes a functor on the category of Z-algebras.

Ex 2.6.28

Show that the definition of $\Gamma\left(U, \mathscr{O}_{X}\right)$ as all continuous sections given on page 35 makes \mathscr{O}_{X} into a sheaf.

Ex 2.6.29
Prove Proposition 2.5.6.

Ex 2.6.30

Let $S:=K[\zeta] / \zeta^{2} K[\zeta]$ be the ring of dual numbers over K (where ζ is a single variable). Let X be an affine variety of finite type over K. Show that to give an S-rational point of X over K is the same as to give a K-rational point x of X together with an element of the tangent space $T_{X, x}$.

Ex 2.6.31

Show, without relying on Proposition 2.5.1, that if Y is a closed subscheme of $X:=$ $\operatorname{Spec}(R)$ with corresponding ideal $I \subseteq R$, then $\mathscr{O}_{Y, y}=\mathscr{O}_{X, y} / I \mathscr{O}_{X, y}$ for every $y \in Y$. Use this then to derive the non-domain case in the proposition.

Chapter 3 Dimension theory

Dimension is one of these intuitive notions that our scientific mind has formalized into an abstract concept in such diverse fields as geometry, algebra, analysis, topology, statistics, physics, . . Also in commutative algebra, dimension plays a primary role, and so we study its properties first. For a ring, (Krull) dimension is defined by means of its prime spectrum. Although at the face of it an abstract definition, it does correspond to the intuitive notion of geometric dimension via the duality between rings and algebraic varieties discussed in the previous chapter. We give several definitions which are equivalent, at least for Noetherian local rings. In the next chapter, we will introduce some more ring invariants and compare them with dimension; this will lead to several notions of singularities.

3.1 Krull dimension

Height. The height of a prime ideal \mathfrak{p} in a ring R is by definition the maximal length of a proper chain of prime ideals inside \mathfrak{p}, and is often denoted $\mathrm{ht}(\mathfrak{p})$. Hence a prime ideal is minimal if and only if its height is zero. The supremum of the heights of all prime ideals in R is called the (Krull) dimension of R and is denoted $\operatorname{dim}(R)$. More generally, the height $\operatorname{ht}(I)$ of an ideal I is the minimum of the heights of all prime ideals containing I. The following inequality is almost immediate from the definitions (see Exercise 3.5.1).
3.1.1 For every prime ideal $\mathfrak{p} \subseteq R$, we have an inequality

$$
\operatorname{dim}(R / \mathfrak{p})+\operatorname{ht}(\mathfrak{p}) \leq \operatorname{dim}(R)
$$

Almost immediate from the definitions (see Exercise 2.6.9), we get the following generalization of Corollary 2.2.4:
3.1.2 The Krull dimension of a ring R is equal to the dimension of the associated enhanced affine variety $|\operatorname{Spec}(R)|$.

Dimension, although seemingly a global invariant, has a strong local character:
3.1.3 The height of a prime ideal $\mathfrak{p} \subseteq R$ is equal to the dimension of $R_{\mathfrak{p}}$. In particular, the dimension of R is equal to the supremum of the dimensions of its localizations $R_{\mathfrak{m}}$ at maximal ideals \mathfrak{m}. Similarly, the dimension of an affine variety $X:=\operatorname{Spec}(R)$ is equal to the supremum of the dimensions of its local rings $\mathscr{O}_{X, x}$ at (closed) points $x \in X$.

The first assertion is proven in Exercise 3.5.5, and the second is an immediate consequence of this (since maximal ideals have the largest height). The last assertion then follows from Proposition 2.5.1.

Artinian rings. Recall that a ring is called respectively Noetherian or Artinian if the collection of ideals satisfies the ascending or the descending chain condition respectively. Without proof we state the following structure theorem for Artinian rings (for a proof see for instance [30, Theorem 3.2] or [5, Theorems 8.5 and 8.7]):
3.1.4 Any Artinian ring R is Noetherian, and has only finitely many prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$. Each \mathfrak{p}_{i} is moreover maximal, so that R has dimension zero, and $R=R_{\mathfrak{p}_{1}} \oplus \cdots \oplus R_{\mathfrak{p}_{s}}$.

In fact, a ring R is Artinian if and only if it has finite length $l=\ell(R)$, meaning that any proper chain of ideals has length at most l, and there is a chain with this length. It follows that any finitely generated R-module M also has finite length, denoted $\ell(M)$, and defined as the maximal length of a proper chain of submodules. An Artinian ring of length one is a field. Length is a generalization of vector space dimension; for instance, you will be asked to prove the following characterization of length in Exercise 3.5.3:
3.1.5 If R is finitely generated (as a module) over an algebraically closed field K, then $\ell(R)$ is equal to the vector space dimension of R over K.

3.2 Hilbert series

Although we are interested in the study of local rings, it turns out that graded rings play an important role in dimension theory. The connection between the two is provided by the graded ring $\operatorname{Gr}(R)$ associated to a local ring R (see page 44). So we first study the graded case.

Let R be an Artinian local ring and let S be a standard graded R-algebra. Recall that this means that $S=\oplus_{i \in \mathbb{N}} S_{i}$ is \mathbb{N}-graded, the degree zero part S_{0} is equal to R, and S is generated as an R-algebra by finitely many linear forms (=elements in S_{1}). Let M be a finitely generated \mathbb{N}-graded S-module, meaning that $M=\oplus_{i \in \mathbb{N}} M_{i}$ and $S_{i} M_{j} \subseteq M_{i+j}$ for all i, j.

3.2.1 $E v e r y M_{n}$ is a finitely generated R-module, whence in particular has finite

 length.Indeed, we may choose homogenous generators μ_{1}, \ldots, μ_{s} of M as an S-module. If k_{i} is the degree of μ_{i}, then $M_{n}=S_{n-k_{1}} \mu_{1}+\cdots+S_{n-k_{s}} \mu_{s}$ (with the understanding that $S_{j}=0$ for $j<0$). Furthermore, if a_{1}, \ldots, a_{s} are the linear forms generating S as an R-algebra, then S_{n} is generated as an R-module by all monomials of degree n in the a_{i}. Therefore, M_{n} is finitely generated over R, and therefore has finite length.

Hilbert series. In view of 3.2.1, we can now define the Hilbert series of a finitely generated graded S-module M, with S a standard graded algebra over an Artinian local ring R, as the formal power series

$$
\begin{equation*}
\operatorname{Hilb}_{M}(t):=\sum_{n \geq 0} \ell\left(M_{n}\right) t^{n} \tag{3.1}
\end{equation*}
$$

As rings will be our primary objective in these notes, rather than modules, we will be mainly interested in the properties of $\operatorname{Hilb}_{S}(t)$. However, it is more convenient to work in the larger module setup for inductive proofs to go through. The key result on Hilbert series is:

Theorem 3.2.2. Let S be a standard graded algebra over an Artinian local ring R. The Hilbert series of any finitely generated S-module M is rational. In fact, for some $d=d(M) \in \mathbb{N}$, the power series $(1-t)^{d} \cdot \operatorname{Hilb}_{M}(t)$ is a polynomial with integer coefficients.

Proof. We will prove the last assertion by induction on the minimal number r of linear R-algebra generators of S. If $r=0$, then $S=R$, so that M is a finitely generated module over an Artinian ring, whence has finite length. It follows that $M_{n}=0$ for $n \gg 0$ and we are done in this case. So assume $r>0$ and let x be one of the linear forms generating S as an R-algebra. Multiplication by x induces maps $M_{n} \rightarrow M_{n+1}$ for all n. Let K_{n} and L_{n+1} be the respective kernel and cokernel of these maps (with $L_{0}:=M_{0}$). Define two new graded S-modules $K:=\oplus_{n} K_{n}$ and $L:=\oplus_{n} L_{n}$. It follows that $K \subseteq M$ and $M / x M \cong L$, proving that both modules are finitely generated over S. By construction, $x K=x L=0$, so that both K and L are actually modules over $S / x S$, and hence we may apply our induction hypothesis to them. Since we have an exact sequence (see page 69 for the notion of an exact sequence)

$$
0 \rightarrow K_{n} \rightarrow M_{n} \xrightarrow{x} M_{n+1} \rightarrow L_{n+1} \rightarrow 0
$$

we get $\ell\left(K_{n}\right)-\ell\left(M_{n}\right)+\ell\left(M_{n+1}\right)-\ell\left(L_{n+1}\right)=0$ by Exercise 3.5.2. Multiplying this equality with t^{n+1} and adding all terms together, we get an identity

$$
t \operatorname{Hilb}_{K}(t)-t \operatorname{Hilb}_{M}(t)+\operatorname{Hilb}_{M}(t)-\operatorname{Hilb}_{L}(t)=0
$$

Using the induction hypothesis for K and L then yields the desired result.

Corollary 3.2.3. For every finitely generated graded module M over a standard graded algebra over an Artinian local ring, there exists a polynomial $P_{M}(t) \in \mathbb{Q}[t]$, such that $\ell\left(M_{n}\right)=P_{M}(n)$ for all n sufficiently large.
Proof. By Theorem 3.2.2 we can write $\operatorname{Hilb}_{M}(t)=q(t) /(1-t)^{d}$ for some polynomial $q(t) \in \mathbb{Z}[t]$. Using the Taylor expansion of $(1-t)^{-d}$ and then comparing coefficients at both sides, the result follows readily (see Exercise 3.5.8). Note that we have equality for all $n>\operatorname{deg}(q)$.
Associated graded ring. For a given Noetherian local ring (R, \mathfrak{m}), define its associated graded ring as

$$
\operatorname{Gr}(R):=\bigoplus_{n \geq 0} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}
$$

Note that this is a standard graded algebra over the residue field R / \mathfrak{m} of R (as always \mathfrak{m}^{0} stands for the unit ideal). Applying Corollary 3.2.3 to $M=S=\operatorname{Gr}(R)$ we can find a polynomial $P_{R}(t)$ such that

$$
\begin{equation*}
P_{R}(n)=\ell\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right) \tag{3.2}
\end{equation*}
$$

for all $n \gg 0$. For various reasons, one often works with the 'iterate' of this function:
Hilbert-Samuel polynomial. We define the Hilbert-Samuel function of R as the function $n \mapsto \ell\left(R / \mathfrak{m}^{n+1}\right)$. By induction, one easily shows that

$$
\begin{equation*}
\ell\left(R / \mathfrak{m}^{n+1}\right)=\sum_{k=0}^{n} \ell\left(\mathfrak{m}^{k} / \mathfrak{m}^{k+1}\right) \tag{3.3}
\end{equation*}
$$

It follows from (3.2) that there then exists a polynomial $\chi_{R}(t)$ with rational coefficients, called the Hilbert-Samuel polynomial, such that

$$
\begin{equation*}
\ell\left(R / \mathfrak{m}^{n+1}\right)=\chi_{R}(n) \tag{3.4}
\end{equation*}
$$

for all $n \gg 0$.

3.3 Filtrations

Before we can embark on a study of the dimension theory of a Noetherian local ring, we need some tools that are topological in nature, although we will not cast it in those terms. In what follows, R will be a Noetherian ring, $\mathfrak{a} \subseteq R$ a (proper) ideal and M an R-module. By a (descending) \mathfrak{a}-filtration on M we mean a descending chain of R-submodules

$$
M_{\bullet}: M=M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots
$$

such that $\mathfrak{a} M_{n} \subseteq M_{n+1}$, for all n. If these inclusions eventually become equalities, then we call M_{\bullet} a stable filtration. Clearly, the \mathfrak{a}-adic filtration on M given by
$M_{n}:=\mathfrak{a}^{n} M$ is a stable \mathfrak{a}-filtration. We may generalize the definition of the associated graded ring and module from page 44 as

$$
\operatorname{Gr}_{\mathfrak{a}}(R):=\bigoplus_{n} \mathfrak{a}^{n} / \mathfrak{a}^{n+1} \quad \text { and } \quad \operatorname{Gr}_{\mathfrak{a}}(M):=\bigoplus_{n} \mathfrak{a}^{n} M / \mathfrak{a}^{n+1} M
$$

(see also Exercise 3.5.9; note that the component of $\operatorname{Gr}_{\mathfrak{a}}(R)$ in degree zero is R / \mathfrak{a}), so that $\mathrm{Gr}_{\mathfrak{a}}(M)$ becomes a graded $\mathrm{Gr}_{\mathfrak{a}}(R)$-module. In fact, this can be generalized to \mathfrak{a}-filtrations, by putting

$$
\operatorname{Gr}\left(M_{\bullet}\right):=\bigoplus_{n} M_{n} / M_{n+1} .
$$

To see that this is indeed a graded $\operatorname{Gr}_{\mathfrak{a}}(M)$-module, it suffices to show how a homogeneous element $\bar{r} \in \mathfrak{a}^{k} / \mathfrak{a}^{k+1}$ acts on a homogeneous element $\bar{m} \in M_{n} / M_{n+1}$, where $r \in \mathfrak{a}^{k}$ and $m \in M_{n}$. Firstly, from $\mathfrak{a} M_{n} \subseteq M_{n+1}$, an inductive argument yields $\mathfrak{a}^{k} M_{n} \subseteq M_{n+k}$, and so $r m \in M_{n+k}$, and we now define $\bar{r} \cdot \bar{m}$ as the image of $r m$ in M_{n+k}. We leave it to the reader to check that this is well-defined, i.e., does not depend on the choice of liftings r, m of \bar{r}, \bar{m} respectively, and so we may now view $\operatorname{Gr}\left(M_{\bullet}\right)$ as a graded $\operatorname{Gr}_{\mathfrak{a}}(R)$-module. Note that even if M is finitely generated as an R-module, $\operatorname{Gr}\left(M_{\bullet}\right)$ may fail to be finitely generated as an $\operatorname{Gr}_{\mathfrak{a}}(R)$-module. However, the latter is true if the \mathfrak{a}-filtration is moreover stable (see Exercise 3.5.10). One drawback of the graded ring/module is that there is no obvious map from the original ring/module. However, there are larger graded objects with this additional property, namely the blowing-up algebra and module, given respectively as

$$
\mathrm{B}_{\mathfrak{a}}(R):=\bigoplus_{n} \mathfrak{a}^{n} \quad \text { and } \quad \mathrm{B}\left(M_{\bullet}\right):=\bigoplus_{n} M_{n}
$$

One easily verifies that $\mathrm{B}_{\mathfrak{a}}(R)$ is a graded ring and that $\mathrm{B}\left(M_{\bullet}\right)$ is a graded $\mathrm{B}_{\mathfrak{a}}(R)$ module. Moreover, there are canonical embeddings $R \rightarrow \mathrm{~B}_{\mathfrak{a}}(R)$ (since we interpret \mathfrak{a}^{0} as R) and $M \rightarrow \mathrm{~B}\left(M_{\bullet}\right)$ by identifying both sources with the respective components in degree zero. Moreover (see Exercise 3.5.11), we have an isomorphism

$$
\begin{equation*}
\operatorname{Gr}_{\mathfrak{a}}(R) \cong \mathrm{B}_{\mathfrak{a}}(R) / \mathfrak{a} \mathrm{B}_{\mathfrak{a}}(R) \tag{3.5}
\end{equation*}
$$

Proposition 3.3.1. Let R be a Noetherian ring, $\mathfrak{a} \subseteq R$ an ideal, and M a finitely generated R-module with an \mathfrak{a}-filtration M_{\bullet}. Then M_{\bullet} is a stable filtration if and only if $\mathrm{B}\left(M_{\bullet}\right)$ is finitely generated as $a \mathrm{~B}_{\mathfrak{a}}(R)$-module.

Proof. If $\mathrm{B}\left(M_{\bullet}\right)$ is finitely generated, then we may choose n large enough so that M_{n} contains all the entries of these generators. But this means that the (twisted) graded submodule $M_{n} \oplus M_{n+1} \oplus \ldots$ is generated by M_{n} as a $\mathrm{B}_{\mathfrak{a}}(R)$-module. In particular, if $m \in M_{n+i}$, then there exist $m_{i} \in M_{n}$ and $a_{i} \in R$ such that $m=a_{1} m_{1}+\cdots+a_{s} m_{s}$, and for this to yield a homogeneous element of degree $n+i$, the a_{i} must be homogeneous of degree i, that is to say, belong to \mathfrak{a}^{i}. Hence, $m \in \mathfrak{a}^{i} M_{n}$, showing that $M_{n+i}=\mathfrak{a}^{i} M_{n}$, for all $i \geq 0$, from which it follows that M_{\bullet} is stable. The converse follows along the same lines and is relegated to Exercise 3.5.13.

We are now ready to prove the so-called Artin-Rees Lemma:
Theorem 3.3.2 (Artin-Rees). If $N \subseteq M$ are finitely generated R-modules and M • a stable \mathfrak{a}-filtration on M, then the induced filtration $N_{\bullet}:=M_{\bullet} \cap N$ (meaning that $\left.N_{k}:=M_{k} \cap N\right)$ is a stable \mathfrak{a}-filtration on N.

Proof. The graded $\mathrm{B}_{\mathfrak{a}}(R)$-module $\mathrm{B}\left(N_{\bullet}\right)$ is naturally a graded submodule of $\mathrm{B}\left(M_{\bullet}\right)$. By Proposition 3.3.1, the latter is finitely generated. Since $\mathrm{B}_{\mathfrak{a}}(R)$ is a finitely generated R-algebra (generated by its elements in degree one), it is a Noetherian ring, and so in particular, the submodule $\mathrm{B}\left(N_{\bullet}\right)$ is also finitely generated. By another application of Proposition 3.3.1, we see that N_{\bullet} is then also stable.

The main case of interest is when M_{\bullet} is the \mathfrak{a}-adic filtration; spelling this case out it more details yields:

Corollary 3.3.3. Let R be a Noetherian ring, $\mathfrak{a} \subseteq R$ and ideal, and $N \subseteq M$ finitely generated R-modules. Then there exists c, such that for all $n \geq 0$, we have

$$
\mathfrak{a}^{n+c} M \cap N=\mathfrak{a}^{n}\left(\mathfrak{a}^{c} M \cap N\right) .
$$

In particular, $\mathfrak{a}^{n+c} M \cap N \subseteq \mathfrak{a}^{n} N$, for all $n \geq 0$.
Our first important application is a proof of Krull's Intersection Theorem:
Theorem 3.3.4. Let (R, \mathfrak{m}) be a Noetherian local ring and M a finitely generated R-module. Then the \mathfrak{m}-adic topology on M is Hausdorff, that is to say, $\cap_{n} \mathfrak{m}^{n} M=0$.

Proof. Put $N:=\cap_{n} \mathfrak{m}^{n} M$. By Corollary 3.3.3, there exists c such that $\mathfrak{m}^{c+1} M \cap N \subseteq$ $\mathfrak{m} N$. But the former is just N, and hence by Nakayama's Lemma, we get $N=0$.

Corollary 3.3.5. If the associated graded ring $\operatorname{Gr}(R)$ of a Noetherian local ring (R, \mathfrak{m}) is a domain, then R is a domain.

Proof. Suppose not, so that there exist non-zero $a, b \in R$ with $a b=0$. By Theorem 3.3.4, there exist $k, l \geq 0$, such that $a \in \mathfrak{m}^{k} \backslash \mathfrak{m}^{k+1}$ and $b \in \mathfrak{m}^{l} \backslash \mathfrak{m}^{l+1}$ (that is to say, k and l are the respective \mathfrak{m}-adic order of a and b). In particular, the images of a and b in $\operatorname{Gr}(R)$ are non-zero elements in $\mathfrak{m}^{k} / \mathfrak{m}^{k+1}$ and $\mathfrak{m}^{l} / \mathfrak{m}^{l+1}$ respectively, and so their product is also non-zero by the domain property, contradiction.
Remark 3.3.6. The converse is far from true: for $\operatorname{Gr}(R)$ to be a domain, the \mathfrak{a}-adic order must be a valuation, a quite restrictive condition. We will see in Theorem 4.1.9 below that regular local rings, however, do have this property.

3.4 Local dimension theory

In this section, (R, \mathfrak{m}) denotes a local ring, which is most of the time also Noetherian. The Krull dimension of R will be denoted $\operatorname{dim}(R)$. We introduce two more variants, and show that they agree on Noetherian local rings.

Definition 3.4.1 (Geometric dimension). We define the geometric dimension of R, denoted geodim (R), as the least number of elements generating an \mathfrak{m}-primary ideal. We define the Hilbert dimension $\operatorname{Hilbdim}(R)$ as the degree of the Hilbert-Samuel polynomial $\chi_{R}(t)$ of R given by (3.4).

As $\operatorname{dim}(R)$ equals the dimension of the topological space $V:=|\operatorname{Spec}(R)|$, it is essentially a topological invariant. On the other hand, geodim (R) is the least number of hypersurfaces ${ }^{1} H_{1}, \ldots, H_{d} \subseteq V$ such that $H_{1} \cap \cdots \cap H_{d}$ is a singleton (necessarily equal to the closed point x corresponding to the maximal ideal \mathfrak{m}), and hence is a geometric invariant. Note that the definition of geometric dimension makes sense for any local ring R (unlike the definition of Hilbert dimension which assumes the rationality of the Hilbert series), and that it is finite if and only if R has finite embedding dimension. Finally, $\operatorname{Hilbdim}(R)$ is by definition a combinatorial invariant. It follows that both geometric dimension and Hilbert dimension are finite for Noetherian local rings, but this is less obvious for Krull dimension. Nonetheless, all three seemingly unrelated invariants are always equal for Noetherian local rings (whence in particular Krull dimension is always finite):

Theorem 3.4.2. If R is a Noetherian local ring, then

$$
\operatorname{dim}(R)=\operatorname{geodim}(R)=\operatorname{Hilbdim}(R) .
$$

Proof. It is not hard to verify this equality whenever one of them is zero: R has Krull dimension zero if and only if its maximal ideal is nilpotent (in other words, (0) is \mathfrak{m}-primary) if and only if its Hilbert-Samuel polynomial is constant.

So we may assume that all three invariants are non-zero. First we show by induction on δ that

$$
\begin{equation*}
t:=\operatorname{Hilbdim}(R) \leq \delta:=\operatorname{geodim}(R) \tag{3.6}
\end{equation*}
$$

Let $I:=\left(a_{1}, \ldots, a_{\delta}\right) R$ be an m-primary ideal, and put $S:=R / a_{1} R$. It is not hard so see that then necessarily $\operatorname{geodim}(S)=\delta-1$, so that by induction, $\operatorname{Hilbdim}(S) \leq$ $\delta-1$. We have, for n sufficiently large,

$$
\begin{aligned}
\chi_{S}(n)=\ell\left(S / \mathfrak{m}^{n+1} S\right) & =\ell\left(R / a_{1} R+\mathfrak{m}^{n+1}\right) \\
& =\ell\left(R / \mathfrak{m}^{n+1}\right)-\ell\left(R /\left(\mathfrak{m}^{n+1}: a_{1}\right)\right) \\
& \geq \ell\left(R / \mathfrak{m}^{n+1}\right)-\ell\left(R / \mathfrak{m}^{n}\right)=\chi_{R}(n)-\chi_{R}(n-1)
\end{aligned}
$$

(where we used (5.9) below in the second line). Note that $\chi_{R}(n)-\chi_{R}(n-1)$ has degree $t-1$ (verify this!), and hence $\chi_{S}(n)$, a polynomial dominating the latter difference, must have degree at least $t-1$. Putting everything together, we therefore get $t-1 \leq \operatorname{deg}\left(\chi_{S}\right) \leq \delta-1$, as we wanted to show.

For the remainder of the proof, we induct on the Krull dimension $d:=\operatorname{dim}(R)$, and so we assume that the theorem is proven for rings of smaller Krull dimension.

[^3]Let $\mathfrak{p}_{0} \nsubseteq \mathfrak{p}_{1} \nsubseteq \cdots \nsubseteq \mathfrak{p}_{d}=\mathfrak{m}$ be a chain of prime ideals in R of maximal length. Choose x outside all minimal prime ideals but inside \mathfrak{p}_{1}. By prime avoidance (see [5, Proposition 1.11] or the more general version [15, Lemma 3.3]), such an element must exist. Put $S:=R / x R$. Since $\mathfrak{p}_{i} S$ are distinct prime ideals, for $i>0$, we get $\operatorname{dim}(S)=d-1$. Hence by induction, geodim $(S)=d-1$, so that there exists an $\mathfrak{m} S$ primary ideal $I \subseteq S$ generated by $d-1$ elements. Let $J:=I \cap R$. Any lifting of the $d-1$ generators of I in R together with x therefore generate J. Moreover, J is clearly \mathfrak{m}-primary, so that we showed $\operatorname{geodim}(R) \leq d-1+1=d$.

Let $\bar{R}:=R / \mathfrak{p}_{0}$ and $\bar{S}:=S / \mathfrak{p}_{0} S$. Tensoring the exact sequence

$$
0 \rightarrow \bar{R} \xrightarrow{x} \bar{R} \rightarrow \bar{S} \rightarrow 0
$$

with R / \mathfrak{m}^{n+1}, we get an exact sequence

$$
0 \rightarrow H_{n} \rightarrow \bar{R} / \mathfrak{m}^{n+1} \bar{R} \xrightarrow{x} \bar{R} / \mathfrak{m}^{n+1} \bar{R} \rightarrow \bar{S} / \mathfrak{m}^{n+1} \bar{S} \rightarrow 0 .
$$

Hence, the two outer modules have the same length, so that $\chi_{\bar{S}}(n)=\ell\left(H_{n}\right)$ for sufficiently large n. On the other hand, using 5.6.14, we have an exact sequence

$$
0 \rightarrow H_{n} \rightarrow \bar{R} / \mathfrak{m}^{n+1} \bar{R} \rightarrow \bar{R} /\left(\mathfrak{m}^{n+1} \bar{R}: x\right) \rightarrow 0
$$

from which it follows that $\chi_{\bar{S}}(n)=\chi_{\bar{R}}(n)-\varphi(n)$, where $\varphi(n)$ denotes the length of the last module in the previous exact sequence (showing incidentally that $\varphi(n)$ too is a polynomial for $n \gg 0$). To estimate $\varphi(n)$, we use the Artin-Rees Lemma 3.3.3. By that lemma, there exists some c such that

$$
\mathfrak{m}^{n+1} \bar{R} \cap x \bar{R} \subseteq \mathfrak{m}^{n+1-c} x \bar{R}
$$

for all $n>c$. Hence if $s \in\left(\mathfrak{m}^{n+1} \bar{R}: x\right)$, that is to say, if $s x \in \mathfrak{m}^{n+1} \bar{R}$, then $s x \in$ $\mathfrak{m}^{n+1-c} x \bar{R}$. Since \bar{R} is a domain, this yields $s \in \mathfrak{m}^{n+1-c} \bar{R}$, and hence we have inclusions $\mathfrak{m}^{n+1} \bar{R} \subseteq\left(\mathfrak{m}^{n+1} \bar{R}: x\right) \subseteq \mathfrak{m}^{n+1-c} \bar{R}$ for all $n>c$. Therefore, for $n \gg 0$, we get inequalities

$$
\chi_{\bar{R}}(n-c) \leq \varphi(n) \leq \chi_{\bar{R}}(n) .
$$

This shows that the (polynomial representing) φ has the same leading term as $\chi_{\bar{R}}$, and hence their difference, which is $\chi_{\bar{S}}$, has degree strictly less. Clearly, $\chi_{\bar{R}}(n) \leq \chi_{R}(n)$ and hence $\operatorname{Hilbdim}(\bar{R}) \leq \operatorname{Hilbdim}(R)$. Since \bar{S} has dimension $d-1$ by choice of x, induction yields Hilbdim $(\bar{S})=d-1$. Putting everything together, we get $\operatorname{Hilbdim}(R) \geq d$. In summary, we proved the inequalities

$$
\operatorname{geodim}(R) \leq d \leq \operatorname{Hilbdim}(R)
$$

and hence we are done by (3.6).
From this important theorem, various properties of dimension can now be deduced. We start with a loose end: the dimension of affine n-space (as stated in Theorem 2.2.1), or equivalently, the dimension of a polynomial ring.

Corollary 3.4.3. If K is a field and A is either the polynomial ring or the power series ring over K in n variables ξ, then $\operatorname{dim}(A)=n$.

Proof. The chain of prime ideals

$$
(0) \varsubsetneqq \xi_{1} A \varsubsetneqq\left(\xi_{1}, \xi_{2}\right) A \varsubsetneqq \cdots \nsubseteq \mathfrak{m}:=\left(\xi_{1}, \ldots, \xi_{n}\right) A
$$

shows that \mathfrak{m} has height at least n (and, in fact, equal to n). Hence $\operatorname{dim}(A)$ and $\operatorname{dim}\left(A_{\mathfrak{m}}\right)$ are at least n. In the power series case (so that A is local), \mathfrak{m} witnesses the estimate geodim $(A) \leq n$. Hence we are done in the power series case by Theorem 3.4.2.

Let me only prove the polynomial case when K is algebraically closed (the general case is treated in Exercise 3.5.6). By Theorem 2.2.2, any maximal ideal is of the form $\mathfrak{m}_{\mathbf{u}}$ for some $\mathbf{u} \in K^{n}$. Hence $A_{\mathfrak{m}_{\mathbf{u}}} \cong A_{\mathfrak{m}}$ by a linear change of coordinates. Therefore, it suffices in view of 3.1.3 to show that $A_{\mathfrak{m}}$ has dimension n. However, again $\mathfrak{m} A_{\mathfrak{m}}$ witnesses that geodim $\left(A_{\mathfrak{m}}\right) \leq n$, and we are done once more by Theorem 3.4.2.

The next application is another famous theorem due to Krull:
Theorem 3.4.4 (Hauptidealensatz/Principal Ideal Theorem). Any proper ideal in a Noetherian ring generated by h elements has height at most h.

Proof. Let $I \subseteq B$ be an ideal generated by h elements, let \mathfrak{p} be a minimal prime of I, and put $R:=B_{\mathfrak{p}}$. Since $I R$ is then $\mathfrak{p} R$-primary, geodim $(R) \leq h$. Hence \mathfrak{p} has height at most h by Theorem 3.4.2 and 3.1.3. Since this holds for all minimal primes of I, the height of I is at most h.

Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d. By Theorem 3.4.2, there exists a d-tuple \mathbf{x} generating an \mathfrak{m}-primary ideal. We give a name to such a tuple:

Definition 3.4.5 (System of parameters). Any tuple of length equal to the dimension of R and generating an \mathfrak{m}-primary ideal will be called a system of parameters of R (sometimes abbreviated as s.o.p); the ideal it generates is then called a parameter ideal.

In other words, a parameter ideal is an \mathfrak{m}-primary ideal requiring the least possible number of generators, namely $d=\operatorname{dim}(R)$. The next result will enable us to construct systems of parameters. To this end, we define the dimension of an ideal $I \subseteq B$ as the dimension of its residue ring B / I. In particular, any d-dimensional prime ideal in a d-dimensional Noetherian local ring is a minimal prime ideal, whence there are only finitely many such ideals.

Corollary 3.4.6. If R is a d-dimensional Noetherian local ring and x a non-unit in R, then $d-1 \leq \operatorname{dim}(R / x R) \leq d$. The lower bound is attained if and only if x lies outside all d-dimensional prime ideals of R.

Proof. The second inequality is obvious (from the point of view of Krull dimension). Towards a contradiction, suppose $S:=R / x R$ has dimension strictly less than $d-1$. By Theorem 3.4.2 there exists a system of parameters $\left(x_{1}, \ldots, x_{e}\right)$ in S with $e<d-1$. However, any liftings of the x_{i} to R together with x then generate an \mathfrak{m} primary ideal, contradicting Theorem 3.4.2. It is now not hard to see that x lies in a d-dimensional prime ideal if and only if S admits a chain of prime ideals of length d, from which the last assertion follows.

If R has dimension d, then element outside any d-dimensional prime is called a parameter. Since there are only finitely many d-dimensional prime ideals, parameters exist as soon as $d>0$. We can now reformulate (see Exercise 3.5.14): $\left(x_{1}, \ldots, x_{d}\right)$ is a system of parameters if and only if each x_{i} is a parameter in $R /\left(x_{1}, \ldots, x_{i-1}\right) R$.

Finite extensions. Recall that a homomorphism $R \rightarrow S$ is called a finite if S is finitely generated as an R-module. Similarly, a morphism of affine schemes $Y \rightarrow X$ is called a finite morphism if the induced homomorphism on the coordinate rings is finite. Any surjective ring homomorphism $R \rightarrow R / I$ is finite.
3.4.7 A finite morphism $Y \rightarrow X$ of affine schemes is surjective if the corresponding homomorphism of coordinate rings is injective.

Indeed, assume $R \rightarrow S$ is a finite and injective homomorphism, and let \mathfrak{p} be a prime ideal of R. Let \mathfrak{n} be a maximal ideal in $S_{\mathfrak{p}}:=R_{\mathfrak{p}} \otimes_{R} S$, and put $\mathfrak{m}:=\mathfrak{n} \cap R_{\mathfrak{p}}$. Since $R_{\mathfrak{p}} / \mathfrak{m} \subseteq S_{\mathfrak{p}} / \mathfrak{n}$ is again finite, and the latter ring is a field, so is the former by Lemma 2.2.7. Hence \mathfrak{m} is a maximal ideal, necessarily equal to $\mathfrak{p} R_{\mathfrak{p}}$. If we put $\mathfrak{q}:=\mathfrak{n} \cap S$, then an easy calculation shows $\mathfrak{p}=\mathfrak{q} \cap R$ (verify this!). By 2.3.3, this means that the morphism $\operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ is surjective.

Theorem 3.4.8. Let $R \subseteq S$ be a finite homomorphism of Noetherian rings. If R has dimension d, then so does S.

Proof. Put $d:=\operatorname{dim}(R)$ and $e:=\operatorname{dim}(S)$. To see the inequality $e \leq d$, choose a maximal ideal \mathfrak{n} in S of height e, and put $\mathfrak{m}:=\mathfrak{n} \cap R$. Since $R_{\mathfrak{m}}$ has dimension at most d, there exists an $\mathfrak{m} R_{\mathfrak{m}}$-primary ideal $I \subseteq R_{\mathfrak{m}}$ generated by at most d elements by Theorem 3.4.2. Since $S_{\mathfrak{n}} / I S_{\mathfrak{n}}$ is then a finitely generated $R_{\mathfrak{m}} / I$-module, it is Artinian. Hence $I S_{\mathfrak{n}}$ is $\mathfrak{n} S_{\mathfrak{n}}$-primary, showing that geodim $\left(S_{\mathfrak{n}}\right) \leq d$. Since the left hand side is equal to e by Theorem 3.4.2, we showed $e \leq d$.

We prove the converse inequality by induction on d (where the case $d=0$ is clearly trivial). Choose a d-dimensional prime ideal $\mathfrak{p} \subseteq R$. Using 3.4.7, we can find a prime ideal $\mathfrak{q} \subseteq S$ lying above \mathfrak{p}, that is to say, $\mathfrak{p}=\mathfrak{q} \cap R$. Put $\bar{R}:=R / \mathfrak{p}$ and $\bar{S}:=S / \mathfrak{q}$. In particular, $\bar{R} \subseteq \bar{S}$ is again finite and injective. By the same argument, we can take a d-1-dimensional prime ideal $\mathfrak{P} \subseteq \bar{R}$, and a prime ideal $\mathfrak{Q} \subseteq \bar{S}$ lying above it. By the induction hypothesis applied to the finite extension $\bar{R} / \mathfrak{P} \subseteq \bar{S} / \mathfrak{Q}$, we get $d-1=\operatorname{dim}(\bar{R} / \mathfrak{P}) \leq \operatorname{dim}(\bar{S} / \mathfrak{Q})$. However, since any non-zero element in a domain is a parameter (see Corollary 3.4.6), the dimension of \bar{S} / \mathfrak{Q} is strictly less than the dimension of \bar{S}, which itself is less than or equal to e. Hence $d-1 \leq e-1$, as we wanted to show.

Corollary 3.4.9. If $V \rightarrow K^{d}$ is a Noether normalization of an affine variety V, then V has dimension d.

Proof. By definition of Noether normalization, we have a finite, injective homomorphism $K[\zeta] \subseteq K[V]$ with $\zeta=\left(\zeta_{1}, \ldots, \zeta_{d}\right)$. By Corollary 3.4.3, the first ring has dimension d, whence so does the second by Theorem 3.4.8. This in turn means that V has dimension d.

3.5 Exercises

Ex 3.5.1

Prove the inequality in 3.1.1. In fact, this is often an equality, for instance if R is a polynomial ring over a field, but this is already a much less trivial result. Verify it when R is a polynomial ring over a field in a single indeterminate.

Ex 3.5.2

Show that length is additive in the sense that if $0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$ is a short exact sequence of A-modules, then $\ell(M)=\ell(K)+\ell(N)$.

Ex 3.5.3

Prove 3.1.5. More generally, show that if R is an Artinian local ring with residue field k, then the length of R is equal to its vector space dimension over k. For the latter, you need to know that k is a subfield of R, and this is proven in Theorem 6.4.2 and Remark 6.4.3, but you can just assume for the moment that this is the case.

Ex 3.5.4

Let S be a standard graded R-algebra. Show that S is Noetherian if R is.

Ex 3.5.5

Show the first assertion in 3.1.3: the height of a prime ideal $\mathfrak{p} \subseteq R$ is equal to the dimension of $R_{\mathfrak{p}}$.

Ex 3.5.6

Use Exercise 2.6.25 to complete the proof of Corollary 3.4.3.

Ex 3.5.7

Generalize Corollary 3.4.3 by replacing the field by any Artinian local ring. Moreover, in the power series case, formulate a result with the base ring any Noetherian local ring. Such a result also holds in the polynomial case, but the proof requires some more powerful tools such as flatness, discussed in §5; for a proof, see for instance [30, Theorem 15.4].

Ex 3.5.8

Work out the details of the proof of Corollary 3.2.3.
${ }^{*}$ Ex 3.5.9
Develop the theory of Hilbert-Samuel polynomials also for finitely generated R-modules M and for \mathfrak{m}-primary ideals \mathfrak{a}, by using the graded algebra

$$
\operatorname{Gr}_{\mathfrak{a}}(R):=\oplus_{n} \mathfrak{a}^{n} / \mathfrak{a}^{n+1}
$$

and the graded module

$$
\operatorname{Gr}_{\mathfrak{a}}(M):=\oplus_{n} \mathfrak{a}^{n} M / \mathfrak{a}^{n+1} M
$$

Ex 3.5.10

Show that if M_{\bullet} is a stable \mathfrak{a}-filtration on a finitely generated module M over a Noetherian ring R, then $\mathrm{Gr}_{\mathfrak{a}}\left(M_{\bullet}\right)$ is finitely generated as $a \operatorname{Gr}_{\mathfrak{a}}(R)$-module.

Ex 3.5.11

Prove isomorphism (3.5) and show that we may identify $\mathrm{B}_{\mathfrak{a}}(R)$ as the subring $R[\mathfrak{a} t]$ of $R[t]$, that is to say, the subring of all polynomials of the form $a_{0}+a_{1} t+\cdots+a_{d} t^{d}$ with $a_{n} \in \mathfrak{a}^{n}$.

Ex 3.5.12

Prove the following more general version of Krull's Intersection Theorem: let R be a Noetherian ring, $\mathfrak{a} \subseteq R$ and ideal and M a finitely generated R-module, and set $N:=\cap_{n} \mathfrak{a}^{n} M$. Then there exists $a \in \mathfrak{a}$ such that $(1-a) N=0$. Conclude that if $M=R$ is a domain or local, then $N=0$.

Ex 3.5.13

Complete the proof of Proposition 3.3.1. Show that we did not need to assume in this proposition that R was Noetherian, only that each M_{n} is finitely generated.

Ex 3.5.14

Show that $\left(x_{1}, \ldots, x_{d}\right)$ is a system of parameters in R if and only if x_{i} is a parameter in $R /\left(x_{1}, \ldots, x_{i-1}\right) R$ for every $i=1, \ldots, d$.

Ex 3.5.15

Show that if \mathbf{x} is a tuple of length e in a Noetherian local ring R such that $\mathbf{x} R$ has height e, then \mathbf{x} can be extended to a system of parameters of R. Using the same technique, also show that if \mathfrak{p} is a prime ideal of height h, then there exists a system of parameters $\left(y_{1}, \ldots, y_{d}\right)$ such that \mathfrak{p} is a minimal prime of $\left(y_{1}, \ldots, y_{h}\right) R$.

Ex 3.5.16

Prove the following more precise form of 3.4.7: a finite morphism $Y=\operatorname{Spec}(S) \rightarrow X=$ $\operatorname{Spec}(R)$ is surjective if and only if the kernel of the corresponding ring homomorphism $R \rightarrow S$ is nilpotent. In fact, the only if direction is true for any morphism.
*Ex 3.5.17
Show using Noether normalization that any affine domain C is equi-dimensional, in the sense that every maximal ideal of C has the same height.

Additional exercises.

Ex 3.5.18

Show that a finite injective homomorphism $A \subseteq B$ satisfies the going-up theorem, meaning that given any inclusion of prime ideals $\mathfrak{p} \subseteq \mathfrak{q} \subseteq A$ and any prime ideal $\mathfrak{P} \subseteq B$ lying over \mathfrak{p}, we can find a prime ideal $\mathfrak{Q} \subseteq B$ containing \mathfrak{P} and lying over \mathfrak{q}.

Chapter 4
 Singularity theory

As the term suggests, a 'singularity' is a point where something unusual happens. We gave a formal definition of a singular point in Definition 2.5.4. In this chapter, we investigate the algebraic theory behind this phenomenon. In particular, we will identify a certain type of singularity, the Cohen-Macaulay singularity, which plays an important role in the later chapters.

4.1 Regular local rings

According to our 'algebraization paradigm', geometric properties of points are reflected by their local rings. Before we make this translation, we first explore a little the classical notion, using plane curves as example.
Multiple points on a plane curve. A plane curve C is an irreducible affine variety given by a non-constant, irreducible polynomial $f(\xi, \zeta) \in A:=K[\xi, \zeta]$, for K some algebraically closed field, that is to say, $C=\mathrm{V}(f)$. By Corollary 3.4.6, a plane curve has dimension one. So we arrive at the more general concept of a curve as a onedimensional, irreducible scheme. The degree t of f is also called the degree of the plane curve C. If $t=1$, then C is just a line. So from now on, we will moreover assume $t>1$. An easy form of Bezout's theorem states:
4.1.1 Any line intersects the plane curve C of degree t in at most t distinct points, and there exist lines which have exactly t distinct intersection points with C.

The proof is elementary: the general equation of a line L is $a \xi+b \zeta+c=0$ and hence the intersection $|C \cap L|$ is given by the radical of the ideal $(a \xi+b \zeta+c, f) A$ (or, viewed as an affine scheme $C \cap L$ by the ideal itself; see page 28). In terms of equations, assuming $b=1$ for the sake of simplicity, this means that the (ξ-values of the) intersection points are given by the equation $f(\xi,-a \xi-c)=0$, a polynomial of degree t or less, which therefore has at most t solutions. Choosing a, b, c sufficiently
general, we can moreover guarantee that this polynomial has t distinct roots. We can now state when a point P on C is singular, but to not confuse with our formal definition 35 , we use a different terminology:

Definition 4.1.2. A point P on a plane curve C of degree t is called multiple, if every line through P intersects C in less than t distinct points. More precisely, we say that P is an n-tuple point on C, or $\operatorname{mult}_{C}(P)=n$, if n is the number of points absorbed at P in each intersection with a line, that is to say,

$$
\operatorname{mult}_{C}(P):=\min _{L \text { line through } P}(t-\operatorname{card}(|C \cap L|)+1)
$$

Here $|C \cap L|$ denotes the (naive) intersection as sets, not as schemes. A point which is not multiple, i.e., a 1-tuple point, is called a simple point.

Let us look at two examples of multiple points:
An example of a node. Let $f:=\xi^{2}-\zeta^{2}-3 \zeta^{3}$ and let P be the origin. Hence a line L_{a} through P has equation $\zeta=a \xi$ for some $a \in K$ (for sake of simplicity, we ignore the ζ-axis; the reader should check that this makes no difference in what follows). Substituting this in the equation, the intersection points with C are given by the equations $\zeta=a \xi$ and $\xi^{2}-(a \xi)^{2}-3(a \xi)^{3}=0$. The second equation reduces to $\xi=0$ or $\xi=\left(1-a^{2}\right) / 3 a^{3}$, thus giving only two intersection points, contrary to the expected value of three. In conclusion, P is a double point. One can check that it is the only multiple point on C (check this for instance for the point with coordinates $(2,1)$).

Moreover, note that the two diagonals $L_{ \pm 1}$ intersect C in exactly one point, that is to say, the lines $y= \pm x$ have even higher contact with C; they are often referred to as the tangent lines of C at P. To formally define a tangent line, one needs to introduce the intersection number $i(L, C ; P)$ of a line L with C at P, and then call L a tangent line if $i(L, C ; P)>\operatorname{mult}_{C}(P)$. One way of doing this is by defining the intersection number $i(L, C ; P)$ as the length of $R / L R$, where $R:=(A / f A)_{\mathfrak{m}}$ is the local ring of P at C and where we identify the line L with its defining linear equation. One checks that $i\left(L_{a}, C ; P\right)$ equals two for $a \neq \pm 1$, and three for $a= \pm 1$.

To calculate the tangent space $T_{C, P}$ as defined on page 34 , let $\mathfrak{m}:=(\xi, \zeta) A$ be the maximal ideal corresponding to the origin. Since $\mathfrak{m} R$ is generated by two elements, the embedding dimension of R is two, whence so is the dimension of the tangent space $T_{C, P}$ by 2.5.3. Hence, since the tangent space has higher dimension than the scheme, P is singular on C.
An example of a cusp. For our next example, let $f:=\xi^{4}-\zeta^{3}$, a curve of degree four, and let P be the origin as before. The intersection with L_{a} is given by the equation $\xi^{4}-(a \xi)^{3}=0$, which yields two intersection points: namely P and $\left(a^{3}, a^{4}\right)$. Hence P is a triple point of C. Moreover, there is now only one value of a which leads to a higher contact, namely $a=0$, showing that the ξ-axis is the only tangent line (double-check that the ζ-axis does not have higher contact). A multiple point with a unique tangent line is called a cusp. A similar calculation as before shows
that $T_{C, P}$ is again two-dimensional, whence P is singular. Let us now prove this in general:

Proposition 4.1.3. A point on a plane curve is a multiple point if and only if it is singular.

Proof. Let f be the equation, of degree t, defining the curve C, and let P be a point on C. After a change of coordinates, we may assume P is the origin, defined by the maximal ideal $\mathfrak{m}:=(\xi, \zeta) A$. If P is non-singular, then the embedding dimension of $\mathscr{O}_{C, P}=(A / f A)_{\mathfrak{m}}$ is one. Hence either ξ or ζ generates $\mathfrak{m} R$. So, after interchanging ξ and ζ if necessary, we can write ζ as a fraction $(\xi g+f \tilde{g}) / h$ in $A_{\mathfrak{m}}$, for some $g, \tilde{g}, h \in A$ with $h \notin \mathfrak{m}$. Hence the intersection with L_{a} is given by $\zeta=a \xi$ and

$$
a \xi=\frac{\xi g(\xi, a \xi)+f(\xi, a \xi) \tilde{g}(\xi, a \xi)}{h(\xi, a \xi)}
$$

Since f has no constant term, we may divide out ξ, so that the last equation becomes

$$
\begin{equation*}
a h(\xi, a \xi)=g(\xi, a \xi)+\tilde{f}(\xi) \tag{4.1}
\end{equation*}
$$

for some $\tilde{f} \in K[\xi]$. If P would be a multiple point of C, then $\xi=0$ should still be a solution of (4.1). However, this can only happen if $a=(g(0,0)+\tilde{f}(0)) / h(0,0)$ (note that $h(0,0) \neq 0$ by assumption). In other words, a general line has only one intersection point at P, and hence P is a simple point. Note that it has exactly one tangent line, given by the above exceptional value of a.

Conversely, assume P is simple, and write $f=u \xi+v \zeta+\tilde{f}$ with $u, v \in K$ and $\tilde{f} \in \mathfrak{m}^{2}$. By assumption, the equation $u \xi+v a \xi+\tilde{f}(\xi, a \xi)=0$ should have in general $t-1$ solutiuons different from $\xi=0$. For this to be true, at least one of u or v must be non-zero. So assume, without loss of generality, that $u \neq 0$, and then multiplying with its inverse, we may even assume $u=1$. It follows that $\xi=-v \zeta-\tilde{f}$ in R, showing that $\mathfrak{m} R=\zeta R$ by Nakayama's Lemma, and therefore that R has embedding dimension one.

By the above argument, in order for P to be simple, $A_{\mathfrak{m}} / f A_{\mathfrak{m}}$ has to have embedding dimension one, which by Nakayama's Lemma is equivalent with f being a minimal generator of $\mathfrak{m} A_{\mathfrak{m}}$, that is to say, $f \in \mathfrak{m} A_{\mathfrak{m}}-\mathfrak{m}^{2} A_{\mathfrak{m}}$. In Exercise 4.3.4 you will prove the following generalization:
4.1.4 A point P is an n-tuple point on a plane curve $C:=\mathrm{V}(f)$ if and only if n is the maximum of all k such that $f \in \mathfrak{m}^{k} A_{\mathfrak{m}}$, where $\mathfrak{m}:=\mathfrak{m}_{P}$ is the maximal ideal of P.
Geometrically, a closed point x is singular on an affine variety, or more generally, on an affine scheme X, if the dimension of its tangent space is larger than the local dimension of X at x. In particular, singularity is a local property, completely captured by the local ring of the point. Since the dimension of the tangent space is equal to embedding dimension of the local ring by 2.5 .3 , we can now formulate nonsingularity entirely algebraically:

Definition 4.1.5 (Regular local ring). We call a Noetherian local ring (R, \mathfrak{m}) regular if and only if its dimension is equal to its embedding dimension.

In view of Theorem 3.4.2, regularity is equivalent with the maximal ideal being generated by the least possible number of elements. In particular, some system of parameters generates the maximal ideal, and any such system is called a regular system of parameters. Geometrically, a point x on a scheme X is regular, or nonsingular, if $\mathscr{O}_{X, x}$ is regular. An Artinian local ring is regular if and only if it is a field. By Corollary 3.4.3, a power series ring over a field is regular. Using that same theorem in conjunction with the Nullstellensatz (Theorem 2.2.2), we also get a similar result over an algebraically closed field K (for a more general version, see Exercise 4.3.6):

4.1.6 Each closed point of affine n-space \mathbb{A}_{K}^{n} is regular.

To formulate a stronger result, let us call a ring B a regular ring if each localization at a maximal ideal is regular. Similarly, we call a scheme X regular if all of its closed points are regular. Hence we may reformulate 4.1.6 as: \mathbb{A}_{K}^{n} is regular. This begs the question: what about the non-closed points of \mathbb{A}_{K}^{n} ? As it turns out, they too are regular, and in fact, this is a general property of regular rings:

4.1.7 Any localization of a regular ring is again regular.

To prove this, however, one needs a different characterization, homological in nature, of regular rings due to Serre (it was only after he proved his theorem that the above result became available). We will not provide all details, but 4.1 .7 will be proved in Corollary 5.5 .8 below. Another property is more readily available: geometric intuition predicts that at an intersection point of two distinct components, the scheme ought to be singular. Put differently, a variety should be irreducible in 'the neighbourhood of' a non-singular point. This translates into the following property of the local ring of the point:

4.1.8 A regular local ring is a domain.

This follows immediately from Corollary 3.3 .5 and the next result:
Theorem 4.1.9. Let (R, \mathfrak{m}) be a d-dimensional Noetherian local ring with residue field k, and let $S:=\operatorname{Gr}(R)$ be its associated graded ring. Then R is regular if and only if S is isomorphic to a polynomial ring over k in d variables.

Proof. Let $A:=k[\xi]$ with $\xi:=\left(\xi_{1}, \ldots, \xi_{d}\right)$, viewed as a standard graded algebra over k in the obvious way. If $A \cong S$, then $A_{1} \cong S_{1}$ has k-vector space dimension d. Since $S_{1}=\mathfrak{m} / \mathfrak{m}^{2}$, Nakayama's Lemma shows that R has embedding dimension d, whence is a regular local ring. To prove the converse, assume R is regular, and we need to show that $S \cong A$. By assumption, \mathfrak{m} is generated by d elements, x_{1}, \ldots, x_{d}. Define a homomorphism $\varphi: k[\xi] \rightarrow S$ of graded k-algebras by the rule $\xi_{i} \mapsto x_{i}$. Since $\mathfrak{m}=\left(x_{1}, \ldots, x_{d}\right) R$, the homomorphism φ is surjective (verify this!). Let I be its kernel. Hence $A / I \cong S$. Now, A has dimension d by Corollary 3.4.3. I claim that
S has dimension at least d. However, if $I \neq 0$, then by Corollary 3.4.6, the dimension of A / I is strictly less than d. Hence $I=0$, as we wanted to show (and S has actually dimension equal to d).

To prove the claim, it suffices to show that the maximal ideal $\mathfrak{n}:=S_{+}$has height d. Since $\mathfrak{n}^{n+1}=\oplus_{k>n} S_{k}$, we get $S / \mathfrak{n}^{n+1} \cong S_{0} \oplus \cdots \oplus S_{n}$, and its length is equal to $\ell\left(R / \mathfrak{m}^{n+1}\right)$ by (3.3). Since $S / \mathfrak{n}^{n+1} \cong S_{\mathfrak{n}} / \mathfrak{n}^{n+1} S_{\mathfrak{n}}$ (check this!), we see that R and $S_{\mathfrak{n}}$ have the same Hilbert-Samuel polynomial, whence the same dimension by Theorem 3.4.2, as we wanted to show.

Incidentally, in the last part of the proof, we did not use our hypothesis on the regularity of the ring, so that we showed one inequality in the next result; the converse will not be needed here and can be found in for instance [30, Theorem 13.9].

4.1.10 The dimension of a Noetherian local ring is equal to the dimension of its

 associated graded ring.Why we need projective space. Above, we have seen examples of plane curves having a multiple point. Of course, some curves are regular. The simplest example is obviously a line. Another is given by a so-called elliptic curve, defined by an equation

$$
\zeta^{2}=\xi(\xi-1)(\xi-u)
$$

with $u \neq 0,1$. You can use the criterion from Exercise 4.3 . 3 to show that every point on an elliptic curve is simple, provided the characteristic of K is not 2 , whence regular by Proposition 4.1.3 (see also Exercise 4.3.9). Another example of a regular curve is the one defined by the equation $\xi \zeta^{2}=1$ (again easily verified by means of Exercise 4.3.3). However, in this latter case, we are overlooking the 'points at infinity'. More precisely, recall that \mathbb{P}_{K}^{2} is obtained by glueing together three copies of \mathbb{A}_{K}^{2} (see page 33), each corresponding by inverting one of the 'projective' variables. So we may view \mathbb{A}_{K}^{2}, with coordinates (ξ, ζ) as the copy corresponding to inverting the last variable, and embed it in \mathbb{P}_{K}^{2}. Given a plane curve $C=\mathrm{V}(f)$ (or rather, the affine scheme $\operatorname{Spec}(B)$ with $B:=A / f A$ determined by it), let \bar{C} be the closure of C inside \mathbb{P}_{K}^{2}. We can endow \bar{C} with the structure of a projective variety as follows: let \tilde{f} be the homogenization of f, that is to say, if f has degree t, then

$$
\begin{equation*}
\tilde{f}(\xi, \zeta, \eta):=\eta^{t} f(\xi / \eta, \zeta / \eta) \tag{4.2}
\end{equation*}
$$

I claim that the underlying space of $\tilde{C}:=\operatorname{Proj}(\tilde{B})$ is equal to \bar{C}, where $\tilde{A}:=K[\xi, \zeta, \eta]$ and $\tilde{B}:=\tilde{A} / \tilde{f} \tilde{A}$. Since $\tilde{A}_{(\eta)} \cong A$ by 2.4.3, we get $\tilde{B}_{(\eta)} \cong B$ by (4.2), showing that

$$
\mathbb{A}_{K}^{2} \cap \tilde{C}=\tilde{\mathrm{D}}(\eta) \cap \tilde{C}=C .
$$

Our claim now follows, since the closure of \mathbb{A}_{K}^{2} is just \mathbb{P}_{K}^{2}. We call \tilde{C} the projectification or completion of C.

Returning to our question on singularities: any point of $\tilde{C} \backslash C$ will be called a point at infinity of C. To check whether such a point is non-singular, we have to 're-coordinatize', that is to say, look at one of the two other copies of $\mathbb{A}_{K}^{2} \subseteq \mathbb{P}_{K}^{2}$. Let us do this on the example with equation $f:=\xi \zeta^{2}-1$. Following the recipe in (4.2), we get $\tilde{f}=\xi \zeta^{2}-\eta^{3}$. On the copy $\tilde{\mathrm{D}}(\xi)=\mathbb{A}_{K}^{2}$, the intersection with \tilde{C} is the affine scheme given by $\zeta^{2}-\eta^{3}$, the equation of a cusp with a singular point at $\zeta=\eta=0$ (note that it is straightforward to undo the homogenization (4.2): just replace the pertinent variable, here ξ, by 1). Hence \tilde{C} is not regular. In Exercise 4.3.10, you will show that in contrast, the projectification of any elliptic curve remains regular.

Abstract

In the above discussion, we used curves merely as an illustration: a similar treatment can be given for higher dimensional affine schemes as well (see Exercise 4.3.11): any closed affine subscheme $X \subseteq \mathbb{A}_{K}^{n}$ can be projectified to a projective scheme $\tilde{X} \subseteq \mathbb{P}_{K}^{n}$. So, even if an affine scheme itself is regular, it might not be as 'good' as we believe it to be, as we do not see its points at infinity. For that we need to go to its projectification.

4.2 Cohen-Macaulay rings

Algebraic geometry has developed for a large part in an attempt to gain a better understanding of singularities, and if possible, to classify them. As it turns out, certain singularities have nicer properties than others. Our goal is to identify such a class of singularities, or equivalently, by passing to their local ring, such a class of Noetherian local rings, which are more amenable to algebraic methods: the 'CohenMacaulay' singularities. In order to do this, we must first study an invariant called 'depth'.

Regular sequences. Recall that an element in a ring R is called a non-zero divisor if multiplication with this element is injective; more generally, an element x is a nonzero divisor on an R-module M if multiplication by x is injective on M. Recall that a prime ideal in a Noetherian ring R is called an associated prime of R (respectively, of a finitely generated R-module M), if it is of the form $\operatorname{Ann}_{R}(x)$ for some $x \in R$ (respectively, of the form $\operatorname{Ann}_{R}(\mu)$ for some $\mu \in M$). Moreover, R (respectively, M) admits only finitely many associated prime ideals, among which are all the minimal prime ideals, and an element is a non-zero divisor if and only if it is not contained in any associated prime ideal (for all this, see for instance [30, §6]).

A non-zero divisor of R which is not a unit is called a regular element in R, or R-regular (do not confuse with the notion of a regular local ring!). Similarly, we say that x is M-regular if it is a non-zero divisor on M and $x M \neq M$ (be aware that some authors might use a slightly different definition for these notions). More generally, a sequence $\left(x_{1}, \ldots, x_{d}\right)$ is called a regular sequence in R, or R-regular, (respectively, M-regular) if each x_{i} is regular in $R /\left(x_{1}, \ldots, x_{i-1}\right) R$ (respectively, in $\left.M /\left(x_{1}, \ldots, x_{i-1}\right) M\right)$ for $i=1, \ldots, d$. Here, and elsewhere, we do not distinguish notationally between an element in a ring R and its image in any residue ring R / I, or for that matter, in any R-algebra S. If $\left(x_{1}, \ldots, x_{d}\right)$ is an R-regular sequence, then by assumption $\left(x_{1}, \ldots, x_{d}\right) R$ is a proper ideal of R. In particular, if R is local, then all x_{i} belong to the maximal ideal. To be a regular sequence in a local ring is quite a strong property:
4.2.1 In a Noetherian local ring R, any regular sequence can be enlarged to a system of parameters. In particular, a regular sequence can have length at most $\operatorname{dim}(R)$. In fact, if \mathbf{x} is a regular sequence of length e, then $\mathbf{x} R$ has height e.

To see this, we only need to show by induction on the length of the sequence that a regular element generates a height one prime ideal and is a parameter. However,
since a regular element x does not belong to any associated prime, whence in particular not to any minimal prime, the ideal $x R$ has height one by Theorem 3.4.4. Since x then neither belongs to any prime ideal of maximal dimension, it is a parameter. Using this in conjunction with Corollary 3.4.6, we get:

4.2.2 If \mathbf{x} is a regular sequence of length e in a d-dimensional Noetherian local ring R, then $R / \mathbf{x} R$ has dimension $d-e$.

Cohen-Macaulay local rings. A d-dimensional Noetherian local ring is called Cohen-Macaulay if it admits a regular sequence of length d. Trivially, any Artinian local ring is Cohen-Macaulay. The next result justifies calling the Cohen-Macaulay property a type of singularity.

Proposition 4.2.3. Any regular local ring is Cohen-Macaulay.
Proof. Let us induct on the dimension d of the regular local ring R. The case $d=0$ is trivial since R is then a field. By assumption, the maximal ideal \mathfrak{m} is generated by d elements x_{1}, \ldots, x_{d}. I will show by induction on d that $\left(x_{1}, \ldots, x_{d}\right)$ is in fact a regular sequence. Since R is a domain by 4.1.8, the element x_{1} is regular. Put $R_{1}:=R / x_{1} R$. It is a Noetherian local ring of dimension $d-1$ by Corollary 3.4.6, and its maximal ideal $\mathfrak{m} R_{1}$ is generated by at most $d-1$ elements. Hence R_{1} is again regular. By induction, $\left(x_{2}, \ldots, x_{d}\right)$ is a regular sequence in R_{1}, from which it follows that $\left(x_{1}, \ldots, x_{d}\right)$ is a regular sequence in R.

Depth. As we will see, being Cohen-Macaulay is a natural property, and many non-regular local rings are still Cohen-Macaulay. Since the notion hinges upon the length of a regular sequence, let us give this a name: the maximal length of a regular sequence in a Noetherian local ring R is called the depth of R, and is denoted depth (R). More generally, the depth of an ideal I is the maximal length of a regular sequence lying in I. We proved depth $(R) \leq \operatorname{dim}(R)$ with equality precisely when R is Cohen-Macaulay. Immediately from our discussion on associated primes, we get:

4.2.4 A Noetherian local ring has depth zero if and only if its maximal ideal is

 an associated prime.In particular, the one-dimensional local ring $R /\left(\xi^{2}, \xi \zeta\right) R$ is not Cohen-Macaulay, where $R:=A_{\mathfrak{m}}$ is the local ring of the origin in \mathbb{A}_{K}^{2}.

4.2.5 A one-dimensional Noetherian local domain is Cohen-Macaulay. In particular, any closed point on a (plane) curve is Cohen-Macaulay.

As the reader might have surmised, we call a point x on a scheme X CohenMacaulay if $\mathscr{O}_{X, x}$ is Cohen-Macaulay. For an example of a non-Cohen-Macaulay local domain, necessarily of dimension at least two, see Exercise 4.3.14.

If R is Cohen-Macaulay, and \mathbf{x} is a regular sequence of length $d:=\operatorname{dim}(R)$, then \mathbf{x} is automatically a system of parameters by 4.2.1. This raises the following question: what about arbitrary systems of parameters?

Theorem 4.2.6. In a Cohen-Macaulay local ring, every system of parameters is a regular sequence. In particular, any regular sequence is permutable, meaning that an arbitrary permutation is again regular.

Proof. The second statement is immediate from the first since in a system of parameters, order plays no role. However, we need it to prove the first assertion. And before we can prove this, we need to establish yet another special case of the first assertion: taking powers of the elements in a regular sequence gives again a regular sequence, and for this to hold, we do not even need the ring to be CohenMacaulay. Although both results have relatively elementary proofs, the combinatorics are a little involved, and so I will only present the argument for $d=2$. Hence assume (x, y) is a regular sequence in some Noetherian local ring S. I claim that both $\left(x^{k}, y^{l}\right)$ and $\left(y^{l}, x^{k}\right)$ are S-regular sequences, for any $k, l \geq 1$. We first show that $\left(x^{k}, y\right)$ is S-regular, for all $k \geq 1$. By induction, we only need to treat the case $k=2$. Clearly, x^{2} is S-regular, so we need to show that y is $S / x^{2} S$-regular. Hence suppose $b y \in x^{2} S$, say $b y=a x^{2}$. Since y is $S / x S$-regular, $b \in x S$, say $b=c x$. Hence, $c x y=a x^{2}$, and using that x is S-regular, $c y=a x$. Using again that y is $S / x S$-regular then yields $c \in x S$, which proves that $b=c x \in x^{2} S$, as we wanted to show.

Next, we show that (y, x) is S-regular. To show that y is S-regular, let $b y=0$. By our previous result, $\left(x^{n}, y\right)$ is a regular sequence for every n, which means that y is $S / x^{n} S$-regular. Applied to by $=0$, we get $b \in x^{n} S \subseteq \mathfrak{m}^{n} S$. Since this holds for all n, we get $b=0$ by Krull's Intersection Theorem 3.3.4. So remains to show that x is $S / y S$ regular. Suppose $a x \in y S$, say $a x=b y$. Since y is $S / x S$-regular, $b \in x S$, say, $b=c x$. From $a x=c x y$ and the fact that x is S-regular, we get $a=c y$, as we needed to show. Finally, to prove that $\left(x^{k}, y^{l}\right)$ and $\left(y^{l}, x^{k}\right)$ are S-regular, observe that the following sequences are S-regular: $\left(x^{k}, y\right)$ by the first property, $\left(y, x^{k}\right)$ by the second, $\left(y^{l}, x^{k}\right)$ by the first, and finally $\left(x^{k}, y^{l}\right)$ by the second.

So, with these two properties proven for $d=2$, and assuming them for arbitrary d, let us turn to the proof of the theorem. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension d, and let $\left(x_{1}, \ldots, x_{d}\right)$ be a regular sequence. We prove by induction on d that any system of parameters $\left(y_{1}, \ldots, y_{d}\right)$ is a regular sequence. There is nothing to show if $d=0$, so assume $d>0$. Put $I:=\left(x_{1}, \ldots, x_{d-1}\right) R$. Since x_{d} is by assumption R / I-regular, $\mathfrak{m}(R / I)$ is not an associated prime. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ be prime ideals in R such that their image in R / I are precisely the associated primes of the latter ring. Since $J:=\left(y_{1}, \ldots, y_{d}\right) R$ is \mathfrak{m}-primary, it cannot be contained in any of the \mathfrak{p}_{i}, whence by prime avoidance, we can find $y \in J$ notin $\mathfrak{m} J$ and not in any \mathfrak{p}_{i}. In particular, $y=\sum u_{i} y_{i}$ with at least one u_{i} a unit in R. After renumbering, we may assume that u_{d} is a unit. It follows that $\left(y_{1}, \ldots, y_{d-1}, y\right)$ is again a system of parameters. Moreover, y is R / I-regular, showing that $\left(x_{1}, \ldots, x_{d-1}, y\right)$ is a regular sequence. Since we established already that any permutation is again a regular sequence, $\left(y, x_{1}, \ldots, x_{d-1}\right)$ is R-regular. Hence $\left(x_{1}, \ldots, x_{d-1}\right)$ is $R / y R$-regular. Since $R / y R$ has dimension $d-1$ by Corollary 3.4.6, it is therefore Cohen-Macaulay. Hence $\left(y_{1}, \ldots, y_{d-1}\right)$, being a system of parameters in this ring, is by induction a regular sequence. In other words, $\left(y, y_{1}, \ldots, y_{d-1}\right)$ is a regular sequence, whence so is the permuted sequence $\left(y_{1}, \ldots, y_{d-1}, y\right)$. Finally, we show that y_{d} is R / J^{\prime}-regular with $J^{\prime}:=\left(y_{1}, \ldots, y_{d-1}\right) R$, which then completes the proof that $\left(y_{1}, \ldots, y_{d}\right)$ is a regular sequence. So assume $a y_{d} \in J^{\prime}$. Since $y \equiv u_{d} y_{d} \bmod J^{\prime}$, we get $a u_{d} y \in J^{\prime}$. Since we already showed that y is R / J^{\prime}-regular, we get $u_{d} a \in J^{\prime}$, and since u_{d} is a unit, we finally get $a \in J^{\prime}$, proving our claim.

Corollary 4.2.7. Let R be a Noetherian local ring, and let \mathbf{x} be a regular sequence of length e. Then R is Cohen-Macaulay if and only if $R / \mathbf{x} R$ is.

Proof. Let $d:=\operatorname{dim}(R)$. By 4.2.2, the residue ring $R / \mathbf{x} R$ has dimension $d-e$. If it is Cohen-Macaulay, then there exists a regular sequence \mathbf{y} of that length, and then (\mathbf{x}, \mathbf{y}) (where we still write \mathbf{y} for some lifting of that tuple to R) is a regular sequence of length d, showing that R is Cohen-Macaulay. Conversely, if R is CohenMacaulay, let \mathbf{y} be a system of parameters in $R / \mathbf{x} R$. It follows that (\mathbf{x}, \mathbf{y}) is a system of parameters in R, whence is a regular sequence by Theorem 4.2.6. Hence \mathbf{y} is a regular sequence in $R / \mathbf{x} R$ of maximal length, proving that $R / \mathbf{x} R$ is Cohen-Macaulay.

Corollary 4.2.8. A Cohen-Macaulay local ring has no embedded primes, that is to say, any associated prime is minimal.

Proof. Let R be a Cohen-Macaulay local ring and \mathfrak{p} an associated prime. If \mathfrak{p} has positive height, we can find $x \in \mathfrak{p}$ such that $x R$ has height one. By Exercise 3.5.15, we can extend x to a system of parameters of R, which is then a regular sequence by Theorem 4.2.6. In particular, x is R-regular, contradicting that it belongs to an associated prime.

In fact, Corollary 4.2 .7 holds in far more greater generality: without assuming that R is Cohen-Macaulay, we have that the depth of R is equal to the depth of $R / \mathbf{x} R$ plus e. However, to prove this, one needs a different characterization of depth (using Ext functors), which we will not discuss in these notes. Another property that we can now prove is that any localization of a Cohen-Macaulay local ring is again Cohen-Macaulay (recall that we also still have to resolve this issue with regards to being regular).

Corollary 4.2.9. If R is a Cohen-Macaulay local ring, then so is any localization $R_{\mathfrak{p}}$ at a prime ideal $\mathfrak{p} \subseteq R$.

Proof. Let h be the height of \mathfrak{p}. Let us show by induction on h that \mathfrak{p} contains a regular sequence of length h (that is to say, \mathfrak{p} has depth h). It is not hard to check that the image of this sequence is then a regular sequence in $R_{\mathfrak{p}}$, showing that the latter is Cohen-Macaulay. Obviously, we may take $h>0$. Since \mathfrak{p} cannot be contained in an associated prime of R by Corollary 4.2.8, it contains an R-regular element x. Put $S:=R / x R$, which is again Cohen-Macaulay by Corollary 4.2.7. As $\mathfrak{p S}$ has height $h-1$ (check this), it contains an S-regular sequence \mathbf{y} of length $h-1$. But then (x, y) is an R-regular sequence inside \mathfrak{p}, as we wanted to show.

We can now say that a Noetherian ring A is Cohen-Macaulay if every localization at a maximal ideal is Cohen-Macaulay, and this is then equivalent by the last result with every localization being Cohen-Macaulay. Similarly, a scheme X is CohenMacaulay, if every local ring $\mathscr{O}_{X, x}$ at a (closed) point $x \in X$ is Cohen-Macaulay. In particular, any reduced curve is Cohen-Macaulay.

Independent sequences A sequence $\mathbf{x}:=\left(x_{1}, \ldots, x_{d}\right)$ in a ring R is said to be independent (in the sense of Lech), if $a_{1} x_{1}+\cdots+a_{d} x_{d}=0$ for some $a_{i} \in R$ implies that all a_{i} lie in the ideal $I:=\mathbf{x} R$. In fact, this is really a property of the ideal I. Namely, I / I^{2} is free as an R / I-module if and only if I is generated by an independent sequence. For R a Noetherian local ring, a result of Vasconcelos [60] yields that a sequence \mathbf{x} is regular if and only if it is independent and $\mathbf{x} R$ is a proper ideal of finite projective dimension.

Proposition 4.2.10. Let (R, \mathfrak{m}) be a Noetherian local ring and $\mathbf{x}:=\left(x_{1}, \ldots, x_{d}\right)$ a sequence in R. If $\left(x_{1}^{n}, \ldots, x_{d}^{n}\right)$ is independent for infinitely many n, then \mathbf{x} is an R regular sequence.

Proof. For each n, put $I_{n}:=\left(x_{1}^{n}, \ldots, x_{d}^{n}\right) R$. I first claim that if $\left(x_{1}^{n}, \ldots, x_{d}^{n}\right)$ is independent, then so is $\left(x_{1}^{l}, x_{2}^{n}, \ldots, x_{d}^{n}\right)$, for each $l<n$. Indeed, suppose

$$
a_{1} x_{1}^{l}+\sum_{i=2}^{d} a_{i} x_{i}^{n}=0
$$

for some $a_{i} \in R$. Multiplying this equation with x_{1}^{n-l} and using that $\left(x_{1}^{n}, \ldots, x_{d}^{n}\right)$ is independent, we get $a_{1}, a_{2} x_{1}^{n-l}, \ldots, a_{d} x_{1}^{n-l} \in I_{n}$. Hence, a_{1} lies in $\left(x_{1}^{l}, x_{2}^{n}, \ldots, x_{d}^{n}\right) R$, and we want to show the same for the a_{i} with $i \geq 2$. Write $a_{i} x_{1}^{n-l}=b_{i} x_{1}^{n}+c_{i}$ for some $b_{i} \in R$ and $c_{i} \in\left(x_{2}^{n}, \ldots, x_{d}^{n}\right) R$. Multiplying with x_{1}^{l} gives $\left(b_{i} x_{1}^{l}-a_{i}\right) x_{1}^{n}+x_{1}^{l} c_{i}=0$, so that using once more independence, we get $b_{i} x_{1}^{l}-a_{i} \in I_{n}$, showing that a_{i} lies in $\left(x_{1}^{l}, x_{2}^{n}, \ldots, x_{d}^{n}\right) R$, thus completing the proof of the claim.

Secondly, I claim that x_{1} is R-regular. Indeed, suppose $a x_{1}=0$, for some $a \in R$. Hence $a x_{1}^{n}=0$ so that independence of $\left(x_{1}^{n}, x_{2}^{n}, \ldots, x_{d}^{n}\right)$ yields that $a \in I_{n} \subseteq \mathfrak{m}^{n}$. Since this holds for infinitely many n, Krull's Intersection Theorem (Theorem 3.3.4) yields $a=0$, proving the second claim.

We now turn to the proof of the assertion, for which we use induction on d. The case $d=1$ follows from our second claim, so assume $d>1$. By the second claim, x_{1} is R-regular. Moreover, by the first claim, (the image of) $\left(x_{2}^{n}, \ldots, x_{d}^{n}\right)$ is independent in $R / x_{1} R$ for infinitely many n, so that $\left(x_{2}, \ldots, x_{n}\right)$ is $\left(R / x_{1} R\right)$-regular by induction. Hence $\left(x_{1}, \ldots, x_{n}\right)$ is R-regular, as we wanted to show.

Immediately from this, we may deduce the following Cohen-Macaulay criterium.
Corollary 4.2.11. A Noetherian local ring is Cohen-Macaulay if and only if every system of parameters is independent.

4.3 Exercises

Ex 4.3.1

Verify all the claims made on page 56 about the given node and cusp.

*Ex 4.3.2

Prove the following more general version of Bezout's theorem: if $C:=\mathrm{V}(f)$ and $D:=\mathrm{V}(g)$ are two distinct plane curves of degree t and u respectively, then their scheme-theoretic intersection, given by the (Artinian) K-algebra $A /(f, g) A$ has K-vector space dimension $t u$. To do this, carry out effectively the proof of Noether normalization, to get a handle on this vector space dimension.
To see how this implies the usual statement of Bezout's theorem, namely that the settheoretic intersection $|C \cap D|$ has cardinality at most tu, show that any Artinian ring of length l has at most l maximal ideals.

Ex 4.3.3

From the proof of Proposition 4.1.3, you can extract the following criterion for f to have a simple point at the origin: its linear part should not vanish. Use this to prove that a point P on a plane curve $C:=\mathrm{V}(f)$ is a multiple point if and only if $\partial f / \partial \xi$ and $\partial f / \partial \zeta$ both vanish on P. Conclude that a plane curve has at most finitely many multiple points, and find an upperbound for their number (you will need some elimination theory for this, as given, for instance, in [15, pp. 308-309]).

Ex 4.3.4

Extend the argument in the proof of Proposition 4.1.3 to prove 4.1.4.

Ex 4.3.5

Show that if R is a regular local ring, then so is the power series ring $R[[\xi]]$ in finitely many indeterminates. Prove that the ring of convergent power series over \mathbb{C} (a formal power series is called convergent if converges on a small open disk around the origin) is regular.

Ex 4.3.6

Use Exercise 3.5.6 to show that we may drop the condition in 4.1.6 that K is algebraically closed.

Ex 4.3.7

Show that the coordinate ring of a cusp gives a counterexample to the converse of Corollary 3.3.5.

Ex 4.3.8

Show that a one-dimensional Noetherian local ring R is regular if and only if it is a discrete valuation ring, that is to say, if and only if it admits a valuation $v: R \backslash\{0\} \rightarrow \mathbb{Z}$.

Ex 4.3.9

Using the criterion from Exercise 4.3.3, show that a plane curve with equation $\zeta^{n}=f(\xi)$ with f a polynomial without double roots, defines a regular plane curve if the characteristic of K does not divide n. In particular, elliptic curves are regular in all characteristics other than 2 (and in fact, also in characteristic 2 , but one needs to define them by means of a different cubic polynomial). Moreover, show that if f has a double root, then the corresponding plane curve has a singularity.

Ex 4.3.10

Use the homogenization of the equation of an elliptic curve and Exercise 4.3 .3 to show that the projectification of an elliptic curve is regular if the characteristic is not 2.

*Ex 4.3.11

Show that the discussion on page 59 generalizes to arbitrary affine schemes : if $X:=$ $\operatorname{Spec}(R) \subseteq \mathbb{A}_{K}^{n}$ is a closed affine subscheme, then the closure of $|X|$ in \mathbb{P}_{K}^{n} can be endowed with the structure of a projective scheme $\tilde{X}:=\operatorname{Spec}(\tilde{R})$, such that $X=\tilde{X} \cap \mathbb{A}_{K}^{n}$ (as schemes). To this end, generalize the notion of 'homogenization' as described in (4.2) to arbitrary ideals.

Ex 4.3.12

Show that a prime ideal \mathfrak{p} in a Noetherian ring B is associated if and only if there exists an injective B-linear map $B / \mathfrak{p} \rightarrow B$.
*Ex 4.3.13
Show that a regular ring A is a finite direct sum of regular domains as follows. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ be the minimal primes of A. Show that A is the direct sum of the A / \mathfrak{p}_{i}, and each A / \mathfrak{p}_{i} is regular. Geometrically, direct summands of a ring correspond to connected components of the associated affine variety, and so the previous assertion amounts to: a scheme is regular if and only if each connected component is regular; also, a regular scheme is irreducible if and only if it is connected.

Ex 4.3.14

Let $B:=K\left[\eta_{1}, \ldots, \eta_{4}\right]$, and let \mathfrak{p} be the kernel of the K-algebra homomorphism

$$
B \rightarrow K[\xi, \zeta]: \eta_{1} \mapsto \xi^{4}, \eta_{2} \mapsto \xi^{3} \zeta, \eta_{3} \mapsto \xi \zeta^{3}, \eta_{4} \mapsto \zeta^{4}
$$

and let R be the localization of B / \mathfrak{p} at the maximal ideal corresponding to the origin. Clearly, R is a domain, so that η_{4} is a regular element. Show that the annihilator of η_{3}^{3} in $R / \eta_{4} R$ is equal to the maximal ideal of that ring, showing that the depth of $R / \eta_{4} R$ is zero. Conclude that R is not Cohen-Macaulay.

*Ex 4.3.15

We call a tuple $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ in a ring A quasi-regular if for any k and any homogeneous form of degree k in $A[\xi]$ with $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right)$, if $F(\mathbf{x}) \in I^{k+1}$ then all coefficients of F lie in $I:=\left(x_{1}, \ldots, x_{n}\right)$ A. Show that a regular sequence is quasi-regular. To this end, first show that if y is a zero-divisor modulo I, then it is also a zero-divisor modulo any I^{k}, then show the assertion by induction on n.
Show that \mathbf{x} is quasi-regular if and only if the associated graded ring $\operatorname{Gr}_{I}(A):=\bigoplus_{n} I^{n} / I^{n+1}$ of I is isomorphic to $(A / I)[\xi]$. Show that a quasi-regular sequence is independent.

*Ex 4.3.16

Give a complete proof of Theorem 4.2.6 in every dimension. To this end, you must prove that powers and permutations preserve regular sequences (the former is also proven in Exercise 4.3.17 and the latter in Exercise 4.3.18).

Ex 4.3.17

Show that in a (not necessarily Noetherian) ring A, if $\left(x_{1}, \ldots, x_{d}\right)$ is A-regular, then so is $\left(x_{1}^{e_{1}}, \ldots, x_{d}^{e_{d}}\right)$, for any $e_{i} \geq 1$.
*Ex 4.3.18
Show that in a Noetherian local ring R, a sequence $\left(x_{1}, \ldots, x_{d}\right)$ is regular if and only if it is quasi-regular, by induction on d as follows. Only the converse requires proof, and to this end, first show that x_{1} is R-regular by proving by induction on k that $x_{1} z=0$ implies $z \in$ I^{k}, where $I:=\left(x_{1}, \ldots, x_{d}\right) R$, and then using Krull's Intersection Theorem (Theorem 3.3.4). Conclude by showing that $\left(x_{2}, \ldots, x_{d}\right)$ is $R / x_{1} R$-quasi-regular.
In particular, a regular sequence in a Noetherian local ring is permutable.

Ex 4.3.19

Use Corollary 4.2.8 to prove the 'unmixedness' theorem: if I is an ideal of height e in a Cohen-Macaulay local ring R, and if I is generated by e elements, then I has no embedded primes, that is to say, any associated prime of R / I is minimal. Also show the converse: if a Noetherian local ring has the above unmixedness property, then it is Cohen-Macaulay.

Chapter 5
 Flatness

In this chapter we will study a very important and useful property, called 'flatness'. As a concept, however, it is neither as intuitive nor as transparent as the other concepts discussed so far. Notwithstanding, it is an extremely important phenomenon, which underlies many deeper results in commutative algebra, as will be come apparent in the later chapters. ${ }^{1}$ With David Mumford, the great geometer, we observe:
"The concept of flatness is a riddle that comes out of algebra, but which technically is the answer to many prayers."
[32, p. 214]
Flatness is in essence a homological notion, so we start off with developing some homological algebra. We then discuss the closely related notions of faithful flatness and projective dimension, and conclude the chapter with several useful flatness criteria.

5.1 Homological algebra

The main tool of homological algebra is the 'homology of a complex', so let's define this notion first.

Complexes. Let A be a ring. By a complex we mean a (possibly infinite) sequence of A-module homomorphisms $M_{i} \xrightarrow{d_{i}} M_{i-1}$, for $i \in \mathbb{Z}$, such that the composition of any two consecutive maps is zero. We often simply will say that

$$
\ldots \xrightarrow{d_{i+1}} M_{i} \xrightarrow{d_{i}} M_{i-1} \xrightarrow{d_{i-1}} M_{i-2} \xrightarrow{d_{i-2}} \ldots
$$

is a complex. The d_{i} are called the the boundary maps of the complex, and often are omitted from the notation. Of special interest are those complexes in which all

[^4]modules from a certain point on, either on the left or on the right, are zero (which forces the corresponding maps to be zero as well). Such a complex will be called bounded from the left or right respectively. In that case, one often renumbers so that the first non-zero module is labeled with $i=0$. If M_{\bullet} is bounded from the left, one also might reverse the numbering, indicate this notationally by writing M^{\bullet}, and refer to this situation as a co-complex (and more generally, add for emphasis the prefix 'co-' to any object associated to it).

Homology. Since the composition $d_{i+1} \circ d_{i}$ is zero, we have in particular an inclusion $\operatorname{Im}\left(d_{i+1}\right) \subseteq \operatorname{Ker}\left(d_{i}\right)$. To measure in how far this fails to be an equality, we define the homology $\mathrm{H}_{\bullet}\left(M_{\bullet}\right)$ of M_{\bullet} as the collection of modules

$$
\mathrm{H}_{i}\left(M_{\bullet}\right):=\operatorname{Ker}\left(d_{i}\right) / \operatorname{Im}\left(d_{i+1}\right)
$$

If all homology modules are zero, M_{\bullet} is called exact. More generally, we say that M_{\bullet} is exact at i (or at M_{i}) if $\mathrm{H}_{i}\left(M_{\bullet}\right)=0$. Note that $M_{1} \xrightarrow{d_{1}} M_{0} \rightarrow 0$ is exact (at zero) if and only if d_{1} is surjective, and $0 \rightarrow M_{0} \xrightarrow{d_{0}} M_{-1}$ is exact if and only if d_{0} is injective. An exact complex is often also called an exact sequence. In particular, this terminology is compatible with the nomenclature for short exact sequence. If M_{\bullet} is bounded from the right (indexed so that the last non-zero module is M_{0}), then the cokernel of M_{\bullet} is the cokernel of $d_{1}: M_{1} \rightarrow M_{0}$. Put differently, the cokernel is simply the zero-th homology module $\mathrm{H}_{0}\left(M_{\bullet}\right)$. We say that M_{\bullet} is acyclic, if all $\mathrm{H}_{i}\left(M_{\bullet}\right)=0$ for $i>0$. In that case, the augmented complex obtained by adding the cokernel of M_{\bullet} to the right is then an exact sequence.

5.2 Flatness

We have arrived at the main notion of this chapter. Let A be a ring and M an A module. Recall that $\cdot \otimes_{A} M$, that is to say, tensoring with respect to M, is a right exact functor, meaning that given an exact sequence

$$
\begin{equation*}
0 \rightarrow N_{2} \rightarrow N_{1} \rightarrow N_{0} \rightarrow 0 \tag{5.1}
\end{equation*}
$$

we get an exact sequence

$$
\begin{equation*}
N_{2} \otimes_{A} M \rightarrow N_{1} \otimes_{A} M \rightarrow N_{0} \otimes_{A} M \rightarrow 0 \tag{5.2}
\end{equation*}
$$

See [5, Proposition 2.18] or [38, Theorem 8.90], where one also can find a good introduction to tensor products. We now call a module M flat if any short exact sequence (5.1) remains exact after tensoring, that is to say, we may add an additional zero on the left of (5.2). Put differently, M is flat if and only if $N^{\prime} \otimes_{A} M \rightarrow N \otimes_{A}$ M is injective whenever $N^{\prime} \rightarrow N$ is an injective homomorphism of A-modules. By breaking down a long exact sequence into short exact sequences (see Exercise 5.7.1), we immediately get:

5.2.1 If M is flat, then any exact complex N_{\bullet} remains exact after tensoring with M.

The easiest examples of flat modules are the free modules:
5.2.2 Any free module, and more generally, any projective module, is flat.

Assume first that M is a free A-module, say of the form, $M \cong A^{(I)}$, where I is a possibly infinite index set (recall that an element of $A^{(I)}$ is a sequence $\mathbf{a}:=\left(a_{i} \mid\right.$ $i \in I)$ such that all but finitely many a_{i} are zero; the 'unit' vectors \mathbf{e}_{i} form a basis of $A^{(I)}$, where all entries in \mathbf{e}_{i} are zero except the i-th, which equals one; and, any free A-module is isomorphic to some $A^{(I)}$). For any A-module H, we have $H \otimes_{A}$ $M \cong H^{(I)}$. Since direct sums preserve injectivity, we now easily conclude that M is flat. The same argument applies if M is merely projective, meaning that it is a direct summand of a free module, say $M \oplus M^{\prime} \cong F$ with F free. This completes the proof of the assertion. In particular, $A[\xi]$, being free over A, is flat as an A-module. The same is true for power series rings, at least over Noetherian rings, but for the proof, we will need a flatness criterion, and hence we postpone it to Corollary 5.6.3. Flatness is preserved under base change in the following sense (the proof is left as Exercise 5.7.3):
5.2.3 If M is a flat A-module, then $M / I M$ is a flat A / I-module for each ideal $I \subseteq A$. More generally, if $A \rightarrow B$ is any homomorphism, then $M \otimes_{A} B$ is a flat B-module.
5.2.4 Any localization of a flat A-module is again flat. In particular, for every prime ideal $\mathfrak{p} \subseteq A$, the localization $A_{\mathfrak{p}}$ is flat as an A-module.

The last assertion follows from the first and the fact that A, being free, is flat as an A-module by 5.2.2. The first assertion is not hard and is left as Exercise 5.7.3. Our next goal is to develop a homological tool to aid us in our study of flatness.
Tor modules. Let M be an A-module. A projective resolution of M is a complex P_{\bullet}, bounded from the right, in which all the modules P_{i} are projective, and such that the augmented complex

$$
P_{i} \rightarrow P_{i-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

is exact. Put differently, a projective resolution of M is is an acyclic complex P_{\bullet} of projective modules whose cokernel is equal to M. Tensoring this augmented complex with a second A-module N, yields a (possibly non-exact) complex

$$
P_{i} \otimes_{A} N \rightarrow P_{i-1} \otimes_{A} N \rightarrow \cdots \rightarrow P_{0} \otimes_{A} N \rightarrow M \otimes_{A} N \rightarrow 0 .
$$

The homology of the non-augmented part $P_{\bullet} \otimes N$ (that is to say, without the final module $M \otimes N$), is denoted

$$
\operatorname{Tor}_{i}^{A}(M, N):=\mathrm{H}_{i}\left(P_{\bullet} \otimes_{A} N\right)
$$

As the notation indicates, this does not depend on the choice of projective resolution $P_{\text {. }}$. Moreover, we have for each i an isomorphism $\operatorname{Tor}_{i}^{A}(M, N) \cong \operatorname{Tor}_{i}^{A}(N, M)$. We will not prove these properties here (the proofs are not that hard anyway, see for instance [15, Appendix 3] or [30, Appendix B]). Since tensoring is right exact, a quick calculation shows that

$$
\operatorname{Tor}_{0}^{A}(M, N) \cong M \otimes_{A} N
$$

The next result is a general fact of 'derived functors' (Tor is indeed the derived functor of the tensor product as discussed for instance in [30, Appendix B]; for a proof of the next result, see Exercise 5.7.20).
5.2.5 If

$$
0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0
$$

is a short exact sequence of A-modules, then we get for every A-module M a long exact sequence

$$
\begin{aligned}
& \cdots \rightarrow \operatorname{Tor}_{i+1}^{A}\left(M, N^{\prime \prime}\right) \xrightarrow{\delta_{i+1}} \operatorname{Tor}_{i}^{A}\left(M, N^{\prime}\right) \rightarrow \\
& \operatorname{Tor}_{i}^{A}(M, N) \rightarrow \operatorname{Tor}_{i}^{A}\left(M, N^{\prime \prime}\right) \xrightarrow{\delta_{i}} \operatorname{Tor}_{i-1}^{A}\left(M, N^{\prime}\right) \rightarrow \ldots
\end{aligned}
$$

where the δ_{i} are the so-called connecting maps, and the remaining maps are induced by the original maps.
Tor-criterion for flatness. We can now formulate a homological criterion for flatness. More flatness criteria will be discussed in $\S 5.6$ below.

Theorem 5.2.6. For an A-module M, the following are equivalent

1. M is flat;
2. $\operatorname{Tor}_{i}^{A}(M, N)=0$ for all $i>0$ and all A-modules N;
3. $\operatorname{Tor}_{1}^{A}(M, A / I)=0$ for all finitely generated ideals $I \subseteq A$.

Proof. Let P_{\bullet} be a projective resolution of N. If M is flat, then $P_{\bullet} \otimes_{A} M$ is again exact by 5.2.1, and hence its higher homology $\operatorname{Tor}_{i}^{A}(N, M)=\mathrm{H}_{i}\left(P_{\bullet} \otimes_{A} N\right)$ vanishes. Conversely, if (2) holds, then tensoring the exact sequence $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N / N^{\prime} \rightarrow 0$ with M yields in view of 5.2.5 an exact sequence

$$
0=\operatorname{Tor}_{1}^{A}\left(M, N / N^{\prime}\right) \rightarrow M \otimes_{A} N^{\prime} \rightarrow M \otimes_{A} N
$$

showing that the latter map is injective.
Remains to show (3) \Rightarrow (1), which for simplicity I will only do in the case A is Noetherian; the general case is treated in Exercise 5.7.6. We must show that if $N^{\prime} \subseteq N$ is an injective homomorphism of A-modules, then $M \otimes_{A} N^{\prime} \rightarrow M \otimes_{A} N$ is again injective, and we already observed that this follows once we showed that $\operatorname{Tor}_{1}^{A}\left(M, N / N^{\prime}\right)=0$. I claim that it suffices to show this for N finitely generated: indeed, if N is arbitrary and $t:=m_{1} \otimes n_{1}+\cdots+m_{s} \otimes n_{s}$ is an element in $M \otimes N^{\prime}$
which is sent to zero in $M \otimes N$, then by definition of tensor product, there exists a finitely generated submodule $N_{1} \subseteq N$ containing all n_{i} such that $t=0$ as an element of $M \otimes N_{1}$. In particular, t is an element of $M \otimes N_{1}^{\prime}$, where $N_{1}^{\prime}:=N^{\prime} \cap N_{1}$, whose image in $M \otimes N_{1}$ is zero. Assuming momentarily that the finitely generated case is already proven, t is therefore zero in $M \otimes N_{1}^{\prime}$, whence a fortiori in $M \otimes N^{\prime}$.

So we may assume that N is finitely generated. We prove by induction on r, the number of generators of N / N^{\prime}, that $\operatorname{Tor}_{1}^{A}\left(M, N / N^{\prime}\right)=0$. If $r=1$, then N / N^{\prime} is of the from A / I with $I \subseteq A$ an ideal, and the result holds by assumption. For $r>1$, let $t \in N$ be such that its image in N / N^{\prime} is a minimal generator. Put $H:=N^{\prime}+A t$, so that N / H is generated by $r-1$ elements, and H / N^{\prime} is cyclic. Tensoring the short exact sequence

$$
0 \rightarrow H / N^{\prime} \rightarrow N / N^{\prime} \rightarrow N / H \rightarrow 0
$$

yields by 5.2.5 an exact sequence

$$
\operatorname{Tor}_{1}^{A}\left(M, H / N^{\prime}\right) \rightarrow \operatorname{Tor}_{1}^{A}\left(M, N / N^{\prime}\right) \rightarrow \operatorname{Tor}_{1}^{A}(M, N / H)
$$

By induction, the two outer modules vanish, whence so does the inner.
For Noetherian rings we can even restrict the test in (3) to prime ideals (but see also Theorem 5.6.6 below, which reduces the test to a single ideal):

Corollary 5.2.7. Let A be a Noetherian ring and M an A-module. If $\operatorname{Tor}_{1}^{A}(M, A / \mathfrak{p})$ vanishes for all prime ideals $\mathfrak{p} \subseteq A$, then M is flat. More generally, if, for some $i \geq 1$, every $\operatorname{Tor}_{i}^{A}(M, A / \mathfrak{p})$ vanishes for \mathfrak{p} running over the prime ideals in A, then $\operatorname{Tor}_{i}^{A}(M, N)$ vanishes for all (finitely generated) A-modules N.

Proof. The first assertion follows from the last by (3). The last assertion, for finitely generated modules, follows from the fact that every such module N admits a prime filtration, that is to say, a finite ascending chain of submodules

$$
\begin{equation*}
0=N_{0} \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{e}=N \tag{5.3}
\end{equation*}
$$

such that each successive quotient N_{j} / N_{j-1} is isomorphic to the (cyclic) A-module A / \mathfrak{p}_{j} for some prime ideal $\mathfrak{p}_{j} \subseteq A$, for $j=1, \ldots, e$ (see Exercise 5.7.8). By induction on j, one then derives from the long exact sequence (5.2.5) that $\operatorname{Tor}_{i}^{A}\left(M, N_{j}\right)=$ 0 , whence in particular $\operatorname{Tor}_{i}^{A}(M, N)=0$. To prove the same result for N arbitrary (which we will not be needing in the sequel), use an argument similar to the one in the proof of Theorem 5.2.6 (see Exercise 5.7.6).

Corollary 5.2.8. Let

$$
0 \rightarrow M_{1} \rightarrow F \rightarrow M \rightarrow 0
$$

be an exact sequence of A-modules. If F is flat, then

$$
\operatorname{Tor}_{i}^{A}(M, N) \cong \operatorname{Tor}_{i-1}^{A}\left(M_{1}, N\right)
$$

for all $i \geq 2$ and all A-modules N.

Proof. From the long exact sequence of Tor (see 5.2.5), we get exact sequences

$$
0=\operatorname{Tor}_{i}^{A}(F, N) \rightarrow \operatorname{Tor}_{i}^{A}(M, N) \rightarrow \operatorname{Tor}_{i-1}^{A}\left(M_{1}, N\right) \rightarrow \operatorname{Tor}_{i-1}^{A}(F, N)=0
$$

where the two outer most modules vanish because of Theorem 5.2.6.
Note that in case F is actually projective in the above sequence, then M_{1} is called a (first) syzygy of M. Therefore, the previous result is particularly useful when working with syzygies (for a typical application, see the proof of 5.5.1.)

5.3 Faithful flatness

We call an A-module M faithful, if $\mathfrak{m} M \neq M$ for all (maximal) ideals \mathfrak{m} of $A .^{2}$ By Nakayama's Lemma, we immediately get:

5.3.1 Any finitely generated module over a local ring is faithful.

Of particular interest are the faithful modules which are moreover flat, called faithfully flat modules (see Exercise 5.7.21 for a homological characterization). It is not hard to see that any free or projective module is faithfully flat. On the other hand, no proper localization of A is faithfully flat.

5.3.2 If M is a faithfully flat A-module, then $M \otimes_{A} N$ is non-zero, for every non-zero A-module N. Moreover, if $A \rightarrow B$ is an arbitrary homomorphism, then $M \otimes_{A} B$ is a faithfully flat B-module.

Indeed, for the first assertion, let $N \neq 0$ and choose a non-zero element $n \in N$. Since $I:=\operatorname{Ann}_{A}(n)$ is then a proper ideal, it is contained in some maximal ideal $\mathfrak{m} \subseteq A$. Note that $A n \cong A / I$. Tensoring the induced inclusion $A / I \hookrightarrow N$ with M gives by assumption an injection $M / I M \hookrightarrow M \otimes_{A} N$. The first of these modules is non-zero, since $I M \subseteq \mathfrak{m} M \neq M$, whence so is the second, as we wanted to show. To prove the second assertion, $M \otimes_{A} B$ is flat over B by 5.2.3. Let \mathfrak{n} be a maximal ideal of B, and let $\mathfrak{p}:=\mathfrak{n} \cap A$ be its contraction to A. In particular, $M / \mathfrak{p} M$ is flat over A / \mathfrak{p}, and an easy calculation then shows that it is faithfully flat. Therefore, by the first assertion, $M / \mathfrak{p} M \otimes_{A / \mathfrak{p}} B / \mathfrak{n}$ is non-zero. As the latter is just $\left(M \otimes_{A} B\right) / \mathfrak{n}\left(M \otimes_{A} B\right)$, we showed that $M \otimes_{A} B$ is also faithful.

In most of our applications, the A-module has the additional structure of an A algebra. In particular, we call a ring homomorphism $A \rightarrow B$ (faithfully) flat if B is (faithfully) flat as an A-module. Since by definition a local homomorphism of local rings $(R, \mathfrak{m}) \rightarrow(S, \mathfrak{n})$ is a ring homomorphism with the additional property that $\mathfrak{m} \subseteq \mathfrak{n}$, we get immediately:

5.3.3 Any local homomorphism which is flat, is faithfully flat.

Proposition 5.3.4. If $A \rightarrow B$ is faithfully flat, then for every ideal $I \subseteq A$, we have $I=I B \cap A$, and hence in particular, $A \rightarrow B$ is injective.

[^5]Proof. For I equal to the zero ideal, this just says that $A \rightarrow B$ is injective. Suppose this last statement is false, and let $a \in A$ be a non-zero element in the kernel of $A \rightarrow B$, that is to say, $a=0$ in B. However, by 5.3.2, the module $a A \otimes_{A} B$ is non-zero, say, containing the non-zero element x. Hence x is of the form $a \otimes b$ for some $r \in A$ and $b \in B$, and therefore equal to $r \otimes a b=r \otimes 0=0$, contradiction.

To prove the general case, note that $B / I B$ is a flat A / I-module by 5.2.3. It is clearly also faithful, so that applying our first argument to the natural homomorphism $A / I \rightarrow B / I B$ yields that it must be injective, which precisely means that $I=I B \cap A$.

A ring homomorphism $A \rightarrow B$ such that $I=I B \cap A$ for all ideals $I \subseteq A$ is called cyclically pure. Hence faithfully flat homomorphisms are cyclically pure. We can paraphrase this as 'faithful flatness preserves the ideal structure of a ring', that is to say, in terms of Grassmanians (see page 28), we have:
5.3.5 If $A \rightarrow B$ is faithfully flat, or more generally, cyclically pure, then the induced map $\operatorname{Grass}(A) \rightarrow \operatorname{Grass}(B): I \mapsto I B$ on the Grassmanians is injective.

Since a ring A is Noetherian if and only if its Grassmanian $\operatorname{Grass}(A)$ is wellordered (i.e., has the descending chain condition; recall that the order on $\operatorname{Grass}(A)$ is given by reverse inclusion), we get immediately the following Noetherianity criterion from 5.3.5:

Corollary 5.3.6. Let $A \rightarrow B$ be a faithfully flat, or more generally, a cyclically pure homomorphism. If B is Noetherian, then so is A.

A similar argument shows:

5.3.7 If $R \rightarrow S$ is a faithfully flat homomorphism of local rings, and if $I \subseteq R$ is minimally

 generated by e elements, then so is IS.Clearly, IS is generated by at most e elements. By way of contradiction, suppose it is generated by strictly fewer elements. By Nakayama's Lemma, we may choose these generators already in I. So there exists an ideal $J \subseteq I$, generated by less than e elements, such that $J S=I S$. However, by cyclic purity (Proposition 5.3.4), we have $J=J S \cap R=I S \cap R=I$, contradicting that I requires at least e generators.

If $A \rightarrow B$ is a flat or faithfully flat homomorphism, then we also will call the corresponding morphism $Y:=\operatorname{Spec}(B) \rightarrow X:=\operatorname{Spec}(A)$ flat or faithfully flat respectively. In Exercise 5.7.13, you are asked to prove that:
5.3.8 A morphism $f: Y \rightarrow X$ of affine schemes is flat if and only if for every (closed) point $y \in Y$, the induced homomorphism $\mathscr{O}_{X, f(y)} \rightarrow \mathscr{O}_{Y, y}$ is flat.

Theorem 5.3.9. A morphism $Y \rightarrow X$ of affine schemes is faithfully flat if and only if it is flat and surjective.

Proof. Let $A \rightarrow B$ be the corresponding homomorphism. Assume $A \rightarrow B$ is faithfully flat, and let $\mathfrak{p} \subseteq A$ be a prime ideal. Surjectivity of the morphism amounts to showing that there is at least one prime ideal of B lying over \mathfrak{p}. Now, by 5.3.2, the base change $A_{\mathfrak{p}} \rightarrow B_{\mathfrak{p}}$ is again faithfully flat, and hence in particular $\mathfrak{p} B_{\mathfrak{p}} \neq B_{\mathfrak{p}}$. In other words, the fiber ring $B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}}$ is non-empty, which is what we wanted to prove (indeed, take any maximal ideal \mathfrak{n} of $B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}}$ and let $\mathfrak{q}:=\mathfrak{n} \cap B$; then verify that $\mathfrak{q} \cap A=\mathfrak{p}$.)

Conversely, assume $Y \rightarrow X$ is flat and surjective, and let \mathfrak{m} be a maximal ideal of A. Let $\mathfrak{q} \subseteq B$ be an ideal lying over \mathfrak{m}. Hence $\mathfrak{m} B \subseteq \mathfrak{q} \neq B$, showing that B is faithful over A.

5.4 Flatness and regular sequences

The first fundamental fact regarding regular sequences and flat homomorphisms is:
Proposition 5.4.1. If $A \rightarrow B$ is a flat homomorphism and \mathbf{x} is an A-regular sequence, then \mathbf{x} is also B-regular.

Proof. We induct on the length n of $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$. Assume first $n=1$. Multiplication by x_{1}, that is to say, the homomorphism $A \xrightarrow{x_{1}} A$, is injective, whence remains so after tensoring with B by 5.2.3. It is not hard to see that the resulting homomorphism is again multiplication $B \xrightarrow{x_{1}} B$, showing that x_{1} is B-regular. For $n>1$, the base change $A / x_{1} A \rightarrow B / x_{1} B$ is flat, so that by induction $\left(x_{2}, \ldots, x_{n}\right)$ is $B / x_{1} B$ regular. Hence we are done, since x_{1} is B-regular by the previous argument.

Tor modules behave well under deformation by a regular sequence in the following sense.

Proposition 5.4.2. Let \mathbf{x} be a regular sequence in a ring A, and let M and N be two A-modules. If \mathbf{x} is M-regular and $\mathbf{x} N=0$, then we have for each i an isomorphism

$$
\operatorname{Tor}_{i}^{A}(M, N) \cong \operatorname{Tor}_{i}^{A / \mathbf{x} A}(M / \mathbf{x} M, N)
$$

Proof. By induction on the length of the sequence, we may assume that we have a single A-regular and M-regular element x. Put $B:=A / x A$. From the short exact sequence

$$
0 \rightarrow A \xrightarrow{x} A \rightarrow B \rightarrow 0
$$

we get after tensoring with M, a long exact sequence of Tor-modules as in 5.2.5. Since $\operatorname{Tor}_{i}^{A}(A, M)$ vanishes for all i, so must each $\operatorname{Tor}_{i}^{A}(M, B)$ in this long exact sequence for $i>1$. Furthermore, the initial part of this long exact sequence is

$$
0 \rightarrow \operatorname{Tor}_{1}^{A}(M, B) \rightarrow M \xrightarrow{x} M \rightarrow M / x M \rightarrow 0
$$

proving that $\operatorname{Tor}_{1}^{A}(M, B)$ too vanishes as x is M-regular. Now, let P_{\bullet} be a projective resolution of M. The homology of $\bar{P}_{\bullet}:=P_{\bullet} \otimes_{A} B$ is by definition $\operatorname{Tor}_{i}^{A}(M, B)$, and since we showed that this is zero, \bar{P}_{\bullet} is exact, whence a projective resolution of $M / x M$. Hence we can calculate $\operatorname{Tor}_{i}^{B}(M / x M, N)$ as the homology of $\bar{P}_{\bullet} \otimes_{B} N$ (note that by assumption, N is a B-module). However, the latter complex is equal to $P_{\bullet} \otimes_{A}$ N (which we can use to calculate $\operatorname{Tor}_{i}^{A}(M, N)$), and hence both complexes have the same homology, as we wanted to show.

5.5 Projective dimension

If an A-module M has a projective resolution P_{\bullet} which is also bounded from the left, that is to say, is of the form

$$
0 \rightarrow P_{e} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

then we say that M has finite projective dimension. The smallest length e of such an exact sequence is called the projective dimension of M and is denoted $\operatorname{projdim}(M)$; if M does not have a finite projective resolution, then we set projdim $(M):=\infty$. Clearly, the projective dimension of a module is zero if and only if it is projective. The connection with Tor is immediate by virtue of the latter's definition as the homology of the tensor product with a projective resolution:
5.5.1 If M is an A-module of projective dimension e, then $\operatorname{Tor}_{i}^{A}(M, N)=0$ for all $i>e$ and all A-modules N. Moreover, if

$$
0 \rightarrow H \rightarrow P_{e} \rightarrow P_{e-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

is exact, with all P_{e} projective, then H is flat (and in fact projective).
Only the second assertion requires explanation. By Corollary 5.2.8, the vanishing of $\operatorname{Tor}_{e+1}^{A}(M, N)$ is equivalent with the vanishing of $\operatorname{Tor}_{1}^{A}(H, N)$. Hence H is a flat A-module by Theorem 5.2.6. To prove that it is actually projective, one needs Extfunctors, which we will not treat.

If x is an A-regular element, then $A / x A$ has projective dimension one, as is clear from the exact sequence

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{x} A \rightarrow A / x A \rightarrow 0 . \tag{5.4}
\end{equation*}
$$

In fact, this is also true for regular sequences of any length, but to prove this we need a new tool:

Minimal resolutions. A complex M_{\bullet} over a local ring (R, \mathfrak{m}) is called minimal if the kernel of each boundary $d_{i}: M_{i} \rightarrow M_{i-1}$ lies inside $\mathfrak{m} M_{i}$. The next result is easily derived from Nakayama's Lemma and induction (see Exercise 5.7.9):
5.5.2 Every finitely generated module over a Noetherian local ring admits a minimal free resolution, consisting of finitely generated free modules.
Corollary 5.5.3. Over a Noetherian local ring, a finitely generated module is flat if and only if it is projective if and only if it is free.
Proof. The converse implications are all trivial. So remains to show that if G is a finitely generated flat R-module, then it is free. By 5.5.2 (or Nakayama's Lemma), we can find a finitely generated free A-module F, and a surjective map $F \rightarrow G$ whose kernel H lies inside $\mathfrak{m} F$. In other words, $F / \mathfrak{m} F \cong G / \mathfrak{m} G$. On the other hand, tensoring the exact sequence $0 \rightarrow H \rightarrow F \rightarrow G \rightarrow 0$ with $k:=R / \mathfrak{m}$ yields by 5.2.5 an exact sequence

$$
0=\operatorname{Tor}_{1}^{R}(G, k) \rightarrow H / \mathfrak{m} H \rightarrow F / \mathfrak{m} F \rightarrow G / \mathfrak{m} G \rightarrow 0
$$

where we used the flatness of G to obtain the vanishing of the first module. Since the last arrow is an isomorphism, $H / \mathfrak{m} H=0$, which by Nakayama's Lemma implies $H=0$, that is to say, $F=G$ is free.

Minimal resolutions are essentially unique:
Proposition 5.5.4. Let (R, \mathfrak{m}) be a Noetherian local ring with residue field k. Let M be a finitely generated R-module, and let

$$
\ldots F_{i} \rightarrow F_{i-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

be a minimal free resolution. For each $i \geq 0$, the i-th Betti number of M, that is to say, the k-vector space dimension of $\operatorname{Tor}_{i}^{R}(M, k)$, is equal to the rank of F_{i}.

Moreover, the projective dimension of M is equal to the supremum of all i for which $\operatorname{Tor}_{i}^{R}(M, k) \neq 0$, and hence is less than or equal to $\operatorname{projdim}(k)$.

Proof. By definition, $\operatorname{Tor}_{i}^{R}(M, k)$ is the homology of $F_{\bullet} \otimes_{R} k$. Since F_{\bullet} is minimal, the boundaries in $F_{\bullet} \otimes_{R} k$ are all zero, so that $\mathrm{H}_{i}\left(F_{\bullet} \otimes_{R} k\right)=F_{i} \otimes_{R} k$. This shows that the Betti numbers of M coincide with the ranks of the free modules in F_{\bullet} (and hence the latter are uniquely determined). The second assertion follows immediately from this and from 5.5.1.

Put differently, the previous result yields a criterion for a finitely generated module to have finite projective dimension, namely that some Betti number be zero. We can now prove (5.4) for any regular sequence:

Corollary 5.5.5. If \mathbf{x} is a regular sequence in a Noetherian local ring R, then $R / \mathbf{x} R$ has finite projective dimension.

Proof. We prove by induction on the length l of the sequence that $R / \mathbf{x} R$ has projective dimension at most l, where the case $l=1$ is (5.4). Write $\mathbf{x}=(\mathbf{y}, x)$ with \mathbf{y} a regular sequence of length $l-1$. The short exact sequence

$$
0 \rightarrow R / \mathbf{y} R \xrightarrow{x} R / \mathbf{y} R \rightarrow R / \mathbf{x} R \rightarrow 0
$$

when tensored with the residue field k yields by 5.2 .5 a long exact sequence

$$
\operatorname{Tor}_{i}^{R}(R / \mathbf{y} R, k) \rightarrow \operatorname{Tor}_{i}^{R}(R / \mathbf{x} R, k) \rightarrow \operatorname{Tor}_{i-1}^{R}(R / \mathbf{y} R, k)
$$

For $i-1 \geq l$, both outer modules are zero by induction and Proposition 5.5.4, whence so is the inner module. Using Proposition 5.5.4 once more, we see that $R / \mathbf{x} R$ therefore has projective dimension at most l.

In fact, the projective dimension of $R / \mathbf{x} R$ is exactly l. Moreover, this result remains true if the ring is not local, nor even Noetherian. This more general result is proven by means of a complex called the Koszul complex, whose homology actually measures the failure of a sequence being regular. For all this, see for instance [30, $\S 16]$ or [15, §17].

Theorem 5.5.6 (Serre). A d-dimensional Noetherian local ring R is regular if and only if its residue field k has finite projective dimension (equal to d). If this is the case, then any module has projective dimension at most d.

Proof (partim). Regarding the first statement, we will only prove the direct implication. Since a regular local ring R is Cohen-Macaulay by Proposition 4.2.3, its maximal ideal is generated by a regular sequence \mathbf{x}. Hence $k=R / \mathbf{x} R$ has finite projective dimension by Corollary 5.5.5. To prove the converse, some additional tools (like Ext-functors) are required, and we refer the reader to the literature (see for instance [30, Theorem 19.2], [38, Theorem 11.189], or [15, Theorem 19.12]).

The second assertion for finitely generated modules now follows immediately from the first and Proposition 5.5.4. To also prove this for non-finitely generated modules, again Ext-functors are needed (see for instance [30, §19 Lemma 2] or [15, Theorem A3.18]).

Although we did not give a complete proof, we did prove most of what we will use, with the most notable exception Corollary 5.5.8 below. We can even formulate a global version, which was first proven by Hilbert in the case A is a polynomial ring over a field.

Theorem 5.5.7. Over a d-dimensional regular ring A, any finitely generated A module M has projective dimension at most d.

Proof. Choose an exact sequence

$$
0 \rightarrow H \rightarrow A^{n_{d}} \rightarrow \ldots A^{n_{1}} \rightarrow A^{n_{0}} \rightarrow M \rightarrow 0
$$

for some n_{i} and some finitely generated module H, the d-th syzygy of M, given as the kernel of the homomorphism $A^{n_{d}} \rightarrow A^{n_{d-1}}$. Since $A_{\mathfrak{m}}$ is flat over A, for \mathfrak{m} a maximal ideal of A, we get an exact sequence

$$
0 \rightarrow H_{\mathfrak{m}} \rightarrow A_{\mathfrak{m}}^{n_{d}} \rightarrow \ldots A_{\mathfrak{m}}^{n_{1}} \rightarrow A_{\mathfrak{m}}^{n_{0}} \rightarrow M_{\mathfrak{m}} \rightarrow 0
$$

By Theorem 5.5.6, the $A_{\mathfrak{m}}$-module $M_{\mathfrak{m}}$ has finite projective dimension, and hence, $H_{\mathfrak{m}}$ is flat by 5.5.1. Therefore, H is projective by Exercise 5.7.15.

Corollary 5.5.8. If A is a regular ring, then so is any of its localizations.
Proof. A moment's reflection yields that we only need to prove this when A is already local, and \mathfrak{p} is some (non-maximal) prime ideal. By Theorem 5.5.6, the residue ring A / \mathfrak{p} admits a finite free resolution. Since localization is flat, tensoring this resolution with $A_{\mathfrak{p}}$ gives a finite free resolution of $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$ viewed as an $A_{\mathfrak{p}}$-module. Hence $A_{\mathfrak{p}}$ is regular by Theorem 5.5.6 (this is the one spot where we use the unproven converse from that theorem).

5.6 Flatness criteria

Because flatness will play such a crucial role, we want several ways of detecting it. In this section, we will see five such criteria.

Equational criterion for flatness Our first criterion is very useful in applications, and works without any hypothesis on the ring or module. To give a streamlined presentation, let us introduce the following terminology: given an A-module N, and tuples \mathbf{b}_{i} in A^{n}, by an N-linear combination of the \mathbf{b}_{i}, we mean a tuple in N^{n} of the form $n_{1} \mathbf{b}_{1}+\cdots+n_{s} \mathbf{b}_{s}$ where $n_{i} \in N$. Of course, if N has the structure of an A-algebra, this is just the usual terminology. Given a (finite) homogeneous linear system of equations

$$
\begin{equation*}
L_{1}(t)=\cdots=L_{s}(t)=0 \tag{L}
\end{equation*}
$$

over A in the n variables t, we denote the A-submodule of N^{n} consisting of all solutions of (\mathscr{L}) in N by $\operatorname{Sol}_{N}(\mathscr{L})$, and we let $f_{\mathscr{L}}: N^{n} \rightarrow N^{s}$ be the map given by substitution $\mathbf{x} \mapsto\left(L_{1}(\mathbf{x}), \ldots, L_{s}(\mathbf{x})\right)$. In particular, we have an exact sequence

$$
0 \rightarrow \operatorname{Sol}_{N}(\mathscr{L}) \rightarrow N^{n} \xrightarrow{f_{\mathscr{G}}} N^{s} . \quad(\dagger \mathscr{L} / N)
$$

Theorem 5.6.1. A module M over a ring A is flat if and only if every solution in M of a homogeneous linear equation in finitely many variables over A is an M-linear combination of solutions in A. Moreover, instead of a single linear equation, we may take any finite system of linear equations in the above criterion.

Proof. We will only prove the first assertion, and leave the second for the exercises (Exercise 5.7.10). Let $L=0$ be a homogeneous linear equation in n variables with coefficients in A. If M is flat, then the exact sequence ($\dagger_{L / A}$) remains exact after tensoring with M, that is to say,

$$
0 \rightarrow \operatorname{Sol}_{A}(L) \otimes_{A} M \rightarrow M^{n} \xrightarrow{f_{L}} M
$$

and hence by comparison with $\left(\dagger_{L / M}\right)$, we get

$$
\operatorname{Sol}_{M}(L)=\operatorname{Sol}_{A}(L) \otimes_{A} M
$$

From this it follows easily that any tuple in $\operatorname{Sol}_{M}(L)$ is an M-linear combination of tuples in $\operatorname{Sol}_{A}(L)$, proving the direct implication.

Conversely, assume the condition on the solution sets of linear forms holds. To prove that M is flat, we will verify condition (3) in Theorem 5.2.6. To this end, let $I:=\left(a_{1}, \ldots, a_{k}\right) A$ be a finitely generated ideal of A. Tensor the exact sequence $0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0$ with M to get by 5.2.5 an exact sequence

$$
\begin{equation*}
0=\operatorname{Tor}_{1}^{A}(A, M) \rightarrow \operatorname{Tor}_{1}^{A}(A / I, M) \rightarrow I \otimes_{A} M \rightarrow M \tag{5.6}
\end{equation*}
$$

Suppose y is an element in $I \otimes M$ that is mapped to zero in M. Writing $y=a_{1} \otimes m_{1}+$ $\cdots+a_{k} \otimes m_{k}$ for some $m_{i} \in M$, we get $a_{1} m_{1}+\cdots+a_{k} m_{k}=0$. Hence by assumption, there exist solutions $\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(s)} \in A^{k}$ of the linear equation $a_{1} t_{1}+\cdots+a_{k} t_{k}=0$, such that

$$
\left(m_{1}, \ldots, m_{k}\right)=n_{1} \mathbf{b}^{(1)}+\cdots+n_{s} \mathbf{b}^{(s)}
$$

for some $n_{i} \in M$. Letting $b_{i}^{(j)}$ be the i-th entry of $\mathbf{b}^{(j)}$, we see that

$$
y=\sum_{i=1}^{k} a_{i} \otimes m_{i}=\sum_{i=1}^{k} \sum_{j=1}^{s} a_{i} \otimes n_{j} b_{i}^{(j)}=\sum_{j=1}^{s}\left(\sum_{i=1}^{k} a_{i} b_{i}^{(j)}\right) \otimes n_{j}=\sum_{j=1}^{s} 0 \otimes n_{j}=0 .
$$

Hence $I \otimes_{A} M \rightarrow M$ is injective, so that $\operatorname{Tor}_{1}^{A}(A / I, M)$ must be zero by (5.6). Since this holds for all finitely generated ideals $I \subseteq A$, we proved that M is flat by Theorem 5.2.6(3).

It is instructive to view the previous result from the following perspective. To a homogeneous linear equation $L=0$, we associated an exact sequence $\left(\dagger_{L / N}\right)$. The image of f_{L} is of the form $I N$ where I is the ideal generated by the coefficients of the linear form defining L. In case $N=B$ is an A-algebra, this leads to the following extended exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Sol}_{B}(L) \rightarrow B^{n} \xrightarrow{f_{L}} B \rightarrow B / I B \rightarrow 0 \tag{}
\end{equation*}
$$

This justifies calling $\operatorname{Sol}_{B}(L)$ the module of syzygies of $I B$ (one checks that it only depends on the ideal I). Therefore, we may paraphrase the equational flatness criterion for algebras as follows:
5.6.2 A ring homomorphism $A \rightarrow B$ is flat if and only if taking syzygies commutes with extension in the sense that the module of syzygies of $I B$ is the extension to B of the module of syzygies of I.

Here is one application of the equational flatness criterion.
Corollary 5.6.3. For any Noetherian ring A, the extension $A \rightarrow A\left[\left[\xi_{1}, \ldots, \xi_{n}\right]\right]$ is faithfully flat.

Proof. By induction, we may reduce to the case of a single variable ξ. If $\mathfrak{m} \subseteq A$ is a maximal ideal, then $\mathfrak{m} A[[x]]$ is a prime ideal with quotient $(A / \mathfrak{m})[[\xi]]$, showing that $A[[\xi]]$ is faithful over A. To show that it is also flat, we use the equational criterion. Let $L=0$ be a homogeneous linear equation in n unknowns with coefficients in A. Let $\mathbf{f} \in A[[\xi]]^{n}$ be a solution of $L=0$. Using vector notation, we may expand $\mathbf{f}=\sum_{i=0}^{\infty} \mathbf{b}_{i} \xi^{i}$, for $\mathbf{b}_{i} \in A^{n}$. It follows that $0=L(\mathbf{f})=\sum_{i} L\left(\mathbf{b}_{i}\right) \xi^{i}$, showing that each $\mathbf{b}_{i} \in \operatorname{Sol}_{A}(L)$. By Noetherianity, $\operatorname{Sol}_{A}(L)$ is finitely generated, and hence, there exists N, such that \mathbf{b}_{i} for $i \leq N$ generate $\operatorname{Sol}_{A}(L)$, in other words, we can find $r_{i j} \in A$ such that $\mathbf{b}_{i}=\sum_{j \leq N} r_{i j} \mathbf{b}_{j}$, for all $i>N$. Putting $g_{j}:=\xi^{j}+\sum_{i>N} r_{i j} \xi^{i} \in A[[\xi]]$, for $j \leq N$, we have

$$
\mathbf{f}=\sum_{j=0}^{N} \mathbf{b}_{j} \xi^{j}+\sum_{i=N+1}^{\infty}\left(\sum_{j \leq N} r_{i j} \mathbf{b}_{j}\right) \xi^{i}=\sum_{j=0}^{N} \mathbf{b}_{j} g_{j}
$$

which is an $A[[\xi]]$-linear combination of the solutions $\mathbf{b}_{i} \in \operatorname{Sol}_{A}(L)$, so that we are done by Theorem 5.6.1.

Quotient criterion for flatness. The next criterion is derived from our Tor-criterion (Theorem 5.2.6):

Theorem 5.6.4. Let $A \rightarrow B$ be a flat homomorphism, and let $I \subseteq B$ be an ideal. The induced homomorphism $A \rightarrow B / I$ is flat if and only if $\mathfrak{a B} \cap I=\mathfrak{a} I$ for all finitely generated ideals $\mathfrak{a} \subseteq A$.

Moreover, if A is Noetherian, we only need to check the above criterion for $\mathfrak{a} a$ prime ideal of A.

Proof. From the exact sequence $0 \rightarrow I \rightarrow B \rightarrow B / I \rightarrow 0$ we get after tensoring with A / \mathfrak{a} an exact sequence

$$
0=\operatorname{Tor}_{1}^{A}(B, A / \mathfrak{a}) \rightarrow \operatorname{Tor}_{1}^{A}(B / I, A / \mathfrak{a}) \rightarrow I / \mathfrak{a} I \rightarrow B / \mathfrak{a} B
$$

where we used the flatness of B for the vanishing of the first module. The kernel of $I / \mathfrak{a} I \rightarrow B / \mathfrak{a} B$ is easily seen to be $(\mathfrak{a} B \cap I) / \mathfrak{a} I$. Hence $\operatorname{Tor}_{1}^{A}(B / I, A / \mathfrak{a})$ vanishes if and only if $\mathfrak{a} B \cap I=\mathfrak{a} I$. This proves by Theorem 5.2.6 the stated equivalence in the first assertion; the second assertion follows by the same argument, this time using Corollary 5.2.7.

To put this criterion to use, we need another definition. The ($A-$)content of a polynomial $f \in A[\xi]$ (or a power series $f \in A[[\xi]]$) is by definition the ideal generated by its coefficients.

Corollary 5.6.5. Let A be a Noetherian ring, let ξ be a finite tuple of indeterminates, and let B denote either $A[\xi]$ or $A[[\xi]]$. If $f \in B$ has content one, then $B / f B$ is flat over A.

Proof. By 5.2.2 or Corollary 5.6.3, the natural map $A \rightarrow B$ is flat. To verify the second criterion in Theorem 5.6.4, let $\mathfrak{p} \subseteq A$ be a prime ideal. The forward inclusion in the to be proven equality $\mathfrak{p} f B=\mathfrak{p} B \cap f B$ is immediate. To prove the other, take $g \in \mathfrak{p} B \cap f B$. In particular, $g=f h$ for some $h \in B$. Since $\mathfrak{p} \subseteq A$ is a prime ideal, so is $\mathfrak{p} B$ (this is a property of polynomial or power series rings, not of flatness!). Since f has content one, $f \notin \mathfrak{p} B$ whence $h \in \mathfrak{p} B$. This yields $g \in \mathfrak{p} f B$, as we needed to prove.

Local criterion for flatness. For finitely generated modules, we have the following criterion:

Theorem 5.6.6 (Local flatness theorem-finitely generated case). Let R be a Noetherian local ring with residue field k. If M is a finitely generated R-module whose first Betti number vanishes, that is to say, if $\operatorname{Tor}_{1}^{R}(M, k)=0$, then M is flat.

Proof. Take a minimal free resolution

$$
\cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

of M. By Proposition 5.5.4, the rank of F_{1} is zero, so that $M \cong F_{0}$ is free whence flat.

There is a much stronger version of this result, where we may replace the condition that M is finitely generated over R by the condition that M is finitely generated over a Noetherian local R-algebra S. Since we will not really need this result, we refer the reader either to the literature (see for instance [30, Theorem 22.3] or [15, Theorem 6.8]), or to Project 5.8.
Cohen-Macaulay criterion for flatness. To formulate our next criterion, we need a definition.

Definition 5.6.7 (Big Cohen-Macaulay modules). Let R be a Noetherian local ring, and let M be an arbitrary R-module. We call M a big Cohen-Macaulay module, if there exists a system of parameters on R which is M-regular. If moreover every system of parameters is M-regular, then we call M a balanced big Cohen-Macaulay.

It has become tradition to add the somehow redundant adjective 'big' to emphasize that the module is not necessarily finitely generated. It is one of the greatest open problems in homological algebra to show that every Noetherian local ring has at least one big Cohen-Macaulay module, and this is known to be the case for any Noetherian local ring containing a field. ${ }^{3}$ A Cohen-Macaulay local ring is clearly a balanced big Cohen-Macaulay module over itself, so the problem of the existence of these modules is only important for deriving results over Noetherian local rings with 'worse than Cohen-Macaulay' singularities.

Once one has a big Cohen-Macaulay module, one can always construct, using completion (for which, see Chapter 6), a balanced big Cohen-Macaulay module from it (see for instance [11, Corollary 8.5.3]). Here is a criterion for a big CohenMacaulay module to be balanced taken from [4, Lemma 4.8]; its proof is a simple modification of the proof of Theorem 4.2.6 and is worked out in Exercise 5.7.11 (recall that a regular sequence is called permutable if any permutation is again regular).

Proposition 5.6.8. A big Cohen-Macaulay module M over a Noetherian local ring is balanced, if every M-regular sequence is permutable.

If R is a Cohen-Macaulay local ring, and M a flat R-module, then M is a balanced big Cohen-Macaulay module, since every system of parameters in R is R-regular by Theorem 4.2.6, whence M-regular by Proposition 5.4.1. We have the following converse:

Theorem 5.6.9. If M is a balanced big Cohen-Macaulay module over a regular local ring, then it is flat. More generally, over an arbitrary local Cohen-Macaulay ring, if M is a balanced big Cohen-Macaulay module of finite projective dimension, then it is flat.

[^6]Proof. The first assertion is indeed a special case of the second by Theorem 5.5.6. For simplicity, we will just prove the first, and refer to Exercise 5.7.12 for the second. So let M be a balanced big Cohen-Macaulay module over the d-dimensional regular local ring R. Since a finitely generated R-module N has finite projective dimension by the (proven part of) Theorem 5.5.6, all $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i \gg 0$ by 5.5.1. Let e be maximal such that $\operatorname{Tor}_{e}^{R}(M, N) \neq 0$ for some finitely generated R-module N. If $e=0$, then we are done by Theorem 5.2.6. So, by way of contradiction, assume $e \geq 1$. By Corollary 5.2.7, there exists a prime ideal $\mathfrak{p} \subseteq R$ such that $\operatorname{Tor}_{e}^{R}(M, R / \mathfrak{p}) \neq 0$. Let h be the height of \mathfrak{p}. By Exercise 3.5.15, we can choose a system of parameters $\left(x_{1}, \ldots, x_{d}\right)$ in R such that \mathfrak{p} is a minimal prime of $I:=\left(x_{1}, \ldots, x_{h}\right) R$. Since (the image of) \mathfrak{p} is then an associated prime of R / I, we can find by Exercise 4.3.12 a short exact sequence

$$
0 \rightarrow R / \mathfrak{p} \rightarrow R / I \rightarrow C \rightarrow 0
$$

for some finitely generated R-module C. The relevant part of the long exact Tor sequence from 5.2.5, obtained by tensoring the above exact sequence with M, is

$$
\begin{equation*}
\operatorname{Tor}_{e+1}^{R}(M, C) \rightarrow \operatorname{Tor}_{e}^{R}(M, R / \mathfrak{p}) \rightarrow \operatorname{Tor}_{e}^{R}(M, R / I) \tag{5.8}
\end{equation*}
$$

The first module in (5.8) is zero by the maximality of e. The last module is zero too since it is isomorphic to $\operatorname{Tor}_{e}^{R / I}(M / I M, R / I)=0$ by Proposition 5.4.2 and the fact that $\left(x_{1}, \ldots, x_{d}\right)$ is by assumption M-regular. Hence the middle module in (5.8) is also zero, contradiction.

We derive the following criterion for Cohen-Macaulayness:
Corollary 5.6.10. If X is an irreducible affine scheme of finite type over an algebraically closed field K, and $\phi: X \rightarrow \mathbb{A}_{K}^{d}$ is a Noether normalization, that is to say, a finite and surjective morphism, then X is Cohen-Macaulay if and only if ϕ is flat.
Proof. Suppose $X=\operatorname{Spec}(B)$, so that ϕ corresponds to a finite and injective homomorphism $A \rightarrow B$, with $A:=K\left[\xi_{1}, \ldots, \xi_{d}\right]$ (see our discussion on page 21) and B a d-dimensional affine domain. Let \mathfrak{n} be a maximal ideal of B, and let $\mathfrak{m}:=\mathfrak{n} \cap A$ be its contraction to A. Since $A / \mathfrak{m} \rightarrow B / \mathfrak{n}$ is finite and injective, and since the second ring is a field, so is the former by Lemma 2.2.7. Hence \mathfrak{m} is a maximal ideal of A, and $A_{\mathfrak{m}}$ is regular by 4.1.6. By Exercise 3.5.17, the height of \mathfrak{n} is d. Choose an ideal $I:=\left(x_{1}, \ldots, x_{d}\right) A$ whose image in $A_{\mathfrak{m}}$ is a parameter ideal. Since the natural homomorphism $A / I \rightarrow B / I B$ is finite, the latter ring is Artinian since the former is (note that $A / I=A_{\mathfrak{m}} / I A_{\mathfrak{m}}$). It follows that $I B_{\mathfrak{n}}$ is a parameter ideal in $B_{\mathfrak{n}}$.

Now, if B, whence also $B_{\mathfrak{n}}$ is Cohen-Macaulay, then $\left(x_{1}, \ldots, x_{d}\right)$, being a system of parameters in $B_{\mathfrak{n}}$, is $B_{\mathfrak{n}}$-regular by Theorem 4.2.6. This proves that $B_{\mathfrak{n}}$ is balanced big Cohen-Macaulay module over $A_{\mathfrak{m}}$, whence is flat by Theorem 5.6.9. Hence ϕ is flat by 5.3.8.

Conversely, assume $X \rightarrow \mathbb{A}_{K}^{d}$ is flat. Therefore, $A_{\mathfrak{m}} \rightarrow B_{\mathfrak{n}}$ is flat, and hence $\left(x_{1}, \ldots, x_{d}\right)$ is $B_{\mathfrak{n}}$-regular by Proposition 5.4.1. Since we already showed that this sequence is a system of parameters, we see that B_{n} is Cohen-Macaulay. Since this holds for all maximal prime ideals of B, we proved that B is Cohen-Macaulay.

Remark 5.6.11. The above argument proves the following more general result in the local case: if $A \subseteq B$ is a finite and faithfully flat extension of local rings with
A regular, then B is Cohen-Macaulay. For the converse, we can even formulate a stronger criterion.

Theorem 5.6.12. Let $(R, \mathfrak{m}) \rightarrow(S, \mathfrak{n})$ be a local homomorphism of Noetherian local rings. If R is regular of dimension d, if S is Cohen-Macaulay of dimension e, and if $S / \mathfrak{m} S$ has dimension $e-d$, then $R \rightarrow S$ is flat.

Proof. Let $\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters of R and let I be the ideal they generate, so that I is \mathfrak{m}-primary. Since $S / \mathfrak{m} S$ has dimension $e-d$, there exist x_{d+1}, \ldots, x_{e} in S such that their image in $S / \mathfrak{m} S$ is a system of parameters. Since $\left(x_{1}, \ldots, x_{e}\right)$ then generates an \mathfrak{n}-primary ideal, it is a system of parameters in S, whence S-regular by Theorem 4.2.6. In particular, $\left(x_{1}, \ldots, x_{d}\right)$ is S-regular, showing that S is a balanced big Cohen-Macaulay R-module, and therefore is flat by Theorem 5.6.9.

The residue ring $S / \mathfrak{m} S$ is called the closed fiber of $R \rightarrow S$. Note that the affine scheme defined by it is indeed the fiber of $\operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ of the unique closed point of $\operatorname{Spec}(R)$; see (2.6). Exercise 5.7.16 establishes that flatness in turn forces the dimension equality in the theorem, without any singularity assumptions on the rings. We conclude with an application of the above Cohen-Macaulay criterion:

Corollary 5.6.13. Any hypersurface in \mathbb{A}_{K}^{n} is Cohen-Macaulay.

Proof. Recall that a hypersurface Y is an affine closed subscheme of the form $\operatorname{Spec}(A / f A)$ with $A:=K\left[\xi_{1}, \ldots, \xi_{n}\right]$ and $f \in A$. Moreover, Y has dimension $n-1$ (by an application of Corollary 3.4.6), whence its Noether normalization is of the form $Y \rightarrow \mathbb{A}_{K}^{n-1}$. In fact, after a change of coordinates (see the proof of Theorem 2.2.5), we may assume that f is monic in ξ_{n} of degree d. It follows that $A / f A$ is free over $A^{\prime}:=K\left[\xi_{1}, \ldots, \xi_{n-1}\right]$ with basis $1, \xi_{n}, \ldots, \xi_{n}^{d-1}$. Hence $A / f A$ is flat over A^{\prime} by 5.2.2, whence Cohen-Macaulay by Corollary 5.6.10.

Colon criterion for flatness. Recall that ($I: a$) denotes the colon ideal of all $x \in A$ such that $a x \in I$. Colon ideals are related to cyclic modules in the following way:
5.6.14 For any ideal $I \subseteq A$ and any element $a \in A$, we have an isomorphism $a(A / I) \cong A /(I: a)$.

Indeed, the homomorphism $A \rightarrow A / I: x \mapsto a x$ has image $a(A / I)$ whereas its kernel is $(I: a)$. We already saw that faithfully flat homomorphisms preserve the ideal structure of a ring (see 5.3.5). Using colon ideals, we can even give the following criterion:

Theorem 5.6.15. A homomorphism $A \rightarrow B$ is flat if and only if

$$
(I B: a)=(I: a) B
$$

for all elements $a \in A$ and all (finitely generated) ideals $I \subseteq A$.

Proof. Suppose $A \rightarrow B$ is flat. In view of 5.6.14, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow A /(I: a) \rightarrow A / I \rightarrow A /(I+a A) \rightarrow 0 \tag{5.9}
\end{equation*}
$$

which, when tensored with B gives the exact sequence

$$
0 \rightarrow B /(I: a) B \rightarrow B / I B \xrightarrow{f} B /(I B+a B) \rightarrow 0 .
$$

However, the kernel of f is easily seen to be $a(B / I B)$, which is isomorphic to $B /(I B$: a) by 5.6.14. Hence the inclusion $(I: a) B \subseteq(I B: a)$ must be an equality.

For the converse, we need in view of Theorem 5.2 .6 to show that $\operatorname{Tor}_{1}^{A}(B, A / J)=$ 0 for every finitely generated ideal $J \subseteq A$. We induct on the minimal number s of generators of J, where the case $s=0$ trivially holds. Write $J=I+a A$ with I an ideal generated by $s-1$ elements. Tensoring (5.9) with B, we get from 5.2.5 an exact sequence

$$
0=\operatorname{Tor}_{1}^{A}(B, A / I) \rightarrow \operatorname{Tor}_{1}^{A}(B, A / J) \xrightarrow{\delta} B /(I: a) B \rightarrow B / I B \xrightarrow{g} B / J B \rightarrow 0
$$

where the first module vanishes by induction. As above, the kernel of g is easily seen to be $B /(I B: a)$, so that our assumption on the colon ideals implies that δ is the zero map, whence $\operatorname{Tor}_{1}^{A}(B, A / J)=0$ as we wanted to show.

Here is a nice 'descent type' application of this criterion:
Corollary 5.6.16. Let $A \rightarrow B \rightarrow C$ be homomorphisms whose composition is flat. If $B \rightarrow C$ is cyclically pure, then $A \rightarrow B$ is flat. In fact, it suffices that $B \rightarrow C$ is cyclically pure with respect to ideals extended from A, that is to say, that $J B=J C \cap B$ for all ideals $J \subseteq A$.

Proof. Given an ideal $I \subseteq A$ and an element $a \in A$, we need to show in view of Theorem 5.6.15 that $(I B: a)=(I: a) B$. One inclusion is immediate, so take y in $(I B: a)$. By the same theorem, we have $(I C: a)=(I: a) C$, so that y lies in $(I: a) C \cap B$ whence in $(I: a) B$ by cyclical purity.

The next criterion will be useful when dealing with non-Noetherian algebras in the next chapter. Here we call an ideal J in a ring B finitely related, if it is of the form $J=(I: b)$ with $I \subseteq B$ a finitely generated ideal and $b \in B$.

Theorem 5.6.17. Let A be a Noetherian ring and B an arbitrary A-algebra. Suppose \mathscr{P} is a collection of prime ideals in B such that every proper, finitely related ideal of B is contained in some prime ideal belonging to \mathscr{P}. If $A \rightarrow B_{\mathfrak{p}}$ is flat for every $\mathfrak{p} \in \mathscr{P}$, then $A \rightarrow B$ is flat.

Proof. By Theorem 5.6.15, we need to show that $(I B: a)=(I: a) B$ for all $I \subseteq A$ and $a \in A$. Put $J:=(I: a)$. Towards a contradiction, let x be an element in (IB:a) but not in $J B$. Hence $(J B: x)$ is a proper, finitely related ideal, and hence contained in some $\mathfrak{p} \in \mathscr{P}$. However, $\left(I B_{\mathfrak{p}}: a\right)=J B_{\mathfrak{p}}$ by flatness and another application of Theorem 5.6.15, so that $x \in J B_{\mathfrak{p}}$, contradicting that $(J B: x) \subseteq \mathfrak{p}$.

5.7 Exercises

Ex 5.7.1
Show that if N_{\bullet} is an exact sequence, then there exist short exact sequences $0 \rightarrow Z_{i+1} \rightarrow$ $N_{i} \rightarrow Z_{i} \rightarrow 0$ for some submodules $Z_{i} \subseteq N_{i}$ and all i. Use this to deduce 5.2.1.

Ex 5.7.2

Give a complete proof of 5.2.2, including the infinitely generated case.
\qquad

Ex 5.7.3

Prove 5.2.3 and 5.2.4.

Ex 5.7.4

Show that if $A \rightarrow B$ is flat, and $I, J \subseteq A$ are ideals, then $I B \cap J B=(I \cap J) B$.

Ex 5.7.5

Show that if $A \rightarrow B$ is a flat homomorphism and M, N are A-modules, then

$$
\operatorname{Tor}_{i}^{A}(M, N) \otimes_{A} B \cong \operatorname{Tor}_{i}^{B}\left(M \otimes_{A} B, N \otimes_{A} B\right)
$$

for all i.

Ex 5.7.6

Show directly that for a given A-module M, if $I \otimes_{A} M \rightarrow M$ is injective for every finitely generated ideal I, then the same holds for every ideal. Use this to give a proof of (3) $\Rightarrow(1)$ in Theorem 5.2.6 in case A is not Noetherian. Prove the infinitely generated case in Corollary 5.2.7 by using syzygies and Corollary 5.2.8, in combination with a modification of the argument in Theorem 5.2.6.

Ex 5.7.7
Show that a homomorphism $A \rightarrow B$ is cyclically pure with respect to prime ideals, meaning that $\mathfrak{p} B \cap A=\mathfrak{p}$ for all prime ideals $\mathfrak{p} \subseteq A$, if and only if the induced map of affine schemes $\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is surjective.

Ex 5.7.8

Show using Exercise 4.3.12 that any finitely generated module N over a Noetherian ring admits a prime filtration (5.3). Use this to work out the details in the proof of Corollary 5.2.7.

Ex 5.7.9
Prove 5.5.2 by constructing inductively a minimal resolution using Nakayama's lemma.

Ex 5.7.10

Generalize the proof of the first part of Theorem 5.6.1 to prove the second assertion in that theorem.

Ex 5.7.11

Modify the argument in the last part of the proof of Theorem 4.2.6 to prove Proposition 5.6.8.

Ex 5.7.12

Make the necessary adjustments in the proof of the first assertion of Theorem 5.6.9 to derive the second.

Ex 5.7.13

Show that an A-module M is flat if and only if $M_{\mathfrak{m}}$ is flat as an $A_{\mathfrak{m}}$-module for every maximal ideal $\mathfrak{m} \subseteq$ A. Prove 5.3 .8 (note that if X is moreover Noetherian, then this follows already from Theorem 5.6.17).

Ex 5.7.14

By 3.1.4, any Artinian ring is a finite direct sum of local rings. This no longer holds true for an arbitrary Noetherian semi-local ring S, that is to say, a Noetherian ring with finitely many maximal ideals $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{s}$. Show that nonetheless there is always a natural homomorphism $S \rightarrow S_{\mathfrak{m}_{1}} \oplus \cdots \oplus S_{\mathfrak{m}_{s}}$, which is moreover faithfully flat.

*x 5.7.15

Show that if M is a finitely generated module over a Noetherian ring A such that $M_{\mathfrak{m}}$ is flat over $A_{\mathfrak{m}}$, for every maximal ideal \mathfrak{m}, then M is projective as an A-module.

*Ex 5.7.16

Show that if $A \rightarrow B$ is a flat homomorphism, then the going-down theorem holds for $A \rightarrow B$, meaning that if $\mathfrak{p} \nsubseteq \mathfrak{q}$ is a chain of prime ideals in A, and if \mathfrak{Q} is a prime ideal in B lying over \mathfrak{q}, then there exists a prime ideal $\mathfrak{P} q \mathfrak{Q}$ lying over \mathfrak{p}. Use this to prove that if $(R, \mathfrak{m}) \rightarrow(S, \mathfrak{n})$ is a flat and local homomorphism of Noetherian local rings, then

$$
\operatorname{dim}(R)+\operatorname{dim}(S / \mathfrak{m} S)=\operatorname{dim}(S) .
$$

Ex 5.7.17

Use the Colon criterion, Theorem 5.6.15, to show that every overring without zero-divisors, or more generally, any torsion-free overring, of a discrete valuation ring is flat.

Prove a version of Theorem 5.6.15 for modules, that is to say, by replacing the A-algebra B by an A-module M.

Additional exercises.

Ex 5.7.19
Show that a module P is projective (=direct summand of a free module) if and only if any map $P \rightarrow N / N^{\prime}$ lifts to a map $P \rightarrow N$, where $N^{\prime} \subseteq N$ are arbitrary modules.

Ex 5.7.20
Show that if

$$
0 \rightarrow M_{\bullet}^{\prime} \xrightarrow{f} M_{\bullet} \xrightarrow{g} M_{\bullet}^{\prime \prime} \rightarrow 0
$$

is an exact sequence of complexes, meaning that for each i, we have an exact sequence

$$
0 \rightarrow M_{i}^{\prime} \xrightarrow{f_{i}} M_{i} \xrightarrow{g_{i}} M_{i}^{\prime \prime} \rightarrow 0,
$$

such that the maps f_{i} and g_{i} commute with the maps in the various complexes, then we get a long exact sequence

$$
\ldots \xrightarrow{\delta_{i+1}} \mathrm{H}_{i}\left(M_{\bullet}^{\prime}\right) \xrightarrow{f_{i}} \mathrm{H}_{i}\left(M_{\bullet}\right) \xrightarrow{g_{i}} \mathrm{H}_{i}\left(M_{\bullet}^{\prime \prime}\right) \xrightarrow{\delta_{i}} \mathrm{H}_{i-1}\left(M_{\bullet}^{\prime}\right) \rightarrow \ldots
$$

where the f_{i} and g_{i} are used to denote the corresponding induced homomorphisms, and where the δ_{i} are the connecting homomorphisms defined as follows: for $\bar{u} \in$ $H_{i}\left(M_{\bullet}^{\prime \prime}\right)$, choose a lifting $u \in \operatorname{Ker}\left(d_{i}^{\prime \prime}\right) \subseteq M_{i}^{\prime \prime}$ and an element $v \in M_{i}$ such that $g_{i}(v)=u$. Since $g\left(d_{i}(v)\right)=0$, there exists a well-defined $w \in M_{i-1}^{\prime}$ for which $f_{i-1}(w)=d_{i}(v)$ and $d_{i-1}(w)=0$. Show that assigning the class of w in $H_{i-1}^{\prime}\left(M_{\bullet}^{\prime}\right)$ to \bar{u} gives a well-defined homomorphism δ_{i}, making the above sequence exact.
Use this result to now give a complete proof of 5.2.5.

Ex 5.7.21

Show that for an A-module M to be faithfully flat, it is necessary and sufficient that an arbitrary complex N_{\bullet} is exact if and only if $N_{\bullet} \otimes_{A} M$ is exact.

Ex 5.7.22
Let $A \rightarrow B \rightarrow C$ be homomorphisms. Show that if $A \rightarrow C$ is flat, then $A \rightarrow B$ is cyclically pure. Show using Exercise 5.7.21 that if both $A \rightarrow C$ and $B \rightarrow C$ are faithfully flat, then so is $A \rightarrow B$.

Ex 5.7.23
Show that a module is finitely generated if and only if any countably generated submodule is contained in a finitely generated submodule.

5.8 Project: local flatness criterion via nets

Let (R, \mathfrak{m}) be a Noetherian local ring with residue field k, and let $\bmod _{R}$ be the class of all finitely generated R-modules (up to isomorphism). In [47], a subset $\mathbf{N} \subseteq \bmod _{R}$ is called a net if it is closed under extension (i.e., if $0 \rightarrow H \rightarrow M \rightarrow N \rightarrow 0$ is an exact
sequence in $\bmod _{R}$ with $H, N \in \mathbf{N}$, then also $M \in \mathbf{N}$), and under direct summands (i.e., if $M \cong H \oplus N$ belongs to \mathbf{N}, then so do H and N). Clearly, $\bmod _{R}$ itself is a net.
5.8.1 Show that any intersection of nets is again a net. Conclude that any class $\mathbf{K} \subseteq \bmod _{R}$ sits inside a smallest net, called the net generated by \mathbf{K}.
5.8.2 Show that the net generated by the singleton $\{k\}$ consists of all modules of finite length. Show that $\bmod _{R}$ is generated as a net by all R / \mathfrak{p} with $\mathfrak{p} \subseteq R$ a prime ideal.
A net \mathbf{N} is called deformational, if for every $M \in \bmod _{R}$ and every M-regular element x, if $M / x M \in \mathbf{N}$ then $M \in \mathbf{N}$.
5.8.3 Show that the deformational net generated by the singleton $\{k\}$ is equal to $\bmod _{R}$.

The goal is to prove the following version of the local flatness criterion:
5.8.4 If $R \rightarrow S$ is a local homomorphism of Noetherian local rings, and Q a finitely generated S-module such that $\operatorname{Tor}_{1}^{R}(Q, k)=0$, then Q is flat as an R-module.

To this end, for $M \in \bmod _{R}$, put $F(M):=\operatorname{Tor}_{1}^{R}(Q, M)$. In view of Theorem 5.2.6, we need to show that F is zero on $\bmod _{R}$.
5.8.5 Show that $F(M)$ carries a natural structure of an S-module, and as such is finitely generated, for any finitely generated R-module M.
5.8.6 Show that if F is zero on a class $\mathbf{K} \subseteq \bmod _{R}$, then F is zero on the net generated by \mathbf{K}, and, in fact, even zero on the deformational net generated by K. For the first assertion, use 5.2.5, and for the second, show that for any $N \in \bmod _{R}$ and any $x \in \mathfrak{m}$, if $x F(N)=F(N)$ then $F(N)=0$, using 5.8.5. Finally, conclude the proof of 5.8.4 by using 5.8.3.

Chapter 6 Completion

A very important algebraic tool in studying local properties of a variety, or equivalently, properties of Noetherian local rings, is the completion of a Noetherian local ring. As the name suggests, we can put a canonical metric on any such ring R, and then take its topological completion \widehat{R}. This is again a Noetherian local ring, which inherits many of the properties of the original ring, and in fact, there is natural homomorphism $R \rightarrow \widehat{R}$, which is flat and unramified (the latter means that the maximal ideal of R extends to the maximal ideal of its completion \widehat{R}); see Theorem 6.3.5. Whereas there is no known classification of arbitrary Noetherian local rings, we do have many structure theorems, due mostly to Cohen, for complete Noetherian local rings. In particular, the equal characteristic complete regular local rings are completely classified by their residue field k and their dimension d : any such ring is isomorphic to the power series ring $k\left[\left[\xi_{1}, \ldots, \xi_{d}\right]\right]$; see Theorem 6.4.5. Also extremely useful is the fact that we have an analogue of Noether normalization for complete Noetherian local rings: any such ring admits a regular subring over which it is finite (Theorem 6.4.6).

6.1 Complete normed rings

Normed rings. In these notes, a quasi-normed ring $(A,\|\cdot\|)$ will mean a ring A together with a real-valued function $A \rightarrow[0,1]: a \mapsto\|a\|$ such that $\|0\|=0$ and such that for all $a, b \in A$ we have

1. $\|a+b\| \leq \max \{\|a\|,\|b\|\}$;
2. $\|a b\| \leq\|a\| \cdot\|b\|$.

We normally exclude the case that $\|\cdot\|$ is identical zero (the so-called degenerated case). Inequality (1) is called the non-archimedean triangle inequality, as opposed to the usual, weaker triangle inequality in the reals (note that (1) implies indeed that $\|a+b\| \leq\|a\|+\|b\|)$. An immediate consequence of this triangle inequality is:
3. if $\|a\|<\|b\|$, then $\|a+b\|=\|b\|$,
which often is paraphrased by saying that "every triangle is isosceles". If moreover $\|a\|=0$ implies $a=0$, then we call $(A,\|\cdot\|)$ a normed ring (or, we simply say that $\|\cdot\|$ is a norm). The value $\|a\|$ will also be called the norm of a, even if $\|\cdot\|$ is only a quasi-norm. If in (2) we always have equality, then we call the norm multiplicative (be aware that some authors tacitly assume that a norm is always multiplicative; moreover, it is common to allow elements to also have norm bigger than one). Some immediate consequences of this definition (see Exercise 6.5.1):
6.1.1 Any unit in a quasi-normed ring has norm equal to one. The elements of norm equal to zero form an ideal I_{0}; and those of norm strictly less than one form an ideal I_{1}^{-}, called the center of $\|\cdot\|$. If $\|\cdot\|$ is multiplicative, then I_{0} and I_{1}^{-}are prime. In particular, a multiplicatively normed ring is a domain.

There is also a very canonical procedure to turn a quasi-norm into a norm:
6.1.2 If A is a quasi-normed ring, and I_{0} its ideal of elements of norm zero, then $\|\cdot\|$ factors through A / I_{0}, making the latter into a normed ring.

Indeed, using (3) we have $\|a\|=\|a+w\|$ for all $w \in I_{0}$, so that letting $\|\bar{a}\|:=\|a\|$ is well-defined, where \bar{a} denotes the image of a in A / I_{0}. The remaining properties are now easily checked. The normed ring A / I_{0} is called the Hausdorffication or separated quotient of A. The name is justified by the following considerations: any quasi-normed ring inherits a topology, called the norm topology, simply by taking for opens the inverse images of the opens of $[0,1]$ under the norm map $A \rightarrow[0,1]$. Now, by Exercise 6.5.4, the topology on A is Hausdorff if and only if $\|\cdot\|$ is a norm.

Let $\left(A,\|\cdot\|_{A}\right)$ and $\left(B,\|\cdot\|_{B}\right)$ be two quasi-normed rings. A homomorphism $A \rightarrow B$ is called a homomorphism of quasi-normed rings if $\|a\|_{B} \leq\|a\|_{A}$ for all a. We may also express this fact by saying that B is a quasi-normed A-algebra. If $I \subseteq A$ is an ideal, define a quasi-norm on A / I by letting $\|a+I\|$ be the infimum of all $\|a+i\|$ with $i \in I$. By Exercise 6.5.5, we have
6.1.3 For any ideal $I \subseteq A$, the pair $(A / I,\|\cdot\|)$ is a quasi-normed ring, and the residue map $A \rightarrow A / I$ is a homomorphism of quasi-normed rings.
Cauchy sequences. Let $(A,\|\cdot\|)$ be a quasi-normed ring. We will represent sequences in A as functions a: $\mathbb{N} \rightarrow A$. Any element $a \in A$ defines a sequence, the constant sequence with value a defined as $\mathbf{a}(n):=a$. We will identify an element $a \in A$ with the constant sequence it defines.

We say that a sequence a is a null-sequence if for each $\varepsilon>0$, there exists $N:=N(\varepsilon)$ such that $\|\mathbf{a}(n)\| \leq \varepsilon$ for all $n \geq N$. In particular, a constant sequence a is null if and only if $\|a\|=0$. The twist \mathbf{a}^{+}of a sequence \mathbf{a} is the sequence defined by $\mathbf{a}^{+}(n):=\mathbf{a}(n+1)$. We say that \mathbf{a} is a Cauchy sequence, if $\mathbf{a}-\mathbf{a}^{+}$is a null-sequence. We say that an element $b \in A$ is a limit of a sequence \mathbf{a}, if $\mathbf{a}-b$ is a null-sequence. A sequence admitting a limit is called a converging sequence. We have:
6.1.4 Any converging sequence is Cauchy. If b is a limit of a sequence \mathbf{a}, then so is $b+w$ for any w of norm zero. In particular, if \|| \| is a norm, then a Cauchy sequence has at most one limit.

If the converse also holds, that is to say, if any Cauchy sequence is convergent, then we say that $(A,\|\cdot\|)$ is quasi-complete. We call $(A,\|\cdot\|)$ complete if it is quasicomplete and $\|\cdot\|$ is a norm, that is to say, if any Cauchy sequence has a unique limit.
6.1.5 If A is quasi-complete and $I \subseteq A$ is a proper ideal, then A / I is again quasicomplete.

This is proven in Exercise 6.5.5. In particular, we can turn any quasi-complete ring into a complete one: simply consider its Hausdorffication A / I_{0}. A sequence b is called a subsequence of a sequence a if there exists some strictly increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\mathbf{a}(f(n))=\mathbf{b}(n)$ for all n. The following is left as an exercise (Exercise 6.1.6):
6.1.6 Any subsequence of a Cauchy sequence is a Cauchy sequence, and any limit of a sequence is also a limit of any of its subsequences. Moreover, for a Cauchy sequence to be convergent it suffices that some subsequence is convergent.

Note that a (non-Cauchy) sequence can very well have a converging subsequence without itself being convergent.
Adic norms. Let A be any ring, and I an ideal. We can associate a quasi-norm to this situation, called the I-adic quasi-norm defined as $\|a\|_{I}:=\exp (-n)$ where n is the supremum of all k for which $a \in I^{k}$. We allow for this supremum to be infinite, with the understanding that $\exp (-\infty)=0$. By Exercise 6.5.7 this is indeed a quasi-norm, which is degenerated if and only if I is the unit ideal. Hence $\|\cdot\|_{I}$ is a norm if and only if the intersection I^{∞} of all I^{k} is zero. The only case of interest to us is when (R, \mathfrak{m}) is local viewed in its \mathfrak{m}-adic quasi-norm, which we then call the canonical quasi-norm of R, or when there is no confusion, the quasi-norm of R. By what we just said, the quasi-norm of (R, \mathfrak{m}) is a norm if and only if its ideal of infinitesimals, $\mathfrak{I}_{R}:=\mathfrak{m}^{\infty}$ is equal to zero. By Exercise 6.5.7, we have:
6.1.7 Any polynomial $f \in A[\xi]$ in a single indeterminate ξ defines a continuous function $A \rightarrow A: a \mapsto f(a)$ in the topology induced by an I-adic quasi-norm.

If $A \rightarrow B$ is a homomorphism and $I \subseteq A$ an ideal, then $A \rightarrow B$ is a homomorphism of quasi-normed rings if we take the I-adic quasi-norm on A and the $I B$-adic quasinorm on B.

6.2 Complete local rings

Although one may develop the theory also for non-Noetherian local rings, we will stick here to the case that (R, \mathfrak{m}) is a Noetherian local ring, and often omit mentioning its Noetherianity. We call R complete, if it is complete with respect to its \mathfrak{m}-adic norm, that is to say, if every Cauchy sequence has a limit (necessarily unique). By Exercise 6.5.8, we have
6.2.1 A Noetherian local ring (R, \mathfrak{m}) is complete if and only if every sequence \mathbf{a} satisfying $\mathbf{a}(n) \equiv \mathbf{a}(n+1) \bmod \mathfrak{m}^{n}$, for sufficiently large n, has a limit, and for this it suffices that we can find a subsequence \mathbf{b} of \mathbf{a} and an element $b \in R$ such that $b \equiv \mathbf{b}(n) \bmod \mathfrak{m}^{n}$, for all n.

Fields are obviously complete local rings, and more generally, so are Artinian local rings. Any power series ring over a field (or an Artinian local ring) in finitely many indeterminates is complete. This follows by induction from the following more general result.

Proposition 6.2.2. If R is a complete local ring, then so is $R[[\xi]]$ with ξ a single variable.

Proof. The maximal ideal \mathfrak{n} of $R[[\xi]]$ is generated by ξ and the maximal ideal \mathfrak{m} of R. By (6.2.1), we need to show that a sequence \mathbf{f} in $R[[\xi]]$ such that

$$
\begin{equation*}
\mathbf{f}(k) \equiv \mathbf{f}(k+1) \quad \bmod \mathfrak{n}^{k} \tag{6.1}
\end{equation*}
$$

for all k, has a limit. Write each $\mathbf{f}(n)=\sum_{j} \mathbf{a}_{j}(n) \xi^{j}$. Expanding (6.1) and comparing coefficients, we get $\mathbf{a}_{j}(k) \equiv \mathbf{a}_{j}(k-1) \bmod \mathfrak{m}^{k-j}$ for all $j \leq k$. In particular, each \mathbf{a}_{j} is Cauchy, whence admits a limit $b_{j} \in R$. I claim that $g(\xi):=\sum_{j} b_{j} \xi^{j}$ is a limit of \mathbf{f}. To verify this, fix some k. By assumption, there exists, for each j, some $N_{j}(k)$ such that $b_{j} \equiv \mathbf{a}_{j}(n) \bmod \mathfrak{m}^{k}$ for all $n \geq N_{j}(k)$. Let $N(k)$ be the maximum of all $N_{j}(k)$ with $j<k$. For $n \geq N(k)$, the terms in $g-\mathbf{f}(n)$ of degree at least k clearly lie inside \mathfrak{n}^{k}. The coefficient of the term of degree $j<k$ is $b_{j}-\mathbf{a}_{j}(n)$, which lies in \mathfrak{m}^{k} by the choice of $N(k)$. Hence $g \equiv \mathbf{f}(n) \bmod \mathfrak{n}^{k}$ for all $n \geq N(k)$, proving the claim.

Immediately from 6.1 .5 we get:
6.2.3 Any homomorphic image of a complete local ring is again complete.

Hensel's Lemma. The next result is a formal version of Newton's method for finding approximate roots.

Theorem 6.2.4. Let (R, \mathfrak{m}) be a complete local ring with residue field k. Let $f \in R[\xi]$ be a monic polynomial in the single variable ξ, and let $\bar{f} \in k[\xi]$ denote its reduction modulo $\mathfrak{m} R[\xi]$. For every simple root $u \in k$ of $\bar{f}=0$, we can find $a \in R$ such that $f(a)=0$ and u is the image of a in k.

Proof. Let $a_{1} \in R$ be any lifting of u. Since $\bar{f}(u)=0$, we get $f\left(a_{1}\right) \equiv 0 \bmod \mathfrak{m}$. We will define elements $a_{n} \in R$ recursively such that $f\left(a_{n}\right) \equiv 0 \bmod \mathfrak{m}^{n}$ and $a_{n} \equiv a_{n-1}$ $\bmod \mathfrak{m}^{n-1}$ for all $n>1$. Suppose we already defined a_{1}, \ldots, a_{n} satisfying the above conditions. Consider the Taylor expansion

$$
\begin{equation*}
f\left(a_{n}+\xi\right)=f\left(a_{n}\right)+f^{\prime}\left(a_{n}\right) \xi+\xi^{2} g_{n}(\xi) \tag{6.2}
\end{equation*}
$$

where $g_{n} \in R[\xi]$ is some polynomial. Since the image of a_{n} in k is equal to u, and since $\bar{f}^{\prime}(u) \neq 0$ by assumption, $f^{\prime}\left(a_{n}\right)$ does not lie in \mathfrak{m} whence is a unit, say, with inverse u_{n}. Define $a_{n+1}:=a_{n}-u_{n} f\left(a_{n}\right)$. Substituting $\xi=-u_{n} f\left(a_{n}\right)$ in (6.2), we get

$$
f\left(a_{n+1}\right) \in\left(u_{n} f\left(a_{n}\right)\right)^{2} R \subseteq \mathfrak{m}^{2 n}
$$

as required.
To finish the proof, note that the sequence a given by $\mathbf{a}(n):=a_{n}$ is by construction Cauchy, and hence by assumption admits a limit $a \in R$ (whose residue is necessarily again equal to u). By continuity, $f(a)$ is equal to the limit of the $f\left(a_{n}\right)$ whence is zero.

There are sharper versions of this result, where the root in the residue field need not be simple (see Exercise 6.5.14), or even involving systems of equations. Any local ring satisfying the hypothesis of the above theorem is called a Henselian ring.

As with completion (see $\S 6.3$ below), there exists a 'smallest' Henselian overring. More precisely, for each Noetherian local ring R, there exists a Noetherian local R algebra R^{\sim}, its Henselization, satisfying the following universal property: any local homomorphism $R \rightarrow H$ with H a Henselian local ring, factors uniquely through an R-algebra homomorphism $R^{\sim} \rightarrow H$. The existence of such a Henselization will be proven in Project 6.6. Note that Theorem 6.2.4 and the universal property imply that R^{\sim} is a subring of \widehat{R} (see 6.3.3), and in particular, the latter is the completion of the former.

Let $A:=k[\xi]$ be a polynomial ring over a field k. For simplicity, we will denote the Henselization of the localization of A with respect to the variables also by A^{\sim}. It can be shown that $A^{\sim}=k[[\xi]]^{\text {alg }}$, the ring of algebraic power series over k, where we call a power series in $k[[\xi]]$ algebraic if it is algebraic over $k[\xi]$, that is to say, satisfies a non-zero polynomial equation with coefficients in $k[\xi]$ (for a discussion see [2] or 6.6.4 below).

Lifting generators. The next property of complete local rings, a generalization of Nakayama's Lemma, is also quite useful.

Theorem 6.2.5. Let (R, \mathfrak{m}) be a complete local ring, and let M be an R-module which is \mathfrak{m}-adically Hausdorff, in the sense that the intersection of all $\mathfrak{m}^{n} M$ is zero. If $M / \mathfrak{m} M$ has vector space dimension e over the residue field R / \mathfrak{m}, then M is generated as an R-module by e elements. In fact, any lifting of a set of generators of $M / \mathfrak{m} M$ generates M.

Proof. Let $v_{1}, \ldots, v_{e} \in M$ be liftings of the generators of $M / \mathfrak{m} M$ and let N be the submodule they generate. In particular, $M=N+\mathfrak{m} M$. Take an arbitrary $\mu \in M$. We can find some $a_{i}^{(0)} \in A$ such that $\mu=\sum_{i} a_{i}^{(0)} v_{i}+\mu^{(1)}$ with $\mu^{(1)} \in \mathfrak{m} M$. Applying the same to $\mu^{(1)}$, we can find $a_{i}^{(1)} \in \mathfrak{m}$ such that $\mu^{(1)}=\sum_{i} a_{i}^{(1)} v_{i}+\mu^{(2)}$ with $\mu^{(2)} \in \mathfrak{m}^{2} M$. Continuing this way, we find $a_{i}^{(n)} \in \mathfrak{m}^{n}$ such that

$$
\begin{equation*}
\mu \equiv \sum_{i=1}^{s}\left(\sum_{j=0}^{n} a_{i}^{(j)}\right) v_{i} \bmod \mathfrak{m}^{n+1} M . \tag{6.3}
\end{equation*}
$$

Putting $\mathbf{b}_{i}(n):=\sum_{j \leq n} a_{i}^{(j)}$, it follows that each \mathbf{b}_{i} is a Cauchy sequence, whence has a limit $a_{i} \in R$. Using (6.3), one easily verifies that $\mu-\sum a_{i} v_{i}$ lies in every $\mathfrak{m}^{n} M$ whence is zero, showing that $\mu \in N$, and therefore $M=N$.

Remark 6.2.6. Note that unlike in the case of Nakayama's Lemma, we dot not need to assume in advance that M is finitely generated.

6.3 Completions

We have seen in the previous section that complete local rings satisfy many good properties. In this section, we will describe how to construct complete local rings from arbitrary local rings. Let again start in a more general setup.

Quasi-completion of a quasi-norm. Let $(A,\|\cdot\|)$ be a quasi-normed ring. Let $\mathscr{C}(A)$ be the collection of all Cauchy sequences. We make $\mathscr{C}(A)$ into a ring by adding and multiplying sequences coordinate wise. In this way, $\mathscr{C}(A)$ becomes an A-algebra, via the canonical map $A \rightarrow \mathscr{C}(A)$ sending an element to the constant sequence it determines. Note that this is in fact an embedding.
6.3.1 A sequence a in A is Cauchy if and only if $\|\mathbf{a}(n)\|$ converges in \mathbb{R} as $n \rightarrow \infty$. This latter limit is denoted \mid al||; it induces a quasi-norm on $\mathscr{C}(A)$ extending the norm on A. A Cauchy sequence has norm zero if and only if it is a null-sequence.

From now on, we view $\mathscr{C}(A)$ as a quasi-normed ring with the above norm.
Proposition 6.3.2. The ring of Cauchy sequences $\mathscr{C}(A)$ of A is quasi-complete. Moreover, A is dense in $\mathscr{C}(A)$, and the following universal property holds: if we have a homomorphism of quasi-normed rings $A \rightarrow B$ with B complete, then $A \rightarrow B$ extends uniquely to a homomorphism $\mathscr{C}(A) \rightarrow B$ of quasi-normed rings.

Proof. For clarity, we let $j: A \rightarrow \mathscr{C}(A)$ denote the canonical homomorphism sending an element $a \in A$ to the constant sequence $j(a)$, and we distinguish between the norms on A and $\mathscr{C}(A)$ by adding a subscript to the norm symbol. Let a be a Cauchy sequence in A, that is to say, an element in $\mathscr{C}(A)$. It follows that the limit of $\|j(\mathbf{a}(n))-\mathbf{a}\|_{\mathscr{C}(A)}$ is zero, for $n \mapsto \infty$. Hence, the Cauchy sequence \mathbf{D} in $\mathscr{C}(A)$ defined as $\mathbf{D}(n):=j(\mathbf{a}(n))$ converges to the element $\mathbf{a} \in \mathscr{C}(A)$, showing that A (or, rather, $j(A))$ is dense in $\mathscr{C}(A)$.

Let \mathbf{B} be a Cauchy sequence in $\mathscr{C}(A)$. Hence, $\mathbf{B}(m)$ is a Cauchy sequence in A, for each m, with n-th entry $\mathbf{B}(m)(n)$. Replacing \mathbf{B} by a subsequence if necessary, we may assume $\|\mathbf{B}(m)-\mathbf{B}(m+1)\|_{\mathscr{C}(A)} \leq \exp (-m)$ for all m. By the previous observation, for each m, there exists $g(m)$ such that

$$
\|j(\mathbf{B}(m)(g(m)))-\mathbf{B}(m)\|_{\mathscr{C}(A)} \leq \exp (-m) .
$$

Define a sequence ch by the $\mathbf{c}(m):=\mathbf{B}(m)(g(m))$. Since $\|\mathbf{c}(m)-\mathbf{c}(m+1)\|_{A}$ is equal to

$$
\|j(\mathbf{c}(m))-\mathbf{B}(m)+\mathbf{B}(m)-\mathbf{B}(m+1)+\mathbf{B}(m+1)-j(\mathbf{c}(m+1))\|_{\mathscr{C}(A)} \leq \exp (-m)
$$

we conclude that \mathbf{c} is a Cauchy sequence in A. In particular, for a fixed n, we can find $N \geq n$ such that $\|j(\mathbf{c}(m))-\mathbf{c}\|_{\mathscr{C}(A)} \leq \exp (-n)$, for all $m \geq N$. To show that \mathbf{c} is the limit of \mathbf{B}, we use the estimate

$$
\begin{aligned}
\|\mathbf{B}(m)-\mathbf{c}\|_{\mathscr{C}(A)} & =\|\mathbf{B}(m)-j(\mathbf{c}(m))+j(\mathbf{c}(m))-\mathbf{c}\|_{\mathscr{C}(A)} \\
& \leq \max \{\exp (-m), \exp (-n)\}=\exp (-n),
\end{aligned}
$$

for all $m \geq N$. This proves that \mathbf{c} is the limit of \mathbf{B}.
To prove the last assertion, we define $\varphi: \mathscr{C}(A) \rightarrow B$ as follows. Let a be a Cauchy sequence in A. From the definition of homomorphism of quasi-normed rings, it follows that \mathbf{a} is a Cauchy sequence in B. Since B is complete, a has a unique limit
$b \in B$. The assignment $\mathbf{a} \mapsto b$ is now easily seen to be an A-algebra homomorphism of quasi-normed rings.

In view of this result, we call $\mathscr{C}(A)$ the quasi-completion of A. The completion of A is then the Hausdorffication of $\mathscr{C}(A)$, that is to say, the ring $\mathscr{C}(A) / \mathscr{I}(A)$, where $\mathscr{I}(A)$ is the ideal of all null-sequences. If the quasi-norm is understood, as will be the case with the canonical quasi-norm of a local ring, we denote the completion by \widehat{A}. From Proposition 6.3.2, we get the following universal property of completion:
6.3.3 If B is a normed A-algebra which is complete, then there exists a unique A algebra homomorphism of normed rings $\widehat{A} \rightarrow B$.

Completion of a Noetherian local ring. We now apply the previous theory to the canonical norm on a Noetherian local ring R. Its completion $\mathscr{C}(R) / \mathscr{I}(R)$ is denoted \widehat{R}. It is easy to see that $\mathfrak{m} \mathscr{C}(R)$ cannot be the unit ideal, whence neither is $\mathfrak{m} \widehat{R}$. We will shortly show that \widehat{R} is in fact a Noetherian local ring with maximal ideal $\mathfrak{m} \widehat{R}$, and in its adic norm, it is complete. Moreover, the norm inherited from the norm on $\mathscr{C}(R)$ is identical to the $\mathfrak{m} \widehat{R}$-adic norm. To prove all these claims, we resort to flatness.

Remark 6.3.4. For the reader who does not wish to study the more general setup of normed rings, let me give a brief synopsis of the construction when (R, \mathfrak{m}) is a Noetherian local ring. Let $R^{\mathbb{N}}$ be the ring of sequences in R, that is to say, maps a: $\mathbb{N} \rightarrow R$, with point-wise addition and multiplication. We have a canonical embed$\operatorname{ding} R \rightarrow R^{\mathbb{N}}$, sending $a \in R$ to the constant sequence with value a, which we denote again by a. Given $\mathbf{a}, \mathbf{b} \in R^{\mathbb{N}}$, we say that \mathbf{b} is a subsequence of \mathbf{a}, denoted $\mathbf{b} \subseteq \mathbf{a}$, if there exists a strictly increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ (meaning that $n<m$ implies $f(n)<f(m)$), such that $\mathbf{b}(n)=\mathbf{a}(f(n))$, for all n. We say that \mathbf{a} is a special Cauchy sequence, if $\mathbf{a}(n) \equiv \mathbf{a}(n+1) \bmod \mathfrak{m}^{n}$, for all n, and that it is a Cauchy sequence, if it is a subsequence of a special Cauchy sequence. We say that a Cauchy-sequence a is a null-sequence, if there exists a subsequence $\mathbf{b} \subseteq \mathbf{a}$ such that $\mathbf{b}(n) \equiv 0 \bmod \mathfrak{m}^{n}$, for all n. We call $a \in R$ a limit of a Cauchy sequence \mathbf{a}, if $\mathbf{a}-a$ is a null-sequence. If $a^{\prime} \in R$ is a second limit of \mathbf{a}, then $a-a^{\prime}$ is a null-sequence, and hence must be zero by Krull's Intersection Theorem 3.3.4. This shows that limits, if they exist, are unique. ${ }^{1}$ We call R complete, if every Cauchy sequence has a (unique) limit.

Let $\mathscr{C}(R)$ and $\mathscr{I}(R)$ be the subset of all Cauchy sequences and all null-sequences respectively. It is not hard to check that $\mathscr{C}(R)$ is a subring of $R^{\mathbb{N}}$ and $\mathscr{I}(R)$ an ideal of $\mathscr{C}(R)$. Put $\widehat{R}:=\mathscr{C}(R) / \mathscr{I}(R)$. I leave it as an exercise to the reader to show that $\mathfrak{m} \widehat{R}$ is the unique maximal ideal of \widehat{R}, so that \widehat{R} is in particular a local ring (we will shortly show, see Theorem 6.3.5, that it is also Noetherian). Unraveling the definitions, we see that R is complete if and only if the canonical map $R \rightarrow \widehat{R}$ is an isomorphism. Let us show that as a local ring, \widehat{R} is complete, meaning that every Cauchy sequence a over \widehat{R} has a unique limit (recall that we do not yet know that \widehat{R} is Noetherian). By 6.2.1, we may assume that $\widehat{\mathbf{a}}$ is special. For each n, let $\mathbf{A}(n) \in \mathscr{C}(R)$ be a lift of $\widehat{\mathbf{a}}(n)$. By the same argument, we may assume that each $\mathbf{A}(n)$ is also

[^7]special. Define $\mathbf{a} \in R^{\mathbb{N}}$ by the rule $\mathbf{a}(n):=\mathbf{A}(n)(n)$. We leave it to the reader to verify that \mathbf{a} is a (special) Cauchy sequence and that its image in \widehat{R} is a limit of $\widehat{\mathbf{a}}$. From the definitions, we immediately get $\mathscr{I}(\widehat{R}) \cap \mathscr{C}(R)=\mathscr{I}(R)$. Hence, if the image of $\mathbf{a}^{\prime} \in \mathscr{C}(R)$ in \widehat{R} is also a limit of $\widehat{\mathbf{a}}$, then $\mathbf{a}-\mathbf{a}^{\prime}$ is a null-sequence, and so $\mathbf{a}-\mathbf{a}^{\prime} \in \mathscr{I}(\widehat{R}) \cap \mathscr{C}(R)=\mathscr{I}(R)$, showing that the images of \mathbf{a} and \mathbf{a}^{\prime} in \widehat{R} are the same, whence that \widehat{R} is complete.

In fact, \widehat{R} satisfies the following universal property: if (S, \mathfrak{n}) is a complete local ring and $R \rightarrow S$ a local homomorphism, then the latter factors through a unique local homomorphism $\widehat{R} \rightarrow S$. Indeed, let a be a Cauchy sequence over R, which we may assume to be special. Its image in S is then also a Cauchy sequence (since $R \rightarrow S$ is local, so that $\mathfrak{m} \subseteq \mathfrak{n}$ whence $\mathfrak{m}^{n} \subseteq \mathfrak{n}^{n}$, for all n). Let $s \in S$ be its limit, so that we have defined a map $\mathscr{C}(R) \rightarrow S: \mathbf{a} \mapsto s$. Moreover, if $\mathbf{a} \in \mathscr{I}(R)$, then as a Cauchy sequence over S, it is a null-sequence, and hence $s=0$. Thus, we get an induced map $\widehat{R} \rightarrow S$, and we now leave it to the reader to verify that it satisfies all the stated properties.

Theorem 6.3.5. The canonical homomorphism $R \rightarrow \widehat{R}$ of a Noetherian local ring into its completion is faithfully flat. Moreover, \widehat{R} is a Noetherian local ring with the same residue field as R.

Proof. Since $\mathfrak{m} \widehat{R} \neq \widehat{R}$, it suffices to show that $R \rightarrow \widehat{R}$ is flat. Let $\mathbf{x}:=\left(x_{1}, \ldots, x_{e}\right)$ generate the maximal ideal \mathfrak{m} of R, and let $\xi:=\left(\xi_{1}, \ldots, \xi_{e}\right)$ be a tuple of indeterminates. Define an R-algebra homomorphism $S:=R[[\xi]] \rightarrow \widehat{R}$ as follows. Let f be a power series and let f_{n} be is its truncation consisting of all terms up to degree n. The sequence a defined by $\mathbf{a}(n):=f_{n}(\mathbf{x})$ is easily seen to be a Cauchy sequence in R; its image in $\widehat{R}=\mathscr{C}(R) / \mathscr{I}(R)$ will be denoted $f(\mathbf{x})$. The homomorphism $S \rightarrow \widehat{R}$ is given by the rule $f \mapsto f(\mathbf{x})$. A moment's reflection shows that its kernel is $I:=\left(\xi_{1}-x_{1}, \ldots, \xi_{e}-x_{e}\right) S$. I claim that $S \rightarrow \widehat{R}$ is surjective, so that $\widehat{R}=S / I$, showing already that \widehat{R} is a Noetherian local ring with the same residue field as R. To prove surjectivity, let a be a Cauchy sequence, that is to say, an element of $\mathscr{C}(R)$. Since any subsequence of a has the same image in \widehat{R}, we may assume that $\mathbf{a}(n) \equiv \mathbf{a}(n+1) \bmod \mathfrak{m}^{n}$ for all n, i.e., that it is special in the sense of Remark 6.3.4. Hence we can write

$$
\mathbf{a}(n+1)=\mathbf{a}(n)+\sum_{|v|=n} r_{V} \mathbf{x}^{v}
$$

where the sum runs over all e-tuples v such that $|v|:=v_{1}+\cdots+v_{e}=n$. Define

$$
f(\xi):=\mathbf{a}(0)+\sum_{v} r_{\nu} \xi^{v}
$$

where the sum is now over all non-zero e-tuples v. Hence $f_{n}(\mathbf{x})=\mathbf{a}(n)$ for all n (where as before f_{n} is the n-th degree truncation of f), showing that $f(\mathbf{x})=\mathbf{a}$.

Since $R \rightarrow S$ is flat by Corollary 5.6.3, the flatness of $R \rightarrow \widehat{R}$ will follow from Thereom 5.6.4 once we show that $I \cap \mathfrak{a} S=\mathfrak{a} I$ for every ideal $\mathfrak{a} \subseteq R$. Let $\mathfrak{a}:=\left(a_{1}, \ldots, a_{n}\right) R$. Let $f \in I \cap \mathfrak{a} S$ so that we can write it in two different ways as

$$
\begin{equation*}
f=a_{1} s_{1}+\cdots+a_{n} s_{n}=t_{1}\left(\xi_{1}-x_{1}\right)+\cdots+t_{e}\left(\xi_{e}-x_{e}\right) \tag{6.4}
\end{equation*}
$$

for some $s_{i}, t_{i} \in S$. By Taylor expansion, we can write each s_{i} as $s_{i}=b_{i}+s_{i}^{\prime}$ with $b_{i} \in R$ and $s_{i}^{\prime} \in I$. Hence $f \equiv c \bmod \mathfrak{a} I$ where $c:=a_{1} b_{1}+\cdots+a_{n} b_{n}$. However, $R \rightarrow \widehat{R}$ is injective, so that $I \cap R=(0)$. Since c lies in $I \cap R$ it is therefore zero, showing that $f \in \mathfrak{a} I$.

Corollary 6.3.6. Let (R, \mathfrak{m}) be a Noetherian local ring with completion \widehat{R}. For all n, we have an isomorphism $R / \mathfrak{m}^{n} R \cong \widehat{R} / \mathfrak{m}^{n} \widehat{R}$. In particular, \widehat{R} is a complete Noetherian local ring, that is to say, is complete in its canonical $\mathfrak{m} \widehat{R}$-adic norm, of the same dimension as R.

Proof. Let $R_{n}:=R / \mathfrak{m}^{n}$, and let $S_{n}:=\widehat{R} / \mathfrak{m}^{n} \widehat{R}$. Note that R_{n} is Artinian, whence complete. As $S_{n} / \mathfrak{m} S_{n}$ is equal to the residue field of R whence of R_{n} by Theorem 6.3.5, we get $S_{n} \cong R_{n}$ by Theorem 6.2.5. In particular, R and \widehat{R} have the same HilbertSamuel polynomial, whence the same dimension by Theorem 3.4.2.

I claim that if \mathbf{a} is a Cauchy sequence such that $\mathbf{a}(k) \in \mathfrak{m}^{n}$ for all $k \gg 0$, then $\mathbf{a} \in \mathfrak{m}^{n} \widehat{R}$. Indeed, by what we just proved, we have $\widehat{R}=R+\mathfrak{m}^{n} \widehat{R}$. Hence if we choose generators \mathbf{x} for \mathfrak{m}, then we can write

$$
\begin{equation*}
\mathbf{a}=r+\sum_{|\boldsymbol{v}|=n} \mathbf{x}^{v} \mathbf{b}_{v} \tag{6.5}
\end{equation*}
$$

with $r \in R$ and $\mathbf{b}_{v} \in \widehat{R}$. Substituting k such that $\mathbf{a}(k) \in \mathfrak{m}^{n}$ in (6.5) shows that $r \in$ $\mathfrak{m}^{n} \widehat{R}$. Since $\mathfrak{m}^{n} \widehat{R} \cap R=\mathfrak{m}^{n}$ by faithful flatness (or the above isomorphism), we get $\mathbf{a} \in \mathfrak{m}^{n} \widehat{R}$, as claimed. It follows that the $\mathfrak{m} \widehat{R}$-adic norm of an element is at most its norm as a Cauchy sequence. The converse is easy, thus proving the last assertion.

Immediate from 6.2.3 we get:
6.3.7 If I is an ideal in a Noetherian local ring R, then $\widehat{R} / I \widehat{R}$ is the completion of R / I.

Another extremely useful property of completion is that it "transfers singularities" in the following sense:

Corollary 6.3.8. A Noetherian local ring is regular or Cohen-Macaulay if and only if its completion is.

Proof. Let (R, \mathfrak{m}) be a d-dimensional Noetherian local ring. The completion \widehat{R} of R also has dimension d by Corollary 6.3.6. If R is regular, then \mathfrak{m} is generated by d elements, whence so is $\mathfrak{m} \widehat{R}$, showing that \widehat{R} is regular. Conversely, if \widehat{R} is regular, so that $\mathfrak{m} \widehat{R}$ is generated by a d-tuple \mathbf{x}, then by Nakayama's Lemma, we may choose these generators already in \mathfrak{m}. From $\mathbf{x} \widehat{R}=\mathfrak{m} \widehat{R}$, the cyclic purity of faithfully flat homomorphisms (Proposition 5.3.4) yields $\mathbf{x} R=\mathfrak{m}$, showing that R is regular. If R is Cohen-Macaulay and \mathbf{x} is an R-regular sequence of length d, then \mathbf{x} is also \widehat{R}-regular by faithful flatness and Proposition 5.4.1, showing that \widehat{R} is also Cohen-Macaulay.

Conversely, assume \widehat{R} is Cohen-Macaulay, and let $\mathbf{x}:=\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters of R. Using Corollary 6.3.6, we get $R / \mathbf{x} R \cong \widehat{R} / \mathbf{x} \widehat{R}$, showing that \mathbf{x} is also a system of parameters in \widehat{R}, whence \widehat{R}-regular. Since $R /\left(x_{1}, \ldots, x_{e}\right) R \hookrightarrow$ $\widehat{R} /\left(x_{1}, \ldots, x_{e}\right) \widehat{R}$ for all e by faithful flatness and Proposition 5.3.4, it follows easily that \mathbf{x} is also R-regular.

For those that know inverse limits (also called projective limits), one can give the following alternative construction of the completion:
Proposition 6.3.9. The completion of a Noetherian local ring (R, \mathfrak{m}) is equal to the inverse limit $\lim R / \mathfrak{m}^{n}$.
Proof. Here we view the $R_{n}:=R / \mathfrak{m}^{n}$ as an inverse system via the canonical residue maps $R_{m} \rightarrow R_{n}$ for all $m \geq n$. A typical element of the inverse limit is represented by a sequence a in R such that $\mathbf{a}(m)+\mathfrak{m}^{m}$ is mapped to $\mathbf{a}(n)+\mathfrak{m}^{n}$ under the residue map $R_{m} \rightarrow R_{n}$ for all $m \geq n$; two sequences a and \mathbf{a}^{\prime} then give rise to the same element in the inverse limit if $\mathbf{a}(m) \equiv \mathbf{a}^{\prime}(m) \bmod \mathfrak{m}^{m}$ for all m. The first of these conditions simply translates into $\mathbf{a}(m) \equiv \mathbf{a}(n) \bmod \mathfrak{m}^{n}$ for all $m \geq n$, showing that a is a Cauchy sequence; the second condition says that $\mathbf{a}-\mathbf{a}^{\prime}$ is a null-sequence. Hence we have a map $\lim _{n} \rightarrow \mathscr{C}(R) / \mathscr{I}(R)=\widehat{R}$. The reader can check that this gives indeed an isomorphism of rings.

6.4 Complete Noetherian local rings

Classifying Noetherian local rings is a daunting task, but under the additional completeness assumption, we can say much more, as we will now explore. This will even aid us in the study of non-complete Noetherian local rings by the faithful flatness of completion proven in Theorem 6.3.5.

Cohen's structure theorem. A local ring (R, \mathfrak{m}) may or may not contain a field. In the former case, we say that R has equal characteristic; the remaining case is refered to as mixed characteristic. The name is justified in Exercise 6.5.11: a ring has equal characteristic if and only if has the same characteristic as its residue field. A subfield $\kappa \subseteq R$ which under the canoncial residue map $R \rightarrow k:=R / \mathfrak{m}$ maps surjectively, whence isomorphically, onto k, is called a coefficient field. These might not always exist, but we do have a weaker version:

Lemma 6.4.1. Let R be an equal characteristic local ring with residue field k. Then there exists a subfield $\kappa \subseteq R$, such that k is algebraic over the image $\pi(\kappa)$ of κ under the residue map $\pi: R \rightarrow k$.
Proof. The collection of subfields of R is non-empty by assumption, and is clearly closed under chains. Hence by Zorn's lemma there exists a maximal subfield $\kappa \subseteq$ R. Let u be an arbitrary element in $k \backslash \pi(\kappa)$, and choose $a \in R$ with $\pi(a)=u$. In particular, $a \notin \kappa$. Put $S:=\kappa[a]$, the κ-subalgebra of R generated by a, and let $\mathfrak{p}:=$ $\mathfrak{m} \cap S$. Since $S_{\mathfrak{p}} \subseteq R$, it cannot be a field by maximality of κ, and hence $\mathfrak{p} \neq 0$. Choose a non-zero element $b \in \mathfrak{p}$, and write it as $b=f(a)$ for some $f \in \kappa[\xi]$. If we let $f^{\pi} \in \pi(k)[\xi]$ be the (non-zero) polynomial obtained from f by applying π to its coefficients, then $f^{\pi}(u)=0$, showing that u is algebraic over $\pi(\kappa)$.

Theorem 6.4.2 (Equal characteristic). Let (R, \mathfrak{m}) be a local ring of equal characteristic. If R is complete, then it admits a coefficient field κ. If R has moreover finite embedding dimension e, then R is Noetherian, and in fact isomorphic to a homomorphic image of a power series ring in evariables over k.

Proof. To prove the existence of a coefficient field in positive characteristic, one normally resorts to the theory of etale extensions (as the proof in [30, Theorem 28.3]) or differential bases (as in [15, Theorem 16.14]); an alternative proof is given below in Remark 6.4.3. Here I will only give the proof in equal characteristic zero, that is to say, when the residue field of k has characteristic zero. By (the proof of) Proposition 6.4.1, if $\kappa \subseteq R$ is a maximal subfield, then k is algebraic over $\pi(\kappa)$, where $\pi: R \rightarrow k$ is the residue map. Towards a contradiction, assume there is some $u \in k \backslash \pi(\kappa)$. Let $f \in \kappa[\xi]$ be such that f^{π} is a minimal polynomial of u. Since we are in characteristic zero, u must be a simple root of f^{π}. Hence by Hensel's Lemma, Theorem 6.2.4, we can find $a \in R$ such that $f(a)=0$ and $\pi(a)=u$. Since clearly $a \notin \kappa$, the strictly larger field $\kappa(a) \cong \kappa[\xi] / f \kappa[\xi]$ embeds into R, violating the maximality of κ.

To prove the last assertion (in either characteristic), assume the maximal ideal is finitely generated, say, $\mathfrak{m}=\left(x_{1}, \ldots, x_{e}\right) R$. By Exercise 6.5.12, every element of R can be expanded as a power series in $\left(x_{1}, \ldots, x_{e}\right)$ with coefficients in κ. In particular, R is a homomorphic image of the regular local ring $\kappa\left[\left[\xi_{1}, \ldots, \xi_{e}\right]\right]$ (for the regularity of this latter ring, see Exercise 4.3.5).

Remark 6.4.3. Suppose (R, \mathfrak{m}) is a complete local ring of equal characteristic p. We want to show that it contains a subfield mapping onto its residue field k. Assume first that R is Artinian, or, more generally, admits a nilpotent maximal ideal. We will induct on the smallest power q of p such that $\mathfrak{m}^{q}=0$, where there is nothing to show if $q=1$. Suppose first $q=p$. Let $\mathbf{F}_{p}(R)$ denote the subring of all p-th powers in R. I claim that $\mathbf{F}_{p}(R)$ is a subfield of R. Indeed, let a^{p} be a non-zero element in $\mathbf{F}_{p}(R)$, for some $a \in R$. Since the square of any non-unit is zero, a must be a unit in R, with inverse, say, b. Since $a^{p} b^{p}=1$, we conclude that a^{p} is invertible in $\mathbf{F}_{p}(R)$. Let κ be a maximal subfield of R containing $\mathbf{F}_{p}(R)$, and assume towards a contradiction that $\pi(\kappa)$ is a proper subfield of k. Let $S:=\kappa+\mathfrak{m}$. It is easy to verify that this is a (proper) local subring of R with residue field κ and maximal ideal \mathfrak{m}. Choose some a in R outside S. Hence $c:=a^{p}$ belongs to $\mathbf{F}_{p}(R) \subseteq \kappa$. Suppose $c=d^{p}$ for some $d \in \kappa$. Hence $(a-d)^{p}=0$, showing that $a-d \in \mathfrak{m}$ whence $a \in S$, contradiction. In conclusion, c is not a p-th power in κ, or put differently, $h(\xi):=\xi^{p}-c$ is an irreducible polynomial over κ. Hence $\kappa[\xi] / h \kappa[\xi]$ embeds into R by sending ξ to a, contradicting the maximality of κ.

For $q>p$, let $\mathfrak{n}:=\mathfrak{m}^{q / p}$ and let $\pi: R \rightarrow R / \mathfrak{n}$ be the residue homomorphism. By induction, we can find an embedding $t: k \rightarrow R / \mathfrak{n}$. Let $S:=\pi^{-1}(l(k))$. Clearly $\mathfrak{n} \subseteq S$ and $S / \mathfrak{n} \cong \imath(k)$, showing that \mathfrak{n} is a maximal ideal of S. In fact, $\mathfrak{n}^{p}=0$, so that S is local. By induction, k embeds in S, whence also in R, as we wanted to show.

For an arbitrary complete Noetherian local ring (R, \mathfrak{m}) of equal characteristic p, its residue field k embeds in each $R_{n}:=R / \mathfrak{m}^{n}$ by the above argument. Moreover, analyzing the above inductive argument, we see that we can choose these embeddings to be compatible with the residue maps $R_{m} \rightarrow R_{n}$ for $m \geq n$. Hence we get a homomorphism $k \rightarrow \underset{\varliminf}{\lim } R_{n}$. This gives the required embedding, since $\lim _{\leftrightarrows} R_{n}$ is equal to $\widehat{R}=R$ by Proposition 6.3.9.

The analogue in mixed characteristic requires even more work, and so again we only quote the result here (see [30, Theorem 29.4] for a proof).

Theorem 6.4.4 (Mixed characteristic). Let (R, \mathfrak{m}) be a complete local ring of mixed characteristic, with residue field k of characteristic $p>0$. If R has embedding dimension e, then there exists a complete discrete valuation ring V with with maximal ideal $p V$ and residue field k, and there exists an ideal $I \subseteq V[[\xi]]$ with $\xi=\left(\xi_{1}, \ldots, \xi_{e-1}\right)$ such that $R \cong V[[\xi]] / I$. In particular, R is Noetherian.

The complete discrete valuation ring V from the statement is in fact uniquely determined by p and k, and called the complete p-ring with residue field k (see [30, Theorem 29.2 and Corollary]).

Immediately some important corollaries follow from these structure theorems.
Theorem 6.4.5. A complete regular local ring of equal characteristic is isomorphic to a power series ring over a field.

Proof. Let R be a d-dimensional complete regular local ring with residue field k. By definition, R has embedding dimension d, so that $R \cong k[[\xi]] / I$ by Theorem 6.4.2, with $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$ and $I \subseteq k[[\xi]]$. Since $k[[\xi]]$ has dimension d by Corollary 3.4.3, the ideal I must be zero by Corollary 3.4.6.

There is also a structure theorem for complete regular local rings of mixed characteristic, but it is less straightforward and we will omit it.

Cohen normalization. The next result is the analogue for complete local rings of Noether normalization. Again we will only give the proof in equal characteristic.

Theorem 6.4.6. If R is a d-dimensional Noetherian local ring of equal characteristic, then there exists a (complete) d-dimensional regular local subring $S \subseteq R$ over which R is finite.

Proof. Assume R has equal characteristic, and view its residue field k as a coefficient field of R (see Theorem 6.4.2). Let $\mathbf{x}:=\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters of R. Let $k[[\xi]] \rightarrow R$ be the k-algebra homomorphism given by $\xi_{i} \mapsto x_{i}$, where $\xi=$ $\left(\xi_{1}, \ldots, \xi_{d}\right)$, let I be the kernel of this homomorphism, and let S be its image. Hence $S \cong k[[\xi]] / I$. Since $R / \mathbf{x} R$ is Artinian by definition of system of parameters, it is a finite dimensional vector space over $S / \xi S=k$. Since S is also complete, R is a finite S-module by Theorem 6.2 .5 (notice that $\mathfrak{I}_{R}=0$ by Theorem 3.3.4 so that the Hausdorff condition is satisfied). In particular, by Theorem 3.4.8, both rings have the same dimension d. However, this then forces by Corollaries 3.4.3 and 3.4.6 that $I=0$, so that S is regular (by Exercise 4.3.5).

The same result is true in mixed characteristic if we moreover assume that R is a domain, or more generally, if p generates a height one prime; see [30, Theorem 29.4 and Remark] or [49, Theorem 1.1]. Here are some examples were the assertion fails: the Artinian local ring $\mathbb{Z} / 4 \mathbb{Z}$, which even has non-prime characteristic, or the complete Noetherian local ring $\mathbb{Z}_{p}[[\xi]] / p \xi \mathbb{Z}_{p}[[\xi]]$, containing the discrete valuation ring \mathbb{Z}_{p}, the p-adic integers, over which it is not finite (see also Exercise 6.5.15).

Complete scalar extensions. Sometimes it is desirable to have a residue field with some additional properties. We finish with discussing a technique of extending the residue field in equal characteristic (for the mixed characteristic case, we refer to [53]).

Theorem 6.4.7. Let (R, \mathfrak{m}) be a Noetherian local ring of equal characteristic with residue field k. Every extension $k \subseteq K$ of fields can be lifted to a faithfully flat extension $R \rightarrow R_{K}^{\prec}$, inducing the given extension on the residue fields, with R_{K} a complete local ring with maximal ideal $\mathfrak{m} R_{K}^{\prec}$ and residue field K. In fact, $R_{K}^{\widehat{K}}$ is a solution to the following universal property: any complete Noetherian local R-algebra T with residue field K has a unique structure of a local $R_{K}^{\widehat{K}}$-algebra. In particular, $R_{K}^{\widehat{ }}$ is uniquely determined by R and K up to isomorphism, and is called the complete scalar extension of R along K.

Proof. By Theorem 6.4.2, the completion \widehat{R} of R is isomorphic to $k[\xi \xi]] / I$ for some ideal I and some tuple of indeterminates ξ. Put $R_{K}^{\widehat{K}}:=K[[\xi]] / I K[[\xi]]$. By Theorem 6.3.5 and base change, S has all the required properties.

To prove the universal property, let T be any complete Noetherian local R algebra, given by the local homomorphism $R \rightarrow T$. By the universal property of completions, we have a unique extension $k[\xi]] / I \cong \widehat{R} \rightarrow T$, and by the universal property of tensor products, this uniquely extends to a homomorphism $R_{K}^{\widehat{ }}=K[[\xi]] / I K[[\xi]] \rightarrow$ T.

Note that complete scalar extension is actually a functor, that is to say, any local homomorphism $R \rightarrow S$ of Noetherian local rings whose residue fields are subfields of K extends to a local homomorphism $R_{K}^{\widehat{ }} \rightarrow S_{K}^{\wedge}$. In particular, complete scalar extension commutes with homomorphic images:

$$
\begin{equation*}
(R / I)_{K} \cong R_{K}^{\widehat{K}} / I R_{K}^{\widehat{K}}, \tag{6.6}
\end{equation*}
$$

for all ideals $I \subseteq R$. By Exercise 6.5.13, the complete scalar extension R_{K} has the same dimension as R, and one is respectively regular or Cohen-Macaulay if and only if the other is.

6.5 Exercises

Ex 6.5.1

Prove the statements in 6.1.1. Show moreover that the set I_{r} of all elements of norm at most r, and the set I_{r}^{-}of all elements of norm strictly less than r, are ideals, for all $r \in[0,1]$ (called norm-ideals).

Ex 6.5.2
Prove that if A is I-adically complete, then I lies in the Jacobson radical (=intersection of all maximal ideals) of A. Conclude that if A is complete with respect to a maximal ideal, then it is local.

Ex 6.5.3
Show that the canonical norm on a regular local ring is multiplicative.

Ex 6.5.4

Show that all norm-ideals (see Exercise 6.5.1) in a quasi-normed ring A are open in the norm topology. Show that A is Hausdorff if and only if $\|\cdot\|$ is a norm.

Ex 6.5.5

Prove the statements in 6.1.3 and 6.1.5. Prove that I is closed in the norm topology if and only if the quasi-norm on A / I is a norm.

Ex 6.5.6

Prove 6.1.6.

Ex 6.5.7

Show that the I-adic quasi-norm $\|\cdot\|_{I}$ is indeed a quasi-norm. Show that I and any of its powers define equivalent quasi-norms, in the sense that both norms are mutually bounded. Prove 6.1.7.

Ex 6.5.8

Prove 6.2.1 by finding for each Cauchy sequence an appropriate subsequence satisfying the hypothesis, and a subsequence of this satisfying the conclusion.
*Ex 6.5.9
Show that the Jacobson radical (:=intersection of all maximal ideals) in a quasi-complete ring is the ideal of all elements of norm strictly less than one.

Ex 6.5.10

Formulate, and then prove a generalization of Theorem 6.2 .5 which works for any ring which is quasi-complete in its I-adic quasi-norm. In fact, you can even formulate a version for any quasi-complete ring $(A,\|\cdot\|)$.

Ex 6.5.11

Show that a local ring R has equal characteristic if and only if it has the same characteristic as its residue field.

Ex 6.5.12
Show that if κ is a coefficient field of a local ring (R, \mathfrak{m}) and $\mathfrak{m}=\mathbf{x} R$ is finitely generated, then for every $a \in R$ and each $n \in \mathbb{N}$, we can find a polynomial $f_{n} \in \kappa[\xi]$ such that $a \equiv$ $f_{n}(\mathbf{x}) \bmod \mathfrak{m}^{n}$. Deduce from this the assertion about power series expansions in the last paragraph of the proof of Theorem 6.4.2.

Ex 6.5.13

Show using Exercise 5.7.16 that R and its complete scalar extension $R_{K}^{\widehat{K}}$ have the same dimension. Prove that R is regular or Cohen-Macaulay if and only if $R_{\widehat{K}}$ is.

Additional exercises.

Ex 6.5.14
Show the following more general version of Hensel's lemma for a complete local ring R : if $f \in R[\xi], c \in \mathbb{N}$ and $a \in R$ are such that $f(a)$ lies in the ideal $f^{\prime}(a)^{2} \mathfrak{m}^{c}$, then there exists $b \in R$ with $f(b)=0$ and $b \equiv a \bmod \mathfrak{m}^{c}$.

Ex 6.5.15
Let V be a complete discrete valuation ring with uniformizing parameter π. Show that there can be no regular local subring S inside $R:=V[[\xi]] / \pi \xi V[[\xi]]$ over which R is finite.

6.6 Project: Henselizations

There are many ways to construct Henselizations (see for instance [31, 33, 36]), most of which rely on some more sophisticated notions, such as etale extensions, etc. There is, however, also a direct construction, which we will now discuss. Let (R, \mathfrak{m}) be a Noetherian local ring. By a Hensel system over R of size N, we mean a pair $(\mathscr{H}, \mathbf{u})$ consisting of a system (\mathscr{H}) of N polynomial equations $f_{1}, \ldots, f_{N} \in R[t]$ in the N unknowns $t:=\left(t_{1}, \ldots, t_{N}\right)$, and an approximate solution \mathbf{u} modulo \mathfrak{m} in R (meaning that $f_{i}(\mathbf{u}) \equiv 0 \bmod \mathfrak{m}$ for all i), such that associated Jacobian matrix

$$
\operatorname{Jac}(\mathscr{H}):=\left(\begin{array}{cccc}
\partial f_{1} / \partial t_{1} & \partial f_{1} / \partial t_{2} & \ldots & \partial f_{1} / \partial t_{N} \tag{6.7}\\
\partial f_{2} / \partial t_{1} & \partial f_{2} / \partial t_{2} & \ldots & \partial f_{2} / \partial t_{N} \\
\vdots & \vdots & \ddots & \vdots \\
\partial f_{N} / \partial t_{1} & \partial f_{N} / \partial t_{2} & \ldots & \partial f_{N} / \partial t_{N}
\end{array}\right)
$$

evaluated at \mathbf{u} is invertible over R (that is to say, its determinant is a unit in R). An N tuple \mathbf{x} in some local R-algebra S is called a solution of the Hensel system $(\mathscr{H}, \mathbf{u})$, if it is a solution of the system (\mathscr{H}) and $\mathbf{x} \equiv \mathbf{u} \bmod \mathfrak{m} S$. Note that a Hensel system of size $N=1$ is just a Hensel equation together with a solution in the residue field, as in the statement of Hensel's lemma. In fact, R is Henselian (that is to say, satisfies Hensel's lemma) if and only if any Hensel system over R has a solution in R. The proof of this equivalence is not that easy (one can give for instance a proof using standard etale extensions; see [31] or [15, Exercise 7.26]). However, you can modify the proof of Theorem 6.2.4 to show that complete local rings have this property. In fact, using multivariate Taylor expansion, show the following stronger version (it is instructive to try this first for a single Hensel equation).
6.6.1 Any Hensel system $(\mathscr{H}, \mathbf{u})$ over R admits a unique solution in the completion \widehat{R}.
We call an element $s \in \widehat{R}$ a Hensel element if there exists a Hensel system ($\mathscr{H}, \mathbf{u})$ over R such that s is the first entry of the (unique) solution of this system in \widehat{R}. Let
R^{\sim} be the subset of \widehat{R} of all Hensel elements. For given Hensel elements s and t, construct from their associated Hensel systems a new Hensel system for $s+t$ (respectively, for $s t$), and use this to prove:
6.6.2 The collection of all Hensel elements is a local ring R^{\sim} with maximal ideal $\mathfrak{m} R^{\sim}$. Moreover, R^{\sim} is Henselian, with completion equal to \widehat{R}.

It is unfortunately less easy to prove that R^{\sim} is also Noetherian. One way is to first show that $R^{\sim} \rightarrow \widehat{R}$ is faithfully flat, and then use this to deduce the Noetherianity of R^{\sim} from that of \widehat{R}.
6.6.3 Show that R^{\sim} satisfies the universal property of Henselization: any Henselian local R-algebra S admits a unique structure of R^{\sim}-algebra.

You could also try to prove:
6.6.4 A power series over a field k in n indeterminates ξ is a Hensel element over the localization of $k[\xi]$ with respect to the maximal ideal generated by the ξ if and only if it is algebraic over that ring. In other words, $k[\xi]^{\sim}=k[[\xi]]^{\text {alg }}$.

Chapter 7
 Uniform bounds

In this chapter, we will discuss our first application of ultraproducts: the existence of uniform bounds over polynomial rings. The method goes back to A. Robinson, but really gained momentum by the work of Schmidt and van den Dries in [41], where they brought in flatness as an essential tool. Most of our applications will be concerned with affine algebras over a field. So let us fix an ultra-field K, realized as the ultraproduct of fields K_{w} for $w \in W$. For a concrete example, one may take $K:=\mathbb{C}$ and $K_{p}:=\mathbb{F}_{p}^{\text {alg }}$ by Theorem 1.4.3 (with W the set of prime numbers).

7.1 Ultra-hulls

Ultra-hull of a polynomial ring. In this section, we let $A:=K[\xi]$, where $\xi:=$ $\left(\xi_{1}, \ldots, \xi_{n}\right)$ are indeterminates. We define the ultra-hull (called the non-standard hull in the earlier papers [42, 43, 46]) of A as the ultraproduct of the $A_{w}:=K_{w}[\xi]$, and denote it $U(A)$. The inclusions $K_{w} \subseteq A_{w}$ induce an inclusion $K \subseteq U(A)$. Let ξ_{i} also denote the ultraproduct $\operatorname{ulim}_{w} \xi_{i}$ of the constant sequence ξ_{i}. By Łos' Theorem, Theorem 1.3.1, the ξ_{i} are algebraically independent over K. Hence, we may view them as indeterminates over K in $U(A)$, thus yielding an embedding $A=K[\xi] \subseteq U(A)$. To see why this is called an ultra-hull, let us introduce the category of ultra- K-algebras: a K-algebra B_{\natural} is called an ultra- K-algebra if it is the ultraproduct of K_{w}-algebras B_{w}; a morphism of ultra- K-algebras $B_{\natural} \rightarrow C_{\natural}$ is any K-algebra homomorphism obtained as the ultraproduct of K_{w}-algebra homomorphisms $B_{w} \rightarrow C_{w}$. It follows that any ultra- K-algebra is a K-algebra. The ultra-hull $U(A)$ is clearly an ultra- K-algebra. We have:
7.1.1 The ultra-hull $U(A)$ satisfies the following universal property: if B_{\square} is an ultra- K-algebra, and $A \rightarrow B_{\square}$ is any K-algebra homomorphism, then there exists a unique ultra- K-algebra homomorphism $U(A) \rightarrow B_{\natural}$ extending $A \rightarrow B$.

Indeed, by assumption, B_{\natural} is the ultraproduct of K_{w}-algebras B_{w}. Let $b_{i \natural}$ be the image of ξ_{i} under the the homomorphism $A \rightarrow B_{\natural}$, and choose $b_{i w} \in B_{w}$ whose ultraproduct equals $b_{i \emptyset}$. Define K_{w}-algebra homomorphisms $A_{w} \rightarrow B_{w}$ by the rule $\xi_{i} \mapsto b_{i w}$. The ultraproduct of these homomorphisms is then the required ultra- K algebra homomorphism $U(A) \rightarrow B_{\natural}$. Its uniqueness follows by an easy application of Łos’ Theorem.

An intrinsic characterization of A as a subset of $U(A)$ is provided by the next result (in the terminology of Chapter ??, this exhibits A as a certain protoproduct):
7.1.2 An ultraproduct $f_{\text {দ }}=\operatorname{ulim} f_{w}$ in $U(A)$ belongs to A if and only if the $f_{w} \in A_{w}$ have bounded degree, meaning that there is a d such that almost all f_{w} have degree at most d.
Indeed, if $f \in A$ has degree d, then we can write it as $f=\sum_{\nu} u_{\nu} \xi^{v}$ for some $u_{v} \in K$, where v runs over all n-tuples with $|v| \leq d$. Choose $u_{v w} \in K_{w}$ such that their ultraproduct is u_{v}, and put

$$
\begin{equation*}
f_{w}:=\sum_{|v| \leq d} u_{v w} \xi^{v} . \tag{7.1}
\end{equation*}
$$

An easy calculation shows that the ultraproduct of the f_{w} is equal to f, viewed as an element in $U(A)$. Conversely, if almost each f_{w} has degree at most d, so that we can write it in the form (7.1), then

$$
\operatorname{ulim}_{w \rightarrow \infty} f_{w}=\sum_{|v| \leq d}\left(\operatorname{ulim}_{w \rightarrow \infty} u_{v w}\right) \xi^{v}
$$

is a polynomial (of degree at most d).
Ultra-hull of an affine algebra. More generally, let C be a K-affine ring, that is to say, a finitely generated K-algebra, say of the form $C=A / I$ for some ideal $I \subseteq A$. We define the ultra-hull of C to be $U(A) / I U(A)$, and denote it $U(C)$. It is clear that the canoncial embedding $A \subseteq U(A)$ induces by base change a homomorphism $C \rightarrow U(C)$. Less obvious is that this is still an injective map, which we will prove in Corollary 7.2.3 below. To show that the construction of $U(C)$ does not depend on the choice of presentation $C=A / I$, we verify that $U(C)$ satisfies the same universal property 7.1.1 as $U(A)$: any K-algebra homomorphism $C \rightarrow B_{\natural}$ to some ultra- K algebra B_{\natural} extends uniquely to a homomorphism $U(C) \rightarrow B_{\natural}$ of ultra- K-algebras (recall that any solution to a universal property is necessarily unique). To see why the universal property holds, apply 7.1.1 to the composition $A \rightarrow A / I=C \rightarrow B_{\natural}$ to get a unique extension $U(A) \rightarrow B_{\text {b }}$. Since any element in I is sent to zero under the composition $A \rightarrow B_{\natural}$, this homomorphism factors through $U(A) / I U(A)$, yielding the required homomorphism $U(C) \rightarrow B_{\natural}$ of ultra- K-algebras. Uniqueness follows from the uniqueness of $U(A) \rightarrow B_{\natural}$.

Since $I U(A)$ is finitely generated, it is an ultra-ideal, that is to say, an ultraproduct of ideals $I_{w} \subseteq A_{w}$. By 1.1.6, the ultraproduct of the $C_{w}:=A_{w} / I_{w}$ is equal to $U(C)=U(A) / I U(A)$. If $C=A^{\prime} / I^{\prime}$ is a different presentation of C as a K-algebra (with A^{\prime} a polynomial ring in finitely many indeterminates), and $C^{\prime}{ }_{w}:=A^{\prime}{ }_{w} / I^{\prime}{ }_{w}$ the
corresponding $K_{w^{\prime}}$-algebras, then their ultraproduct $U\left(A^{\prime}\right) / I^{\prime} U\left(A^{\prime}\right)$ is another way of defining the ultra-hull of C, whence it must be isomorphic to $U(C)$. Without loss of generality, we may assume $A \subseteq A^{\prime}$ and hence $A_{w} \subseteq A^{\prime}{ }_{w}$. Since $U(A) / I U(A) \cong$ $U(C) \cong U\left(A^{\prime}\right) / I^{\prime} U\left(A^{\prime}\right)$, the homomorphisms $A_{w} \subseteq A^{\prime}{ }_{w}$ induce homomorphisms $C_{w} \rightarrow C^{\prime}{ }_{w}$, and by Łos’ Theorem, almost all are isomorphisms. This justifies the usage of calling the C_{w} approximations of C (in spite of the fact that they are not uniquely determined by C).
7.1.3 The ultra-hull $U(\cdot)$ is a functor from the category of K-affine rings to the category of ultra- K -algebras.

The only thing which remains to be verified is that an arbitrary K-algebra homomorphism $C \rightarrow D$ of K-affine rings induces a homomorphism of ultra- K-algebras $U(C) \rightarrow U(D)$. However, this follows from the universal property applied to the composition $C \rightarrow D \rightarrow U(D)$, admitting a unique extension so that the following diagram is commutative

Ultra-hull of a local affine algebra. Recall that a K-affine local ring R is simply the localization $C_{\mathfrak{p}}$ of a K-affine algebra C at a prime ideal \mathfrak{p}. Let us call R geometric, if \mathfrak{p} is a maximal ideal \mathfrak{m} of C. By Proposition 2.5.1, a geometric K-affine local ring, in other words, is the local ring of a closed point on an affine scheme of finite type over K. Note that a K-affine local ring is in general not finitely generated as a K-algebra; one usually says that R is essentially of finite type over K. The next result will enable us to define the ultra-hull of a geometric affine local ring; we shall discuss the general case on page 112 below:
7.1.4 Let C be a K-affine ring. If \mathfrak{m} is a maximal ideal in C, then $\mathfrak{m} U(C)$ is a maximal ideal in $U(C)$, and $C / \mathfrak{m} \cong U(C) / \mathfrak{m} U(C)$.
By our previous discussion, $U(L):=U(C) / \mathfrak{m} U(C)$ is the ultra-hull of the field $L:=C / \mathfrak{m}$. By Corollary 2.2.6, the extension $K \subseteq L$ is finite. It follows by Exercise 1.6.9 that L is an ultra-field. By the universal property L is equal to its own ultra-hull, and hence $\mathfrak{m} U(C)$ is a maximal ideal.

We can now define the ultra-hull of a K-affine local ring $R=C_{\mathfrak{m}}$ as the localization $U(R):=U(C)_{\mathfrak{m} U(C)}$. Note that $U(R)$ is again an ultra-ring: let C_{w} be approximations of C, and let $\mathfrak{m}_{w} \subseteq C_{w}$ be ideals whose ultraproduct is equal to $\mathfrak{m U}(C)$. Since the latter is maximal, so are almost all \mathfrak{m}_{w}. For those w, set $R_{w}:=\left(C_{w}\right)_{\mathfrak{m}_{w}}$ (and arbitrary for the remaining w). By Exercise 1.6.2, the ultraproduct of the R_{w} is equal to $U(R)$, and for this reason we call the R_{w} again an approximation of R.

We can formulate a similar universal property which is satisfied by $U(R)$, and then show that any local homomorphism $R \rightarrow S$ of K-affine local rings induces a unique homomorphism $U(R) \rightarrow U(S)$. Moreover, any two approximations agree almost everywhere (see Exercise 7.5.1). In particular, for homomorphic images we have:

7.1.5 If $I \subseteq C$ is an ideal in a K-affine (local) ring, then $U(C / I)=U(C) / I U(C)$.

We extend our naming practice also to elements or ideals: if $a \in C$ is an element or $I \subseteq C$ is an ideal, and $a_{w} \in C_{w}$ and $I_{w} \subseteq C_{w}$ are such that their ultraproduct equals $a \in U(C)$ and $I U(C)$ respectively, then we call the a_{w} and the I_{w} approximations of a and I respectively. In particular, by 7.1.4, the approximations of a maximal ideal are almost all maximal. The same holds true with 'prime' instead of 'maximal', but the proof is more involved, and we have to postpone it until Theorem 7.3.4 below.

7.2 The Schmidt-van den Dries theorem

The ring $U(A)$ is highly non-Noetherian. In particular, although each $\mathfrak{m} U(A)$ is a maximal ideal for \mathfrak{m} a maximal ideal of A, these are not the only maximal ideals of $U(A)$ (see Exercise 7.5.2). Nonetheless, they somehow 'cover' enough of $U(A)$ so that we can apply Theorem 5.6.17. More precisely:
7.2.1 If almost all K_{w} are algebraically closed, then any proper finitely related ideal of $U(A)$ is contained in some $\mathfrak{m} U(A)$ with $\mathfrak{m} \subseteq A$ a maximal ideal.

Indeed, this is even true for any proper ultra-ideal $I \subseteq U(A)$ (and finitely related ideals are ultra-ideals by Exercise ??). Namely, let I be the ultraproduct of ideals $I_{w} \subseteq A_{w}$. By Łos' Theorem, almost each I_{w} is a proper ideal whence contained in some maximal ideal \mathfrak{m}_{w}. By the Nullstellensatz 2.2.2, we can write \mathfrak{m}_{w} as $\left(\xi_{1}-\right.$ $\left.u_{1 w}, \ldots, \xi_{n}-u_{n w}\right) A_{w}$ for some $u_{i w} \in K_{w}$. Let $u_{i} \in K$ be the ultraproduct of the $u_{i w}$, so that the ultraproduct of the \mathfrak{m}_{w} is equal to $\left(\xi_{1}-u_{1}, \ldots, \xi_{n}-u_{n}\right) U(A)$, and by Łos’ Theorem it contains I.

Theorem 7.2.2. For any K-affine ring, the canonical homomorphism $C \rightarrow U(C)$ is faithfully flat, whence in particular injective.

Proof. If we have proven this result for the ultra-hull $U(A)$ of A, then it will follow from 5.2.3 for any $C \rightarrow U(C)$, since the latter is just a base change $C=A / I \rightarrow$ $U(A) / I U(A)=U(C)$, where $C=A / I$ is some presentation of C. The faithfulness of $U(A)$ is immediate from 7.1.4. So remains to show the flatness of $A \rightarrow U(A)$, and for this we may assume that K and all K_{w} are algebraically closed. Indeed, if K^{\prime} is the ultraproduct of the algebraic closures of the K_{w}, then $A \rightarrow A^{\prime}:=K^{\prime}[\xi]$ is flat by 5.2.3. By Exercise 7.5.3, the canonical homomorphism $U(A) \rightarrow U\left(A^{\prime}\right)$ is cyclically pure with respect to ideals extended from A, where $U\left(A^{\prime}\right)$ is the ultra- K^{\prime}-hull of A. Hence if we showed that $A^{\prime} \rightarrow U\left(A^{\prime}\right)$ is flat, then so is $A \rightarrow U(A)$ by Corollary 5.6.16. Hence we may assume all K_{w} are algebraically closed. By Theorem 5.6.17 in conjunction with 7.2.1, we only need to show that $R:=A_{\mathfrak{m}} \rightarrow U(R)=U(A)_{\mathfrak{m}} U(A)$
is flat for every maximal ideal $\mathfrak{m} \subseteq A$. After a translation, we may assume $\mathfrak{m}=$ $\left(\xi_{1}, \ldots, \xi_{n}\right) A$. By Łos' Theorem, $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is $U(A)$-regular whence $U(R)$-regular. This proves that $U(R)$ is a big Cohen-Macaulay R-module. By Proposition 5.6.8 it is therefore a balanced big Cohen-Macaulay module, since any regular sequence in $U(R)$ is permutable by Łos' Theorem, because this is so in the Noetherian local rings $\left(A_{w}\right)_{\mathfrak{m}_{w}}$ (see Theorem 4.2.6). Hence $U(R)$ is flat over R by Theorem 5.6.9.

Immediately from this and the cyclic purity of faithfully flat homomorphisms (Proposition 5.3.4) we get:

Corollary 7.2.3. The canonical map $C \rightarrow U(C)$ is injective, and $I U(C) \cap C=I$ for any ideal $I \subseteq C$.

7.3 Transfer of structure

We will use ultra-hulls in our definition of tight closure in characteristic zero (see $\S 9$), and to this end, we need to investigate more closely the relation between an affine algebra and its approximations. We start with the following far reaching generalization of 7.1.4.

Finite extensions.

Proposition 7.3.1. If $C \rightarrow D$ is a finite homomorphism of K-affine rings, then $U(D) \cong U(C) \otimes_{C} D$, and hence $U(C) \rightarrow U(D)$ is also finite.

Proof. By Exercise 1.6.9, the tensor product $U(C) \otimes_{C} D$ is an ultra- K-algebra, since it is finite over $U(C)$. By the universal property of the ultra-hull of D, we therefore have a unique homomorphism $U(D) \rightarrow U(C) \otimes_{C} D$ of ultra- K-algebras. On the other hand, by the universal property of tensor products, we have a unique homomorphism $U(C) \otimes_{C} D \rightarrow U(D)$. It is no hard to see that the latter is in fact a morphism of ultra-K-algebras. By uniqueness of both homomorphisms, they must be therefore each other's inverse.

Corollary 7.3.2. If C is a K-affine Artinian ring, then $C \cong U(C)$.
Proof. Since C is a direct product of local Artinian rings by 3.1.4, and since ultrahulls are easily seen to commute with direct products, we may assume C is moreover local, with maximal ideal \mathfrak{m}, say. Let $L:=C / \mathfrak{m}$, so that $L \cong U(L)$ by 7.1.4. Note that the vector space dimension of C over L is equal to the length of C by Exercise 3.5.3. In any case, C is a finite L-module, so that by Proposition 7.3.1 we get $U(C)=$ $U(L) \otimes_{L} C=C$.

Corollary 7.3.3. The dimension of a K-affine ring is equal to the dimension of almost all of its approximations.

Proof. Let C be an n-dimensional K-affine ring, with approximations C_{w}. The assertion is trivial for $C=A$ a polynomial ring. For the general case, let $A \subseteq C$ be a finite extension, as given by Theorem 2.2.5. The induced homomorphism $U(A) \rightarrow U(C) \cong U(A) \otimes_{A} C$ is finite, by Proposition 7.3.1, and injective since $A \rightarrow U(A)$ is flat by Theorem 7.2.2. By Łos’ Theorem, almost all $A_{w} \rightarrow C_{w}$ are finite and injective. Hence almost all C_{w} have dimension n by Theorem 3.4.8.

Prime ideals. We return to our discussion on the behavior of prime ideals under the ultra-hull, and we are ready to prove the promised generalization of 7.1.4.

Theorem 7.3.4. A K-affine ring C is a domain if and only if $U(C)$ is, if and only if almost all of its approximations are. In particular, if \mathfrak{p} is a prime ideal in an arbitrary K-affine ring D, then $\mathfrak{p} U(D)$ is again a prime ideal, and so are almost all of its approximations \mathfrak{p}_{w}.

Proof. By Łos' Theorem, almost all C_{w} are domains if and only if $U(C)$ is a domain. If this holds, then C too is a domain since it is a subring of $U(C)$ by Corollary 7.2.3. Conversely, assume C is a domain, and let $A \subseteq C$ be a Noether normalization of C, that is to say a finite and injective extension. Let $A_{w} \subseteq C_{w}$ be the corresponding approximations implied by Proposition 7.3.1. Let \mathfrak{p}_{w} be a prime ideal in C_{w} of maximal dimension, and let \mathfrak{P} be their ultraproduct, a prime ideal in $U(C)$. An easy dimension argument shows that $\mathfrak{p}_{w} \cap A_{w}=(0)$ and hence by Łos’ Theorem, $\mathfrak{P} \cap U(A)=(0)$. Let $\mathfrak{p}:=\mathfrak{P} \cap C$. Since $\mathfrak{p} \cap A$ is contained in $\mathfrak{P} \cap U(A)$, it is also zero. Hence $A \rightarrow C / \mathfrak{p}$ is again finite and injective. Since C is a domain, a dimension argument using Theorem 3.4 .8 yields that $\mathfrak{p}=0$. On the other hand, we have an isomorphism $U(C)=U(A) \otimes_{A} C$, so that by general properties of tensor products

$$
U(C) / \mathfrak{P}=U(A) /(\mathfrak{P} \cap U(A)) \otimes_{A /(\mathfrak{P} \cap A)} C /(\mathfrak{P} \cap C)=U(A) \otimes_{A} C=U(C)
$$

showing that \mathfrak{P} is zero, whence so are almost all \mathfrak{p}_{w}. Hence almost all C_{w} are domains, and hence by Łos' Theorem, so is $U(C)$.

The last assertion is immediate from the first applied to $C:=D / \mathfrak{p}$.
This allows us to define the ultra-hull of an arbitrary local K-affine ring $C_{\mathfrak{p}}$ as the localization $U(C)_{\mathfrak{p} U(C)}$. To show that a local affine ring has the same dimension as almost all of its approximations, one can use either some deeper results on the dimension of an affine ring (see Exercise 7.5.6), or we proceed with some further transfer results.

Recall (see Definition 3.4.1) that the geometric dimension geodim (R) of a local ring (R, \mathfrak{m}) of finite embedding dimension is by definition the least number of generators needed to generate an \mathfrak{m}-primary ideal.

Proposition 7.3.5. If (R, \mathfrak{m}) is a d-dimensional local K-affine ring, then $U(R)$ has geometric dimension d.

Proof. We induct on the dimension d, where the case $d=0$ follows from Corollary 7.3.2. So assume $d>0$, and let x be a parameter in R. Hence, $R / x R$ has dimension $d-1$, so that by induction, $U(R / x R)$ has geometric dimension $d-1$. Since
$U(R / x R)=U(R) / x U(R)$ by 7.1.5, we see that $U(R)$ has geometric dimension at most d. By way of contradiction, suppose its geometric dimension is at most $d-1$. In particular, there exists an $\mathfrak{m} U(R)$-primary ideal \mathfrak{N} generated by $d-1$ elements. Put $\mathfrak{n}:=\mathfrak{N} \cap R$, and let n be such that $\mathfrak{m}^{n} U(R) \subseteq \mathfrak{N}$. By faithful flatness, that is to say, by Corollary 7.2.3, we have an inclusion $\mathfrak{m}^{n} \subseteq \mathfrak{n}$, showing that \mathfrak{n} is \mathfrak{m}-primary. Hence $R / \mathfrak{n} \cong U(R / \mathfrak{n})=U(R) / \mathfrak{n} U(R)$ by Corollary 7.3.2. Hence $U(R) / \mathfrak{N}$ is a homomorphic image of R / \mathfrak{n} whence equal to it by definition of \mathfrak{n}. In conclusion, $\mathfrak{N}=\mathfrak{n} U(R)$. By Theorem 3.4.2, the geometric dimension of R is d, so that \mathfrak{n} requires at least d generators. Since $R \rightarrow U(R)$ is flat by Theorem 7.2.2, also $\mathfrak{n} U(R)$ requires at least d generators by 5.3.7, contradiction.

Corollary 7.3.6. The dimension of a local K-affine ring R is equal to the dimension of almost all of its approximations R_{w}. Moreover, if \mathbf{x} is a sequence in R with approximations \mathbf{x}_{w}, then \mathbf{x} is a system of parameters if and only if almost all \mathbf{x}_{w} are.

Proof. The second assertion follows immediately from the first and Łos’ Theorem. By Proposition 7.3.5, the geometric dimension of $U(R)$ is equal to $d:=\operatorname{dim}(R)$. Let R_{w} be approximations of R, so that their ultraproduct equals $U(R)$. If I is an $\mathfrak{m} U(R)$ primary ideal generated by d elements, then its approximation I_{w} is an \mathfrak{m}_{w}-primary ideal generated by d elements for almost all w by 1.4.9. Hence almost all R_{w} have geometric dimension at most d, whence dimension at most d by Theorem 3.4.2.

Let $\mathfrak{p}_{0} \varsubsetneqq \cdots \nsubseteq \mathfrak{p}_{d}=\mathfrak{m}$ be a chain of prime ideals in R of maximal length. By faithfull flatness (in the form of Corollary 7.2.3), this chain remains strict when extended to $U(R)$, and by Theorem 7.3.4, it consists again of prime ideals. Hence if $\mathfrak{p}_{i w} \subseteq R_{w}$ are approximations of \mathfrak{p}_{i}, then by Łos' Theorem, we get a strict chain of prime ideals $\mathfrak{p}_{0 w} \varsubsetneqq \cdots \nsubseteq \mathfrak{p}_{d w}=\mathfrak{m}_{w}$ for almost all w, proving that almost all R_{w} have dimension at least d.

Note that it is not true that if \mathbf{x}_{w} are systems of parameters in the approximations, then their ultraproduct (which in general even lies outside R) does not necesarily generate an $\mathfrak{m} U(R)$-primary ideal.
Singularities. Now that we know how dimension behaves under ultra-hulls, we can investigate singularities.

Theorem 7.3.7. A local K-affine ring is respectively regular or Cohen-Macaulay if and only if almost all its approximations are.

Proof. Let R be a d-dimensional local K-affine ring, and let R_{w} be its approximations. If R is regular, then its embedding dimension is d, whence so is the embedding dimension of $U(R)$, and by Łos’ Theorem, then so is the embedding dimension of R_{w} for almost each w, and conversely. This proves the assertion for regularity. As for the Cohen-Macaulay condition, let \mathbf{x} be a system of parameters with approximation \mathbf{x}_{w}. Hence almost each \mathbf{x}_{w} is a system of parameters in R_{w} by Corollary 7.3.6. If R is Cohen-Macaulay, then \mathbf{x} is R-regular, hence $U(R)$-regular by flatness (see Proposition 5.4.1), whence almost each \mathbf{x}_{w} is R_{w}-regular by Łos’ Theorem, and almost all R_{w} are Cohen-Macaulay. The converse follows along the same lines.

7.4 Uniform bounds

In this last section, we are ready to deduce some applications of ultraproducts to the study of rings. The results as well as the proof method via ultraproducts are due to Schmidt and van den Dries from their seminal paper [41], and were further developped in [40, 42, 43, 51].

Linear equations. The proof of the next result is very typical for an argument based on ultraproducts, and will be the template for all future proofs.

Theorem 7.4.1. There exists a function $N: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. If k is a field, and if $f_{0}, \ldots, f_{s} \in k[\xi]$ are polynomials of degree at most d in at most n indeterminates ξ such that $f_{0} \in\left(f_{1}, \ldots, f_{s}\right) k[\xi]$, then there exist $g_{1}, \ldots g_{s} \in k[\xi]$ of degree at most $N(d, n)$ such that $f_{0}=g_{1} f_{1}+\cdots+g_{s} f_{s}$.

Proof. By way of contradiction, suppose this result is false for some pair (d, n). This means that we can produce counterexamples requiring increasingly high degrees. Before we write these down, observe that the number s of polynomials in these counterexamples can be taken to be the same by Lemma 7.4.2 below (by adding zero polynomials if necessary). So, for each $w \in \mathbb{N}$, we can find counterexamples consisting of a field K_{w}, and polynomials $f_{0 w}, \ldots, f_{s w} \in A_{w}:=K_{w}[\xi]$ of degree at most d, such that $f_{0 w}$ can be written as an A_{w}-linear combination of the $f_{1 w}, \ldots, f_{s w}$, but any such linear combination involves a polynomial of degree at least w. Let f_{i} be the ultraproduct of the $f_{i w}$. This is again a polynomial of degree d in A by 7.1.2. Moreover, by Łos' Theorem, $f_{0} \in\left(f_{1}, \ldots, f_{d}\right) \cup(A)$. We use the flatness of $A \rightarrow U(A)$ via its corollary in 7.2.3, to conclude that $f_{0} \in\left(f_{1}, \ldots, f_{s}\right) U(A) \cap A=$ $\left(f_{1}, \ldots, f_{s}\right) A$. Hence we can find polynomials $g_{i} \in A$ such that

$$
\begin{equation*}
f_{0}=g_{1} f_{1}+\cdots+g_{s} f_{s} \tag{7.3}
\end{equation*}
$$

Let e be the maximum of the degrees of the g_{i}. By 7.1.2 again, we can choose approximations $g_{i w} \in A_{w}$ of g, of degree at most e. By Łos’ Theorem, (7.3) yields for almost all w that $f_{0 w}=\sum_{i} g_{i w} f_{i w}$, contradicting our assumption.

Lemma 7.4.2. Any ideal in A generated by polynomials of degree at most d requires at most $N:=\binom{d+n}{n}$ generators.

Proof. Note that N is equal to the number of monomials of degree at most d in n variables. Let $I:=\left(f_{1}, \ldots, f_{s}\right) A$ be an ideal in A with each f_{i} of degree at most d. Choose some (total) ordering < on these monomials (e.g., the lexicographical ordering on the exponent vectors), and let $l(f)$ denote the largest monomial appearing in f with non-zero coefficient, for any $f \in A$ of degree at most d (where we put $l(0):=-\infty)$. If $l\left(f_{i}\right)=l\left(f_{j}\right)$ for some non-zero f_{i}, f_{j} with $i<j$, then $l\left(u f_{i}-v f_{j}\right)<l\left(f_{i}\right)$ for some non-zero elements $u, v \in K$, and we may replace the generator f_{j} by the new generator $u f_{i}-v f_{j}$. Doing this recursively for all i, we arrive at a situation in which all non-zero f_{i} have different $l\left(f_{i}\right)$, and hence there can be at most N of these.

We can reformulate the result in Theorem 7.4.1 to arrive at some further generalizations. The ideal membership condition in that theorem is really about solving an (inhomogeneous) linear equation in A : the equation $f_{0}=f_{1} t_{1}+\cdots+f_{s} t_{s}$, where the t_{i} are the unknowns of this equation (as opposed to ξ, which are indeterminates). This is the perspective taken in Exercise 7.5.5, which shows that there exists a bound, only depending on the degree and the number of variables, for every system of linear equations. In the homogeneous case we can say even more:

Theorem 7.4.3. There exists a bound $N:=N(d, n)$ such that for any field k, any homogeneous system of equations in $k\left[\xi_{1}, \ldots, \xi_{n}\right]$ all of whose coefficients have degree at most d, admits a finite number of solutions of degree at most N such that any other solution is a linear combination of these finitely many solutions.

Proof. The proof once more is by contradiction. Assume the statement is false for the pair (n, d). Hence we can find for each $w \in \mathbb{N}$, a field K_{w}, and a system of linear homogeneous equations

$$
\begin{equation*}
\lambda_{1 w}(t)=\cdots=\lambda_{s w}(t)=0 \tag{w}
\end{equation*}
$$

in the variables $t=\left(t_{1}, \ldots, t_{m}\right)$ with coefficients in A_{w}, such that the module of solutions $\operatorname{Sol}_{A_{w}}\left(\mathscr{L}_{w}\right) \subseteq A_{w}^{k}$ requires at least one generator one of whose entries is a polynomial of degree at least w. Here, we may again take the number m of t variables as well as the number s of equations to be the same in all counterexamples, by another use of Lemma 7.4.2. The ultraproduct of each $\lambda_{i w}$ is, as before by 7.1.2, an element $\lambda_{i} \in A[t]$ which is a linear form in the t-variables (and has degree at most d in ξ). By the equational criterion for flatness, Theorem 5.6.1, the flatness of $A \rightarrow U(A)$, proven in Theorem 7.2.2, amounts to the existence of solutions $\mathbf{b}_{1}, \ldots, \mathbf{b}_{l} \in \operatorname{Sol}_{A}(\mathscr{L})$ such that any solution of the homogeneous linear system (\mathscr{L}) of equations $\lambda_{1}=\cdots=\lambda_{s}=0$ in $U(A)$ lies in the $U(A)$-module generated by the \mathbf{b}_{i}. Let e be the maximum of the degrees occuring in the \mathbf{b}_{i}. In particular, we can find approximations $\mathbf{b}_{i w} \in A_{w}^{m}$ of \mathbf{b}_{i} whose entries all have degree at most e. I claim that almost each $\operatorname{Sol}_{A_{w}}\left(\mathscr{L}_{w}\right)$ is equal to the submodule H_{w} generated by $\mathbf{b}_{1 w}, \ldots, \mathbf{b}_{l w}$, which would then contradict our assumption.

To prove the claim, one inclusion is clear, so assume by way of contradiction that we can find for almost all w a solution $\mathbf{q}_{w} \in \operatorname{Sol}_{A_{w}}\left(\mathscr{L}_{w}\right)$ outside H_{w}. Let $\mathbf{q}_{t} \in U(A)^{m}$ be its ultraproduct (note that this time, we cannot guarantee that its entries lie in A since the degrees might be unbounded). By Łos’ Theorem, $\mathbf{q}_{\natural} \in \operatorname{Sol}_{U_{(A)}}(\mathscr{L})$, whence can be written as an $U(A)$-linear combination of the \mathbf{b}_{i}. Writing this out and using Łos’ Theorem once more, we conclude that \mathbf{q}_{w} lies in H_{w} for almost all w, contradiction.

Primality testing.

Theorem 7.4.4. There exists a function $N: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. If k is a field, and if \mathfrak{p} is an ideal in $k\left[\xi_{1}, \ldots, \xi_{n}\right]$ generated by polynomials of degree at most d, then \mathfrak{p} is a prime ideal if and only if for any two polynomials f, g of degree at most $N(d, n)$ which do not belong to \mathfrak{p}, neither does their product.

Proof. One direction in the criterion is obvious. Suppose the other is false for the pair (d, n), so that we can find for each $w \in \mathbb{N}$, a field K_{w} and a non-prime ideal $\mathfrak{a}_{w} \subseteq$ A_{w} generated by polynomials of degree at most d, such that any two polynomials of degree at most w not in \mathfrak{a}_{w} have their product also outside \mathfrak{a}_{w}. Taking ultraproducts of the generators of the \mathfrak{a}_{w} of degree at most d gives polynomials of degree at most d in A by 7.1.2, and by \not ºs' $^{\prime}$ Theorem if $\mathfrak{a} \subseteq A$ is the ideal they generate, then $\mathfrak{a} U(A)$ is the ultraproduct of the \mathfrak{a}_{w}. I claim that \mathfrak{a} is a prime ideal. However, this implies that almost all \mathfrak{a}_{w} must be prime ideals by Theorem 7.3.4, contradiction.

To verify the claim, let $f, g \notin \mathfrak{a}$. We want to show that $f g \notin \mathfrak{a}$. Let e be the maximum of the degrees of f and g. Choose approximations $f_{w}, g_{w} \in A_{w}$ of degree at most e, of f and g respectively. By Łos’ Theorem, $f_{w}, g_{w} \notin \mathfrak{a}_{w}$ for almost all w. For $w \geq e$, our assumption then implies that $f_{w} g_{w} \notin \mathfrak{a}_{w}$, whence by Łos' Theorem, their ultraproduct $f g \notin \mathfrak{a} U(A)$. A fortiori, then neither does $f g$ belong to \mathfrak{a}, as we wanted to show.

The pattern by now must become clear: prove a particular property of ideals is preserved under ultra-hulls, and use this to deduce uniform bounds. For instance you are asked in Exercise 7.5.7 to prove the following two results.

Proposition 7.4.5. The image of a radical ideal in the ultra-hull remains radical.
Since the radical of an ideal is the intersection of its minimal overprimes, we derive from this the following uniform bounds property:

Theorem 7.4.6. There exists a function $N: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. If k is a field, and if I is an ideal in $k\left[\xi_{1}, \ldots, \xi_{n}\right]$ generated by polynomials of degree at most d, then its radical $J:=\operatorname{rad}(I)$ is generated by polynomials of degree at most $N:=N(n, d)$. Moreover, $J^{N} \subseteq I$ and I has at most N distinct minimal overprimes, all of which are generated by polynomials of degree at most N.

7.5 Exercises

Ex 7.5.1

Call a ring S_{\natural} an ultra-local K-algebra, if it is an ultraproduct of local K_{w}-algebras S_{w}; any ultraproduct of local K_{w}-algebra homomorphisms $S_{w} \rightarrow T_{w}$ is called a morphism of ultra-local K-algebras. Show that if R is a local K-affine ring, then its ultra-hull $U(R)$ is an ultra-local K-algebra. Moreover, we have the following universal property: if $R \rightarrow S_{\natural}$ is a local K-algebra homomorphism into an ultra-local K-algebra S_{\downarrow}, then there exists a unique morphism $U(R) \rightarrow S_{\natural}$ of ultra-local K-algebras. Prove 7.1.5 and the assertions preceding it.

Ex 7.5.2

The maximal ideals of $U(A)$ that are not extended from A are harder to describe. To show that they at least exist, we reason as follows. For each w, choose a polynomial $f_{w} \in A_{w}$ in ξ_{1} of degree w with distinct roots in K_{w} (assuming K_{w} has at least size w), and let $f \in U(A)$
be their ultraproduct. Let \mathfrak{a} be the ideal generated by all f / h where h runs over all elements in A such that $f \in h U(A)$. Show that \mathfrak{a} is not the unit ideal, and hence is contained in some maximal ideal \mathfrak{M} of $U(A)$. Show that \mathfrak{a} cannot be inside a maximal ideal of the form $\mathfrak{m} U(A)$ with $\mathfrak{m} \subseteq A$, showing that \mathfrak{M} is not of the latter form. In fact, \mathfrak{M} is not even an ultra-ideal. Give an example, assuming that the K_{w} are not algebraically closed, of a maximal ultraideal of $U(A)$ which is not extended from A.

Ex 7.5.3

Show that if $C_{\natural} \rightarrow D_{\natural}$ is an ultraproduct of cyclically pure homomorphisms $C_{w} \rightarrow D_{w}$, then $C_{\natural} \rightarrow D_{\natural}$ is cyclically pure with respect to ultra-ideals. Deduce from this the claim in the proof of Theorem 7.2.2 about the cyclical purity of $U(A) \rightarrow U\left(A^{\prime}\right)$ with respect to ideals extended from A.

Ex 7.5.4

Show the 'global' counterparts of Theorem 7.3.7, that is to say, a K-affine ring is respectively regular or Cohen-Macaulay if and only if almost all of its approximations are.

Ex 7.5.5

Show that there exists a bound $N:=N(d, n)$ such that for any field k, and for any (not necessarily homogeneous) linear system (\mathscr{L}) of equations $\lambda_{1}=\cdots=\lambda_{s}=0$ with $\lambda_{i} \in k[\xi, t]$ of ξ-degree at most d and t-degree at most one, where ξ is an n-tuple of indeterminates and t is a finite tuple of variables, if the system admits a solution in $K[\xi]$, then it admits a solutions all of whose entries have degree at most N.

Ex 7.5.6

In a K-affine domain D, we always have an equality $\operatorname{dim}(D / \mathfrak{p})+\operatorname{ht}(\mathfrak{p})=\operatorname{dim}(D)$ (for a special case, see Exercise 3.5.17). Assuming this result, use it to give an alternative proof of Corollary 7.3.6 which does not rely on Proposition 7.3.5, but instead uses Corollary 7.3.3.

Ex 7.5.7
Prove Proposition 7.4.5 and derive Theorem 7.4.6 from it by the typical ultraproduct argument.

Ex 7.5.8

Use Theorem 5.6.15, the Colon Criterion, to show that there exists a bound $N:=N(d, n)$ such that for any field k, any ideal $I \subseteq k[\xi]$ generated by polynomials of degree at most d, and any $a \in k[\xi]$ of degree at most d in the n indeterminates ξ, the ideal $(I: a)$ is generated by polynomials of degree at most N.

Chapter 8

Tight closure in positive characteristic

In this chapter, p is a fixed prime number, and all rings are assumed to have characteristic p, unless explicitly mentioned otherwise. We review the notion of tight closure due to Hochster and Huneke (as a general reference, we will use [26]). The main protagonist in this elegant theory is the p-th power Frobenius map. We will focus on five key properties of tight closure, which will enable us to prove, virtually effortlessly, several beautiful theorems. Via these five properties, we can give a more axiomatic treatment, which lends itself nicely to generalization, and especially to a similar theory in characteristic zero (see Chapters 9 and 10).

8.1 Frobenius

The major advantage of rings of positive characteristic is the presence of an algebraic endomorphism: the Frobenius. More precisely, let A be a ring of characteristic p, and let \mathbf{F}_{p}, or more accurately, $\mathbf{F}_{p, A}$, be the ring homomorphism $A \rightarrow A: a \mapsto a^{p}$, called the Frobenius on A. Recall that this is indeed a ring homomorphism, where the only thing to note is that the coefficients in the binomial expansion

$$
\mathbf{F}_{p}(a+b)=\sum_{i=0}^{p}\binom{p}{i} a^{i} b^{p-i}=\mathbf{F}_{p}(a)+\mathbf{F}_{p}(b)
$$

are divisible by p for all $0<i<p$ whence zero in A, proving that \mathbf{F}_{p} is additive.
When A is reduced, \mathbf{F}_{p} is injective whence yields an isomorphism with its image $A^{p}:=\operatorname{Im}\left(\mathbf{F}_{p}\right)$ consisting of all p-th powers of elements in A (and not to be confused with the p-th Cartesian power of A). The inclusion $A^{p} \subseteq A$ is isomorphic with the Frobenius on A because we have a commutative diagram

When A is a domain, then we can also define the ring $A^{1 / p}$ as the subring of the algebraic closure of the field of fractions of A consisting of all elements b satisfying $b^{p} \in A$. Hence $A \subseteq A^{1 / p}$ is integral. Since, $\mathbf{F}_{p}\left(A^{1 / p}\right)=A$ and \mathbf{F}_{p} is injective, we get $A^{1 / p} \cong A$. Moreover, we have a commutative diagram

showing that the Frobenius on A is also isomorphic to the inclusion $A \subseteq A^{1 / p}$. It is sometimes easier to work with either of these inclusions rather than with the Frobenius itself, especially to avoid notational ambiguity between source and target of the Frobenius (instances where this approach would clarify the argument are the proofs of Theorem 8.1.2 and Corollary 8.1.3 below).

Often, the inclusion $A^{p} \subseteq A$ is even finite, and hence so is the Frobenius itself. One can show (see Exercise 8.7.11) using Noether normalization (Theorem 2.2.5) or Cohen normalization (Theorem 6.4.6) that this is true when A is respectively an affine k-algebra or a complete Noetherian local ring with residue field k, and k is perfect, or more generally, $\left(k: k^{p}\right)<\infty$.

Frobenius transforms. Given an ideal $I \subseteq A$, we will denote its extension under the Frobenius by $\mathbf{F}_{p}(I) A$, and call it the Frobenius transform of I. Note that $\mathbf{F}_{p}(I) A \subseteq I^{p}$, but the inclusion is in general strict. In fact, one easily verifies that

8.1.1 If $I=\left(x_{1}, \ldots, x_{n}\right) A$, then $\mathbf{F}_{p}(I) A=\left(x_{1}^{p}, \ldots, x_{n}^{p}\right) A$.

If we repeat this process, we get the iterated Frobenius transforms $\mathbf{F}_{p}^{n}(I) A$ of I, generated by the p^{n}-th powers of elements in I, and in fact, of generators of I. In tight closure theory, the simplified notation

$$
I^{[n]}:=\mathbf{F}_{p}^{n}(I) A
$$

is normally used, but for reasons that will become apparent once we defined tight closure as a difference closure (see page 138), we will use the 'heavier' notation. On the other hand, since we fix the characteristic, we may omit p from the notation and simply write $\mathbf{F}: A \rightarrow A$ for the Frobenius.

Kunz's theorem. The next result, due to Kunz, characterizes regular local rings in positive characteristic via the Frobenius. We will only prove the direction that we need.

Theorem 8.1.2. Let R be a Noetherian local ring. If R is regular, then \mathbf{F}_{p} is flat. Conversely, if R is reduced and \mathbf{F}_{p} is flat, then R is regular.

Proof. We only prove the direct implication; for the converse see [29, §42]. Let x be a system of parameters of R, whence an R-regular sequence by Proposition 4.2.3. Since $\mathbf{F}(\mathbf{x})$ is also a system of parameters, it too is R-regular (Theorem 4.2.6). Hence, R viewed as an R-algebra via \mathbf{F} is a balanced big Cohen-Macaulay module, and therefore flat by Theorem 5.6.9.

Corollary 8.1.3. If R is a regular local ring, $I \subseteq R$ an ideal, and $a \in R$ an arbitrary element, then $a \in I$ if and only if $\mathbf{F}(a) \in \mathbf{F}(I) R$.

Proof. One direction is of course trivial, so assume $\mathbf{F}(a) \in \mathbf{F}(I) R$. However, since \mathbf{F} is flat by Theorem 8.1.2, the contraction of the extended ideal $\mathbf{F}(I) R$ along \mathbf{F} is again I by Proposition 5.3.4, and a lies in this contraction (recall that $\mathbf{F}(I) R \cap R$ stands really for $\mathbf{F}^{-1}(\mathbf{F}(I) R)$.)

8.2 Tight closure

The definition of tight closure, although not complicated, is at first hard to grasp, and only by working with it enough, and realizing its versatility, does one get a knack of it. The idea is inspired by the ideal membership test of Corollary 8.1.3. Unfortunately, that test only works over regular local rings, so that it will be no surprise that whatever test we design, it will have to be more involved. Moreover, the proposed test will in fact fail in general, that is to say, the elements satisfying the test form an ideal which might be strictly bigger than the original ideal. But not too much bigger, so that we may view this bigger ideal as a closure of the original ideal, and as such, it is a 'tight' fit.

In the remainder of this section, A is a Noetherian ring, of characteristic p. A first obvious generalization of the ideal membership test from Corollary 8.1.3 is to allow iterates of the Frobenius: we could ask, given an ideal $I \subseteq A$, what are the elements x such that $\mathbf{F}^{n}(x) \in \mathbf{F}^{n}(I) A$ for some power n ? They do form an ideal and the resulting closure operation is called the Frobenius closure. However, its properties are not sufficiently strong to derive all the results tight closure can.

Tight closure. The adjustment to make in the definition of Frobenius closure, although minor, might at first be a little surprising. To make the definition, we will call an element $a \in A$ a multiplier, if it is either a unit, or otherwise generates an ideal of positive height (necessarily one by Theorem 3.4.4). Put differently, a is a multiplier if it does not belong to any minimal prime ideal of A. In particular, the product of
two multipliers is again a multiplier. In a domain, a situation we can often reduce to, a multiplier is simply a non-zero element.

The name 'multiplier' comes from the fact that we will use such elements to multiply our test condition with. However, for this to make sense, we cannot just take one iterate of the Frobenius, we must take all of them, or at least all but finitely many. So we now define: an element $x \in A$ belongs to the tight closure $\mathrm{cl}_{A}(I)$ of an ideal $I \subseteq A$, if there exists a multiplier $c \in A$ and a positive integer N such that

$$
\begin{equation*}
c \mathbf{F}^{n}(x) \in \mathbf{F}^{n}(I) A \tag{8.3}
\end{equation*}
$$

for all $n \geq N$. Note that the multiplier c and the bound N may depend on x and I, but not on n. We will write $\mathrm{cl}(I)$ for $\mathrm{cl}_{A}(I)$ if the ring A is clear from the context. In the literature, tight closure is invariably denoted I^{*}, but again for reasons that will become clear in the next chapter, our notation better suits our purposes. Let us verify some elementary properties of this closure operation:
8.2.1 The tight closure of an ideal I in a Noetherian ring A is again an ideal, it contains I, and it is equal to its own tight closure. Moreover, we can find a multiplier c and a positive integer N which works simultaneous for all elements in $\operatorname{cl}(I)$ in criterion (8.3).

It is easy to verify that $\mathrm{cl}(I)$ is closed under multiples, and contains I. To show that it is closed under sums, whence an ideal, assume $x, x^{\prime} \in A$ both lie in $\mathrm{cl}(I)$, witnessed by the equations (8.3) for some multipliers c and c^{\prime}, and some positive integers N and N^{\prime} respectively. However, $c c^{\prime} \mathbf{F}^{n}\left(x+x^{\prime}\right)$ then lies in $\mathbf{F}^{n}(I) A$ for all $n \geq \max \left\{N, N^{\prime}\right\}$, showing that $x+x^{\prime} \in \operatorname{cl}(I)$ since $c c^{\prime}$ is again a multiplier. Let $J:=\operatorname{cl}(I)$ and choose generators y_{1}, \ldots, y_{s} of J. Let c_{i} and N_{i} be the corresponding multiplier and bound for y_{i}. It follows that $c:=c_{1} c_{2} \cdots c_{s}$ is a multiplier such that (8.3) holds for all $n \geq N:=\max \left\{N_{1}, \ldots, N_{s}\right\}$ and all $x \in J$, since any such element is a linear combination of the y_{i}. In particular, $c \mathbf{F}^{n}(J) A \subseteq \mathbf{F}^{n}(I) A$ for all $n \geq N$. Hence if z lies in the tight closure of J, so that $d \mathbf{F}^{n}(z) \in \mathbf{F}^{n}(J) A$ for some multiplier d and for all $n \geq M$, then $c d \mathbf{F}^{n}(z) \in \mathbf{F}^{n}(I) A$ for all $n \geq \max \{M, N\}$, whence $z \in \operatorname{cl}(I)$. The last assertion now easily follows from the above analysis. In the sequel, we will therefore no longer make the bound N explicit and instead of "for all $n \geq N$ " we will just write "for all $n \gg 0$ ".

Example 8.2.2. It is instructive to look at an example. Let K be a field of characteristic $p>3$, and let $A:=K[\xi, \zeta, \eta] /\left(\xi^{3}-\zeta^{3}-\eta^{3}\right) K[\xi, \zeta, \eta]$ be the projective coordinate ring of the cubic Fermat curve. Let us show that ξ^{2} is in the tight closure of $I:=(\zeta, \eta) A$. For a fixed e, write $2 p^{e}=3 h+r$ for some $h \in \mathbb{N}$ and some remainder $r \in\{1,2\}$, and let c be the multiplier ξ^{3}. Hence

$$
c \mathbf{F}^{e}\left(\xi^{2}\right)=\xi^{3(h+1)+r}=\xi^{r}\left(\zeta^{3}+\eta^{3}\right)^{h+1}
$$

A quick calculation shows that any monomial in the expansion of $\left(\zeta^{3}+\eta^{3}\right)^{h+1}$ is a multiple of $\mathbf{F}^{e}(\zeta)$ or of $\mathbf{F}^{e}(\eta)$, showing that (8.3) holds for all e, and hence that $\left(\xi^{2}, \zeta, \eta\right) A \subseteq \operatorname{cl}(I)$.

It is often much harder to show that an element does not belong to the tight closure of an ideal. Shortly, we will see in Theorem 8.3.6 that any element outside the integral closure is also outside the tight closure. Since $\left(\xi^{2}, \zeta, \eta\right) A$ is integrally closed, we conclude that it is equal to $\operatorname{cl}(I)$.

We will encounter many operations similar to tight closure, and so we formally define:

Definition 8.2.3 (Closure operation). A closure operation on a ring A is any orderpreserving, contractive, idempotent endomorphism of the Grassmanian $\operatorname{Grass}(A)$ (recall that $\operatorname{Grass}(A)$ is ordered by reverse inclusion, so that contractive means that I lies in its own closure).

For instance, taking the radical of an ideal is a closure operation, and so is integral closure discussed below. Tight closure too is a closure operation on A, since it clearly also preserves inclusion: if $I \subseteq I^{\prime}$, then $\operatorname{cl}(I) \subseteq \operatorname{cl}\left(I^{\prime}\right)$. An ideal that is equal to its own tight closure is called tightly closed. Recall that the colon ideal $(I: J)$ is the ideal of all elements $a \in A$ such that $a J \subseteq I$; here $I \subseteq A$ is an ideal, but $J \subseteq A$ can be any subset, which, however, most of the time is either a single element or an ideal. Almost immediately from the definitions, we get

8.2.4 If I is tightly closed, then so is $(I: J)$ for any $J \subseteq A$.

One of the longest outstanding open problems in tight closure theory was its behavior under localization: do we always have

$$
\begin{equation*}
\mathrm{cl}_{A}(I) A_{\mathfrak{p}} \stackrel{?}{=} \mathrm{cl}_{A_{\mathfrak{p}}}\left(I A_{\mathfrak{p}}\right) \tag{8.4}
\end{equation*}
$$

for every prime ideal $\mathfrak{p} \subseteq A$. Recently, Brenner and Monsky have announced (see [9]) a negative answer to this question. The full extent of this phenomenon is not yet understood, and so one has proposed the following two definitions (the above cited counterexample still does not contradict that both notions are the same).

Definition 8.2.5. A Noetherian ring A is called weakly F-regular if each of its ideals is tightly closed. If all localizations of A are weakly F-regular, then A is called F regular.

It is sometimes cumbersome to work with multipliers in arbitrary rings, but in domains they are just non-zero elements. Fortunately, we can always reduce to the domain case when calculating tight closure:

Proposition 8.2.6. Let A be a Noetherian ring, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ be its minimal primes, and put $\bar{A}_{i}:=A / \mathfrak{p}_{i}$. For all ideals $I \subseteq A$ we have

$$
\begin{equation*}
\operatorname{cl}_{A}(I)=\bigcap_{i=1}^{s} \operatorname{cl}_{\bar{A}_{i}}\left(I \bar{A}_{i}\right) \cap A . \tag{8.5}
\end{equation*}
$$

Proof. The same equations which exhibit x as en element of $\mathrm{cl}_{A}(I)$ also show that it is in $\operatorname{cl}_{\bar{A}_{i}}\left(I \bar{A}_{i}\right)$ since any multiplier in A remains, by virtue of its definition, a multiplier in \bar{A}_{i} (moreover, the converse also holds: by prime avoidance, we can lift any multiplier in \bar{A}_{i} to one in A). So one inclusion in (8.5) is clear.

Conversely, suppose x lies in the intersection on the right hand side of (8.5). Let $c_{i} \in A$ be a multiplier in A (so that its image is a multiplier in \bar{A}_{i}), such that

$$
c_{i} \mathbf{F}_{\bar{A}_{i}}^{n}(x) \in \mathbf{F}_{\bar{A}_{i}}^{n}(I) \bar{A}_{i}
$$

for all $n \gg 0$. This means that each $c_{i} \mathbf{F}_{A}^{n}(x)$ lies in $\mathbf{F}_{A}^{n}(I) A+\mathfrak{p}_{i}$ for $n \gg 0$. Choose for each i, an element $t_{i} \in A$ inside all minimal primes except \mathfrak{p}_{i}, and let $c:=c_{1} t_{1}+\cdots+$ $c_{s} t_{s}$. A moment's reflection yields that c is again a multiplier. Moreover, since $t_{i} \mathfrak{p}_{i} \subseteq \mathfrak{n}$, where $\mathfrak{n}:=\operatorname{nil}(R)$ is the nil-radical of A, we get

$$
c \mathbf{F}_{A}^{n}(x) \in \mathbf{F}_{A}^{n}(I) A+\mathfrak{n}
$$

for all $n \gg 0$. Choose m such that $\mathfrak{n}^{p^{m}}$ is zero, whence also the smaller ideal $\mathbf{F}_{A}(\mathfrak{n})$. Apply \mathbf{F}_{A}^{m} to the previous equations, yielding

$$
\mathbf{F}_{A}^{m}(c) \mathbf{F}_{A}^{m+n}(x) \in \mathbf{F}_{A}^{m+n}(I) A
$$

for all $n \gg 0$, which means that $x \in \operatorname{cl}_{A}(I)$ since $\mathbf{F}_{A}^{m}(c)$ is again a multiplier.

8.3 Five key properties of tight closure

In this section we derive five key properties of tight closure, all of which admit fairly simple proofs. It is important to keep this in mind, since these five properties will already suffice to prove in the next section some deep theorems in commutative algebra. In fact, as we will see, any closure operation with these five properties on a class of Noetherian local rings would establish these deep theorems for that particular class (and there are still classes for which this is not known to be true). Moreover, the proofs of the five properties themselves rest on a few simple facts about the Frobenius, so that this will allow us to also carry over our arguments to characteristic zero in Chapters 9 and 10.

The first property, stated here only in its weak version, is merely an observation. Namely, any equation (8.3) in a ring A extends to a similar equation in any A-algebra B. In order for the latter to calculate tight closure, the multiplier $c \in A$ should remain a multiplier in B, and so we proved:

Theorem 8.3.1 (Weak Persistence). Let $A \rightarrow B$ be a ring homomorphism, and let $I \subseteq A$ be an ideal. If $A \rightarrow B$ is injective and B is a domain, or more generally, if $A \rightarrow B$ preserves multipliers, then $\mathrm{cl}_{A}(I) \subseteq \mathrm{cl}_{B}(I B)$.

The remarkable fact is that this is also true if $A \rightarrow B$ is arbitrary and A is of finite type over an excellent Noetherian local ring (see [26, Theorem 2.3]). We will not need this stronger version, the proof of which requires another important ingredient of tight closure theory: the notion of a test element. A multiplier $c \in A$ is called a test element for A, if for every $a \in \operatorname{cl}(I)$, we have $c \mathbf{F}^{n}(a) \in \mathbf{F}^{n}(I) A$ for all n. The existence of test elements is not easy, and lies outside the scope of these notes, but once one has established their existence, many arguments become even more streamlined.

Theorem 8.3.2 (Regular closure). In a regular local ring, every ideal is tightly closed. In fact, a regular ring is F-regular.

Proof. Let R be a regular local ring. By Corollary 5.5.8, any localization of R is again regular, so that the second assertion follows from the first. To prove the first, let I be an ideal and $x \in \operatorname{cl}(I)$. Towards a contradiction, assume $x \notin I$. In particular, we must have $(I: x) \subseteq \mathfrak{m}$. Choose a non-zero element c such that (8.3) holds for all $n \gg 0$. This means that c lies in the colon ideal $\left(\mathbf{F}^{n}(I) R: \mathbf{F}^{n}(x)\right)$, for all $n \gg 0$. Since \mathbf{F} is flat by Theorem 8.1.2, the colon ideal is equal to $\mathbf{F}^{n}(I: x) R$ by Theorem 5.6.15. Since $(I: x) \subseteq \mathfrak{m}$, we get $c \in \mathbf{F}^{n}(\mathfrak{m}) R \subseteq \mathfrak{m}^{p^{n}}$. Since this holds for all $n \gg 0$, we get $c=0$ by Theorem 3.3.4, clearly a contradiction.

Theorem 8.3.3 (Colon Capturing). Let R be a Noetherian local domain which is a homomorphic image of a regular (or even Cohen-Macaulay) local ring, and let $\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters in R. Then for each i, the colon ideal $\left(\left(x_{1}, \ldots, x_{i}\right) R: x_{i+1}\right)$ is contained in $\operatorname{cl}\left(\left(x_{1}, \ldots, x_{i}\right) R\right)$.

Proof. Let S be a local Cohen-Macaulay ring such that $R=S / \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subseteq S$ of height h. By prime avoidance, we can lift the x_{i} to elements in S, again denoted for simplicity by x_{i}, and find elements $y_{1}, \ldots, y_{h} \in \mathfrak{p}$ such that $\left(y_{1}, \ldots, y_{h}, x_{1}, \ldots, x_{d}\right)$ is a system of parameters in S, whence an S-regular sequence (see Exercise 8.7.3). Since \mathfrak{p} contains the ideal $J:=\left(y_{1}, \ldots, y_{h}\right) S$ of the same height (see 4.2.1), it is a minimal prime of J. Let $J=\mathfrak{g}_{1} \cap \ldots \mathfrak{g}_{s}$ be a minimal primary decomposition of J, with \mathfrak{g}_{1} the \mathfrak{p}-primary component of J. In particular, some power of \mathfrak{p} lies in \mathfrak{g}_{1}, and we may assume that this power is of the form p^{m} for some m. Choose c inside all \mathfrak{g}_{i} with $i>1$, but outside \mathfrak{p} (note that this is possible by prime avoidance). Putting everything together, we have

$$
\begin{equation*}
c \mathfrak{p}^{p^{m}} \subseteq J \tag{8.6}
\end{equation*}
$$

Fix some i, let $I:=\left(x_{1}, \ldots, x_{i}\right) S$ and assume $z x_{i+1} \in I R$, for some $z \in S$. Lifting this to S, we get $z x_{i+1} \in I+\mathfrak{p}$. Applying the n-th power of Frobenius to this for $n>m$, we get $\mathbf{F}^{n}(z) \mathbf{F}^{n}\left(x_{i+1}\right) \in \mathbf{F}^{n}(I) S+\mathbf{F}^{n}(\mathfrak{p}) S$. By (8.6), this means that $c \mathbf{F}^{n}(z) \mathbf{F}^{n}\left(x_{i+1}\right)$ lies in $\mathbf{F}^{n}(I) S+\mathbf{F}^{n-m}(J) S$. Since the $\mathbf{F}^{n-m}\left(y_{j}\right)$ together with the $\mathbf{F}^{n}\left(x_{j}\right)$ form again an S-regular sequence, we conclude that

$$
c \mathbf{F}^{n}(z) \in \mathbf{F}^{n}(I) S+\mathbf{F}^{n-m}(J) S \subseteq \mathbf{F}^{n}(I) S+J
$$

whence $c \mathbf{F}^{n}(z) \in \mathbf{F}^{n}(I) R$ for all $n>m$. By the choice of c, it is non-zero in R, so that the latter equations show that $z \in \operatorname{cl}(I R)$.

The condition that R is a homomorphic image of a regular local ring is satisfied either if R is a local affine algebra, by 4.1.6, or if R is complete, by Theorems 6.4.2 and 6.4.4. These are the two only cases in which we will apply the previous theorem. There is a more general version which does not require R to be a domain, but only to be equidimensional, meaning that all minimal primes have the same dimension (Exercise 8.7.13).

Theorem 8.3.4 (Finite extensions). If $A \rightarrow B$ is a finite, injective homomorphism of domains, and $I \subseteq A$ be an ideal, then $\mathrm{cl}_{B}(I B) \cap A=\mathrm{cl}_{A}(I)$.

Proof. One direction is immediate by Theorem 8.3.1. For the converse, there exists an A-module homomorphism $\varphi: B \rightarrow A$ such that $c:=\varphi(1) \neq 0$, by Lemma 8.3.5 below. Suppose $x \in \operatorname{cl}_{B}(I B) \cap A$, so that for some non-zero $d \in B$, we have $d \mathbf{F}^{n}(x) \in$ $\mathbf{F}^{n}(I) B$ for $n \gg 0$. Since B is finite over A, some non-zero multiple of d lies in A, and hence without loss of generality, we may assume $d \in A$. Applying φ to these equations, we get

$$
c d \mathbf{F}^{n}(x) \in \mathbf{F}^{n}(I) A
$$

showing that $x \in \operatorname{cl}_{A}(I)$.

Lemma 8.3.5. If $A \subseteq B$ is a finite extension of domains, then there exists an A-linear $\operatorname{map} \varphi: B \rightarrow A$ with $\varphi(1) \neq 0$.

Proof. Suppose B is generated over A by the elements b_{1}, \ldots, b_{s}. Let K and L be the fields of fractions of A and B respectively. Since B is a domain, it lies inside the K-vector subspace $V \subseteq L$ generated by the b_{i}. Choose an isomorphism $\gamma: V \rightarrow$ K^{t} of K-vector spaces. After renumbering, we may assume that the first entry of $\gamma(1)$ is non-zero. Let $\pi: K^{t} \rightarrow K$ be the projection onto the first coordinate, and let $d \in A$ be the common denominator of the $\pi\left(\gamma\left(b_{i}\right)\right)$ for $i=1, \ldots, s$. Now define an A-linear homomorphism φ by the rule $\varphi(y)=d \pi(\gamma(y))$ for $y \in B$. Since y is an $A-$ linear combination of the b_{i} and since $d \pi\left(\gamma\left(b_{i}\right)\right) \in A$, also $\varphi(y) \in A$. Moreover, by construction, $\varphi(1) \neq 0$.

Note that a special case of Theorem 8.3.4 is the fact that tight closure measures the extent to which an extension of domains $A \subseteq B$ fails to be cyclically pure: $I B \cap A$ is contained in the tight closure of I, for any ideal $I \subseteq A$. In particular, in view of Theorem 8.3.2, this reproves the well-known fact that if $A \subseteq B$ is an extension of domains with A regular, then $A \subseteq B$ is cyclically pure. The next and last property involves another closure operation, integral closure. It will be discussed in more detail below (§8.4), and here we just state its relationship with tight closure:

Theorem 8.3.6 (Integral closure). For every ideal $I \subseteq A$, its tight closure is contained in its integral closure. In particular, radical ideals, and more generally integrally closed ideals, are tightly closed.

Proof. The second assertion is an immediate consequence of the first. We verify condition (4) of Theorem 8.4.1 to show that if x belongs to the tight closure $\mathrm{cl}_{A}(I)$, then it also belongs to the integral closure \bar{I}. Let $A \rightarrow V$ be a homomorphism into a discrete valuation ring V, such that its kernel is a minimal prime of A. We need to show that $x \in I V$. However, this is clear since $x \in \operatorname{cl}_{V}(I V)$ by Theorem 8.3.1 (note that $A \rightarrow V$ preserves multipliers), and since $\operatorname{cl}_{V}(I V)=I V$, by Theorem 8.3.2 and the fact that V is regular (Exercise 4.3.8).

It is quite surprising that there is no proof, as far as I am aware of, that a prime ideal is tightly closed without reference to integral closure.

8.4 Integral closure

The integral closure \bar{I} of an ideal I is the collection of all elements $x \in A$ satisfying an integral equation of the form

$$
\begin{equation*}
x^{d}+a_{1} x^{d-1}+\cdots+a_{d}=0 \tag{8.7}
\end{equation*}
$$

with $a_{j} \in I^{j}$ for all $j=1, \ldots, d$. We say that I is integrally closed if $I=\bar{I}$. Since clearly $\bar{I} \subseteq \operatorname{rad}(I)$, radical ideals are integrally closed. It follows from either characterization (2) or (4) below that \bar{I} is an ideal.

Theorem 8.4.1. Let A be an arbitrary Noetherian ring (not necessarily of characteristic p). For an ideal $I \subseteq A$ and an element $x \in A$, the following are equivalent

1. x belongs to the integral closure, \bar{I};
2. there is a finitely generated A-module M with zero annihilator such that $x M \subseteq$ IM;
3. there is a multiplier $c \in A$ such that $c x^{n} \in I^{n}$ for infinitely many n;
4. for every homomorphism $A \rightarrow V$ into a discrete valuation ring V with kernel equal to a minimal prime of A, we have $x \in I V$;

Proof. We postpone the proof to Exercise 8.7.14, except for the equivalence of (1) with (4) (note that this is the only equivalence used so far, in the proof of Theorem 8.3.6). By Exercise 8.7.12, we may reduce to the case that A is moreover a domain.

To prove (1) \Rightarrow (4), suppose $x \in \bar{I}$ and $A \subseteq V$ is an injective homomorphism into a discrete valuation ring V. Let v be the valuation on V. Suppose towards a contradiction that $x \notin I V$, and therefore $m:=v(x)<n:=v(I V)$. By assumption, x satisfies an integral equation (8.7). For all $i=1, \ldots, d$, we have

$$
v\left(a_{i} x^{d-i}\right) \geq n i+(d-i) m>d m .
$$

However, this is in contradiction with $v\left(x^{d}\right)=m d$.
To prove the converse, assume $x \in I V$ for every embedding $A \subseteq V$ into a discrete valuation ring V. Let $I=\left(a_{1}, \ldots, a_{n}\right) A$, and consider the homomorphism $A[\xi] \rightarrow A_{x}$ given by $\xi_{i} \mapsto a_{i} / x$, where $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right)$. Let B be its image, so that $A \subseteq B \subseteq A_{x}$ (one calls B the blowing-up of $I+x A$ at x). Let $\mathfrak{m}:=\left(\xi_{1}, \ldots, \xi_{n}\right) A[\xi]$. I claim that $\mathfrak{m} B=B$. Assuming the claim, we can find $f \in \mathfrak{m}$ such that $f(\mathbf{a} / x)=1$ in A_{x}, where $\mathbf{a}:=\left(a_{1}, \ldots, a_{n}\right)$. Write $f=f_{1}+\cdots+f_{d}$ in its homogeneous parts f_{j} of degree j, so that

$$
1=x^{-1} f_{1}(\mathbf{a})+\cdots+x^{-d} f_{d}(\mathbf{a}) .
$$

Multiplying with x^{d}, and observing that $f_{j}(\mathbf{a}) \in I^{j}$, we see that x satisfies an integral equation (8.7), and hence $x \in \bar{I}$.

To prove the claim ex absurdum, suppose $\mathfrak{m} B$ is not the unit ideal, whence is contained in a maximal ideal \mathfrak{n} of B. By Exercise 8.7.15, there exists an injective, local homomorphism $B_{\mathfrak{n}} \subseteq V$ with V a discrete valuation ring. Hence also $A \subseteq V$. Since $\mathfrak{m} V$ lies in the maximal ideal πV and $\xi_{i} \mapsto a_{i} / x$, we get $a_{i} \in x \pi V$ for all i. Hence $I V \subseteq x \pi V$ contradicting that $x \in I V$.

From this we readily deduce (see Exercise 8.7.10):

Corollary 8.4.2. A domain A is normal (=integrally closed) if and only if each principal ideal is integrally closed if and only if each principal ideal is tightly closed.

In one of our applications below (Theorem 8.5.1), we will make use of the following nice application of the chain rule:

Proposition 8.4.3. Let K be a field of characteristic zero, and let R be either the power series ring $K[[\xi]]$, the ring of convergent power series $K\{\xi\}$ (assuming K is a normed field), or the localization of $K[\xi]$ at the ideal generated by the indeterminates $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right)$. If f is a non-unit, then it lies in the integral closure of its Jacobian ideal $\operatorname{Jac}(f):=\left(\partial f / \partial \xi_{1}, \ldots, \partial f / \partial \xi_{n}\right) R$.

Proof. Recall that $K\{\xi\}$ consists of all formal power series f such that $f(\mathbf{u})$ is a convergent series for all \mathbf{u} in a small enough neighborhood of the origin. Put $J:=\operatorname{Jac}(f)$. In view of (4) in Theorem 8.4.1, we need to show that given an embedding $R \subseteq V$ into a discrete valuation ring V, we have $f \in J V$. Since completion is faithfully flat by Theorem 6.3.5, we may replace V by its completion, and hence already assume V is complete. By Theorem 6.4.2 therefore, V is a power series ring $\kappa[[\zeta]]$ in a single variable over a field extension κ of K. Viewing the image of f in $\kappa[[\zeta]]$ as a power series in ζ, the multi-variate chain rule yields

$$
\frac{d f}{d \zeta}=\sum_{i=1}^{n} \frac{\partial f}{\partial \xi_{i}} \cdot \frac{d \xi_{i}}{d \zeta} \in J V
$$

However, since f has order $e \geq 1$ in V, its derivative $d f / d \zeta$ has order $e-1$, and hence $f \in(d f / d \zeta) V \subseteq J V$. Note that for this to be true, however, the characteristic needs to be zero. For instance, in characteristic p, the power series ξ^{p} would already be a counterexample to the proposition.

Since the integral closure is contained in the radical closure, we get that some power of f lies in its $\operatorname{Jacobian} \operatorname{Jac}(f)$. A famous theorem due to Briançon-Skoda states that in fact already the n-th power lies in the Jacobian (where n is the number of variables; we will prove this via an elegant tight closure argument in Theorem 8.5.1 below).

8.5 Applications

We will now discuss three important applications of tight closure. Perhaps surprisingly, the original statements all were in characteristic zero (with some of them in their original form plainly false in positive characteristic), and their proofs required deep and involved arguments, some even based on transcendental/analytic methods. However, they each can be reformulated so that they also make sense in positive characteristic, and then can be established by surprisingly elegant tight closure arguments. As for the proofs of their characteristic zero counterparts, they must wait until we have developed the theory in characteristic zero in Chapters 9 and 10 (or one can use the 'classical' tight closure in characteristic zero discussed in §8.6).

The Briançon-Skoda theorem. We already mentioned this famous result, proven first in [10].

Theorem 8.5.1 (Briançon-Skoda). Let R be either the ring of formal power series $\mathbb{C}[[\xi]]$, or the ring of convergent power series $\mathbb{C}\{\xi\}$, or the localization of the polynomial ring $\mathbb{C}[\xi]$ at the ideal generated by ξ, where $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right)$ are some indeterminates. If f is not a unit, then $f^{n} \in \operatorname{Jac}(f):=\left(\partial f / \partial \xi_{1}, \ldots, \partial f / \partial \xi_{n}\right) R$.

This theorem will follow immediately from the characteristic zero analogue of the next result (with $l=1$), in view of Proposition 8.4.3 and Exercise 4.3.5; we will do this in Theorem 9.2.5 below.

Theorem 8.5.2 (Briançon-Skoda-tight closure version). Let A be a Noetherian ring of characteristic p, and $I \subseteq A$ an ideal generated by n elements. Then we have for all $l \geq 1$ an inclusion

$$
\overline{I^{n+l-1}} \subseteq \operatorname{cl}\left(I^{l}\right)
$$

In particular, if A is a regular local ring, then the integral closure of I^{n+l-1} lies inside I^{l} for all $l \geq 1$.

Proof. For simplicity, I will only prove the case $l=1$ (see Exercise 8.7.7 for the general case). Assume $z \in \overline{I^{n}}$. By (3) in Theorem 8.4.1, there exists a multiplier $c \in A$ such that $c z^{k} \in I^{k n}$ for all $k \gg 0$. Since $I:=\left(f_{1}, \ldots, f_{n}\right) A$, we have an inclusion $I^{k n} \subseteq\left(f_{1}^{k}, \ldots, f_{n}^{k}\right) A$. Hence with k equal to p^{m}, we get $c \mathbf{F}^{m}(z) \in \mathbf{F}^{m}(I) A$ for all $m \gg 0$. In conclusion, $z \in \operatorname{cl}(I)$. The last assertion then follows from Theorem 8.3.2.

The Hochster-Roberts theorem. We will formulate the next result without defining in detail all the concepts involved, except when we get to its algebraic formulation. A linear algebraic group G is an affine subscheme of the general linear group $\operatorname{GL}(K, n)$ over an algebraically closed field K (see Example 2.3.7) such that its K rational points form a subgroup of the latter group. When G acts (as a group) on a closed subscheme $X \subseteq \mathbb{A}_{K}^{n}$ (more precisely, for each algebraically closed field L containing K, there is an action of the L-rational points of $G(L)$ on $X(L)$), we can define the quotient space X / G, consisting of all orbits under the action of G on X, as the affine space $\operatorname{Spec}\left(R^{G}\right)$, where R^{G} denotes the subring of G-invariant sections in $R:=\Gamma\left(X, \mathscr{O}_{X}\right)$ (the action of G on X induces an action on the sections of X, and hence in particular on R). For this to work properly, we also need to impose a certain finiteness condition: G has to be linearly reductive. Although not usually its defining property, we will here take this to mean that there exists an R^{G}-linear map $R \rightarrow R^{G}$ which is the identity on R^{G}, called the Reynold operator of the action. For instance, if $K=\mathbb{C}$, then an algebraic group is linearly reductive if and only if it is the complexification of a real Lie group, where the Reynolds operator is obtained by an integration process. This is the easiest to understand if G is finite, when the integration is just a finite sum

$$
\rho: R \rightarrow R^{G}: a \mapsto \frac{1}{|G|} \sum_{\sigma \in G} a^{\sigma},
$$

where a^{σ} denotes the effect of $\sigma \in G$ acting on $a \in R$. In fact, as indicated by the above formula, a finite group is linearly reductive over a field of positive characteristic, provided its cardinality is not divisible by the characteristic. If X is non-singular and G is linearly reductive, then we will call X / G a quotient singularity. ${ }^{1}$ The celebrated Hochster-Roberts theorem now states:

Theorem 8.5.3. Any quotient singularity is Cohen-Macaulay.
To state a more general result, we need to take a closer look at the Reynolds map. A ring homomorphism $A \rightarrow B$ is called split, if there exists an A-linear map $\sigma: B \rightarrow A$ which is the identity on A (note that σ need not be multiplicative, that is to say, is not a ring homomorphism, only a module homomorphism). We call σ the splitting of $A \rightarrow B$. Hence the Reynold map is a splitting of the inclusion $R^{G} \subseteq R$. The only property of split maps that will matter is the following:

8.5.4 A split homomorphism $A \rightarrow B$ is cyclically pure.

See the discussion following Proposition 5.3 .4 for the definition of cyclic purity. Let $a \in I B \cap A$ with $I=\left(f_{1}, \ldots, f_{s}\right) A$ an ideal in A. Hence $a=f_{1} b_{1}+\cdots+f_{s} b_{s}$ for some $b_{i} \in B$. Applying the splitting σ, we get by A-linearity $a=f_{1} \sigma\left(b_{1}\right)+\cdots+$ $f_{s} \sigma\left(b_{s}\right) \in I$, proving that A is cyclically pure in B.

We can now state a far more general result, of which Theorem 8.5.3 is just a special case (see Exercise 8.7.9).

Theorem 8.5.5. If $R \rightarrow S$ is a cyclically pure homomorphism and if S is regular, then R is Cohen-Macaulay.

Proof. In fact, we can split the proof in two parts. Namely, we first show that R is F-regular, and then show that any F-regular ring is Cohen-Macaulay.

8.5.6 A cyclically pure subring of a regular ring is F-regular.

Indeed, since both cyclic purity and regularity are preserved under localization, we only need to show that every ideal in R is tightly closed. To this end, let $I \subseteq R$ and $x \in \operatorname{cl}(I)$. Hence x lies in the tight closure of $I S$ by (weak) persistence (Theorem 8.3.1), and therefore in $I S$ by Theorem 8.3.2. Hence by cyclic purity, $x \in I=I S \cap R$, proving that R is weakly F-regular. Note that we actually proved that a cyclically pure subring of a (weakly) F-regular ring is again (weakly) F-regular.

8.5.7 An F-regular domain is Cohen-Macaulay.

Without loss of generality, we may assume R is local. Assume R is F-regular and let $\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters in R. To show that x_{i+1} is $R /\left(x_{1}, \ldots, x_{i}\right) R$ regular, assume $z x_{i+1} \in\left(x_{1}, \ldots, x_{i}\right) R$. Colon Capturing (Theorem 8.3.3) yields that z lies in the tight closure of $\left(x_{1}, \ldots, x_{i}\right) R$, whence in the ideal itself since R is F regular.

[^8]In fact, R is then also normal (this follows easily from 8.5 .6 and Corollary 8.4.2). A far more difficult result is that R is then also pseudo-rational (a concept that lies beyond the scope of these notes; see for instance [26,52] for a discussion of what follows). This was first proven by Boutot in [8] for \mathbb{C}-affine algebras by means of deep vanishing theorems. The positive characteristic case was proven by Smith in [56] by tight closure methods, where she also showed that pseudo-rationality is in fact equivalent with the weaker notion of F-rationality (a local ring is F-rational if some parameter ideal is tightly closed). The general characteristic zero case was proven in [52] by means of ultraproducts (as described in $\S 10$). In fact, being Fregular is equivalent under the \mathbb{Q}-Gorenstein assumption with having log-terminal singularities (see [16, 48]). It should be noted that 'classical' tight closure theory in characteristic zero (see $\S 8.6$ below) is not sufficiently versatile to derive these results: so far, only our present ultraproduct method seems to work.

The Ein-Lazardsfeld-Smith theorem. If P is a point in the affine plane K^{2}, and $f \in K[\xi, \zeta]$, then we say that f has multiplicity k at P if P is a k-multiple point of the curve $\mathrm{V}(f)$ (as defined in Definition 4.1.2). The next result, although elementary in its formulation, was only proven recently in [14] using quite complicated methods (which only work over \mathbb{C}), but then soon after in [23] by an elegant tight closure argument (see also [44]), which proves the result over any field K.

Theorem 8.5.8. Let $V \subseteq K^{2}$ be a finite subset with ideal of definition $I:=\Im(V)$. For each k, let $J_{k}(V)$ be the ideal of all polynomials f having multiplicity at least k at each point $x \in V$. Then $J_{2 k}(V) \subseteq I^{k}$, for all k.

To formulate the more general result of which this is just a corollary, we need to introduce symbolic powers. We first do this for a prime ideal \mathfrak{p} : its k-th symbolic power is the contracted ideal $\mathfrak{p}^{(k)}:=\mathfrak{p}^{k} R_{\mathfrak{p}} \cap R$. In general, the inclusion $\mathfrak{p}^{k} \subseteq \mathfrak{p}^{(k)}$ may be strict, and in fact, $\mathfrak{p}^{(k)}$ is the \mathfrak{p}-primary component of \mathfrak{p}^{k}. If \mathfrak{a} is a radical ideal (we will not treat the more general case), then we define its k-th symbolic power $\mathfrak{a}^{(k)}$ as the intersection $\mathfrak{p}_{1}^{(k)} \cap \cdots \cap \mathfrak{p}_{s}^{(k)}$, where the \mathfrak{p}_{i} are all the minimal overprimes of \mathfrak{a}. The connection with Theorem 8.5.8 is given by:
8.5.9 The k-th symbolic power of the ideal of definition $I:=\Im(V)$ of a finite subset $V \subseteq K^{2}$ is equal to the ideal $J_{k}(V)$ of all polynomials that have multiplicity at least k at any point of V.

Indeed, for $\mathbf{x} \in V$, let $\mathfrak{m}:=\mathfrak{m}_{\mathbf{x}}$ be the corresponding maximal ideal. By 4.1.4, a polynomial f has multiplicity at least k at each $\mathbf{x} \in V$, if $f \in \mathfrak{m}^{k} A_{\mathfrak{m}}$ for all maximal ideals \mathfrak{m} containing I. The latter condition simply means that $f \in \mathfrak{m}^{(k)}$, so that the claim follows from the definition of symbolic power.

Hence, in view of this, Theorem 8.5 .8 is an immediate consequence of the following theorem (at least in positive characteristic; for the characteristic zero case, see Theorems 9.2.6 and 10.2.4 below):

Theorem 8.5.10. Let A be a regular domain of characteristic p. Let $\mathfrak{a} \subseteq A$ be a radical ideal and let h be the maximal height of its minimal overprimes. Then we have an inclusion $\mathfrak{a}^{(h n)} \subseteq \mathfrak{a}^{n}$, for all n.

Proof. We start with proving the following useful inclusion:

$$
\begin{equation*}
\mathfrak{a}^{\left(h p^{e}\right)} \subseteq \mathbf{F}^{e}(\mathfrak{a}) A \tag{8.8}
\end{equation*}
$$

for all e. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ be the minimal prime ideals of \mathfrak{a}. We first prove (8.8) locally at one of these minimal primes \mathfrak{p}. Since $A_{\mathfrak{p}}$ is regular and $\mathfrak{a} A_{\mathfrak{p}}=\mathfrak{p} A_{\mathfrak{p}}$, we can find $f_{i} \in \mathfrak{a}$ such that $\mathfrak{a} A_{\mathfrak{p}}=\left(f_{1}, \ldots, f_{h}\right) A_{\mathfrak{p}}$. By definition of symbolic powers, $\mathfrak{a}^{\left(h p^{e}\right)} A_{\mathfrak{p}}=$ $\mathfrak{a}^{h p^{e}} A_{\mathfrak{p}}$. On the other hand, $\mathfrak{a}^{h p^{e}} A_{\mathfrak{p}}$ consists of monomials in the f_{i} of degree $h p^{e}$, and hence any such monomial lies in $\mathbf{F}^{e}(\mathfrak{a}) A_{\mathfrak{p}}$. This establishes (8.8) locally at \mathfrak{p}. To prove this globally, take $z \in \mathfrak{a}^{\left(h p^{e}\right)}$. By what we just proved, there exists $s_{i} \notin \mathfrak{p}_{i}$ such that $s_{i} z \in \mathbf{F}^{e}(\mathfrak{a}) A$ for each $i=1, \ldots, m$. For each i, choose an element t_{i} in all \mathfrak{p}_{j} except \mathfrak{p}_{i}, and put $s:=t_{1} s_{1}+\cdots+s_{m} t_{m}$. It follows that s multiplies z inside $\mathbf{F}^{e}(\mathfrak{a}) A$, whence a fortiori, so does $\mathbf{F}^{e}(s)$. Hence

$$
z \in\left(\mathbf{F}^{e}(\mathfrak{a}) A: \mathbf{F}^{e}(s)\right)=\mathbf{F}^{e}(\mathfrak{a}: s) A
$$

where we used Theorem 5.6.15 and the fact that \mathbf{F} is flat on A by Theorem 8.1.2. However, s does not lie in any of the \mathfrak{p}_{i}, whence $(\mathfrak{a}: s)=\mathfrak{a}$, proving (8.8).

To prove the theorem, let $f \in \mathfrak{a}^{(h n)}$, and fix some e. We may write $p^{e}=a n+r$ for some $a, r \in \mathbb{N}$ with $0 \leq r<n$. Since the usual powers are contained in the symbolic powers, and since $r<n$, we have inclusions

$$
\begin{equation*}
\mathfrak{a}^{h n} f^{a} \subseteq \mathfrak{a}^{h r} f^{a} \subseteq \mathfrak{a}^{(h a n+h r)}=\mathfrak{a}^{\left(h p^{e}\right)} \subseteq \mathbf{F}^{e}(\mathfrak{a}) A \tag{8.9}
\end{equation*}
$$

where we used (8.8) for the last inclusion. Taking n-th powers in (8.9) shows that $\mathfrak{a}^{h n^{2}} f^{a n}$ lies in the n-th power of $\mathbf{F}^{e}(\mathfrak{a}) A$, and this in turn lies inside $\mathbf{F}^{e}\left(\mathfrak{a}^{n}\right) A$. Choose some non-zero c in $\mathfrak{a}^{h n^{2}}$. Since $p^{e} \geq a n$, we get $c \mathbf{F}^{e}(f) \in \mathbf{F}^{e}\left(\mathfrak{a}^{n}\right) A$ for all e. In conclusion, f lies in $\operatorname{cl}\left(\mathfrak{a}^{n}\right)$ whence in \mathfrak{a}^{n} by Theorem 8.3.2.

One might be tempted to try to prove a more general form which does not assume A to be regular, replacing \mathfrak{a}^{n} by its tight closure. However, we used the regularity assumption not only via Theorem 8.3.2 but also via Kunz's theorem that the Frobenius is flat. Hence the above proof does not work in arbitrary rings.

8.6 Classical tight closure in characteristic zero

To prove the previous three theorems in a ring of equal characteristic zero, Hochster and Huneke also developed tight closure theory for such rings. One of the precursors to tight closure theory was the proof of the Intersection Theorem by Peskine and Szpiro in [34]. They used properties of the Frobenius together with a method to transfer results from characteristic p to characteristic zero, which was then generalized by Hochster in [19]. This same technique is also used to obtain a tight closure theory in equal characteristic zero, as we will discuss briefly in this section. However, using ultraproducts, we will bypass in Chapters 9 and 10 this rather heavy-duty machinery, to arrive much quicker at proofs in equal characteristic zero.

Let A be a Noetherian ring containing the rationals. The idea is to associate to A some rings in positive characteristic, its reductions modulo p, and calculate tight closure in the latter. More precisely, let $\mathfrak{a} \subseteq A$ be an ideal, and $z \in A$. We say that z lies in the HH-tight closure of \mathfrak{a} (where "HH" stands for Hochster-Huneke), if there exists a \mathbb{Z}-affine subalgebra $R \subseteq A$ containing z, such that (the image of) z lies in the tight closure of $I(R / p R)$ for all primes numbers p, where $I:=\mathfrak{a} \cap R$.

It is not too hard to show that this yields a closure operation on A (in the sense of Definition 8.2.3). Much harder is showing that it satisfies all the necessary properties from $\S 8.3$. For instance, to prove the analogue of Theorem 8.3.2, one needs some results on generic flatness, and some deep theorems on Artin Approximation (see for instance [26, Appendix 1] or [22]; for a brief discussion of Artin Approximation, see $\S 10.1$ below; for an example of the technique, see Project 10.6 below). In contrast, using ultraproducts, one can avoid all these complications in the affine case (Chapter 9), or get by with a more elementary version of Artin Approximation in the general case (Chapter 10).

8.7 Exercises

Ex 8.7.1

Let A be the coordinate ring of the hypersurface in K^{3} given by the equation $\xi^{2}-\zeta^{3}-\eta^{7}=$ 0 . Show that ξ lies in the tight closure of $(\zeta, \eta) A$.
A far more difficult result is to show that this is not true if we replace η^{7} by η^{5} in the above equation. In fact this new coordinate ring is F-regular, but this is a deep fact, following from it being log-terminal (see the discussion following Theorem 8.5.5).

Ex 8.7.2

Show that any regular ring of prime characteristic is F-regular.

Ex 8.7.3

Prove the existence of the y_{i} in the proof of Theorem 8.3.3.

Ex 8.7.4

Work out the details of the following alternative proof of Colon Capturing for a local domain R admitting Noether Normalization with parameters, meaning that for any system of parameters $\left(x_{1}, \ldots, x_{d}\right)$ in R, there exists a regular local subring $S \subseteq R$ containing the x_{i} such that $S \subseteq R$ is finite and $\left(x_{1}, \ldots, x_{d}\right) S$ is the maximal ideal of S. Suppose $z \in\left(\left(x_{1}, \ldots, x_{i}\right) R: x_{i+1}\right)$ and let A be the S-subalgebra of R generated by z. Show that A is a hypersurface ring and hence is Cohen-Macaulay, by modifying the proof of Corollary 5.6.13. By Lemma 8.3.5, there exists an R-linear map $\varphi: R \rightarrow A$ with $c:=\varphi(1) \neq 0$. Apply the n-th iterate of Frobenius to the relation $z x_{i+1} \in\left(x_{1}, \ldots, x_{i}\right) R$ and then apply φ to get ideal membership relations in A. Use that $\mathbf{F}^{n}\left(x_{i}\right)$ is a regular sequence in A to derive from these relations that z lies in the tight closure of $\left(x_{1}, \ldots, x_{i}\right) A$, and finish with an application of weak persistence (Theorem 8.3.1).
Show using Theorem 2.2.5 that any affine local domain admits Noether Normalization with parameters (see for instance [15, Theorem 13.3]). Prove similarly, using the argument in Theorem 6.4.6, that so does any complete Noetherian local domain.

Ex 8.7.5

Prove, using tight closure, that a Noether normalization $A \subseteq B$ of an affine algebra B over a field of positive characteristic is cyclically pure. Use this, together with Corollary 5.6.10, to give an example of a finite cyclically pure homomorphism of local rings which is not flat.

Ex 8.7.6

Show that if $z \in \bar{I}$ satisfies an integral equation (8.7) of degree d, then $I^{d-1} z^{k} \in I^{k}$ for all k.

Ex 8.7.7

Prove the general version of Theorem 8.5.2.

Ex 8.7.8

Give an alternative proof that $\xi^{2} \in \mathrm{cl}(I)$ in Example 8.2.2 using the Briançon-Skoda Theorem instead.

Ex 8.7.9

Derive Theorem 8.5.3 from Theorem 8.5.5 using 8.5.4.

Additional exercises.

Ex 8.7.10

Prove Corollary 8.4.2.

Ex 8.7.11

Prove that if A is an affine k-algebra, or a complete Noetherian local ring with residue field k, and if k is perfect, or more generally, if $\left(k: k^{p}\right)<\infty$, then $\mathbf{F}_{p}: A \rightarrow A$ is finite.

Ex 8.7.12

Show that x lies in the integral closure of an ideal I if and only if it lies in the integral closure of each $I(A / \mathfrak{p})$, for \mathfrak{p} a minimal prime of A.

Ex 8.7.13
Prove Theorem 8.3.3 under the weaker assumption that R is an equidimensional homomorphic image of a Cohen-Macaulay local ring.

Ex 8.7.14

To show the equivalence of (1) with (2) in Theorem 8.4.1, use in one direction the ideal $J:=x^{d-1} A+x^{d-2} I+\cdots+I^{d}$, and in the other use a 'determinantal trick'. Use the ideal J to also prove (1) \Rightarrow (3), and finish the proof of Theorem 8.4.1 by showing (3) \Rightarrow (4). See also Exercise 8.7.6.

Ex 8.7.15

Let (R, \mathfrak{m}) be a Noetherian local domain. We want to show that there exists a discrete valuation ring V and a local injective homomorphism $R \rightarrow V$. Let $\left(x_{1}, \ldots, x_{n}\right)$ be a generating tuple of \mathfrak{m} and let R^{\prime} be the R-algebra generated by the fractions x_{i} / x_{1} with $i=1, \ldots, n$ (one often refers to B as a blowing-up of R at \mathfrak{m}). Show that $\mathfrak{m} B$ is principal, and using Krull's Principal Ideal Theorem (Theorem 3.4.4), that there exists a height one prime ideal \mathfrak{p} in B containing $\mathfrak{m B}$. Let V be the integral closure of $B_{\mathfrak{p}}$. Show that V is a discrete valuation ring, and that the natural embedding $R \rightarrow V$ is local.

Ex 8.7.16

In this exercise, we will explore some of the concepts of invariant theory briefly mentioned at the beginning of our discussion on the Hochster-Roberts Theorem. Let K be an algebraically closed field, let $X=\operatorname{Spec}(R) \subseteq \mathbb{A}_{K}^{n}$ be an irreducible, reduced closed subscheme, and let G be a linearly reductive algebraic group acting on X. In particular, the K-rational points $G(K)$ of G form an (abstract) group acting on the variety $X(K) \subseteq K^{n}$ consisting of the K-rational points of X (see page 26). For a given section $p: X(K) \rightarrow K$, and an element $g \in G(K)$, define a new section p^{g} given by the rule $p^{g}(\mathbf{u})=p(g \cdot \mathbf{u})$. Show that we may identify R with the sections on $X(K)$, and the above then defines an action of $G(K)$ on R. Let R^{G} be the subring of invariants of R under this action, that is to say, all $a \in R$ such that $a^{g}=a$ for all $g \in G(K)$ (notationally, one often confuses the algebraic group G with its K-rational points $G(K)$). Without proof, we state that R^{G} is again K-affine, that is to say, a finitely generated K-algebra. Let $Y:=\operatorname{Spec}\left(R^{G}\right)$. Show, using Exercise 5.7.7 and the Reynolds operator, that the induced map $X \rightarrow Y$ is surjective. Show furthermore that the induced surjective map of K-rational points $X(K) \rightarrow Y(K)$ factors through the orbit space $X(K) / G(K)$. It requires some more work though to show that this actually induces an isomorphism $X(K) / G(K) \cong Y(K)$.

Chapter 9
 Tight closure in characteristic zero. Affine case

We will develop a tight closure theory in characteristic zero which is different from the Hochster-Huneke approach discussed briefly in $\S 8.6$. In this chapter we treat the affine case, that is to say, we develop the theory for algebras of finite type over an uncountable algebraically closed field K of characteristic zero; the general local case will be discussed in Chapter 10. Recall that under the Continuum Hypothesis, any uncountable algebraically closed field K of characteristic zero is a Lefschetz field, that is to say an ultraproduct of fields of positive characteristic, by Theorem 1.4.3 and Remark 1.4.4. In particular, without any set-theoretic assumption, \mathbb{C}, the field of complex numbers, is a Lefschetz field. The idea now is to use the ultra-Frobenius, that is to say, the ultraproduct of the Frobenii (see Definition 1.4.14), in the same manner in the definition of tight closure as in positive characteristic. However, the ultra-Frobenius does not act on the affine algebra but rather on its ultra-hull, so that we have to introduce a more general setup. It is instructive to do this first in an axiomatic manner, and then specialize to the situation at hand.

9.1 Difference hulls

A ring C together with an endomorphism σ on C is called a difference ring, and for emphasis, we denote this as a pair (C, σ). If (C, σ) and $\left(C^{\prime} \sigma^{\prime}\right)$ are difference rings, and $\varphi: C \rightarrow C^{\prime}$ a ring homomorphism, then we call φ a morphism of difference rings if it commutes with the endomorphisms, that is to say, if $\varphi(\sigma(a))=\sigma^{\prime}(\varphi(a))$ for all $a \in C$. The example par excellence of a difference ring is any ring of positive characteristic endowed with his Frobenius. We will now reformulate tight closure from this perspective, but anticipating already the fact that the ultra-Frobenius acts only on a certain overring of the affine algebra, to wit, its ultra-hull defined in $\S 7.1$. Since we also want the theory to be compatible with ring homomorphisms ('Persistence'), we need to work categorically. Let \mathfrak{C} be a category of Noetherian rings closed under homomorphic images (at this point we do not need to make any characteristic assumption). Often, the category will also be closed under localization, and we will
tacitly assume this as well. In summary, \mathfrak{C} is a collection of Noetherian rings so that for any A in \mathfrak{C} any localization $S^{-1} A$ and any residue ring A / I belongs again to \mathfrak{C} (and the canonical maps $A \rightarrow S^{-1} A$ and $A \rightarrow A / I$ are morphisms in \mathfrak{C}).

Definition 9.1.1 (Difference hull). A difference hull on \mathfrak{C} is a functor $D(\cdot)$ from \mathfrak{C} to the category of difference rings, and a natural transformation η from the identity functor to $D(\cdot)$ (that is to say, for each A in \mathfrak{C}, we have a difference ring $D(A)$ with endomorphism σ_{A} and a ring homomorphism $\eta_{A}: A \rightarrow D(A)$, and for each morphism $A \rightarrow B$ in \mathfrak{C}, we get an induced morphism of difference rings $D(A) \rightarrow$ $D(B)$ such that the diagram

commutes), with the following three additional properties:

1. each $\eta_{A}: A \rightarrow D(A)$ is faithfully flat;
2. the endomorphism σ_{A} of $D(A)$ preserves $D(A)$-regular sequences;
3. for any ideal $I \subseteq A$, we have $\sigma_{A}(I) \subseteq I^{2} D(A)$.

Since η_{A} is in particular injective (Proposition 5.3.4), we will henceforth view A as a subring of $D(A)$ and omit, as usual, η_{A} from our notation.

Difference closure. Given a difference hull $D(\cdot)$ on some category \mathfrak{C}, we define the difference closure $\mathrm{cl}^{D}(I)$ of an ideal $I \subseteq A$ of a member A of \mathfrak{C} as follows: an element $z \in A$ belongs to $\mathrm{cl}^{D}(I)$ if there exists a multiplier $c \in A$ and a number $N \in \mathbb{N}$ such that

$$
\begin{equation*}
c \sigma^{n}(z) \in \sigma^{n}(I) D(A) \tag{9.2}
\end{equation*}
$$

for all $n \geq N$. Here, $\sigma^{n}(I) D(A)$ denotes the ideal in $D(A)$ generated by all $\sigma^{n}(y)$ with $y \in I$, where σ is the endomorphism of the difference ring $D(A)$. It is crucial here that the multiplier c already belongs to A, although the membership relations in (9.2) are inside the bigger ring $D(A)$. We leave it as an exercise to show that the difference closure is indeed a closure operation in the sense of Definition 8.2.3 (see Exercise 9.5.1). An ideal that is equal to its difference closure will be called difference closed.

Example 9.1.2 (Frobenius hull). It is clear that our definition is inspired by the membership test (8.3) for tight closure, and indeed, this is just a special case. Namely, for a fixed prime number p, let \mathfrak{C}_{p} be the category of all Noetherian rings of characteristic p and let $D(\cdot)$ be the functor assigning to a ring A the difference ring $\left(A, \mathbf{F}_{A}\right)$. It is easy to see that this makes $D(\cdot)$ a difference hull in the above sense, and the
difference closure with respect to this hull is just the tight closure of the ideal; we will refer to this construction as the Frobenius hull.

In the next section, we will view tight closure in characteristic zero as a difference closure too. For the remainder of this section, we fix a category \mathfrak{C} endowed with a difference hull $D(\cdot)$, and study the corresponding difference closure on the members of \mathfrak{C}. For a given member A of \mathfrak{C}, we let σ_{A}, or just σ, be the endomorphism of $D(\cdot)$. In fact, we are mostly interested in the restriction of σ to A, and we also denote this homomorphism by σ (of course, this restriction is no longer an endomorphism).

Five key properties of difference closure. To derive the necessary properties of this closure operation, namely the the analogues of the five key properties of $\S 8.3$, we again depart from a flatness result, the analogue of Kunz's theorem (Theorem 8.1.2).

Proposition 9.1.3. If A is a regular local ring in \mathfrak{C}, then $\sigma: A \rightarrow D(A)$ is faithfully flat.

Proof. By Theorem 5.6.9, it suffices to show that $D(A)$ is a balanced big CohenMacaulay algebra under σ. To this end, let $\left(x_{1}, \ldots, x_{d}\right)$ be an A-regular sequence. Since $A \subseteq D(A)$ is by assumption faithfully flat, $\left(x_{1}, \ldots, x_{d}\right)$ is $D(A)$-regular by Proposition 5.4.1. By Condition (2) of Definition 9.1.1, the sequence $\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{d}\right)\right)$ is also $D(A)$-regular, as we wanted to show.

Corollary 9.1.4. Any ideal of a regular ring in \mathfrak{C} is difference closed.

Proof. Suppose first that (R, \mathfrak{m}) is a regular local ring in \mathfrak{C}, and z lies in the difference closure of an ideal $I \subseteq R$. Hence, with c and N as in (9.2), the multiplier c lies in $\left(\sigma^{n}(I) D(R): \sigma^{n}(z)\right)$ for $n \geq N$, and hence by flatness (Proposition 9.1.3) and the Colon Criterion (Theorem 5.6.15), it lies in $\sigma^{n}(I: z) D(R)$. If z does not belong to I, then $(I: z) \subseteq \mathfrak{m}$, and hence c belongs to $\sigma^{n}(\mathfrak{m}) D(R)$ which in turn lies inside $\mathfrak{m}^{2^{n}} D(R)$ by Condition (3) of Definition 9.1.1. By faithful flatness, c therefore lies in $\mathfrak{m}^{2^{n}}$, for every $n \geq N$, contradicting, in view of Krull's Intersection Theorem 3.3.4, that it is a multiplier whence non-zero.

For the general case, assume z lies in the tight closure of an ideal I in a regular $\operatorname{ring} A$ in \mathfrak{C}. By weak persistence and the local case, $z \in I A_{\mathfrak{m}}$ for any maximal ideal \mathfrak{m} of A. It follows that $(I: z)$ cannot be a proper ideal, whence $z \in I$.

Remark 9.1.5. Let us call a difference hull simple if instead of Condition 9.1.1(3) we have the stronger condition that $\sigma(I)$ is contained in all powers of $I D(A)$, for $I \subseteq A$. In that case, we can define a variant of the difference closure, called simple difference closure, by requiring condition (9.2) to hold only for $n=1$, that is to say, a single test suffices. Inspecting the above proof, one sees that for a simple difference hull, any ideal I in a regular ring is equal to its simple difference closure. We leave it to the reader (see Exercise 9.5.6) to show that simple difference closure satisfies all the properties below of its non-simple counterpart.

Weak persistence holds for the same reasons as it does for tight closure, so for the record we state:
9.1.6 If $A \rightarrow B$ is an injective morphism in \mathfrak{C} with A and B domains, then $\mathrm{cl}^{D}(I) \subseteq \mathrm{cl}^{D}(I B)$.

Proposition 9.1.7 (Colon Capturing). Let R be a Noetherian local domain which is a homomorphic image of a Cohen-Macaulay local ring in \mathfrak{C}, and let $\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters in R. Then for each i, the colon ideal $\left(\left(x_{1}, \ldots, x_{i}\right) R: x_{i+1}\right)$ is contained in $\mathrm{cl}^{D}\left(\left(x_{1}, \ldots, x_{i}\right) R\right)$.

Proof. Let S be a local Cohen-Macaulay ring in \mathfrak{C} such that $R=S / \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subseteq S$, and assume the x_{i} already belong to S. As in the proof of Theorem 8.3.3, we can find an S-regular sequence $\left(y_{1}, \ldots, y_{h}, x_{1}, \ldots, x_{d}\right)$ with $y_{1}, \ldots, y_{h} \in \mathfrak{p}$, an element $c \notin \mathfrak{p}$, and a number $m \in \mathbb{N}$ such that

$$
\begin{equation*}
c \mathfrak{p}^{2^{m}} \subseteq J:=\left(y_{1}, \ldots, y_{h}\right) S \tag{9.3}
\end{equation*}
$$

Let τ denote the endomorphism of $D(S)$. By assumption, the canonical epimorphism $S \rightarrow R$ induces a morphism of difference rings $D(S) \rightarrow D(R)$. In particular, $\mathfrak{p} D(R)=$ 0.

Fix some i, let $I:=\left(x_{1}, \ldots, x_{i}\right) S$ and assume $z x_{i+1} \in I R$ some $z \in S$. Hence $z x_{i+1} \in$ $I+\mathfrak{p}$. Applying τ^{n} to this for $n>m$, we get $\tau^{n}(z) \tau^{n}\left(x_{i+1}\right) \in \tau^{n}(I) D(S)+\tau^{n}(\mathfrak{p}) D(S)$. By (9.3) and 9.1.1(3), this means that

$$
c \tau^{n}(z) \tau^{n}\left(x_{i+1}\right) \in \tau^{n}(I) D(S)+\tau^{n-m}(J) D(S)
$$

Since the $\tau^{n-m}\left(y_{j}\right)$ together with the $\tau^{n}\left(x_{j}\right)$ form again an S-regular sequence by a stronger version of 9.1.1(2) proven in Exercise 9.5.2, we conclude that

$$
c \tau^{n}(z) \in \tau^{n}(I) D(S)+\tau^{n-m}(J) D(S) \subseteq \tau^{n}(I) D(S)+J D(S)
$$

Therefore, under the induced morphism $D(S) \rightarrow D(R)$, we get

$$
c \sigma^{n}(z) \in \sigma^{n}(I) D(R)
$$

for all $n>m$, showing that $z \in \mathrm{cl}^{D}(I R)$.
To prove the remaining two properties (the analogues of Theorems 8.3.4 and 8.3.6 respectively), some additional assumptions are needed. To compare with integral closure, we have to make a rather technical assumption on the underlying category \mathfrak{C}. We say that \mathfrak{C} has the Néron property if for any homomorphism $A \rightarrow V$ with A in \mathfrak{C} and V a discrete valuation ring (not necessarily belonging to \mathfrak{C}), there exists a faithfully flat extension $V \rightarrow W$ and a morphism $A \rightarrow R$ in \mathfrak{C} with $R \in \mathfrak{C}$ a regular local ring such that the following diagram commutes

Clearly the Frobenius hull in prime characteristic trivially satisfies this property since we then may take $R=V=W$.

Proposition 9.1.8. If \mathfrak{C} is a difference hull satisfying the Néron property, then the difference closure of any ideal is contained in its integral closure.

Proof. Let $I \subseteq A$ be an ideal of a ring A in \mathfrak{C}, and let $z \in A$ be in the difference closure of I. In order to show that z lies in the integral closure of I, we use criterion (4) in Theorem 8.4.1. To this end, let $A \rightarrow V$ be a homomorphism into a discrete valuation ring V whose kernel is a minimal prime of A. We need to show that $z \in I V$. Since \mathfrak{C} has the Néron property, we can find a faithfully flat extension $V \rightarrow W$ and a morphism $A \rightarrow R$ in \mathfrak{C} with R a regular local ring, yielding a commutative diagram (9.4). By assumption, there exists a multiplier $c \in A$ and a number N such that (9.2) holds in $D(A)$. Since c does not lie in the kernel of $A \rightarrow V$, its image in R must, a fortiori, be non-zero. Hence the same ideal membership relations viewed in $D(R)$ show that z lies in the difference closure of $I R$. By Corollary 9.1.4, this implies that z already lies in $I R$ whence in $I W$. By faithful flatness and Proposition 5.3.4, we get $z \in I V$, as we wanted to show.

Let us say that the difference hull $D(\cdot)$ commutes with finite homomorphisms if for each finite homomorphism $A \rightarrow B$ in \mathfrak{C}, the canonical homomorphism $D(A) \otimes_{A}$ $B \rightarrow D(B)$ is an isomorphism of $D(A)$-algebras. Once more, this property holds trivially for the Frobenius hull.

Proposition 9.1.9. If $D(\cdot)$ commutes with finite homomorphisms, and if $A \subseteq B$ is a finite extension of domains, then $\mathrm{cl}^{D}(I)=\mathrm{cl}^{D}(I B) \cap A$ for any ideal $I \subseteq A$.

Proof. As in the proof of Theorem 8.3.4, we have an A-linear map $\varphi: B \rightarrow A$ with $\varphi(1) \neq 0$. By base change, this yields a $D(A)$-linear map $D(A) \otimes_{A} B \rightarrow D(A)$, whence a $D(A)$-linear map $D(B) \rightarrow D(A)$. The remainder of the argument is now as in the proof of Theorem 8.3.4, and is left to the reader.

9.2 Tight closure

Our axiomatic treatment in terms of difference closure now only requires us to identify the appropriate difference hull. For the remainder of this chapter, K denotes a
fixed algebraically closed Lefschetz field, and \mathfrak{C}_{K} is the category of K-affine algebras (that is to say, the algebras essentially of finite type over K). By definition, we can realize K as an ultraproduct of fields K_{p} of characteristic p, where for simplicity we index these fields by their characteristic although this is not necessary. We remind the reader that $K=\mathbb{C}$ is an example of a Lefschetz field (Theorem 1.4.3). As difference hull, we now take the ultra-hull as defined in $\S 7.1$, viewing it as a difference ring by means of its ultra-Frobenius (see Definition 1.4.14).

Theorem 9.2.1. The category \mathfrak{C}_{K} has the Néron property, and the ultra-hull constitutes a simple difference hull which commutes with finite homomorphisms.

Proof. We defer the proof of the Néron property to Proposition 9.2.2 below. The ultra-hull is functorial by 7.1.3. Property (1) in Definition 9.1 .1 holds by Theorem 7.2.2, and the two remaining properties (2) and (3) hold trivially. By Łos’ Theorem, the ultra-hull is a simple difference hull as defined in Remark 9.1.5; and it commutes with finite homomorphisms by Proposition 7.3.1.

Proposition 9.2.2. The category \mathfrak{C}_{K} has the Néron property.

Proof. Assume $A \rightarrow V$ is a homomorphism from a K-affine ring A into a discrete valuation ring V. Replacing A by its image in V, we may view A as a subring of V. By Theorem 6.4.5, the completion of V is isomorphic to $L[[t]]$ for some field L extending K and for t a single indeterminate. Let \bar{L} be the algebraic closure of L and put $W:=\bar{L}[[t]]$. By Theorem 6.3 .5 and base change, the natural homomorphism $V \rightarrow W$ is faithfully flat (see also Theorem 6.4.7). The image of A in W has the same (uncountable) cardinality as K, whence is already contained in a subring of the form $k[[t]]$ with k an algebraically closed subfield of \bar{L} of the same cardinality as K. By Theorem 1.4.5, we have an isomorphism $k \cong K$, and so we may assume that the composition $A \rightarrow W$ factors through $K[[t]]$. Let B^{\prime} be the A-subalgebra of W generated by t, and let B be its localization at $t W \cap B^{\prime}$, so that B is a local V_{0}-affine ring, where V_{0} is the localization of $K[t]$ at the ideal generated by t. By Néron p desingularization (see for instance $[2, \S 4]$), the embedding $B \subseteq K[[t]]$ factors through a regular local V_{0}-algebra R. Since R is then also a K-affine local ring, it satisfies all the required properties.

The difference closure obtained from this choice of difference hull on \mathfrak{C}_{K} will simply be called again tight closure (in the paper [46] it was called non-standard tight closure). For ease of reference, we repeat its definition here: an element z in a K-affine ring A belongs to the tight closure of an ideal $I \subseteq A$ if there exists a multiplier $c \in A$ such that

$$
\begin{equation*}
c \mathbf{F}_{\mathfrak{\natural}}^{n}(z) \in \mathbf{F}_{\mathfrak{\natural}}^{n}(I) \cup(A) \tag{9.5}
\end{equation*}
$$

for all $n \gg 0$. We will denote the tight closure of I by $\mathrm{cl}_{A}(I)$ or simply $\mathrm{cl}(I)$, and we adopt the corresponding terminology from positive characteristic. Immediately from Theorem 9.2.1 and the results in the previous section we get:

Theorem 9.2.3. Tight closure on K-affine rings satisfies the five key properties:

1. if $A \rightarrow B$ is an extension of K-affine domains, or more generally, a homomorphism of K-affine rings preserving multipliers, then $\mathrm{cl}_{A}(I) \subseteq \mathrm{cl}_{B}(I B)$ for every ideal $I \subseteq A$;
2. if A is a K-affine regular ring, then any ideal in A is tightly closed, and in fact, A is F-regular;
3. if R is a K-affine local ring and $\left(x_{1}, \ldots, x_{d}\right)$ a system of parameters in R, then $\left(\left(x_{1}, \ldots, x_{i}\right) R: x_{i+1}\right) \subseteq \operatorname{cl}\left(\left(x_{1}, \ldots, x_{i}\right) R\right)$ for all i;
4. the tight closure of an ideal is contained in its integral closure;
5. if $A \subseteq B$ is a finite extension of K-affine domains, then $\mathrm{cl}_{A}(I)=\operatorname{cl}_{B}(I B) \cap A$.

Of all five properties, only (4) relies on a deeper theorem, to wit Néron p desingularization (which, nonetheless, is a much weaker form of Artin Approximation than needed for the HH-tight closure as discussed in §8.6). Is there a more elementary argument, at least for proving that tight closure is inside the radical of an ideal? On the other hand, property (5) is not such a very impressive fact in characteristic zero by Exercise 9.5.9 (see also the discussion following Theorem 9.4.1 below).

Since the ultra-hull is a simple difference hull, we can also define simple tight closure by requiring that (9.5) only holds for $n=1$ (this was termed non-standard closure in [46]). For more on this closure, see Exercise 9.5.6. As already remarked, the five key properties form the foundation for deriving several deep theorems, as we now will show.

Theorem 9.2.4 (Hochster-Roberts—affine case). If $R \rightarrow S$ is a cyclically pure homomorphism of K-affine local rings and if S is regular, then R is Cohen-Macaulay.

The argument is exactly as in positive characteristic: one shows first that R is weakly F-regular, and then that any weakly F-regular ring is Cohen-Macaulay because we have Colon Capturing (in fact, one can prove an analogue of this result in any difference hull, see Exercise 9.5.5). Note that by our discussion on page 129, we have now completed the proof of Theorem 8.5.3 (to prove the result, we may always extend the base field to a Lefschetz field). The next result, however, cannot be proven-it seems-within the framework of difference hulls, although its proof is still elementary.

Theorem 9.2.5 (Briançon-Skoda-affine case). Let A be a K-affine ring, and let $I \subseteq A$ be an ideal generated by n elements. If I has positive height, then we have for all $l \geq 1$ an inclusion

$$
\overline{I^{n+l-1}} \subseteq \operatorname{cl}\left(I^{l}\right)
$$

In particular, if A is a K-affine regular local ring, then the integral closure of I^{n+l-1} lies inside I^{l} for all $l \geq 1$.

Proof. Again we only proof the case $l=1$. Let z be in the integral closure of I^{n}, and let A_{p}, z_{p} and I_{p} be approximations of A, z and I respectively. The integral equation (similar to (8.7)), say, of degree d, witnessing that z lies in the integral closure of I^{n}, shows by Łos' Theorem that almost each z_{p} satisfies a similar integral equation of degree d, and hence, in particular, z_{p} belongs to the integral closure of I_{p}^{n}. By Exercise 8.7.6, for those p we have

$$
I_{p}^{n(d-1)} z_{p}^{k} \in I_{p}^{k n}
$$

for all k. As in the proof of Theorem 8.5.2, this implies that $I_{p}^{n(d-1)} \mathbf{F}_{p}^{e}\left(z_{p}\right)$ is contained in $\mathbf{F}_{p}^{e}\left(I_{p}\right) A_{p}$ for all e. Taking ultraproducts then yields

$$
I^{n(d-1)} \mathbf{F}_{\natural}^{e}(z) \subseteq \mathbf{F}_{\natural}^{e}(I) U(A) .
$$

Since I has positive height, we can find by prime avoidance a multiplier $c \in I^{n(d-1)}$. In particular, $c \mathbf{F}_{\natural}^{e}(z) \in \mathbf{F}_{\natural}^{e}(I) U(A)$ for all e, whence $z \in \operatorname{cl}(I)$, as we wanted to show. The last assertion then follows from Theorem 9.2.3.

We would of course prefer a version in which no assumption on I needs to be made. This indeed exists, but requires an intermediary closure operation, ultraclosure (see $\S 9.3$ below and Exercise 9.5.16). Using the previous result, we have now proven the polynomial case in the Briançon-Skoda theorem (Theorem 8.5.1). The last of our applications, the Ein-Lazardsfeld-Smith Theorem, can neither be carried out in the purely axiomatic setting of difference closure, but relies on some additional properties of the ultra-hull.
Theorem 9.2.6. Let A be a K-affine regular domain, and let $\mathfrak{a} \subseteq A$ be a radical ideal, given as the intersection of finitely many prime ideals of height at most h. Then for all n, we have an inclusion $\mathfrak{a}^{(h n)} \subseteq \mathfrak{a}^{n}$.
Proof. Let $z \in \mathfrak{a}^{(h n)}$, and let A_{p}, z_{p} and \mathfrak{a}_{p} be approximations of A, z and \mathfrak{a} respectively. By Theorem 7.3.7 (or rather Exercise 7.5.4), almost all A_{p} are regular, and by Corollary 7.3.3 and Theorem 7.3.4, almost each \mathfrak{a}_{p} is the intersection of finitely many prime ideals of height at most h. As in the proof of Theorem 8.5.10, for those p we therefore have $\mathfrak{a}_{p}^{h n^{2}} \mathbf{F}_{p}^{e}\left(z_{p}\right) \subseteq \mathbf{F}_{p}^{e}\left(\mathfrak{a}_{p}^{n}\right) A_{p}$ for all e. Taking ultraproducts then yields $\mathfrak{a}^{h n^{2}} \mathbf{F}_{\natural}^{e}(z) \subseteq \mathbf{F}_{\natural}^{e}\left(\mathfrak{a}^{n}\right) U(A)$, showing that z lies in $\operatorname{cl}\left(\mathfrak{a}^{n}\right)$ whence in \mathfrak{a}^{n} by Theorem 9.2.3.

9.3 Ultra-closure

In the two last proofs, we derived some membership relations in the approximations of an affine algebra and then took ultraproducts to get the same relations in its ultrahull. However, each time the relations in the approximations already established tight closure membership in those rings. This suggests the following definition. Let A be a K-affine algebra, $I \subseteq A$ an ideal and $z \in A$. We say that z lies in the ultraclosure ultra-cl(I) of I (called the generic tight closure in [46, 48]), if z_{p} lies in the tight closure of I_{p} for almost all p, where A_{p}, z_{p} and I_{p} are approximations of A, z and I respectively. Put differently

$$
\operatorname{ultra-cl}(I)=\left(\operatorname{ulim}_{p \rightarrow \infty} \mathrm{ul}_{A_{p}}\left(I_{p}\right)\right) \cap A,
$$

where we view the ultraproduct of the tight closures as an ideal in $U(A)$. With little effort (Exercise 9.5.15) one shows:

Proposition 9.3.1. Ultra-closure is a closure operation satisfying the five key properties listed in Theorem 9.2.3.

To relate ultra-closure with tight closure, some additional knowledge of the theory of test elements (see the discussion following Theorem 8.3.1) is needed. Since we did not discuss these in detail, I quote the following result without proof.
Proposition 9.3.2 ([46, Proposition 8.4]). Given a K-affine algebra A, there exists a multiplier $c \in A$ with approximation $c_{p} \in A_{p}$ such that c_{p} is a test element in A_{p} for almost all p.
Theorem 9.3.3. The ultra-closure of an ideal is contained in its tight closure (and also in its simple tight closure).
Proof. Let $z \in \operatorname{ultra}-\mathrm{cl}(I)$, with I an ideal in a K-affine algebra A. Let A_{p}, z_{p} and I_{p} be approximations of A, z and I respectively. By definition, z_{p} lies in the tight closure of I_{p} for almost all p. Let c be a multiplier as in Proposition 9.3.2, with approximations c_{p}. For almost all p for which c_{p} is a test element, we get $c_{p} \mathbf{F}_{p}^{e}\left(z_{p}\right) \in \mathbf{F}_{p}^{e}\left(I_{p}\right) A_{p}$ for all $e \geq 0$. Taking ultraproducts then yields $c \mathbf{F}_{\natural}^{e}(z) \in \mathbf{F}_{\natural}^{e}(I) U(A)$ for all e, showing that z lies in the (simple) tight closure of I.

Without proof, we state the following comparison between our theory and the classical theory due to Hochster and Huneke (see §8.6); for a proof see [46, Theorem 10.4].
Proposition 9.3.4. The HH-tight closure of an ideal is contained in its ultra-closure, whence in its tight closure.

9.4 Big Cohen-Macaulay algebras

Although the material in this section is strictly speaking not part of tight closure theory, the development of the latter was germane to the discovery by Hochster and Huneke of Theorem 9.4.1 below.

Big Cohen-Macaulay algebras in prime characteristic. Recall that the absolute integral closure A^{+}of a domain A with field of fractions F, is the integral closure of A inside an algebraic closure of F. Since algebraic closure is unique up to isomorphism, so is absolute integral closure. Nonetheless it is not functorial, and we only have the following quasi-functorial property: given a homomorphism $A \rightarrow B$ of domains, there exists a (not necessarily unique) homomorphism $A^{+} \rightarrow B^{+}$making the diagram

commute (see Exercise 9.5.10).

Theorem 9.4.1 ([20]). For every excellent local domain R in characteristic p, the absolute integral closure R^{+}is a balanced big Cohen-Macaulay algebra.

The condition that a Noetherian local ring is 'excellent' is for instance satisfied when R is either K-affine or complete (see [30, §32]). The proof of the above result is beyond the scope of these notes (see for instance [26, Chapters 7\& 8]) although we will present a 'dishonest' proof shortly. It is quite a remarkable fact that the same result is completely false in characteristic zero: in fact any extension of a normal domain is split, and hence provides a counterexample as soon as R is not CohenMacaulay (see Exercise 9.5.9). One can use the absolute integral closure to define a closure operation in an excellent local domain R of prime characteristic as follows. For an ideal I, let the plus-closure of I be the ideal $I^{+}:=I R^{+} \cap R$. One can show (see Exercise 9.5.12) that I^{+}is a closure operation in the sense of Definition 8.2.3, satisfying the five key properties listed in Theorem 9.2.3. Moreover, unlike tight closure, it is not hard to show that it commutes with localization.

Proposition 9.4.2. In an excellent local domain R of prime characteristic, the plusclosure of an ideal $I \subseteq R$ is contained in its tight closure.

Proof. Let $z \in I^{+}$. By definition, there exists a finite extension $R \subseteq S \subseteq R^{+}$such that $z \in I S$ (note that R^{+}is the direct limit of all finite extensions of R by local domains). Hence $z \in \operatorname{cl}(I)$ by Theorem 8.3.4.

It was conjectured that plus closure always equals tight closure. In view of [9], this now seems unlikely, since plus closure is easily seen to commute with localization, whereas tight closure apparently does not (see our discussion of (8.4)). Nonetheless, Smith has verified a special case of the conjecture for an important class of ideals:

Theorem 9.4.3 ([55]). Any ideal generated by part of a system of parameters in an excellent local domain of prime characteristic has the same plus closure as tight closure.

Proof of Theorem 9.4.1 assuming Theorem 9.4.3.

The proof we will present here is dishonest in the sense that Smith made heavy use of Theorem 9.4.1 to derive her result. However, here is how the converse direction goes. Let $\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters in an excellent local domain R of characteristic p, and suppose $z x_{i+1} \in I R^{+}$for some $z \in R^{+}$and $I:=\left(x_{1}, \ldots, x_{i}\right) R$. Hence there already exists a finite extension $R \subseteq S \subseteq R^{+}$containing z such that $z x_{i+1} \in I S$. Since $R \subseteq S$ is finite, $\left(x_{1}, \ldots, x_{d}\right)$ is also a system of parameters in S by Theorem 3.4.8. By Colon Capturing (Theorem 8.3.3), we get $z \in \operatorname{cl}(I S)$. By Theorem 9.4.3, this implies that z lies in the plus closure of $I S$, whence in $I S^{+}$. However, it is not hard to see that $R^{+}=S^{+}$, proving that $\left(x_{1}, \ldots, x_{d}\right)$ is R^{+}-regular.

9.4.4 If R is an excellent regular local ring of prime characteristic, then R^{+}is

 faithfully flat over R.This follows immediately from Theorem 9.4.1 and the Cohen-Macaulay criterion for flatness (Theorem 5.6.9). Interestingly, it also provides an alternative strategy to prove Theorem 9.4.1:

Proposition 9.4.5. Let k be a field of positive characteristic. Suppose we can show that any k-affine (respectively, complete) regular local ring has a faithfully flat absolute integral closure, then the absolute integral closure of any k-affine (respectively, complete Noetherian) local domain is a balanced big Cohen-Macaulay algebra.

Proof. I will only treat the affine case and leave the complete case to Exercise 9.5.18. Let R be a k-affine local domain, and let \mathbf{x} be a system of parameters in R. By Noether Normalization with parameters (see the second part of Exercise 8.7.4), we can find a k-affine regular local subring $S \subseteq R$, such that $S \subseteq R$ is finite and $\mathbf{x} S$ is the maximal ideal of S. By assumption, S^{+}is faithfully flat over S, and hence $\left(x_{1}, \ldots, x_{d}\right)$ is S^{+}-regular. Finiteness yields $S^{+}=R^{+}$, and so we are done.

Big Cohen-Macaulay algebras in characteristic zero. As already mentioned, if R is a K-affine local domain of characteristic zero, then R^{+}will in general not be a big Cohen-Macaulay algebra. However, we can still associate to any such R (in a quasi-functorial way) a canonically defined balanced big Cohen-Macaulay algebra as follows. Let R_{p} be an approximation of R. By Theorem 7.3.4, almost all R_{p} are domains. Let $B(R)$ be the ultraproduct of the R_{p}^{+}; this is independent form the choice of approximation (see Exercise 9.5.19). By Łos’ Theorem, there is a canonical homomorphism $R \rightarrow B(R)$.
Theorem 9.4.6. If R is a K-affine local domain, then $B(R)$ is a balanced big CohenMacaulay algebra over R.

Proof. Since almost each approximation R_{p} is a K_{p}-affine (whence excellent) local domain, R_{p}^{+}is a balanced big Cohen-Macaulay R_{p}-algebra by Theorem 9.4.1. Let \mathbf{x} be a system of parameters of R, with approximation \mathbf{x}_{p}. By Corollary 7.3.6, almost each \mathbf{x}_{p} is a system of parameters in R_{p}, whence R_{p}^{+}-regular. By Łos' Theorem, \mathbf{x} is therefore $B(R)$-regular, as we wanted to show.

Hochster and Huneke ([21]) arrive differently at balanced big Cohen-Macaulay algebras in characteristic zero, via their lifting method discussed in §8.6. However, their construction, apart from being rather involved, is far less canonical. In contrast, although it appears that $B(R)$ depends on R, we have in fact:
9.4.7 For each d, there exists a ring B_{d} such that for any K-affine local domain R, we have $B(R) \cong B_{d}$ if and only if R has dimension d. In other words, B_{d} is a balanced big Cohen-Macaulay algebra for R if and only if R has dimension d.
Indeed, by Noether Normalization (with parameters, see Exercise 8.7.4), R is finite over the localization of $K[\xi]$ at the ideal generated by the indeterminates
$\xi:=\left(\xi_{1}, \ldots, \xi_{d}\right)$. By Łos’ Theorem, the approximation R_{p} is finite over the corresponding localization of $K_{p}[\xi]$. If B_{p} is the absolute integral closure of this localization, then $B_{p}=R_{p}^{+}$. Hence the ultraproduct of the B_{p} only depends on d and is isomorphic to $B(R)$.

In analogy with plus closure, we define the B-closure $\mathrm{cl}^{B}(I)$ of an ideal I in a K-affine local domain R as the ideal $I B(R) \cap R$. As in positive characteristic, it is a closure operation satisfying the five key properties of Theorem 9.2.3 (see Exercise 9.5.12). Using Proposition 9.4.2 and Łos’ Theorem, together with Theorem 9.3.3 we get:

9.4.8 For any ideal I in a K-affine local domain R, we have inclusions $\mathrm{cl}^{B}(I) \subseteq$

 $\operatorname{ultra}-\mathrm{cl}(I) \subseteq \operatorname{cl}(I)$.Like tight closure theory, the existence of balanced big Cohen-Macaulay algebras does have many important applications. To illustrate this, we give an alternative proof of the Hochster-Roberts theorem, as well as a proof of the Monomial Conjecture (as far as I am aware of, no tight closure argument proves the latter). We will treat only the affine characteristic zero case here, but the same argument applies in positive characteristic, and, once we have developed the theory in Chapter 10, for arbitrary equicharacteristic Noetherian local rings.

Alternative proof of Theorem 9.2.4. Let $R \rightarrow S$ be a cyclically pure homomorphism of K-affine local domains with S regular, and let $\mathbf{x}:=\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters in R. To show that this is R-regular, assume $z x_{i+1} \in I:=\left(x_{1}, \ldots, x_{i}\right) R$. Since \mathbf{x} is $B(R)$-regular by Theorem 9.4.6, we get $z \in I B(R)$. By quasi-functoriality (after applying Łos’ Theorem to (9.6)) we get a homomorphism $B(R) \rightarrow B(S)$ making the diagram

commute. In particular, $z \in I B(S)$. Since S is regular, $S \rightarrow B(S)$ is flat by the CohenMacaulay criterion for flatness (Theorem 5.6.9) and Theorem 9.4.6. Hence z belongs to $I S$ by Proposition 5.3 .4 whence to I by cyclical purity.

As promised, we conclude with an application of the existence of big CohenMacaulay algebras to one of the Homological Conjectures (for further discussion, especially the still open mixed characteristic case, see Chapter ??). Let us call a tuple $\left(x_{1}, \ldots, x_{d}\right)$ in a ring R monomial, if for all k, we have

$$
\begin{equation*}
\left(x_{1} \cdots x_{d}\right)^{k-1} \notin\left(x_{1}^{k}, \ldots, x_{d}^{k}\right) R . \tag{9.8}
\end{equation*}
$$

We say that the Monomial Conjecture holds for a Noetherian local ring R, if R satisfies the hypothesis in the next result:

Theorem 9.4.9 (Monomial Conjecture). If R is a local K-affine algebra, then any system of parameters is monomial.
Proof. Let $\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters, let x be the product of the x_{i}, and suppose $x^{k-1} \in I_{k}:=\left(x_{1}^{k}, \ldots, x_{d}^{k}\right) R$ for some k. Let \mathfrak{p} be a d-dimensional prime ideal. Since $\left(x_{1}, \ldots, x_{d}\right)$ is then also a system of parameters in R / \mathfrak{p}, and $x^{k-1} \in I_{k}(R / \mathfrak{p})$, we may after replacing R by R / \mathfrak{p} assume that R is a domain. Hence $\left(x_{1}, \ldots, x_{d}\right)$ is $B(R)$ regular by Theorem 9.4.6. However, it is easy to see that for a regular sequence we can never have $x^{k-1} \in I_{k} B(R)$ (see Exercise 9.5.13).

Remark 9.4.10. By an argument on local cohomology, one can show that given any system of parameters $\left(x_{1}, \ldots, x_{d}\right)$ in a Noetherian local ring R, there exists some t such that $\left(x_{1}^{t}, \ldots, x_{d}^{t}\right)$ is monomial. Hence the real issue as far as the Monomial Conjecture is concerned is the fact that one can always take $t=1$.

9.5 Exercises

Ex 9.5.1

Given a difference hull $D(\cdot)$ on a category \mathfrak{C}, and given an ideal $I \subseteq A$ in a ring A in \mathfrak{C}, show that $\mathrm{cl}^{D}(I)$ is an ideal in A containing I, and $\mathrm{cl}^{D}\left(\mathrm{cl}^{D}(I)\right)=\mathrm{cl}^{D}(I)$, that is to say, $\mathrm{cl}^{D}(I)$ is difference closed. Conclude that $\mathrm{cl}^{D}(\cdot)$ is a closure operation in the sense of Definition 8.2.3.

Ex 9.5.2

In this exercise, you are asked to prove that if $D(R)$ is a difference hull of a local ring R in \mathfrak{C} with endomorphism σ, and if $\left(x_{1}, \ldots, x_{h}\right)$ is an R-regular sequence, then $\left(\sigma^{e_{1}}\left(x_{1}\right), \ldots, \sigma^{e_{h}}\left(x_{h}\right)\right)$ is $D(R)$-regular, for any $e_{i} \geq 0$. First show that in an arbitrary ring A, if $\left(a_{1} b_{1}, \ldots, a_{s} b_{s}\right)$ is a permutable A-regular sequence (meaning that any permutation is A-regular), then so is $\left(a_{1}, \ldots, a_{s}\right)$. Prove the assertion from this by using Condition 9.1.1(3).

Ex 9.5.3

Show that any Lefschetz ring is a difference ring.

Ex 9.5.4

Complete the proof of Proposition 9.1.9.

Ex 9.5.5
Let $D(\cdot)$ be a difference hull on \mathfrak{C}. Show that if $R \rightarrow S$ is a cyclically pure homomorphism of local rings in \mathfrak{C}, if R is a homomorphic image of a Cohen-Macaulay ring in \mathfrak{C}, and if S is regular, then R is Cohen-Macaulay.

Ex 9.5.6
Show that simple tight closure is a closure operation satisfying the five key properties of Theorem 9.2.3. In fact, you can prove the same for simple difference closure, with the necessary assumptions on the difference hull. See also Exercise 9.5.7 for more variants.

Ex 9.5.7

Proposition 8.2.6 essentially reduces the study of tight closure in arbitrary rings to domains. Unfortunately, for both difference closure and ultra-closure, I cannot yet prove this in general, the problem being that the endomorphism/ultra-Frobenius does not preserve multipliers. To circumvent this problem, the following variant-which I only explain for difference closure-is probably the 'correct' definition. Say that z lies in the stable difference closure of an ideal $I \subseteq A$, if there exists a multiplier $c \in A$ and some $N \in \mathbb{N}$, such that $\sigma^{N}(c) \sigma^{n}(z) \in \sigma^{n}(I) D(A)$ for all $n \geq N$. Prove that stable difference closure is a closure operation in the sense of Definition 8.2.3, verify that the analogue of Proposition 8.2.6 holds, and show that it satisfies the five key properties. Define the analogue stable variant for simple tight closure, and prove the same properties. Show that stable tight closure is always contained in stable simple tight closure.

Ex 9.5.8

Give an alternative proof of the flatness of \mathbf{F}_{\natural} on a K-affine regular local ring, by means of the equational criterion for flatness (Theorem 5.6.1), Theorem 7.3.7, and Łos’ Theorem.
*Ex 9.5.9
Let A be a Noetherian normal domain(=integrally closed in its field of fractions L) containing the rationals, and let $A \subseteq B$ be a finite extension. Show that $A \rightarrow B$ is split (see the discussion following Theorem 8.5.3) as follows. Argue that after taking a homomorphic image, we may assume that B is a domain, with field of fractions L. We then may replace B and L in such way that L is a Galois extension of K, say of degree d. Show that the trace map $L \rightarrow K$ (=the sum of all conjugates), followed by division by d, is a splitting of $A \subseteq B$. Use this to show that if R is K-affine local domain which is normal but not Cohen-Macaulay, then R^{+}is not a big Cohen-Macaulay algebra.

${ }^{*}$ Ex 9.5.10

Show the existence of a map $A^{+} \rightarrow B^{+}$making diagram (9.6) commute. To this end, factor $A \rightarrow B$ as a surjection followed by an inclusion, and then treat each of these two cases separately.

Ex 9.5.11

Show that for any K-affine local domain R, the canonical map $R \rightarrow B(R)$ factors through the ultra-hull $U(R)$. Argue that $B(R)$ is no longer integral over R if R is non-Artinian. Show that if $R \subseteq S$ is a finite extension of affine local domains, then $B(R)=B(S)$.

Ex 9.5.12

Show that plus closure and B-closure are closure operations in the sense of Definition 8.2.3, satisfying the five key properties listed in Theorem 9.2.3. In fact, quasi-functoriality (in the sense of (9.6)) yields persistence under arbitrary homomorphisms of local domains.

Ex 9.5.13

Show that a permutable regular sequence \mathbf{x} in an arbitrary ring A is monomial. In particular, any local Cohen-Macaulay ring satifies the Monomial Conjecture.

*Ex 9.5.14

Let $Z:=\mathbb{Z}[\xi]$ with $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right)$. Let us say that a tuple \mathbf{x} in a ring A is strongly monomial, if $I \neq J$ implies $I A \neq J A$ for any two monomial ideals $I, J \subseteq Z$ (that is to say, ideals generated by monomials), where we view A as a Z-algebra via the homomorphism $Z \rightarrow A: \xi_{i} \mapsto x_{i}$. Show that a regular sequence, and more generally, a quasi-regular sequence, is always strongly monomial (use Exercise 4.3.15). This proves in particular the claim in Exercise 9.5.13 for any regular sequence. Modify the argument in the proof of Theorem 9.4.9 to deduce that a system of parameters in a K-affine local ring, or in a Noetherian local ring of prime characteristic, is strongly monomial.

Additional exercises.

Ex 9.5.15

Prove Proposition 9.3.1.

Ex 9.5.16

Show that if A is a K-affine ring and $I \subseteq A$ an ideal generated by at most n elements, then $\overline{I^{n+l-1}} \subseteq \operatorname{ultra-cl}\left(I^{l}\right)$ for all l.

Ex 9.5.17
Show that if R is a K-affine local domain and \mathfrak{p} a prime ideal in R, then

$$
B\left(R_{\mathfrak{p}}\right) \cong B(R) \otimes{ }_{U(R)} U\left(R_{\mathfrak{p}}\right) .
$$

Use this to prove that if $I \subseteq R$ and \mathfrak{p} a minimal prime of I, then $B\left(I R_{\mathfrak{p}}\right)=B(I) R_{\mathfrak{p}}$. I do not know whether B-closure commutes in general with localization.

Ex 9.5.18

Prove the complete case in Proposition 9.4.5 using the Cohen structure theorems of Chapter 6.

Ex 9.5.19
Our goal is to give an alternative description of $B(A)$ for A a K-affine local domain, showing that its construction is canonical. Let \mathbb{N}_{\natural} be the ultrapower of the set of natural numbers, and let t be an indeterminate. For an element $f \in U(A[t])$, define its ultra-degree $\alpha \in \mathbb{N}_{b}$ (with respect to t) to be the ultraproduct of the t-degrees α_{p} of the f_{p}, where f_{p} is an approximation of f. Call an element $f \in U(A[t])$ ultramonic if there exists $\alpha \in \mathbb{N}_{\natural}$ such that $f-t^{\alpha}$ has ultra-degree strictly less than α (see page 10 for the ultra-exponent notation). By a root of $g \in U(A[t])$ in a Lefschetz field L containing K we mean an element $a \in L$ such that $g \in(t-a) U\left(A_{L}[t]\right)$, where $A_{L}:=A \otimes_{K} L$ and its ultra-hull is taken in the category \mathfrak{C}_{L}.
Show that there exists an algebraically closed Lefschetz field L containing K such that $B(A)$ is isomorphic to the ring of all $a \in L$ that are a root of some ultra-monic polynomial in $U(A[t])$.

Ex 9.5.20
Part of the descent theory of Hochster and Huneke for defining their HH-tight closure in characteristic zero (see §8.6), is the following special case: given a complete Noetherian local ring R containing a field K, a system of parameters \mathbf{x} in R, and a finite subset $\Sigma \subseteq R$, we can find a K-affine local subring $S \subseteq R$ containing \mathbf{x} and Σ, such that \mathbf{x} is part of a system of parameters of S (see for instance [26, App. 1, Theorem 5.1]; this is also explained in more detail in Exercise 10.6.3 below). Use this to deduce the Monomial Conjecture (and even the stronger version discussed in Exercise 9.5.14) for any Noetherian local ring R of equal characteristic zero as follows. Assume that we have a counterexample to (9.8) for some k. Argue, using Theorem 6.4.7, that we may assume that R is complete with an algebraically closed Lefschetz residue field. Use the previous property to obtain a counterexample inside a K-affine local ring, and then finish with Theorem 9.4.9. A more direct proof can be given using the construction from $\S 10.4$ below.

Chapter 10
 Tight closure in characteristic zero. Local case

The goal of this chapter is to extend the tight closure theory from the previous chapter to include all Noetherian rings containing a field. However, the theory becomes more involved, especially if one wants to maintain full functoriality. We opt in these notes to forego this cumbersome route (directing the interested reader to the joint paper [4] with Ashenbrenner), and only develop the theory minimally as to still obtain the desired applications. In particular, we will only focus on the local case.

From our axiomatic point of view, we need to define a difference hull on the category of Noetherian local rings containing \mathbb{Q}. The main obstacle is how to define an ultra-hull-like object, on which we then have automatically an action of the ultra-Frobenius. By Cohen's structure theorems, the problem can be reduced to constructing a difference hull for the power series ring $R:=K[[\xi]]$ in a finite number of indeterminates ξ over an algebraically closed Lefschetz field K. A candidate presents itself naturally: let $U(R)$ be the ultraproduct of the $K_{p}[[\xi]]$, where the K_{p} are algebraically closed fields of characteristic p whose ultraproduct is K. However, unlike in the polynomial case, there is no obvious homomorphism from R to $U(R)$, and in fact, the very existence of such a homomorphism implies already some form of Artin Approximation. It turns out, however, that we can embed R in an ultrapower of $U(R)$, and this is all we need, since the latter is still a Lefschetz ring. So we start with a discussion of this construction.

10.1 Artin Approximation

Constructing algebra homomorphisms. In this section, we study the following problem: Given two A-algebras S and T, when is there an A-algebra homomorphism $S \rightarrow T$? We will only provide a solution to the weaker version in which we are allowed to replace T by one of its ultrapowers. Since we want to apply this problem when T is equal to $U(R)$, we will merely have replaced one type of ultraproduct with another.

Theorem 10.1.1. For a Noetherian ring A, and A-algebras S and T, the following are equivalent:

1. every system of polynomial equations with coefficients from A which is solvable in S, is solvable in T;
2. for each finitely generated A-subalgebra C of S, there exists an A-algebra homomorphism $\varphi_{C}: C \rightarrow T$;
3. there exists an A-algebra homomorphism $\eta: S \rightarrow T_{\natural}$, where T_{\natural} is some ultrapower of T.

Proof. Suppose that (1) holds, and let $C \subseteq S$ be an A-affine subalgebra. Hence C is isomorphic to $A[\xi] / I$ with ξ a finite tuple of indeterminates and I some ideal in $A[\xi]$. Let \mathbf{x} be the image of ξ in S, so that \mathbf{x} is a solution of the system of equations $f_{1}=\cdots=f_{s}=0$, where $I=\left(f_{1}, \ldots, f_{s}\right) A[\xi]$. By assumption, there exists therefore a solution \mathbf{y} of this system of equations in T. Hence the A-algebra homomorphism $A[\xi] \rightarrow T$ given by sending ξ to \mathbf{y} factors through an A-algebra homomorphism $\varphi_{C}: C \rightarrow T$, proving implication (1) \Rightarrow (2).

Assume next that (2) holds. Let W be the collection of all A-affine subalgebras of S (there is nothing to show if S itself is A-affine, so we may assume W is in particular infinite). For each finite subset $\Sigma \subseteq S$ let $\langle\Sigma\rangle$ be the subset of W consisting of all A-affine subalgebras $C \subseteq S$ containing Σ. Any finite intersection of sets of the form $\langle\Sigma\rangle$ is again of that form. Hence we can find an ultrafilter on W containing each $\langle\Sigma\rangle$, where Σ runs over all finite subsets of S. Let T_{\natural} be the ultrapower of T with respect to this ultrafilter. For each A-affine subalgebra $C \subseteq S$, let $\widetilde{\varphi}_{C}: S \rightarrow T$ be the map which coincides with φ_{C} on C and which is identically zero outside C. (This is of course no longer a homomorphism.) Define $\eta: S \rightarrow T_{\text {घ }}$ to be the restriction to S of the ultraproduct of the $\widetilde{\varphi}_{C}$. In other words,

$$
\eta(x):=\operatorname{ulim}_{C \rightarrow \infty} \widetilde{\varphi}_{C}(x)
$$

for any $x \in S$. It remains to verify that η is an A-algebra homomorphism. For $x, y \in S$, we have for each $C \in\langle\{x, y\}\rangle$ that

$$
\widetilde{\varphi}_{C}(x+y)=\varphi_{C}(x+y)=\varphi_{C}(x)+\varphi_{C}(y)=\widetilde{\varphi}_{C}(x)+\widetilde{\varphi}_{C}(y),
$$

since $\widetilde{\varphi_{C}}$ and φ_{C} agree on elements in C. Since this holds for almost all C, Łos’ Theorem yields $\eta(x+y)=\eta(x)+\eta(y)$. By a similar argument, one also shows that $\eta(x y)=\eta(x) \eta(y)$ and $\eta(a x)=a \eta(x)$ for $a \in A$, proving that η is an A-algebra homomorphism.

Finally, suppose that $\eta: S \rightarrow T_{\natural}$ is an A-algebra homomorphism, for some ultrapower $T_{\text {Ł }}$ of T. Let $f_{1}=\cdots=f_{s}=0$ be a system of polynomial equations with coefficients in A, and let \mathbf{x} be a solution in S. Since η is an A-algebra homomorphism, $\eta(\mathbf{x})$ is a solution of this system of equations in T_{y}. Hence by Łos’ Theorem, this system must have a solution in T, proving (3) \Rightarrow (1).

Artin Approximation. We already got acquainted with Artin Approximation in our discussion of HH-tight closure, or in the guise of Néron p-desingularization as
used in Proposition 9.2.2. The time has come, however, to present a more detailed discussion. Let S be a Noetherian local ring. We say that S satisfies the Artin Approximation property if any system of polynomial equations with coefficients in S which is solvable in \widehat{S} is already solvable in S (for some equivalent conditions, see Exercise 10.5.5). So immediately from Theorem 10.1.1, or rather by the embedding version of Exercise 10.5.2, we get:
10.1.2 A Noetherian local ring S has the Artin Approximation property if and only if its completion embeds in some ultrapower of S.

Not any Noetherian local ring can have the Artin Approximation property:
Proposition 10.1.3. A Noetherian local ring (S, \mathfrak{m}) with the Artin Approximation property is Henselian.

Proof. Recall that this means that S satisfies Hensel's Lemma: any simple root \bar{a} in R / \mathfrak{m} of a monic polynomial $f \in S[t]$ lifts to a root in the ring itself. By Theorem 6.2.4, we can find such a root in \widehat{S}, and therefore by Artin Approximation, we then also must have a root in S itself (see Exercise 10.5.5 for how to ensure that it is a lifting of \bar{a}).

Artin conjectured in [2] that the converse also holds if S is moreover excellent (it can be shown that any ring having the Artin Approximation property must be excellent). Although one has now arrived at a positive solution by means of very deep tools ($[35,57,58]$), the ride has been quite bumpy, with many false proofs appearing during the intermediate decades. Luckily, we only need this in the following special case due to Artin himself, admitting a fairly simple proof (which nonetheless is beyond the scope of these notes; see page 94 for the notion of Henselization).

Theorem 10.1.4 ([2, Theorem 1.10]). The Henselization $k[\xi]^{\sim}$, with k a field and ξ a finite tuple of indeterminates, admits the Artin Approximation property.

Embedding power series rings. From now on, unless stated otherwise, K denotes an arbitrary ultra-field, given as the ultraproduct of fields K_{m} (for simplicity we assume $m \in \mathbb{N}$). We fix a tuple of indeterminates $\xi:=\left(\xi_{1}, \ldots, \xi_{n}\right)$, define $A:=K[\xi]$ and $R:=K[[\xi]]$, and let $\mathfrak{m}:=\left(\xi_{1}, \ldots, \xi_{n}\right) \mathbb{Z}[\xi]$. Similarly, for each m, we let $A_{m}:=K_{m}[\xi]$ and $R_{m}:=K_{m}[[\xi]]$, and in accordance with our notation from §7.1, we denote their respective ultraproducts by $U(A)$ and $U(R)$. By Łos' Theorem, we get a homomorphism $U(A) \rightarrow U(R)$ so that $U(R)$ is in particular an A-algebra, but unlike the affine case, it is no longer clear how to make $U(R)$ into an R-algebra. Note that $U(R)$ is only quasi-complete (see the proof of Theorem 11.1.4), so that limits are not unique. In particular, although the truncations $f_{n} \in A$ of a power series $f \in R$ form a Cauchy sequence in $U(R)$, there is no obvious choice for their limit.

Theorem 10.1.5. There exists an ultrapower $L(R)$ of $U(R)$ and a faithfully flat A algebra homomorphism $\eta_{R}: R \rightarrow L(R)$.

Proof. We start with proving the existence of an A-algebra homomorphism η_{R} from R to some ultrapower of $U(R)$. To this end, we need to show in view of Theorem 10.1.1 that any polynomial system of equations (\mathscr{L}) over A which is solvable in R, is also solvable in $U(R)$. By Theorem 10.1.4, the system has a solution \mathbf{y} in A^{\sim}. Since the complete local rings R_{m} are Henselian by Theorem 6.2.4, so is $U(R)$ by Łos’ Theorem. By the universal property of Henselization, the canonical homomorphism $A \rightarrow U(R)$ extends to a (unique) A-algebra homomorphism $A^{\sim} \rightarrow U(R)$. Hence the image in $U(R)$ of \mathbf{y} is a solution of (\mathscr{L}) in $U(R)$, as we wanted to show.

Let $L(R)$ be the ultrapower of $U(R)$ given by Theorem 10.1.1 with corresponding A-algebra homomorphism $\eta: R \rightarrow L(R)$. Since $\eta\left(\xi_{i}\right)=\xi_{i}$, for all i, the maximal ideal of $L(R)$ is generated by the ξ, and so η is local. By the Cohen-Macaulay criterion for flatness (Theorem 5.6.9), it suffices to show that $L(R)$ is a balanced big Cohen-Macaulay algebra. Since ξ is an R_{m}-regular sequence, so is its ultraproduct $\eta(\xi)=\xi$ in $L(R)$. This proves that $L(R)$ is a big Cohen-Macaulay algebra, and we can now use Proposition 5.6 .8 and Łos’ Theorem, to conclude that it is balanced, and hence that $\eta: R \rightarrow L(R)$ is faithfully flat.

Being an ultrapower of an ultraproduct, $U(R)$ itself is an ultra-ring. More precisely (see Exercise 10.5.6):
10.1.6 There exists an index set W and an \mathbb{N}-valued function assigning to each $w \in W$ an index $m(w)$, such that

$$
L(R)=\operatorname{ulim}_{w \rightarrow \infty} R_{m(w)}
$$

Strong Artin Approximation. We say that a local ring (S, \mathfrak{n}) has the strong Artin Approximation property if the following holds: given a system (\mathscr{L}) of polynomial equations $f_{1}=\cdots=f_{s}=0$ with coefficients in S, if (\mathscr{L}) has an approximate solution in S modulo \mathfrak{n}^{m} for all m, then (\mathscr{L}) has a (true) solution in S. Here by an approximate solution of (\mathscr{L}) modulo an ideal $\mathfrak{a} \subseteq S$, we mean a tuple \mathbf{x} in S such that the congruences $f_{1}(\mathbf{x}) \equiv \cdots \equiv f_{s}(\mathbf{x}) \equiv 0 \bmod \mathfrak{a}$ hold, that is to say, a solution of (\mathscr{L}) in S / \mathfrak{a}.

We start with the following observation regarding the connection between R and its Lefschetz hull $L(R)$ (this will be explored in more detail in $\S 11.1$ where we will call the separated quotient the cataproduct of the R_{m}).

Proposition 10.1.7. The separated quotient $U(R) / \Im_{U(R)}$ of $U(R)$ is isomorphic to R.

Proof. We start by defining a homomorphism $U(R) \rightarrow R$ as follows. Given $f \in$ $U(R)$, choose approximations $f_{m} \in R_{m}$ and expand each as a power series

$$
f_{m}=\sum_{v \in \mathbb{N}^{n}} a_{v, m} \xi^{v}
$$

for some $a_{v, m} \in K_{m}$. Let $a_{v} \in K$ be the ultraproduct of the $a_{v, m}$ and define

$$
\tilde{f}:=\sum_{v \in \mathbb{N}^{n}} a_{\nu} \xi^{v} \in R
$$

One checks that the map $f \mapsto \tilde{f}$ is well-defined (that is to say, independent of the choice of approximation), and is a ring homomorphism. It is not hard to see that it is moreover surjective. So remains to show that its kernel equals the ideal of infinitesimals $\Im_{U(R)}$. Suppose $\tilde{f}=0$, whence all $a_{v}=0$. For fixed d, almost all $a_{v, m}=0$ whenever $|v|<d$. Hence $f_{m} \in \mathfrak{m}^{d} R_{m}$ for almost all m, and therefore $f \in \mathfrak{m}^{d} U(R)$ by Łos' Theorem. Since this holds for all d, we see that $f \in \mathfrak{I}_{U(R)}$. Conversely, any infinitesimal is easily seen to lie in the kernel by simply reversing this argument.

In [7], a paper the methods of which are germane in the development of the present theory, the following ultraproduct argument was used to derive a strong Artin Approximation result.

Theorem 10.1.8. The ring $R:=K[[\xi]]$, for K an arbitrary algebraically closed ultra-field and ξ a finite tuple of indeterminates, has the strong Artin Approximation.

Proof. Let (\mathscr{L}) be a system of equations over R, and for each m, let \mathbf{x}_{m} be an approximate solution of (\mathscr{L}) modulo $\mathfrak{m}^{m} R$. Let R_{\natural} be the ultrapower of R, and let \mathbf{x} be the ultraproduct of the \mathbf{x}_{m}. By Łos' Theorem, \mathbf{x} is an approximate solution of (\mathscr{L}) modulo any $\mathfrak{m}^{m} R_{\natural}$, whence modulo $\mathfrak{I}_{R_{\natural}}$, the ideal of infinitesimals of R_{\natural} (see Definition 1.4.10). By Proposition 10.1.7 (or rather by a variant admitting a similar argument), the separated quotient $R_{\natural} / \Im_{R_{\natural}}$ is isomorphic to $K_{\natural}[[\xi]]$, where K_{\natural} is the ultrapower of K. The image of \mathbf{x} in $K_{\square}[[\xi]]$ is therefore a solution of the system ($\mathscr{L})$. Let $k \subseteq K$ be a countable algebraically closed subfield such that (\mathscr{L}) is already defined over k, and let $L \subseteq K_{\natural}$ be the algebraic closure of the field generated over K by all the coefficients of the entries in the image of \mathbf{x} in $K_{\mathfrak{\natural}}[[\xi]]$. Since L has the same cardinality as K, they are isomorphic as fields by Theorem 1.4.5, and in fact, by a simple modification of its proof, these fields are isomorphic over their common countable subfield k. In particular, the image of \mathbf{x} under the induced $k[[\xi]]$-algebra isomorphism of $L[[\xi]]$ with $K[[\xi]]$, gives the desired solution of (\mathscr{L}) in $R=K[[\xi]]$.

Any version in which the same conclusion as in the strong Artin Approximation property can be reached just from the solvability modulo a single power \mathfrak{n}^{N} of the maximal ideal \mathfrak{n}, where N only depends on (some numerical invariants of) the system of equations, is called the uniform strong Artin Approximation property. In [7], the uniform strong Artin Approximation for certain Henselizations was derived from the Artin Approximation property of those rings via ultraproducts. To get a uniform version in more general situations, additional restrictions have to be imposed on the equations (see [2, Theorem 6.1] or [7, Theorem 3.2]) and substantially more work is required $[12,13]$. We will here present a version which requires the equations to have polynomial coefficients as well.

Theorem 10.1.9 (Uniform strong Artin Approximation). There exists a function $N: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. Let k be a field, put $A:=k[\xi]$ with ξ an
n-tuple of indeterminates, and let \mathfrak{m} be the ideal generated by these indeterminates. Let (\mathscr{L}) be a polynomial system of equations with coefficients from A, in the n unknownst, such that each polynomial in (\mathscr{L}) has total degree (with respect to both ξ and t) at most d. If ($\mathscr{L})$ admits an approximate solution in A modulo $\mathfrak{m}^{N(n, d)} A$, then it admits a true solution in $k[[\xi]]$.

Proof. Towards a contradiction, assume such a bound does not exist for the pair (d, n), so that for each $m \in \mathbb{N}$ we can find a counterexample consisting of a field K_{m}, and of polynomials $f_{i m}$ for $i=1, \ldots, s$ over this field of total degree at most d in the indeterminates ξ and t, such that viewed as a system $\left(\mathscr{L}_{m}\right)$ of equations in the unknowns t, it has an approximate solution \mathbf{x}_{m} in $A_{m}:=K_{m}[\xi]$ modulo $\mathfrak{m}^{m} A_{m}$ but no actual solution in $R_{m}:=K_{m}[[\xi]]$. Note that by Lemma 7.4.2 we may assume that the number of equations s is independent from m. Let $K, U(A)$ and $U(R)$ be the ultraproduct of the K_{m}, A_{m} and R_{m} respectively, and let f_{i} and \mathbf{x} be the ultraproduct of the $f_{i m}$ and \mathbf{x}_{m} respectively. By 7.1.2, the f_{i} are polynomials over K, and by Łos’ Theorem, $f_{i}(\mathbf{x}) \equiv 0 \bmod \mathfrak{I}_{U(R)}$. By Proposition 10.1.7, we have an epimorphism $U(R) \rightarrow R$. In particular, the image of \mathbf{x} in R is a solution of the system (\mathscr{L}) given by $f_{1}=\cdots=f_{s}=0$.

Since we have an A-algebra homomorphism $R \rightarrow L(R)$ by Theorem 10.1.5, the image of \mathbf{x} in $L(R)$ remains a solution of the system (\mathscr{L}), and hence by Łos’ Theorem, we can find for almost each w, a solution of $\left(\mathscr{L}_{m(w)}\right)$ in $R_{m(w)}$, contradicting our assumption on the systems $\left(\mathscr{L}_{m}\right)$.

Note that the above proof only uses the existence of a homomorphism from R to some ultrapower of $U(R)$, showing that mere existence is already a highly nontrivial result, and hence it should not come as a surprise that we needed at least some form of Artin Approximation to prove the latter. Of course, by combining this with Theorem 10.1.4, we may even conclude that (\mathscr{L}) has a solution in A^{\sim}, thus recovering the original result [2, Theorem 6.1] (see also [7, Theorem 3.2]). If instead we use the filtered version of Theorem 10.1.5, to be discussed briefly after Proposition 10.3.2 below, we get filtered versions of this uniform strong Artin Approximation property, as explained in [4] (for a special case, see Exercise 10.5.10).

We conclude with the non-linear analogue of Theorem 7.4.3 (or rather of the version given in Exercise 7.5.5). We cannot simply expect the same conclusion as in the linear case to hold: there is not bound on the degree of polynomial solutions in terms of the degrees of the system of equations (a counterexample is discussed in [43, Theorem 9.1]). However, we can recover bounds when we allow for power series solutions. Of course degree makes no sense in this context, and so we define the following substitute. By Project 6.6, a power series y lies in the Henselization A^{\sim} if there exists an N-tuple \mathbf{y} in R with first coordinate equal to y, and a Hensel system (\mathscr{H}), consisting of N polynomials $f_{1}, \ldots, f_{N} \in A[t]$ in the N unknowns t such that the Jacobian matrix $\operatorname{Jac}(\mathscr{H})$ evaluated at \mathbf{x} is invertible in R. We say that y has etale complexity as most d, if we can find such a Hensel system of size $N \leq d$ with all f_{i} of total degree at most d (in ξ and t).

Theorem 10.1.10. There exists a function $N: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. Let k be a field and put $A:=k[\xi]$ with ξ an n-tuple of indeterminates. Let (LL)
be a system of polynomial equations in $A[t]$ in the n unknowns t, such that each polynomial in (\mathscr{L}) has total degree (with respect to ξ and t) at most d. If (\mathscr{L}) is solvable in $k[[\xi]]$, then it has a solution in A^{\sim} of etale complexity at most $N(d, n)$.

Proof. Suppose no such bound on the etale complexity exists for the pair (d, n), yielding for each m a counterexample consisting of a field K_{m}, and a system of polynomial equations (\mathscr{L}_{m}) over K_{m} of total degree at most d with a solution \mathbf{y}_{m} in the power series ring R_{m}, such that, however, any solution in A_{m}^{\sim} has etale complexity at least m (notation as before). Let (\mathscr{L}) be the ultraproduct of the $\left(\mathscr{L}_{m}\right)$, a system of polynomial equations over K by 7.1.2 (and an application of Lemma 7.4.2), and let \mathbf{y} be the ultraproduct of the \mathbf{y}_{m}, a solution of (\mathscr{L}) in $U(R)$ by Łos' Theorem. By Proposition 10.1.7, under the canonical epimorphism $U(R) \rightarrow R$, we get a solution of (\mathscr{L}) in R, whence in A^{\sim} by Theorem 10.1.4. Let (\mathscr{H}) be a Hensel system for this solution \mathbf{x} viewed as a tuple in A^{\sim} (note that one can always combine Hensel systems for each entry of a tuple to a Hensel system for the whole tuple), and let d be its total degree. Since the ultraproduct H_{\natural} of the A_{m}^{\sim} is a Henselian local ring containing A, the universal property of Henselizations yields an A-algebra homomorphism $A^{\sim} \rightarrow$ H_{\natural}. Viewing therefore \mathbf{x} as a solution of (\mathscr{L}) in H_{\natural}, we can find approximations \mathbf{x}_{m} in A_{m}^{\sim} which are solutions of $\left(\mathscr{L}_{m}\right)$ for almost all m. If we let $\left(\mathscr{H}_{m}\right)$ be an approximation of (\mathscr{H}), then by Łos' Theorem, for almost all m, it is a Hensel system for \mathbf{x}_{m} of degree at most d, thus contradicting our assumption.

10.2 Tight closure

For the remainder of this chapter, we specify the previous theory to the case that K is an algebraically closed Lefschetz field, given as the ultraproduct of the algebraically closed fields K_{p} of characteristic p.
Lefschetz hulls. In particular, $L(R)$ is a Lefschetz ring, given as the ultraproduct of the power series rings $R_{p(w)}:=K_{p(w)}[[\xi]]$, where $p(w)$ is equal to the underlying characteristic. The ultraproduct \mathbf{F}_{\natural} of the $\mathbf{F}_{p(w)}$ acts on $L(R)$, making it a difference ring. This immediately extends to homomorphic images:

Corollary 10.2.1. The assignment $R / I \mapsto L(R / I):=L(R) / I L(R)$ constitutes a difference hull on the category of all homomorphic images of R.

Note that any complete Noetherian local ring with residue field K and embedding dimension at most n is a homomorphic image of R by Theorem 6.4.2. However, a local homomorphism between two such rings is not necessarily an epimorphism, so that the previous statement is much weaker than obtaining a difference hull on the category of complete Noetherian local ring with residue field K. We will address this issue further in $\S 10.3$ below.

We can easily extend the previous construction to include any Noetherian local ring S of equal characteristic zero. Our definition though will depend on some choices. We start by taking K sufficiently large so that it contains the residue field
k of S as a subfield. Let S_{K}^{\wedge} be the complete scalar extension of S along K as given by Theorem 6.4.7. By Cohen's Theorem (Theorem 6.4.2), we may write S_{K}^{\wedge} as R / \mathfrak{a} for some ideal $\mathfrak{a} \subseteq R$ (assuming that the number n of indeterminates ξ is at least the embedding dimension of S). We now define $L(S):=L\left(S_{K}^{\widehat{ }}\right)=L(R) / \mathfrak{a} L(R)$. Since $S \rightarrow S_{K}^{\sim}$ is faithfully flat by Theorem 6.4.7, this assignment is a difference hull on the category of all homomorphic images of S by Corollary 10.2.1 and Exercise 9.5.3, called a Lefschetz hull of S (for another type of Lefschetz hull, see page 163 below).

Tight closure. The tight closure of an ideal $I \subseteq S$ is by definition the difference closure of I with respect to a (choice of) Lefschetz hull, and is again denoted $\mathrm{cl}_{S}(I)$ or simply $\operatorname{cl}(I)$ (although technically speaking, we should also include the Lefschetz hull in the notation). In other words, $z \in \operatorname{cl}(I)$ if and only if there exists a multiplier $c \in S$ such that

$$
\begin{equation*}
c \mathbf{F}_{\mathfrak{\natural}}^{e}(z) \in \mathbf{F}_{\natural}^{e}(I) L(S) \tag{10.1}
\end{equation*}
$$

for all $e \gg 0$ (again we suppress the embedding $\eta_{S}: S \rightarrow L(S)$ in our notation).
By our axiomatic treatment of difference closure, we therefore immediately obtain the five key properties of Theorem 9.2.3 for this category. However, this is a severely limited category, and the only two properties that do not rely on any functoriality with respect to general homomorphisms are:
10.2.2 Any regular local ring of equal characteristic zero is F-regular, and any complete local domain S (or more generally, any equidimensional homomorphic image of a Cohen-Macaulay local ring) of equal characteristic zero admits Colon Capturing: for any system of parameters $\left(x_{1}, \ldots, x_{d}\right)$ in S, we have $\left(\left(x_{1}, \ldots, x_{i}\right) S: x_{i+1}\right) \subseteq \operatorname{cl}\left(\left(x_{1}, \ldots, x_{i}\right) S\right)$ for all i.

Inspecting the proofs of Theorems 9.2.5 and 9.2.6, we see that these carry over immediately to the present case, and hence we can now state:

Theorem 10.2.3 (Briançon-Skoda-local case). Let S be a Noetherian local ring of equal characteristic zero, and let $I \subseteq S$ be an ideal generated by n elements. If I has positive height, then we have for all $l \geq 1$ an inclusion

$$
\overline{I^{n+l-1}} \subseteq \operatorname{cl}\left(I^{l}\right)
$$

In particular, if S is moreover regular, then the integral closure of I^{n+l-1} lies inside I^{l} for all $l \geq 1$.

Theorem 10.2.4. Let S be a regular local ring of equal characteristic zero, and let $\mathfrak{a} \subseteq S$ be the intersection of finitely many prime ideals of height at most h. Then for all n, we have an inclusion $\mathfrak{a}^{(h n)} \subseteq \mathfrak{a}^{n}$.

In particular, we also proved the original version of the Briançon-Skoda theorem (Theorem 8.5.1).

10.3 Functoriality

Unfortunately, the last of our three applications, the Hochster-Roberts Theorem, requires functoriality beyond the one provided by Corollary 10.2.1. In Project 10.6 we will describe an alternative strategy to prove the Hochster-Roberts theorem in the general case. Here, we discuss briefly how to extend some form of functoriality to the whole category of all Noetherian local rings of equal characteristic zero, which suffices to derive the theorem. As we will see shortly, functoriality requires a 'filtered' version of Theorem 10.1.1. To show that this version holds for power series rings over K, we require the following more sophisticated Artin Approximation result due to Rotthaus (its proof is still relatively simple in comparison with those of the general Artin Conjecture needed in the Hochster-Huneke version). As before, $R:=K[[\xi]]$, and ζ is another finite tuple of indeterminates.

Theorem 10.3.1 ([39]). The Henselization $R[\zeta]^{\sim}$ of the localization of $R[\zeta]$ at the maximal ideal generated by all the indeterminates admits the Artin Approximation property.

We extend the terminology used in §7.1: given an ultra-ring C_{\natural}, realized as the ultraproduct of rings C_{w}, then by an ultra- C_{\natural}-algebra D_{\natural}, we mean an ultraproduct D_{\natural} of C_{w}-algebras D_{w}. If almost each C_{w} is local and D_{w} is a local C_{w}-algebra (meaning that the canonical homomorphism $C_{w} \rightarrow D_{w}$ is a local homomorphism), then we call D_{\natural} an ultra-local C_{\natural}-algebra. Similarly, a morphism of ultra-(local) C_{\natural}-algebras is by definition an ultraproduct of (local) C_{w}-algebra homomorphisms.

For our purposes, we only will need the following quasi-functorial version of the Lefschetz hull.

Proposition 10.3.2. Let S be a Noetherian local ring of equal characteristic zero with a given choice of Lefschetz hull $\eta_{S}: S \rightarrow L(S)$. For every Noetherian local S algebra T whose residue field embeds in K, there exists a choice of Lefschetz hull $\eta_{T}: T \rightarrow L(T)$ on T, having in addition the structure of an ultra-local $L(S)$-algebra.

Proof. By taking an isomorphic copy of the S-algebra T, we may assume that the induced homomorphism on the residue fields is an inclusion of subfields of K. In that case, one easily checks that the complete scalar extension $S_{K}^{\curlywedge} \rightarrow T_{K}^{\widehat{ }}$ of the canonical homomorphism $S \rightarrow T$ is in fact a K-algebra homomorphism. Taking n sufficiently large, S_{K}^{\wedge} and $T_{K}^{\widehat{ }}$ are homomorphic images of R, and the K-algebra homomorphism $S_{K}^{\widehat{ }} \rightarrow T_{K}^{\widehat{ }}$ lifts to a K-algebra endomorphism φ of $R=K[[\xi]]$ by an application of Theorem 6.4.2. So without loss of generality, we may assume $S=$ $T=R$. Let $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ be the image of ξ under φ, so that in particular, each x_{i} is a power series without constant term. Note that the K-algebra local homomorphism φ is completely determined by this tuple, namely $\varphi(f)=f(\mathbf{x})$ for any $f \in R$ (see Exercise 10.5.7). Let $R^{\prime}:=R[[\zeta]]$, where ζ is another n-tuple of indeterminates, and put $R_{p}^{\prime}:=R_{p}[[\zeta]]$. Note that φ is isomorphic to the composition

$$
R \subseteq R^{\prime} \rightarrow R^{\prime} / J \cong K[[\zeta]] \cong R
$$

where the first map is just inclusion, and where J is the ideal generated by all $\xi_{i}-x_{i}$. Since Lefschetz hulls commute with homomorphic images, we reduced the problem to finding a Lefschetz hull $\eta_{R^{\prime}}: R^{\prime} \rightarrow L\left(R^{\prime}\right)$, together with a morphism $L(R) \rightarrow L\left(R^{\prime}\right)$ of ultra-local K-algebras extending the inclusion $R \subseteq R^{\prime}$.

By Theorem 10.1.5, there exists some ultrapower of $U(R)$ which is faithfully flat over R. Since we will have to further modify this ultrapower, we denote it by Z_{\natural}. Recall that it is in fact an ultraproduct of the R_{p} by 10.1.6. Let Z_{\natural}^{\prime} denote the corresponding ultraproduct of the $R_{p(w)}^{\prime}$. In particular, we get a morphism $Z_{\natural} \rightarrow Z_{\natural}^{\prime}$ of ultra-local K-algebras. Moreover, Z_{\natural}^{\prime} is an R-algebra via the composition $R \rightarrow Z_{\natural} \rightarrow Z_{\natural}^{\prime}$, whence also an $R[\zeta]$-algebra, since in Z^{\prime}, the indeterminates ζ remain algebraically independent over R. We will obtain $L\left(R^{\prime}\right)$ as a (further) ultrapower of $Z^{\prime}{ }_{\natural}$ from an application of Theorem 10.1.1, which at the same time then also provides the desired R-algebra homomorphism $R^{\prime} \rightarrow L\left(R^{\prime}\right)$. So, given a polynomial system of equations (\mathscr{L}) with coefficients in R having a solution in R^{\prime}, we need to find a solution in $Z^{\prime}{ }_{\mathrm{t}}$. By Theorem 10.3.1, we can find a solution in $R[\zeta]^{\sim}$, since R^{\prime} is the completion of the latter ring. By the universal property of Henselizations, we get a local $R[\zeta]$-algebra homomorphism $R[\zeta]^{\sim} \rightarrow Z_{\natural}^{\prime}$, and hence via this homomorphism, we get a solution for (\mathscr{L}) in $Z^{\prime}{ }_{\mathrm{t}}$, as we wanted to show. Let $R^{\prime} \rightarrow L\left(R^{\prime}\right)$ be the homomorphism given by Theorem 10.1.1, which is then faithfully flat by (the proof of) Theorem 10.1.5. Let $L(R)$ be the corresponding ultrapower of Z_{\natural}, so that $R \rightarrow L(R)$ too is faithfully flat. Moreover, the homomorphism $Z_{\natural} \rightarrow Z_{\natural}^{\prime}$ then yields, after taking ultrapowers, a morphism of ultra-local K-algebras $L(R) \rightarrow L\left(R^{\prime}\right)$. We leave it to the reader to verify that it extends the inclusion $R \subseteq R^{\prime}$, and admits all the desired properties.

In [4], a much stronger form of functoriality is obtained, by making the ad hoc argument in the previous proof more canonical. In particular, we construct $\eta_{R}: R \rightarrow L(R)$ in such way that it maps each of the subrings $K\left[\left[\xi_{1}, \ldots, \xi_{i}\right]\right.$ to the corresponding subring of $L(R)$ of all elements depending only on the indeterminates ξ_{1}, \ldots, ξ_{i}, that is to say, the ultraproduct of the $K_{p(w)}\left[\left[\xi_{1}, \ldots, \xi_{i}\right]\right]$ (our treatment of the inclusion $R \subseteq R^{\prime}$ in the previous proof is a special instance of this). However, this is not a trivial matter, and caution has to be exercised as to how much we can preserve. For instance, in [4, §4.33], we show that 'unnested' subrings cannot be preserved, that is to say, there cannot exist an η_{R} which maps any subring $K\left[\left[\xi_{i_{1}}, \ldots, \xi_{i_{s}}\right]\right]$ into the corresponding subring of all elements depending only on the indeterminates $\xi_{i_{1}}, \ldots, \xi_{i_{s}}$ (the concrete counterexample requires $n=6$, and it would be of interest to get already a counterexample for $n=2$).

Proposition 10.3.2 is sufficiently strong to get the following form of weak persistence: if $S \rightarrow T$ is a local homomorphism of Noetherian local domains of equal characteristic zero, then we can define tight closure operations $\mathrm{cl}_{S}(\cdot)$ and $\mathrm{cl}_{T}(\cdot)$ on S and T respectively, such that $\operatorname{cl}_{S}(I) \subseteq \operatorname{cl}_{T}(I T)$ for all $I \subseteq S$ (see the argument in the next proof).

Theorem 10.3.3 (Hochster-Roberts). If $S \rightarrow T$ is a cyclically pure homomorphism of Noetherian local rings of equal characteristic, and if T is regular, then S is CohenMacaulay.

Proof. We already dealt with the positive characteristic case, so assume the characteristic is zero. By Exercise 10.5.12, we may assume S and T are complete, and by Proposition 10.3.2, we may assume that $L(T)$ is an ultra- $L(S)$-algebra (by taking K sufficiently large). Let $\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters in S, and assume $z x_{i+1} \in I:=\left(x_{1}, \ldots, x_{i}\right) S$. By Colon Capturing (10.2.2), we get $z \in \operatorname{cl}(I)$, so that (10.1) holds for all $e \gg 0$. However, we may now view these relations also in $L(T)$ via the S-algebra homomorphism $L(S) \rightarrow L(T)$, showing that $z \in \mathrm{cl}(I T)$. By 10.2.2 therefore, $z \in I T$ whence by cyclic purity, $z \in I$, as we wanted to show.

We can now also tie up another loose end, the last of our five key properties, namely the connection with integral closure (recall that 9.2.3(5) is not really an issue in characteristic zero by Exercise 9.5.9):

Theorem 10.3.4. The tight closure of an ideal lies inside its integral closure.
Proof. Let $I \subseteq S$ be an ideal in a Noetherian local ring (S, \mathfrak{n}) of equal characteristic zero, and let $z \in \operatorname{cl}(I)$. By Exercise 10.5.13, we may reduce to the case that I is \mathfrak{n} primary. In view of 8.4.1(4), we need to show that $z \in I V$, for every homomorphism $S \rightarrow V$ into a discrete valuation ring V with kernel a minimal prime ideal of S. There is nothing to show if $\mathfrak{n} V=V$ whence $I V=V$, so that we may assume $S \rightarrow V$ is local. Moreover, by a similar cardinality argument as in Proposition 9.2.2, we may replace V by a sub-discrete valuation ring whose residue field embeds in K. By Proposition 10.3.2, there exists a Lefschetz hull $L(V)$ on V which is an ultra-local $L(S)$-algebra. In particular, z lies in the tight closure of $I V$ with respect to this choice of Lefschetz hull, and so we are done by an application of 10.2.2 to the regular ring V.

10.4 Big Cohen-Macaulay algebras

As in the affine case, we can also associate to each Noetherian local domain of equal characteristic zero a balanced big Cohen-Macaulay algebra. However, to avoid some complications caused by the fact that the completion of a domain need not be a domain, I will only discuss this in case S is a complete Noetherian local domain with residue field K (for the general case, see [4, §7]). But even in this case, the Lefschetz hull defined above does not have the desired properties: we do not know whether the approximations of S are again domains. So we discuss first a different construction of a Lefschetz hull.

Relative hulls. Fix some Noetherian local ring (S, \mathfrak{n}) with residue field k contained in K, and let $L(S)$ be a Lefschetz hull for S with approximations S_{w}. We want to construct a Lefschetz hull on the category of S-affine algebras, extending the Lefschetz hull defined on page 159 . Let us first consider the polynomial ring $B:=S[\zeta]$ in finitely many indeterminates ζ. Let $L_{S}(B)$ be defined as the ultraproduct of the $B_{w}:=S_{w}[\zeta]$, so that $L_{S}(B)$ is an ultra- $L(S)$-algebra. The homomorphism $S \rightarrow L_{S}(B)$ extends naturally to a homomorphism $B \rightarrow L_{S}(B)$, since the ζ remain algebraically
independent over $L(S)$. We call $L_{S}(B)$ the relative Lefschetz hull of B (with respect to the Lefschetz hull $S \rightarrow L(S)$). Similarly, if $C=B / I$ is an arbitrary S-affine algebra, then we define $L_{S}(C)$ as the residue ring $L_{S}(B) / I L_{S}(B)$, and we call this the relative Lefschetz hull of C (with respect to the choice of Lefschetz hull $L(S)$). By base change the homomorphism $B \rightarrow L_{S}(B)$ induces a homomorphism $C \rightarrow L_{S}(C)$. Moreover, $L_{S}(C)$ is an ultra- $L(S)$-algebra, since I is finitely generated.

It is instructive to calculate $L_{S}(B) / \mathfrak{n} L_{S}(B)=L_{S}(B / \mathfrak{n} B)=L_{S}(k[\zeta])$, where k is the residue field of S. Since $\mathfrak{n} S_{K}^{\wedge}$ is the maximal ideal in S_{K}^{\wedge}, we get $L(S) / \mathfrak{n} L(S)=$ $L(k)=L(K)$, and this field is just an ultrapower of $K=U(K)$. Hence $B_{w} / \mathfrak{n}_{w} B_{w}=$ $K_{p(w)}[\zeta]$, and we see that $L_{S}(B) / \mathfrak{n} L_{S}(B)$ is an ultrapower of $U(K[\zeta])$. Next, suppose T is a local S-affine algebra, say of the form $B_{\mathfrak{p}} / I B_{\mathfrak{p}}$, with $\mathfrak{p} \subseteq B$ a prime ideal containing I. Moreover, since we assume that $S \rightarrow T$ is local, $\mathfrak{n} B \subseteq \mathfrak{p}$. In order to define the relative Lefschetz hull $L_{S}(T)$ of T as the localization of $L_{S}(B / I B)$ with respect to $\mathfrak{p} L_{S}(B / I B)$, we need:

10.4.1 If \mathfrak{p} is a prime ideal in B containing $\mathfrak{n} B$, then $\mathfrak{p} L_{S}(B)$ is prime.

We need to show that $L_{S}(B / \mathfrak{p})$ is a domain. Since B / \mathfrak{p} is a homomorphic image of $B / \mathfrak{n} B$, it suffices to show that \mathfrak{p} extends to a prime ideal in $L_{S}(B / \mathfrak{n} B)$. By Theorem 7.3.4, the extension of \mathfrak{p} to $U(K[\zeta])$ remains prime. Since $L_{S}(B / \mathfrak{n} B)$ is an ultrapower of $U(K[\zeta])$, the extension of \mathfrak{p} to the former is again prime by Łos’ Theorem.

To prove that these are well-defined objects, that is to say, independent of the choice of presentation $C=B / I$ (or its localization), we prove (see Exercise 10.5.14) a similar universal property as for ultra-hull:
10.4.2 Any S-algebra homomorphism $C \rightarrow D_{\natural}$ with D_{\natural} an ultra- $L(S)$-algebra, extends uniquely to a morphism $L_{S}(C) \rightarrow D_{\natural}$ of ultra- $L(S)$-algebras. Similarly, any local $L(S)$-algebra homomorphism $T \rightarrow D_{\natural}$ with D_{\natural} an ultralocal $L(S)$-algebra, extends uniquely to a morphism $L_{S}(T) \rightarrow D_{\natural}$ of ultralocal $L(S)$-algebras.

Proposition 10.4.3. On the category of S-affine algebras, $L_{S}(\cdot)$ is a difference hull.
Proof. Let T be a local S-affine algebra (for the global case see Exercise 10.5.15). Clearly, the ultra-Frobenius \mathbf{F}_{\natural} acts on each $L_{S}(T)$, making the latter into a difference ring. So remains to show that the canonical map $T \rightarrow L_{S}(T)$ is faithfully flat. By Cohen's structure theorem, S_{K}^{\wedge} is a homomorphic image of $R:=K[[\xi]]$. A moment's reflection shows that $L_{S}(T)=L_{R}\left(T_{K}\right)$, so that by an application of Theorem 6.4.7, we may reduce to the case that $S=R$. By another application of Cohen's structure theorem, T is a homomorphic image of a localization of $R[\zeta]$, and hence without loss of generality, we may assume that T is moreover regular. Flatness of $T \rightarrow L_{R}(T)$ then follows from the Cohen-Macaulay criterion of flatness in the same way as in the proof of Theorem 7.2.2 (see Exercise 10.5.15).

Big Cohen-Macaulay algebras. For the remainder of this section, S is a complete Noetherian local domain with residue field K. By Theorem 6.4.6, we have a finite
extension $R \subseteq S$ (for an appropriate choice of n and $R:=K[[\xi]]$ as before). The Lefschetz hull we will use for S to construct a balanced big Cohen-Macaulay algebra is the relative hull $L_{R}(S)$ (with respect to a fixed Lefschetz hull for R). Let S_{w} be the approximations of S with respect to this choice of Lefschetz hull, that is to say, S_{w} are the complete local $K_{p(w)}$-algebras whose ultraproduct is $L_{R}(S)$. By the above discussion, $L_{R}(S)$ is a domain, whence so are almost all S_{w}. Let $B(S)$ be the ultraproduct of the S_{w}^{+}, so that $B(S)$ is in particular an ultra- $L_{R}(S)$-algebra whence an S-algebra. In Exercise 10.5.16, you are asked to prove:

Theorem 10.4.4. For each complete Noetherian local domain S with residue field K, the S-algebra $B(S)$ is a balanced big Cohen-Macaulay algebra.

Theorem 10.4.5 (Monomial Conjecture). The Monomial Conjecture holds for any Noetherian local ring S of equal characteristic, that is to say, any system of parameters is monomial.

Proof. I will only explain the equal characteristic zero case; the positive characteristic case is analogous, using instead Theorem 9.4.1. Towards a contradiction, suppose $\left(x_{1}, \ldots, x_{d}\right)$ is a counterexample, that is to say, a system of parameters which fails (9.8) for some k. After taking a complete scalar extension (which preserves the system of parameters), we may assume that S is complete with residue field K. After killing a prime ideal of maximal dimension (which again preserves the system of parameters), we then may assume moreover that S is a domain. The counterexample then also holds in $B(S)$, contradicting that $\left(x_{1}, \ldots, x_{d}\right)$ is $B(S)$-regular by Theorem 10.4.4.

As before, we can also define the B-closure of an ideal $I \subseteq S$ by the rule cl ${ }^{B}(I):=$ $I B(S) \cap S$ and prove that it satisfies the five key properties (see Exercise 9.5.12).

10.5 Exercises

Ex 10.5.1
One can make the choice of ultrapower in Theorem 10.1.1 independent from the particular choices of A-algebra homomorphisms $\varphi_{C}: C \rightarrow T$ as follows. Let W^{\prime} be the set of all Aalgebra homomorphisms $C \rightarrow T$ whose domain C is an A-affine subalgebra of S. Define an appropriate ultrafilter on this set, let T_{\natural} be the ultrapower of T with respect to this ultrafilter, and modify the argument in the proof of the theorem accordingly.

Ex 10.5.2

To obtain embeddings rather than just homomorphisms, prove that the following are equivalent for algebras S and T over a Noetherian ring A :

1. every finite system of polynomial equations and inequalities with coefficients from A which is solvable in S, is solvable in T;
2. given an A-affine subalgebra $C \subseteq S$ and finitely many non-zero elements c_{1}, \ldots, c_{n} of C there exists an A-algebra homomorphism $C \rightarrow T$ sending each c_{i} to a non-zero element of T;
3. there exists an embedding $S \rightarrow T_{\natural}$ of A-algebras into an ultrapower T_{\natural} of T.

For a model-theoretic interpretation, see Exercise 10.5.17.

${ }^{*}$ Ex 10.5.3

Use Exercise 10.5.2 to reprove an old result of Henkin ([18]) on Boolean algebras as follows. Recall that a ring B is called Boolean if $a^{2}=a$ for all $a \in B$. For any set X, the power set $\mathscr{P}(X)$ is a Boolean ring with addition given by the symmetric difference, multiplication given by intersection, and taking for 0 the empty set and for 1 the whole set. We define a partial order on a Boolean ring B by the rule $a \leq b$ if and only if $a b=a$ for $a, b \in B$. It follows that $0 \leq a \leq 1$, for all $a \in B$. An element $a \in B$ is called an atom of B if it is a minimal non-zero element of B. Complete the argument below to prove:

Theorem 10.5 .4 (Representation Theorem for Boolean rings). For each Boolean ring B, there exists an ultrapower B_{\natural} of B such that B embeds in $\mathscr{P}\left(B_{\sharp}\right)$.

It suffices to show that there exists an embedding $B \hookrightarrow T_{\natural}$, with $T:=\mathscr{P}(B)$. To this end, we verify (2) in Exercise 10.5.2 with $A=\mathbb{Z} / 2 \mathbb{Z}$. Let C be an A-affine subring of B. Since any element is idempotent, C is finite, whence Artinian. The map $\varphi_{C}: C \rightarrow T$ sending an element $a \in C$ to the collection of all atoms of C that are less than or equal to a is a ring homomorphism. Since C satisfies the descending chain condition, $\varphi_{C}(a)$ is non-empty for $a \neq 0$. In other words, φ_{C} is an injective homomorphism showing that (2) holds.

Ex 10.5.5

Let (R, \mathfrak{m}) be a Noetherian local ring. Show that given finitely many congruence relations $f_{i} \equiv 0 \bmod \mathfrak{m}^{c_{i}}$ with $f_{i} \in R[t]$ can be turned in to a system of equations, such that the congruences are solvable in \widehat{R} or R if and only if the equations are. Prove the same for a system of equations and negations of equations. Conclude that to admit Artin Approximation is equivalent with either of the following two apparently stronger conditions:

1. any system of polynomial equations and negations of equations over R which is solvable in \widehat{R} is already solvable in R;
2. given some c and a system of equations over R with a solution $\widehat{\mathbf{x}}$ in \widehat{R}, we can find a solution \mathbf{x} in R such that $\mathbf{x} \equiv \widehat{\mathbf{x}} \bmod \mathfrak{m}^{c} \widehat{R}$, that is to say, a solution in \widehat{R} can be 'approximated' arbitrarily close by solutions in R.

The last condition also explains the name of this property.

Ex 10.5.6

Prove 10.1.6. The easiest way to prove this is via the equivalent characterization of ultrarings in §1.5.

Ex 10.5.7
Show that a K-algebra endomorphism of $R:=K[[\xi]]$ is completely determined by the image of ξ. More generally, if S is a complete local K-algebra, then there is a one-one correspondence between local K-algebra homomorphisms $R \rightarrow S$, and tuples in S with entries in the maximal ideal. This is no longer true if S is only quasi-complete, and hence explains why we needed the more elaborate theory using Theorem 10.1.1.

Ex 10.5.8

Show that (R, \mathfrak{m}) has the strong Artin Approximation property if and only if the product of all R / \mathfrak{m}^{k} embeds in some ultrapower of R. Use this to then prove that R has the strong Artin Approximation property if and only if R has the Artin Approximation property and \widehat{R} has the strong Artin Approximation property.

Ex 10.5.9

Show the following more general 'approximating' version of Theorem 10.1 .9 by modifying its proof accordingly (see (2) in Exercise 10.5.5): There exists a function $N: \mathbb{N}^{3} \rightarrow \mathbb{N}$ with the following property. Let k be a field and let (\mathscr{L}) be a polynomial system of equations in the n unknowns t with coefficients in $k[\xi]$, such that the total degree (with respect to ξ and $t)$ is at most d. If (\mathscr{L}) has an approximate solution \mathbf{x} in $R:=k[[\xi]]$ modulo $\mathfrak{m}^{N(n, d, c)} R$, then there exists a solution \mathbf{y} in R such that $\mathbf{x} \equiv \mathbf{y}$ modulo $\mathfrak{m}^{c} R$.

Ex 10.5.10
Prove the following one-nested generalization of [7, Theorem 4.3] (the latter only treats the case $s=1$): There exists a function $N: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. Let k be a field and let (\mathscr{L}) be a polynomial system of equations in the n unknowns t with coefficients in $A:=k[\xi]$ with ξ an n-tuple of indeterminates, such that the total degree (with respect to ξ and t) is at most d. If (\mathscr{L}) has an approximate solution $\left(x_{1}, \ldots, x_{n}\right)$ in A modulo $\mathfrak{m}^{N(n, d, c)} A$ with x_{1}, \ldots, x_{l} depending only on ξ_{1}, \ldots, ξ_{s}, then there exists a solution $\left(y_{1}, \ldots, y_{n}\right)$ in $k[[\xi]]$ with y_{1}, \ldots, y_{l} depending only on ξ_{1}, \ldots, ξ_{s}. Start as always with assuming towards a contradiction that there exist counterexamples $\left(\mathscr{L}_{m}\right)$ over $A_{m}:=K_{m}[[\xi]]$ of degree at most d with an approximate solution modulo $\mathfrak{m}^{m} A_{m}$ whose first l entries belong to $A^{\prime}{ }_{m}:=K_{m}\left[\xi_{1}, \ldots, \xi_{s}\right]$, but having no solution in $R_{m}:=K_{m}[[\xi]]$ whose first l entries belong to $R_{m}^{\prime}:=K_{m}\left[\left[\xi_{1}, \ldots, \xi_{s}\right]\right]$. Use Proposition 10.3.2 to get a commutative diagram of corresponding Lefschetz hulls

where $R:=K[[\xi]]$ and $R^{\prime}=K\left[\left[\xi_{1}, \ldots, \xi_{s}\right]\right]$, and where K is the ultraproduct of the K_{m}. Use the existence of these embeddings in the same way as in the proof of Theorem 10.1.9 to derive the desired contradiction.

Ex 10.5.11

Give a proof of Corollary 10.2.1.

Ex 10.5.12
Show that the completion of a cyclically pure homomorphism is again cyclically pure.

*Ex 10.5.13

Show that the integral closure \bar{I} of an ideal I in a local ring (S, \mathfrak{m}) is equal to the intersection of the integral closures of the \mathfrak{m}-primary ideals $I+\mathfrak{m}^{n}$. Show how this allows us to reduce to the \mathfrak{m}-primary case in the proof of Theorem 10.3.4.

Ex 10.5.14

Show the universal property 10.4.2 of the relative hull.

Ex 10.5.15

Fill in the details of the proof of Proposition 10.4.3.

Ex 10.5.16

To prove Theorem 10.4.4, you first need to show that S has the same dimension as almost all of its approximations S_{w}, by an argument similar to the one in Corollary 7.3.3. In particular, almost each approximation of a system of parameters is again a system of parameters. Now apply Theorem 9.4.1.

Additional exercises

Ex 10.5.17

Show that condition (1) in Theorem 10.1 .1 is equivalent with the model-theoretic assertion that T is a model of the positive existential theory of S in the language $\mathscr{L}(A)$ of rings with constant symbols for the elements in A. Similarly, condition (1) in Exercise 10.5.2 is equivalent with T being a model of the (full) existential $\mathscr{L}(A)$ theory of S.

Ex 10.5.18

We can even relax the hypothesis of Theorem 10.1.10 so that the system of equations (\mathscr{L}) has only to be of the form $f_{1}=\cdots=f_{s}=0$ with each $f_{i} \in A^{\sim}[t]$ of t-degree at most d, and each coefficient of f_{i} of etale complexity at most d. Namely, given such a more general system, replace each coefficient with a new indeterminate, and add a new Hensel system for that coefficient (with first variable corresponding to the new indeterminate). For this you also will need the uniqueness of a Hensel solution, proved in 6.6.1.

Ex 10.5.19

Generalize the construction of the relative hull on page 163 as follows. Let S_{\natural} be the ultraproduct of rings S_{w}, let $B_{w}:=S_{w}[\zeta]$, and define the relative S_{\natural}-hull of $B:=S_{\natural}[\zeta]$ as the the ultraproduct of the B_{w}, denoted $L_{S_{q}}(B)$. Argue that the relative hull $L_{S}(B)$ as defined page 163 is just the relative S_{\natural}-hull of B.
Show that $L_{S_{\natural}}(B)$ satisfies the following universal property: any S_{\natural}-algebra homomorphism $B \rightarrow D_{\natural}$ into an ultra- S_{\natural}-algebra D_{\natural}, extends uniquely to a homomorphism $L_{S_{\natural}}(B) \rightarrow D_{\natural}$ of ultra- S_{\natural}-algebras. Define similarly the relative S_{\natural}-hull of an S_{\natural}-affine
algebra C (recall that this means by definition-see page 19—that $C \cong B / I$ with I finitely generated), and prove again a universal property. Do the same in case S_{\natural} is local and T is a local S_{\natural}-affine algebra.

10.6 Project: proof of Hochster-Roberts Theorem

Our goal is to give a different proof of Theorem 10.3.3. By an argument similar to that in the text, we may reduce the problem to complete local domains. Hence let S be an arbitrary complete Noetherian local domain containing the algebraically closed Lefschetz field K. Define a closure operation on S as follows: an element $z \in S$ lies in the inductive tight closure $\mathrm{cl}^{\text {ind }}(\mathfrak{a})$ of an ideal $\mathfrak{a} \subseteq S$, if there exists a local K-affine subalgebra $C \subseteq S$ containing z, and an ideal $I \subseteq C$, such that $\mathfrak{a}=I S$ and $z \in \operatorname{cl}_{C}(I)$ (where we take tight closure $\operatorname{cl}_{C}(\cdot)$ in C in the sense of Chapter 9). Show that weak persistence holds:
10.6.1 If $S \rightarrow T$ is an injective local K-algebra homomorphism of complete Noetherian local domains, then $\operatorname{cl}^{\text {ind }}(\mathfrak{a}) \subseteq \operatorname{cl}^{\text {ind }}(\mathfrak{a} T)$ for all $\mathfrak{a} \subseteq S$.
Call S inductively F-regular, if every ideal in S is equal to its own inductive tight closure. To prove the Hochster-Roberts Theorem, we again split the proof into two parts. The easy part is:
10.6.2 If $S \rightarrow T$ is cyclically pure, and T is inductively F-regular, then so is S.

To prove the analogue of 10.2 .2, we need to understand how arbitrary K-algebras are approximated by K-affine algebras. You may take the following theorem for granted, but see below for how to prove it.
10.6.3 Let S be a complete Noetherian local domain containing K, and let C be a local K-affine subalgebra of S. Then the embedding $C \subseteq S$ factors through a local K-affine domain D, satisfying the following additional conditions

1. if S is regular, then we may take D to be regular too;
2. if $x_{1}, \ldots, x_{d} \in C$ are a system of parameters in S, then D can be chosen in such way that $\left(x_{1}, \ldots, x_{d}\right)$ is part of a system of parameters in D.
The dimension of D will in general be larger than d, the dimension of S. Note also that we are not requiring that the canonical map $D \rightarrow S$ has to be injective. After reduction to the case $S=R:=K[[\xi]]$, assertion (1) follows from the ArtinRotthaus theorem ([3])—a stronger form of p-desingularization, of which also Theorem 10.1.4 is an immediate consequence. To prove (2), apply Theorem 6.4.6 to S to get a finite extension $R \subseteq S$ sending ξ_{i} to x_{i}, then apply [3] to obtain a finite extension $D^{\prime} \subseteq D$ of K-affine algebras with D^{\prime} flat over A (and regular), and a factorization $C \rightarrow D \rightarrow S$. Using 10.6.3, derive the analogues of 10.2.2:
10.6.4 Any regular local ring containing K is inductively F-regular.
10.6.5 If S is a complete Noetherian local domain containing K, then Colon Capturing holds in S : if $\left(x_{1}, \ldots, x_{d}\right)$ is a system of parameters, then $\left(I_{k}\right.$: $\left.x_{k+1}\right) \subseteq \operatorname{cl}^{\text {ind }}\left(I_{k}\right)$ for every k, where $I_{k}:=\left(x_{1}, \ldots, x_{k}\right) S$.
To conlcude, combine all these results to give an alternative proof of the HochsterRoberts theorem.

Chapter 11 Cataproducts

So far, the main obstacle to overcome when dealing with ultra-rings was the absence of the Noetherian property. To study ultra-rings, therefore, we were forced to modify several definitions from Commutative Algebra. This route is further pursued in [54]. However, there is another way to circumvent these problems: the cataproduct A_{\sharp}, the first of our chromatic products. We will mainly treat the local case, which is guaranteed to yield a Noetherian local ring. The idea is simply to take the separated quotient of the ultraproduct with respect to the maximal adic topology. The saturatedness property of ultraproducts-well-known to model-theorists-implies that the cataproduct is in fact a complete local ring. Obviously, we do no longer have the full transfer strength of Łos’ Theorem, but we shall show that many algebraic properties still persist, under some mild conditions. We conclude with some applications to uniform bounds. Whereas the various bounds in Chapter 7 were expressed in terms of polynomial degree, we will introduce a different notion of degree here, ${ }^{1}$ in terms of which we will give the bounds. Conversely, we can characterize many local properties through the existence of such bounds.

11.1 Cataproducts

Recall from 1.4.7 that the ultraproduct of local rings of bounded embedding dimension is again a local ring of finite embedding dimension. In this chapter, we will be mainly concerned with the following subclass.

Definition 11.1.1 (Ultra-Noetherian ring). We call a local ring R_{\natural} ultra-Noetherian if it is the ultraproduct of Noetherian local rings of bounded embedding dimension, that is to say, of Noetherian local rings R_{w} such that the embedding dimension of R_{w} is at most e, for some e independent of w.

[^9]The Noetherian local rings R_{w} will be called approximations of R_{\natural} (note the more liberal use of this term than in the previous chapters, which, however, should not cause any confusion). It is important to keep in mind that approximations are not uniquely determined by R_{\natural}. A good example of this phenomenon is exhibited by Corollary ?? below.

We introduced the geometric dimension of a Noetherian local ring in our study of Krull dimension; see Theorem 3.4.2. This notion carries over naturally to any local ring (S, \mathfrak{n}) of finite embedding dimension, namely, geodim (S) is the least number d of elements $x_{1}, \ldots, x_{d} \in \mathfrak{n}$ such that $S /\left(x_{1}, \ldots, x_{d}\right) S$ is Artinian, that is to say, such that $\left(x_{1}, \ldots, x_{d}\right) S$ is \mathfrak{n}-primary. Any tuple $\left(x_{1}, \ldots, x_{d}\right)$ with this property is then called a system of parameters of $R .{ }^{2}$ Any element of R which belongs to some system of parameters will be called a parameter. We immediately get:

11.1.2 The geometric dimension of a local ring is at most its embedding dimen-

 sion, whence in particular is finite for any ultra-Noetherian local ring.By Exercise 11.3.1, the geometric dimension of an ultra-Noetherian local ring is larger than or equal to the (geometric) dimension of its Noetherian approximations, and this inequality can be strict (for an example see Exercise 11.3.3). To study this phenomenon as well as further properties of ultra-Noetherian local rings, we first introduce a new kind of product:

Cataproducts. In 1.4.13 we saw that most ultra-Noetherian rings are not Noetherian (in model-theoretic terms this means that the class of Noetherian local rings of fixed embedding dimension is not first order definable; see Exercise 1.6.21). However, there is a Noetherian local ring closely associated to any ultra-Noetherian local ring. Fix an ultra-Noetherian local ring

$$
R_{\text {দ }}:=\operatorname{ulim}_{w \rightarrow \infty} R_{w},
$$

and define the cataproduct of the R_{w} as the separated quotient of R_{\natural}, that is to say,

$$
R_{\sharp}:=R_{\sharp} / \mathfrak{I}_{R_{\sharp}} .
$$

If all R_{w} are equal to a fixed Noetherian local ring (R, \mathfrak{m}), then we call R_{\sharp} the catapower of R. In this case, the natural (diagonal) embedding $R \rightarrow R_{\natural}$ induces a natural homomorphism $R \rightarrow R_{\sharp}$. Since $\mathfrak{m} R_{\sharp}$ is the maximal ideal of R_{\natural}, likewise, $\mathfrak{m} R_{\sharp}$ is the maximal ideal of R_{\sharp}. The relationship between the rings R_{w} and their cataproduct R_{\sharp} is much less strong than in the ultraproduct case, as the following example illustrates.
11.1.3 The catapower of a Noetherian local ring (R, \mathfrak{m}) is isomorphic to the cataproduct of the Artinian local rings R / \mathfrak{m}^{n}.

Indeed, if R_{\natural} and S_{\natural} denote the ultrapower of R and the ultraproduct of the R / \mathfrak{m}^{n} respectively, then we get a surjective homomorphism $R_{\natural} \rightarrow S_{\natural}$. However, any ele-

[^10]ment in the kernel of this homomorphism is an infinitesimal, so that the induced homomorphism $R_{\sharp} \rightarrow S_{\sharp}$ is an isomorphism.

Nonetheless, as before, we will still refer to the R_{w} as approximations of R_{\sharp}, and given an element $x \in R_{\sharp}$, we call any choice of elements $x_{w} \in R_{w}$ whose ultraproduct is a lifting of x to $R_{\mathrm{\natural}}$, an approximation of x.

Theorem 11.1.4. The cataproduct of Noetherian local rings of bounded embedding dimension is complete and Noetherian.

Proof. In almost all our applications, ${ }^{3}$ the ultrafilter lives on a countable index set W, but nowhere did we exclude larger cardinalities. For simplicity, however, I will assume countability, and treat the general case in a separate remark below. Hence, we may assume $W=\mathbb{N}$. Let $\left(R_{\sharp}, \mathfrak{m}\right)$ be the ultraproduct of Noetherian local rings R_{w} of embedding dimension at most e. It follows that R_{\natural} too has embedding dimension at most e. Let us first show that R_{\natural} is quasi-complete (note that it is not Hausdorff in general, because $\Im_{R_{\natural}} \neq 0$). To this end, we only need to consider by 6.2.1 a Cauchy sequence \mathbf{a} in R_{\natural} such that $\mathbf{a}(n) \equiv \mathbf{a}(n+1) \bmod \mathfrak{m}^{n} R_{\natural}$. Choose approximations $\mathbf{a}_{w}(n) \in R_{w}$ such that

$$
\mathbf{a}(n)=\operatorname{ulim}_{w \rightarrow \infty} \mathbf{a}_{w}(n)
$$

for each $n \in \mathbb{N}$. By Łos' Theorem, we have for a fixed n that

$$
\begin{equation*}
\mathbf{a}_{w}(n) \equiv \mathbf{a}_{w}(n+1) \quad \bmod \mathfrak{m}_{w}^{n} \tag{11.1}
\end{equation*}
$$

for almost all w, say, for all w in D_{n}. I claim that we can modify the $\mathbf{a}_{w}(n)$ in such way that (11.1) holds for all n and all w. More precisely, for each n there exists an approximation $\tilde{\mathbf{a}}_{w}(n)$ of $\mathbf{a}(n)$, such that

$$
\begin{equation*}
\tilde{\mathbf{a}}_{w}(n) \equiv \tilde{\mathbf{a}}_{w}(n+1) \quad \bmod \mathfrak{m}_{w}^{n} \tag{11.2}
\end{equation*}
$$

for all n and w. We will construct the $\tilde{\mathbf{a}}_{w}(n)$ recursively from the $\mathbf{a}_{w}(n)$. When $n=$ 0 , no modification is required (since by assumption $\mathfrak{m}_{w}^{0}=R_{w}$), and hence we set $\tilde{\mathbf{a}}_{w}(0):=\mathbf{a}_{w}(0)$ and $\tilde{\mathbf{a}}_{w}(1):=\mathbf{a}_{w}(1)$. So assume we have defined already the $\tilde{\mathbf{a}}_{w}(j)$ for $j \leq n$ such that (11.2) holds for all w. Now, for those w for which (11.1) fails for some $j \leq n$, that is to say, for $w \notin\left(D_{0} \cup \cdots \cup D_{n}\right)$, let $\tilde{\mathbf{a}}_{w}(n+1)$ be equal to $\tilde{\mathbf{a}}_{w}(n)$; for the remaining w, that is to say, for almost all w, we make no changes: $\tilde{\mathbf{a}}_{w}(n+1):=\mathbf{a}_{w}(n+1)$. It is now easily seen that (11.2) holds for all w, and $\tilde{\mathbf{a}}_{w}(n)$ is another approximation of $\mathbf{a}(n)$, for all n, thus establishing our claim.

So we may assume (11.1) holds for all n and w. Define $b:=\operatorname{ulim} \mathbf{a}_{w}(w)$. Since $\mathbf{a}_{w}(w) \equiv \mathbf{a}_{w}(n) \bmod \mathfrak{m}_{w}^{n}$ for all $w \geq n$, Łos' Theorem yields $b \equiv \mathbf{a}(n) \bmod \mathfrak{m}^{n} R_{\natural}$, showing that b is a limit of \mathbf{a}.

Since the cataproduct R_{\sharp} of the R_{w} is a homomorphic image of R_{\sharp}, it is again quasi-complete by 6.1.5. By construction, R_{\sharp} is Hausdorff and therefore even complete. Since R_{\sharp} has finite embedding dimension, it is therefore Noetherian by Theorem 6.4.2 (or, in mixed characteristic, by Theorem 6.4.4).

[^11]Remark 11.1.5. In order for the above argument to work for arbitrary index sets W, we need to make one additional assumption on the ultrafilter ω : it needs to be countably incomplete, meaning that there exists a function $f: W \rightarrow \mathbb{N}$ such that for each n, almost all $f(w)$ are greater than or equal to n. Of course, if $W=\mathbb{N}$ such a function exists, namely the identity will already work. Countably incomplete ultrafilters exist on any infinite set. In fact, it is a strong set-theoretic condition to assume that not every ultrafilter is countable incomplete! Now, the only place where we need this assumption is to build the limit element b. This time we should take it to be the ultraproduct of the $\mathbf{a}_{w}(f(w))$. The reader can verify that this one modification makes the proof work for any index set.

Proposition 11.1.6. Let R_{\sharp} be an ultra-Noetherian local ring and let R_{\sharp} be the corresponding cataproduct, that is to say, its separated quotient. For any ideal $I \subseteq R_{\natural}$, its \mathfrak{m}-adic closure is equal to $I+\mathfrak{I}_{R_{\natural}}$. In particular, the separated quotient of R_{\natural} / I is $R_{\sharp} / I R_{\sharp}$.

Proof. It suffices to show the first assertion. Clearly, $I+\mathfrak{I}_{R_{\natural}}$ is contained in the \mathfrak{m} adic closure of I. To prove the other inclusion, assume a lies in the \mathfrak{m}-adic closure of I. Hence its image in R_{\sharp} lies in the \mathfrak{m}-adic closure of $I R_{\sharp}$, and this is just $I R_{\sharp}$ by Theorem 3.3.4, since R_{\sharp} is Noetherian by Theorem 11.1.4. Therefore, a lies in $I R_{\sharp} \cap R_{\text {夕 }}=I+\mathfrak{I}_{R_{\natural}}$.

In particular, if R_{w} are approximations of R_{\natural}, and $I_{w} \subseteq R_{w}$ are ideals with ultraproduct $I \subseteq R_{\sharp}$, then the cataproduct of the R_{w} / I_{w} is equal to $R_{\sharp} / I R_{\sharp}$.

Cataproducts in the non-local case.

Although below, we will only be interested in cataproducts of Noetherian local rings of bounded embedding dimension, precisely because we can now apply our tools from commutative algebra to them, it might be of interest to define cataproducts in general. For this, we must rely on the alternative description of ultraproducts from $\S 1.5$. Given a collection of rings A_{w}, with Cartesian product $A_{\infty}:=\Pi A_{w}$, choose a maximal ideal \mathfrak{M} in A_{∞} containing the direct sum ideal $A_{(\infty)}:=\oplus A_{w}$. We define the (\mathfrak{M}-)cataproduct of the A_{w} as the \mathfrak{M}-adic separated quotient of A_{∞}, that is to say, the ring $A_{\sharp}:=A_{\infty} / \mathfrak{M}^{\infty}$, where \mathfrak{M}^{∞} is the intersection of all powers of \mathfrak{M}. Note that $\mathfrak{M}^{\circ} \subseteq \mathfrak{M}^{\infty}$, showing that A_{\sharp} is a residue ring of $A_{\natural}=A_{\infty} / \mathfrak{M}^{\circ}$. Theorem 11.1.4 is the essential ingredient to prove that both definitions agree in the local case (see Exercise 11.3.12). To prove the analogue of Theorem 11.1.4 in this more general setup, we make the following definition: a maximal ideal \mathfrak{M} of A_{∞} is called algebraic if it contains a product $\Pi \mathfrak{m}_{w}$ of maximal ideals $\mathfrak{m}_{w} \subseteq A_{w}$ (whence in particular contains the direct sum ideal $\left.A_{(\infty)}\right)$; the corresponding cataproduct is then also called algebraic.

Theorem 11.1.7. Any algebraic cataproduct is a complete local ring. More precisely, if \mathfrak{M} is an algebraic maximal ideal of the product $A_{\infty}:=\Pi A_{w}$, then the corresponding \mathfrak{M}-cataproduct A_{\sharp} is a complete local ring with maximal ideal $\mathfrak{M} A_{\sharp}$.

Proof. Let $\mathfrak{m}_{w} \subseteq A_{w}$ be maximal ideals whose product $\mathfrak{m}:=\prod \mathfrak{m}_{w}$ is contained in \mathfrak{M}. Let us first show that

$$
\begin{equation*}
\mathfrak{M}=\mathfrak{m}+\mathfrak{M}^{\circ} . \tag{11.3}
\end{equation*}
$$

Indeed, in the ultraproduct $A_{\natural}:=A_{\infty} / \mathfrak{M}^{\circ}$ (see 1.5.2) the extended ideal $\mathfrak{m} A_{\natural}$ is equal to the ultraproduct of the \mathfrak{m}_{w}, whence by Łos' Theorem is maximal. Since it is contained in the maximal ideal $\mathfrak{M} A_{\natural}$, both ideals must be the same, proving (11.3). Since \mathfrak{M}° is idempotent (as it is generated by idempotents), we immediately get from this that

$$
\mathfrak{M}^{n}=\mathfrak{m}^{n}+\mathfrak{M}^{\circ}
$$

for all n. In particular, the $\mathfrak{M} A_{\natural}$-adic topology is the same as the $\mathfrak{m} A_{\natural}$-adic one, and we have

$$
A_{\sharp}=A_{\infty} / \mathfrak{M}^{\infty}=A_{\natural} / \mathfrak{m}^{\infty} A_{\natural} .
$$

To prove that A_{\sharp} is complete, it suffices therefore to show that A_{\sharp} is \mathfrak{m}-adically complete. A minor modification of the argument in Theorem 11.1.4 easily accomplishes this (nowhere did we explicitly use that the R_{w} were local, of bounded embedding dimension). It follows from Exercise 6.5 .2 that A_{\sharp} is local with maximal ideal $\mathfrak{m} A_{\sharp}=\mathfrak{M} A_{\sharp}$.

If all A_{w} are local, then any maximal ideal $\mathfrak{M} \subseteq A_{\infty}$ is algebraic, since $A_{\natural}=A_{\infty} / \mathfrak{M}^{\circ}$ is local, with maximal ideal $\mathfrak{m} A_{\natural}$ by Łos' Theorem. Hence, $\mathfrak{M} A_{\natural}$, being also a maximal ideal, must be equal to $\mathfrak{m} A_{\natural}$, and hence $\mathfrak{m} \subseteq \mathfrak{M}$, proving that the latter is algebraic. To construct a non-algebraic maximal ideal, take any ultra-ring admitting a maximal ideal which is not an ultra-ideal (see Exercise 7.5.2 for an example); its pre-image in the product is then non-algebraic by the previous argument. Although one could replace the maximal ideal \mathfrak{M} in the above construction by an arbitrary prime ideal containing $A_{(\infty)}$, I do not know what this more general notion of cataproduct would entail. In any case, an algebraic prime ideal is always maximal (see Exercise 11.3.13).

Corollary 11.1.8. If there is a uniform bound on the number of generators of the maximal ideals of all A_{w}, then any algebraic cataproduct is Noetherian.

Proof. With notation as in the previous proof, $\mathfrak{m} A_{\natural}$ is finitely generated by Łos’ Theorem, whence so is $\mathfrak{m} A_{\sharp}$. The result now follows from Theorems 6.4.2 and 6.4.4, since A_{\sharp} is complete by Theorem 11.1.7.

The corollary applies in particular to the approximations A_{w} of an affine algebra A over a Lefschetz field (see Chapter 7), for if A is generated by at most n elements, then so is almost each A_{w}, and, by the Nullstellensatz, each maximal ideal is then generated by at most n elements (Exercise 2.6.25).
Dimension theory for cataproducts. From a model-theoretic point of view, Łos’ Theorem explicates which properties are preserved in ultraproducts: any first-order one. Since cataproducts are residue rings, they, therefore, inherit any positive firstorder property from their components (Exercise 11.3.15). However, we do not want to derive properties of the cataproduct via a syntactical analysis, but instead use an algebraic approach. The first issue to address is the way dimension behaves under cataproducts. We already mentioned that the geometric dimension of an ultraNoetherian ring can exceed that of its components (see Exercise 11.3.3). The same phenomenon occurs for cataproducts because we have:
11.1.9 For an ultra-Noetherian local ring $\left(R_{\natural}, \mathfrak{m}\right)$ its geometric dimension is equal to the dimension of its separated quotient R_{\sharp}, that is to say, ultraproduct and cataproduct have the same geometric dimension.

Let $\mathbf{x}:=\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters in R_{\natural} (recall that this means that $\left(x_{1}, \ldots, x_{d}\right) R_{\natural}$ is an \mathfrak{m}-primary ideal, with d the geometric dimension of $\left.R_{\natural}\right)$. So $S_{\natural}:=R_{\natural} / \mathbf{x} R_{\natural}$ is an Artinian local ring, whence must be equal to its separated quotient S_{\sharp} (see Exercise 11.3.5). By Proposition 11.1.6, we have $S_{\sharp}=R_{\sharp} / \mathbf{x} R_{\sharp}$, showing that R_{\sharp} has geometric dimension at most d. Since R_{\sharp} is Noetherian by Theorem 11.1.4, it has dimension at most d by Theorem 3.4.2. Moreover, we may reverse the argument, for if S_{\sharp} is Artinian, then necessarily $S_{\natural}=S_{\sharp}$ (again by Exercise 11.3.5).

To investigate when the dimension of a cataproduct is equal to the dimension of almost all of its approximations, we need to introduce a new invariant.

Definition 11.1.10 (Parameter degree). Given a local ring (R, \mathfrak{m}) of finite embedding dimension, its parameter degree, denoted $\operatorname{pardeg}(R)$, is by definition the least possible length of the residue rings $R / \mathbf{x} R$, where \mathbf{x} runs over all systems of parameters.

Note that by definition of geometric dimension, the parameter degree of R is always finite. Closely related to this invariant, is the degree ${ }^{4} \operatorname{deg}_{R}(x)$ of an element $x \in R$, defined as follows: if x is a unit, then we set $\operatorname{deg}_{R}(x)$ equal to zero, and if x is not a parameter, then we set $\operatorname{deg}_{R}(x)$ equal to ∞; in the remaining case, we let $\operatorname{deg}_{R}(x)$ be the parameter degree of $R / x R$. In Exercise 11.3.6, you are asked to prove:
11.1.11 Let R be a d-dimensional Noetherian local ring, or more generally, a local ring of geometric dimension d, and let $x \in R$. Then the degree of x is equal to the minimal length of any residue ring of the form $R /(x R+I)$, where I runs over all ideals generated by $d-1$ non-units.

In [54, Proposition 2.2 and Theorem 3.4] we prove the following generalization of Theorem 11.1.4: the completion of a local ring R of finite embedding dimension is Noetherian, and has dimension equal to the geometric dimension d of R; moreover, both rings have the same Hilbert polynomial whence their Hilbert dimension is also d by Theorem 3.4.2. We define the multipliciy of R to be the leading coefficient of its Hilbert polynomial times d ! (this coincides with the classical definition in the Noetherian case). The multiplicity of R is always at most its parameter degree, and provided R is Noetherian with infinite residue field, both are equal if and only if R is Cohen-Macaulay (see [49, Lemma 3.3] for the Noetherian case, and [54, Lemma 6.10] for a generalization).

Theorem 11.1.12. Let R_{w} be d-dimensional Noetherian local rings of embedding dimension at most e. Their cataproduct R_{\sharp} has dimensiond if and only if almost all R_{w} have bounded parameter degree (that is to say, $\operatorname{pardeg}\left(R_{w}\right) \leq r$, for some r and for almost all w).

Proof. Assume that almost all R_{w} have parameter degree at most r, so that their exists a d-tuple \mathbf{x}_{w} in R_{w} such that $S_{w}:=R_{w} / \mathbf{x}_{w} R_{w}$ has length at most r. Hence the cataproduct S_{\sharp} has length at most r by Exercise 11.3.5. By Proposition 11.1.6, the

[^12]cataproduct S_{\sharp} is isomorphic to $R_{\sharp} / \mathbf{x} R_{\sharp}$, where \mathbf{x} is the ultraproduct of the \mathbf{x}_{w}. Hence R_{\sharp}, being Noetherian by Theorem 11.1.4, has dimension at most d by Theorem 3.4.2, whence equal to d by Exercise 11.3.1.

Conversely, suppose R_{\sharp} has dimension d, and let \mathbf{x} be a system of parameters of R_{\sharp}. Let r be the length of $R_{\sharp} / \mathbf{x} R_{\sharp}$. Let \mathbf{x}_{w} be approximations of \mathbf{x}. By Exercise 11.3.5, almost all $R_{w} / \mathbf{x}_{w} R_{w}$ have length at most r. It follows that almost each \mathbf{x}_{w} is a system of parameters, and hence that R_{w} has parameter degree at most r.

Catapowers. We can apply this to catapowers. In the next result, the first statement is immediate from Theorem 11.1.4 and Proposition 11.1.6; the second follows immediately from Theorem 11.1.12.

Corollary 11.1.13. Let R be a Noetherian local ring with catapower R_{\sharp}. For any ideal $I \subseteq R$, the catapower of R / I is $R_{\sharp} / I R_{\sharp}$. Moreover, R and R_{\sharp} have the same dimension.

Corollary 11.1.14. The catapower of a regular local ring is again regular (of the same dimension).

Proof. Let (R, \mathfrak{m}) be a d-dimensional regular local ring. If $d=0$, then R is a field, and R_{\sharp} is equal to the ultrapower R_{\sharp} whence a field. So we may assume $d>0$. Let x be a minimal generator of \mathfrak{m}. Hence $R / x R$ is regular of dimension $d-1$, so that by induction, its catapower is also regular of dimension $d-1$. But this catapower is just $R_{\sharp} / x R_{\sharp}$ by Corollary 11.1.13. It follows that $\mathfrak{m} R_{\sharp}$ is generated by at most d elements. Since R_{\sharp} has dimension d by Corollary 11.1.13, it is regular.

Flatness of catapowers. To further explore the connection between a ring and its catapower, we require a flatness result.

Theorem 11.1.15. For each Noetherian local ring R, the induced homomorphism $R \rightarrow R_{\sharp}$ into its catapower R_{\sharp} is faithfully flat.

Proof. Since $R \rightarrow R_{\sharp}$ is local, we only need to verify flatness. Moreover, since R_{\sharp} is complete by Theorem 11.1.4, we get $(\widehat{R})_{\sharp}=R_{\sharp}$ by a double application of 11.1.3, whence an induced homomorphism $\widehat{R} \rightarrow R_{\sharp}$. As $R \rightarrow \widehat{R}$ is flat by Theorem 6.3.5, we only need to show that $\widehat{R} \rightarrow R_{\sharp}$ is flat, and hence we may already assume that R is complete.

Suppose first that R is moreover regular. By Corollary 11.1.14, so is then R_{\sharp}. In particular, the generators of \mathfrak{m} are R_{\sharp}-regular, so that R_{\sharp} is flat over R by Theorem 5.6.9. For R arbitrary, note that $R=S / I$ for some regular local ring S and some ideal $I \subseteq S$ by Theorems 6.4.2 and 6.4.4. By our previous argument the ultrapower S_{\sharp} of S is flat, whence so is $R=S / I \rightarrow S_{\sharp} / I S_{\sharp}=R_{\sharp}$ by 5.2.3 (where we used Corollary 11.1.13 for the last equality).

The reader who is willing to use some heavier commutative algebra can prove the following stronger fact:

Corollary 11.1.16. If R is an excellent local ring, then the natural map $R \rightarrow R_{\sharp}$ is regular.

Proof. For the notion of excellence and regular maps, see [30, §32]. By Theorem 11.1.15, the map $R \rightarrow R_{\sharp}$ is flat. It is also unramified, in the sense that $\mathfrak{m} R_{\sharp}$ is the maximal ideal of R_{\sharp}. If R is a field k, then R_{\sharp} is just its ultrapower k_{\natural}. Using Maclane's criterion for separability, one shows that the extension $k \rightarrow k_{\natural}$ is separable (Exercise 1.6.20). For R arbitrary, this shows in view of Corollary 11.1.13 that $R \rightarrow R_{\sharp}$ induces a separable extension of residue fields. Hence $R \rightarrow R_{\sharp}$ is formally smooth by [30, Theorem 28.10], whence regular by [1].

We can now generalize the fact that catapowers preserve regularity (Corollary 11.1.14) to:

Corollary 11.1.17. If R is an excellent local ring, then R is regular, normal, reduced or Cohen-Macaulay, if and only if R_{\sharp} is.

Proof. Immediate from Corollary 11.1.16 and the fact that regular maps preserve these properties in either direction (see [30, Theorem 32.2]).

Corollary 11.1.18. If R is a complete Noetherian local domain, then so is its catapower R_{\sharp}.

Proof. Let S be the normalization of R (that is to say, the integral closure of R inside its field of fractions). By [30, §33], the extension $R \subseteq S$ is finite, and S is also a complete Noetherian local ring. I claim that the induced homomorphism of catapowers $R_{\sharp} \rightarrow S_{\sharp}$ is again finite and injective. Since S_{\sharp} is normal by Corollary 11.1.17, it is a domain, whence so it its subring R_{\sharp}.

So remains to prove the claim. By the weak Artin-Rees Lemma applied to the finite R-module S (see Exercise 11.3.4), we can find for each m a bound $e(m)$ such that $\mathfrak{m}^{e(m)} S \cap R \subseteq \mathfrak{m}^{m}$. Let \mathfrak{n} be the maximal ideal of S. Since $S / \mathfrak{m} S$ is finite over R / \mathfrak{m} by base change, it is Artinian, and hence $\mathfrak{n}^{l} \subseteq \mathfrak{m} S$ for some l. Together with the weak Artin-Rees bound, this yields

$$
\begin{equation*}
\mathfrak{n}^{l e(m)} \cap R \subseteq \mathfrak{m}^{m} \tag{11.4}
\end{equation*}
$$

for all m.
Let S_{\natural} be the ultrapower of S, so that S_{\natural} is a finite R_{\natural}-module. The inclusion $\mathfrak{I}_{R_{\sharp}} \subseteq \Im_{S_{\sharp}} \cap R_{\sharp}$ is clear, and we need to prove the converse, for then $R_{\sharp} \rightarrow S_{\sharp}$ will be injective. So let $z \in R_{\natural}$ be be such that it is an infinitesimal in S_{\natural}, and let $z_{w} \in R$ be approximations of z. Fix some m. Since $z \in \mathfrak{n}^{l e(m)} S_{\natural}$, by Łos' Theorem $z_{w} \in \mathfrak{n}^{l e(m)}$ for almost all w, whence $z_{w} \in \mathfrak{m}^{m}$ by (11.4). By another application of Łos' Theorem, we get $z \in \mathfrak{m}^{m} R_{\natural}$, and since this holds for all m, we get $z \in \Im_{R_{\natural}}$, as we wanted to show.

Theorem 11.1.19. Let R be a Noetherian local ring of equal characteristic, with residue field k, and let R_{\sharp} and k_{\sharp} be their respective catapowers. Then R_{\sharp} is isomorphic to the complete scalar extension $R_{k_{\sharp}}$ over k_{\sharp}.

Proof. Since a ring and its completion have the same complete scalar extensions, we may assume R is complete. By Cohen's structure theorem, R is a homomorphic image of a power series ring $k[[\xi]]$, with ξ an n-tuple of indeterminates. Since complete scalar extensions (by (6.6)) as well as catapowers (Corollary 11.1.13) commute with homomorphic images, we may assume $R=k[[\xi]]$. So remains to show
that $R_{\sharp} \cong k_{\sharp}[[\xi]]$. However, this is clear by Theorem 6.4.5, since R_{\sharp} is regular by Corollary 11.1.14, with residue field k_{\sharp}, having dimension n by Corollary 11.1.13.

11.2 Uniform behavior

In Chapter 7 we amply illustrated how ultraproducts can be used to prove several uniformity results. This section contains more results derived by this technique.

Weak Artin-Rees. The Artin-Rees lemma is an important tool in commutative algebra, especially when using 'topological' arguments. Its proof is not that hard, but we have not given it in these notes. However, there is a weaker form of Artin-Rees, which is often really the only property one uses (a notable exception is the proof of Theorem 3.4.2) and which we can now prove easily by non-standard methods.

Theorem 11.2.1. Let (R, \mathfrak{m}) be a Noetherian local ring, and let $\mathfrak{a} \subseteq R$ be an ideal. For each l, there exists $e:=e(\mathfrak{a}, l)$ such that

$$
\mathfrak{a} \cap \mathfrak{m}^{e} \subseteq \mathfrak{m}^{l} \mathfrak{a}
$$

Proof. Suppose not, so that for some l, none of the intersections $\mathfrak{a} \cap \mathfrak{m}^{n}$ is contained in $\mathfrak{m}^{l} \mathfrak{a}$. Hence we can find elements $a_{n} \in \mathfrak{a} \cap \mathfrak{m}^{n}$ outside $\mathfrak{m}^{l} \mathfrak{a}$. Let R_{\sharp} and R_{\sharp} be the respective ultrapower and catapower of R. The canonical homomorphisms $R \rightarrow R_{\natural}$ and $R \rightarrow R_{\sharp}$ are both flat by Corollary ?? and Theorem 11.1.15 respectively. Since $R_{\sharp}=R_{\natural} / \mathfrak{I}_{R}$, the intersection criterion, Theorem 5.6.4, yields $\mathfrak{a} R_{\natural} \cap \mathfrak{I}_{R}=\mathfrak{a} \mathfrak{I}_{R}$. Let a be the ultraproduct of the a_{n}, so that by Łos' Theorem, $a \in \mathfrak{a} R_{\text {घ }} \cap \mathfrak{I}_{R}=\mathfrak{a} \mathfrak{I}_{R}$. The latter ideal is in particular contained in $\mathfrak{a m}^{l} R_{\natural}$, and hence by Łos’ Theorem once more, $a_{n} \in \mathfrak{m}^{l} \mathfrak{a}$ for almost all n, contradiction.

Uniform arithmetic in a complete Noetherian local ring. In what follows, our invariants are allowed to take values in $\overline{\mathbb{N}}:=\mathbb{N} \cup\{\infty\}$. To an n-ary \mathbb{N}-valued function $F: \mathbb{N}^{n} \rightarrow \mathbb{N}$, we associate its extension at infinity, defined as the map $\bar{F}: \overline{\mathbb{N}}^{n} \rightarrow \overline{\mathbb{N}}$ sending any tuple outside \mathbb{N}^{n} to ∞. Any such extended map will be called a numerical function. By the order $\operatorname{ord}_{R}(x)$ of an element x in a local ring (R, \mathfrak{m}) we mean the supremum of all m such that $x \in \mathfrak{m}^{m}$ (so that in particular $\operatorname{ord}_{R}(x)=\infty$ if and only if $x \in \Im_{R}$; in the terminology of page 93 , the order of x is the negative logarithm of its adic norm).

Theorem 11.2.2. A complete Noetherian local ring R is a domain if and only if there exists a binary function F such that

$$
\begin{equation*}
\operatorname{ord}_{R}(x y) \leq \bar{F}\left(\operatorname{ord}_{R}(x), \operatorname{ord}_{R}(y)\right) \tag{11.5}
\end{equation*}
$$

for all $x, y \in R$.

Proof. Assume first that (11.5) holds for some F. If x and y are non-zero, then their order is finite by Theorem 3.3.4. Hence $\bar{F}(\operatorname{ord}(x), \operatorname{ord}(y))$ is finite by definition of F. In particular, $x y$ must be non-zero, showing that R is a domain.

Conversely, assume towards a contradiction that no such function F can be defined on a pair $(a, b) \in \mathbb{N}^{2}$. This implies that there exist for each n, elements x_{n} and y_{n} in R of order at most a and b respectively, but such that their product $x_{n} y_{n}$ has order at least n. Let R_{\natural} and R_{\sharp} be the ultrapower and catapower of R respectively, and let x and y be the ultraproducts of x_{n} and y_{n} respectively. It follows from Łos' Theorem that $\operatorname{ord}_{R_{\natural}}(x) \leq a$ and $\operatorname{ord}_{R_{\natural}}(y) \leq b$, and hence in particular, x and y are non-zero in R_{\sharp}. By Corollary 11.1.18, the catapower R_{\sharp} is again a domain. In particular, $x y$ is a non-zero element in R_{\sharp}, and hence has finite order, say, c, by Theorem 3.3.4. However, then also $\operatorname{ord}_{R_{\natural}}(x y)=c$ whence $\operatorname{ord}_{R}\left(x_{n} y_{n}\right)=c$ for almost all n by Łos’ Theorem, contradiction.

Remark 11.2.3. Theorem 11.2 .2 is classically proven by a valuation argument. By [59, Theorem 3.4] and [25, Proposition 2.2], we may take F linear, or rather, of the form $F(a, b):=c \max \{a, b\}$, for some $c \in \mathbb{N}$ (one usually expresses this by saying that R has c-bounded multiplication).

Theorem 11.2.4. A d-dimensional Noetherian local ring (R, \mathfrak{m}) is Cohen-Macaulay if and only if there exists a binary function G such that

$$
\begin{equation*}
\operatorname{ord}_{R / I}(x y) \leq \bar{G}\left(\operatorname{deg}_{R / I}(x), \operatorname{ord}_{R / I}(y)\right) \tag{11.6}
\end{equation*}
$$

for all $x, y \in R$ and all ideals $I \subseteq R$ generated by part of a system of parameters of length $d-1$.

Proof. Suppose a function G satisfying (11.6) exists, and let $\left(z_{1}, \ldots, z_{d}\right)$ be a system of parameters in R. Fix some i and let $y \in\left(J: z_{i+1}\right)$ with $J:=\left(z_{1}, \ldots, z_{i}\right) R$. We need to show that $y \in J$. For each m, let $I_{m}:=J+\left(z_{i+2}^{m}, \ldots, z_{d}^{m}\right) R$, and put $x:=z_{i+1}$. Since $x y \in J \subseteq I_{m}$, the left hand side in (11.6) for $I=I_{m}$ is infinite, whence so must the right hand side be. However, x is a parameter in R / I_{m}, and therefore has finite degree. Hence, the second argument of \bar{G} must be infinite, that is to say, $\operatorname{ord}_{R / I_{m}}(y)=\infty$. In other words, $y \in I_{m}$, and since this holds for all m, we get $y \in J$ by Theorem 3.3.4, as we wanted to show.

Conversely, towards a contradiction, suppose R is Cohen-Macaulay but no such function G can be defined on the pair $(a, b) \in \mathbb{N}^{2}$. This means that there exist elements $x_{n}, y_{n} \in R$ and a d-1-tuple \mathbf{z}_{n} which is part of a system of parameters in R, such that $\operatorname{deg}_{S_{n}}\left(x_{n}\right) \leq a$ and $\operatorname{ord}_{S_{n}}\left(y_{n}\right) \leq b$, but $x_{n} y_{n}$ has order at least n in $S_{n}:=R / \mathbf{z}_{n} R$. Let R_{\sharp} and R_{\sharp} be the respective ultrapower and catapower of R. Since R is Cohen-Macaulay, so is R_{\sharp} by Corollary 11.1.17 (or Exercise 11.3.7). Let x, y and \mathbf{z} be the ultraproduct of the x_{n}, y_{n} and \mathbf{z}_{n} respectively. By Proposition 11.1.6, the cataproduct of the S_{n} is equal to $S_{\sharp}:=R_{\sharp} / \mathbf{z} R_{\sharp}$. Since each S_{n} has dimension one, and parameter degree at most a by assumption on x_{n}, the dimension of S_{\sharp} is again one by Theorem 11.1.12. Since R_{\sharp} has dimension d by 11.1.9, the $d-1$-tuple \mathbf{z} is part of a system of parameters in R_{\sharp}, whence is R_{\sharp}-regular by Theorem 4.2.6. This
in turn implies that $S_{\sharp}=R_{\sharp} / \mathbf{z} R_{\sharp}$ is Cohen-Macaulay. Moreover, by Łos’ Theorem, y has order b in $R_{\natural} / \mathbf{z} R_{\natural}$ whence also in S_{\sharp}, and x has degree a in S_{\sharp}. In particular, x is a parameter in S_{\sharp} whence S_{\sharp}-regular. On the other hand, by Łos' Theorem, $x y$ is an infinitesimal in $R_{\sharp} / \mathbf{z} R_{\sharp}$, whence zero in S_{\sharp}. Since x is S_{\sharp}-regular, y is zero in S_{\sharp}, contradicting that its order in that ring is b.

11.3 Exercises

Ex 11.3.1

Let R be an ultraproduct of d-dimensional Noetherian local rings of embedding dimension at most e, and let δ be its geometric dimension. Show that $d \leq \delta \leq e$.

Ex 11.3.2

Let R_{\sharp} be an ultra-Noetherian ring and R_{\sharp} its separated quotient. Show that $x \in R_{\sharp}$ is a parameter if and only if its image in R_{\sharp} is a parameter if and only if it is not contained in any prime ideal of R_{\natural} obtained as the pre-image of a maximal dimensional prime ideal of R_{\sharp}.

Ex 11.3.3

Let $\left.R_{n}:=K[\xi]\right] / \xi^{n} K[\xi]$ with ξ a single indeterminate over the field K. Show that their ultraproduct R_{\natural} has geometric dimension at least one.

Ex 11.3.4

Given finitely generated modules $N \subseteq M$ over a Noetherian local ring (R, \mathfrak{m}), apply Exercise 5.7.8 to the module M / N and use Theorem 11.2.1 to show that for each m, there exists $e:=e(N, M, m)$ such that $N \cap \mathfrak{m}^{e} M \subseteq \mathfrak{m}^{m} N$.

Ex 11.3.5

Show that the separated quotient of a local ring of finite embedding dimension is Artinian if and only if the ring itself is Artinian. More generally, show that the ultraproduct of local rings R_{w} is Artinian of length l if and only if the cataproduct is Artinian of length l if and only if almost all R_{w} are Artinian of length l (see also Exercise 1.6.10).

Ex 11.3.6

Prove 11.1.11.

Ex 11.3.7
Prove without using Corollary 11.1.17, but relying only on Theorem 11.1.15, that a Noetherian local ring is Cohen-Macaulay if and only if its catapower is.

Ex 11.3.8

Show that a Noetherian local ring R admits a function satisfying (11.5) if and only if its completion does. Use this to show that one can weaken the assumption on R in Theorem 11.2.2 from being a 'complete domain' to being analytically irreducible (meaning that its completion is a domain).

Ex 11.3.9

Show that if R_{w} are domains admitting the same function F satisfying (11.5), then so does their cataproduct, and hence the cataproduct is in particular a domain. Show by a counterexample that the cataproduct of complete Noetherian local domains of fixed dimension and parmeter degree is not necesarily a domain.

*Ex 11.3.10

Show that a complete Noetherian local ring is a domain if and only if there is a unary function H such that $\operatorname{deg}_{R}(x) \leq \bar{H}\left(\operatorname{ord}_{R}(x)\right)$ for all $x \in R$.

Additional exercises.

Ex 11.3.11

Let A_{∞} be the Cartesian product of rings A_{w} for $w \in W$. Show that a prime ideal \mathfrak{P} of A_{∞} induces a countably incomplete ultrafilter $\omega_{\mathfrak{F}}$ under the correspondence given in §1.5, if and only if there exists a countable partition $\left\{W_{n}\right\}$ of W, such that the characteristic function of each W_{n} (viewed as an element in A_{∞}) belongs to \mathfrak{P}.

Ex 11.3.12
Show that both definitions of cataproduct (the second definition is given before Theorem 11.1.7) agree for Noetherian local rings of bounded embedding dimension.

Ex 11.3.13

Show that if \mathfrak{P} is a prime ideal of the product $A_{\infty}:=\prod A_{w}$ containing a product of maximal ideals, then \mathfrak{P} is itself a maximal ideal.

Ex 11.3.14

Prove the following converse of Theorem 11.2.1: if R is a coherent local ring (see Theorem ??) such that for each finitely generated ideal $\mathfrak{a} \subseteq R$ and each $l \in \mathbb{N}$, there exists some $e:=e(\mathfrak{a}, l)$ such that $\mathfrak{a} \cap \mathfrak{m}^{e} \subseteq \mathfrak{m}^{l} \mathfrak{a}$, then R is Noetherian. You will also need the flatness criterion from Theorem 5.6.4 and the Noetherianity criterion from Corollary 5.3.6.

Ex 11.3.15
Let φ be a positive sentence in the language of rings, that is to say, equivalent with a quantification of a disjunction of systems of polynomial equations. Show that if φ holds for almost all R_{w}, then it holds for their cataproduct R_{\sharp}.

Ex 11.3.16
Given a Noetherian local ring R, show that R is regular if and only if $\operatorname{ord}_{R}(x)=\operatorname{deg}_{R}(x)$ for all $x \in R$.

Index

Z-affine, 20
affine n-space, 17, 19, 33, 48
affine Z-scheme, 29
affine algebra, 20
affine line with the origin doubled, 31
affine scheme, 25, 27-31, 35, 36
affine variety, 19,35
algebraic set, 17
Artin-Rees Lemma, 46, 48
Artinian, 28, 42, 50, 51, 58, 61, 65
associated graded ring, $44,46,58,66$
associated prime, 60-63, 66, 67
base change, 24
basic open, 25,33
Betti number, 78
Bezout, 55, 65
big Cohen-Macaulay module, see under Cohen-Macaulay
blowing-up algebra, 45
boundary map, 69
Cauchy sequence, 93, 97, 99
special $\sim, 97$
closed fiber, 85
closed immersion, 28
closed point, 23, 30, 34
closed subscheme, 28
Cohen-Macaulay, 55, 60-64, 66, 67, 79, 83-85, 99, 100, 103, 104
balanced big \sim module, 83
big ~ module, 83
cokernel, 70, 71
colon ideal, 85
compact, 36
complete, 91, 93, 97

```
completion, 91, 97, 98
complex, 69
    acyclic \(\sim, 70\)
    augmented \(\sim, 70,71\)
    bounded \(\sim, 70\)
    co-~, 70
    exact \(\sim, 70\)
    minimal \(\sim, 77\)
connecting map, 72
content, 82
continuous section, 35,39
convergent, 65
coordinate ring, 19, 27, 34, 36
cusp, \(38,56,59,64,65\)
cyclically pure, 75,99
depth, 60, 61, 63
derived functor, 72
dimension, 19, 21, 32, 35, 37, 41, 46, 51, 59,
        61
    \(\sim\) theorem, 47
    \(\sim\) under finite morphisms, 50
    embedding \(\sim\), see embedding dimension
    geometric \(\sim, 46,47,49,50\)
    Hilbert ~, 46, 47
    Krull ~, 21, 37, 41, 46, 47
discrete valuation ring, 65
dual numbers, 39
elliptic curve, 59, 65
embedded prime, 63, 67
embedding dimension, 35,47 , 56-58
enhanced affine \(n\)-space, 23
enhanced affine variety, 24-27, 30, 33, 37
enhanced projective variety, 32
equi-dimensional, 53
essentially of finite type, see also affine local
    algebra, 20
```

Euclidean division, 21
exact sequence, see also complex, exact, 43, 48
faithful, 74
faithfully flat, see under flat
fiber, 29, 37
fiber product, 29, 30
filtration, 44
\mathfrak{a}-adic $\sim, 44,46$
associated graded module of $\mathrm{a} \sim, 45$
associated graded ring of $\mathrm{a} \sim, 45$
stable \sim, 44-46, 52
finite, $22,28,50$
finite morphism, 21, 37, 50, 53
finite type, 27, 29, 35
flat, 51, 70-73, 76, 79, 98
~-ness criterion, 72
faithfully $\sim, 74,75,98,99$
free, 71
\sim module is flat, 71
function field, 37
functor, 27
general linear group, 25
generic, 23, 24, 37
generic element, see parameter
generic point, 35
global section, 26, 27, 31
gluing, 31
going-up theorem, 53
graded localization, 33
graded module, 42
graded ring, 32, 42
Grassmanian, 28
Hausdorff, 36, 46
height, 41, 49, 51, 52, 60, 63
Hensel's Lemma, 94
Henselian, 95
Henselization, 95
Hilbert Basis Theorem, 24
Hilbert series, 43
rationality of $\sim, 43,47$
Hilbert-Samuel polynomial, 44, 46, 47, 52, 59
homogeneous, 32, 36, 38
homogeneous coordinate ring, 31, 32, 38
homogeneous ideal, 32, 38
homogenization, 59
homology, 69-72
hypersurface, 30, 47
ideal of definition, 18, 32, 36
independent sequence, 64,66
induced reduced scheme structure, 28
intersection, 28
intersection number, 56
irreducible, 18, 19, 22, 23, 35-37, 58
irreducible component, 18, 23
irreducible decomposition, 18, 36
irrelevant maximal ideal, 32
isomorphism, 20
Jacobson, 22
Jacobson radical, 22
Koszul complex, 78
Krull's Intersection Theorem, 46, 52, 62, 64, 67, 97

Laurent series, 28
length, 42,48
additivity of $\sim, 51$
limit, 97
local Z-affine, 20
local ring, 31, 34, 36, 37, 57
morphism, 20, 27, 31
multiple point, see also singularity, 56, 57, 59, 65

Nakayama's Lemma, 22, 35, 46, 57, 58, 74, 75, 77, 95, 99
Newton's method, 94
nil-radical, 25, 26
nilpotent, 25, 26
node, 56, 64
Noether normalization, 21, 22, 38, 51, 53, 65
\sim for complete local rings, 91,102
Noetherian, 19, 24, 37, 42
Noetherian induction, 18
Noetherian space, 18, 23, 36
non-singular, 35
non-zero divisor, see under regular element
null-sequence, 97
Nullstellensatz, 19, 21, 28, 39, 58
open affine covering, 31
open immersion, 31
parabola, 37
parameter, 50, 52, 60
regular system of \sim s, 58
system of $\sim s, 49,50,52,58,60-64$
parameter ideal, 49
plane curve, 55
point at infinity, 59
power series, 65
prime avoidance, 48, 62
prime filtration, 73
Principal Ideal Theorem, 49
product, 39
projectification, 59, 66
projective, 71, 74
\sim module is flat, 71
projective n-space, 31
projective dimension, $64,77,78,83$
projective resolution, 71, 72, 76
minimal $\sim, 77$
projective scheme, 31, 33, 36
projective variety, 32 , 59
punctured plane, 31,36
quasi-regular sequence, see under regular sequence
radical, 28
radical ideal, 18
radical of an ideal, 18
rational point, 30, 39
reduced, 18,20
regular element, 60
regular local ring, $46,57,58,61,65,99$
regular ring, 58, 66, 79
regular sequence, $60-62,64,67$
permutable $\sim, 61,67,83$
quasi-~, 66, 67
residue field, $26,34,37$
restriction map, 27
scheme, 31
scheme-theoretic intersection, 28, 29
section, $26,33,35$
sheaf, 25, 27, 34
simple point, see also regular point, 56, 65
singularity, $35,55,57,61,65$
stalk, 36
standard graded algebra, $32,33,58$
standard graded ring, 42
structure map, 27
structure sheaf, 27, 31, 33
system of parameters, see parameter syzygy, 74,79
tangent line, 56, 57
tangent space, $34,38,56,57$
universal property, 39,98
unmixed, 67
Zariski closed, 17, 19
Zariski open subset, 25
Zariski topology, 17, 23, 36

References

1. André, M.: Localisation de la lissité formelle. Manuscripta Math. 13, 297-307 (1974) 178
2. Artin, M.: Algebraic approximation of structures over complete local rings. Inst. Hautes Études Sci. Publ. Math. 36, 23-58 (1969) 95, 142, 155, 157, 158
3. Artin, M., Rotthaus, C.: A structure theorem for power series rings. In: Algebraic Geometry and Commutative Algebra: in honor of M. Nagata, vol. I, pp. 35-44. Kinokuniya, Tokyo (1988) 169
4. Aschenbrenner, M., Schoutens, H.: Lefschetz extensions, tight closure and big CohenMacaulay algebras. Israel J. Math. 161, 221-310 (2007) 83, 153, 158, 162, 163
5. Atiyah, M., Macdonald, G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass. (1969) 10, 24, 42, 48, 70
6. Ax, J.: The elementary theory of finite fields. Ann. of Math. 88, 239-271 (1968) 13
7. Becker, J., Denef, J., van den Dries, L., Lipshitz, L.: Ultraproducts and approximation in local rings I. Invent. Math. 51, 189-203 (1979) 157, 158, 167
8. Boutot, J.F.: Singularités rationelles et quotients par les groupes réductifs. Invent. Math. 88, 65-68 (1987) 131
9. Brenner, H., Monsky, P.: Tight closure does not commute with localization (2007). ArXiv:0710.2913 123, 146
10. Briançon, J., Skoda, H.: Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de C^{n}. C. R. Acad. Sci. Paris 278, 949-951 (1974) 129
11. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993) 83
12. Denef, J., Lipshitz, L.: Ultraproducts and approximation in local rings II. Math. Ann. 253, 1-28 (1980) 157
13. Denef, J., Schoutens, H.: On the decidability of the existential theory of $\mathbb{F}_{p}[[t]]$. In: Valuation theory and its applications, Vol. II (Saskatoon, 1999), Fields Inst. Commun., vol. 33, pp. 4360. Amer. Math. Soc. (2003) 157
14. Ein, L., Lazarsfeld, R., Smith, K.: Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144, 241-252 (2001) 131
15. Eisenbud, D.: Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995) 6, 15, 48, 65, 72, 78, 79, 83, 101, 105, 133
16. Hara, N.: A characterization of rational singularities in terms of injectivity of Frobenius maps. Amer. J. Math. 120, 981-996 (1998) 131
17. Hartshorne, R.: Algebraic Geometry. Springer-Verlag, New York (1977) 6, 16, 31, 34
18. Henkin, L.: Some interconnections between modern algebra and mathematical logic. Trans. Amer. Math. Soc. 74, 410-427 (1953) 166
19. Hochster, M.: Topics in the Homological Theory of Modules over Commutative Rings, CBMS Regional Conf. Ser. in Math, vol. 24. Amer. Math. Soc., Providence, RI (1975) 132
20. Hochster, M., Huneke, C.: Infinite integral extensions and big Cohen-Macaulay algebras. Ann. of Math. 135, 53-89 (1992) 146
21. Hochster, M., Huneke, C.: Applications of the existence of big Cohen-Macaulay algebras. Adv. in Math. 113, 45-117 (1995) 147
22. Hochster, M., Huneke, C.: Tight closure in equal characteristic zero (2000). Preprint on http://www.math.lsa.umich.edu/ hochster/tcz.ps.Z 133
23. Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147, 349-369 (2002) 131
24. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993) 4, 6, 7, 8, 15
25. Hübl, R., Swanson, I.: Discrete valuations centered on local domains. J. Pure Appl. Algebra 161(1-2), 145-166 (2001) 180
26. Huneke, C.: Tight Closure and its Applications, CBMS Regional Conf. Ser. in Math, vol. 88. Amer. Math. Soc. (1996) 119, 124, 131, 133, 146, 152
27. Kempf, G.: Algebraic varieties, London Mathematical Society Lecture Note Series, vol. 172. Cambridge University Press, Cambridge (1993) 31, 34
28. Marker, D.: Introduction to the model theory of fields. In: Model Theory of Fields, Lect. Notes in Logic, vol. 5, pp. 1-37. Springer-Verlag, Berlin (1996) 4, 6
29. Matsumura, H.: Commutative Algebra. W.A. Benjamin (1970) 121
30. Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986) $10,15,42,51,59,60,72,78,79,83,101,102,146,178$
31. Milne, J.: Etale Cohomology. 33. Princeton Math. (1980) 105
32. Mumford, D.: The red book of varieties and schemes, Lect. Notes in Math., vol. 1358, expanded edn. Springer-Verlag, Berlin (1999). Includes the Michigan lectures (1974) on curves and their Jacobians; with contributions by Enrico Arbarello 69
33. Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers (1962) 105
34. Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie etale. Inst. Hautes Études Sci. Publ. Math. 42, 47-119 (1972) 132
35. Popescu, D.: General Néron desingularization and approximation. Nagoya Math. J. 104, 85115 (1986) 155
36. Raynaud, M.: Anneaux Locaux Henséliens, Lect. Notes in Math., vol. 169. Springer-Verlag (1970) 105
37. Rothmaler, P.: Introduction to model theory, Algebra, Logic and Applications, vol. 15. Gordon and Breach Science Publishers, Amsterdam (2000) 4
38. Rotman, J.J.: Advanced modern algebra, Graduate Studies in Mathematics, vol. 114. American Mathematical Society, Providence, RI (2010) 70, 79
39. Rotthaus, C.: On the approximation property of excellent rings. Invent. Math. 88, 39-63 (1987) 161
40. Schmidt, K.: Bounds and definability over fields. J. Reine Angew. Math. 377, 18-39 (1987) 114
41. Schmidt, K., van den Dries, L.: Bounds in the theory of polynomial rings over fields. A nonstandard approach. Invent. Math. 76, 77-91 (1984) 107, 114
42. Schoutens, H.: Bounds in cohomology. Israel J. Math. 116, 125-169 (2000) 107, 114
43. Schoutens, H.: Uniform bounds in algebraic geometry and commutative algebra. In: Connections between model theory and algebraic and analytic geometry, Quad. Mat., vol. 6, pp. 43-93. Dept. Math., Seconda Univ. Napoli, Caserta (2000) 107, 114, 158
44. Schoutens, H.: Lefschetz principle applied to symbolic powers. J. Algebra Appl. 2, 177-187 (2003) 131
45. Schoutens, H.: Mixed characteristic homological theorems in low degrees. C. R. Acad. Sci. Paris 336, 463-466 (2003) 172
46. Schoutens, H.: Non-standard tight closure for affine \mathbb{C}-algebras. Manuscripta Math. 111, 379412 (2003) 107, 142, 143, 144, 145
47. Schoutens, H.: Projective dimension and the singular locus. Comm. Algebra 31, 217-239 (2003) 89
48. Schoutens, H.: Log-terminal singularities and vanishing theorems via non-standard tight closure. J. Alg. Geom. 14, 357-390 (2005) 131, 144
49. Schoutens, H.: Absolute bounds on the number of generators of Cohen-Macaulay ideals of height at most two. Bull. Soc. Math. Belg. 13, 719-732 (2006) 102, 176
50. Schoutens, H.: Asymptotic homological conjectures in mixed characteristic. Pacific J. Math. 230, 427-468 (2007) 172
51. Schoutens, H.: Bounds in polynomial rings over Artinian local rings. Monatsh. Math. 150, 249-261 (2007) 114
52. Schoutens, H.: Pure subrings of regular rings are pseudo-rational. Trans. Amer. Math. Soc. 360, 609-627 (2008) 131
53. Schoutens, H.: Classifying singularities up to analytic extensions of scalars is smooth. Annals of Pure and Applied Logic 162, 836-852 (2011) 103
54. Schoutens, H.: Dimension and singularity theory for local rings of finite embedding dimension. J. Algebra 386, 1-60 (2013) 171, 172, 176
55. Smith, K.: Tight closure of parameter ideals. Invent. Math. 115, 41-60 (1994) 146
56. Smith, K.: F-rational rings have rational singularities. Amer. J. Math. 119, 159-180 (1997) 131
57. Spivakovsky, M.: A new proof of D. Popescu's theorem on smoothing of ring homomorphisms. J. Amer. Math. Soc. 12, 381-444 (1999) 155
58. Swan, R.: Néron-Popescu desingularization (Spring 1995). Expanded notes from a Univ. of Chicago series of lectures 155
59. Swanson, I.: Linear equivalence of ideal topologies. Math. Z. 234(4), 755-775 (2000) 180
60. Vasconcelos, W.: Ideals generated by R-sequences. J. Algebra 6, 309-316 (1967) 64

[^0]: ${ }^{1}$ Logicians study these under the guise of models of Peano arithmetic, where, instead of \mathbb{Z}_{\sharp}, one traditionally looks at the sub-semi-ring \mathbb{N}_{h}, the ultrapower of \mathbb{N}.
 ${ }^{2}$ In case the K_{w} are finite but of unbounded cardinality, their ultraproduct K_{\natural} is also called a pseudo-finite field; in these notes, however, we prefer the usage of the prefix ultra-, and so we would call such fields instead ultra-finite fields

[^1]: ${ }^{1}$ Whenever one talks about the length of a chain one means one less than the number of distinct sets in the chain.
 ${ }^{2} \mathrm{Be}$ aware that some authors, unlike me, insist that varieties should also be irreducible.

[^2]: ${ }^{3}$ The reason for the awkward notation will become clear in the next section.

[^3]: ${ }^{1}$ In these notes, a hypersurface in an affine variety V is any closed subset of the form $\mathrm{V}(I)$ with I a proper principal ideal (this does not mean that its ideal of definition is principal!) Be aware that some authors have a far more restrictive usage for this term.

[^4]: ${ }^{1}$ I know of many deep theorems and conjectures that can be reformulated as a certain flatness result.

[^5]: ${ }^{2}$ The reader be warned that this is a less conventional terminology: 'faithful' often is taken to mean that the annihilator of the module is zero. However, in view of the (well-established) term 'faithfully flat', our usage seems more reasonable: faithfully flat now simply means faithful and flat.

[^6]: ${ }^{3}$ A related question is even open in these cases: does there exist a 'small' Cohen-Macaulay module, i.e., a finitely generated one, if the ring is moreover complete? For the notion of a complete local ring, see $\S 6.2$; there are counterexamples to the existence of a small Cohen-Macaulay module if the ring is not complete.

[^7]: ${ }^{1}$ This is the only place where we use the Noetherian assumption, so that without it, we get a similar theory, except for the uniqueness of limits.

[^8]: ${ }^{1}$ The reader should be aware that other authors might use the term more restrictively, only allowing X to be affine space \mathbb{A}_{K}^{n}, or G to be finite.

[^9]: ${ }^{1}$ In spite of the nomenclature, and unlike proto-grade, to be introduced in the next chapter, this new degree is not a generalization of polynomial degree.

[^10]: ${ }^{2}$ In $[45,50,54]$ such a tuple was called generic.

[^11]: ${ }^{3}$ A notable exception is the construction of a Lefschetz hull given in Theorem 10.1.5.

[^12]: ${ }^{4}$ Hopefully, this will not cause confusion with the notion degree of a polynomial, as the former is always used in a local context and the latter in an affine context.

