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Chapter 1
Ultraproducts and Łos’ Theorem

In this chapter, W denotes an infinite set, always used as an index set, on which
we fix a non-principal ultrafilter. Given any collection of (first-order) structures in-
dexed by W , we can define their ultraproduct. However, in this book, we will be
mainly concerned with the construction of an ultraproduct of rings, an ultra-ring
for short, which is then defined as a certain residue ring of their Cartesian product.
From this point of view, the construction is purely algebraic, although it is origi-
nally a model-theoretic one (we only provide some supplementary background on
the model-theoretic perspective). We review some basic properties (deeper theorems
will be proved in the later chapters), the most important of which is Łos’ Theorem,
relating properties of the approximations with their ultraproduct. When applied to
algebraically closed fields, we arrive at a result that is pivotal in most of our ap-
plications: the Lefschetz Principle (Theorem 1.4.3), allowing us to transfer many
properties between positive and zero characteristic.

1.1 Ultraproducts

Non-principal ultrafilters. By a non-principal ultrafilter ω on W , we mean a col-
lection of infinite subsets of W closed under finite intersection, with the property that
for any subset D ⊆W , either D or its complement −D belongs to ω . In particular,
the empty set does not belong to ω , and if D∈ω and E is an arbitrary set containing
D, then also E ∈ ω , for otherwise −E ∈ ω , whence /0 = D∩−E ∈ ω , contradiction.
Since every set in ω must be infinite, it follows that any co-finite set belongs to ω .
The existence of non-principal ultrafilters is equivalent with the Axiom of Choice,
and we make this set-theoretic assumption henceforth. It follows that for any infinite
subset of W , we can find a non-principal ultrafilter containing this set. If we drop
the requirement that all sets in ω must infinite, then some singleton must belong to
ω; such an ultrafilter is called principal.

In the remainder of these notes, unless stated otherwise, we fix a non-principal
ultrafilter ω on W , and (almost always) omit reference to this fixed ultrafilter from
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2 1 Ultraproducts and Łos’ Theorem

our notation. No extra property of the ultrafilter is assumed, with the one exception
described in Remark 11.1.5, which is nowhere used in the rest of our work anyway.
Non-principal ultrafilters play the role of a decision procedure on the collection of
subsets of W by declaring some subsets ’large’ (those belonging to ω) and declaring
the remaining ones ’small’. More precisely, let ow be elements indexed by w ∈W ,
and let P be a property. We will use the expressions almost all ow satisfy property
P or ow satisfies property P for almost all w as an abbreviation of the statement
that there exists a set D in the ultrafilter ω , such that property P holds for the
element ow, whenever w ∈ D. Note that this is also equivalent with the statement
that the set of all w ∈W for which ow has property P , lies in the ultrafilter (read: is
large). Similarly, we say that the ow almost never satisfy property P (or almost no
ow satisfies P), if almost all ow do not satisfy property P .

Ultraproducts. Let Ow be sets, for w ∈W . We define an equivalence relation on
the Cartesian product O∞ := ∏Ow, by calling two sequences (aw) and (bw), for
w ∈W , equivalent, if aw and bw are equal for almost all w. In other words, if the set
of indices w ∈W for which aw = bw belongs to the ultrafilter. We will denote the
equivalence class of a sequence (aw) by

ulim
w→∞

aw, or ulimaw, or a\.

The set of all equivalence classes on ∏Ow is called the ultraproduct of the Ow and
is denoted

ulim
w→∞

Ow, or ulimOw, or O\.

Note that the element-wise and set-wise notations are reconciled by the fact that

ulim
w→∞
{ow}= {ulim

w→∞
ow}.

The more common notation for an ultraproduct one usually finds in the literature
is O∗; in the past, I also have used O∞, which in this book is reserved to denote
Cartesian products. The reason for using the particular notation O\ in these notes is
because we will also introduce the remaining “chromatic” products O[ and O] (at
least for certain local rings; see Chapters ?? and 11 respectively).

We wil also often use the following terminology: if o is an element in an ultra-
product O\, then any choice of elements ow ∈ Ow with ultraproduct equal to o will
be called an approximation of o. Although an approximation is not uniquely deter-
mined by the element, any two agree almost everywhere. Below we will extend our
usage of the term approximation to include other objects as well.

Properties of ultraproducts. For the following properties, the easy proofs of
which are left as an exercise, let Ow be sets with ultraproduct O\.

1.1.1 If Qw is a subset of Ow for each w, then ulimQw is a subset of ulimOw.

In fact, ulimQw consists of all elements of the form ulimow, with almost all ow
in Qw.
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1.1.2 If each Ow is the graph of a function f w : Aw→ Bw, then O\ is the graph
of a function A\→ B\, where A\ and B\ are the respective ultraproducts
of Aw and Bw. We will denote this function by

ulim
w→∞

f w or f \.

Moreover, we have an equality

ulim
w→∞

( f w(aw)) = (ulim
w→∞

f w)(ulim
w→∞

aw), (1.1)

for aw ∈ Aw.

1.1.3 If each Ow comes with an operation ∗w : Ow×Ow→ Ow, then

∗\ := ulim
w→∞
∗w

is an operation on O\. If all (or, almost all) Ow are groups with multipli-
cation ∗w and unit element 1w, then O\ is a group with multiplication ∗\
and unit element 1\ := ulim1w. If almost all Ow are Abelian groups, then
so is O\.

1.1.4 If each Ow is a (commutative) ring under the addition +w and the multi-
plication ·w, then O\ is a (commutative) ring with addition +\ and multi-
plication ·\.

In fact, in that case, O\ is just the quotient of the product O∞ := ∏Ow modulo
the null-ideal, the ideal consisting of all sequences (ow) for which almost all ow are
zero (for more on this ideal, see §1.5 below). From now on, we will drop subscripts
on the operations and denote the ring operations on the Ow and on O\ simply by +
and ·.

1.1.5 If almost all Ow are fields, then so is O\.

Just to give an example of how to work with ultraproducts, let me give the proof:
if a ∈ O\ is non-zero, with approximation aw (recall that this means that ulimaw =
a), then by the previous description of the ring structure on O\, almost all aw will be
non-zero. Therefore, letting bw be the inverse of aw whenever this makes sense, and
zero otherwise, one verifies that ulimbw is the inverse of a. ut

1.1.6 If Cw are rings and Ow is an ideal in Cw, then O\ is an ideal in
C\ := ulimCw. In fact, O\ is equal to the subset of all elements of the
form ulimow with almost all ow ∈ Ow. Moreover, the ultraproduct of the
Cw/Ow is isomorphic to C\/O\.

In other words, the ultraproduct of ideals Ow ⊆Cw is equal to the image of the
ideal ∏Ow in the product C∞ := ∏Cw under the canonical residue homomorphism
C∞→C\.
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1.1.7 If f w : Aw → Bw are ring homomorphisms, then the ultraproduct f \ is
again a ring homomorphism. In particular, if σw is an endomorphism on
Aw, then the ultraproduct σ \ is a ring endomorphism on A\ := ulimAw.

1.2 Model-theory in rings

The previous examples are just instances of the general principle that ‘algebraic
structure’ carries over to the ultraproduct. The precise formulation of this principle
is called Łos’ Theorem (Łos is pronounced ‘wôsh’) and requires some terminology
from model-theory. However, for our purposes, a weak version of Łos’ Theorem
(namely Theorem 1.3.1 below) suffices in almost all cases, and its proof is entirely
algebraic. Nonetheless, for a better understanding, the reader is invited to indulge
in some elementary model-theory, or rather, an ad hoc version for rings only (if this
not satisfies him/her, (s)he should consult any textbook, such as [24, 28, 37]).

Formulae. By a quantifier free formula without parameters in the free variables
ξ = (ξ1, . . . ,ξn), we will mean an expression of the form

ϕ(ξ ) :=
m∨

j=1

f1 j = 0∧ . . .∧ fs j = 0∧g1 j 6= 0∧ . . .∧gt j 6= 0, (1.2)

where each fi j and gi j is a polynomial with integer coefficients in the variables ξ ,
and where ∧ and ∨ are the logical connectives and and or. If instead we allow the
fi j and gi j to have coefficients in a ring R, then we call ϕ(ξ ) a quantifier free formula
with parameters in R. We allow all possible degenerate cases as well: there might
be no variables at all (so that the formula simply declares that certain elements in
Z or in R are zero and others are non-zero) or there might be no equations or no
negations or perhaps no conditions at all. Put succinctly, a quantifier free formula is
a Boolean combination of polynomial equations using the connectives ∧, ∨ and ¬
(negation), with the understanding that we use distributivity and De Morgan’s Laws
to rewrite this Boolean expression in the (disjunctive normal) form (1.2).

By a formula without parameters in the free variables ξ , we mean an expression
of the form

ϕ(ξ ) := (Q1 ζ1) · · ·(Qp ζp)ψ(ξ ,ζ ),

where ψ(ξ ,ζ ) is a quantifier free formula without parameters in the free variables ξ

and ζ = (ζ1, . . . ,ζp) and where Qi is either the universal quantifier ∀ or the existential
quantifier ∃. If instead ψ(ξ ,ζ ) has parameters from R, then we call ϕ(ξ ) a formula
with parameters in R. A formula with no free variables is called a sentence.

Satisfaction. Let ϕ(ξ ) be a formula in the free variables ξ = (ξ1, . . . ,ξn) with
parameters from R (this includes the case that there are no parameters by taking
R = Z and the case that there are no free variables by taking n = 0). Let A be an R-
algebra and let a = (a1, . . . ,an) be a tuple with entries from A. We will give meaning
to the expression a satisfies the formula ϕ(ξ ) in A (sometimes abbreviated to ϕ(a)
holds in A or is true in A) by induction on the number of quantifiers. Suppose first
that ϕ(ξ ) is quantifier free, given by the Boolean expression (1.2). Then ϕ(a) holds
in A, if for some j0, all fi j0 (a) = 0 and all gi j0 (a) 6= 0. For the general case, suppose
ϕ(ξ ) is of the form (∃ζ )ψ(ξ ,ζ ) (respectively, (∀ζ )ψ(ξ ,ζ )), where the satisfaction
relation is already defined for the formula ψ(ξ ,ζ ). Then ϕ(a) holds in A, if there is
some b ∈ A such that ψ(a,b) holds in A (respectively, if ψ(a,b) holds in A, for all
b ∈ A). The subset of An consisting of all tuples satisfying ϕ(ξ ) will be called the
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subset defined by ϕ, and will be denoted ϕ(A). Any subset that arises in such way
will be called a definable subset of An.

Note that if n = 0, then there is no mention of tuples in A. In other words, a
sentence is either true or false in A. By convention, we set A0 equal to the singleton
{ /0} (that is to say, A0 consists of the empty tuple /0). If ϕ is a sentence, then the set
defined by it is either { /0} or /0, according to whether ϕ is true or false in A.

Constructible Sets. There is a connection between definable sets and Zariski-
constructible sets, where the relationship is the most transparent over algebraically
closed fields, as we will explain below. In general, we can make the following ob-
servations. Note, however, that the material in this section already assumes the
terminology from Chapter 2 below.

Let R be a ring. Let ϕ(ξ ) be a quantifier free formula with parameters from R,
given as in (1.2). Let Σϕ(ξ ) denote the constructible subset of An

R (see page ??)
consisting of all prime ideals p of Spec(R[ξ ]) which, for some j0, contain all fi j0 and
do not contain any gi j0 . In particular, if n = 0, so that A0

R is by definition Spec(R), then
the constructible subset Σϕ associated to ϕ is a subset of Spec(R).

Let A be an R-algebra and assume moreover that A is a domain (we will never
use constructible sets associated to formulae if A is not a domain). For an n-tuple
a over A, let pa be the (prime) ideal in A[ξ ] generated by the ξi − ai, where ξ =
(ξ1, . . . ,ξn). Since A[ξ ]/pa ∼= A, we call such a prime ideal an A-rational point of
A[ξ ]. It is not hard to see that this yields a bijection between n-tuples over A and
A-rational points of A[ξ ], which we therefore will identify with one another. In this
terminology, ϕ(a) holds in A if and only if the corresponding A-rational point pa lies
in the constructible set Σϕ(ξ ) (strictly speaking, we should say that it lies in the base
change Σϕ(ξ )×Spec(R) Spec(A), but for notational clarity, we will omit any reference to
base changes). If we denote the collection of A-rational points of the constructible
set Σϕ(ξ ) by Σϕ(ξ )(A), then this latter set corresponds to the definable subset ϕ(A)
under the identification of A-rational points of A[ξ ] with n-tuples over A. If ϕ is a
sentence, then Σϕ is a constructible subset of Spec(R) and hence its base change
to Spec(A) is a constructible subset of Spec(A). Since A is a domain, Spec(A) has a
unique A-rational point (corresponding to the zero-ideal) and hence ϕ holds in A if
and only if this point belongs to Σϕ .

Conversely, if Σ is an R-constructible subset of An
R, then we can associate to it

a quantifier free formula ϕΣ (ξ ) with parameters from R as follows. However, here
there is some ambiguity, as a constructible set is more intrinsically defined than
a formula. Suppose first that Σ is the Zariski closed subset V(I), where I is an
ideal in R[ξ ]. Choose a system of generators, so that I = ( f1, . . . , fs)R[ξ ] and set
ϕΣ (ξ ) equal to the quantifier free formula f1(ξ ) = · · · = fs(ξ ) = 0. Let A be an R-
algebra without zero-divisors. It follows that an n-tuple a is an A-rational point of Σ

if and only if a satisfies the formula ϕΣ . Therefore, if we make a different choice of
generators I = ( f ′1, . . . , f ′s)R[ξ ], although we get a different formula ϕ ′, it defines in
any R-algebra A without zero-divisors the same definable set, to wit, the collection of
A-rational points of Σ . To associate a formula to an arbitrary constructible set, we do
this recursively by letting ϕΣ ∧ϕΨ , ϕΣ ∨ϕΨ and ¬ϕΣ correspond to the constructible
sets Σ ∩Ψ , Σ ∪Ψ and −Σ respectively.

We say that two formulae ϕ(ξ ) and ψ(ξ ) in the same free variables ξ =
(ξ1, . . . ,ξn) are equivalent over a ring A, if they hold on exactly the same tuples
from A (that is to say, if they define the same subsets in An). In particular, if ϕ and
ψ are sentences, then they are equivalent in A if they are simultaneously true or
false in A. If ϕ(ξ ) and ψ(ξ ) are equivalent for all rings A in a certain class K , then
we say that ϕ(ξ ) and ψ(ξ ) are equivalent modulo the class K . In particular, if Σ

is a constructible set in An
R, then any two formulae associated to it are equivalent

modulo the class of all R-algebras without zero-divisors. In this sense, there is a
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one-one correspondence between constructible subsets of An
R and quantifier free

formulae with parameters from R upto equivalence.

Quantifier Elimination. For certain rings (or classes of rings), every formula
is equivalent to a quantifier free formula; this phenomenon is known under the name
Quantifier Elimination. We will only encounter it for the following class.

Theorem 1.2.1 (Quantifier Elimination for algebraically closed fields). If K is
the class of all algebraically closed fields, then any formula without parameters is
equivalent modulo K to a quantifier free formula without parameters.

More generally, if F is a field and K (F) the class of all algebraically closed fields
containing F , then any formula with parameters from F is equivalent modulo K (F)
to a quantifier free formula with parameters from F .

Proof (Sketch of proof). These statements can be seen as translations in model-
theoretic terms of Chevalley’s Theorem which says that the projection of a con-
structible set is again constructible. I will only explain this for the first assertion.
As already observed, a quantifier free formula ϕ(ξ ) (without parameters) corre-
sponds to a constructible set Σϕ(ξ ) in An

Z and the tuples in Kn satisfying ϕ(ξ ) are
precisely the K-rational points Σϕ(ξ )(K) of Σϕ(ξ ). The key observation is now the fol-
lowing. Let ψ(ξ ,ζ ) be a quantifier free formula and put γ(ξ ) := (∃ζ )ψ(ξ ,ζ ), where
ξ = (ξ1, . . . ,ξn) and ζ = (ζ1, . . . ,ζm). Let Ψ := ψ(K) be the subset of Kn+m defined
by ψ(ξ ,ζ ) and let Γ := γ(K) be the subset of Kn defined by γ(ξ ). Therefore, if we
identify Kn+m with the collection of K-rational points of An+m

K , then

Ψ = Σψ(ξ ,ζ )(K).

Moreover, if p : An+m
K →An

K is the projection onto the first n coordinates then p(Ψ) =
Γ . By Chevalley’s Theorem (see for instance [15, Corollary 14.7] or [17, II. Exercise
3.19]), p(Σψ(ξ ,ζ )) (as a subset in An

Z) is again constructible, ands therefore, by our
previous discussion, of the form Σχ(ξ ) for some quantifier free formula χ(ξ ). Hence
Γ = Σχ(ξ )(K), showing that γ(ξ ) is equivalent modulo K to χ(ξ ). Since χ(ξ ) does
not depend on K, we have in fact an equivalence of formulae modulo the class K .
To get rid of an arbitrary chain of quantifiers, we use induction on the number of
quantifiers, noting that the complement of a set defined by (∀ζ )ψ(ξ ,ζ ) is the set
defined by (∃ζ )¬ψ(ξ ,ζ ), where ¬(·) denotes negation.

For some alternative proofs, see [24, Corollary A.5.2] or [28, Theorem 1.6]. ut

1.3 Łos’ Theorem

Thanks to Quantifier Elimination (Theorem 1.2.1), when dealing with algebraically
closed fields, we may forget altogether about formulae and use constructible sets
instead. However, we will not always be able to work just in algebraically closed
fields and so we need to formulate a general transfer principle for ultraproducts. For
most of our purposes, the following version suffices:

Theorem 1.3.1 (Equational Łos’ Theorem). Suppose each Aw is an R-algebra,
and let A\ denote their ultraproduct. Let ξ be an n-tuple of variables, let f ∈ R[ξ ],
and let aw be n-tuples in Aw with ultraproduct a\. Then f (a\) = 0 in A\ if and only
if f (aw) = 0 in Aw for almost all w.
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Moreover, instead of a single equation f = 0, we may take in the above statement
any system of equations and negations of equations over R.

Proof. Let me only sketch a proof of the first assertion. Suppose f (a\) = 0. One
checks (do this!), making repeatedly use of (1.1), that f (a\) is equal to the ultra-
product of the f (aw). Hence the former being zero simply means that almost all
f (aw) are zero. The converse is proven by simply reversing this argument. ut

On occasion, we might also want to use the full version of Łos’ Theorem, which re-
quires the notion of a formula as defined above. Recall that a sentence is a formula
without free variables.

Theorem 1.3.2 (Łos’ Theorem). Let R be a ring and let Aw be R-algebras. If ϕ is
a sentence with parameters from R, then ϕ holds in almost all Aw if and only if ϕ

holds in the ultraproduct A\.
More generally, let ϕ(ξ1, . . . ,ξn) be a formula with parameters from R and let aw

be an n-tuple in Aw with ultraproduct a\. Then ϕ(aw) holds in almost all Aw if and
only if ϕ(a\) holds in A\.

The proof is tedious but not hard; one simply has to unwind the definition of
formula (see [24, Theorem 9.5.1] for a more general treatment). Note that A\ is
naturally an R-algebra, so that it makes sense to assert that ϕ is true or false in A\.
Applying Łos’ Theorem to a quantifier free formula proves Theorem 1.3.1.

1.4 Ultra-rings

An ultra-ring is simply an ultraproduct of rings. Probably the first examples of ultra-
rings appearing in the literature are the so-called non-standard integers, that is to
say, the ultrapowers Z\ of Z.1 Ultra-rings will be our main protagonists, but for the
moment we only establish some very basic facts about them.

Ultra-fields. Let Kw be a collection of fields and K\ their ultraproduct, which is
again a field by 1.1.5 (or by an application of Łos’ Theorem). Any field which
arises in this way is called an ultra-field.2 Since an ultraproduct is either finite or
uncountable, Q is an example of a field which is not an ultra-field.

1.4.1 If for each prime number p, only finitely many Kw have characteristic p,
then K\ has characteristic zero.

Indeed, for every prime number p, the equation pξ −1 = 0 has a solution in all
but finitely many of the Kw and hence it has a solution in K\, by Theorem 1.3.1.
We will call an ultra-field K\ of characteristic zero which arises as an ultraproduct

1 Logicians study these under the guise of models of Peano arithmetic, where, instead of Z\, one
traditionally looks at the sub-semi-ring N\, the ultrapower of N.
2 In case the Kw are finite but of unbounded cardinality, their ultraproduct K\ is also called a
pseudo-finite field; in these notes, however, we prefer the usage of the prefix ultra-, and so we
would call such fields instead ultra-finite fields
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of fields of positive characteristic, a Lefschetz field (the name is inspired by Theo-
rem 1.4.3 below); and more generally, an ultra-ring of characteristic zero given as
the ultraproduct of rings of positive characteristic will be called a Lefschetz ring (see
page 159 for more).

1.4.2 If almost all Kw are algebraically closed fields, then so is K\.

The quickest proof is by means of Łos’ Theorem, although one could also give an
argument using just Theorem 1.3.1 (which is no surprise in light of Exercise 1.6.17).

Proof. For each n≥ 2, consider the sentence σn given by

(∀ζ0, . . . ,ζn)(∃ξ )ζn = 0 ∨ ζnξ
n + · · ·+ζ1ξ +ζ0 = 0.

This sentence is true in any algebraically closed field, whence in almost all Kw,
and therefore, by Łos’ Theorem, in K\. However, a field in which every σn holds is
algebraically closed. ut

We have the following important corollary which can be thought of as a model
theoretic Lefschetz Principle (here Falg

p denotes the algebraic closure of the p-
element field; and, more generally, Falg denotes the algebraic closure of a field F).

Theorem 1.4.3 (Lefschetz Principle). Let W be the set of prime numbers, endowed
with some non-principal ultrafilter. The ultraproduct of the fields Falg

p is isomorphic
with the field C of complex numbers, that is to say, we have an isomorphism

ulim
p→∞

Falg
p
∼= C.

Proof. Let F\ denote the ultraproduct of the fields Falg
p . By 1.4.2, the field F\ is

algebraically closed, and by 1.4.1, its characteristic is zero. Using elementary set
theory, one calculates that the cardinality of F\ is equal to that of the continuum.
The theorem now follows since any two algebraically closed fields of the same un-
countable cardinality and the same characteristic are (non-canonically) isomorphic
by Steinitz’s Theorem (see [24] or Theorem 1.4.5 below). ut

Remark 1.4.4. We can extend the above result as follows: any algebraically closed
field K of characteristic zero and cardinality 2κ , for some infinite cardinal κ , is
a Lefschetz field. Indeed, for each p, choose an algebraically closed field K p of
characteristic p and cardinality κ . Since the ultraproduct of these fields is then an
algebraically closed field of characteristic zero and cardinality 2κ , it is isomorphic
to K by Steinitz’s Theorem (Theorem 1.4.5). Under the generalized Continuum Hy-
pothesis, any uncountable cardinal is of the form 2κ , and hence any uncountable
algebraically closed field of characteristic zero is then a Lefschetz field. We will
tacitly assume this, but the reader can check that nowhere this assumption is used in
an essential way.

Theorem 1.4.5 (Steinitz’s Theorem). If K and L are algebraically closed fields of
the same characteristic and the same uncountable cardinality, then they are isomor-
phic.
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Proof (Sketch of proof). Let k be the common prime field of K and L (that is to say,
either Q in characteristic zero, or Fp in positive characteristic p). Let Γ and ∆ be
respective transcendence bases of K and L over k. Since K and L have the same
uncountable cardinality, Γ and ∆ have the same cardinality, and hence there exists
a bijection f : Γ → ∆ . This naturally extends to a field isomorphism k(Γ )→ k(∆).
Since K is the algebraic closure of k(Γ ), and similarly, L of k(∆), this isomorphism
then extends to an isomorphism K→ L. ut

Ultra-rings. Let Aw be a collection of rings. Their ultraproduct A\ will be called,
as already mentioned, an ultra-ring.

1.4.6 If each Aw is local with maximal ideal mw and residue field kw :=Aw/mw,
then A\ is local with maximal ideal m\ := ulimmw and residue field k\ :=
ulimkw.

Indeed, a ring is local if and only if the sum of any two non-units is again a
non-unit. This statement is clearly expressible by means of a sentence, so that by
Łos’ Theorem (Theorem 1.3.2), A\ is local. Again we can prove this also directly, or
using the equational version, Theorem 1.3.1. The remaining assertions now follow
easily from 1.1.6. In fact, the same argument shows that the converse is also true: if
A\ is local, then so are almost all Aw.

1.4.7 If Aw are local rings of embedding dimension e, then so is A\.

Recall that the embedding dimension of a local ring is the minimal number of
generators of its maximal ideal. Hence, by assumption almost all mw are generated
by e elements xiw. It follows from 1.1.6 that m\ is generated by the e ultraproducts
xi\.

1.4.8 Almost all Aw are domains (respectively, reduced) if and only if A\ is a
domain (respectively, reduced).

Indeed, being a domain is captured by the fact that the equation ξ ζ = 0 has no
solution by non-zero elements; and being reduced by the fact that the equation ξ 2 =
0 has no non-zero solutions. In particular, using 1.1.6, we see that an ultraproduct
of ideals is a prime (respectively, radical, maximal) ideal if and only if almost all
ideals are prime (respectively, reduced, maximal).

1.4.9 If Iw are ideals in the local rings (Aw,mw), such that in (A\,m\), their
ultraproduct I\ is m\-primary, then almost all Iw are mw-primary.

Recall that an ideal I in a local ring (R,m) is called m-primary if its radical is
equal to m. Note that here the converse may fail to hold: not every ultraproduct of
mw-primary ideals need to be m\-primary (see Exercise 1.6.10).

As will become apparent later on, the following ideal plays an important role in
the study of local ultra-rings.
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Definition 1.4.10 (Ideal of infinitesimals). For an arbitrary local ring (R,m), define
its ideal of infinitesimals, denoted IR, as the intersection

IR :=m∞ :=
⋂
n≥0

mn.

The m-adic topology (see page 93) on R is Hausdorff (=separated) if and only if
IR = 0. Therefore, we will refer to the residue ring R/IR as the separated quotient
of R. In commutative algebra, the ideal of infinitesimals hardly ever appears simply
because of:

Theorem 1.4.11 (Krull’s Intersection Theorem). If R is a Noetherian local ring,
then IR = 0.

Proof. This is an immediate consequence of the Artin-Rees Lemma (for which see
[30, Theorem 8.5] or [5, Proposition 10.9]), or of its weaker variant proven in Theo-
rem 11.2.1 below. Namely, for x ∈ IR, there exists, according to the latter theorem,
some c such that xR∩mc ⊆ xm. Since x ∈ mc by assumption, we get x ∈ xm, that is
to say, x = ax with a ∈m. Hence (1−a)x = 0. As 1−a is a unit in R, we get x = 0. ut

Corollary 1.4.12. In a Noetherian local ring (R,m), every ideal is the intersection
of m-primary ideals.

Proof. For I ⊆ R an ideal, an application of Theorem 3.3.4 to the ring R/I shows
that I is the intersection of all I +mn, and the latter are indeed m-primary. ut

Most local ultra-rings have a non-zero ideal of infinitesimals.

1.4.13 If Rw are local rings with non-nilpotent maximal ideal, then the ideal of
infinitesimals of their ultraproduct R\ is non-zero. In particular, R\ is not
Noetherian.

Indeed, by assumption, we can find non-zero aw ∈ mw (let us for the moment
assume that the index set is equal to N) for all w. Hence their ultraproduct a\ is
non-zero and lies inside IR\

.

Ultra-exponentation. Let A\ be an ultra-ring, given as the ultraproduct of rings Aw.
LetN\ be the ultrapower of the natural numbers, and let α∈N\ with approximations
αw. The ultra-exponentation map on A with exponent α is given by sending x ∈ A
to the ultraproduct, denoted xα, of the xαw

w , where xw is an approximation of x. One
easily verifies that this definition does not depend on the choice of approximation
of x or α. If A is local and x a non-unit, then xα is an infinitesimal for any α in N\

not in N. In these notes, the most important instance will be the ultra-exponentation
map obtained as the ultra-product of Frobenius maps. More precisely, let A\ be a
Lefschetz ring, say, realized as the ultraproduct of rings Ap of characteristic p (here
we assumed for simplicity that the underlying index set is just the set of prime
numbers, but this is not necessary). On each Ap, we have an action of the Frobenius,
given as Fp(x) := xp (for more, see §8.1).
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Definition 1.4.14 (Ultra-Frobenius). The ultraproduct of these Frobenii yields an
endomorphism F\ on A\, called the ultra-Frobenius, given by F\(x) := xπ, where
π ∈ N\ is the ultraproduct of all prime numbers.

1.5 Algebraic definition of ultra-rings

Let Aw, for w ∈W , be rings with Cartesian product A∞ := ∏w Aw and direct sum
A(∞) :=

⊕
Aw. Note that A(∞) is an ideal in A∞. Call an element a ∈ A∞ a strong

idempotent if each of its entries is either zero or one. For any ideal I ⊆ A∞, let I◦

be the ideal generated by all strong idempotents in I. Let P be a prime ideal of A∞,
and let ωP be the collection of D⊆W such that 1−1D ∈P, where 1D denotes the
characteristic function of D, that is to say, the strong idempotent whose entries are
one for w ∈ D and zero otherwise (note that 1 = 1W ).

1.5.1 Each ωP is an ultrafilter, which is principal if and only if the ideal P◦ is
principal, if and only if P does not contain the ideal A(∞).

Indeed, given an idempotent e, its complement 1− e is again idempotent, and the
product of both is zero. It follows that any prime ideal contains exactly one among e
and 1− e. Hence ωP also consists of those subsets D⊆W such that 1D /∈P. Since
1−1D is the characteristic function of the complement of D, it follows that either D
or its complement belongs to ωP. Moreover, if D∈ωP and D⊆E, then 1D ·1E = 1D
does not belong to P, whence neither does 1E , showing that E ∈ ωP. This proves
that ωP is an ultrafilter. It is not hard to see that if P◦ is principal, then it must be
generated by the characteristic function of the complement of a singleton, and hence
ωP must be principal (the other direction is immediate). For the last equivalence,
see Exercise 1.6.14. ut

We can now formulate the following entirely algebraic characterization of an
ultra-ring.

1.5.2 The ultraproduct of the Aw with respect to the ultrafilter ωP is equal to
A∞/P

◦, that is to say, P◦ is the null-ideal determined by ωP. Further-
more, any ultra-ring having the Aw as approximations is of this form, for
some prime ideal containing the direct sum ideal A(∞).

Let I be the null-ideal determined by ωP. If D ∈ ωP, then almost all entries of
1− 1D are zero, and hence 1− 1D ∈ I. Since this is a typical generator of P◦, we
get P◦ ⊆ I. Conversely, suppose a = (aw) ∈ I. Hence aw = 0 for all w belonging to
some D ∈ ωP. Since 1−1D ∈P◦ and a = a(1−1D), we get a ∈P◦.

Conversely, if ω is an ultrafilter with corresponding null-ideal I ⊆ A∞, then any
prime ideal P containing I satisfies I=P◦ (Exercise 1.6.13). ut

In fact, if P ⊆Q then P◦ =Q◦, showing that already all minimal prime ideals
of A∞ determine all possible ultrafilters (see Exercise 1.6.13). For the geometric
notions mentioned in the next result, see Chapter 2.
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Corollary 1.5.3. If all Aw are domains, then A\ is the coordinate ring of an ir-
reducible component of Spec(A∞). More precisely, the residue rings A∞/G, for
G ⊆ A∞ a minimal prime, are precisely the ultraproducts having the domains Aw
for approximations. Moreover, these ireducible components are then also the con-
nected components of Spec(A∞), that is to say, they are mutually disjoint.

Proof. Since the ultraproduct A\ determined by G is equal to A∞/G
◦, and a domain

by 1.4.8 or Łos’ Theorem, G◦ is also a prime ideal. By minimality, G◦ = G. To
prove the last assertion, let G1 and G2 be two distinct minimal prime ideals of A∞.
Suppose G1 +G2 is not the unit ideal. Hence there exists a maximal ideal M⊆ A∞

such that G1,G2 ⊆M, and hence

G1 =G◦1 =M◦ =G◦2 =G2,

contradiction. Hence G1+G2 = 1. This shows that any two irreducible components
of Spec(A∞) are disjoint. ut

In the following structure theorem, Z∞ := ZW denotes the Cartesian power of Z.
Any Cartesian product A∞ := ∏Aw is naturally a Z∞-algebra.

Theorem 1.5.4. Any ultra-ring is a base change of a ring of non-standard integers
Z\. More precisely, the ultra-rings with approximation Aw are precisely the rings
of the form A∞/GA∞, where G is a minimal prime of Z∞ containing the direct sum
ideal.

Proof. If P is a prime ideal in A∞ containing the direct sum ideal, then the genera-
tors of P◦ already live in Z∞, and generate the null-ideal in Z∞ corresponding to the
non-principal ultrafilter ωP. By Corollary 1.5.3, the latter ideal therefore is a mini-
mal prime ideal G ⊆ Z∞, and hence GA∞ =P◦, so that one direction is clear from
1.5.2. Conversely, again by Corollary 1.5.3, any minimal prime ideal G⊆ Z∞ is the
null-ideal determined by the ultrafilter ωG, and one easily checks that the same is
therefore true for its extension GA∞. ut

1.6 Exercises

Ex 1.6.1
Prove properties 1.1.1–1.1.7.

Ex 1.6.2
Prove 1.4.6 in detail, using only Theorem 1.3.1. Show that if pw are prime ideals in Aw, then
their ultraproduct p\ is a prime ideal in A\, and the ultraproduct of the (Aw)pw is equal to
(A\)p\ .
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Ex 1.6.3
Show that an ultrafilter on W is the same as a filter which is maximal (with respect to
inclusion) among all filters containing the Frechet filter. Recall that a filter on a set W
is a collection of non-empty sets closed under finite intersection and supersets, and that
the Frechet filter is the collection of all co-finite subsets, that is to say, all subsets whose
complement is finite.
Use this to show that any collection of subsets of W having the finite intersection prop-
erty (meaning that the intersection of finitely many is never empty) is contained in some
ultrafilter. If any finite intersection is infinite, then we can choose this ultrafilter to be non-
principal.

Ex 1.6.4
In the statement of 1.4.1, we tacitly assume that the underlying set is countable. Prove the
following more general version which works over an arbitrary infinite index set: if for each
prime number p, almost no field Kw has characteristic p, then their ultraproduct K\ has
characteristic zero, whence is a Lefschetz field.

∗Ex 1.6.5
Fill in the details in the proof of the following result due to Ax ([6]): If a polynomial map
Cn→ Cn is injective, then it is surjective.
Here we call a map φ : Cn→Cn polynomial if there exist n polynomials p1(ξ ), . . . , pn(ξ )∈
C[ξ ] in the n variables ξ := (ξ1, . . . ,ξn) such that φ(u) = (p1(u), . . . , pn(u)) for all u ∈Cn

(in the language of Chapter 2 this is just a morphism of affine space An
C to itself).

Proof. By the Pigeon Hole Principle, the result is true if we replace C by any finite field;
since Falg

p is a union of finite fields, the assertion also holds upon replacingC by Falg
p ; hence

we are done by Theorem 1.4.3. ut

Ex 1.6.6
True or false: any homomorphic image of an ultra-ring is again an ultra-ring (you may
want to take a peek at the next exercise).

Ex 1.6.7
Suppose Iw ⊆ Aw are ideals, and let I\ ⊆ A\ be their ultraproduct. Show that if Hw is a set of
generators of Iw, then the ultraproduct H\ := ulimHw generates I\. Suppose next that all Hw
are finite, say Hw = { f1w, . . . , fm(w),w}, and for each i ∈N, let fi\ be the ultraproduct of the
fiw, where we put fiw := 0 whenever m(w)< i. Let m be the supremum of all m(w) (allowing
m = ∞). Show that if m < ∞, then the fi\ for i = 1, . . . ,m generate I\. Use the example
Iw := (ξ ,ζ )wAw (with W = N) where Aw := K[ξ ,ζ ], to show that the same statement is
false if m = ∞.
Conclude that any finitely generated ideal in an ultra-ring A is an ultra-ideal. Moreover, if
I is a finitely generated ideal in a ring A, then its ultrapower in the ultrapower A\ of A is
equal to IA\. Give a counterexample to this assertion if I is not finitely generated.

Ex 1.6.8
Prove the following more general version of the last assertion in Exercise 1.6.7: let N ⊆M
be modules and let N\ and M\ be their ultrapowers. If N is finitely generated, then N\ is
equal to the submodule of M\ generated by N.
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Ex 1.6.9
Let A→ B be a finite, injective homomorphism. Show, using induction on the number of
A-algebra generators of B, that if A is an ultra-ring, then so is B.

Ex 1.6.10
Show that the ultraproduct of rings of length l is again a ring of length l (see page 42 for the
notion of length). Use this to prove 1.4.9. Give a counterexample to the converse of 1.4.9.

Ex 1.6.11
Show that if the ideal of infinitesimals in an ultraproduct of Noetherian local rings is finitely
generated, then it is zero. Give an example where the latter case occurs. Also show the
following generalization of 1.4.13: any ultraproduct of local rings of unbounded nilpotency
degree has a non-zero infinitesimal, where the nilpotency degree of a local ring (R,m) is
the largest n such that mn 6= 0 (with the understanding that it is ∞ when no power is zero).

Ex 1.6.12
By an ultra-discrete valuation ring, we mean an ultraproduct of discrete valuation rings.
Show that the ideal of infinitesimals IV of an ultra-discrete valuation ring V is an infinitely
generated prime ideal. Show that an ultra-discrete valuation ring is a valuation domain (=a
domain such that for all a in the field of fractions of V , at least one of a or 1/a belongs to
V ). Show that the separated quotient V/IV is a discrete valuation ring—in Chapter 11 we
will call this a cataproduct of discrete valuation rings.

Ex 1.6.13
Show that if I ⊆ A∞ := ∏Aw is the null-ideal determined by an ultrafilter ω , and if P is
a prime ideal containing I, then ωP ⊆ ω , whence both must be equal, and I =P◦. Show
that if P ⊆ Q are prime ideals in A∞, then P◦ = Q◦, so that they determine the same
ultraproduct.

Ex 1.6.14
Given a prime ideal P in an infinite product A∞ = ∏Aw, show that P◦ is not principal
if and only if P contains the direct sum ideal A(∞) :=

⊕
Aw, in which case it is infinitely

generated.

Ex 1.6.15
Use the characterization of 1.5.2 to prove 1.1.5 without relying on Łos’ Theorem as follows:
a Cartesian product of fields has the property that any element has an idempotent multiple
(this is basically stating that the product is von Neuman regular), and any idempotent is
strong. In particular, I = I◦ for any ideal I in the product, and the result follows from
Exercise 1.6.13.

Ex 1.6.16
Theorem 1.5.4 allows us also to give an entirely algebraic definition of the ultraproduct
of modules: show that if Mw are modules (over some rings Aw), then their ultraproduct
M\ is equal to M∞/GM∞, where G is a minimal prime ideal of Z∞ (containing the direct
sum ideal), and where M∞ is the Cartesian product of the Mw (with its natural structure of
Z∞-module).
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Additional exercises.

Ex 1.6.17
Derive Łos’ Theorem (Theorem 1.3.2) from its equational version, Theorem 1.3.1.

Ex 1.6.18
Give a counterexample to Theorem 1.4.5 if we allow the common cardinality to be
countable. Can you formulate a version which also works in the countable case?

Ex 1.6.19
Give a detailed proof of Theorem 1.4.5.

Ex 1.6.20
Let k be a field and k\ its ultrapower. Use Maclane’s criterion for separability (see
for instance [30, Theorem 26.4] or [15, Theorem A1.3]) to show that the natural
extension k→ k\ is separable.

Ex 1.6.21
Recall from model-theory that a class of structures over a language L is axioma-
tizable or first-order definable, if there exists a theory T in the language L whose
models are precisely the members of this class. Show that an axiomatizable class
is closed under ultraproducts. Deduce from this and 1.4.13 that the class of Noe-
therian rings is not first order-definable in the language of rings.

Ex 1.6.22
Show that all Aw for w ∈W are connected (=have no non-trivial idempotents) if and
only if any idempotent in the Cartesian product A∞ := ∏Aw is strong.

Ex 1.6.23
For a proper ideal I in a Cartesian product A∞, define ωI analogously as the col-
lection of all subsets D ⊆W such that 1− 1D ∈ I. Show that ωI is a filter (see
Exercise 1.6.3). Show that if I contains some power of a prime ideal, then ωI is an
ultrafilter.

Ex 1.6.24
As in Exercise 1.6.23, let I be a proper ideal in a Cartesian product A∞. The residue
ring A∞/I

◦ is called a reduced product (and I◦ is the null-ideal with respect to the
filter ωI). Show that if all Aw are reduced, then I◦ is radical.
This last property is just a special case of the following more general result due to
Chang ([24, Theorem 9.4.3]): let ϕ(ξ ) be a Horn formula in the n free variables
ξ , that is to say, a first-order formula consisting of a (possibly empty) string of
quantifiers followed by a finite conjunction of formulas of the form f = 0→ g = 0,
where f,g are finite tuples of polynomials with integer coefficients (in some quanti-
fied variables together with the free variables ξ ). Show that if aw ∈ (Aw)

n and D∈ωI

such that ϕ(aw) holds in Aw for all w ∈ D, then ϕ(a) holds in the reduced prod-
uct A∞/I

◦, where a is the product of the aw. (When applied to the Horn sentence
∀ζ : ζ 2 = 0→ ζ = 0, we get our previous assertion.)
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1.7 Project: ultra-rings as stalks

Prerequisites: sheaf-theory (for instance, [17, II.1], or the rudimentary discussion
on page 27).

Let W be an infinite set and give it the discrete topology (in which all sets are
open). Let W∨ be the Stone-Čech compactification of W consisting of all ultrafilters
on W . Embed W in W∨ (and henceforth view it as a subset) by sending an element
to the principal ultrafilter it generates.

1.7.1 Show that taking for open sets all sets of the form τ(U) for U ⊆W , where
τ(U) consists of all ultrafilters containing U , constitutes a topology on
W∨. Show that W is dense in W∨, that W∨ is compact Hausdorff, and that
any continuous map W → X into a compact Hausdorff space X factors
through W∨ (this then justifies W∨ being called a ‘compactification’).

1.7.2 Show that τ(U) is homeomorphic to U∨, for any infinite subset U ⊆W .

Using the ideas from §1.5, prove the following geometric realization of W∨. Let
B := P(W ) be the power set of W , viewed as a Boolean algebra (with addition
given by the symmetric difference, and multiplication by intersection).

1.7.3 Show that the assignment P 7→ ωP defined in §1.5 yields a homeomor-
phism between the affine scheme X := Spec(B) (in its Zariski toplogy)
and W∨ (Hint: B is isomorphic to the Cartesian power FW

2 ).

Let Aw be rings, indexed by w∈W . Define a sheaf of rings A on W by taking for
stalk Aw := Aw in each point w ∈W (note that since W is discrete, this completely
determines the sheaf A ). Let i : W →W∨ be the above embedding and let A ∨ :=
i∗A be the direct image sheaf of A under i. By general sheaf theory, this is a sheaf
on W∨.

1.7.4 Show that the stalk of A ∨ in a boundary point ω ∈W∨−W is isomorphic
to the ultraproduct ulimAw with respect to the non-principal ultrafilter ω .

Prove the following reformulation of this result in terms of schemes, using 1.7.3
and the terminology from Chapter 2. As above, we let X be the affine scheme with
coordinate ring the Boolen algebra B := P(W ).

1.7.5 Let A be a sheaf on X . If the tangent space at a point x ∈ X is infinite,
then the stalk Ax is an ultra-ring, given as the ultraproduct of the stalks
Ay at points y ∈ X having finite tangent space (with respect to the ultra-
filter given as the image of x under the homeomorphism X ∼=W∨). Show
that the set of all points of X with infinite tangent space is a closed subset
with ideal of definition given by the ideal of finite subsets.



Chapter 2
Commutative Algebra versus Algebraic
Geometry

Historically, algebraic geometry was developed over the complex numbers,C. How-
ever, because of its algebraic nature, it can be carried out over any algebraically
closed field. Therefore, in this chapter, we fix an algebraically closed field K, and
we let A := K[ξ ] be the polynomial ring in n indeterminates ξ := (ξ1, . . . ,ξn). We
start with taking a look at classical or ‘naive’ algebraic geometry. Gradually we then
move to an algebraization of the concepts (Hilbert-Noether theory, local properties,
singularities, . . . ), which we will study subsequently by means of the algebraic the-
ory developed in the next chapters. Obviously, this chapter can only be a summary
treatment of the vast subject that is Algebraic Geometry. It is intended mainly to
provide some background for the algebraic topics discussed later in these notes.

2.1 Classical algebraic geometry

Affine space. One defines affine n-space over K to be the topological space whose
underlying set is Kn, and in which the closed sets are the algebraic sets. Recall that
by an algebraic set we mean any solution set of a system of polynomial equations.
More precisely, given a subset Σ ⊆ A, let V(Σ) be the collection of all tuples u such
that p(u) = 0 for all p ∈ Σ . Note that if I := ΣA denotes the ideal generated by Σ ,
then V(I) = V(Σ), so that in the definition, we may already assume that Σ is an
ideal. In particular, if p1, . . . , ps are generators of I, then V(I) = V((p1, . . . , ps)A) =
V(p1, . . . , ps). A subset of the form V(I), for some ideal I ⊆ A, is then what is
called an algebraic set (also called a Zariski closed subset). That this forms indeed
a topology on Kn, called the Zariski topology, is an immediate consequence of the
next lemma (the proof of which is deferred to the exercises):

Lemma 2.1.1. Given ideals I,J, In ⊆ A, we have

1. V(1) = /0, V(0) = Kn;
2. V(I)∪V(J) = V(I · J) = V(I∩ J);
3. V(I1)∩V(I2)∩·· ·= V(I1 + I2 + . . .),

17
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where in the last equality, the intersection and the sum are allowed to be infinite as
well.

Conversely, given a closed subset V ⊆ Kn, we define the ideal of definition of V ,
denoted I(V ), to be the collection of all p ∈ A such that p is identical zero on V . We
have:

2.1.2 The set I(V ) is a radical ideal, V(I(V ))=V , and I(V ) is maximal among
all ideals I such that V(I) =V .

Recall that an ideal I ⊆ R is called a radical ideal if xn ∈ I implies x ∈ I. This is
equivalent with R/I being reduced, that is to say, without nilpotent elements. The
radical of an ideal I, denoted rad(I), is the ideal of all x ∈ R such that some power
belongs to I. Immediately from 2.1.2 we get:

2.1.3 Every singleton in Kn is closed, and its ideal of definition is a maximal
ideal.

Indeed, let u := (u1, . . . ,un) ∈ Kn. Let mu be the ideal in A generated by the linear
polynomials ξi−ui. One verifies that the “evaluation at u” map A→ K : p 7→ p(u)
is surjective and has kernel equal to mu. Hence A/mu ∼= K, showing that mu is a
maximal ideal. Clearly, V(mu) = {u}. ut

Noetherian spaces. A topological space X is called a Noetherian space if there
are no infinite strictly descending chains of closed subsets (one says: X admits the
descending chain condition on closed subsets). A topological space X is called ir-
reducible if it is not the union of two proper closed subsets. We call a subset V ⊆ X
irreducible if it so in the topology induced from X . An easy but important fact of
Noetherian spaces is:

Proposition 2.1.4. Any closed subset V of a Noetherian space X is a finite union of
irreducible closed subsets.

Proof. The argument is typical for Noetherian spaces, and often is therefore re-
ferred to as Noetherian induction. Namely, in a Noetherian space, every collection
of closed subsets has a minimal element (prove this!). Now, if the assertion is false,
let V be a minimal closed counterexample. In particular, V cannot be irreducible,
and hence can be written as V =V1∪V2, with V1,V2  V closed. By minimality, each
Vi is a finite union of irreducible closed subsets, but then so is their union V =V1∪V2,
contradiction.

Hence any closed subset V admits an irreducible decomposition V =V1∪·· ·∪Vs
with the Vi irreducible closed subsets. We may always omit any Vi that is contained
in some other Vj, and hence arrive at a minimal irreducible decomposition. One can
show (see Exercise 2.6.2) that such a decomposition is unique (up to a renumbering
of its components), and the Vi in this decomposition are then called the irreducible
components of V .
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Definition 2.1.5 (Dimension). The dimension of a Noetherian space X is the max-
imal length1 of a chain of irreducible closed subsets (this can be infinite), and is
denoted dim(X).

2.2 Hilbert-Noether theory

To develop (classical) algebraic geometry, three results are of crucial importance.
We will prove them after first reformulating them as algebraic problems.

Hilbert’s basis theorem. Hilbert proved the following result by a constructive
method. We will provide a more streamlined version of this below.

Theorem 2.2.1. Affine n-space is a Noetherian space of dimension n.

In particular, any collection of Zariski closed subsets has a minimal element, any
chain of irreducible Zariski closed subsets has length at most n, and any Zariski
closed subset is the finite union of irreducible closed subsets. In order to prove
Hilbert’s basis theorem, we will translate it into an algebraic result (Theorem 2.3.5
below).

Nullstellensatz. We have already seen that a closed subset is given by an ideal as
the locus V(I), and conversely, to a closed subset V is associated its ideal of defini-
tion I(V ). The next result, also due to Hilbert, describes the precise correspondence:

Theorem 2.2.2. The operator I(·) induces an (order-reversing) bijection between
(singletons of) Kn and maximal ideals of A; between closed subsets of Kn and rad-
ical ideals of A; and between irreducible closed subsets of Kn and prime ideals of
A.

More generally, if V ⊆Kn is a closed subset, and I := I(V ) its ideal of definition,
then under the above correspondence, points in V correspond to maximal ideals
containing I; closed subsets in V to radical ideals containing I; and irreducible
closed subsets of V to prime ideals containing I.

Affine varieties and coordinate rings. The ‘algebraic leap’ to make now is that the
three collections of ideals described in the second part of Theorem 2.2.2 correspond
naturally to respectively the maximal, radical and prime ideals of the ring A/I (verify
this!). We call A/I the coordinate ring of V and denote it K[V ] (see Exercise 2.6.4 for
a justification of this notation). But this then again prompts us to view V as an object
on its own, without immediate reference to its ambient affine space. Therefore, we
will call any closed subset of Kn, for some n, an affine variety2 over K, and we view
it as a topological space via the induced topology.

1 Whenever one talks about the length of a chain one means one less than the number of distinct
sets in the chain.
2 Be aware that some authors, unlike me, insist that varieties should also be irreducible.
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The previous definition brings to the fore an algebraic object closely associated
to a variety, to wit, its coordinate ring. To study it, we introduce some further ter-
minology. By an affine algebra over K, or a K-affine ring or algebra, we mean a
finitely generated K-algebra. Later on, we will work over other base rings than just
fields, so it is apt to generalize this definition already now: let Z be an arbitrary
ring. By a Z-affine ring or algebra we mean a finitely presented Z-algebra, that is
to say, a Z-algebra of the form Z[ξ ]/I with ξ a finite tuple of indeterminates and I
a finitely generated ideal. It follows from (the algebraic version of) Theorem 2.2.1
that both our definitions agree in the case Z is a field. If Z is moreover a local ring
with maximal ideal p, then by a local Z-affine ring (or algebra) R we mean a local-
ization of a Z-affine ring with respect to a prime ideal containing p, that is to say,
R∼= (Z[ξ ]/I)P with I finitely generated and P a prime ideal of Z[ξ ] containing p. In
particular, Z→ R is a local homomorphism. By a homomorphism of Z-affine rings
A→ B, we mean a Z-algebra homomorphism making B into an A-affine algebra
(that is to say, the homomorphism A→ B itself is of finite type). Similarly, by a lo-
cal homomorphism of local Z-affine rings R→ S, we mean a local homomorphism
of Z-algebras making S into a local R-affine ring (such a homomorphism is also said
to be essentially of finite type).

Returning to our discussion about coordinate rings, we see that each K[V ] is a
reduced K-affine ring. In Exercise 2.6.6, you will show that every reduced K-affine
ring arises as a coordinate ring, and that different affine varieties have different
coordinate rings. Hence we established the following ‘duality’ between geometric
and algebraic objects:

2.2.3 Associating the coordinate ring to an affine variety yields a one-one cor-
respondence between affine varieties over K and reduced K-affine rings.

To make this into an equivalence of categories, we must define morphisms be-
tween affine varieties. First off, a morphism between affine spaces is a polynomial
map φ : Kn→ Km, that is to say, a map given by m polynomials p1(ξ ), . . . , pm(ξ ) ∈
A, sending an n-tuple u to the m-tuple

φ(u) := (p1(u), . . . , pm(u)).

Note that φ also induces a K-algebra homomorphism ϕ : B→ A by mapping ζi to
pi, where B :=: K[ζ ] and ζ := (ζ1, . . . ,ζm) are the indeterminates on Km. Now, let
V and W be affine varieties, that is to say, V is a closed subset of Kn and W a closed
subset of Km, say. Then a morphism V →W is the restriction of a polynomial map
φ : Kn→ Km for which φ(V )⊆W , which we will just denote again as φ : V →W .
Let I := I(V ) ⊆ A and J := I(W ) ⊆ B be the respective ideals of definition. We
already noticed that φ induces a K-algebra homomorphism ϕ : B→ A. One verifies
that if φ : V →W is a morphism, then ϕ(J)⊆ I, so that we get an induced K-algebra
homomorphism K[W ] = B/J → K[V ] = A/I. With this notion of morphism, 2.2.3
gives an anti-equivalence of categories (‘anti’ since the morphisms V →W yield
homomorphisms K[W ]→ K[V ] going the other way). An isomorphism of affine va-
rieties, as always, is a morphism admitting an inverse which is also a morphism. It
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follows that V →W is an isomorphism if and only if so is the K-algebra homomor-
phism K[W ]→ K[V ].

The Krull dimension of a ring R is by definition the maximal length of a chain of
prime ideals in R (see §3.1). Using Theorem 2.2.2, we therefore get:

Corollary 2.2.4. For every affine variety V , its dimension is equal to the Krull di-
mension of its coordinate ring K[V ]. ut

Noether normalization. To formulate the last of our ‘great’ theorems, we call a
morphism of affine varieties V →W a finite morphism if the induced homomor-
phism K[W ]→ K[V ] is finite (meaning that K[V ] is finitely generated as a module
over K[W ]).

Theorem 2.2.5. Each variety V admits a finite and surjective morphism onto some
affine space Kd .

Proof. We will actually prove the slightly stronger algebraic form of this statement:
any K-affine ring C (not necessarily reduced) admits a finite and injective homomor-
phism K[ζ1, . . . ,ζd ]⊆C (see 3.4.7 below). We prove this by induction on n, the num-
ber of variables ξ used to define C. Write C as A/I for some ideal I with A := K[ξ ].
There is nothing to show if I is zero, so assume f is a non-zero polynomial in I. The
trick is to find a change of coordinates such that f becomes monic in the last coor-
dinate ξn, that is to say, when viewed as a polynomial in A′[ξn], the highest degree
term of f is equal to ξ s

n , where A′ := K[ξ ′] and ξ ′ := (ξ1, . . . ,ξn−1). Such a change
of coordinates does indeed exist (Exercise 2.6.23), and in fact, can be taken to be
linear in case K is infinite (which is the case if K is algebraically closed). So we may
assume f is monic in ξn of degree s. By Euclidean division in A′[ξn], any polyno-
mial g can be written as g = f q+ r with q,r ∈ A such that the ξn-degree of r is at
most s− 1. This means that A/ f A is generated as an A′-module by 1,ξn, . . . ,ξ

s−1
n .

Let I′ := I∩A′. It follows that the extension A′/I′ ⊆ A/I is again finite. By induction,
A′/I′ is a finite K[ζ ]-module for some tuple of variables ζ := (ζ1, . . . ,ζd). Hence the
composition K[ζ ]⊆ A′/I′ ⊆ A/I =C is the desired Noether normalization of C.

We will see later (in Corollary 3.4.9) that d is actually equal to the dimension of
V . In particular, this then proves the second statement in Theorem 2.2.1 (see also
Corollary 3.4.3); the first statement will be covered in Theorem 2.3.5 below. One
calls a surjective morphism of affine varieties sometimes a cover, and hence we
may paraphrase the above result as: an affine variety has dimension d if and only
if it is a finite cover of some affine d-space.

Next, we prove the Nullstellensatz. We start with:

Corollary 2.2.6 (Weak Nullstellensatz). If E ⊆ F is an extension of fields such that
F is finitely generated as an E-algebra, then E ⊆ F is a finite extension.

Proof. By Theorem 2.2.5, we can find a finite, injective homomorphism E[ζ ] ⊆ F .
The result now follows from Lemma 2.2.7, since the only way E[ζ ] can be a field
is for ζ to be the empty tuple of variables, showing that E ⊆ F itself is finite, as
claimed.

Lemma 2.2.7. If R ⊆ F is a finite, injective homomorphism (or more generally, an
integral extension) with F a field, then R is also a field.
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Proof. Let a be a non-zero element of R. By assumption, 1/a ∈ F is integral over R,
whence satisfies an equation

(1/a)d + r1(1/a)d−1 + · · ·+ rd = 0

with ri ∈ R. Multiplying with ad , we get 1+a(r1 + r2a+ · · ·+ rdad−1) = 0, showing that
a has an inverse in R.

Proof of the Nullstellensatz, Theorem 2.2.2

We already observed (in 2.1.3) that I(u) = mu is a maximal ideal of A. So we
need to prove conversely that any maximal ideal of A is realized in this way. Let
m be a maximal ideal. By Corollary 2.2.6, the field A/m is a finite extension of K,
and since K is algebraically closed, it must in fact be equal to it. If ui denotes the
image of ξi under the composition A→ A/m ∼= K, then mu ⊆ m for u := (u1, . . . ,un),
whence both ideals must be equal as they are maximal. This proves the one-one
correspondence between Kn and the maximal ideals of A. By 2.1.2, the operator I
is injective. To prove it is surjective, we have to show that I = I(V(I)) for any radical
ideal I ⊆ A. In fact, the stronger equality

I(V(I)) = rad(I), (2.1)

holds for any ideal I ⊆ A. Equality (2.1) translates (do this!) into the fact that rad(I) is
equal to the intersection of all maximal ideals containing I. Replacing A by A/ rad(I),
we reduce to showing that the Jacobson radical of a reduced K-affine ring C is
zero (one says that C is a Jacobson ring), where the Jacobson radical of C is by
definition the intersection of all of its maximal ideals. This amounts to showing that
given any non-zero element f of C, there exists a maximal ideal not containing f .
By Theorem 2.2.5, we can find a finite, injective homomorphism B := K[ζ ]⊆C. Let

f s +b1 f s−1 + · · ·+bs = 0 (2.2)

be an integral equation of minimal degree with all bi ∈ B. By minimality, bs 6= 0. By
Exercise 2.6.23, there exists v such that bs(v) 6= 0. In other words, mv is a maximal
ideal of B not containing bs. Since mvC is not the unit ideal by Nakayama’s Lemma,
we can find a maximal ideal m of C containing mv. In particular, mv ⊆ m∩B and
hence this must be an equality by maximality. In particular, it follows then from (2.2)
that f /∈m.

This establishes the one-one correspondence between closed subsets and rad-
ical ideals. In Exercise 2.6.2 you are asked to show that I(V ) is a prime ideal if
and only if V is irreducible. This then concludes the proof of the first part of Theo-
rem 2.2.2. The second part, however, simply follows from this by identifying ideals
of A/I with the ideals of A containing I. ut

2.3 Affine schemes

There are several motivations for generalizing the classical perspective, by introduc-
ing a larger class of ‘geometric’ objects. Let us look at two of these motivations.
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Generic points. Firstly, geometers often reason by ‘general’ or ‘generic’ points.
They will for instance say that a “general point on a variety is non-singular” (see
2.5.5 below for the exact meaning of this phrase). But what is a ‘generic’ point? We
can give a topological definition:

Definition 2.3.1 (Generic point). A point x of an irreducible topological space X is
called generic if the closure of {x} is all of X .

More generally, for X an arbitrary Noetherian space, one calls x ∈ X generic, if
its closure (or more accurately, the closure of the singleton determined by x) is an
irreducible component (see page 18) of X .

In view of 2.1.3, the only closed subsets of Kn having a generic point are the
singletons themselves. So how do we get generic points? There is a simple topo-
logical construction. Given a Noetherian space X , let Irr(X) be the collection of all
irreducible closed subsets of X . Define a topology on Irr(X) by taking for closed
subsets the sets of the form Irr(V ) for V ⊆ X closed. There is a continuous map
X → Irr(X) sending a point x ∈ X to its closure (note that the closure of a singleton
is always irreducible). Exercise 2.6.7 explores how this creates plenty of generic
points.

If we apply this construction to Kn, then by Theorem 2.2.2, the resulting space
Irr(Kn) is equal to |Spec(A)|, the collection of all prime ideals of A.3 A (Zariski)
closed subset of |Spec(A)| is then a closed subset in the above defined topology, and
hence is of the form V(I), for some ideal I, where V(I) denotes the collection of
all prime ideals containing I. In particular, if p is a prime ideal, then p is the unique
generic point of V(p).

More generally, given a ring R, let |Spec(R)| be the collection of all its prime
ideals and make this into a topological space by taking for closed subsets the V(I)
for I ⊆ R. Note that each V(I) is naturally identified with |Spec(R/I)|, and often we
will equate both subsets. That this forms indeed a topology, the so-called Zariski
topology, follows by the same argument that proves Lemma 2.1.1. We call Irr(Kn)
the enhanced affine n-space. It has a unique generic point given by the zero ideal
(check this). This extends by Theorem 2.2.2 to any affine variety:

2.3.2 Given an affine variety V with coordinate ring K[V ], the space Irr(V )
is homeomorphic to |Spec(K[V ])|, where the latter carries the Zariski
topology. The generic points of the enhanced affine variety Irr(V ) then
correspond to the minimal primes of K[V ].

Henceforth, we will therefore identify Irr(V ) with |Spec(K[V ])|. The canonical
map V → Irr(V ) = |Spec(K[V ])| is given by identifying a point u∈V with its (max-
imal) ideal of definition mu; it is easily seen to be injective. A point in |Spec(K[V ])|
coming from V is called a closed point. Indeed, these are the only points which are
equal to their closure. Note that the intersection of the minimal primes of K[V ] is
equal to the zero ideal (recall that K[V ] is reduced). At this point, there is no need to
stick to K-affine rings, and so we call any topological space of the form |Spec(R)|

3 The reason for the awkward notation will become clear in the next section.
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with R any ring, an enhanced affine variety. A closed point then corresponds to a
maximal ideal of R; and a generic point to a minimal prime.

Base change Coming back to our discussion of generic points, 2.3.2 shows that
every enhanced affine variety has only finitely many generic points, which is not
what we would expect of a ‘general’ point. To get around this obstruction, we need
to work over a larger algebraically closed field L containing K. The base change of
an affine variety V over K to L is defined as the (Zariski) closure VL of V in Ln. One
shows (Exercise 2.6.10) that if V has ideal of definition I ⊆ A, then IL[ξ ] is the ideal
of definition of VL. In particular, VL is an affine variety over L, and its coordinate
ring is

L[VL] = L[ξ ]/IL[ξ ] = K[V ]⊗K L.

We use:

2.3.3 If R→ S is a (ring) homomorphism, then |Spec(S)| → |Spec(R)| given
by the rule q 7→ q∩R is a continuous map of topological spaces.

Note that we have used the slightly misleading notation J∩R for the contraction
of an ideal J ⊆ S to R (even if R is not a subset of S); by definition J ∩R is the
ideal of all r ∈ R such that the image of r in S lies inside J. Hence if ϕ denotes the
homomorphism R→ S, then J ∩R is actually ϕ−1(J). Returning to our discussion
on generic points, the natural homomorphism K[ξ ]→ L[ξ ] (called the base change)
induces a homomorphism K[V ]→ L[VL], whence a map of enhanced affine varieties

Irr(VL) = |Spec(L[VL])| → Irr(V ) = |Spec(K[V ])| .

Now, a point v ∈VL is generic with respect to K if its image under the above map is
a generic point of Irr(V ). This is equivalent with mv∩K[V ] being a minimal prime
of K[V ].

Example 2.3.4. The point with coordinates (e,π) is (probably) a generic point of the
affine plane over Qalg. Similarly, the point (0,π) is a generic point over Qalg of the
y-axis.

Using 2.3.2, we can now also prove Theorem 2.2.1 as it translates immediately
to the following algebraic result (recall that a ring is Noetherian if there exists no
infinite strictly ascending chain of ideals, or equivalently, if every ideal is finitely
generated):

Theorem 2.3.5 (Hilbert Basis Theorem–algebraic form). The polynomial ring A
over a field K in n variables is Noetherian.

Proof. We induct on n, where the case n = 0 is trivial, so that we may assume n > 0.
Let a be a non-zero ideal of A and let f ∈ a be non-zero. By Theorem 2.2.5, there
exists a finite extension B := K[ζ ]⊆ A/ f A, where ζ is a tuple of variables of length
at most n−1 (and in fact equal to n−1). By induction, B is Noetherian. Since A/ f A
is a finite B-module, it too is Noetherian (see for instance [5, Proposition 6.5]). In
particular, a(A/ f A) is finitely generated, and hence so is a (by the liftings of the
generators of a(A/ f A) together with f ).
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Nilpotent structure. A second draw-back of the classical approach is that if we in-
tersect two closed subsets, the resulting closed subset does not take into account the
finer structure of this intersection. For instance, a circle C in the affine plane with ra-
dius one and center (0,1) intersects the x-axis L in a single point, the origin O. How-
ever, if we look at equations (or, equivalently, ideals of definitions), where C is given
by I := (ξ 2+ζ 2−2ζ )A, and L by J := ζ A, then we get a system of equations which
reduces to ξ 2 = 0,ζ = 0 (equivalently, the ideal I + J = (ξ 2,ζ )A), which suggests
that we should count the intersection point O twice (accounting for the tangency of
L to C). Hence, instead of looking at the ideal rad(I+ J) = rad(ξ 2,ζ ) = (ξ ,ζ )A, or
equivalently, to the coordinate ring K[O] = A/(ξ ,ζ )A = K, we should not ‘forget’
the nilpotent structure of A/(I + J). However, enhanced affine varieties cannot cap-
ture this phenomenon. Namely, if B is an arbitrary K-affine ring, then as a topolog-
ical spaces |Spec(B)| and |Spec(Bred)| are homeomorphic, where Bred := B/nil(B)
and nil(B) := rad(0) is the nil-radical of B. In particular, |Spec(A/(I + J))| and
|Spec(K)| are the same. To resolve this problem, we have to resort to a finer struc-
ture, that of an (affine) scheme. Roughly speaking, an affine scheme is an enhanced
affine variety X together with a sheaf of functions OX . I will only provide a sketch
of the general definitions. To this end, we must first discuss Zariski open subsets.

Open subsets. Let R be a ring and f an element in R. The localization of R at f ,
denoted R f or R[1/ f ], is the ring R[ξ ]/( f ξ − 1)R[ξ ] obtained by inverting f (this
includes the degenerate case that f is zero, or, more generally, nilpotent, in which
case R f is the zero ring). Equivalently, it is the collection of all fractions r/ f n with
r ∈ R up to the equivalence relation identifying two fractions r/ f n and s/ f m, if
there exists some k such that f k−nr = f k−ms in R. This definition becomes much
more straightforward if we assume f 6= 0 and R to be a domain: R f is then the
subring of the field of fractions Frac(R) of R consisting of all fractions r/ f n with
r ∈ R. Let V := |Spec(R)| be an enhanced affine variety and let f ∈ R. Let D( f ) be
the complement of the closed subset V( f R) = |Spec(R/ f R)| of V . We refer to D( f )
as a basic open subset. Indeed, given an arbitrary open subset U , say given as the
complement of a closed subset V(I), we have

U =V −V(I) =
⋃
f∈I

D( f ). (2.3)

In particular, if R is Noetherian, then any open subset is a finite union of basic open
subsets.

2.3.6 The basic open D( f ) is homeomorphic with
∣∣Spec(R f )

∣∣, whence in par-
ticular is an enhanced affine variety.

See Exercise 2.6.15. Note that not every open subset can be realized as an (en-
hanced) affine variety: for instance the plane with the origin removed is an open
which is not affine (see Exercise 2.6.5). Here is an example of a basic open subset
with some additional structure.

Example 2.3.7. Let GL(K,n) be the general linear group consisting of all invert-
ible n× n-matrices over K. If we identify an n× n-matrix with a tuple in Kn2

,
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then GL(K,n) is the open subset D(det), where det(·) is the polynomial repre-
senting the determinant function. In particular, we may view GL(K,n) as an en-
hanced affine variety. In Exercise 2.6.16, you will show that the multiplication map
GL(K,n)×GL(K,n)→GL(K,n) is a morphism, and so is the map sending a matrix
to its inverse.

Sections. To define sections, let us first look at these on an affine variety V ⊆ Kn.
We already observed that any f ∈ K[V ] induces a function σ f : V → K : u 7→ f (u).
We call such a map a section on V . If f is identically zero, or more generally, if
f ∈ I(V ), then σ f is just the zero section. So assume f /∈ I(V ), that is to say, f is
non-zero in K[V ]. If f (u) 6= 0, then 1/ f (u) is defined. Hence 1/ f can be viewed as
a section on D( f )∩V . More generally, we see that every element of R f is a section
on D( f ).

For an arbitrary enhanced affine variety V := |Spec(R)|, the definition of a section
is more involved. We need a definition:

Definition 2.3.8 (Residue field). Given a point x ∈ V with corresponding prime
ideal px ⊆R, its residue field κ(x) is by definition the field of fractions of the domain
R/px.

Note that if R is a K-affine ring, and x a closed point, then κ(x) = K by The-
orem 2.2.2. However, in general the various residue fields are no longer the same
(they even may have different characteristic; see Exercise 2.6.12). Hence we cannot
expect a section to take values in a fixed field. Let Q(V ) be the disjoint union of all
κ(x) where x runs over all points x ∈V .

A (reduced) section σ : V →Q(V ) is a map such that σ(x)∈ κ(x) for every point
x ∈ V . Let us denote the collection of all sections on an enhanced affine variety V
by Sect(V ), which we may view as a ring, since we can add and multiply sections.
Any element f ∈ R induces a section σ f on V , simply by letting σ f (x) be the image
of f in κ(x). More generally, any element of R f induces a section on D( f ), since
f is invertible in κ(x) for x ∈ D( f ). In particular, we have a homomorphism R f →
Sect(D( f )). However, in general this map can have a kernel (see Exercise 2.6.15):

2.3.9 The kernel of R→ Sect(|Spec(R)|) is the nil-radical of R.

To define a scheme structure on V , we now have to declare, for each open subset
U ⊆ V , which sections are to be viewed as ‘continuous’ sections on U . But we
also want to incorporate nilpotent elements, which are ‘invisible’ in Sect(U) by
2.3.9. So for each open U , we define a ring Γ (U,OV ) (also denoted OV (U)) and a
surjective homomorphism Γ (U,OV )→ Sect(U). Without given all the details, we
declare Γ (V,OV ) to be R (the so-called global sections of V ), and we put

Γ (D( f ),OV ) := R f (2.4)

(note that the first case is just a special case of (2.4), by taking f = 1). For each open
U the elements of Γ (U,OV ) are still called sections on U (in fact, this is the correct
terminology in view of our discussion below on page 35).
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Sheafs.
Of course, the sections on the various open subsets of V have to be related to one
another. The correct definition is that OV has to be a sheaf on X . In general, a sheaf
of rings (or of groups, sets, . . . ) A on a topological space X is a functor associating
to each open subset U ⊆ X a ring (group, set, etc.) A (U) (also denoted Γ (U,A )),
and to each inclusion U ⊆U ′ a restriction map sending f ∈ A (U ′) to an element
f |U ∈A (U) (being a functor means, among other things, that if U ⊆U ′ ⊆U ′′ then

the composition of the restriction maps A (U ′′)→ A (U ′)→ A (U) is equal to the
restriction map A (U ′′)→ A (U)), satisfying the following two additional properties
for every open subset U ⊆ X and every open covering {Ui} of U :

1. if f ,g ∈A (U) are such that their restriction to each Ui is the same, then f = g;
2. if fi ∈ A (Ui) are given such that the restriction of fi and f j to Ui ∩U j coincide,

for all i, j, then there exists f ∈A (U) such that f |Ui
= fi for all i.

One can show that there exists a unique sheaf OV on V = |Spec(R)| for which
conditions (2.4) hold, that is to say, such that Γ (D( f ),OV ) = R f . Moreover, each
g ∈ Γ (U,OV ) then induces a section on U , that is to say, we have a homo-
morphism Γ (U,OV )→ Sect(U). In fact, this gives rise to a natural transformation
Γ (·,OV )→ Sect(·) of functors. For the ‘official’ definition of OV , see page 35 below.

The category of affine schemes. An affine scheme X = Spec(R), therefore, is an
enhanced affine variety |Spec(R)| (with R an arbitrary ring) together with a sheaf
of sections OX on |Spec(R)| satisfying (2.4), called the structure sheaf of X . Note
that we can recover R from its associated affine scheme as the ring of global sec-
tions R = Γ (X ,OX ). We often refer to R still as the coordinate ring of X . A mor-
phism Y → X between affine schemes X := Spec(R) and Y := Spec(S) is given by a
ring homomorphism R→ S: it induces a continuous map φ : |Spec(S)| → |Spec(R)|
by 2.3.3, as well as ring homomorphisms OX (U)→ OY (φ

−1(U)), for every open
U ⊆ |Spec(R)|. To define the latter, it suffices to do this on a basic open subset
D( f ), where it just the induced homomorphism R f → S f , for any f ∈ R. Observe
that ϕ−1(D( f )) is the basic open subset D( f ) in |Spec(S)|. In particular, on X , the
induced ring homomorphism between global sections is the original homomorphism
R→ S. Moreover, these homomorphisms are compatible with the restriction maps.
The morphism Y → X is called of finite type if the corresponding homomorphism
A→ B is of finite type, that is to say, if B is finitely generated as an A-algebra. Note
that any K-affine ring R induces a morphism X := Spec(R)→ Spec(K) of finite type,
sometimes called the structure map of X . Note that the underlying set of Spec(K)
is just a singleton, and hence |X | → |Spec(K)| is the trivial map. One additional
advantage to this formalism is that there is no need anymore to have K algebraically
closed: we can define affine schemes of finite type over any field, and even over any
base ring. Generalizing 2.2.3 we now get:

2.3.10 Associating to an affine scheme X its ring of global sections Γ (X ,OX )
induces an anti-equivalence of categories between the category of affine
schemes and the category of rings. Under this anti-equivalence, affine
schemes of finite type over a field K correspond to K-affine rings.

Here is one more reason why we should work with the enhanced space of all
prime ideals of a ring, not just its maximal ideals: namely, in general the contraction
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of a maximal ideal, although prime, need not be maximal. For instance in K[[ξ ]][ζ ]
the ideal generated by ξ ζ − 1 is maximal as its residue ring is the field K((ξ ))
of Laurent series. However, its contraction to K[[ξ ]] is the zero ideal. In classical
algebraic geometry, this complication however is absent:

Proposition 2.3.11. If Y → X is a morphism of finite type of affine schemes of finite
type over K, then the image of a closed point is again closed.

Proof. The algebraic translation says that if C→ D is a K-algebra homomorphism
of K-affine rings, and if n ⊆ D is a maximal ideal, then so is m := n∩C. To prove
this, note that D/n is again a K-affine ring, whence K ⊆ D/n is finite by Corol-
lary 2.2.6. Since A/m is a subring of D/n, it is also finite over K, whence an Artinian
domain, or, in other words, a field.

Intersections of closed subschemes. Returning to our discussion on intersections,
the correct way of viewing the intersection of two affine varieties V,W ⊆ Kn with
respective ideals of definition I := I(V ) and J := I(W ) is as the affine scheme
Spec(A/(I + J)). To define this also for arbitrary affine schemes, we must make
precise what it means to be a ‘subscheme’. The next result gives an indication of
what this should mean (its proof is relegated to Exercise 2.6.17).

Lemma 2.3.12. Let X := Spec(R) be an affine scheme and let V be a closed subset
of |X |. If I ⊆ R is an ideal such that V(I) = V , then Spec(R/I) is an affine scheme
with underlying set equal to V .

The ‘smallest’ scheme structure on V is given by the ideal I (V ) obtained by
intersecting all prime ideals in V . More precisely, if Y is an affine scheme with
|Y |=V , then there exists an injective morphism Spec(R/I (V ))→ Y . ut

One refers to Spec(R/I (V )) as the induced reduced scheme structure on V . Note
that I (V ) is a radical ideal, and that any ideal I such that V(I) =V satisfies rad(I) =
I (V ). More generally, we define a closed subscheme of an affine scheme X :=
Spec(R) as an affine scheme of the form Y := Spec(R/I), for some ideal I ⊆ R. By
the previous lemma, the underlying set |Y | is a closed subvariety of the underlying
set |X |. Moreover, the inclusion Y ⊆ X is a morphism of affine schemes, called a
closed immersion. In analogy with vector spaces, we call the collection of all closed
subschemes of an affine scheme X the Grassmanian of X and denote it Grass(X).
We can define a (partial) order on Grass(X) by letting Y ⊆ Z stand for ‘Y is a closed
subscheme of Z’. It is important to note that in spite of the notation, Y ⊆ Z does not
just mean an inclusion of underlying sets. In fact, if I and J are the ideals of R such
that Y = Spec(R/I) and Z = Spec(R/J), then Y ⊆ Z if and only if J ⊆ I. For this
reason, we also define the Grassmanian Grass(R) of a ring R as the collection of
all its ideals, ordered by reverse inclusion. Hence there is a one-one correspondence
between Grass(R) and Grass(Spec(R)).

Given two closed subschemes Yk := Spec(R/Ik) of X , for k = 1,2, we now define
their scheme-theoretic intersection Y1 ∩Y2 as the closed subscheme Spec(R/(I1 +
I2)). In particular, Y1 ∩Y2 ⊆ Y1,Y2. In fact, intersection is the minimum (or join)
operation in the Grassmanian Grass(X). Note that we have an identity
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R/(I1 + I2)∼= R/I1⊗R R/I2.

This prompts a further definition:

Fiber products. Given two morphisms of affine schemes Y1→ X and Y2→ X , we
define the fiber product of Y1 and Y2 over X to be the affine scheme

Y1×X Y2 := Spec(S1⊗R S2)

where R = Γ (OX ,X) and Sk = Γ (Yk,OYk) are the corresponding rings. By Exer-
cise 2.6.26, the fiber product is in fact a product (in the categorical sense) on the
category of affine schemes over X (see below for more on this category). Note that
our previous definition of scheme-theoretic intersection is a special case, where the
two morphisms are just the closed immersions Yk ⊆ X . Put differently, the intersec-
tion of two closed subschemes Yk ⊆ X is just their fiber product:

Y1∩Y2 = Y1×X Y2.

Relative schemes.
The formalism of schemes immediately allows one to relativize the notion of a

scheme in the following sense. Let Z be a ring. An affine scheme over Z or affine
Z-scheme is then simply an affine scheme Spec(R) given by a Z-algebra R, together
with the canonical morphism Spec(R)→ Spec(Z) (induced by the natural homomor-
phism Z → R). A morphism of affine Z-schemes Spec(S)→ Spec(R), for some Z-
algebra S, is then determined by a Z-algebra homomorphism R→ S. Note that this
gives rise to a commutative diagram

�
�
�
�
�
��

A
A
A
A
A
AU-

Spec(Z)

Spec(S) Spec(R)

(2.5)

of morphisms of affine schemes. Of course, if we take Z = Z, we recover the cat-
egory of all affine schemes (since any ring homomorphism is a Z-algebra homo-
morphism). We say that an affine scheme Spec(R) is of finite type over Z, if the
morphism Spec(R)→ Spec(Z) is of finite type, that is to say, if R is of the form Z[ξ ]/I
for some finite tuple of indeterminates ξ and some ideal I. Recall that we called
such an algebra Z-affine if I is moreover finitely generated. This double usage of
the term ‘affine’ will hopefully not cause too much confusion.

Fibers. A morphism of affine schemes φ : Y → X can also be viewed as a family
of affine schemes: for each point x ∈ X , the fiber φ−1(x) admits the structure of an
affine scheme as follows. If R→ S is the corresponding ring homomorphism and p
the prime ideal corresponding to x, then

φ
−1(x)∼= |Spec(Sp/pSp)| . (2.6)
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In view of this, we call Spec(Sp/pSp) the (scheme-theoretic) fiber of φ at p. Refor-
mulated in the terminology of fiber products, (2.6) says that

φ
−1(x) = Y ×X Spec(κ(x)) (2.7)

(recall that κ(x) is the residue field of x); see Exercise 2.6.13 for the proofs.

Example 2.3.13. The family of all circles is encoded by the following morphism.
Let Y be the hypersurface in A5

K given by the equation

p := (ξ −u)2 +(ζ − v)2−w2 = 0,

let X := A3
K , and let φ : Y → X be induced by the projection K5 → K3 : 7→

(ξ ,ζ ,u,v,w) 7→ (u,v,w), that is to say, given by the natural K-algebra homomor-
phism

K[u,v,w]→ K[ξ ,ζ ,u,v,w]/pK[ξ ,ζ ,u,v,w].

If P is a closed point of X corresponding to a triple (a,b,r)∈K3, that is to say, given
by the maximal ideal mP = (u−a,v−b,w− r)K[u,v,w], then φ−1(P) is isomorphic
to the circle with center (a,b) and radius r.

Rational points.
Recapitulating, given an affine variety V ⊆ Kn, we have embedded it as a dense

subset of the enhanced affine variety Irr(V ), which in turn is the underlying set of
the affine scheme X := Spec(K[V ]). Since K[V ] is a K-algebra, X is in fact an affine
K-scheme. We can recover V from X as the collection of K-rational points, defined
as follows. Let X := Spec(R) be an affine Z-scheme and let S be a Z-algebra. An
S-rational point of X over Z is by definition a morphism Spec(S)→ X of Z-schemes,
that is to say, an element of MorZ(Spec(S),X). We denote the set of all S-rational
points of X over Z also by XZ(S), or X(S), when Z is clear from the context. In other
words, we actually view X as a functor, namely MorZ(·,X), on the category of Z-
algebras (see Exercise 2.6.27). By definition of a morphism, we have an equality

XZ(S) = MorZ(Spec(S),X) = HomZ(R,S)

where the latter set denotes the collection of Z-algebra homomorphisms R→ S.
Returning to our example, where we take S = Z = K and R = K[V ] = A/I with I :=
I(V ), a K-rational point x ∈ X(K) then corresponds to a K-algebra homomorphism
R→ K. Now, any K-algebra homomorphism is completely determined by the image
of the variables, say ξi 7→ ui, since the image of a polynomial p is then simply p(u)
where u = (u1, . . . ,un). To be well-defined, we must have p(u) = 0 for all p ∈ I, that
is to say, u ∈ V(I) = V . Conversely, substitution by any element of V induces a
K-algebra homomorphism R → K whence a K-rational point of X . We therefore
showed that V = X(K), as claimed.

In the sequel, we will sometimes confuse the underlying set |Spec(R)| of an affine
scheme with the scheme itself, and denote it also by Spec(R).



2.4 Projective schemes 31

2.4 Projective schemes

Most schemes we will encounter are affine, and in fact, often we work with the
associated ring of global sections, or with their local rings (see §2.5). Nonetheless,
we also will need projective schemes, which are a special case of a general scheme.

The category of schemes. Roughly speaking, a scheme X is a topological space |X |
together with a structure sheaf OX of sections on |X |, with the property that there
exists an open covering {Xi} of X by affine schemes Spec(Ri) (for short, an open
affine covering) such that Γ (Xi,OX ) = Ri. Put differently, a scheme is obtained by
gluing together affine schemes (for a more precise definition, consult any textbook
in algebraic geometry, such as [17] or [27]). A morphism of schemes f : Y → X is
a continuous map |Y | → |X | of underlying spaces which is ‘locally a morphism of
affine schemes’ in the sense that there exist open affine coverings {Yi} and {Xi} of Y
and X respectively such that f maps each |Yi| inside |Xi| thereby inducing for each i
a morphism Yi→ Xi of affine schemes. If U ⊆ X is any open, then we define a sheaf
of sections OU := OX |U on U by restriction: for W ⊆U open, let Γ (W,OU ) be the
ring of all sections OX (W ) on W . From the definitions (not all of which have been
stated here), the next result follows almost immediately.

2.4.1 An open U ⊆ X in a scheme X together with the restriction OU is again a
scheme, and the embedding U ⊆ X is a morphism of schemes, called an
open immersion.

For example, the ‘punctured plane’ D ⊆ A2
K obtained by removing the origin, is

a scheme. One can show that Γ (D,OD) = K[ξ ,ζ ], showing that D is not affine (see
Exercise 2.6.5).

Here is an example of an actual gluing together of two affine schemes. Let Xk :=A1
K

for k = 1,2 be two copies of the affine line, and let U ⊆ Xk be the open obtained by
removing the origin. Note that U is again affine, namely equal to Spec(K[ξ ,ξ−1]).
Let X be the result of gluing together X1 and X2 along their common open subset
U . The resulting scheme is called the affine line with the origin doubled . It requires
some more properties of schemes to see that it is in fact not affine. A more clever
choice of gluing the above data together leads to the projective line, as we will now
explain.

Projective varieties. To discuss projective schemes, let us first introduce projec-
tive n-space over K as the set of equivalence classes Kn+1 \{0}/≈, where u≈ v if
and only if there exists a non-zero k ∈ K such that u = kv. An equivalence class of
an n+ 1-tuple u = (u0, . . . ,un), that is to say, a point in projective n-space, will be
denoted ũ = (u0 : u1 : · · · : un). Alternatively, we may view projective n-space as the
collection of lines in affine n+ 1-space going through the origin. The relevant al-
gebraic counterpart, in fact the homogeneous coordinate ring of projective n-space,
is the polynomial ring Ã := K[ζ0, . . . ,ζn]. However, Ã cannot be viewed as ring of
sections, for given p∈ Ã, we can no longer unambiguously evaluate it at a projective
point ũ. Nonetheless, if p is homogeneous, say of degree m, then p(ku) = km p(u),
so that p vanishes on some n+1-tuple if and only if it vanishes on all n+1-tuples



32 2 Algebra versus Geometry

≈-equivalent to it. Hence, for a given projective point ũ, it makes sense to say that
it is a zero of the homogeneous polynomial p, if p(u) = 0.

We can now make projective n-space into a topological space by taking for closed
subsets the sets of the form Ṽ(I), where Ṽ(I) is the collection of all projective points
ũ that are a zero of each homogeneous polynomial in the ideal I. The analogue of
Lemma 2.1.1 also holds, so that we get indeed a topology. Any closed subset of
projective n-space is called a projective variety. Given such a closed subset V of
projective n-space, we define its ideal of definition Ĩ(V ) as the ideal generated by all
homogeneous forms p ∈ Ã that vanish on V , and we call Ã/Ĩ(V ) the homogeneous
coordinate ring of V , denoted K̃[V ]. Note that Ĩ(V ) is a homogeneous ideal (an ideal
I is called homogeneous, if p ∈ I implies that every homogeneous component of p
lies in I too).

2.4.2 The homogeneous coordinate ring K̃[V ] of a projective variety V is a
graded ring, and V has dimension equal to dim(K̃[V ])−1.

Recall that a ring S is called a graded ring, if it admits a direct sum decomposition
S =⊕iSi with each Si an additive subgroup (called the i-th graded or homogeneous
part of S) with the additional condition that Si · S j ⊆ Si+ j (meaning that if a ∈ Si
and b ∈ S j, then ab ∈ Si+ j). Here the index set of all i can in principal be any
ordered, Abelian (semi-)group, but for our purposes, we will only work with N-
graded rings (with an occasional occurrence of a Z-graded ring). In an N-graded
ring S, the zero-th part S0 is always a subring of S, and S+ := ⊕i>0Si is an ideal
such that S/S+ ∼= S0. In case S = K̃[V ], then S0 = K, and S is generated over S0 by
finitely many linear forms. An N-graded ring with these two properties is called a
standard graded algebra (also called a homogeneous graded ring). In particular, S+
is then a maximal ideal, called the irrelevant maximal ideal. The terminology comes
from the fact that Ṽ(S+) = /0. For example, if S = Ã viewed as a (standard) graded
K-algebra, then (ζ0, . . . ,ζn)S is its irrelevant maximal ideal.

Projective schemes. To define enhanced projective varieties, let S = ⊕iSi be a
standard graded K-algebra (for this construction to work, K = S0 need not be al-
gebraically closed—although we will not treat this, S0 does not even need to be a
field), and define |Proj(S)| to be the collection of all homogeneous prime ideals of
S not containing S+. In analogy with the affine case, we get a topological space by
taking as closed subsets the subsets Ṽ(I) of all homogeneous prime ideals contain-
ing the ideal I, for various (homogeneous) ideals I. If V is a projective variety and
S := K̃[V ] its projective coordinate ring, then V embeds in |Proj(S)| by mapping a
projective point ũ to its ideal of definition Ĩ(ũ). The latter is indeed a (homoge-
neous) prime ideal, generated by the linear forms uiζ j−u jζi for all i < j. As before,
(the image of) V is dense in |Proj(S)|, so that any projective variety determines a
unique enhanced projective variety. Conversely, every (enhanced) projective variety
is a closed subset of some (enhanced) projective space, since any standard graded
K-algebra is of the form Ã/I for some homogeneous ideal I (and some appropriate
choice of n). Unfortunately, unlike the affine case, non-isomorphic standard graded
algebras might give rise to isomorphic (enhanced) projective varieties.
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Finally, we define the projective scheme associated to S, denoted as ProjS, as the
scheme with underlying set |Proj(S)| and with structure sheaf OX , roughly speaking,
‘induced by S’. Let me only explain this, and then still omitting most details, for
projective n-space Pn

K := Proj(Ã). Once more we must turn our attention to open
subsets. Similarly as in the affine case, given a homogeneous element f ∈ Ã of
degree m, we define the basic open D̃( f ) as the complement of Ṽ( f Ã). As before,
these basic opens form a basis for the topology. Define Γ (D̃( f ),OPn

K
) to be the

graded localization Ã( f ), defined as the collection of all fractions of the form s :=
p/ f l with p homogeneous of degree ml. Put differently, Ã( f ) is the degree zero
part of the Z-graded localization Ã f . Since we are trying to construct a structure
sheaf, it should consist of sections, and this is indeed the case. Namely, given ũ
such that f (ũ) 6= 0, the value s(u) is independent from the choice of representative
of the projective point ũ, for s a section as above: if v≈ u, say v = ku, then s(v) =
kml p(u)/(km f (u))l = s(u). Hence we can define s(ũ) := s(u), so that Γ (D̃( f ),OPn

K
)

consists indeed of sections on D̃( f ).

2.4.3 Each basic open D̃( f ) with f a non-zero homogeneous form is homeo-
morphic to the enhanced affine variety

∣∣Spec(Ã( f ))
∣∣.

Indeed, define a map φ : D̃( f )→
∣∣Spec(Ã( f ))

∣∣ by sending a homogeneous prime
ideal p not containing f to the ideal φ(p) := pÃ f ∩ Ã( f ). One checks that φ(p) is
indeed a prime ideal. We leave it as an exercise (see 2.6.15) to show that this map is
a homeomorphism. In particular, if we let f be one of the variables, say ζ0 to make
our notation easy, then one checks that A∼= Ã(ζ0) by sending ξi to ζi/ζ0. Hence each
D̃(ζi) has affine n-space as underlying set. We can now make Pn

K into a scheme by
gluing together the n+ 1 affine schemes Spec(Ã(ξi))

∼= An
K (again we must leave

details to more specialized works). A similar construction applies to any standard
graded algebra S, thus defining the scheme structure on Proj(S).

Proposition 2.4.4. For any projective scheme X := Proj(S) and any homogeneous
element f ∈ S, we have Γ (D̃( f ),OX ) = S( f ). Moreover, Γ (X ,OX ) = K.

Proof. The last assertion is a special case of the first by taking f = 1, since then
S(1) = S0 = K. The first assertion is basically how we defined the scheme structure
on X .

The last assertion shows that unlike in the affine case, the global sections on a
scheme in general do not determine the scheme. In fact, two non-isomorphic graded
K-algebras can give rise to isomorphic projective schemes, so that even the ‘coor-
dinate ring’ S is not determined by the scheme (but also depends on the embedding
of X as a closed subscheme of some Pn

K). We will have more to say about projective
schemes, and their relation to affine schemes, when we discuss singularities: see
page 59.
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2.5 Local theory

We have now associated to each geometric object (be it an affine variety, a projective
variety or a scheme) an algebraic object, its coordinate ring, or more precisely, a
collection of rings, the sheaf of sections on each open subset. If x is a closed point
(that is to say, {x} is closed) of an affine scheme X := Spec(R), then {x} itself is
an affine scheme by Lemma 2.3.12, with associated ring κ(x) = R/mx, the residue
field of x. Put pedantically, x = Spec(κ(x)). Clearly, this point of view ignores the
embedding {x} ⊂ X , and hence gives us no information on the nature of X in the
neighborhood of x.

Local rings. We therefore introduce the local ring of X at an arbitrary point x,
denoted OX ,x, as the ring of germs of sections at x. This means that a typical element
of OX ,x is a pair (U,σ) with U an open containing x and σ ∈ Γ (U,OX ), modulo the
equivalence relation (U,σ) ≈ (U ′,σ ′) if and only if there exists a common open
x ∈U ′′ ⊆U ∩U ′ such that σ and σ ′ agree on U ′′.

Recall from page 27 that part of OX being a sheaf is the fact that for each inclusion
U ′ ⊆ U , we have a restriction homomorphism Γ (U,OX )→ Γ (U ′,OX ). Hence the
Γ (U,OX ) together with the restriction homomorphisms form a direct system, and
we can now state the previous definition more elegantly as

OX ,x = lim−→
x∈U

Γ (U,OX ). (2.8)

Unlike the ring of sections on an arbitrary open, the local ring at a point has a
very concrete description:

Proposition 2.5.1. If X := Spec(R) is an affine scheme, and x a point in X with
corresponding prime ideal px ⊆ R, then OX ,x = Rpx . In particular, OX ,x is a local
ring with residue field equal to the residue field κ(x) of x.

Proof. To simplify the proof, I will assume that R is moreover a domain (the general
case is not much harder; see Exercise 2.6.31). In this case, each Γ (U,OX ) is a
subring of the field of fractions Frac(R) and the direct limit (2.8) is simply a union.
Since the D( f ) are a basis of opens, it suffices to only consider the contributions
in this union given by the U of the form D( f ) with f /∈ px. Hence, in view of (2.4),
the local ring OX ,x is the union of all R f with f /∈ px, which is easily seen to be the
localization Rpx . The last assertion is immediate from the definition of the residue
field (see Definition 2.3.8).

The maximal ideal of OX ,x, that is to say, pxOX ,x, will be denoted mX ,x.

Tangent spaces. The local ring of a point x captures quite a lot of information of
the geometry of X near x. For instance, one might formally define the tangent space
TX ,x at x as the the dual of the κ(x)-vector space mX ,x/m

2
X ,x. Without proof we state

the following (for a proof see for instance [27, Lemma 6.3.10] or [17, I. Theorem
5.3]):
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Theorem 2.5.2. Let X := Spec(R) be an affine scheme of finite type over K and
assume R is a domain (whence X is irreducible). Then there exists a non-empty
open U ⊆ X such that the tangent space TX ,x has dimension equal to the dimension
of X, for every closed point x ∈U.

Under the stated conditions, the local ring OX ,x of x has the same dimension as X
(see Exercise 3.5.17). The dimension of this local ring, even if x is not assumed to
be a closed point, is called the local dimension of X at x, or put less accurately, the
dimension of X in the neighborhood of x. Immediate from Nakayama’s Lemma, we
get:

2.5.3 The embedding dimension of the local ring OX ,x of a point x on an affine
scheme X , that is to say, the minimal number of generators of the maxi-
mal ideal mX ,x, is equal to the dimension of its tangent space TX ,x.

It follows that the dimension of the tangent space of an arbitrary point is always
at least the local dimension at that point. Points were this is an equality are special
enough to deserve a name (we shall return to this concept and study it in more detail
in §4 below):

Definition 2.5.4 (Non-singular point). A point x on an affine scheme X := Spec(R)
is called non-singular if its tangent space TX ,x has the same dimension as the local
dimension of X at the point. A point where the dimension inequality is strict is called
a singularity.

Returning to a phrase quoted on page 22, we can now prove:

2.5.5 An affine variety is non-singular at its generic points.

Indeed, by 2.3.2, a generic point P of V corresponds to a minimal prime ideal g of
B := K[V ]. Since B is reduced, Bg is a reduced local ring of dimension zero, whence
a field (see our discussion on page 42). Hence the maximal ideal of OV,P = Bg

is zero, whence TV,P = 0, and the embedding dimension of Bg is also zero. More
generally, this proves that if B is a reduced ring, then the generic points of Spec(B)
are non-singular. This also implies that any K-generic point of VL, where VL denotes
the base change of V over an algebraically closed overfield L of K (see page 24), is
non-singular, but the proof requires some deeper results beyond the scope of these
notes.

Continuous sections.
We can now give a better definition of a section on an open of an affine scheme

X := Spec(R). Instead of letting a section take values in Q(|X |), the disjoint union
of all residue fields, we should take for target the disjoint union Loc(X) of all local
rings OX ,x with x ∈ X : a (generalized) section on an open U ⊆ X is then a map
σ : U → Loc(X) such that σ(x) ∈ OX ,x for all x ∈ X . With this new notion we can
now formally define Γ (U,OX ) for an arbitrary open U as the set of all continuous
sections on U , where we call a section σ continuous if it is locally represented by
a fraction, that is to say, if for each x ∈U , we can find an open U ′ ⊆U containing x,
and elements a, f ∈ R such that, for all y ∈U ′, in OX ,y, the element f is a unit and
σ(y) = a/ f .
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Stalks.
One can extend the concept of a local ring to arbitrary schemes. This is just a

special case of a stalk Ax of a sheaf A at a point x on a topological space X ,
defined similarly as

Ax := lim−→
x∈U

Γ (U,A ).

However, even if A is a sheaf of rings, Ax need not be a local ring, but it is so if X
is a scheme and A = OX its structure sheaf. An argument similar to the one in the
proof of Proposition 2.5.1 yields:

Proposition 2.5.6. Let X := Proj(S) be a projective scheme and let x be a point of
X corresponding to the homogeneous prime ideal px. The local ring OX ,x is equal to
the degree zero part S(px) of the localization Spx .

2.6 Exercises

Ex 2.6.1
Verify Lemma 2.1.1. Show that the same properties hold for the operation V(·) on any affine
scheme, and for the operation Ṽ(·) on any projective scheme.

Ex 2.6.2
Show that if V1 ∪ ·· · ∪Vs = V ′1 ∪ ·· · ∪V ′t are two minimal irreducible decompositions of a
Noetherian space V , then s = t, and after renumbering, Vi =V ′i for all i.
Show that for a closed subset V ⊆ Kn, its ideal of definition I(V ) is prime if and only if V
is irreducible.

Ex 2.6.3
Show that the Zariski topology on Kn is compact Hausdorff. More generally, any affine
variety is compact Hausdorff. Hint: you could use 2.3.6.

Ex 2.6.4
Let V ⊆ Kn be a variety and let I := I(V ) be its ideal of definition. Every p ∈ A induces a
polynomial map Kn→ K by the rule u 7→ p(u). Show that the collection of restrictions p|V
of polynomial maps on V is in one-one correspondence with the coordinate ring K[V ] of V .

Ex 2.6.5
Show that the punctured plane K2 \ {O} (where O denotes the origin), is not an affine
variety, for if it were, then its ideal of definition would be zero, contradiction. In fact, by the
discussion on page 31 there is a scheme D with underlying set this punctured plane. It can
be realized as the union of the two affine opens D(ξ ) and D(ζ ) of A2

K , where A := K[ξ ,ζ ]
is the coordinate ring of A2

K . Show that Γ (D,OD) = Aξ ∩Aζ = A. Conclude that D is not
affine.
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Ex 2.6.6
Prove 2.2.3 in detail. In particular, given a reduced K-affine ring B, construct an affine
variety whose coordinate ring is B. Prove that the correspondence in 2.2.3 induces an anti-
equivalence of categories. In particular, show that if two affine varieties are isomorphic,
then so are their coordinate rings. Using this equivalence, show that a parabola is isomor-
phic to a straight line.

Ex 2.6.7
Show that if X is Noetherian, then Irr(X) is a topological space in which every irreducible
closed subset has a generic point; if X is moreover Hausdorff, then every irreducible closed
subset has a unique generic point. In particular, in the latter case, the map X → Irr(X) is
an embedding, and (the image of) X is dense in Irr(X).

Ex 2.6.8
Let K ⊆ L be an extension of algebraically closed fields. Show that a point u∈ Ln is generic
over K if and only if K(u) has transcendence degree n over K. This shows that generic
points are plentiful. Now explain the enigmatic adverb ‘probably’ used in Example 2.3.4.

Ex 2.6.9
Show that if R is Noetherian, then the associated enhanced affine variety |Spec(R)| is also
Noetherian. It is irreducible if and only if R has a unique minimal prime ideal (and if R is
moreover reduced, this is then equivalent to R being a domain). The Krull dimension of R
is equal to the dimension of |Spec(R)|.
Can you give an example where |Spec(R)| is Noetherian, yet R is not Noetherian?

Ex 2.6.10
Show that if K ⊆ L is an extension of algebraically closed fields and V ⊆ Kn is an affine
variety over K, then its closure in Ln is an affine variety over L with coordinate ring K[V ]⊗K
L.

Ex 2.6.11
Let R be a domain and X := Spec(R) the associated affine scheme. Let η be the (unique)
generic point of X. Show that the residue field κ(η), the local ring OX ,η at η , and the field
of fractions Frac(R) are all equal. This field is often called the function field of the scheme.

Ex 2.6.12
Calculate all residue fields of Spec(Z). What are the residue fields of Spec(R[ξ ]) for ξ a
single variable?

Ex 2.6.13
Prove that (2.6) is a homeomorphism. Use this to prove (2.7).

Ex 2.6.14
Show that a finite morphism of affine schemes has finite fibers.
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Ex 2.6.15
Prove 2.3.6, 2.3.9 and 2.4.3.

Ex 2.6.16
Work out Example 2.3.7 in detail.

Ex 2.6.17
Prove Lemma 2.3.12.

Ex 2.6.18
Show that an ideal I in a graded ring S is a homogeneous ideal if and only if it is generated
by homogeneous elements. For an arbitrary ideal I, let Ĩ be the ideal generated by all
homogeneous components of all elements in I. Show that Ṽ(I) = Ṽ(Ĩ).

Ex 2.6.19
Prove 2.4.2 (where you might need some results from Chapter 3 to prove the dimension
equality).

Ex 2.6.20
Let V be a projective variety over K, with homogeneous coordinate ring S := K̃[V ]. Show
that Irr(V ) = |Proj(S)|.

Ex 2.6.21
Let C be the affine scheme determined by the ring

R := K[ξ ,ζ ]/(ξ 2−ζ
3)K[ξ ,ζ ],

a so-called cusp (see page 56). Let x be the origin, that is to say, the (closed) point deter-
mined by the maximal ideal (ξ ,ζ )R. Show that the tangent space TC,x has dimension two,
whereas C itself has dimension one (showing that x is singular). What about the point y
given by the maximal ideal (ξ −1,ζ −1)R?

Additional exercises

Ex 2.6.22
Show that the geometric form of the Noether normalization as stated in Theo-
rem 2.2.5 is indeed equivalent to the algebraic form formulated in the proof.

Ex 2.6.23
We want to prove the assertion in the proof of Theorem 2.2.5 that states that after
a change of coordinates, a polynomial becomes monic in one of the variables. Let
p ∈ A be a non-constant polynomial of degree s, and let ps(ξ ) be its homogeneous
part of degree s. Put p′ := p(ξ ′,1) where ξ ′ := (ξ1, . . . ,ξn−1). Show that if K is infinite,
then there exists u′ :=(u1, . . . ,un−1)∈Kn−1 such that p′(u′) 6= 0. This is clear if n−1=
1 since a non-zero polynomial has only finitely many roots. Reason by induction to
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show this also for more variables. Now define a change of coordinates ξi 7→ ξi−uiξn
and show that the image of p under this map is monic in ξn.
If K is arbitrary, show that the change of variables ξi 7→ ξi−ξ ei

n for i < n also trans-
forms p into a monic polynomial if e > s (examine the transforms of each monomial
in p).

Ex 2.6.24
Prove the following generalization of Lemma 2.2.7: if R ⊆ S is a finite (or integral)
extension of domains, then R is a field if and only if S is.

Ex 2.6.25
Show that if an algebra is generated by n elements over a field, then any of its
maximal ideals is also generated by at most n elements. Reduce first to the poly-
nomial case, and then use the Weak Nullstellensatz (Corollary 2.2.6) to show that
any maximal ideal is generated by n polynomials.

Ex 2.6.26
The product of two objects M and N in a category C is the (necessarily unique)
object M ×N together with two morphisms M ×N → M and M ×N → N (called
projections), satisfying the following universal property: if K → M and K → N are
morphisms, then there exists a unique morphism K→M×N which composed with
the two projections yield the original morphisms K → M and K → N. Show that in
the category of affine schemes over a fixed affine scheme X , the fiber product ·×X ·
is a product in the above sense.

Ex 2.6.27
Show that given an (affine) Z-scheme X , the rule assigning to a Z-algebra S the
set XZ(S) of S-rational points of X over Z, constitutes a functor on the category of
Z-algebras.

Ex 2.6.28
Show that the definition of Γ (U,OX ) as all continuous sections given on page 35
makes OX into a sheaf.

Ex 2.6.29
Prove Proposition 2.5.6.

Ex 2.6.30
Let S := K[ζ ]/ζ 2K[ζ ] be the ring of dual numbers over K (where ζ is a single vari-
able). Let X be an affine variety of finite type over K. Show that to give an S-rational
point of X over K is the same as to give a K-rational point x of X together with an
element of the tangent space TX ,x.

Ex 2.6.31
Show, without relying on Proposition 2.5.1, that if Y is a closed subscheme of X :=
Spec(R) with corresponding ideal I ⊆ R, then OY,y = OX ,y/IOX ,y for every y ∈ Y . Use
this then to derive the non-domain case in the proposition.





Chapter 3
Dimension theory

Dimension is one of these intuitive notions that our scientific mind has formalized
into an abstract concept in such diverse fields as geometry, algebra, analysis, topol-
ogy, statistics, physics, . . . Also in commutative algebra, dimension plays a primary
role, and so we study its properties first. For a ring, (Krull) dimension is defined by
means of its prime spectrum. Although at the face of it an abstract definition, it does
correspond to the intuitive notion of geometric dimension via the duality between
rings and algebraic varieties discussed in the previous chapter. We give several defi-
nitions which are equivalent, at least for Noetherian local rings. In the next chapter,
we will introduce some more ring invariants and compare them with dimension; this
will lead to several notions of singularities.

3.1 Krull dimension

Height. The height of a prime ideal p in a ring R is by definition the maximal length
of a proper chain of prime ideals inside p, and is often denoted ht(p). Hence a prime
ideal is minimal if and only if its height is zero. The supremum of the heights of
all prime ideals in R is called the (Krull) dimension of R and is denoted dim(R).
More generally, the height ht(I) of an ideal I is the minimum of the heights of all
prime ideals containing I. The following inequality is almost immediate from the
definitions (see Exercise 3.5.1).

3.1.1 For every prime ideal p⊆ R, we have an inequality

dim(R/p)+ht(p)≤ dim(R).

Almost immediate from the definitions (see Exercise 2.6.9), we get the following
generalization of Corollary 2.2.4:

41
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3.1.2 The Krull dimension of a ring R is equal to the dimension of the associ-
ated enhanced affine variety |Spec(R)|.

Dimension, although seemingly a global invariant, has a strong local character:

3.1.3 The height of a prime ideal p⊆ R is equal to the dimension of Rp. In par-
ticular, the dimension of R is equal to the supremum of the dimensions of
its localizations Rm at maximal ideals m. Similarly, the dimension of an
affine variety X := Spec(R) is equal to the supremum of the dimensions
of its local rings OX ,x at (closed) points x ∈ X .

The first assertion is proven in Exercise 3.5.5, and the second is an immediate
consequence of this (since maximal ideals have the largest height). The last assertion
then follows from Proposition 2.5.1.

Artinian rings. Recall that a ring is called respectively Noetherian or Artinian if
the collection of ideals satisfies the ascending or the descending chain condition
respectively. Without proof we state the following structure theorem for Artinian
rings (for a proof see for instance [30, Theorem 3.2] or [5, Theorems 8.5 and 8.7]):

3.1.4 Any Artinian ring R is Noetherian, and has only finitely many prime
ideals p1, . . . ,ps. Each pi is moreover maximal, so that R has dimension
zero, and R = Rp1 ⊕·· ·⊕Rps .

In fact, a ring R is Artinian if and only if it has finite length l = `(R), meaning
that any proper chain of ideals has length at most l, and there is a chain with this
length. It follows that any finitely generated R-module M also has finite length,
denoted `(M), and defined as the maximal length of a proper chain of submodules.
An Artinian ring of length one is a field. Length is a generalization of vector space
dimension; for instance, you will be asked to prove the following characterization
of length in Exercise 3.5.3:

3.1.5 If R is finitely generated (as a module) over an algebraically closed field
K, then `(R) is equal to the vector space dimension of R over K.

3.2 Hilbert series

Although we are interested in the study of local rings, it turns out that graded rings
play an important role in dimension theory. The connection between the two is pro-
vided by the graded ring Gr(R) associated to a local ring R (see page 44). So we first
study the graded case.

Let R be an Artinian local ring and let S be a standard graded R-algebra. Recall
that this means that S = ⊕i∈NSi is N-graded, the degree zero part S0 is equal to R,
and S is generated as an R-algebra by finitely many linear forms (=elements in S1).
Let M be a finitely generated N-graded S-module, meaning that M = ⊕i∈NMi and
SiM j ⊆Mi+ j for all i, j.
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3.2.1 Every Mn is a finitely generated R-module, whence in particular has finite
length.

Indeed, we may choose homogenous generators µ1, . . . ,µs of M as an S-module.
If ki is the degree of µi, then Mn = Sn−k1 µ1 + · · ·+Sn−ks µs (with the understanding
that S j = 0 for j < 0). Furthermore, if a1, . . . ,as are the linear forms generating S as
an R-algebra, then Sn is generated as an R-module by all monomials of degree n in
the ai. Therefore, Mn is finitely generated over R, and therefore has finite length.

Hilbert series. In view of 3.2.1, we can now define the Hilbert series of a finitely
generated graded S-module M, with S a standard graded algebra over an Artinian
local ring R, as the formal power series

HilbM(t) := ∑
n≥0

`(Mn)tn. (3.1)

As rings will be our primary objective in these notes, rather than modules, we will
be mainly interested in the properties of HilbS(t). However, it is more convenient to
work in the larger module setup for inductive proofs to go through. The key result
on Hilbert series is:

Theorem 3.2.2. Let S be a standard graded algebra over an Artinian local ring
R. The Hilbert series of any finitely generated S-module M is rational. In fact, for
some d = d(M)∈N, the power series (1−t)d ·HilbM(t) is a polynomial with integer
coefficients.

Proof. We will prove the last assertion by induction on the minimal number r of
linear R-algebra generators of S. If r = 0, then S =R, so that M is a finitely generated
module over an Artinian ring, whence has finite length. It follows that Mn = 0 for
n� 0 and we are done in this case. So assume r > 0 and let x be one of the linear
forms generating S as an R-algebra. Multiplication by x induces maps Mn→Mn+1
for all n. Let Kn and Ln+1 be the respective kernel and cokernel of these maps (with
L0 := M0). Define two new graded S-modules K :=⊕nKn and L :=⊕nLn. It follows
that K ⊆M and M/xM ∼= L, proving that both modules are finitely generated over S.
By construction, xK = xL = 0, so that both K and L are actually modules over S/xS,
and hence we may apply our induction hypothesis to them. Since we have an exact
sequence (see page 69 for the notion of an exact sequence)

0→ Kn→Mn
x→Mn+1→ Ln+1→ 0

we get `(Kn)− `(Mn)+ `(Mn+1)− `(Ln+1) = 0 by Exercise 3.5.2. Multiplying this
equality with tn+1 and adding all terms together, we get an identity

t HilbK(t)− t HilbM(t)+HilbM(t)−HilbL(t) = 0.

Using the induction hypothesis for K and L then yields the desired result. ut
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Corollary 3.2.3. For every finitely generated graded module M over a standard
graded algebra over an Artinian local ring, there exists a polynomial PM(t) ∈Q[t],
such that `(Mn) = PM(n) for all n sufficiently large.

Proof. By Theorem 3.2.2 we can write HilbM(t) = q(t)/(1− t)d for some poly-
nomial q(t) ∈ Z[t]. Using the Taylor expansion of (1− t)−d and then comparing
coefficients at both sides, the result follows readily (see Exercise 3.5.8). Note that
we have equality for all n > deg(q). ut
Associated graded ring. For a given Noetherian local ring (R,m), define its asso-
ciated graded ring as

Gr(R) :=
⊕
n≥0

mn/mn+1

Note that this is a standard graded algebra over the residue field R/m of R (as always
m0 stands for the unit ideal). Applying Corollary 3.2.3 to M = S = Gr(R) we can
find a polynomial PR(t) such that

PR(n) = `(mn/mn+1) (3.2)

for all n� 0. For various reasons, one often works with the ‘iterate’ of this function:

Hilbert-Samuel polynomial. We define the Hilbert-Samuel function of R as the
function n 7→ `(R/mn+1). By induction, one easily shows that

`(R/mn+1) =
n

∑
k=0

`(mk/mk+1). (3.3)

It follows from (3.2) that there then exists a polynomial χR(t) with rational coeffi-
cients, called the Hilbert-Samuel polynomial, such that

`(R/mn+1) = χR(n) (3.4)

for all n� 0.

3.3 Filtrations

Before we can embark on a study of the dimension theory of a Noetherian local
ring, we need some tools that are topological in nature, although we will not cast it
in those terms. In what follows, R will be a Noetherian ring, a⊆ R a (proper) ideal
and M an R-module. By a (descending) a-filtration on M we mean a descending
chain of R-submodules

M• : M = M0 ⊇M1 ⊇M2 ⊇ . . .

such that aMn ⊆ Mn+1, for all n. If these inclusions eventually become equalities,
then we call M• a stable filtration. Clearly, the a-adic filtration on M given by
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Mn := anM is a stable a-filtration. We may generalize the definition of the asso-
ciated graded ring and module from page 44 as

Gra(R) :=
⊕

n
an/an+1 and Gra(M) :=

⊕
n
anM/an+1M

(see also Exercise 3.5.9; note that the component of Gra(R) in degree zero is R/a),
so that Gra(M) becomes a graded Gra(R)-module. In fact, this can be generalized
to a-filtrations, by putting

Gr(M•) :=
⊕

n
Mn/Mn+1.

To see that this is indeed a graded Gra(M)-module, it suffices to show how a ho-
mogeneous element r̄ ∈ ak/ak+1 acts on a homogeneous element m̄ ∈ Mn/Mn+1,
where r ∈ ak and m ∈Mn. Firstly, from aMn ⊆Mn+1, an inductive argument yields
akMn ⊆ Mn+k, and so rm ∈ Mn+k, and we now define r̄ · m̄ as the image of rm in
Mn+k. We leave it to the reader to check that this is well-defined, i.e., does not de-
pend on the choice of liftings r,m of r̄, m̄ respectively, and so we may now view
Gr(M•) as a graded Gra(R)-module. Note that even if M is finitely generated as
an R-module, Gr(M•) may fail to be finitely generated as an Gra(R)-module. How-
ever, the latter is true if the a-filtration is moreover stable (see Exercise 3.5.10).
One drawback of the graded ring/module is that there is no obvious map from the
original ring/module. However, there are larger graded objects with this additional
property, namely the blowing-up algebra and module, given respectively as

Ba(R) :=
⊕

n
an and B(M•) :=

⊕
n

Mn.

One easily verifies that Ba(R) is a graded ring and that B(M•) is a graded Ba(R)-
module. Moreover, there are canonical embeddings R→ Ba(R) (since we interpret
a0 as R) and M → B(M•) by identifying both sources with the respective compo-
nents in degree zero. Moreover (see Exercise 3.5.11), we have an isomorphism

Gra(R)∼= Ba(R)/aBa(R). (3.5)

Proposition 3.3.1. Let R be a Noetherian ring, a ⊆ R an ideal, and M a finitely
generated R-module with an a-filtration M•. Then M• is a stable filtration if and
only if B(M•) is finitely generated as a Ba(R)-module.

Proof. If B(M•) is finitely generated, then we may choose n large enough so that Mn
contains all the entries of these generators. But this means that the (twisted) graded
submodule Mn⊕Mn+1⊕ . . . is generated by Mn as a Ba(R)-module. In particular, if
m ∈Mn+i, then there exist mi ∈Mn and ai ∈ R such that m = a1m1 + · · ·+asms, and
for this to yield a homogeneous element of degree n+ i, the ai must be homogeneous
of degree i, that is to say, belong to ai. Hence, m ∈ aiMn, showing that Mn+i = aiMn,
for all i≥ 0, from which it follows that M• is stable. The converse follows along the
same lines and is relegated to Exercise 3.5.13. ut
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We are now ready to prove the so-called Artin-Rees Lemma:

Theorem 3.3.2 (Artin-Rees). If N ⊆ M are finitely generated R-modules and M•
a stable a-filtration on M, then the induced filtration N• := M• ∩N (meaning that
Nk := Mk ∩N) is a stable a-filtration on N.

Proof. The graded Ba(R)-module B(N•) is naturally a graded submodule of B(M•).
By Proposition 3.3.1, the latter is finitely generated. Since Ba(R) is a finitely gen-
erated R-algebra (generated by its elements in degree one), it is a Noetherian ring,
and so in particular, the submodule B(N•) is also finitely generated. By another ap-
plication of Proposition 3.3.1, we see that N• is then also stable. ut

The main case of interest is when M• is the a-adic filtration; spelling this case
out it more details yields:

Corollary 3.3.3. Let R be a Noetherian ring, a ⊆ R and ideal, and N ⊆ M finitely
generated R-modules. Then there exists c, such that for all n≥ 0, we have

an+cM∩N = an(acM∩N).

In particular, an+cM∩N ⊆ anN, for all n≥ 0. ut

Our first important application is a proof of Krull’s Intersection Theorem:

Theorem 3.3.4. Let (R,m) be a Noetherian local ring and M a finitely generated
R-module. Then the m-adic topology on M is Hausdorff, that is to say, ∩nm

nM = 0.

Proof. Put N := ∩nm
nM. By Corollary 3.3.3, there exists c such that mc+1M∩N ⊆

mN. But the former is just N, and hence by Nakayama’s Lemma, we get N = 0. ut

Corollary 3.3.5. If the associated graded ring Gr(R) of a Noetherian local ring
(R,m) is a domain, then R is a domain.

Proof. Suppose not, so that there exist non-zero a,b ∈ R with ab = 0. By Theo-
rem 3.3.4, there exist k, l ≥ 0, such that a ∈ mk \mk+1 and b ∈ ml \ml+1 (that is to
say, k and l are the respective m-adic order of a and b). In particular, the images of
a and b in Gr(R) are non-zero elements in mk/mk+1 and ml/ml+1 respectively, and
so their product is also non-zero by the domain property, contradiction. ut

Remark 3.3.6. The converse is far from true: for Gr(R) to be a domain, the a-adic
order must be a valuation, a quite restrictive condition. We will see in Theorem 4.1.9
below that regular local rings, however, do have this property.

3.4 Local dimension theory

In this section, (R,m) denotes a local ring, which is most of the time also Noetherian.
The Krull dimension of R will be denoted dim(R). We introduce two more variants,
and show that they agree on Noetherian local rings.
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Definition 3.4.1 (Geometric dimension). We define the geometric dimension of R,
denoted geodim(R), as the least number of elements generating an m-primary ideal.
We define the Hilbert dimension Hilbdim(R) as the degree of the Hilbert-Samuel
polynomial χR(t) of R given by (3.4).

As dim(R) equals the dimension of the topological space V := |Spec(R)|, it is es-
sentially a topological invariant. On the other hand, geodim(R) is the least number
of hypersurfaces1 H1, . . . ,Hd ⊆V such that H1∩·· ·∩Hd is a singleton (necessarily
equal to the closed point x corresponding to the maximal ideal m), and hence is a
geometric invariant. Note that the definition of geometric dimension makes sense
for any local ring R (unlike the definition of Hilbert dimension which assumes the
rationality of the Hilbert series), and that it is finite if and only if R has finite embed-
ding dimension. Finally, Hilbdim(R) is by definition a combinatorial invariant. It
follows that both geometric dimension and Hilbert dimension are finite for Noethe-
rian local rings, but this is less obvious for Krull dimension. Nonetheless, all three
seemingly unrelated invariants are always equal for Noetherian local rings (whence
in particular Krull dimension is always finite):

Theorem 3.4.2. If R is a Noetherian local ring, then

dim(R) = geodim(R) = Hilbdim(R).

Proof. It is not hard to verify this equality whenever one of them is zero: R has Krull
dimension zero if and only if its maximal ideal is nilpotent (in other words, (0) is
m-primary) if and only if its Hilbert-Samuel polynomial is constant.

So we may assume that all three invariants are non-zero. First we show by induc-
tion on δ that

t := Hilbdim(R)≤ δ := geodim(R). (3.6)

Let I := (a1, . . . ,aδ )R be an m-primary ideal, and put S := R/a1R. It is not hard so
see that then necessarily geodim(S) = δ − 1, so that by induction, Hilbdim(S) ≤
δ −1. We have, for n sufficiently large,

χS(n) = `(S/mn+1S) = `(R/a1R+mn+1)

= `(R/mn+1)− `(R/(mn+1 : a1))

≥ `(R/mn+1)− `(R/mn) = χR(n)−χR(n−1)

(where we used (5.9) below in the second line). Note that χR(n)− χR(n− 1) has
degree t−1 (verify this!), and hence χS(n), a polynomial dominating the latter dif-
ference, must have degree at least t− 1. Putting everything together, we therefore
get t−1≤ deg(χS)≤ δ −1, as we wanted to show.

For the remainder of the proof, we induct on the Krull dimension d := dim(R),
and so we assume that the theorem is proven for rings of smaller Krull dimension.

1 In these notes, a hypersurface in an affine variety V is any closed subset of the form V(I) with I
a proper principal ideal (this does not mean that its ideal of definition is principal!) Be aware that
some authors have a far more restrictive usage for this term.
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Let p0  p1  · · ·  pd = m be a chain of prime ideals in R of maximal length.
Choose x outside all minimal prime ideals but inside p1. By prime avoidance (see
[5, Proposition 1.11] or the more general version [15, Lemma 3.3]), such an element
must exist. Put S := R/xR. Since piS are distinct prime ideals, for i > 0, we get
dim(S) = d−1. Hence by induction, geodim(S) = d−1, so that there exists an mS-
primary ideal I ⊆ S generated by d− 1 elements. Let J := I ∩R. Any lifting of the
d−1 generators of I in R together with x therefore generate J. Moreover, J is clearly
m-primary, so that we showed geodim(R)≤ d−1+1 = d.

Let R̄ := R/p0 and S̄ := S/p0S. Tensoring the exact sequence

0→ R̄ x→ R̄ → S̄→ 0

with R/mn+1, we get an exact sequence

0→ Hn→ R̄/mn+1R̄ x→ R̄/mn+1R̄→ S̄/mn+1S̄→ 0.

Hence, the two outer modules have the same length, so that χS̄(n) = `(Hn) for suf-
ficiently large n. On the other hand, using 5.6.14, we have an exact sequence

0→ Hn→ R̄/mn+1R̄→ R̄/(mn+1R̄ : x)→ 0

from which it follows that χS̄(n) = χR̄(n)−ϕ(n), where ϕ(n) denotes the length of
the last module in the previous exact sequence (showing incidentally that ϕ(n) too
is a polynomial for n� 0). To estimate ϕ(n), we use the Artin-Rees Lemma 3.3.3.
By that lemma, there exists some c such that

mn+1R̄∩ xR̄⊆mn+1−cxR̄

for all n > c. Hence if s ∈ (mn+1R̄ : x), that is to say, if sx ∈ mn+1R̄, then sx ∈
mn+1−cxR̄. Since R̄ is a domain, this yields s ∈mn+1−cR̄, and hence we have inclu-
sions mn+1R̄ ⊆ (mn+1R̄ : x) ⊆ mn+1−cR̄ for all n > c. Therefore, for n� 0, we get
inequalities

χR̄(n− c)≤ ϕ(n)≤ χR̄(n).

This shows that the (polynomial representing) ϕ has the same leading term as
χR̄, and hence their difference, which is χS̄, has degree strictly less. Clearly,
χR̄(n) ≤ χR(n) and hence Hilbdim(R̄) ≤ Hilbdim(R). Since S̄ has dimension d−1
by choice of x, induction yields Hilbdim(S̄) = d− 1. Putting everything together,
we get Hilbdim(R)≥ d. In summary, we proved the inequalities

geodim(R)≤ d ≤ Hilbdim(R)

and hence we are done by (3.6). ut

From this important theorem, various properties of dimension can now be de-
duced. We start with a loose end: the dimension of affine n-space (as stated in The-
orem 2.2.1), or equivalently, the dimension of a polynomial ring.
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Corollary 3.4.3. If K is a field and A is either the polynomial ring or the power
series ring over K in n variables ξ , then dim(A) = n.

Proof. The chain of prime ideals

(0) ξ1A (ξ1,ξ2)A · · · m := (ξ1, . . . ,ξn)A

shows that m has height at least n (and, in fact, equal to n). Hence dim(A) and
dim(Am) are at least n. In the power series case (so that A is local), m witnesses
the estimate geodim(A) ≤ n. Hence we are done in the power series case by Theo-
rem 3.4.2.

Let me only prove the polynomial case when K is algebraically closed (the gen-
eral case is treated in Exercise 3.5.6). By Theorem 2.2.2, any maximal ideal is of
the form mu for some u ∈ Kn. Hence Amu

∼= Am by a linear change of coordinates.
Therefore, it suffices in view of 3.1.3 to show that Am has dimension n. However,
again mAm witnesses that geodim(Am) ≤ n, and we are done once more by Theo-
rem 3.4.2. ut

The next application is another famous theorem due to Krull:

Theorem 3.4.4 (Hauptidealensatz/Principal Ideal Theorem). Any proper ideal in
a Noetherian ring generated by h elements has height at most h.

Proof. Let I ⊆ B be an ideal generated by h elements, let p be a minimal prime of I,
and put R := Bp. Since IR is then pR-primary, geodim(R) ≤ h. Hence p has height
at most h by Theorem 3.4.2 and 3.1.3. Since this holds for all minimal primes of I,
the height of I is at most h. ut

Let (R,m) be a Noetherian local ring of dimension d. By Theorem 3.4.2, there
exists a d-tuple x generating an m-primary ideal. We give a name to such a tuple:

Definition 3.4.5 (System of parameters). Any tuple of length equal to the dimen-
sion of R and generating an m-primary ideal will be called a system of parameters of
R (sometimes abbreviated as s.o.p); the ideal it generates is then called a parameter
ideal.

In other words, a parameter ideal is an m-primary ideal requiring the least possible
number of generators, namely d = dim(R). The next result will enable us to con-
struct systems of parameters. To this end, we define the dimension of an ideal I ⊆ B
as the dimension of its residue ring B/I. In particular, any d-dimensional prime ideal
in a d-dimensional Noetherian local ring is a minimal prime ideal, whence there are
only finitely many such ideals.

Corollary 3.4.6. If R is a d-dimensional Noetherian local ring and x a non-unit in
R, then d− 1 ≤ dim(R/xR) ≤ d. The lower bound is attained if and only if x lies
outside all d-dimensional prime ideals of R.
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Proof. The second inequality is obvious (from the point of view of Krull dimen-
sion). Towards a contradiction, suppose S := R/xR has dimension strictly less than
d− 1. By Theorem 3.4.2 there exists a system of parameters (x1, . . . ,xe) in S with
e < d− 1. However, any liftings of the xi to R together with x then generate an m-
primary ideal, contradicting Theorem 3.4.2. It is now not hard to see that x lies in a
d-dimensional prime ideal if and only if S admits a chain of prime ideals of length
d, from which the last assertion follows. ut

If R has dimension d, then element outside any d-dimensional prime is called
a parameter. Since there are only finitely many d-dimensional prime ideals, pa-
rameters exist as soon as d > 0. We can now reformulate (see Exercise 3.5.14):
(x1, . . . ,xd) is a system of parameters if and only if each xi is a parameter in
R/(x1, . . . ,xi−1)R.

Finite extensions. Recall that a homomorphism R → S is called a finite if S is
finitely generated as an R-module. Similarly, a morphism of affine schemes Y → X
is called a finite morphism if the induced homomorphism on the coordinate rings is
finite. Any surjective ring homomorphism R→ R/I is finite.

3.4.7 A finite morphism Y → X of affine schemes is surjective if the corre-
sponding homomorphism of coordinate rings is injective.

Indeed, assume R→ S is a finite and injective homomorphism, and let p be a
prime ideal of R. Let n be a maximal ideal in Sp := Rp⊗R S, and put m := n∩Rp.
Since Rp/m ⊆ Sp/n is again finite, and the latter ring is a field, so is the former
by Lemma 2.2.7. Hence m is a maximal ideal, necessarily equal to pRp. If we put
q := n∩ S, then an easy calculation shows p = q∩R (verify this!). By 2.3.3, this
means that the morphism Spec(S)→ Spec(R) is surjective. ut

Theorem 3.4.8. Let R ⊆ S be a finite homomorphism of Noetherian rings. If R has
dimension d, then so does S.

Proof. Put d := dim(R) and e := dim(S). To see the inequality e ≤ d, choose a
maximal ideal n in S of height e, and put m := n∩R. Since Rm has dimension at
most d, there exists an mRm-primary ideal I ⊆ Rm generated by at most d elements
by Theorem 3.4.2. Since Sn/ISn is then a finitely generated Rm/I-module, it is
Artinian. Hence ISn is nSn-primary, showing that geodim(Sn) ≤ d. Since the left
hand side is equal to e by Theorem 3.4.2, we showed e≤ d.

We prove the converse inequality by induction on d (where the case d = 0 is
clearly trivial). Choose a d-dimensional prime ideal p ⊆ R. Using 3.4.7, we can
find a prime ideal q ⊆ S lying above p, that is to say, p = q∩R. Put R̄ := R/p and
S̄ := S/q. In particular, R̄ ⊆ S̄ is again finite and injective. By the same argument,
we can take a d−1-dimensional prime ideal P⊆ R̄, and a prime ideal Q⊆ S̄ lying
above it. By the induction hypothesis applied to the finite extension R̄/P ⊆ S̄/Q,
we get d−1 = dim(R̄/P)≤ dim(S̄/Q). However, since any non-zero element in a
domain is a parameter (see Corollary 3.4.6), the dimension of S̄/Q is strictly less
than the dimension of S̄, which itself is less than or equal to e. Hence d−1≤ e−1,
as we wanted to show. ut
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Corollary 3.4.9. If V → Kd is a Noether normalization of an affine variety V , then
V has dimension d.

Proof. By definition of Noether normalization, we have a finite, injective homo-
morphism K[ζ ]⊆ K[V ] with ζ = (ζ1, . . . ,ζd). By Corollary 3.4.3, the first ring has
dimension d, whence so does the second by Theorem 3.4.8. This in turn means that
V has dimension d. ut

3.5 Exercises

Ex 3.5.1
Prove the inequality in 3.1.1. In fact, this is often an equality, for instance if R is a poly-
nomial ring over a field, but this is already a much less trivial result. Verify it when R is a
polynomial ring over a field in a single indeterminate.

Ex 3.5.2
Show that length is additive in the sense that if 0→ K → M → N → 0 is a short exact
sequence of A-modules, then `(M) = `(K)+ `(N).

Ex 3.5.3
Prove 3.1.5. More generally, show that if R is an Artinian local ring with residue field k,
then the length of R is equal to its vector space dimension over k. For the latter, you need
to know that k is a subfield of R, and this is proven in Theorem 6.4.2 and Remark 6.4.3, but
you can just assume for the moment that this is the case.

Ex 3.5.4
Let S be a standard graded R-algebra. Show that S is Noetherian if R is.

Ex 3.5.5
Show the first assertion in 3.1.3: the height of a prime ideal p⊆ R is equal to the dimension
of Rp.

Ex 3.5.6
Use Exercise 2.6.25 to complete the proof of Corollary 3.4.3.

Ex 3.5.7
Generalize Corollary 3.4.3 by replacing the field by any Artinian local ring. Moreover, in
the power series case, formulate a result with the base ring any Noetherian local ring. Such
a result also holds in the polynomial case, but the proof requires some more powerful tools
such as flatness, discussed in §5; for a proof, see for instance [30, Theorem 15.4].
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Ex 3.5.8
Work out the details of the proof of Corollary 3.2.3.

∗Ex 3.5.9
Develop the theory of Hilbert-Samuel polynomials also for finitely generated R-modules M
and for m-primary ideals a, by using the graded algebra

Gra(R) :=⊕na
n/an+1

and the graded module
Gra(M) :=⊕na

nM/an+1M

.

Ex 3.5.10
Show that if M• is a stable a-filtration on a finitely generated module M over a Noetherian
ring R, then Gra(M•) is finitely generated as a Gra(R)-module.

Ex 3.5.11
Prove isomorphism (3.5) and show that we may identify Ba(R) as the subring R[at] of R[t],
that is to say, the subring of all polynomials of the form a0 +a1t + · · ·+adtd with an ∈ an.

Ex 3.5.12
Prove the following more general version of Krull’s Intersection Theorem: let R be a Noe-
therian ring, a ⊆ R and ideal and M a finitely generated R-module, and set N := ∩na

nM.
Then there exists a∈ a such that (1−a)N = 0. Conclude that if M = R is a domain or local,
then N = 0.

Ex 3.5.13
Complete the proof of Proposition 3.3.1. Show that we did not need to assume in this propo-
sition that R was Noetherian, only that each Mn is finitely generated.

Ex 3.5.14
Show that (x1, . . . ,xd) is a system of parameters in R if and only if xi is a parameter in
R/(x1, . . . ,xi−1)R for every i = 1, . . . ,d.

Ex 3.5.15
Show that if x is a tuple of length e in a Noetherian local ring R such that xR has height e,
then x can be extended to a system of parameters of R. Using the same technique, also show
that if p is a prime ideal of height h, then there exists a system of parameters (y1, . . . ,yd)
such that p is a minimal prime of (y1, . . . ,yh)R.
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Ex 3.5.16
Prove the following more precise form of 3.4.7: a finite morphism Y = Spec(S)→ X =
Spec(R) is surjective if and only if the kernel of the corresponding ring homomorphism
R→ S is nilpotent. In fact, the only if direction is true for any morphism.

∗Ex 3.5.17
Show using Noether normalization that any affine domain C is equi-dimensional, in the
sense that every maximal ideal of C has the same height.

Additional exercises.

Ex 3.5.18
Show that a finite injective homomorphism A ⊆ B satisfies the going-up theorem,
meaning that given any inclusion of prime ideals p ⊆ q ⊆ A and any prime ideal
P⊆ B lying over p, we can find a prime ideal Q⊆ B containing P and lying over q.





Chapter 4
Singularity theory

As the term suggests, a ‘singularity’ is a point where something unusual happens.
We gave a formal definition of a singular point in Definition 2.5.4. In this chapter,
we investigate the algebraic theory behind this phenomenon. In particular, we will
identify a certain type of singularity, the Cohen-Macaulay singularity, which plays
an important role in the later chapters.

4.1 Regular local rings

According to our ‘algebraization paradigm’, geometric properties of points are re-
flected by their local rings. Before we make this translation, we first explore a little
the classical notion, using plane curves as example.

Multiple points on a plane curve. A plane curve C is an irreducible affine variety
given by a non-constant, irreducible polynomial f (ξ ,ζ ) ∈ A := K[ξ ,ζ ], for K some
algebraically closed field, that is to say, C = V( f ). By Corollary 3.4.6, a plane curve
has dimension one. So we arrive at the more general concept of a curve as a one-
dimensional, irreducible scheme. The degree t of f is also called the degree of the
plane curve C. If t = 1, then C is just a line. So from now on, we will moreover
assume t > 1. An easy form of Bezout’s theorem states:

4.1.1 Any line intersects the plane curve C of degree t in at most t distinct
points, and there exist lines which have exactly t distinct intersection
points with C.

The proof is elementary: the general equation of a line L is aξ +bζ + c = 0 and
hence the intersection |C∩L| is given by the radical of the ideal (aξ + bζ + c, f )A
(or, viewed as an affine scheme C∩L by the ideal itself; see page 28). In terms of
equations, assuming b= 1 for the sake of simplicity, this means that the (ξ -values of
the) intersection points are given by the equation f (ξ ,−aξ−c)= 0, a polynomial of
degree t or less, which therefore has at most t solutions. Choosing a,b,c sufficiently

55
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general, we can moreover guarantee that this polynomial has t distinct roots. We
can now state when a point P on C is singular, but to not confuse with our formal
definition 35, we use a different terminology:

Definition 4.1.2. A point P on a plane curve C of degree t is called multiple, if every
line through P intersects C in less than t distinct points. More precisely, we say that
P is an n-tuple point on C, or multC(P) = n, if n is the number of points absorbed at
P in each intersection with a line, that is to say,

multC(P) := min
L line through P

(t− card(|C∩L|)+1).

Here |C∩L| denotes the (naive) intersection as sets, not as schemes. A point which
is not multiple, i.e., a 1-tuple point, is called a simple point.

Let us look at two examples of multiple points:

An example of a node. Let f := ξ 2− ζ 2− 3ζ 3 and let P be the origin. Hence a
line La through P has equation ζ = aξ for some a ∈ K (for sake of simplicity, we
ignore the ζ -axis; the reader should check that this makes no difference in what
follows). Substituting this in the equation, the intersection points with C are given
by the equations ζ = aξ and ξ 2−(aξ )2−3(aξ )3 = 0. The second equation reduces
to ξ = 0 or ξ = (1−a2)/3a3, thus giving only two intersection points, contrary to
the expected value of three. In conclusion, P is a double point. One can check that it
is the only multiple point on C (check this for instance for the point with coordinates
(2,1)).

Moreover, note that the two diagonals L±1 intersect C in exactly one point, that is
to say, the lines y=±x have even higher contact with C; they are often referred to as
the tangent lines of C at P. To formally define a tangent line, one needs to introduce
the intersection number i(L,C;P) of a line L with C at P, and then call L a tangent
line if i(L,C;P) > multC(P). One way of doing this is by defining the intersection
number i(L,C;P) as the length of R/LR, where R := (A/ f A)m is the local ring of P
at C and where we identify the line L with its defining linear equation. One checks
that i(La,C;P) equals two for a 6=±1, and three for a =±1.

To calculate the tangent space TC,P as defined on page 34, let m := (ξ ,ζ )A be the
maximal ideal corresponding to the origin. Since mR is generated by two elements,
the embedding dimension of R is two, whence so is the dimension of the tangent
space TC,P by 2.5.3. Hence, since the tangent space has higher dimension than the
scheme, P is singular on C.

An example of a cusp. For our next example, let f := ξ 4− ζ 3, a curve of degree
four, and let P be the origin as before. The intersection with La is given by the equa-
tion ξ 4− (aξ )3 = 0, which yields two intersection points: namely P and (a3,a4).
Hence P is a triple point of C. Moreover, there is now only one value of a which
leads to a higher contact, namely a = 0, showing that the ξ -axis is the only tangent
line (double-check that the ζ -axis does not have higher contact). A multiple point
with a unique tangent line is called a cusp. A similar calculation as before shows
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that TC,P is again two-dimensional, whence P is singular. Let us now prove this in
general:

Proposition 4.1.3. A point on a plane curve is a multiple point if and only if it is
singular.

Proof. Let f be the equation, of degree t, defining the curve C, and let P be a point
on C. After a change of coordinates, we may assume P is the origin, defined by the
maximal ideal m := (ξ ,ζ )A. If P is non-singular, then the embedding dimension of
OC,P = (A/ f A)m is one. Hence either ξ or ζ generates mR. So, after interchanging
ξ and ζ if necessary, we can write ζ as a fraction (ξ g+ f g̃)/h in Am, for some
g, g̃,h ∈ A with h /∈m. Hence the intersection with La is given by ζ = aξ and

aξ =
ξ g(ξ ,aξ )+ f (ξ ,aξ )g̃(ξ ,aξ )

h(ξ ,aξ )
.

Since f has no constant term, we may divide out ξ , so that the last equation becomes

ah(ξ ,aξ ) = g(ξ ,aξ )+ f̃ (ξ ) (4.1)

for some f̃ ∈ K[ξ ]. If P would be a multiple point of C, then ξ = 0 should still be
a solution of (4.1). However, this can only happen if a = (g(0,0)+ f̃ (0))/h(0,0)
(note that h(0,0) 6= 0 by assumption). In other words, a general line has only one
intersection point at P, and hence P is a simple point. Note that it has exactly one
tangent line, given by the above exceptional value of a.

Conversely, assume P is simple, and write f = uξ + vζ + f̃ with u,v ∈ K and
f̃ ∈m2. By assumption, the equation uξ +vaξ + f̃ (ξ ,aξ )= 0 should have in general
t−1 solutiuons different from ξ = 0. For this to be true, at least one of u or v must
be non-zero. So assume, without loss of generality, that u 6= 0, and then multiplying
with its inverse, we may even assume u = 1. It follows that ξ = −vζ − f̃ in R,
showing that mR = ζ R by Nakayama’s Lemma, and therefore that R has embedding
dimension one. ut

By the above argument, in order for P to be simple, Am/ f Am has to have em-
bedding dimension one, which by Nakayama’s Lemma is equivalent with f being a
minimal generator of mAm, that is to say, f ∈mAm−m2Am. In Exercise 4.3.4 you
will prove the following generalization:

4.1.4 A point P is an n-tuple point on a plane curve C := V( f ) if and only if
n is the maximum of all k such that f ∈ mkAm, where m := mP is the
maximal ideal of P.

Geometrically, a closed point x is singular on an affine variety, or more generally,
on an affine scheme X , if the dimension of its tangent space is larger than the local
dimension of X at x. In particular, singularity is a local property, completely captured
by the local ring of the point. Since the dimension of the tangent space is equal
to embedding dimension of the local ring by 2.5.3, we can now formulate non-
singularity entirely algebraically:
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Definition 4.1.5 (Regular local ring). We call a Noetherian local ring (R,m) regu-
lar if and only if its dimension is equal to its embedding dimension.

In view of Theorem 3.4.2, regularity is equivalent with the maximal ideal being
generated by the least possible number of elements. In particular, some system of
parameters generates the maximal ideal, and any such system is called a regular
system of parameters. Geometrically, a point x on a scheme X is regular, or non-
singular, if OX ,x is regular. An Artinian local ring is regular if and only if it is
a field. By Corollary 3.4.3, a power series ring over a field is regular. Using that
same theorem in conjunction with the Nullstellensatz (Theorem 2.2.2), we also get
a similar result over an algebraically closed field K (for a more general version, see
Exercise 4.3.6):

4.1.6 Each closed point of affine n-space An
K is regular.

To formulate a stronger result, let us call a ring B a regular ring if each localiza-
tion at a maximal ideal is regular. Similarly, we call a scheme X regular if all of its
closed points are regular. Hence we may reformulate 4.1.6 as: An

K is regular. This
begs the question: what about the non-closed points of An

K? As it turns out, they too
are regular, and in fact, this is a general property of regular rings:

4.1.7 Any localization of a regular ring is again regular.

To prove this, however, one needs a different characterization, homological in
nature, of regular rings due to Serre (it was only after he proved his theorem that
the above result became available). We will not provide all details, but 4.1.7 will
be proved in Corollary 5.5.8 below. Another property is more readily available:
geometric intuition predicts that at an intersection point of two distinct components,
the scheme ought to be singular. Put differently, a variety should be irreducible
in ‘the neighbourhood of’ a non-singular point. This translates into the following
property of the local ring of the point:

4.1.8 A regular local ring is a domain.

This follows immediately from Corollary 3.3.5 and the next result:

Theorem 4.1.9. Let (R,m) be a d-dimensional Noetherian local ring with residue
field k, and let S := Gr(R) be its associated graded ring. Then R is regular if and
only if S is isomorphic to a polynomial ring over k in d variables.

Proof. Let A := k[ξ ] with ξ := (ξ1, . . . ,ξd), viewed as a standard graded algebra
over k in the obvious way. If A ∼= S, then A1 ∼= S1 has k-vector space dimension d.
Since S1 = m/m2, Nakayama’s Lemma shows that R has embedding dimension d,
whence is a regular local ring. To prove the converse, assume R is regular, and we
need to show that S ∼= A. By assumption, m is generated by d elements, x1, . . . ,xd .
Define a homomorphism ϕ : k[ξ ]→ S of graded k-algebras by the rule ξi 7→ xi.
Since m = (x1, . . . ,xd)R, the homomorphism ϕ is surjective (verify this!). Let I be
its kernel. Hence A/I ∼= S. Now, A has dimension d by Corollary 3.4.3. I claim that



4.1 Regular local rings 59

S has dimension at least d. However, if I 6= 0, then by Corollary 3.4.6, the dimension
of A/I is strictly less than d. Hence I = 0, as we wanted to show (and S has actually
dimension equal to d).

To prove the claim, it suffices to show that the maximal ideal n := S+ has height
d. Since nn+1 = ⊕k>nSk, we get S/nn+1 ∼= S0 ⊕ ·· · ⊕ Sn, and its length is equal
to `(R/mn+1) by (3.3). Since S/nn+1 ∼= Sn/nn+1Sn (check this!), we see that R
and Sn have the same Hilbert-Samuel polynomial, whence the same dimension by
Theorem 3.4.2, as we wanted to show. ut

Incidentally, in the last part of the proof, we did not use our hypothesis on the reg-
ularity of the ring, so that we showed one inequality in the next result; the converse
will not be needed here and can be found in for instance [30, Theorem 13.9].

4.1.10 The dimension of a Noetherian local ring is equal to the dimension of its
associated graded ring.

Why we need projective space. Above, we have seen examples of plane
curves having a multiple point. Of course, some curves are regular. The simplest
example is obviously a line. Another is given by a so-called elliptic curve, defined
by an equation

ζ
2 = ξ (ξ −1)(ξ −u)

with u 6= 0,1. You can use the criterion from Exercise 4.3.3 to show that every point
on an elliptic curve is simple, provided the characteristic of K is not 2, whence
regular by Proposition 4.1.3 (see also Exercise 4.3.9). Another example of a regular
curve is the one defined by the equation ξ ζ 2 = 1 (again easily verified by means
of Exercise 4.3.3). However, in this latter case, we are overlooking the ‘points at
infinity’. More precisely, recall that P2

K is obtained by glueing together three copies of
A2

K (see page 33), each corresponding by inverting one of the ‘projective’ variables.
So we may view A2

K , with coordinates (ξ ,ζ ) as the copy corresponding to inverting
the last variable, and embed it in P2

K . Given a plane curve C = V( f ) (or rather, the
affine scheme Spec(B) with B := A/ f A determined by it), let C̄ be the closure of C
inside P2

K . We can endow C̄ with the structure of a projective variety as follows: let
f̃ be the homogenization of f , that is to say, if f has degree t, then

f̃ (ξ ,ζ ,η) := η
t f (ξ/η ,ζ/η). (4.2)

I claim that the underlying space of C̃ := Proj(B̃) is equal to C̄, where Ã := K[ξ ,ζ ,η ]
and B̃ := Ã/ f̃ Ã. Since Ã(η)

∼= A by 2.4.3, we get B̃(η)
∼= B by (4.2), showing that

A2
K ∩C̃ = D̃(η)∩C̃ =C.

Our claim now follows, since the closure of A2
K is just P2

K . We call C̃ the projectifica-
tion or completion of C.

Returning to our question on singularities: any point of C̃ \C will be called a
point at infinity of C. To check whether such a point is non-singular, we have to
‘re-coordinatize’, that is to say, look at one of the two other copies of A2

K ⊆ P2
K . Let

us do this on the example with equation f := ξ ζ 2−1. Following the recipe in (4.2),
we get f̃ = ξ ζ 2−η3. On the copy D̃(ξ ) = A2

K , the intersection with C̃ is the affine
scheme given by ζ 2−η3, the equation of a cusp with a singular point at ζ = η = 0
(note that it is straightforward to undo the homogenization (4.2): just replace the
pertinent variable, here ξ , by 1). Hence C̃ is not regular. In Exercise 4.3.10, you will
show that in contrast, the projectification of any elliptic curve remains regular.
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In the above discussion, we used curves merely as an illustration: a similar
treatment can be given for higher dimensional affine schemes as well (see Exer-
cise 4.3.11): any closed affine subscheme X ⊆ An

K can be projectified to a projec-
tive scheme X̃ ⊆ Pn

K . So, even if an affine scheme itself is regular, it might not be as
‘good’ as we believe it to be, as we do not see its points at infinity. For that we need
to go to its projectification.

4.2 Cohen-Macaulay rings

Algebraic geometry has developed for a large part in an attempt to gain a better
understanding of singularities, and if possible, to classify them. As it turns out,
certain singularities have nicer properties than others. Our goal is to identify such a
class of singularities, or equivalently, by passing to their local ring, such a class of
Noetherian local rings, which are more amenable to algebraic methods: the ‘Cohen-
Macaulay’ singularities. In order to do this, we must first study an invariant called
‘depth’.

Regular sequences. Recall that an element in a ring R is called a non-zero divisor
if multiplication with this element is injective; more generally, an element x is a non-
zero divisor on an R-module M if multiplication by x is injective on M. Recall that a
prime ideal in a Noetherian ring R is called an associated prime of R (respectively,
of a finitely generated R-module M), if it is of the form AnnR(x) for some x ∈ R
(respectively, of the form AnnR(µ) for some µ ∈M). Moreover, R (respectively, M)
admits only finitely many associated prime ideals, among which are all the minimal
prime ideals, and an element is a non-zero divisor if and only if it is not contained
in any associated prime ideal (for all this, see for instance [30, §6]).

A non-zero divisor of R which is not a unit is called a regular element in R, or
R-regular (do not confuse with the notion of a regular local ring!). Similarly, we
say that x is M-regular if it is a non-zero divisor on M and xM 6= M (be aware
that some authors might use a slightly different definition for these notions). More
generally, a sequence (x1, . . . ,xd) is called a regular sequence in R, or R-regular,
(respectively, M-regular) if each xi is regular in R/(x1, . . . ,xi−1)R (respectively, in
M/(x1, . . . ,xi−1)M) for i = 1, . . . ,d. Here, and elsewhere, we do not distinguish no-
tationally between an element in a ring R and its image in any residue ring R/I, or
for that matter, in any R-algebra S. If (x1, . . . ,xd) is an R-regular sequence, then by
assumption (x1, . . . ,xd)R is a proper ideal of R. In particular, if R is local, then all
xi belong to the maximal ideal. To be a regular sequence in a local ring is quite a
strong property:

4.2.1 In a Noetherian local ring R, any regular sequence can be enlarged to a
system of parameters. In particular, a regular sequence can have length
at most dim(R). In fact, if x is a regular sequence of length e, then xR has
height e.

To see this, we only need to show by induction on the length of the sequence that
a regular element generates a height one prime ideal and is a parameter. However,
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since a regular element x does not belong to any associated prime, whence in partic-
ular not to any minimal prime, the ideal xR has height one by Theorem 3.4.4. Since
x then neither belongs to any prime ideal of maximal dimension, it is a parameter.
Using this in conjunction with Corollary 3.4.6, we get:

4.2.2 If x is a regular sequence of length e in a d-dimensional Noetherian local
ring R, then R/xR has dimension d− e.

Cohen-Macaulay local rings. A d-dimensional Noetherian local ring is called
Cohen-Macaulay if it admits a regular sequence of length d. Trivially, any Artinian
local ring is Cohen-Macaulay. The next result justifies calling the Cohen-Macaulay
property a type of singularity.

Proposition 4.2.3. Any regular local ring is Cohen-Macaulay.

Proof. Let us induct on the dimension d of the regular local ring R. The case d = 0
is trivial since R is then a field. By assumption, the maximal ideal m is generated
by d elements x1, . . . ,xd . I will show by induction on d that (x1, . . . ,xd) is in fact
a regular sequence. Since R is a domain by 4.1.8, the element x1 is regular. Put
R1 := R/x1R. It is a Noetherian local ring of dimension d− 1 by Corollary 3.4.6,
and its maximal ideal mR1 is generated by at most d−1 elements. Hence R1 is again
regular. By induction, (x2, . . . ,xd) is a regular sequence in R1, from which it follows
that (x1, . . . ,xd) is a regular sequence in R. ut

Depth. As we will see, being Cohen-Macaulay is a natural property, and many
non-regular local rings are still Cohen-Macaulay. Since the notion hinges upon the
length of a regular sequence, let us give this a name: the maximal length of a reg-
ular sequence in a Noetherian local ring R is called the depth of R, and is denoted
depth(R). More generally, the depth of an ideal I is the maximal length of a regular
sequence lying in I. We proved depth(R)≤ dim(R) with equality precisely when R
is Cohen-Macaulay. Immediately from our discussion on associated primes, we get:

4.2.4 A Noetherian local ring has depth zero if and only if its maximal ideal is
an associated prime.

In particular, the one-dimensional local ring R/(ξ 2,ξ ζ )R is not Cohen-Macaulay,
where R := Am is the local ring of the origin in A2

K .

4.2.5 A one-dimensional Noetherian local domain is Cohen-Macaulay. In par-
ticular, any closed point on a (plane) curve is Cohen-Macaulay.

As the reader might have surmised, we call a point x on a scheme X Cohen-
Macaulay if OX ,x is Cohen-Macaulay. For an example of a non-Cohen-Macaulay
local domain, necessarily of dimension at least two, see Exercise 4.3.14.

If R is Cohen-Macaulay, and x is a regular sequence of length d := dim(R), then x
is automatically a system of parameters by 4.2.1. This raises the following question:
what about arbitrary systems of parameters?
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Theorem 4.2.6. In a Cohen-Macaulay local ring, every system of parameters is a
regular sequence. In particular, any regular sequence is permutable, meaning that
an arbitrary permutation is again regular.

Proof. The second statement is immediate from the first since in a system of pa-
rameters, order plays no role. However, we need it to prove the first assertion. And
before we can prove this, we need to establish yet another special case of the
first assertion: taking powers of the elements in a regular sequence gives again a
regular sequence, and for this to hold, we do not even need the ring to be Cohen-
Macaulay. Although both results have relatively elementary proofs, the combina-
torics are a little involved, and so I will only present the argument for d = 2. Hence
assume (x,y) is a regular sequence in some Noetherian local ring S. I claim that
both (xk,yl) and (yl ,xk) are S-regular sequences, for any k, l ≥ 1. We first show that
(xk,y) is S-regular, for all k ≥ 1. By induction, we only need to treat the case k = 2.
Clearly, x2 is S-regular, so we need to show that y is S/x2S-regular. Hence suppose
by ∈ x2S, say by = ax2. Since y is S/xS-regular, b ∈ xS, say b = cx. Hence, cxy = ax2,
and using that x is S-regular, cy = ax. Using again that y is S/xS-regular then yields
c ∈ xS, which proves that b = cx ∈ x2S, as we wanted to show.

Next, we show that (y,x) is S-regular. To show that y is S-regular, let by = 0. By
our previous result, (xn,y) is a regular sequence for every n, which means that y is
S/xnS-regular. Applied to by = 0, we get b ∈ xnS⊆mnS. Since this holds for all n, we
get b = 0 by Krull’s Intersection Theorem 3.3.4. So remains to show that x is S/yS-
regular. Suppose ax ∈ yS, say ax = by. Since y is S/xS-regular, b ∈ xS, say, b = cx.
From ax = cxy and the fact that x is S-regular, we get a = cy, as we needed to show.
Finally, to prove that (xk,yl) and (yl ,xk) are S-regular, observe that the following
sequences are S-regular: (xk,y) by the first property, (y,xk) by the second, (yl ,xk) by
the first, and finally (xk,yl) by the second.

So, with these two properties proven for d = 2, and assuming them for arbitrary
d, let us turn to the proof of the theorem. Let (R,m) be a Cohen-Macaulay local ring
of dimension d, and let (x1, . . . ,xd) be a regular sequence. We prove by induction
on d that any system of parameters (y1, . . . ,yd) is a regular sequence. There is
nothing to show if d = 0, so assume d > 0. Put I := (x1, . . . ,xd−1)R. Since xd is by
assumption R/I-regular, m(R/I) is not an associated prime. Let p1, . . . ,ps be prime
ideals in R such that their image in R/I are precisely the associated primes of
the latter ring. Since J := (y1, . . . ,yd)R is m-primary, it cannot be contained in any
of the pi, whence by prime avoidance, we can find y ∈ J notin mJ and not in any
pi. In particular, y = ∑uiyi with at least one ui a unit in R. After renumbering, we
may assume that ud is a unit. It follows that (y1, . . . ,yd−1,y) is again a system of
parameters. Moreover, y is R/I-regular, showing that (x1, . . . ,xd−1,y) is a regular
sequence. Since we established already that any permutation is again a regular
sequence, (y,x1, . . . ,xd−1) is R-regular. Hence (x1, . . . ,xd−1) is R/yR-regular. Since
R/yR has dimension d−1 by Corollary 3.4.6, it is therefore Cohen-Macaulay. Hence
(y1, . . . ,yd−1), being a system of parameters in this ring, is by induction a regular
sequence. In other words, (y,y1, . . . ,yd−1) is a regular sequence, whence so is the
permuted sequence (y1, . . . ,yd−1,y). Finally, we show that yd is R/J′-regular with
J′ := (y1, . . . ,yd−1)R, which then completes the proof that (y1, . . . ,yd) is a regular
sequence. So assume ayd ∈ J′. Since y ≡ udyd mod J′, we get audy ∈ J′. Since we
already showed that y is R/J′-regular, we get uda ∈ J′, and since ud is a unit, we
finally get a ∈ J′, proving our claim. ut

Corollary 4.2.7. Let R be a Noetherian local ring, and let x be a regular sequence
of length e. Then R is Cohen-Macaulay if and only if R/xR is.
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Proof. Let d := dim(R). By 4.2.2, the residue ring R/xR has dimension d− e. If
it is Cohen-Macaulay, then there exists a regular sequence y of that length, and
then (x,y) (where we still write y for some lifting of that tuple to R) is a regular
sequence of length d, showing that R is Cohen-Macaulay. Conversely, if R is Cohen-
Macaulay, let y be a system of parameters in R/xR. It follows that (x,y) is a system
of parameters in R, whence is a regular sequence by Theorem 4.2.6. Hence y is a
regular sequence in R/xR of maximal length, proving that R/xR is Cohen-Macaulay.

ut

Corollary 4.2.8. A Cohen-Macaulay local ring has no embedded primes, that is to
say, any associated prime is minimal.

Proof. Let R be a Cohen-Macaulay local ring and p an associated prime. If p has
positive height, we can find x ∈ p such that xR has height one. By Exercise 3.5.15,
we can extend x to a system of parameters of R, which is then a regular sequence
by Theorem 4.2.6. In particular, x is R-regular, contradicting that it belongs to an
associated prime. ut

In fact, Corollary 4.2.7 holds in far more greater generality: without assuming
that R is Cohen-Macaulay, we have that the depth of R is equal to the depth of
R/xR plus e. However, to prove this, one needs a different characterization of depth
(using Ext functors), which we will not discuss in these notes. Another property that
we can now prove is that any localization of a Cohen-Macaulay local ring is again
Cohen-Macaulay (recall that we also still have to resolve this issue with regards to
being regular).

Corollary 4.2.9. If R is a Cohen-Macaulay local ring, then so is any localization
Rp at a prime ideal p⊆ R.

Proof. Let h be the height of p. Let us show by induction on h that p contains a
regular sequence of length h (that is to say, p has depth h). It is not hard to check that
the image of this sequence is then a regular sequence in Rp, showing that the latter
is Cohen-Macaulay. Obviously, we may take h > 0. Since p cannot be contained in
an associated prime of R by Corollary 4.2.8, it contains an R-regular element x. Put
S := R/xR, which is again Cohen-Macaulay by Corollary 4.2.7. As pS has height
h−1 (check this), it contains an S-regular sequence y of length h−1. But then (x,y)
is an R-regular sequence inside p, as we wanted to show. ut

We can now say that a Noetherian ring A is Cohen-Macaulay if every localization
at a maximal ideal is Cohen-Macaulay, and this is then equivalent by the last result
with every localization being Cohen-Macaulay. Similarly, a scheme X is Cohen-
Macaulay, if every local ring OX ,x at a (closed) point x ∈ X is Cohen-Macaulay. In
particular, any reduced curve is Cohen-Macaulay.
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Independent sequences A sequence x := (x1, . . . ,xd) in a ring R is said to be in-
dependent (in the sense of Lech), if a1x1 + · · ·+ adxd = 0 for some ai ∈ R implies
that all ai lie in the ideal I := xR. In fact, this is really a property of the ideal I.
Namely, I/I2 is free as an R/I-module if and only if I is generated by an indepen-
dent sequence. For R a Noetherian local ring, a result of Vasconcelos [60] yields
that a sequence x is regular if and only if it is independent and xR is a proper ideal
of finite projective dimension.

Proposition 4.2.10. Let (R,m) be a Noetherian local ring and x := (x1, . . . ,xd) a
sequence in R. If (xn

1, . . . ,x
n
d) is independent for infinitely many n, then x is an R-

regular sequence.

Proof. For each n, put In := (xn
1, . . . ,x

n
d)R. I first claim that if (xn

1, . . . ,x
n
d) is indepen-

dent, then so is (xl
1,x

n
2, . . . ,x

n
d), for each l < n. Indeed, suppose

a1xl
1 +

d

∑
i=2

aixn
i = 0

for some ai ∈ R. Multiplying this equation with xn−l
1 and using that (xn

1, . . . ,x
n
d) is

independent, we get a1,a2xn−l
1 , . . . ,adxn−l

1 ∈ In. Hence, a1 lies in (xl
1,x

n
2, . . . ,x

n
d)R,

and we want to show the same for the ai with i≥ 2. Write aixn−l
1 = bixn

1+ci for some
bi ∈ R and ci ∈ (xn

2, . . . ,x
n
d)R. Multiplying with xl

1 gives (bixl
1−ai)xn

1 + xl
1ci = 0, so

that using once more independence, we get bixl
1− ai ∈ In, showing that ai lies in

(xl
1,x

n
2, . . . ,x

n
d)R, thus completing the proof of the claim.

Secondly, I claim that x1 is R-regular. Indeed, suppose ax1 = 0, for some a ∈ R.
Hence axn

1 = 0 so that independence of (xn
1,x

n
2, . . . ,x

n
d) yields that a∈ In ⊆mn. Since

this holds for infinitely many n, Krull’s Intersection Theorem (Theorem 3.3.4) yields
a = 0, proving the second claim.

We now turn to the proof of the assertion, for which we use induction on d. The
case d = 1 follows from our second claim, so assume d > 1. By the second claim, x1
is R-regular. Moreover, by the first claim, (the image of) (xn

2, . . . ,x
n
d) is independent

in R/x1R for infinitely many n, so that (x2, . . . ,xn) is (R/x1R)-regular by induction.
Hence (x1, . . . ,xn) is R-regular, as we wanted to show. ut

Immediately from this, we may deduce the following Cohen-Macaulay criterium.

Corollary 4.2.11. A Noetherian local ring is Cohen-Macaulay if and only if every
system of parameters is independent. ut

4.3 Exercises

Ex 4.3.1
Verify all the claims made on page 56 about the given node and cusp.
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∗Ex 4.3.2
Prove the following more general version of Bezout’s theorem: if C := V( f ) and D := V(g)
are two distinct plane curves of degree t and u respectively, then their scheme-theoretic
intersection, given by the (Artinian) K-algebra A/( f ,g)A has K-vector space dimension tu.
To do this, carry out effectively the proof of Noether normalization, to get a handle on this
vector space dimension.
To see how this implies the usual statement of Bezout’s theorem, namely that the set-
theoretic intersection |C∩D| has cardinality at most tu, show that any Artinian ring of
length l has at most l maximal ideals.

Ex 4.3.3
From the proof of Proposition 4.1.3, you can extract the following criterion for f to have a
simple point at the origin: its linear part should not vanish. Use this to prove that a point
P on a plane curve C := V( f ) is a multiple point if and only if ∂ f/∂ξ and ∂ f/∂ζ both
vanish on P. Conclude that a plane curve has at most finitely many multiple points, and find
an upperbound for their number (you will need some elimination theory for this, as given,
for instance, in [15, pp. 308-309]).

Ex 4.3.4
Extend the argument in the proof of Proposition 4.1.3 to prove 4.1.4.

Ex 4.3.5
Show that if R is a regular local ring, then so is the power series ring R[[ξ ]] in finitely many
indeterminates. Prove that the ring of convergent power series over C (a formal power
series is called convergent if it converges on a small open disk around the origin) is regular.

Ex 4.3.6
Use Exercise 3.5.6 to show that we may drop the condition in 4.1.6 that K is algebraically
closed.

Ex 4.3.7
Show that the coordinate ring of a cusp gives a counterexample to the converse of Corol-
lary 3.3.5.

Ex 4.3.8
Show that a one-dimensional Noetherian local ring R is regular if and only if it is a discrete
valuation ring, that is to say, if and only if it admits a valuation v : R\{0}→ Z.

Ex 4.3.9
Using the criterion from Exercise 4.3.3, show that a plane curve with equation ζ n = f (ξ )
with f a polynomial without double roots, defines a regular plane curve if the characteristic
of K does not divide n. In particular, elliptic curves are regular in all characteristics other
than 2 (and in fact, also in characteristic 2, but one needs to define them by means of a dif-
ferent cubic polynomial). Moreover, show that if f has a double root, then the corresponding
plane curve has a singularity.
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Ex 4.3.10
Use the homogenization of the equation of an elliptic curve and Exercise 4.3.3 to show that
the projectification of an elliptic curve is regular if the characteristic is not 2.

∗Ex 4.3.11
Show that the discussion on page 59 generalizes to arbitrary affine schemes : if X :=
Spec(R) ⊆ An

K is a closed affine subscheme, then the closure of |X | in Pn
K can be endowed

with the structure of a projective scheme X̃ := Spec(R̃), such that X = X̃ ∩An
K (as schemes).

To this end, generalize the notion of ‘homogenization’ as described in (4.2) to arbitrary
ideals.

Ex 4.3.12
Show that a prime ideal p in a Noetherian ring B is associated if and only if there exists an
injective B-linear map B/p→ B.

∗Ex 4.3.13
Show that a regular ring A is a finite direct sum of regular domains as follows. Let p1, . . . ,ps
be the minimal primes of A. Show that A is the direct sum of the A/pi, and each A/pi is
regular. Geometrically, direct summands of a ring correspond to connected components of
the associated affine variety, and so the previous assertion amounts to: a scheme is regular
if and only if each connected component is regular; also, a regular scheme is irreducible if
and only if it is connected.

Ex 4.3.14
Let B := K[η1, . . . ,η4], and let p be the kernel of the K-algebra homomorphism

B→ K[ξ ,ζ ] : η1 7→ ξ
4,η2 7→ ξ

3
ζ ,η3 7→ ξ ζ

3,η4 7→ ζ
4

and let R be the localization of B/p at the maximal ideal corresponding to the origin.
Clearly, R is a domain, so that η4 is a regular element. Show that the annihilator of η3

3
in R/η4R is equal to the maximal ideal of that ring, showing that the depth of R/η4R is
zero. Conclude that R is not Cohen-Macaulay.

∗Ex 4.3.15
We call a tuple x := (x1, . . . ,xn) in a ring A quasi-regular if for any k and any homogeneous
form of degree k in A[ξ ] with ξ := (ξ1, . . . ,ξn), if F(x) ∈ Ik+1 then all coefficients of F lie
in I := (x1, . . . ,xn)A. Show that a regular sequence is quasi-regular. To this end, first show
that if y is a zero-divisor modulo I, then it is also a zero-divisor modulo any Ik, then show
the assertion by induction on n.
Show that x is quasi-regular if and only if the associated graded ring GrI(A) :=

⊕
n In/In+1

of I is isomorphic to (A/I)[ξ ]. Show that a quasi-regular sequence is independent.

∗Ex 4.3.16
Give a complete proof of Theorem 4.2.6 in every dimension. To this end, you must prove
that powers and permutations preserve regular sequences (the former is also proven in
Exercise 4.3.17 and the latter in Exercise 4.3.18).
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Ex 4.3.17
Show that in a (not necessarily Noetherian) ring A, if (x1, . . . ,xd) is A-regular, then so is
(xe1

1 , . . . ,xed
d ), for any ei ≥ 1.

∗Ex 4.3.18
Show that in a Noetherian local ring R, a sequence (x1, . . . ,xd) is regular if and only if it
is quasi-regular, by induction on d as follows. Only the converse requires proof, and to this
end, first show that x1 is R-regular by proving by induction on k that x1z = 0 implies z ∈
Ik, where I := (x1, . . . ,xd)R, and then using Krull’s Intersection Theorem (Theorem 3.3.4).
Conclude by showing that (x2, . . . ,xd) is R/x1R-quasi-regular.
In particular, a regular sequence in a Noetherian local ring is permutable.

Ex 4.3.19
Use Corollary 4.2.8 to prove the ‘unmixedness’ theorem: if I is an ideal of height e in a
Cohen-Macaulay local ring R, and if I is generated by e elements, then I has no embedded
primes, that is to say, any associated prime of R/I is minimal. Also show the converse: if a
Noetherian local ring has the above unmixedness property, then it is Cohen-Macaulay.





Chapter 5
Flatness

In this chapter we will study a very important and useful property, called ‘flatness’.
As a concept, however, it is neither as intuitive nor as transparent as the other con-
cepts discussed so far. Notwithstanding, it is an extremely important phenomenon,
which underlies many deeper results in commutative algebra, as will be come ap-
parent in the later chapters.1 With David Mumford, the great geometer, we observe:

“The concept of flatness is a riddle that comes out of algebra, but which technically
is the answer to many prayers.”

[32, p. 214]

Flatness is in essence a homological notion, so we start off with developing some
homological algebra. We then discuss the closely related notions of faithful flat-
ness and projective dimension, and conclude the chapter with several useful flatness
criteria.

5.1 Homological algebra

The main tool of homological algebra is the ‘homology of a complex’, so let’s define
this notion first.

Complexes. Let A be a ring. By a complex we mean a (possibly infinite) sequence

of A-module homomorphisms Mi
di→ Mi−1, for i ∈ Z, such that the composition of

any two consecutive maps is zero. We often simply will say that

. . .
di+1→ Mi

di→Mi−1
di−1→ Mi−2

di−2→ . . . (M•)

is a complex. The di are called the the boundary maps of the complex, and often
are omitted from the notation. Of special interest are those complexes in which all

1 I know of many deep theorems and conjectures that can be reformulated as a certain flatness
result.
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modules from a certain point on, either on the left or on the right, are zero (which
forces the corresponding maps to be zero as well). Such a complex will be called
bounded from the left or right respectively. In that case, one often renumbers so that
the first non-zero module is labeled with i = 0. If M• is bounded from the left, one
also might reverse the numbering, indicate this notationally by writing M•, and refer
to this situation as a co-complex (and more generally, add for emphasis the prefix
‘co-’ to any object associated to it).

Homology. Since the composition di+1 ◦ di is zero, we have in particular an in-
clusion Im(di+1) ⊆ Ker(di). To measure in how far this fails to be an equality, we
define the homology H•(M•) of M• as the collection of modules

Hi(M•) := Ker(di)/ Im(di+1).

If all homology modules are zero, M• is called exact. More generally, we say that M•
is exact at i (or at Mi) if Hi(M•) = 0. Note that M1

d1→M0→ 0 is exact (at zero) if and

only if d1 is surjective, and 0→M0
d0→M−1 is exact if and only if d0 is injective. An

exact complex is often also called an exact sequence. In particular, this terminology
is compatible with the nomenclature for short exact sequence. If M• is bounded from
the right (indexed so that the last non-zero module is M0), then the cokernel of M•
is the cokernel of d1 : M1→M0. Put differently, the cokernel is simply the zero-th
homology module H0(M•). We say that M• is acyclic, if all Hi(M•) = 0 for i > 0.
In that case, the augmented complex obtained by adding the cokernel of M• to the
right is then an exact sequence.

5.2 Flatness

We have arrived at the main notion of this chapter. Let A be a ring and M an A-
module. Recall that · ⊗A M, that is to say, tensoring with respect to M, is a right
exact functor, meaning that given an exact sequence

0→ N2→ N1→ N0→ 0 (5.1)

we get an exact sequence

N2⊗A M→ N1⊗A M→ N0⊗A M→ 0. (5.2)

See [5, Proposition 2.18] or [38, Theorem 8.90], where one also can find a good
introduction to tensor products. We now call a module M flat if any short exact
sequence (5.1) remains exact after tensoring, that is to say, we may add an additional
zero on the left of (5.2). Put differently, M is flat if and only if N′⊗A M → N⊗A
M is injective whenever N′ → N is an injective homomorphism of A-modules. By
breaking down a long exact sequence into short exact sequences (see Exercise 5.7.1),
we immediately get:
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5.2.1 If M is flat, then any exact complex N• remains exact after tensoring with
M.

The easiest examples of flat modules are the free modules:

5.2.2 Any free module, and more generally, any projective module, is flat.

Assume first that M is a free A-module, say of the form, M ∼= A(I), where I is
a possibly infinite index set (recall that an element of A(I) is a sequence a := (ai |
i ∈ I) such that all but finitely many ai are zero; the ‘unit’ vectors ei form a basis
of A(I), where all entries in ei are zero except the i-th, which equals one; and, any
free A-module is isomorphic to some A(I)). For any A-module H, we have H ⊗A
M ∼= H(I). Since direct sums preserve injectivity, we now easily conclude that M
is flat. The same argument applies if M is merely projective, meaning that it is a
direct summand of a free module, say M⊕M′ ∼= F with F free. This completes the
proof of the assertion. In particular, A[ξ ], being free over A, is flat as an A-module.
The same is true for power series rings, at least over Noetherian rings, but for the
proof, we will need a flatness criterion, and hence we postpone it to Corollary 5.6.3.
Flatness is preserved under base change in the following sense (the proof is left as
Exercise 5.7.3):

5.2.3 If M is a flat A-module, then M/IM is a flat A/I-module for each ideal
I ⊆ A. More generally, if A→ B is any homomorphism, then M⊗A B is a
flat B-module.

5.2.4 Any localization of a flat A-module is again flat. In particular, for every
prime ideal p⊆ A, the localization Ap is flat as an A-module.

The last assertion follows from the first and the fact that A, being free, is flat as
an A-module by 5.2.2. The first assertion is not hard and is left as Exercise 5.7.3.
Our next goal is to develop a homological tool to aid us in our study of flatness.

Tor modules. Let M be an A-module. A projective resolution of M is a complex
P•, bounded from the right, in which all the modules Pi are projective, and such that
the augmented complex

Pi→ Pi−1→ ··· → P0→M→ 0

is exact. Put differently, a projective resolution of M is is an acyclic complex P• of
projective modules whose cokernel is equal to M. Tensoring this augmented com-
plex with a second A-module N, yields a (possibly non-exact) complex

Pi⊗A N→ Pi−1⊗A N→ ··· → P0⊗A N→M⊗A N→ 0.

The homology of the non-augmented part P•⊗N (that is to say, without the final
module M⊗N), is denoted

TorA
i (M,N) := Hi(P•⊗A N).
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As the notation indicates, this does not depend on the choice of projective resolution
P•. Moreover, we have for each i an isomorphism TorA

i (M,N) ∼= TorA
i (N,M). We

will not prove these properties here (the proofs are not that hard anyway, see for
instance [15, Appendix 3] or [30, Appendix B]). Since tensoring is right exact, a
quick calculation shows that

TorA
0 (M,N)∼= M⊗A N.

The next result is a general fact of ‘derived functors’ (Tor is indeed the derived
functor of the tensor product as discussed for instance in [30, Appendix B]; for a
proof of the next result, see Exercise 5.7.20).

5.2.5 If
0→ N′→ N→ N′′→ 0

is a short exact sequence of A-modules, then we get for every A-module
M a long exact sequence

· · · → TorA
i+1(M,N′′)

δi+1→ TorA
i (M,N′)→

TorA
i (M,N)→ TorA

i (M,N′′)
δi→ TorA

i−1(M,N′)→ . . .

where the δi are the so-called connecting maps, and the remaining maps
are induced by the original maps.

Tor-criterion for flatness. We can now formulate a homological criterion for flat-
ness. More flatness criteria will be discussed in §5.6 below.

Theorem 5.2.6. For an A-module M, the following are equivalent

1. M is flat;
2. TorA

i (M,N) = 0 for all i > 0 and all A-modules N;
3. TorA

1 (M,A/I) = 0 for all finitely generated ideals I ⊆ A.

Proof. Let P• be a projective resolution of N. If M is flat, then P•⊗A M is again
exact by 5.2.1, and hence its higher homology TorA

i (N,M) = Hi(P•⊗A N) vanishes.
Conversely, if (2) holds, then tensoring the exact sequence 0→N′→N→N/N′→ 0
with M yields in view of 5.2.5 an exact sequence

0 = TorA
1 (M,N/N′)→M⊗A N′→M⊗A N

showing that the latter map is injective.
Remains to show (3) ⇒ (1), which for simplicity I will only do in the case A

is Noetherian; the general case is treated in Exercise 5.7.6. We must show that
if N′ ⊆ N is an injective homomorphism of A-modules, then M⊗A N′ → M⊗A N
is again injective, and we already observed that this follows once we showed that
TorA

1 (M,N/N′) = 0. I claim that it suffices to show this for N finitely generated:
indeed, if N is arbitrary and t := m1⊗ n1 + · · ·+ms⊗ ns is an element in M⊗N′
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which is sent to zero in M⊗N, then by definition of tensor product, there exists a
finitely generated submodule N1 ⊆ N containing all ni such that t = 0 as an element
of M⊗N1. In particular, t is an element of M⊗N′1, where N′1 := N′ ∩N1, whose
image in M⊗N1 is zero. Assuming momentarily that the finitely generated case is
already proven, t is therefore zero in M⊗N′1, whence a fortiori in M⊗N′.

So we may assume that N is finitely generated. We prove by induction on r, the
number of generators of N/N′, that TorA

1 (M,N/N′) = 0. If r = 1, then N/N′ is of
the from A/I with I ⊆ A an ideal, and the result holds by assumption. For r > 1, let
t ∈ N be such that its image in N/N′ is a minimal generator. Put H := N′+At, so
that N/H is generated by r− 1 elements, and H/N′ is cyclic. Tensoring the short
exact sequence

0→ H/N′→ N/N′→ N/H→ 0

yields by 5.2.5 an exact sequence

TorA
1 (M,H/N′)→ TorA

1 (M,N/N′)→ TorA
1 (M,N/H).

By induction, the two outer modules vanish, whence so does the inner. ut

For Noetherian rings we can even restrict the test in (3) to prime ideals (but see
also Theorem 5.6.6 below, which reduces the test to a single ideal):

Corollary 5.2.7. Let A be a Noetherian ring and M an A-module. If TorA
1 (M,A/p)

vanishes for all prime ideals p ⊆ A, then M is flat. More generally, if, for some
i ≥ 1, every TorA

i (M,A/p) vanishes for p running over the prime ideals in A, then
TorA

i (M,N) vanishes for all (finitely generated) A-modules N.

Proof. The first assertion follows from the last by (3). The last assertion, for finitely
generated modules, follows from the fact that every such module N admits a prime
filtration, that is to say, a finite ascending chain of submodules

0 = N0 ⊆ N1 ⊆ N2 ⊆ ·· · ⊆ Ne = N (5.3)

such that each successive quotient N j/N j−1 is isomorphic to the (cyclic) A-module
A/p j for some prime ideal p j ⊆ A, for j = 1, . . . ,e (see Exercise 5.7.8). By induction
on j, one then derives from the long exact sequence (5.2.5) that TorA

i (M,N j) =
0, whence in particular TorA

i (M,N) = 0. To prove the same result for N arbitrary
(which we will not be needing in the sequel), use an argument similar to the one in
the proof of Theorem 5.2.6 (see Exercise 5.7.6). ut

Corollary 5.2.8. Let
0→M1→ F →M→ 0

be an exact sequence of A-modules. If F is flat, then

TorA
i (M,N)∼= TorA

i−1(M1,N)

for all i≥ 2 and all A-modules N.
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Proof. From the long exact sequence of Tor (see 5.2.5), we get exact sequences

0 = TorA
i (F,N)→ TorA

i (M,N)→ TorA
i−1(M1,N)→ TorA

i−1(F,N) = 0

where the two outer most modules vanish because of Theorem 5.2.6. ut

Note that in case F is actually projective in the above sequence, then M1 is called
a (first) syzygy of M. Therefore, the previous result is particularly useful when work-
ing with syzygies (for a typical application, see the proof of 5.5.1.)

5.3 Faithful flatness

We call an A-module M faithful , if mM 6= M for all (maximal) ideals m of A.2 By
Nakayama’s Lemma, we immediately get:

5.3.1 Any finitely generated module over a local ring is faithful.

Of particular interest are the faithful modules which are moreover flat, called
faithfully flat modules (see Exercise 5.7.21 for a homological characterization). It
is not hard to see that any free or projective module is faithfully flat. On the other
hand, no proper localization of A is faithfully flat.

5.3.2 If M is a faithfully flat A-module, then M⊗A N is non-zero, for every non-zero
A-module N. Moreover, if A→ B is an arbitrary homomorphism, then M⊗A B is
a faithfully flat B-module.

Indeed, for the first assertion, let N 6= 0 and choose a non-zero element n ∈ N.
Since I := AnnA(n) is then a proper ideal, it is contained in some maximal ideal
m ⊆ A. Note that An ∼= A/I. Tensoring the induced inclusion A/I ↪→ N with M gives
by assumption an injection M/IM ↪→M⊗A N. The first of these modules is non-zero,
since IM ⊆mM 6= M, whence so is the second, as we wanted to show. To prove the
second assertion, M⊗A B is flat over B by 5.2.3. Let n be a maximal ideal of B, and
let p := n∩A be its contraction to A. In particular, M/pM is flat over A/p, and an
easy calculation then shows that it is faithfully flat. Therefore, by the first assertion,
M/pM⊗A/p B/n is non-zero. As the latter is just (M⊗A B)/n(M⊗A B), we showed
that M⊗A B is also faithful.

In most of our applications, the A-module has the additional structure of an A-
algebra. In particular, we call a ring homomorphism A→ B (faithfully ) flat if B is
(faithfully) flat as an A-module. Since by definition a local homomorphism of local
rings (R,m)→ (S,n) is a ring homomorphism with the additional property that m⊆ n,
we get immediately:

5.3.3 Any local homomorphism which is flat, is faithfully flat. ut

Proposition 5.3.4. If A→ B is faithfully flat, then for every ideal I ⊆ A, we have
I = IB∩A, and hence in particular, A→ B is injective.

2 The reader be warned that this is a less conventional terminology: ‘faithful’ often is taken to
mean that the annihilator of the module is zero. However, in view of the (well-established) term
‘faithfully flat’, our usage seems more reasonable: faithfully flat now simply means faithful and
flat.
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Proof. For I equal to the zero ideal, this just says that A→ B is injective. Suppose
this last statement is false, and let a ∈ A be a non-zero element in the kernel of
A→ B, that is to say, a = 0 in B. However, by 5.3.2, the module aA⊗A B is non-zero,
say, containing the non-zero element x. Hence x is of the form a⊗b for some r ∈ A
and b ∈ B, and therefore equal to r⊗ab = r⊗0 = 0, contradiction.

To prove the general case, note that B/IB is a flat A/I-module by 5.2.3. It is
clearly also faithful, so that applying our first argument to the natural homomor-
phism A/I → B/IB yields that it must be injective, which precisely means that
I = IB∩A. ut

A ring homomorphism A→ B such that I = IB∩A for all ideals I ⊆ A is called
cyclically pure. Hence faithfully flat homomorphisms are cyclically pure. We can
paraphrase this as ‘faithful flatness preserves the ideal structure of a ring’, that is
to say, in terms of Grassmanians (see page 28), we have:

5.3.5 If A→ B is faithfully flat, or more generally, cyclically pure, then the induced
map Grass(A)→ Grass(B) : I 7→ IB on the Grassmanians is injective. ut

Since a ring A is Noetherian if and only if its Grassmanian Grass(A) is well-
ordered (i.e., has the descending chain condition; recall that the order on Grass(A) is
given by reverse inclusion), we get immediately the following Noetherianity criterion
from 5.3.5:

Corollary 5.3.6. Let A→ B be a faithfully flat, or more generally, a cyclically pure
homomorphism. If B is Noetherian, then so is A. ut

A similar argument shows:

5.3.7 If R→ S is a faithfully flat homomorphism of local rings, and if I ⊆ R is minimally
generated by e elements, then so is IS.

Clearly, IS is generated by at most e elements. By way of contradiction, suppose
it is generated by strictly fewer elements. By Nakayama’s Lemma, we may choose
these generators already in I. So there exists an ideal J ⊆ I, generated by less than
e elements, such that JS = IS. However, by cyclic purity (Proposition 5.3.4), we have
J = JS∩R = IS∩R = I, contradicting that I requires at least e generators. ut

If A→ B is a flat or faithfully flat homomorphism, then we also will call the cor-
responding morphism Y := Spec(B)→ X := Spec(A) flat or faithfully flat respectively.
In Exercise 5.7.13, you are asked to prove that:

5.3.8 A morphism f : Y → X of affine schemes is flat if and only if for every (closed)
point y ∈ Y , the induced homomorphism OX , f (y)→ OY,y is flat.

Theorem 5.3.9. A morphism Y → X of affine schemes is faithfully flat if and only if
it is flat and surjective.

Proof. Let A→ B be the corresponding homomorphism. Assume A→ B is faith-
fully flat, and let p ⊆ A be a prime ideal. Surjectivity of the morphism amounts to
showing that there is at least one prime ideal of B lying over p. Now, by 5.3.2, the
base change Ap → Bp is again faithfully flat, and hence in particular pBp 6= Bp. In
other words, the fiber ring Bp/pBp is non-empty, which is what we wanted to prove
(indeed, take any maximal ideal n of Bp/pBp and let q := n∩ B; then verify that
q∩A = p.)

Conversely, assume Y → X is flat and surjective, and let m be a maximal ideal of
A. Let q ⊆ B be an ideal lying over m. Hence mB ⊆ q 6= B, showing that B is faithful
over A. ut
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5.4 Flatness and regular sequences

The first fundamental fact regarding regular sequences and flat homomorphisms is:

Proposition 5.4.1. If A→B is a flat homomorphism and x is an A-regular sequence,
then x is also B-regular.

Proof. We induct on the length n of x := (x1, . . . ,xn). Assume first n = 1. Multipli-
cation by x1, that is to say, the homomorphism A

x1→ A, is injective, whence remains
so after tensoring with B by 5.2.3. It is not hard to see that the resulting homo-
morphism is again multiplication B

x1→ B, showing that x1 is B-regular. For n > 1,
the base change A/x1A→ B/x1B is flat, so that by induction (x2, . . . ,xn) is B/x1B-
regular. Hence we are done, since x1 is B-regular by the previous argument. ut

Tor modules behave well under deformation by a regular sequence in the follow-
ing sense.

Proposition 5.4.2. Let x be a regular sequence in a ring A, and let M and N be two
A-modules. If x is M-regular and xN = 0, then we have for each i an isomorphism

TorA
i (M,N)∼= TorA/xA

i (M/xM,N).

Proof. By induction on the length of the sequence, we may assume that we have
a single A-regular and M-regular element x. Put B := A/xA. From the short exact
sequence

0→ A x→ A → B→ 0

we get after tensoring with M, a long exact sequence of Tor-modules as in 5.2.5.
Since TorA

i (A,M) vanishes for all i, so must each TorA
i (M,B) in this long exact

sequence for i > 1. Furthermore, the initial part of this long exact sequence is

0→ TorA
1 (M,B)→M x→M→M/xM→ 0

proving that TorA
1 (M,B) too vanishes as x is M-regular. Now, let P• be a projective

resolution of M. The homology of P̄• := P•⊗A B is by definition TorA
i (M,B), and

since we showed that this is zero, P̄• is exact, whence a projective resolution of
M/xM. Hence we can calculate TorB

i (M/xM,N) as the homology of P̄•⊗B N (note
that by assumption, N is a B-module). However, the latter complex is equal to P•⊗A
N (which we can use to calculate TorA

i (M,N)), and hence both complexes have the
same homology, as we wanted to show. ut

5.5 Projective dimension

If an A-module M has a projective resolution P• which is also bounded from the left,
that is to say, is of the form
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0→ Pe→ ··· → P0→M→ 0

then we say that M has finite projective dimension. The smallest length e of such an
exact sequence is called the projective dimension of M and is denoted projdim(M); if
M does not have a finite projective resolution, then we set projdim(M) :=∞. Clearly,
the projective dimension of a module is zero if and only if it is projective. The
connection with Tor is immediate by virtue of the latter’s definition as the homology
of the tensor product with a projective resolution:

5.5.1 If M is an A-module of projective dimension e, then TorA
i (M,N) = 0 for

all i > e and all A-modules N. Moreover, if

0→ H→ Pe→ Pe−1→ ··· → P0→M→ 0

is exact, with all Pe projective, then H is flat (and in fact projective).

Only the second assertion requires explanation. By Corollary 5.2.8, the vanishing
of TorA

e+1(M,N) is equivalent with the vanishing of TorA
1 (H,N). Hence H is a flat

A-module by Theorem 5.2.6. To prove that it is actually projective, one needs Ext-
functors, which we will not treat.

If x is an A-regular element, then A/xA has projective dimension one, as is clear
from the exact sequence

0→ A x→ A → A/xA→ 0. (5.4)

In fact, this is also true for regular sequences of any length, but to prove this we
need a new tool:

Minimal resolutions. A complex M• over a local ring (R,m) is called minimal if
the kernel of each boundary di : Mi→Mi−1 lies inside mMi. The next result is easily
derived from Nakayama’s Lemma and induction (see Exercise 5.7.9):

5.5.2 Every finitely generated module over a Noetherian local ring admits a
minimal free resolution, consisting of finitely generated free modules.

Corollary 5.5.3. Over a Noetherian local ring, a finitely generated module is flat if
and only if it is projective if and only if it is free.

Proof. The converse implications are all trivial. So remains to show that if G is a
finitely generated flat R-module, then it is free. By 5.5.2 (or Nakayama’s Lemma),
we can find a finitely generated free A-module F , and a surjective map F → G
whose kernel H lies inside mF . In other words, F/mF ∼= G/mG. On the other hand,
tensoring the exact sequence 0→ H → F → G→ 0 with k := R/m yields by 5.2.5
an exact sequence

0 = TorR
1 (G,k)→ H/mH→ F/mF → G/mG→ 0

where we used the flatness of G to obtain the vanishing of the first module. Since the
last arrow is an isomorphism, H/mH = 0, which by Nakayama’s Lemma implies
H = 0, that is to say, F = G is free. ut
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Minimal resolutions are essentially unique:

Proposition 5.5.4. Let (R,m) be a Noetherian local ring with residue field k. Let M
be a finitely generated R-module, and let

. . .Fi→ Fi−1→ ··· → F0→M→ 0 (F•)

be a minimal free resolution. For each i ≥ 0, the i-th Betti number of M, that is to
say, the k-vector space dimension of TorR

i (M,k), is equal to the rank of Fi.
Moreover, the projective dimension of M is equal to the supremum of all i for

which TorR
i (M,k) 6= 0, and hence is less than or equal to projdim(k).

Proof. By definition, TorR
i (M,k) is the homology of F•⊗R k. Since F• is minimal,

the boundaries in F•⊗R k are all zero, so that Hi(F•⊗R k) = Fi⊗R k. This shows that
the Betti numbers of M coincide with the ranks of the free modules in F• (and hence
the latter are uniquely determined). The second assertion follows immediately from
this and from 5.5.1. ut

Put differently, the previous result yields a criterion for a finitely generated mod-
ule to have finite projective dimension, namely that some Betti number be zero. We
can now prove (5.4) for any regular sequence:

Corollary 5.5.5. If x is a regular sequence in a Noetherian local ring R, then R/xR
has finite projective dimension.

Proof. We prove by induction on the length l of the sequence that R/xR has pro-
jective dimension at most l, where the case l = 1 is (5.4). Write x = (y,x) with y a
regular sequence of length l−1. The short exact sequence

0→ R/yR x→ R/yR → R/xR→ 0

when tensored with the residue field k yields by 5.2.5 a long exact sequence

TorR
i (R/yR,k)→ TorR

i (R/xR,k)→ TorR
i−1(R/yR,k)

For i− 1 ≥ l, both outer modules are zero by induction and Proposition 5.5.4,
whence so is the inner module. Using Proposition 5.5.4 once more, we see that
R/xR therefore has projective dimension at most l. ut

In fact, the projective dimension of R/xR is exactly l. Moreover, this result re-
mains true if the ring is not local, nor even Noetherian. This more general result is
proven by means of a complex called the Koszul complex, whose homology actually
measures the failure of a sequence being regular. For all this, see for instance [30,
§16] or [15, §17].

Theorem 5.5.6 (Serre). A d-dimensional Noetherian local ring R is regular if and
only if its residue field k has finite projective dimension (equal to d). If this is the
case, then any module has projective dimension at most d.
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Proof (partim). Regarding the first statement, we will only prove the direct impli-
cation. Since a regular local ring R is Cohen-Macaulay by Proposition 4.2.3, its
maximal ideal is generated by a regular sequence x. Hence k = R/xR has finite pro-
jective dimension by Corollary 5.5.5. To prove the converse, some additional tools
(like Ext-functors) are required, and we refer the reader to the literature (see for
instance [30, Theorem 19.2], [38, Theorem 11.189], or [15, Theorem 19.12]).

The second assertion for finitely generated modules now follows immediately
from the first and Proposition 5.5.4. To also prove this for non-finitely generated
modules, again Ext-functors are needed (see for instance [30, §19 Lemma 2] or [15,
Theorem A3.18]). ut

Although we did not give a complete proof, we did prove most of what we will
use, with the most notable exception Corollary 5.5.8 below. We can even formulate
a global version, which was first proven by Hilbert in the case A is a polynomial
ring over a field.

Theorem 5.5.7. Over a d-dimensional regular ring A, any finitely generated A-
module M has projective dimension at most d.

Proof. Choose an exact sequence

0→ H→ And → . . .An1 → An0 →M→ 0

for some ni and some finitely generated module H, the d-th syzygy of M, given as the
kernel of the homomorphism And → And−1 . Since Am is flat over A, for m a maximal
ideal of A, we get an exact sequence

0→ Hm→ And
m → . . .An1

m → An0
m →Mm→ 0.

By Theorem 5.5.6, the Am-module Mm has finite projective dimension, and hence,
Hm is flat by 5.5.1. Therefore, H is projective by Exercise 5.7.15. ut

Corollary 5.5.8. If A is a regular ring, then so is any of its localizations.

Proof. A moment’s reflection yields that we only need to prove this when A is al-
ready local, and p is some (non-maximal) prime ideal. By Theorem 5.5.6, the residue
ring A/p admits a finite free resolution. Since localization is flat, tensoring this res-
olution with Ap gives a finite free resolution of Ap/pAp viewed as an Ap-module.
Hence Ap is regular by Theorem 5.5.6 (this is the one spot where we use the un-
proven converse from that theorem). ut

5.6 Flatness criteria

Because flatness will play such a crucial role, we want several ways of detecting it.
In this section, we will see five such criteria.
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Equational criterion for flatness Our first criterion is very useful in applications,
and works without any hypothesis on the ring or module. To give a streamlined
presentation, let us introduce the following terminology: given an A-module N, and
tuples bi in An, by an N-linear combination of the bi, we mean a tuple in Nn of
the form n1b1 + · · ·+ nsbs where ni ∈ N. Of course, if N has the structure of an
A-algebra, this is just the usual terminology. Given a (finite) homogeneous linear
system of equations

L1(t) = · · ·= Ls(t) = 0 (L )

over A in the n variables t, we denote the A-submodule of Nn consisting of all so-
lutions of (L ) in N by SolN(L ), and we let fL : Nn → Ns be the map given by
substitution x 7→ (L1(x), . . . ,Ls(x)). In particular, we have an exact sequence

0→ SolN(L )→ Nn fL→ Ns. (†L /N)

Theorem 5.6.1. A module M over a ring A is flat if and only if every solution in M
of a homogeneous linear equation in finitely many variables over A is an M-linear
combination of solutions in A. Moreover, instead of a single linear equation, we may
take any finite system of linear equations in the above criterion.

Proof. We will only prove the first assertion, and leave the second for the exercises
(Exercise 5.7.10). Let L = 0 be a homogeneous linear equation in n variables with
coefficients in A. If M is flat, then the exact sequence (†L/A) remains exact after
tensoring with M, that is to say,

0→ SolA(L)⊗A M→Mn fL→M,

and hence by comparison with (†L/M), we get

SolM(L) = SolA(L)⊗A M.

From this it follows easily that any tuple in SolM(L) is an M-linear combination of
tuples in SolA(L), proving the direct implication.

Conversely, assume the condition on the solution sets of linear forms holds. To
prove that M is flat, we will verify condition (3) in Theorem 5.2.6. To this end,
let I := (a1, . . . ,ak)A be a finitely generated ideal of A. Tensor the exact sequence
0→ I→ A→ A/I→ 0 with M to get by 5.2.5 an exact sequence

0 = TorA
1 (A,M)→ TorA

1 (A/I,M)→ I⊗A M→M. (5.6)

Suppose y is an element in I⊗M that is mapped to zero in M. Writing y = a1⊗m1+
· · ·+ak⊗mk for some mi ∈M, we get a1m1+ · · ·+akmk = 0. Hence by assumption,
there exist solutions b(1), . . . ,b(s) ∈ Ak of the linear equation a1t1 + · · ·+ aktk = 0,
such that

(m1, . . . ,mk) = n1b(1)+ · · ·+nsb(s)
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for some ni ∈M. Letting b( j)
i be the i-th entry of b( j), we see that

y =
k

∑
i=1

ai⊗mi =
k

∑
i=1

s

∑
j=1

ai⊗n jb
( j)
i =

s

∑
j=1

(
k

∑
i=1

aib
( j)
i )⊗n j =

s

∑
j=1

0⊗n j = 0.

Hence I⊗A M→M is injective, so that TorA
1 (A/I,M) must be zero by (5.6). Since

this holds for all finitely generated ideals I ⊆ A, we proved that M is flat by Theo-
rem 5.2.6(3). ut

It is instructive to view the previous result from the following perspective. To a
homogeneous linear equation L = 0, we associated an exact sequence (†L/N). The
image of fL is of the form IN where I is the ideal generated by the coefficients of
the linear form defining L. In case N = B is an A-algebra, this leads to the following
extended exact sequence

0→ SolB(L)→ Bn fL→ B→ B/IB→ 0. (‡IB)

This justifies calling SolB(L) the module of syzygies of IB (one checks that it only
depends on the ideal I). Therefore, we may paraphrase the equational flatness crite-
rion for algebras as follows:

5.6.2 A ring homomorphism A→ B is flat if and only if taking syzygies com-
mutes with extension in the sense that the module of syzygies of IB is
the extension to B of the module of syzygies of I.

Here is one application of the equational flatness criterion.

Corollary 5.6.3. For any Noetherian ring A, the extension A → A[[ξ1, . . . ,ξn]] is
faithfully flat.

Proof. By induction, we may reduce to the case of a single variable ξ . If m⊆ A is a
maximal ideal, then mA[[x]] is a prime ideal with quotient (A/m)[[ξ ]], showing that
A[[ξ ]] is faithful over A. To show that it is also flat, we use the equational criterion.
Let L = 0 be a homogeneous linear equation in n unknowns with coefficients in
A. Let f ∈ A[[ξ ]]n be a solution of L = 0. Using vector notation, we may expand
f = ∑

∞
i=0 biξ

i, for bi ∈ An. It follows that 0 = L(f) = ∑i L(bi)ξ
i, showing that each

bi ∈ SolA(L). By Noetherianity, SolA(L) is finitely generated, and hence, there exists
N, such that bi for i≤ N generate SolA(L), in other words, we can find ri j ∈ A such
that bi = ∑ j≤N ri jb j, for all i > N. Putting g j := ξ j +∑i>N ri jξ

i ∈ A[[ξ ]], for j ≤ N,
we have

f =
N

∑
j=0

b jξ
j +

∞

∑
i=N+1

(∑
j≤N

ri jb j)ξ
i =

N

∑
j=0

b jg j

which is an A[[ξ ]]-linear combination of the solutions bi ∈ SolA(L), so that we are
done by Theorem 5.6.1. ut
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Quotient criterion for flatness. The next criterion is derived from our Tor-criterion
(Theorem 5.2.6):

Theorem 5.6.4. Let A→ B be a flat homomorphism, and let I ⊆ B be an ideal. The
induced homomorphism A→ B/I is flat if and only if aB∩ I = aI for all finitely
generated ideals a⊆ A.

Moreover, if A is Noetherian, we only need to check the above criterion for a a
prime ideal of A.

Proof. From the exact sequence 0→ I→ B→ B/I→ 0 we get after tensoring with
A/a an exact sequence

0 = TorA
1 (B,A/a)→ TorA

1 (B/I,A/a)→ I/aI→ B/aB

where we used the flatness of B for the vanishing of the first module. The kernel
of I/aI→ B/aB is easily seen to be (aB∩ I)/aI. Hence TorA

1 (B/I,A/a) vanishes if
and only if aB∩ I = aI. This proves by Theorem 5.2.6 the stated equivalence in the
first assertion; the second assertion follows by the same argument, this time using
Corollary 5.2.7. ut

To put this criterion to use, we need another definition. The (A-)content of a poly-
nomial f ∈ A[ξ ] (or a power series f ∈ A[[ξ ]]) is by definition the ideal generated
by its coefficients.

Corollary 5.6.5. Let A be a Noetherian ring, let ξ be a finite tuple of indeterminates,
and let B denote either A[ξ ] or A[[ξ ]]. If f ∈ B has content one, then B/ f B is flat
over A.

Proof. By 5.2.2 or Corollary 5.6.3, the natural map A→ B is flat. To verify the
second criterion in Theorem 5.6.4, let p⊆ A be a prime ideal. The forward inclusion
in the to be proven equality p f B = pB∩ f B is immediate. To prove the other, take
g ∈ pB∩ f B. In particular, g = f h for some h ∈ B. Since p ⊆ A is a prime ideal, so
is pB (this is a property of polynomial or power series rings, not of flatness!). Since
f has content one, f /∈ pB whence h ∈ pB. This yields g ∈ p f B, as we needed to
prove. ut

Local criterion for flatness. For finitely generated modules, we have the following
criterion:

Theorem 5.6.6 (Local flatness theorem–finitely generated case). Let R be a Noe-
therian local ring with residue field k. If M is a finitely generated R-module whose
first Betti number vanishes, that is to say, if TorR

1 (M,k) = 0, then M is flat.

Proof. Take a minimal free resolution

· · · → F1→ F0→M→ 0.

of M. By Proposition 5.5.4, the rank of F1 is zero, so that M ∼= F0 is free whence
flat. ut
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There is a much stronger version of this result, where we may replace the condi-
tion that M is finitely generated over R by the condition that M is finitely generated
over a Noetherian local R-algebra S. Since we will not really need this result, we
refer the reader either to the literature (see for instance [30, Theorem 22.3] or [15,
Theorem 6.8]), or to Project 5.8.

Cohen-Macaulay criterion for flatness. To formulate our next criterion, we need
a definition.

Definition 5.6.7 (Big Cohen-Macaulay modules). Let R be a Noetherian local
ring, and let M be an arbitrary R-module. We call M a big Cohen-Macaulay module,
if there exists a system of parameters on R which is M-regular. If moreover every
system of parameters is M-regular, then we call M a balanced big Cohen-Macaulay.

It has become tradition to add the somehow redundant adjective ‘big’ to empha-
size that the module is not necessarily finitely generated. It is one of the greatest
open problems in homological algebra to show that every Noetherian local ring has
at least one big Cohen-Macaulay module, and this is known to be the case for any
Noetherian local ring containing a field.3 A Cohen-Macaulay local ring is clearly a
balanced big Cohen-Macaulay module over itself, so the problem of the existence
of these modules is only important for deriving results over Noetherian local rings
with ‘worse than Cohen-Macaulay’ singularities.

Once one has a big Cohen-Macaulay module, one can always construct, using
completion (for which, see Chapter 6), a balanced big Cohen-Macaulay module
from it (see for instance [11, Corollary 8.5.3]). Here is a criterion for a big Cohen-
Macaulay module to be balanced taken from [4, Lemma 4.8]; its proof is a simple
modification of the proof of Theorem 4.2.6 and is worked out in Exercise 5.7.11
(recall that a regular sequence is called permutable if any permutation is again reg-
ular).

Proposition 5.6.8. A big Cohen-Macaulay module M over a Noetherian local ring
is balanced, if every M-regular sequence is permutable.

If R is a Cohen-Macaulay local ring, and M a flat R-module, then M is a balanced
big Cohen-Macaulay module, since every system of parameters in R is R-regular
by Theorem 4.2.6, whence M-regular by Proposition 5.4.1. We have the following
converse:

Theorem 5.6.9. If M is a balanced big Cohen-Macaulay module over a regular
local ring, then it is flat. More generally, over an arbitrary local Cohen-Macaulay
ring, if M is a balanced big Cohen-Macaulay module of finite projective dimension,
then it is flat.

3 A related question is even open in these cases: does there exist a ‘small’ Cohen-Macaulay module,
i.e., a finitely generated one, if the ring is moreover complete? For the notion of a complete local
ring, see §6.2; there are counterexamples to the existence of a small Cohen-Macaulay module if
the ring is not complete.
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Proof. The first assertion is indeed a special case of the second by Theorem 5.5.6.
For simplicity, we will just prove the first, and refer to Exercise 5.7.12 for the sec-
ond. So let M be a balanced big Cohen-Macaulay module over the d-dimensional
regular local ring R. Since a finitely generated R-module N has finite projective
dimension by the (proven part of) Theorem 5.5.6, all TorR

i (M,N) = 0 for i� 0
by 5.5.1. Let e be maximal such that TorR

e (M,N) 6= 0 for some finitely gener-
ated R-module N. If e = 0, then we are done by Theorem 5.2.6. So, by way of
contradiction, assume e ≥ 1. By Corollary 5.2.7, there exists a prime ideal p ⊆ R
such that TorR

e (M,R/p) 6= 0. Let h be the height of p. By Exercise 3.5.15, we can
choose a system of parameters (x1, . . . ,xd) in R such that p is a minimal prime of
I := (x1, . . . ,xh)R. Since (the image of) p is then an associated prime of R/I, we can
find by Exercise 4.3.12 a short exact sequence

0→ R/p→ R/I→C→ 0

for some finitely generated R-module C. The relevant part of the long exact Tor
sequence from 5.2.5, obtained by tensoring the above exact sequence with M, is

TorR
e+1(M,C)→ TorR

e (M,R/p)→ TorR
e (M,R/I). (5.8)

The first module in (5.8) is zero by the maximality of e. The last module is zero too
since it is isomorphic to TorR/I

e (M/IM,R/I) = 0 by Proposition 5.4.2 and the fact
that (x1, . . . ,xd) is by assumption M-regular. Hence the middle module in (5.8) is
also zero, contradiction. ut

We derive the following criterion for Cohen-Macaulayness:

Corollary 5.6.10. If X is an irreducible affine scheme of finite type over an alge-
braically closed field K, and φ : X → Ad

K is a Noether normalization, that is to say, a
finite and surjective morphism, then X is Cohen-Macaulay if and only if φ is flat.

Proof. Suppose X = Spec(B), so that φ corresponds to a finite and injective homo-
morphism A→ B, with A := K[ξ1, . . . ,ξd ] (see our discussion on page 21) and B a
d-dimensional affine domain. Let n be a maximal ideal of B, and let m := n∩A be
its contraction to A. Since A/m→ B/n is finite and injective, and since the second
ring is a field, so is the former by Lemma 2.2.7. Hence m is a maximal ideal of
A, and Am is regular by 4.1.6. By Exercise 3.5.17, the height of n is d. Choose an
ideal I := (x1, . . . ,xd)A whose image in Am is a parameter ideal. Since the natural
homomorphism A/I → B/IB is finite, the latter ring is Artinian since the former is
(note that A/I = Am/IAm). It follows that IBn is a parameter ideal in Bn.

Now, if B, whence also Bn is Cohen-Macaulay, then (x1, . . . ,xd), being a system
of parameters in Bn, is Bn-regular by Theorem 4.2.6. This proves that Bn is balanced
big Cohen-Macaulay module over Am, whence is flat by Theorem 5.6.9. Hence φ is
flat by 5.3.8.

Conversely, assume X → Ad
K is flat. Therefore, Am → Bn is flat, and hence

(x1, . . . ,xd) is Bn-regular by Proposition 5.4.1. Since we already showed that this
sequence is a system of parameters, we see that Bn is Cohen-Macaulay. Since
this holds for all maximal prime ideals of B, we proved that B is Cohen-Macaulay.

ut

Remark 5.6.11. The above argument proves the following more general result in
the local case: if A ⊆ B is a finite and faithfully flat extension of local rings with
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A regular, then B is Cohen-Macaulay. For the converse, we can even formulate a
stronger criterion.

Theorem 5.6.12. Let (R,m)→ (S,n) be a local homomorphism of Noetherian local
rings. If R is regular of dimension d, if S is Cohen-Macaulay of dimension e, and if
S/mS has dimension e−d, then R→ S is flat.

Proof. Let (x1, . . . ,xd) be a system of parameters of R and let I be the ideal they gen-
erate, so that I is m-primary. Since S/mS has dimension e−d, there exist xd+1, . . . ,xe
in S such that their image in S/mS is a system of parameters. Since (x1, . . . ,xe) then
generates an n-primary ideal, it is a system of parameters in S, whence S-regular by
Theorem 4.2.6. In particular, (x1, . . . ,xd) is S-regular, showing that S is a balanced
big Cohen-Macaulay R-module, and therefore is flat by Theorem 5.6.9. ut

The residue ring S/mS is called the closed fiber of R→ S. Note that the affine
scheme defined by it is indeed the fiber of Spec(S)→ Spec(R) of the unique closed
point of Spec(R); see (2.6). Exercise 5.7.16 establishes that flatness in turn forces
the dimension equality in the theorem, without any singularity assumptions on the
rings. We conclude with an application of the above Cohen-Macaulay criterion:

Corollary 5.6.13. Any hypersurface in An
K is Cohen-Macaulay.

Proof. Recall that a hypersurface Y is an affine closed subscheme of the form
Spec(A/ f A) with A := K[ξ1, . . . ,ξn] and f ∈ A. Moreover, Y has dimension n− 1 (by
an application of Corollary 3.4.6), whence its Noether normalization is of the form
Y → An−1

K . In fact, after a change of coordinates (see the proof of Theorem 2.2.5),
we may assume that f is monic in ξn of degree d. It follows that A/ f A is free over
A′ := K[ξ1, . . . ,ξn−1] with basis 1,ξn, . . . ,ξ

d−1
n . Hence A/ f A is flat over A′ by 5.2.2,

whence Cohen-Macaulay by Corollary 5.6.10. ut

Colon criterion for flatness. Recall that (I : a) denotes the colon ideal of all x ∈ A
such that ax ∈ I. Colon ideals are related to cyclic modules in the following way:

5.6.14 For any ideal I ⊆ A and any element a ∈ A, we have an isomorphism
a(A/I)∼= A/(I : a).

Indeed, the homomorphism A→ A/I : x 7→ ax has image a(A/I) whereas its ker-
nel is (I : a). We already saw that faithfully flat homomorphisms preserve the ideal
structure of a ring (see 5.3.5). Using colon ideals, we can even give the following
criterion:

Theorem 5.6.15. A homomorphism A→ B is flat if and only if

(IB : a) = (I : a)B

for all elements a ∈ A and all (finitely generated) ideals I ⊆ A.
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Proof. Suppose A→ B is flat. In view of 5.6.14, we have an exact sequence

0→ A/(I : a)→ A/I→ A/(I +aA)→ 0 (5.9)

which, when tensored with B gives the exact sequence

0→ B/(I : a)B → B/IB
f→ B/(IB+aB)→ 0.

However, the kernel of f is easily seen to be a(B/IB), which is isomorphic to B/(IB :
a) by 5.6.14. Hence the inclusion (I : a)B⊆ (IB : a) must be an equality.

For the converse, we need in view of Theorem 5.2.6 to show that TorA
1 (B,A/J) =

0 for every finitely generated ideal J ⊆ A. We induct on the minimal number s of
generators of J, where the case s = 0 trivially holds. Write J = I + aA with I an
ideal generated by s− 1 elements. Tensoring (5.9) with B, we get from 5.2.5 an
exact sequence

0 = TorA
1 (B,A/I)→ TorA

1 (B,A/J) δ→ B/(I : a)B→ B/IB
g→ B/JB→ 0,

where the first module vanishes by induction. As above, the kernel of g is easily
seen to be B/(IB : a), so that our assumption on the colon ideals implies that δ is
the zero map, whence TorA

1 (B,A/J) = 0 as we wanted to show. ut

Here is a nice ‘descent type’ application of this criterion:

Corollary 5.6.16. Let A→ B→C be homomorphisms whose composition is flat. If
B→C is cyclically pure, then A→B is flat. In fact, it suffices that B→C is cyclically
pure with respect to ideals extended from A, that is to say, that JB = JC∩B for all
ideals J ⊆ A.

Proof. Given an ideal I ⊆ A and an element a ∈ A, we need to show in view of
Theorem 5.6.15 that (IB : a) = (I : a)B. One inclusion is immediate, so take y in
(IB : a). By the same theorem, we have (IC : a)= (I : a)C, so that y lies in (I : a)C∩B
whence in (I : a)B by cyclical purity. ut

The next criterion will be useful when dealing with non-Noetherian algebras in the
next chapter. Here we call an ideal J in a ring B finitely related, if it is of the form
J = (I : b) with I ⊆ B a finitely generated ideal and b ∈ B.

Theorem 5.6.17. Let A be a Noetherian ring and B an arbitrary A-algebra. Suppose
P is a collection of prime ideals in B such that every proper, finitely related ideal of
B is contained in some prime ideal belonging to P. If A→ Bp is flat for every p ∈P,
then A→ B is flat.

Proof. By Theorem 5.6.15, we need to show that (IB : a) = (I : a)B for all I ⊆ A
and a ∈ A. Put J := (I : a). Towards a contradiction, let x be an element in (IB : a)
but not in JB. Hence (JB : x) is a proper, finitely related ideal, and hence contained
in some p ∈P. However, (IBp : a) = JBp by flatness and another application of
Theorem 5.6.15, so that x ∈ JBp, contradicting that (JB : x)⊆ p. ut
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5.7 Exercises

Ex 5.7.1
Show that if N• is an exact sequence, then there exist short exact sequences 0→ Zi+1 →
Ni→ Zi→ 0 for some submodules Zi ⊆ Ni and all i. Use this to deduce 5.2.1.

Ex 5.7.2
Give a complete proof of 5.2.2, including the infinitely generated case.

Ex 5.7.3
Prove 5.2.3 and 5.2.4.

Ex 5.7.4
Show that if A→ B is flat, and I,J ⊆ A are ideals, then IB∩ JB = (I∩ J)B.

Ex 5.7.5
Show that if A→ B is a flat homomorphism and M,N are A-modules, then

TorA
i (M,N)⊗A B∼= TorB

i (M⊗A B,N⊗A B)

for all i.

Ex 5.7.6
Show directly that for a given A-module M, if I⊗A M → M is injective for every finitely
generated ideal I, then the same holds for every ideal. Use this to give a proof of (3)⇒ (1)
in Theorem 5.2.6 in case A is not Noetherian. Prove the infinitely generated case in Corol-
lary 5.2.7 by using syzygies and Corollary 5.2.8, in combination with a modification of the
argument in Theorem 5.2.6.

Ex 5.7.7
Show that a homomorphism A→ B is cyclically pure with respect to prime ideals, meaning
that pB∩A = p for all prime ideals p⊆ A, if and only if the induced map of affine schemes
Spec(B)→ Spec(A) is surjective.

Ex 5.7.8
Show using Exercise 4.3.12 that any finitely generated module N over a Noetherian ring ad-
mits a prime filtration (5.3). Use this to work out the details in the proof of Corollary 5.2.7.

Ex 5.7.9
Prove 5.5.2 by constructing inductively a minimal resolution using Nakayama’s lemma.
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Ex 5.7.10
Generalize the proof of the first part of Theorem 5.6.1 to prove the second assertion in that
theorem.

Ex 5.7.11
Modify the argument in the last part of the proof of Theorem 4.2.6 to prove Proposi-
tion 5.6.8.

Ex 5.7.12
Make the necessary adjustments in the proof of the first assertion of Theorem 5.6.9 to derive
the second.

Ex 5.7.13
Show that an A-module M is flat if and only if Mm is flat as an Am-module for every maximal
ideal m ⊆ A. Prove 5.3.8 (note that if X is moreover Noetherian, then this follows already
from Theorem 5.6.17).

Ex 5.7.14
By 3.1.4, any Artinian ring is a finite direct sum of local rings. This no longer holds true
for an arbitrary Noetherian semi-local ring S, that is to say, a Noetherian ring with finitely
many maximal ideals m1, . . . ,ms. Show that nonetheless there is always a natural homo-
morphism S→ Sm1 ⊕·· ·⊕Sms , which is moreover faithfully flat.

∗Ex 5.7.15
Show that if M is a finitely generated module over a Noetherian ring A such that Mm is flat
over Am, for every maximal ideal m, then M is projective as an A-module.

∗Ex 5.7.16
Show that if A→ B is a flat homomorphism, then the going-down theorem holds for A→ B,
meaning that if p q is a chain of prime ideals in A, and if Q is a prime ideal in B lying over
q, then there exists a prime ideal P Q lying over p. Use this to prove that if (R,m)→ (S,n)
is a flat and local homomorphism of Noetherian local rings, then

dim(R)+dim(S/mS) = dim(S).

Ex 5.7.17
Use the Colon criterion, Theorem 5.6.15, to show that every overring without zero-divisors,
or more generally, any torsion-free overring, of a discrete valuation ring is flat.

∗Ex 5.7.18
Prove a version of Theorem 5.6.15 for modules, that is to say, by replacing the A-algebra B
by an A-module M.
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Additional exercises.

Ex 5.7.19
Show that a module P is projective (=direct summand of a free module) if and only
if any map P→ N/N′ lifts to a map P→ N, where N′ ⊆ N are arbitrary modules.

Ex 5.7.20
Show that if

0→M′•
f→ M•

g→ M′′• → 0

is an exact sequence of complexes, meaning that for each i, we have an exact
sequence

0→M′i
fi→ Mi

gi→ M′′i → 0,

such that the maps fi and gi commute with the maps in the various complexes, then
we get a long exact sequence

. . .
δi+1→ Hi(M′•)

fi→ Hi(M•)
gi→ Hi(M′′• )

δi→ Hi−1(M′•)→ . . .

where the fi and gi are used to denote the corresponding induced homomorphisms,
and where the δi are the connecting homomorphisms defined as follows: for ū ∈
Hi(M′′• ), choose a lifting u ∈Ker(d′′i )⊆M′′i and an element v ∈Mi such that gi(v) = u.
Since g(di(v)) = 0, there exists a well-defined w ∈M′i−1 for which fi−1(w) = di(v) and
di−1(w) = 0. Show that assigning the class of w in Hi−1(M′•) to ū gives a well-defined
homomorphism δi, making the above sequence exact.
Use this result to now give a complete proof of 5.2.5.

Ex 5.7.21
Show that for an A-module M to be faithfully flat, it is necessary and sufficient that
an arbitrary complex N• is exact if and only if N•⊗A M is exact.

Ex 5.7.22
Let A→B→C be homomorphisms. Show that if A→C is flat, then A→B is cyclically
pure. Show using Exercise 5.7.21 that if both A→ C and B→ C are faithfully flat,
then so is A→ B.

Ex 5.7.23
Show that a module is finitely generated if and only if any countably generated
submodule is contained in a finitely generated submodule.

5.8 Project: local flatness criterion via nets

Let (R,m) be a Noetherian local ring with residue field k, and let modR be the class
of all finitely generated R-modules (up to isomorphism). In [47], a subset N⊆modR
is called a net if it is closed under extension (i.e., if 0→H→M→N→ 0 is an exact
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sequence in modR with H,N ∈ N, then also M ∈ N), and under direct summands
(i.e., if M ∼= H⊕N belongs to N, then so do H and N). Clearly, modR itself is a net.

5.8.1 Show that any intersection of nets is again a net. Conclude that any class
K⊆modR sits inside a smallest net, called the net generated by K.

5.8.2 Show that the net generated by the singleton {k} consists of all modules
of finite length. Show that modR is generated as a net by all R/p with
p⊆ R a prime ideal.

A net N is called deformational, if for every M ∈ modR and every M-regular
element x, if M/xM ∈ N then M ∈ N.

5.8.3 Show that the deformational net generated by the singleton {k} is equal
to modR.

The goal is to prove the following version of the local flatness criterion:

5.8.4 If R→ S is a local homomorphism of Noetherian local rings, and Q a
finitely generated S-module such that TorR

1 (Q,k) = 0, then Q is flat as an
R-module.

To this end, for M ∈modR, put F(M) := TorR
1 (Q,M). In view of Theorem 5.2.6,

we need to show that F is zero on modR.

5.8.5 Show that F(M) carries a natural structure of an S-module, and as such
is finitely generated, for any finitely generated R-module M.

5.8.6 Show that if F is zero on a class K ⊆ modR, then F is zero on the net
generated by K, and, in fact, even zero on the deformational net gener-
ated by K. For the first assertion, use 5.2.5, and for the second, show that
for any N ∈modR and any x∈m, if xF(N) = F(N) then F(N) = 0, using
5.8.5. Finally, conclude the proof of 5.8.4 by using 5.8.3.



Chapter 6
Completion

A very important algebraic tool in studying local properties of a variety, or equiva-
lently, properties of Noetherian local rings, is the completion of a Noetherian local
ring. As the name suggests, we can put a canonical metric on any such ring R, and
then take its topological completion R̂. This is again a Noetherian local ring, which
inherits many of the properties of the original ring, and in fact, there is natural homo-
morphism R→ R̂, which is flat and unramified (the latter means that the maximal
ideal of R extends to the maximal ideal of its completion R̂); see Theorem 6.3.5.
Whereas there is no known classification of arbitrary Noetherian local rings, we
do have many structure theorems, due mostly to Cohen, for complete Noetherian
local rings. In particular, the equal characteristic complete regular local rings are
completely classified by their residue field k and their dimension d: any such ring
is isomorphic to the power series ring k[[ξ1, . . . ,ξd ]]; see Theorem 6.4.5. Also ex-
tremely useful is the fact that we have an analogue of Noether normalization for
complete Noetherian local rings: any such ring admits a regular subring over which
it is finite (Theorem 6.4.6).

6.1 Complete normed rings

Normed rings. In these notes, a quasi-normed ring (A, || · ||) will mean a ring A
together with a real-valued function A→ [0,1] : a 7→ ||a|| such that ||0||= 0 and such
that for all a,b ∈ A we have

1. ||a+b|| ≤max{||a||, ||b||};
2. ||ab|| ≤ ||a|| · ||b||.

We normally exclude the case that || · || is identical zero (the so-called degenerated
case). Inequality (1) is called the non-archimedean triangle inequality, as opposed
to the usual, weaker triangle inequality in the reals (note that (1) implies indeed that
||a+b|| ≤ ||a||+ ||b||). An immediate consequence of this triangle inequality is:

3. if ||a||< ||b||, then ||a+b||= ||b||,

91
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which often is paraphrased by saying that “every triangle is isosceles”. If moreover
||a|| = 0 implies a = 0, then we call (A, || · ||) a normed ring (or, we simply say that
|| · || is a norm). The value ||a|| will also be called the norm of a, even if || · || is only
a quasi-norm. If in (2) we always have equality, then we call the norm multiplicative
(be aware that some authors tacitly assume that a norm is always multiplicative;
moreover, it is common to allow elements to also have norm bigger than one).
Some immediate consequences of this definition (see Exercise 6.5.1):

6.1.1 Any unit in a quasi-normed ring has norm equal to one. The elements of norm
equal to zero form an ideal I0; and those of norm strictly less than one form
an ideal I−1 , called the center of || · ||. If || · || is multiplicative, then I0 and I−1 are
prime. In particular, a multiplicatively normed ring is a domain.

There is also a very canonical procedure to turn a quasi-norm into a norm:

6.1.2 If A is a quasi-normed ring, and I0 its ideal of elements of norm zero, then || · ||
factors through A/I0 , making the latter into a normed ring.

Indeed, using (3) we have ||a||= ||a+w|| for all w ∈ I0, so that letting ||ā|| := ||a||
is well-defined, where ā denotes the image of a in A/I0. The remaining properties
are now easily checked. The normed ring A/I0 is called the Hausdorffication or
separated quotient of A. The name is justified by the following considerations: any
quasi-normed ring inherits a topology, called the norm topology, simply by taking
for opens the inverse images of the opens of [0,1] under the norm map A→ [0,1].
Now, by Exercise 6.5.4, the topology on A is Hausdorff if and only if || · || is a norm.

Let (A, || · ||A) and (B, || · ||B) be two quasi-normed rings. A homomorphism A→ B
is called a homomorphism of quasi-normed rings if ||a||B ≤ ||a||A for all a. We may
also express this fact by saying that B is a quasi-normed A-algebra. If I ⊆ A is an
ideal, define a quasi-norm on A/I by letting ||a+ I|| be the infimum of all ||a+ i|| with
i ∈ I. By Exercise 6.5.5, we have

6.1.3 For any ideal I ⊆ A, the pair (A/I, || · ||) is a quasi-normed ring, and the residue
map A→ A/I is a homomorphism of quasi-normed rings.

Cauchy sequences. Let (A, || · ||) be a quasi-normed ring. We will represent
sequences in A as functions a : N→ A. Any element a ∈ A defines a sequence, the
constant sequence with value a defined as a(n) := a. We will identify an element
a ∈ A with the constant sequence it defines.

We say that a sequence a is a null-sequence if for each ε > 0, there exists
N := N(ε) such that ||a(n)|| ≤ ε for all n≥ N. In particular, a constant sequence a is
null if and only if ||a||= 0. The twist a+ of a sequence a is the sequence defined by
a+(n) := a(n+1). We say that a is a Cauchy sequence, if a−a+ is a null-sequence.
We say that an element b ∈ A is a limit of a sequence a, if a−b is a null-sequence.
A sequence admitting a limit is called a converging sequence. We have:

6.1.4 Any converging sequence is Cauchy. If b is a limit of a sequence a, then so
is b+w for any w of norm zero. In particular, if || · || is a norm, then a Cauchy
sequence has at most one limit.

If the converse also holds, that is to say, if any Cauchy sequence is convergent,
then we say that (A, || · ||) is quasi-complete. We call (A, || · ||) complete if it is quasi-
complete and || · || is a norm, that is to say, if any Cauchy sequence has a unique
limit.

6.1.5 If A is quasi-complete and I ⊆ A is a proper ideal, then A/I is again quasi-
complete.
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This is proven in Exercise 6.5.5. In particular, we can turn any quasi-complete
ring into a complete one: simply consider its Hausdorffication A/I0. A sequence b
is called a subsequence of a sequence a if there exists some strictly increasing
function f : N→ N such that a( f (n)) = b(n) for all n. The following is left as an
exercise (Exercise 6.1.6):

6.1.6 Any subsequence of a Cauchy sequence is a Cauchy sequence, and any
limit of a sequence is also a limit of any of its subsequences. Moreover, for
a Cauchy sequence to be convergent it suffices that some subsequence is
convergent.

Note that a (non-Cauchy) sequence can very well have a converging subse-
quence without itself being convergent.

Adic norms. Let A be any ring, and I an ideal. We can associate a quasi-norm
to this situation, called the I-adic quasi-norm defined as ||a||I := exp(−n) where n is
the supremum of all k for which a∈ Ik. We allow for this supremum to be infinite, with
the understanding that exp(−∞) = 0. By Exercise 6.5.7 this is indeed a quasi-norm,
which is degenerated if and only if I is the unit ideal. Hence || · ||I is a norm if and
only if the intersection I∞ of all Ik is zero. The only case of interest to us is when
(R,m) is local viewed in its m-adic quasi-norm, which we then call the canonical
quasi-norm of R, or when there is no confusion, the quasi-norm of R. By what we
just said, the quasi-norm of (R,m) is a norm if and only if its ideal of infinitesimals,
IR :=m∞ is equal to zero. By Exercise 6.5.7, we have:

6.1.7 Any polynomial f ∈ A[ξ ] in a single indeterminate ξ defines a continuous func-
tion A→ A : a 7→ f (a) in the topology induced by an I-adic quasi-norm.

If A→ B is a homomorphism and I ⊆ A an ideal, then A→ B is a homomorphism
of quasi-normed rings if we take the I-adic quasi-norm on A and the IB-adic quasi-
norm on B.

6.2 Complete local rings

Although one may develop the theory also for non-Noetherian local rings, we will
stick here to the case that (R,m) is a Noetherian local ring, and often omit mention-
ing its Noetherianity. We call R complete, if it is complete with respect to its m-adic
norm, that is to say, if every Cauchy sequence has a limit (necessarily unique). By
Exercise 6.5.8, we have

6.2.1 A Noetherian local ring (R,m) is complete if and only if every sequence a
satisfying a(n) ≡ a(n+1) mod mn, for sufficiently large n, has a limit,
and for this it suffices that we can find a subsequence b of a and an
element b ∈ R such that b≡ b(n) mod mn, for all n.

Fields are obviously complete local rings, and more generally, so are Artinian lo-
cal rings. Any power series ring over a field (or an Artinian local ring) in finitely
many indeterminates is complete. This follows by induction from the following
more general result.
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Proposition 6.2.2. If R is a complete local ring, then so is R[[ξ ]] with ξ a single
variable.

Proof. The maximal ideal n of R[[ξ ]] is generated by ξ and the maximal ideal m of
R. By (6.2.1), we need to show that a sequence f in R[[ξ ]] such that

f(k)≡ f(k+1) mod nk (6.1)

for all k, has a limit. Write each f(n) = ∑ j a j(n)ξ j. Expanding (6.1) and comparing
coefficients, we get a j(k)≡ a j(k−1) mod mk− j for all j≤ k. In particular, each a j
is Cauchy, whence admits a limit b j ∈ R. I claim that g(ξ ) := ∑ j b jξ

j is a limit of f.
To verify this, fix some k. By assumption, there exists, for each j, some N j(k) such
that b j ≡ a j(n) mod mk for all n ≥ N j(k). Let N(k) be the maximum of all N j(k)
with j < k. For n≥ N(k), the terms in g− f(n) of degree at least k clearly lie inside
nk. The coefficient of the term of degree j < k is b j−a j(n), which lies in mk by the
choice of N(k). Hence g≡ f(n) mod nk for all n≥ N(k), proving the claim. ut

Immediately from 6.1.5 we get:

6.2.3 Any homomorphic image of a complete local ring is again complete.

Hensel’s Lemma. The next result is a formal version of Newton’s method for find-
ing approximate roots.

Theorem 6.2.4. Let (R,m) be a complete local ring with residue field k. Let f ∈R[ξ ]
be a monic polynomial in the single variable ξ , and let f̄ ∈ k[ξ ] denote its reduction
modulo mR[ξ ]. For every simple root u ∈ k of f̄ = 0, we can find a ∈ R such that
f (a) = 0 and u is the image of a in k.

Proof. Let a1 ∈ R be any lifting of u. Since f̄ (u) = 0, we get f (a1)≡ 0 mod m. We
will define elements an ∈ R recursively such that f (an)≡ 0 mod mn and an ≡ an−1
mod mn−1 for all n > 1. Suppose we already defined a1, . . . ,an satisfying the above
conditions. Consider the Taylor expansion

f (an +ξ ) = f (an)+ f ′(an)ξ +ξ
2gn(ξ ) (6.2)

where gn ∈ R[ξ ] is some polynomial. Since the image of an in k is equal to u, and
since f̄ ′(u) 6= 0 by assumption, f ′(an) does not lie in m whence is a unit, say, with
inverse un. Define an+1 := an−un f (an). Substituting ξ =−un f (an) in (6.2), we get

f (an+1) ∈ (un f (an))
2R⊆m2n,

as required.
To finish the proof, note that the sequence a given by a(n) := an is by construction

Cauchy, and hence by assumption admits a limit a∈ R (whose residue is necessarily
again equal to u). By continuity, f (a) is equal to the limit of the f (an) whence is
zero. ut
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There are sharper versions of this result, where the root in the residue field need
not be simple (see Exercise 6.5.14), or even involving systems of equations. Any
local ring satisfying the hypothesis of the above theorem is called a Henselian ring.

As with completion (see §6.3 below), there exists a ‘smallest’ Henselian overring.
More precisely, for each Noetherian local ring R, there exists a Noetherian local R-
algebra R∼, its Henselization, satisfying the following universal property: any local
homomorphism R→ H with H a Henselian local ring, factors uniquely through an
R-algebra homomorphism R∼ → H. The existence of such a Henselization will be
proven in Project 6.6. Note that Theorem 6.2.4 and the universal property imply
that R∼ is a subring of R̂ (see 6.3.3), and in particular, the latter is the completion of
the former.

Let A := k[ξ ] be a polynomial ring over a field k. For simplicity, we will denote
the Henselization of the localization of A with respect to the variables also by A∼. It
can be shown that A∼ = k[[ξ ]]alg, the ring of algebraic power series over k, where
we call a power series in k[[ξ ]] algebraic if it is algebraic over k[ξ ], that is to say,
satisfies a non-zero polynomial equation with coefficients in k[ξ ] (for a discussion
see [2] or 6.6.4 below).

Lifting generators. The next property of complete local rings, a generalization of
Nakayama’s Lemma, is also quite useful.

Theorem 6.2.5. Let (R,m) be a complete local ring, and let M be an R-module
which is m-adically Hausdorff, in the sense that the intersection of all mnM is zero.
If M/mM has vector space dimension e over the residue field R/m, then M is gen-
erated as an R-module by e elements. In fact, any lifting of a set of generators of
M/mM generates M.

Proof. Let ν1, . . . ,νe ∈ M be liftings of the generators of M/mM and let N be the
submodule they generate. In particular, M = N +mM. Take an arbitrary µ ∈M. We
can find some a(0)i ∈ A such that µ = ∑i a(0)i νi +µ(1) with µ(1) ∈mM. Applying the
same to µ(1), we can find a(1)i ∈m such that µ(1) =∑i a(1)i νi+µ(2) with µ(2) ∈m2M.
Continuing this way, we find a(n)i ∈mn such that

µ ≡
s

∑
i=1

(
n

∑
j=0

a( j)
i )νi mod mn+1M. (6.3)

Putting bi(n) := ∑ j≤n a( j)
i , it follows that each bi is a Cauchy sequence, whence

has a limit ai ∈ R. Using (6.3), one easily verifies that µ−∑aiνi lies in every mnM
whence is zero, showing that µ ∈ N, and therefore M = N. ut

Remark 6.2.6. Note that unlike in the case of Nakayama’s Lemma, we dot not need
to assume in advance that M is finitely generated.
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6.3 Completions

We have seen in the previous section that complete local rings satisfy many good
properties. In this section, we will describe how to construct complete local rings
from arbitrary local rings. Let again start in a more general setup.

Quasi-completion of a quasi-norm. Let (A, || · ||) be a quasi-normed ring.
Let C (A) be the collection of all Cauchy sequences. We make C (A) into a ring by
adding and multiplying sequences coordinate wise. In this way, C (A) becomes an
A-algebra, via the canonical map A→ C (A) sending an element to the constant
sequence it determines. Note that this is in fact an embedding.

6.3.1 A sequence a in A is Cauchy if and only if ||a(n)|| converges in R as n→∞. This
latter limit is denoted ||a||; it induces a quasi-norm on C (A) extending the norm
on A. A Cauchy sequence has norm zero if and only if it is a null-sequence.

From now on, we view C (A) as a quasi-normed ring with the above norm.

Proposition 6.3.2. The ring of Cauchy sequences C (A) of A is quasi-complete.
Moreover, A is dense in C (A), and the following universal property holds: if we have
a homomorphism of quasi-normed rings A→B with B complete, then A→B extends
uniquely to a homomorphism C (A)→ B of quasi-normed rings.

Proof. For clarity, we let j : A→ C (A) denote the canonical homomorphism send-
ing an element a ∈ A to the constant sequence j(a), and we distinguish between
the norms on A and C (A) by adding a subscript to the norm symbol. Let a be a
Cauchy sequence in A, that is to say, an element in C (A). It follows that the limit of
|| j(a(n))−a||C (A) is zero, for n 7→∞. Hence, the Cauchy sequence D in C (A) defined
as D(n) := j(a(n)) converges to the element a ∈ C (A), showing that A (or, rather,
j(A)) is dense in C (A).

Let B be a Cauchy sequence in C (A). Hence, B(m) is a Cauchy sequence in
A, for each m, with n-th entry B(m)(n). Replacing B by a subsequence if neces-
sary, we may assume ||B(m)−B(m+1)||C (A) ≤ exp(−m) for all m. By the previous
observation, for each m, there exists g(m) such that

|| j(B(m)(g(m)))−B(m)||C (A) ≤ exp(−m).

Define a sequence c by the rule c(m) := B(m)(g(m)). Since ||c(m)− c(m+1)||A is
equal to

|| j(c(m))−B(m)+B(m)−B(m+1)+B(m+1)− j(c(m+1))||C (A) ≤ exp(−m)

we conclude that c is a Cauchy sequence in A. In particular, for a fixed n, we can
find N ≥ n such that || j(c(m))− c||C (A) ≤ exp(−n), for all m≥ N. To show that c is the
limit of B, we use the estimate

||B(m)− c||C (A) = ||B(m)− j(c(m))+ j(c(m))− c||C (A)

≤max{exp(−m),exp(−n)}= exp(−n),

for all m≥ N. This proves that c is the limit of B.
To prove the last assertion, we define ϕ : C (A)→ B as follows. Let a be a Cauchy

sequence in A. From the definition of homomorphism of quasi-normed rings, it fol-
lows that a is a Cauchy sequence in B. Since B is complete, a has a unique limit
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b ∈ B. The assignment a 7→ b is now easily seen to be an A-algebra homomorphism
of quasi-normed rings. ut

In view of this result, we call C (A) the quasi-completion of A. The completion of
A is then the Hausdorffication of C (A), that is to say, the ring C (A)/I (A), where
I (A) is the ideal of all null-sequences. If the quasi-norm is understood, as will be
the case with the canonical quasi-norm of a local ring, we denote the completion
by Â. From Proposition 6.3.2, we get the following universal property of completion:

6.3.3 If B is a normed A-algebra which is complete, then there exists a unique A-
algebra homomorphism of normed rings Â→ B.

Completion of a Noetherian local ring. We now apply the previous theory to the
canonical norm on a Noetherian local ring R. Its completion C (R)/I (R) is denoted
R̂. It is easy to see that mC (R) cannot be the unit ideal, whence neither is mR̂. We
will shortly show that R̂ is in fact a Noetherian local ring with maximal ideal mR̂,
and in its adic norm, it is complete. Moreover, the norm inherited from the norm
on C (R) is identical to the mR̂-adic norm. To prove all these claims, we resort to
flatness.

Remark 6.3.4. For the reader who does not wish to study the more general setup
of normed rings, let me give a brief synopsis of the construction when (R,m) is
a Noetherian local ring. Let RN be the ring of sequences in R, that is to say, maps
a : N→ R, with point-wise addition and multiplication. We have a canonical embed-
ding R→ RN, sending a∈ R to the constant sequence with value a, which we denote
again by a. Given a,b ∈ RN, we say that b is a subsequence of a, denoted b ⊆ a,
if there exists a strictly increasing function f : N→ N (meaning that n < m implies
f (n)< f (m)), such that b(n) = a( f (n)), for all n. We say that a is a special Cauchy
sequence, if a(n)≡ a(n+1) mod mn, for all n, and that it is a Cauchy sequence, if
it is a subsequence of a special Cauchy sequence. We say that a Cauchy-sequence a
is a null-sequence, if there exists a subsequence b⊆ a such that b(n)≡ 0 mod mn,
for all n. We call a ∈ R a limit of a Cauchy sequence a, if a−a is a null-sequence.
If a′ ∈ R is a second limit of a, then a− a′ is a null-sequence, and hence must be
zero by Krull’s Intersection Theorem 3.3.4. This shows that limits, if they exist, are
unique.1 We call R complete, if every Cauchy sequence has a (unique) limit.

Let C (R) and I (R) be the subset of all Cauchy sequences and all null-sequences
respectively. It is not hard to check that C (R) is a subring of RN and I (R) an ideal
of C (R). Put R̂ := C (R)/I (R). I leave it as an exercise to the reader to show that
mR̂ is the unique maximal ideal of R̂, so that R̂ is in particular a local ring (we
will shortly show, see Theorem 6.3.5, that it is also Noetherian). Unraveling the
definitions, we see that R is complete if and only if the canonical map R→ R̂ is
an isomorphism. Let us show that as a local ring, R̂ is complete, meaning that every
Cauchy sequence â over R̂ has a unique limit (recall that we do not yet know that R̂ is
Noetherian). By 6.2.1, we may assume that â is special. For each n, let A(n)∈C (R)
be a lift of â(n). By the same argument, we may assume that each A(n) is also

1 This is the only place where we use the Noetherian assumption, so that without it, we get a similar
theory, except for the uniqueness of limits.
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special. Define a ∈ RN by the rule a(n) := A(n)(n). We leave it to the reader to
verify that a is a (special) Cauchy sequence and that its image in R̂ is a limit of
â. From the definitions, we immediately get I (R̂)∩C (R) = I (R). Hence, if the
image of a′ ∈ C (R) in R̂ is also a limit of â, then a− a′ is a null-sequence, and so
a− a′ ∈ I (R̂)∩C (R) = I (R), showing that the images of a and a′ in R̂ are the
same, whence that R̂ is complete.

In fact, R̂ satisfies the following universal property: if (S,n) is a complete local
ring and R→ S a local homomorphism, then the latter factors through a unique local
homomorphism R̂→ S. Indeed, let a be a Cauchy sequence over R, which we may
assume to be special. Its image in S is then also a Cauchy sequence (since R→ S
is local, so that m ⊆ n whence mn ⊆ nn, for all n). Let s ∈ S be its limit, so that we
have defined a map C (R)→ S : a 7→ s. Moreover, if a ∈ I (R), then as a Cauchy
sequence over S, it is a null-sequence, and hence s = 0. Thus, we get an induced
map R̂→ S, and we now leave it to the reader to verify that it satisfies all the stated
properties.

Theorem 6.3.5. The canonical homomorphism R→ R̂ of a Noetherian local ring
into its completion is faithfully flat. Moreover, R̂ is a Noetherian local ring with the
same residue field as R.

Proof. Since mR̂ 6= R̂, it suffices to show that R→ R̂ is flat. Let x := (x1, . . . ,xe)
generate the maximal ideal m of R, and let ξ := (ξ1, . . . ,ξe) be a tuple of inde-
terminates. Define an R-algebra homomorphism S := R[[ξ ]]→ R̂ as follows. Let f
be a power series and let fn be is its truncation consisting of all terms up to de-
gree n. The sequence a defined by a(n) := fn(x) is easily seen to be a Cauchy
sequence in R; its image in R̂ = C (R)/I (R) will be denoted f (x). The homomor-
phism S→ R̂ is given by the rule f 7→ f (x). A moment’s reflection shows that its
kernel is I := (ξ1−x1, . . . ,ξe−xe)S. I claim that S→ R̂ is surjective, so that R̂= S/I,
showing already that R̂ is a Noetherian local ring with the same residue field as
R. To prove surjectivity, let a be a Cauchy sequence, that is to say, an element of
C (R). Since any subsequence of a has the same image in R̂, we may assume that
a(n)≡ a(n+1) mod mn for all n, i.e., that it is special in the sense of Remark 6.3.4.
Hence we can write

a(n+1) = a(n)+ ∑
|ν |=n

rν xν

where the sum runs over all e-tuples ν such that |ν | := ν1 + · · ·+νe = n. Define

f (ξ ) := a(0)+∑
ν

rν ξ
ν

where the sum is now over all non-zero e-tuples ν . Hence fn(x) = a(n) for all n
(where as before fn is the n-th degree truncation of f ), showing that f (x) = a.

Since R → S is flat by Corollary 5.6.3, the flatness of R → R̂ will follow
from Thereom 5.6.4 once we show that I ∩ aS = aI for every ideal a ⊆ R. Let
a := (a1, . . . ,an)R. Let f ∈ I∩aS so that we can write it in two different ways as
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f = a1s1 + · · ·+ansn = t1(ξ1− x1)+ · · ·+ te(ξe− xe) (6.4)

for some si, ti ∈ S. By Taylor expansion, we can write each si as si = bi + s′i with
bi ∈ R and s′i ∈ I. Hence f ≡ c mod aI where c := a1b1 + · · ·+ anbn. However,
R→ R̂ is injective, so that I ∩R = (0). Since c lies in I ∩R it is therefore zero,
showing that f ∈ aI. ut

Corollary 6.3.6. Let (R,m) be a Noetherian local ring with completion R̂. For all
n, we have an isomorphism R/mnR ∼= R̂/mnR̂. In particular, R̂ is a complete Noe-
therian local ring, that is to say, is complete in its canonical mR̂-adic norm, of the
same dimension as R.

Proof. Let Rn :=R/mn, and let Sn := R̂/mnR̂. Note that Rn is Artinian, whence com-
plete. As Sn/mSn is equal to the residue field of R whence of Rn by Theorem 6.3.5,
we get Sn ∼= Rn by Theorem 6.2.5. In particular, R and R̂ have the same Hilbert-
Samuel polynomial, whence the same dimension by Theorem 3.4.2.

I claim that if a is a Cauchy sequence such that a(k) ∈ mn for all k� 0, then
a ∈ mnR̂. Indeed, by what we just proved, we have R̂ = R +mnR̂. Hence if we
choose generators x for m, then we can write

a = r+ ∑
|ν |=n

xν bν (6.5)

with r ∈ R and bν ∈ R̂. Substituting k such that a(k) ∈ mn in (6.5) shows that r ∈
mnR̂. Since mnR̂∩R = mn by faithful flatness (or the above isomorphism), we get
a ∈ mnR̂, as claimed. It follows that the mR̂-adic norm of an element is at most its
norm as a Cauchy sequence. The converse is easy, thus proving the last assertion.

ut

Immediate from 6.2.3 we get:

6.3.7 If I is an ideal in a Noetherian local ring R, then R̂/IR̂ is the completion
of R/I.

Another extremely useful property of completion is that it “transfers singulari-
ties” in the following sense:

Corollary 6.3.8. A Noetherian local ring is regular or Cohen-Macaulay if and only
if its completion is.

Proof. Let (R,m) be a d-dimensional Noetherian local ring. The completion R̂ of R
also has dimension d by Corollary 6.3.6. If R is regular, then m is generated by d
elements, whence so is mR̂, showing that R̂ is regular. Conversely, if R̂ is regular, so
that mR̂ is generated by a d-tuple x, then by Nakayama’s Lemma, we may choose
these generators already in m. From xR̂ = mR̂, the cyclic purity of faithfully flat
homomorphisms (Proposition 5.3.4) yields xR=m, showing that R is regular. If R is
Cohen-Macaulay and x is an R-regular sequence of length d, then x is also R̂-regular
by faithful flatness and Proposition 5.4.1, showing that R̂ is also Cohen-Macaulay.
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Conversely, assume R̂ is Cohen-Macaulay, and let x := (x1, . . . ,xd) be a system
of parameters of R. Using Corollary 6.3.6, we get R/xR ∼= R̂/xR̂, showing that x
is also a system of parameters in R̂, whence R̂-regular. Since R/(x1, . . . ,xe)R ↪→
R̂/(x1, . . . ,xe)R̂ for all e by faithful flatness and Proposition 5.3.4, it follows easily
that x is also R-regular. ut

For those that know inverse limits (also called projective limits), one can give the
following alternative construction of the completion:

Proposition 6.3.9. The completion of a Noetherian local ring (R,m) is equal to the
inverse limit lim←−R/mn.

Proof. Here we view the Rn := R/mn as an inverse system via the canonical residue
maps Rm→ Rn for all m≥ n. A typical element of the inverse limit is represented by a
sequence a in R such that a(m)+mm is mapped to a(n)+mn under the residue map
Rm → Rn for all m ≥ n; two sequences a and a′ then give rise to the same element
in the inverse limit if a(m) ≡ a′(m) mod mm for all m. The first of these conditions
simply translates into a(m)≡ a(n) mod mn for all m≥ n, showing that a is a Cauchy
sequence; the second condition says that a−a′ is a null-sequence. Hence we have
a map lim←−Rn → C (R)/I (R) = R̂. The reader can check that this gives indeed an
isomorphism of rings. ut

6.4 Complete Noetherian local rings

Classifying Noetherian local rings is a daunting task, but under the additional com-
pleteness assumption, we can say much more, as we will now explore. This will even
aid us in the study of non-complete Noetherian local rings by the faithful flatness of
completion proven in Theorem 6.3.5.

Cohen’s structure theorem. A local ring (R,m) may or may not contain a field. In
the former case, we say that R has equal characteristic; the remaining case is refered
to as mixed characteristic. The name is justified in Exercise 6.5.11: a ring has equal
characteristic if and only if has the same characteristic as its residue field. A subfield
κ ⊆ R which under the canoncial residue map R→ k := R/m maps surjectively,
whence isomorphically, onto k, is called a coefficient field. These might not always
exist, but we do have a weaker version:

Lemma 6.4.1. Let R be an equal characteristic local ring with residue field k. Then
there exists a subfield κ ⊆R, such that k is algebraic over the image π(κ) of κ under
the residue map π : R→ k.

Proof. The collection of subfields of R is non-empty by assumption, and is clearly
closed under chains. Hence by Zorn’s lemma there exists a maximal subfield κ ⊆
R. Let u be an arbitrary element in k \ π(κ), and choose a ∈ R with π(a) = u. In
particular, a /∈ κ . Put S := κ[a], the κ-subalgebra of R generated by a, and let p :=
m∩ S. Since Sp ⊆ R, it cannot be a field by maximality of κ , and hence p 6= 0.
Choose a non-zero element b ∈ p, and write it as b = f (a) for some f ∈ κ[ξ ]. If we
let f π ∈ π(k)[ξ ] be the (non-zero) polynomial obtained from f by applying π to its
coefficients, then f π(u) = 0, showing that u is algebraic over π(κ). ut
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Theorem 6.4.2 (Equal characteristic). Let (R,m) be a local ring of equal char-
acteristic. If R is complete, then it admits a coefficient field κ . If R has moreover
finite embedding dimension e, then R is Noetherian, and in fact isomorphic to a
homomorphic image of a power series ring in e variables over k.

Proof. To prove the existence of a coefficient field in positive characteristic, one
normally resorts to the theory of etale extensions (as the proof in [30, Theorem
28.3]) or differential bases (as in [15, Theorem 16.14]); an alternative proof is given
below in Remark 6.4.3. Here I will only give the proof in equal characteristic zero,
that is to say, when the residue field of k has characteristic zero. By (the proof of)
Proposition 6.4.1, if κ ⊆ R is a maximal subfield, then k is algebraic over π(κ),
where π : R→ k is the residue map. Towards a contradiction, assume there is some
u ∈ k \ π(κ). Let f ∈ κ[ξ ] be such that f π is a minimal polynomial of u. Since
we are in characteristic zero, u must be a simple root of f π . Hence by Hensel’s
Lemma, Theorem 6.2.4, we can find a ∈ R such that f (a) = 0 and π(a) = u. Since
clearly a /∈ κ , the strictly larger field κ(a) ∼= κ[ξ ]/ f κ[ξ ] embeds into R, violating
the maximality of κ .

To prove the last assertion (in either characteristic), assume the maximal ideal
is finitely generated, say, m= (x1, . . . ,xe)R. By Exercise 6.5.12, every element of R
can be expanded as a power series in (x1, . . . ,xe) with coefficients in κ . In particular,
R is a homomorphic image of the regular local ring κ[[ξ1, . . . ,ξe]] (for the regularity
of this latter ring, see Exercise 4.3.5). ut

Remark 6.4.3. Suppose (R,m) is a complete local ring of equal characteristic p. We
want to show that it contains a subfield mapping onto its residue field k. Assume
first that R is Artinian, or, more generally, admits a nilpotent maximal ideal. We will
induct on the smallest power q of p such that mq = 0, where there is nothing to show
if q = 1. Suppose first q = p. Let Fp(R) denote the subring of all p-th powers in R. I
claim that Fp(R) is a subfield of R. Indeed, let ap be a non-zero element in Fp(R),
for some a ∈ R. Since the square of any non-unit is zero, a must be a unit in R,
with inverse, say, b. Since apbp = 1, we conclude that ap is invertible in Fp(R). Let κ

be a maximal subfield of R containing Fp(R), and assume towards a contradiction
that π(κ) is a proper subfield of k. Let S := κ +m. It is easy to verify that this is
a (proper) local subring of R with residue field κ and maximal ideal m. Choose
some a in R outside S. Hence c := ap belongs to Fp(R) ⊆ κ. Suppose c = dp for
some d ∈ κ. Hence (a−d)p = 0, showing that a−d ∈m whence a∈ S, contradiction.
In conclusion, c is not a p-th power in κ, or put differently, h(ξ ) := ξ p − c is an
irreducible polynomial over κ. Hence κ[ξ ]/hκ[ξ ] embeds into R by sending ξ to a,
contradicting the maximality of κ.

For q > p, let n := mq/p and let π : R→ R/n be the residue homomorphism. By
induction, we can find an embedding ı : k→ R/n. Let S := π−1(ı(k)). Clearly n ⊆ S
and S/n ∼= ı(k), showing that n is a maximal ideal of S. In fact, np = 0, so that S is
local. By induction, k embeds in S, whence also in R, as we wanted to show.

For an arbitrary complete Noetherian local ring (R,m) of equal characteristic p,
its residue field k embeds in each Rn := R/mn by the above argument. Moreover,
analyzing the above inductive argument, we see that we can choose these embed-
dings to be compatible with the residue maps Rm → Rn for m ≥ n. Hence we get a
homomorphism k→ lim←−Rn. This gives the required embedding, since lim←−Rn is equal
to R̂ = R by Proposition 6.3.9.
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The analogue in mixed characteristic requires even more work, and so again we
only quote the result here (see [30, Theorem 29.4] for a proof).

Theorem 6.4.4 (Mixed characteristic). Let (R,m) be a complete local ring of mixed
characteristic, with residue field k of characteristic p> 0. If R has embedding dimen-
sion e, then there exists a complete discrete valuation ring V with with maximal ideal
pV and residue field k, and there exists an ideal I⊆V [[ξ ]] with ξ =(ξ1, . . . ,ξe−1) such
that R∼=V [[ξ ]]/I. In particular, R is Noetherian.

The complete discrete valuation ring V from the statement is in fact uniquely
determined by p and k, and called the complete p-ring with residue field k (see [30,
Theorem 29.2 and Corollary]).

Immediately some important corollaries follow from these structure theorems.

Theorem 6.4.5. A complete regular local ring of equal characteristic is isomorphic
to a power series ring over a field.

Proof. Let R be a d-dimensional complete regular local ring with residue field k.
By definition, R has embedding dimension d, so that R∼= k[[ξ ]]/I by Theorem 6.4.2,
with ξ = (ξ1, . . . ,ξd) and I⊆ k[[ξ ]]. Since k[[ξ ]] has dimension d by Corollary 3.4.3,
the ideal I must be zero by Corollary 3.4.6. ut

There is also a structure theorem for complete regular local rings of mixed char-
acteristic, but it is less straightforward and we will omit it.

Cohen normalization. The next result is the analogue for complete local rings of
Noether normalization. Again we will only give the proof in equal characteristic.

Theorem 6.4.6. If R is a d-dimensional Noetherian local ring of equal characteris-
tic, then there exists a (complete) d-dimensional regular local subring S ⊆ R over
which R is finite.

Proof. Assume R has equal characteristic, and view its residue field k as a coefficient
field of R (see Theorem 6.4.2). Let x := (x1, . . . ,xd) be a system of parameters of
R. Let k[[ξ ]]→ R be the k-algebra homomorphism given by ξi 7→ xi, where ξ =
(ξ1, . . . ,ξd), let I be the kernel of this homomorphism, and let S be its image. Hence
S ∼= k[[ξ ]]/I. Since R/xR is Artinian by definition of system of parameters, it is
a finite dimensional vector space over S/ξ S = k. Since S is also complete, R is a
finite S-module by Theorem 6.2.5 (notice that IR = 0 by Theorem 3.3.4 so that the
Hausdorff condition is satisfied). In particular, by Theorem 3.4.8, both rings have
the same dimension d. However, this then forces by Corollaries 3.4.3 and 3.4.6 that
I = 0, so that S is regular (by Exercise 4.3.5). ut

The same result is true in mixed characteristic if we moreover assume that R is
a domain, or more generally, if p generates a height one prime; see [30, Theorem
29.4 and Remark] or [49, Theorem 1.1]. Here are some examples were the asser-
tion fails: the Artinian local ring Z/4Z, which even has non-prime characteristic, or
the complete Noetherian local ring Zp[[ξ ]]/pξZp[[ξ ]], containing the discrete valua-
tion ring Zp, the p-adic integers, over which it is not finite (see also Exercise 6.5.15).
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Complete scalar extensions. Sometimes it is desirable to have a residue
field with some additional properties. We finish with discussing a technique of ex-
tending the residue field in equal characteristic (for the mixed characteristic case,
we refer to [53]).

Theorem 6.4.7. Let (R,m) be a Noetherian local ring of equal characteristic with
residue field k. Every extension k ⊆ K of fields can be lifted to a faithfully flat exten-
sion R→ R K̂ , inducing the given extension on the residue fields, with R K̂ a complete
local ring with maximal ideal mR K̂ and residue field K. In fact, R K̂ is a solution to
the following universal property: any complete Noetherian local R-algebra T with
residue field K has a unique structure of a local R K̂-algebra. In particular, R K̂ is
uniquely determined by R and K up to isomorphism, and is called the complete
scalar extension of R along K.

Proof. By Theorem 6.4.2, the completion R̂ of R is isomorphic to k[[ξ ]]/I for some
ideal I and some tuple of indeterminates ξ . Put R K̂ := K[[ξ ]]/IK[[ξ ]]. By Theo-
rem 6.3.5 and base change, S has all the required properties.

To prove the universal property, let T be any complete Noetherian local R-
algebra, given by the local homomorphism R→ T . By the universal property of com-
pletions, we have a unique extension k[[ξ ]]/I∼= R̂→ T , and by the universal property
of tensor products, this uniquely extends to a homomorphism R K̂ =K[[ξ ]]/IK[[ξ ]]→
T . ut

Note that complete scalar extension is actually a functor, that is to say, any local
homomorphism R→ S of Noetherian local rings whose residue fields are subfields
of K extends to a local homomorphism R K̂ → S K̂ . In particular, complete scalar
extension commutes with homomorphic images:

(R/I) K̂
∼= R K̂/IR K̂ , (6.6)

for all ideals I ⊆ R. By Exercise 6.5.13, the complete scalar extension R K̂ has the
same dimension as R, and one is respectively regular or Cohen-Macaulay if and
only if the other is.

6.5 Exercises

Ex 6.5.1
Prove the statements in 6.1.1. Show moreover that the set Ir of all elements of norm at most
r, and the set I−r of all elements of norm strictly less than r, are ideals, for all r ∈ [0,1]
(called norm-ideals).

Ex 6.5.2
Prove that if A is I-adically complete, then I lies in the Jacobson radical (=intersection of
all maximal ideals) of A. Conclude that if A is complete with respect to a maximal ideal,
then it is local.

Ex 6.5.3
Show that the canonical norm on a regular local ring is multiplicative.
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Ex 6.5.4
Show that all norm-ideals (see Exercise 6.5.1) in a quasi-normed ring A are open in the
norm topology. Show that A is Hausdorff if and only if || · || is a norm.

Ex 6.5.5
Prove the statements in 6.1.3 and 6.1.5. Prove that I is closed in the norm topology if and
only if the quasi-norm on A/I is a norm.

Ex 6.5.6
Prove 6.1.6.

Ex 6.5.7
Show that the I-adic quasi-norm || · ||I is indeed a quasi-norm. Show that I and any of its
powers define equivalent quasi-norms, in the sense that both norms are mutually bounded.
Prove 6.1.7.

Ex 6.5.8
Prove 6.2.1 by finding for each Cauchy sequence an appropriate subsequence satisfying the
hypothesis, and a subsequence of this satisfying the conclusion.

∗Ex 6.5.9
Show that the Jacobson radical (:=intersection of all maximal ideals) in a quasi-complete
ring is the ideal of all elements of norm strictly less than one.

Ex 6.5.10
Formulate, and then prove a generalization of Theorem 6.2.5 which works for any ring
which is quasi-complete in its I-adic quasi-norm. In fact, you can even formulate a version
for any quasi-complete ring (A, || · ||).

Ex 6.5.11
Show that a local ring R has equal characteristic if and only if it has the same characteristic
as its residue field.

Ex 6.5.12
Show that if κ is a coefficient field of a local ring (R,m) and m = xR is finitely generated,
then for every a ∈ R and each n ∈ N, we can find a polynomial fn ∈ κ[ξ ] such that a ≡
fn(x) mod mn. Deduce from this the assertion about power series expansions in the last
paragraph of the proof of Theorem 6.4.2.

Ex 6.5.13
Show using Exercise 5.7.16 that R and its complete scalar extension R K̂ have the same
dimension. Prove that R is regular or Cohen-Macaulay if and only if R K̂ is.
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Additional exercises.

Ex 6.5.14
Show the following more general version of Hensel’s lemma for a complete local
ring R: if f ∈ R[ξ ], c ∈ N and a ∈ R are such that f (a) lies in the ideal f ′(a)2mc, then
there exists b ∈ R with f (b) = 0 and b≡ a mod mc.

Ex 6.5.15
Let V be a complete discrete valuation ring with uniformizing parameter π. Show
that there can be no regular local subring S inside R := V [[ξ ]]/πξV [[ξ ]] over which
R is finite.

6.6 Project: Henselizations

There are many ways to construct Henselizations (see for instance [31, 33, 36]),
most of which rely on some more sophisticated notions, such as etale extensions,
etc. There is, however, also a direct construction, which we will now discuss. Let
(R,m) be a Noetherian local ring. By a Hensel system over R of size N, we mean a
pair (H ,u) consisting of a system (H ) of N polynomial equations f1, . . . , fN ∈R[t]
in the N unknowns t := (t1, . . . , tN), and an approximate solution u modulo m in R
(meaning that fi(u)≡ 0 mod m for all i), such that associated Jacobian matrix

Jac(H ) :=


∂ f1/∂ t1 ∂ f1/∂ t2 . . . ∂ f1/∂ tN
∂ f2/∂ t1 ∂ f2/∂ t2 . . . ∂ f2/∂ tN

...
...

. . .
...

∂ fN/∂ t1 ∂ fN/∂ t2 . . . ∂ fN/∂ tN

 (6.7)

evaluated at u is invertible over R (that is to say, its determinant is a unit in R). An N-
tuple x in some local R-algebra S is called a solution of the Hensel system (H ,u),
if it is a solution of the system (H ) and x≡ u mod mS. Note that a Hensel system
of size N = 1 is just a Hensel equation together with a solution in the residue field,
as in the statement of Hensel’s lemma. In fact, R is Henselian (that is to say, satisfies
Hensel’s lemma) if and only if any Hensel system over R has a solution in R. The
proof of this equivalence is not that easy (one can give for instance a proof using
standard etale extensions; see [31] or [15, Exercise 7.26]). However, you can modify
the proof of Theorem 6.2.4 to show that complete local rings have this property. In
fact, using multivariate Taylor expansion, show the following stronger version (it is
instructive to try this first for a single Hensel equation).

6.6.1 Any Hensel system (H ,u) over R admits a unique solution in the com-
pletion R̂.

We call an element s∈ R̂ a Hensel element if there exists a Hensel system (H ,u)
over R such that s is the first entry of the (unique) solution of this system in R̂. Let
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R∼ be the subset of R̂ of all Hensel elements. For given Hensel elements s and
t, construct from their associated Hensel systems a new Hensel system for s+ t
(respectively, for st), and use this to prove:

6.6.2 The collection of all Hensel elements is a local ring R∼ with maximal
ideal mR∼. Moreover, R∼ is Henselian, with completion equal to R̂.

It is unfortunately less easy to prove that R∼ is also Noetherian. One way is to
first show that R∼→ R̂ is faithfully flat, and then use this to deduce the Noetherianity
of R∼ from that of R̂.

6.6.3 Show that R∼ satisfies the universal property of Henselization: any
Henselian local R-algebra S admits a unique structure of R∼-algebra.

You could also try to prove:

6.6.4 A power series over a field k in n indeterminates ξ is a Hensel element
over the localization of k[ξ ] with respect to the maximal ideal gener-
ated by the ξ if and only if it is algebraic over that ring. In other words,
k[ξ ]∼ = k[[ξ ]]alg.



Chapter 7
Uniform bounds

In this chapter, we will discuss our first application of ultraproducts: the existence
of uniform bounds over polynomial rings. The method goes back to A. Robinson,
but really gained momentum by the work of Schmidt and van den Dries in [41],
where they brought in flatness as an essential tool. Most of our applications will be
concerned with affine algebras over a field. So let us fix an ultra-field K, realized
as the ultraproduct of fields Kw for w ∈W . For a concrete example, one may take
K := C and K p := Falg

p by Theorem 1.4.3 (with W the set of prime numbers).

7.1 Ultra-hulls

Ultra-hull of a polynomial ring. In this section, we let A := K[ξ ], where ξ :=
(ξ1, . . . ,ξn) are indeterminates. We define the ultra-hull (called the non-standard
hull in the earlier papers [42, 43, 46]) of A as the ultraproduct of the Aw := Kw[ξ ],
and denote it U(A). The inclusions Kw ⊆ Aw induce an inclusion K ⊆ U(A). Let ξi
also denote the ultraproduct ulimw ξi of the constant sequence ξi. By Łos’ The-
orem, Theorem 1.3.1, the ξi are algebraically independent over K. Hence, we
may view them as indeterminates over K in U(A), thus yielding an embedding
A = K[ξ ] ⊆ U(A). To see why this is called an ultra-hull, let us introduce the cat-
egory of ultra-K-algebras: a K-algebra B\ is called an ultra-K-algebra if it is the
ultraproduct of Kw-algebras Bw; a morphism of ultra-K-algebras B\ → C\ is any
K-algebra homomorphism obtained as the ultraproduct of Kw-algebra homomor-
phisms Bw→Cw. It follows that any ultra-K-algebra is a K-algebra. The ultra-hull
U(A) is clearly an ultra-K-algebra. We have:

7.1.1 The ultra-hull U(A) satisfies the following universal property: if B\ is an
ultra-K-algebra, and A→ B\ is any K-algebra homomorphism, then there
exists a unique ultra-K-algebra homomorphism U(A) → B\ extending
A→ B.

107
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Indeed, by assumption, B\ is the ultraproduct of Kw-algebras Bw. Let bi\ be the
image of ξi under the the homomorphism A → B\, and choose biw ∈ Bw whose
ultraproduct equals bi\. Define Kw-algebra homomorphisms Aw → Bw by the rule
ξi 7→ biw. The ultraproduct of these homomorphisms is then the required ultra-K-
algebra homomorphism U(A)→ B\. Its uniqueness follows by an easy application
of Łos’ Theorem.

An intrinsic characterization of A as a subset of U(A) is provided by the next
result (in the terminology of Chapter ??, this exhibits A as a certain protoproduct):

7.1.2 An ultraproduct f \ = ulim f w in U(A) belongs to A if and only if the
f w ∈ Aw have bounded degree, meaning that there is a d such that almost
all f w have degree at most d.

Indeed, if f ∈ A has degree d, then we can write it as f = ∑ν uν ξ ν for some
uν ∈ K, where ν runs over all n-tuples with |ν | ≤ d. Choose uν w ∈ Kw such that
their ultraproduct is uν , and put

f w := ∑
|ν |≤d

uν wξ
ν . (7.1)

An easy calculation shows that the ultraproduct of the f w is equal to f , viewed as
an element in U(A). Conversely, if almost each f w has degree at most d, so that we
can write it in the form (7.1), then

ulim
w→∞

f w = ∑
|ν |≤d

(ulim
w→∞

uν w)ξ
ν

is a polynomial (of degree at most d).

Ultra-hull of an affine algebra. More generally, let C be a K-affine ring, that is to
say, a finitely generated K-algebra, say of the form C = A/I for some ideal I ⊆ A.
We define the ultra-hull of C to be U(A)/IU(A), and denote it U(C). It is clear
that the canoncial embedding A ⊆ U(A) induces by base change a homomorphism
C→ U(C). Less obvious is that this is still an injective map, which we will prove
in Corollary 7.2.3 below. To show that the construction of U(C) does not depend on
the choice of presentation C = A/I, we verify that U(C) satisfies the same universal
property 7.1.1 as U(A): any K-algebra homomorphism C → B\ to some ultra-K-
algebra B\ extends uniquely to a homomorphism U(C)→ B\ of ultra-K-algebras
(recall that any solution to a universal property is necessarily unique). To see why
the universal property holds , apply 7.1.1 to the composition A � A/I =C→ B\ to
get a unique extension U(A)→ B\. Since any element in I is sent to zero under the
composition A→ B\, this homomorphism factors through U(A)/IU(A), yielding
the required homomorphism U(C)→ B\ of ultra-K-algebras. Uniqueness follows
from the uniqueness of U(A)→ B\.

Since IU(A) is finitely generated, it is an ultra-ideal, that is to say, an ultraprod-
uct of ideals Iw ⊆ Aw. By 1.1.6, the ultraproduct of the Cw := Aw/Iw is equal to
U(C) = U(A)/IU(A). If C = A′/I′ is a different presentation of C as a K-algebra
(with A′ a polynomial ring in finitely many indeterminates), and C′w := A′w/I′w the
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corresponding Kw-algebras, then their ultraproduct U(A′)/I′U(A′) is another way
of defining the ultra-hull of C, whence it must be isomorphic to U(C). Without loss
of generality, we may assume A ⊆ A′ and hence Aw ⊆ A′w. Since U(A)/IU(A) ∼=
U(C) ∼= U(A′)/I′U(A′), the homomorphisms Aw ⊆ A′w induce homomorphisms
Cw → C′w, and by Łos’ Theorem, almost all are isomorphisms. This justifies the
usage of calling the Cw approximations of C (in spite of the fact that they are not
uniquely determined by C).

7.1.3 The ultra-hull U(·) is a functor from the category of K-affine rings to the
category of ultra-K-algebras.

The only thing which remains to be verified is that an arbitrary K-algebra homo-
morphism C→ D of K-affine rings induces a homomorphism of ultra-K-algebras
U(C)→ U(D). However, this follows from the universal property applied to the
composition C→ D→ U(D), admitting a unique extension so that the following
diagram is commutative

?

-

?
-

DC

U(D).U(C)

(7.2)

Ultra-hull of a local affine algebra. Recall that a K-affine local ring R is simply
the localization Cp of a K-affine algebra C at a prime ideal p. Let us call R geometric,
if p is a maximal ideal m of C. By Proposition 2.5.1, a geometric K-affine local ring,
in other words, is the local ring of a closed point on an affine scheme of finite
type over K. Note that a K-affine local ring is in general not finitely generated as
a K-algebra; one usually says that R is essentially of finite type over K. The next
result will enable us to define the ultra-hull of a geometric affine local ring; we shall
discuss the general case on page 112 below:

7.1.4 Let C be a K-affine ring. If m is a maximal ideal in C, then mU(C) is a
maximal ideal in U(C), and C/m∼= U(C)/mU(C).

By our previous discussion, U(L) := U(C)/mU(C) is the ultra-hull of the field
L := C/m. By Corollary 2.2.6, the extension K ⊆ L is finite. It follows by Exer-
cise 1.6.9 that L is an ultra-field. By the universal property L is equal to its own
ultra-hull, and hence mU(C) is a maximal ideal. ut

We can now define the ultra-hull of a K-affine local ring R =Cm as the localiza-
tion U(R) := U(C)mU(C). Note that U(R) is again an ultra-ring: let Cw be approx-
imations of C, and let mw ⊆ Cw be ideals whose ultraproduct is equal to mU(C).
Since the latter is maximal, so are almost all mw. For those w, set Rw := (Cw)mw
(and arbitrary for the remaining w). By Exercise 1.6.2, the ultraproduct of the Rw
is equal to U(R), and for this reason we call the Rw again an approximation of R.
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We can formulate a similar universal property which is satisfied by U(R), and then
show that any local homomorphism R→ S of K-affine local rings induces a unique
homomorphism U(R)→U(S). Moreover, any two approximations agree almost ev-
erywhere (see Exercise 7.5.1). In particular, for homomorphic images we have:

7.1.5 If I⊆C is an ideal in a K-affine (local) ring, then U(C/I) =U(C)/IU(C).

We extend our naming practice also to elements or ideals: if a ∈C is an element
or I ⊆C is an ideal, and aw ∈Cw and Iw ⊆Cw are such that their ultraproduct equals
a ∈ U(C) and IU(C) respectively, then we call the aw and the Iw approximations of
a and I respectively. In particular, by 7.1.4, the approximations of a maximal ideal
are almost all maximal. The same holds true with ‘prime’ instead of ‘maximal’, but
the proof is more involved, and we have to postpone it until Theorem 7.3.4 below.

7.2 The Schmidt-van den Dries theorem

The ring U(A) is highly non-Noetherian. In particular, although each mU(A) is a
maximal ideal for m a maximal ideal of A, these are not the only maximal ideals of
U(A) (see Exercise 7.5.2). Nonetheless, they somehow ‘cover’ enough of U(A) so
that we can apply Theorem 5.6.17. More precisely:

7.2.1 If almost all Kw are algebraically closed, then any proper finitely related
ideal of U(A) is contained in some mU(A) with m⊆ A a maximal ideal.

Indeed, this is even true for any proper ultra-ideal I ⊆ U(A) (and finitely related
ideals are ultra-ideals by Exercise ??). Namely, let I be the ultraproduct of ideals
Iw ⊆ Aw. By Łos’ Theorem, almost each Iw is a proper ideal whence contained in
some maximal ideal mw. By the Nullstellensatz 2.2.2, we can write mw as (ξ1−
u1w, . . . ,ξn−unw)Aw for some uiw ∈ Kw. Let ui ∈ K be the ultraproduct of the uiw,
so that the ultraproduct of the mw is equal to (ξ1−u1, . . . ,ξn−un)U(A), and by Łos’
Theorem it contains I. ut

Theorem 7.2.2. For any K-affine ring, the canonical homomorphism C→ U(C) is
faithfully flat, whence in particular injective.

Proof. If we have proven this result for the ultra-hull U(A) of A, then it will fol-
low from 5.2.3 for any C→ U(C), since the latter is just a base change C = A/I→
U(A)/IU(A) = U(C), where C = A/I is some presentation of C. The faithfulness of
U(A) is immediate from 7.1.4. So remains to show the flatness of A→U(A), and for
this we may assume that K and all Kw are algebraically closed. Indeed, if K′ is the
ultraproduct of the algebraic closures of the Kw, then A→A′ :=K′[ξ ] is flat by 5.2.3.
By Exercise 7.5.3, the canonical homomorphism U(A)→ U(A′) is cyclically pure
with respect to ideals extended from A, where U(A′) is the ultra-K′-hull of A. Hence
if we showed that A′ → U(A′) is flat, then so is A→ U(A) by Corollary 5.6.16.
Hence we may assume all Kw are algebraically closed. By Theorem 5.6.17 in con-
junction with 7.2.1, we only need to show that R := Am → U(R) = U(A)mU(A)
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is flat for every maximal ideal m ⊆ A. After a translation, we may assume m =
(ξ1, . . . ,ξn)A. By Łos’ Theorem, (ξ1, . . . ,ξn) is U(A)-regular whence U(R)-regular.
This proves that U(R) is a big Cohen-Macaulay R-module. By Proposition 5.6.8
it is therefore a balanced big Cohen-Macaulay module, since any regular sequence
in U(R) is permutable by Łos’ Theorem, because this is so in the Noetherian local
rings (Aw)mw (see Theorem 4.2.6). Hence U(R) is flat over R by Theorem 5.6.9. ut

Immediately from this and the cyclic purity of faithfully flat homomorphisms
(Proposition 5.3.4) we get:

Corollary 7.2.3. The canonical map C→ U(C) is injective, and IU(C)∩C = I for
any ideal I ⊆C. ut

7.3 Transfer of structure

We will use ultra-hulls in our definition of tight closure in characteristic zero (see
§9), and to this end, we need to investigate more closely the relation between an
affine algebra and its approximations. We start with the following far reaching gen-
eralization of 7.1.4.

Finite extensions.

Proposition 7.3.1. If C → D is a finite homomorphism of K-affine rings, then
U(D)∼= U(C)⊗C D, and hence U(C)→ U(D) is also finite.

Proof. By Exercise 1.6.9, the tensor product U(C)⊗C D is an ultra-K-algebra, since
it is finite over U(C). By the universal property of the ultra-hull of D, we therefore
have a unique homomorphism U(D)→U(C)⊗C D of ultra-K-algebras. On the other
hand, by the universal property of tensor products, we have a unique homomorphism
U(C)⊗C D→U(D). It is no hard to see that the latter is in fact a morphism of ultra-
K-algebras. By uniqueness of both homomorphisms, they must be therefore each
other’s inverse. ut

Corollary 7.3.2. If C is a K-affine Artinian ring, then C ∼= U(C).

Proof. Since C is a direct product of local Artinian rings by 3.1.4, and since ultra-
hulls are easily seen to commute with direct products, we may assume C is moreover
local, with maximal ideal m, say. Let L :=C/m, so that L∼=U(L) by 7.1.4. Note that
the vector space dimension of C over L is equal to the length of C by Exercise 3.5.3.
In any case, C is a finite L-module, so that by Proposition 7.3.1 we get U(C) =
U(L)⊗L C =C. ut

Corollary 7.3.3. The dimension of a K-affine ring is equal to the dimension of al-
most all of its approximations.
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Proof. Let C be an n-dimensional K-affine ring, with approximations Cw. The as-
sertion is trivial for C = A a polynomial ring. For the general case, let A ⊆ C
be a finite extension, as given by Theorem 2.2.5. The induced homomorphism
U(A) → U(C) ∼= U(A)⊗A C is finite, by Proposition 7.3.1, and injective since
A→ U(A) is flat by Theorem 7.2.2. By Łos’ Theorem, almost all Aw → Cw are
finite and injective. Hence almost all Cw have dimension n by Theorem 3.4.8. ut

Prime ideals. We return to our discussion on the behavior of prime ideals under
the ultra-hull, and we are ready to prove the promised generalization of 7.1.4.

Theorem 7.3.4. A K-affine ring C is a domain if and only if U(C) is, if and only
if almost all of its approximations are. In particular, if p is a prime ideal in an
arbitrary K-affine ring D, then pU(D) is again a prime ideal, and so are almost all
of its approximations pw.

Proof. By Łos’ Theorem, almost all Cw are domains if and only if U(C) is a domain.
If this holds, then C too is a domain since it is a subring of U(C) by Corollary 7.2.3.
Conversely, assume C is a domain, and let A ⊆ C be a Noether normalization of
C, that is to say a finite and injective extension. Let Aw ⊆ Cw be the correspond-
ing approximations implied by Proposition 7.3.1. Let pw be a prime ideal in Cw
of maximal dimension, and let P be their ultraproduct, a prime ideal in U(C). An
easy dimension argument shows that pw ∩Aw = (0) and hence by Łos’ Theorem,
P∩U(A) = (0). Let p := P∩C. Since p∩A is contained in P∩U(A), it is also
zero. Hence A→C/p is again finite and injective. Since C is a domain, a dimension
argument using Theorem 3.4.8 yields that p = 0. On the other hand, we have an
isomorphism U(C) = U(A)⊗A C, so that by general properties of tensor products

U(C)/P= U(A)/(P∩U(A))⊗A/(P∩A)C/(P∩C) = U(A)⊗A C = U(C)

showing that P is zero, whence so are almost all pw. Hence almost all Cw are do-
mains, and hence by Łos’ Theorem, so is U(C).

The last assertion is immediate from the first applied to C := D/p. ut

This allows us to define the ultra-hull of an arbitrary local K-affine ring Cp as
the localization U(C)pU(C). To show that a local affine ring has the same dimension
as almost all of its approximations, one can use either some deeper results on the
dimension of an affine ring (see Exercise 7.5.6), or we proceed with some further
transfer results.

Recall (see Definition 3.4.1) that the geometric dimension geodim(R) of a lo-
cal ring (R,m) of finite embedding dimension is by definition the least number of
generators needed to generate an m-primary ideal.

Proposition 7.3.5. If (R,m) is a d-dimensional local K-affine ring, then U(R) has
geometric dimension d.

Proof. We induct on the dimension d, where the case d = 0 follows from Corol-
lary 7.3.2. So assume d > 0, and let x be a parameter in R. Hence, R/xR has di-
mension d−1, so that by induction, U(R/xR) has geometric dimension d−1. Since
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U(R/xR) = U(R)/xU(R) by 7.1.5, we see that U(R) has geometric dimension at
most d. By way of contradiction, suppose its geometric dimension is at most d−1.
In particular, there exists an mU(R)-primary ideal N generated by d− 1 elements.
Put n :=N∩R, and let n be such that mnU(R) ⊆N. By faithful flatness, that is to
say, by Corollary 7.2.3, we have an inclusion mn ⊆ n, showing that n is m-primary.
Hence R/n∼= U(R/n) = U(R)/nU(R) by Corollary 7.3.2. Hence U(R)/N is a ho-
momorphic image of R/n whence equal to it by definition of n. In conclusion,
N = nU(R). By Theorem 3.4.2, the geometric dimension of R is d, so that n re-
quires at least d generators. Since R→ U(R) is flat by Theorem 7.2.2, also nU(R)
requires at least d generators by 5.3.7, contradiction. ut

Corollary 7.3.6. The dimension of a local K-affine ring R is equal to the dimen-
sion of almost all of its approximations Rw. Moreover, if x is a sequence in R with
approximations xw, then x is a system of parameters if and only if almost all xw are.

Proof. The second assertion follows immediately from the first and Łos’ Theorem.
By Proposition 7.3.5, the geometric dimension of U(R) is equal to d := dim(R). Let
Rw be approximations of R, so that their ultraproduct equals U(R). If I is an mU(R)-
primary ideal generated by d elements, then its approximation Iw is an mw-primary
ideal generated by d elements for almost all w by 1.4.9. Hence almost all Rw have
geometric dimension at most d, whence dimension at most d by Theorem 3.4.2.

Let p0  · · ·  pd = m be a chain of prime ideals in R of maximal length. By
faithfull flatness (in the form of Corollary 7.2.3), this chain remains strict when
extended to U(R), and by Theorem 7.3.4, it consists again of prime ideals. Hence if
piw ⊆ Rw are approximations of pi, then by Łos’ Theorem, we get a strict chain of
prime ideals p0w  · · · pdw =mw for almost all w, proving that almost all Rw have
dimension at least d. ut

Note that it is not true that if xw are systems of parameters in the approximations,
then their ultraproduct (which in general even lies outside R) does not necesarily
generate an mU(R)-primary ideal.

Singularities. Now that we know how dimension behaves under ultra-hulls, we can
investigate singularities.

Theorem 7.3.7. A local K-affine ring is respectively regular or Cohen-Macaulay if
and only if almost all its approximations are.

Proof. Let R be a d-dimensional local K-affine ring, and let Rw be its approxima-
tions. If R is regular, then its embedding dimension is d, whence so is the embedding
dimension of U(R), and by Łos’ Theorem, then so is the embedding dimension of
Rw for almost each w, and conversely. This proves the assertion for regularity. As for
the Cohen-Macaulay condition, let x be a system of parameters with approximation
xw. Hence almost each xw is a system of parameters in Rw by Corollary 7.3.6. If R
is Cohen-Macaulay, then x is R-regular, hence U(R)-regular by flatness (see Propo-
sition 5.4.1), whence almost each xw is Rw-regular by Łos’ Theorem, and almost all
Rw are Cohen-Macaulay. The converse follows along the same lines. ut
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7.4 Uniform bounds

In this last section, we are ready to deduce some applications of ultraproducts to
the study of rings. The results as well as the proof method via ultraproducts are
due to Schmidt and van den Dries from their seminal paper [41], and were further
developped in [40, 42, 43, 51].

Linear equations. The proof of the next result is very typical for an argument
based on ultraproducts, and will be the template for all future proofs.

Theorem 7.4.1. There exists a function N : N2→ N with the following property. If
k is a field, and if f0, . . . , fs ∈ k[ξ ] are polynomials of degree at most d in at most n
indeterminates ξ such that f0 ∈ ( f1, . . . , fs)k[ξ ], then there exist g1, . . .gs ∈ k[ξ ] of
degree at most N(d,n) such that f0 = g1 f1 + · · ·+gs fs.

Proof. By way of contradiction, suppose this result is false for some pair (d,n). This
means that we can produce counterexamples requiring increasingly high degrees.
Before we write these down, observe that the number s of polynomials in these
counterexamples can be taken to be the same by Lemma 7.4.2 below (by adding
zero polynomials if necessary). So, for each w ∈ N, we can find counterexamples
consisting of a field Kw, and polynomials f0w, . . . , fsw ∈ Aw := Kw[ξ ] of degree at
most d, such that f0w can be written as an Aw-linear combination of the f1w, . . . , fsw,
but any such linear combination involves a polynomial of degree at least w. Let
fi be the ultraproduct of the fiw. This is again a polynomial of degree d in A by
7.1.2. Moreover, by Łos’ Theorem, f0 ∈ ( f1, . . . , fd)U(A). We use the flatness of
A→ U(A) via its corollary in 7.2.3, to conclude that f0 ∈ ( f1, . . . , fs)U(A)∩A =
( f1, . . . , fs)A. Hence we can find polynomials gi ∈ A such that

f0 = g1 f1 + · · ·+gs fs. (7.3)

Let e be the maximum of the degrees of the gi. By 7.1.2 again, we can choose
approximations giw ∈ Aw of g, of degree at most e. By Łos’ Theorem, (7.3) yields
for almost all w that f0w = ∑i giw fiw, contradicting our assumption. ut

Lemma 7.4.2. Any ideal in A generated by polynomials of degree at most d requires

at most N :=
(d +n

n
)

generators.

Proof. Note that N is equal to the number of monomials of degree at most d in n
variables. Let I := ( f1, . . . , fs)A be an ideal in A with each fi of degree at most d.
Choose some (total) ordering < on these monomials (e.g., the lexicographical or-
dering on the exponent vectors), and let l( f ) denote the largest monomial appear-
ing in f with non-zero coefficient, for any f ∈ A of degree at most d (where we put
l(0) :=−∞). If l( fi) = l( f j) for some non-zero fi, f j with i < j, then l(u fi−v f j)< l( fi)
for some non-zero elements u,v ∈ K, and we may replace the generator f j by the
new generator u fi− v f j. Doing this recursively for all i, we arrive at a situation in
which all non-zero fi have different l( fi), and hence there can be at most N of
these. ut
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We can reformulate the result in Theorem 7.4.1 to arrive at some further gener-
alizations. The ideal membership condition in that theorem is really about solving
an (inhomogeneous) linear equation in A: the equation f0 = f1t1 + · · ·+ fsts, where
the ti are the unknowns of this equation (as opposed to ξ , which are indetermi-
nates). This is the perspective taken in Exercise 7.5.5, which shows that there exists
a bound, only depending on the degree and the number of variables, for every system
of linear equations. In the homogeneous case we can say even more:

Theorem 7.4.3. There exists a bound N := N(d,n) such that for any field k, any ho-
mogeneous system of equations in k[ξ1, . . . ,ξn] all of whose coefficients have degree
at most d, admits a finite number of solutions of degree at most N such that any
other solution is a linear combination of these finitely many solutions.

Proof. The proof once more is by contradiction. Assume the statement is false for
the pair (n,d). Hence we can find for each w ∈N, a field Kw, and a system of linear
homogeneous equations

λ1w(t) = · · ·= λsw(t) = 0 (L w)

in the variables t = (t1, . . . , tm) with coefficients in Aw, such that the module of so-
lutions SolAw(L w) ⊆ Ak

w requires at least one generator one of whose entries is
a polynomial of degree at least w. Here, we may again take the number m of t-
variables as well as the number s of equations to be the same in all counterexam-
ples, by another use of Lemma 7.4.2. The ultraproduct of each λiw is, as before by
7.1.2, an element λi ∈ A[t] which is a linear form in the t-variables (and has degree
at most d in ξ ). By the equational criterion for flatness, Theorem 5.6.1, the flat-
ness of A→ U(A), proven in Theorem 7.2.2, amounts to the existence of solutions
b1, . . . ,bl ∈ SolA(L ) such that any solution of the homogeneous linear system (L )
of equations λ1 = · · ·= λs = 0 in U(A) lies in the U(A)-module generated by the bi.
Let e be the maximum of the degrees occuring in the bi. In particular, we can find
approximations biw ∈ Am

w of bi whose entries all have degree at most e. I claim that
almost each SolAw(L w) is equal to the submodule Hw generated by b1w, . . . ,blw,
which would then contradict our assumption.

To prove the claim, one inclusion is clear, so assume by way of contradiction that
we can find for almost all w a solution qw ∈ SolAw(L w) outside Hw. Let q\ ∈U(A)m

be its ultraproduct (note that this time, we cannot guarantee that its entries lie in
A since the degrees might be unbounded). By Łos’ Theorem, q\ ∈ SolU(A)(L ),
whence can be written as an U(A)-linear combination of the bi. Writing this out and
using Łos’ Theorem once more, we conclude that qw lies in Hw for almost all w,
contradiction. ut

Primality testing.

Theorem 7.4.4. There exists a function N : N2→ N with the following property. If
k is a field, and if p is an ideal in k[ξ1, . . . ,ξn] generated by polynomials of degree at
most d, then p is a prime ideal if and only if for any two polynomials f ,g of degree
at most N(d,n) which do not belong to p, neither does their product.
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Proof. One direction in the criterion is obvious. Suppose the other is false for the
pair (d,n), so that we can find for each w∈N, a field Kw and a non-prime ideal aw ⊆
Aw generated by polynomials of degree at most d, such that any two polynomials of
degree at most w not in aw have their product also outside aw. Taking ultraproducts
of the generators of the aw of degree at most d gives polynomials of degree at most
d in A by 7.1.2, and by Łos’ Theorem if a⊆ A is the ideal they generate, then aU(A)
is the ultraproduct of the aw. I claim that a is a prime ideal. However, this implies
that almost all aw must be prime ideals by Theorem 7.3.4, contradiction.

To verify the claim, let f ,g /∈ a. We want to show that f g /∈ a. Let e be the
maximum of the degrees of f and g. Choose approximations f w,gw ∈ Aw of degree
at most e, of f and g respectively. By Łos’ Theorem, f w,gw /∈ aw for almost all w.
For w≥ e, our assumption then implies that f wgw /∈ aw, whence by Łos’ Theorem,
their ultraproduct f g /∈ aU(A). A fortiori, then neither does f g belong to a, as we
wanted to show. ut

The pattern by now must become clear: prove a particular property of ideals is
preserved under ultra-hulls, and use this to deduce uniform bounds. For instance
you are asked in Exercise 7.5.7 to prove the following two results.

Proposition 7.4.5. The image of a radical ideal in the ultra-hull remains radical.

Since the radical of an ideal is the intersection of its minimal overprimes, we
derive from this the following uniform bounds property:

Theorem 7.4.6. There exists a function N : N2→ N with the following property. If
k is a field, and if I is an ideal in k[ξ1, . . . ,ξn] generated by polynomials of degree
at most d, then its radical J := rad(I) is generated by polynomials of degree at most
N := N(n,d). Moreover, JN ⊆ I and I has at most N distinct minimal overprimes,
all of which are generated by polynomials of degree at most N.

7.5 Exercises

Ex 7.5.1
Call a ring S\ an ultra-local K-algebra, if it is an ultraproduct of local Kw-algebras Sw;
any ultraproduct of local Kw-algebra homomorphisms Sw → T w is called a morphism of
ultra-local K-algebras. Show that if R is a local K-affine ring, then its ultra-hull U(R) is an
ultra-local K-algebra. Moreover, we have the following universal property: if R→ S\ is a
local K-algebra homomorphism into an ultra-local K-algebra S\, then there exists a unique
morphism U(R)→ S\ of ultra-local K-algebras. Prove 7.1.5 and the assertions preceding
it.

Ex 7.5.2
The maximal ideals of U(A) that are not extended from A are harder to describe. To show
that they at least exist, we reason as follows. For each w, choose a polynomial f w ∈ Aw in
ξ1 of degree w with distinct roots in Kw (assuming Kw has at least size w), and let f ∈U(A)
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be their ultraproduct. Let a be the ideal generated by all f/h where h runs over all elements
in A such that f ∈ hU(A). Show that a is not the unit ideal, and hence is contained in some
maximal ideal M of U(A). Show that a cannot be inside a maximal ideal of the form mU(A)
with m⊆ A, showing that M is not of the latter form. In fact, M is not even an ultra-ideal.
Give an example, assuming that the Kw are not algebraically closed, of a maximal ultra-
ideal of U(A) which is not extended from A.

Ex 7.5.3
Show that if C\→ D\ is an ultraproduct of cyclically pure homomorphisms Cw→ Dw, then
C\ → D\ is cyclically pure with respect to ultra-ideals. Deduce from this the claim in the
proof of Theorem 7.2.2 about the cyclical purity of U(A)→ U(A′) with respect to ideals
extended from A.

Ex 7.5.4
Show the ‘global’ counterparts of Theorem 7.3.7, that is to say, a K-affine ring is respec-
tively regular or Cohen-Macaulay if and only if almost all of its approximations are.

Ex 7.5.5
Show that there exists a bound N := N(d,n) such that for any field k, and for any (not
necessarily homogeneous) linear system (L ) of equations λ1 = · · ·= λs = 0 with λi ∈ k[ξ , t]
of ξ -degree at most d and t-degree at most one, where ξ is an n-tuple of indeterminates and
t is a finite tuple of variables, if the system admits a solution in K[ξ ], then it admits a
solutions all of whose entries have degree at most N.

Ex 7.5.6
In a K-affine domain D, we always have an equality dim(D/p)+ ht(p) = dim(D) (for a
special case, see Exercise 3.5.17). Assuming this result, use it to give an alternative proof of
Corollary 7.3.6 which does not rely on Proposition 7.3.5, but instead uses Corollary 7.3.3.

Ex 7.5.7
Prove Proposition 7.4.5 and derive Theorem 7.4.6 from it by the typical ultraproduct argu-
ment.

Ex 7.5.8
Use Theorem 5.6.15, the Colon Criterion, to show that there exists a bound N := N(d,n)
such that for any field k, any ideal I ⊆ k[ξ ] generated by polynomials of degree at most d,
and any a ∈ k[ξ ] of degree at most d in the n indeterminates ξ , the ideal (I : a) is generated
by polynomials of degree at most N.





Chapter 8
Tight closure in positive characteristic

In this chapter, p is a fixed prime number, and all rings are assumed to have char-
acteristic p, unless explicitly mentioned otherwise. We review the notion of tight
closure due to Hochster and Huneke (as a general reference, we will use [26]). The
main protagonist in this elegant theory is the p-th power Frobenius map. We will
focus on five key properties of tight closure, which will enable us to prove, virtually
effortlessly, several beautiful theorems. Via these five properties, we can give a more
axiomatic treatment, which lends itself nicely to generalization, and especially to a
similar theory in characteristic zero (see Chapters 9 and 10).

8.1 Frobenius

The major advantage of rings of positive characteristic is the presence of an alge-
braic endomorphism: the Frobenius. More precisely, let A be a ring of characteristic
p, and let Fp, or more accurately, Fp,A, be the ring homomorphism A→ A : a 7→ ap,
called the Frobenius on A. Recall that this is indeed a ring homomorphism, where
the only thing to note is that the coefficients in the binomial expansion

Fp(a+b) =
p

∑
i=0

(p
i
)
aibp−i = Fp(a)+Fp(b)

are divisible by p for all 0 < i < p whence zero in A, proving that Fp is additive.

When A is reduced, Fp is injective whence yields an isomorphism with its image
Ap := Im(Fp) consisting of all p-th powers of elements in A (and not to be confused
with the p-th Cartesian power of A). The inclusion Ap ⊆ A is isomorphic with the
Frobenius on A because we have a commutative diagram

119
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�
�
�
�
�
��

A
A
A
A
A
AU-

A

Ap A⊆

∼= Fp (8.1)

When A is a domain, then we can also define the ring A1/p as the subring of the
algebraic closure of the field of fractions of A consisting of all elements b satisfying
bp ∈ A. Hence A ⊆ A1/p is integral. Since, Fp(A1/p) = A and Fp is injective, we get
A1/p ∼= A. Moreover, we have a commutative diagram

�
�
�
�
�
��

A
A
A
A
A
AU

-

A

A1/p A∼=

⊆ Fp (8.2)

showing that the Frobenius on A is also isomorphic to the inclusion A ⊆ A1/p. It
is sometimes easier to work with either of these inclusions rather than with the
Frobenius itself, especially to avoid notational ambiguity between source and target
of the Frobenius (instances where this approach would clarify the argument are the
proofs of Theorem 8.1.2 and Corollary 8.1.3 below).

Often, the inclusion Ap ⊆ A is even finite, and hence so is the Frobenius itself.
One can show (see Exercise 8.7.11) using Noether normalization (Theorem 2.2.5)
or Cohen normalization (Theorem 6.4.6) that this is true when A is respectively an
affine k-algebra or a complete Noetherian local ring with residue field k, and k is
perfect, or more generally, (k : kp)< ∞.

Frobenius transforms. Given an ideal I⊆A, we will denote its extension under the
Frobenius by Fp(I)A, and call it the Frobenius transform of I. Note that Fp(I)A⊆ Ip,
but the inclusion is in general strict. In fact, one easily verifies that

8.1.1 If I = (x1, . . . ,xn)A, then Fp(I)A = (xp
1 , . . . ,x

p
n)A.

If we repeat this process, we get the iterated Frobenius transforms Fn
p(I)A of I,

generated by the pn-th powers of elements in I, and in fact, of generators of I. In
tight closure theory, the simplified notation

I[n] := Fn
p(I)A

is normally used, but for reasons that will become apparent once we defined tight
closure as a difference closure (see page 138), we will use the ‘heavier’ notation.
On the other hand, since we fix the characteristic, we may omit p from the notation
and simply write F : A→ A for the Frobenius.



8.2 Tight closure 121

Kunz’s theorem. The next result, due to Kunz, characterizes regular local rings in
positive characteristic via the Frobenius. We will only prove the direction that we
need.

Theorem 8.1.2. Let R be a Noetherian local ring. If R is regular, then Fp is flat.
Conversely, if R is reduced and Fp is flat, then R is regular.

Proof. We only prove the direct implication; for the converse see [29, §42]. Let x
be a system of parameters of R, whence an R-regular sequence by Proposition 4.2.3.
Since F(x) is also a system of parameters, it too is R-regular (Theorem 4.2.6).
Hence, R viewed as an R-algebra via F is a balanced big Cohen-Macaulay mod-
ule, and therefore flat by Theorem 5.6.9. ut

Corollary 8.1.3. If R is a regular local ring, I ⊆ R an ideal, and a ∈ R an arbitrary
element, then a ∈ I if and only if F(a) ∈ F(I)R.

Proof. One direction is of course trivial, so assume F(a) ∈ F(I)R. However, since
F is flat by Theorem 8.1.2, the contraction of the extended ideal F(I)R along F is
again I by Proposition 5.3.4, and a lies in this contraction (recall that F(I)R∩R
stands really for F−1(F(I)R).) ut

8.2 Tight closure

The definition of tight closure, although not complicated, is at first hard to grasp,
and only by working with it enough, and realizing its versatility, does one get a
knack of it. The idea is inspired by the ideal membership test of Corollary 8.1.3.
Unfortunately, that test only works over regular local rings, so that it will be no
surprise that whatever test we design, it will have to be more involved. Moreover,
the proposed test will in fact fail in general, that is to say, the elements satisfying
the test form an ideal which might be strictly bigger than the original ideal. But not
too much bigger, so that we may view this bigger ideal as a closure of the original
ideal, and as such, it is a ‘tight’ fit.

In the remainder of this section, A is a Noetherian ring, of characteristic p. A first
obvious generalization of the ideal membership test from Corollary 8.1.3 is to allow
iterates of the Frobenius: we could ask, given an ideal I ⊆ A, what are the elements x
such that Fn(x)∈ Fn(I)A for some power n? They do form an ideal and the resulting
closure operation is called the Frobenius closure. However, its properties are not
sufficiently strong to derive all the results tight closure can.

Tight closure. The adjustment to make in the definition of Frobenius closure, al-
though minor, might at first be a little surprising. To make the definition, we will call
an element a ∈ A a multiplier, if it is either a unit, or otherwise generates an ideal of
positive height (necessarily one by Theorem 3.4.4). Put differently, a is a multiplier
if it does not belong to any minimal prime ideal of A. In particular, the product of
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two multipliers is again a multiplier. In a domain, a situation we can often reduce
to, a multiplier is simply a non-zero element.

The name ‘multiplier’ comes from the fact that we will use such elements to
multiply our test condition with. However, for this to make sense, we cannot just
take one iterate of the Frobenius, we must take all of them, or at least all but finitely
many. So we now define: an element x ∈ A belongs to the tight closure clA(I) of an
ideal I ⊆ A, if there exists a multiplier c ∈ A and a positive integer N such that

cFn(x) ∈ Fn(I)A (8.3)

for all n ≥ N. Note that the multiplier c and the bound N may depend on x and I,
but not on n. We will write cl(I) for clA(I) if the ring A is clear from the context. In
the literature, tight closure is invariably denoted I∗, but again for reasons that will
become clear in the next chapter, our notation better suits our purposes. Let us verify
some elementary properties of this closure operation:

8.2.1 The tight closure of an ideal I in a Noetherian ring A is again an ideal, it
contains I, and it is equal to its own tight closure. Moreover, we can find
a multiplier c and a positive integer N which works simultaneous for all
elements in cl(I) in criterion (8.3).

It is easy to verify that cl(I) is closed under multiples, and contains I. To show
that it is closed under sums, whence an ideal, assume x,x′ ∈ A both lie in cl(I),
witnessed by the equations (8.3) for some multipliers c and c′, and some positive
integers N and N′ respectively. However, cc′Fn(x+ x′) then lies in Fn(I)A for all
n ≥ max{N,N′}, showing that x + x′ ∈ cl(I) since cc′ is again a multiplier. Let
J := cl(I) and choose generators y1, . . . ,ys of J. Let ci and Ni be the corresponding
multiplier and bound for yi. It follows that c := c1c2 · · ·cs is a multiplier such that
(8.3) holds for all n≥N := max{N1, . . . ,Ns} and all x∈ J, since any such element is
a linear combination of the yi. In particular, cFn(J)A⊆ Fn(I)A for all n≥ N. Hence
if z lies in the tight closure of J, so that dFn(z) ∈ Fn(J)A for some multiplier d and
for all n ≥ M, then cd Fn(z) ∈ Fn(I)A for all n ≥ max{M,N}, whence z ∈ cl(I).
The last assertion now easily follows from the above analysis. In the sequel, we will
therefore no longer make the bound N explicit and instead of “for all n≥N” we will
just write “for all n� 0”.

Example 8.2.2. It is instructive to look at an example. Let K be a field of charac-
teristic p > 3, and let A := K[ξ ,ζ ,η ]/(ξ 3− ζ 3−η3)K[ξ ,ζ ,η ] be the projective
coordinate ring of the cubic Fermat curve. Let us show that ξ 2 is in the tight closure
of I := (ζ ,η)A. For a fixed e, write 2pe = 3h+r for some h∈N and some remainder
r ∈ {1,2}, and let c be the multiplier ξ 3. Hence

cFe(ξ 2) = ξ
3(h+1)+r = ξ

r(ζ 3 +η
3)h+1.

A quick calculation shows that any monomial in the expansion of (ζ 3 +η3)h+1 is
a multiple of Fe(ζ ) or of Fe(η), showing that (8.3) holds for all e, and hence that
(ξ 2,ζ ,η)A⊆ cl(I).
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It is often much harder to show that an element does not belong to the tight
closure of an ideal. Shortly, we will see in Theorem 8.3.6 that any element outside
the integral closure is also outside the tight closure. Since (ξ 2,ζ ,η)A is integrally
closed, we conclude that it is equal to cl(I).

We will encounter many operations similar to tight closure, and so we formally
define:

Definition 8.2.3 (Closure operation). A closure operation on a ring A is any order-
preserving, contractive, idempotent endomorphism of the Grassmanian Grass(A)
(recall that Grass(A) is ordered by reverse inclusion, so that contractive means that
I lies in its own closure).

For instance, taking the radical of an ideal is a closure operation, and so is integral
closure discussed below. Tight closure too is a closure operation on A, since it clearly
also preserves inclusion: if I ⊆ I′, then cl(I) ⊆ cl(I′). An ideal that is equal to its
own tight closure is called tightly closed. Recall that the colon ideal (I : J) is the
ideal of all elements a ∈ A such that aJ ⊆ I; here I ⊆ A is an ideal, but J ⊆ A can be
any subset, which, however, most of the time is either a single element or an ideal.
Almost immediately from the definitions, we get

8.2.4 If I is tightly closed, then so is (I : J) for any J ⊆ A.

One of the longest outstanding open problems in tight closure theory was its
behavior under localization: do we always have

clA(I)Ap
?
= clAp(IAp) (8.4)

for every prime ideal p ⊆ A. Recently, Brenner and Monsky have announced (see
[9]) a negative answer to this question. The full extent of this phenomenon is not yet
understood, and so one has proposed the following two definitions (the above cited
counterexample still does not contradict that both notions are the same).

Definition 8.2.5. A Noetherian ring A is called weakly F-regular if each of its ideals
is tightly closed. If all localizations of A are weakly F-regular, then A is called F-
regular.

It is sometimes cumbersome to work with multipliers in arbitrary rings, but in do-
mains they are just non-zero elements. Fortunately, we can always reduce to the
domain case when calculating tight closure:

Proposition 8.2.6. Let A be a Noetherian ring, let p1, . . . ,ps be its minimal primes,
and put Āi := A/pi. For all ideals I ⊆ A we have

clA(I) =
s⋂

i=1

clĀi
(IĀi)∩A. (8.5)

Proof. The same equations which exhibit x as en element of clA(I) also show that
it is in clĀi

(IĀi) since any multiplier in A remains, by virtue of its definition, a multi-
plier in Āi (moreover, the converse also holds: by prime avoidance, we can lift any
multiplier in Āi to one in A). So one inclusion in (8.5) is clear.
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Conversely, suppose x lies in the intersection on the right hand side of (8.5). Let
ci ∈ A be a multiplier in A (so that its image is a multiplier in Āi), such that

ciFn
Āi
(x) ∈ Fn

Āi
(I)Āi

for all n� 0. This means that each ciFn
A(x) lies in Fn

A(I)A+pi for n� 0. Choose for
each i, an element ti ∈ A inside all minimal primes except pi, and let c := c1t1 + · · ·+
csts. A moment’s reflection yields that c is again a multiplier. Moreover, since tipi ⊆ n,
where n := nil(R) is the nil-radical of A, we get

cFn
A(x) ∈ Fn

A(I)A+n

for all n� 0. Choose m such that npm
is zero, whence also the smaller ideal FA(n).

Apply Fm
A to the previous equations, yielding

Fm
A (c)F

m+n
A (x) ∈ Fm+n

A (I)A

for all n� 0, which means that x ∈ clA(I) since Fm
A (c) is again a multiplier. ut

8.3 Five key properties of tight closure

In this section we derive five key properties of tight closure, all of which admit
fairly simple proofs. It is important to keep this in mind, since these five properties
will already suffice to prove in the next section some deep theorems in commutative
algebra. In fact, as we will see, any closure operation with these five properties
on a class of Noetherian local rings would establish these deep theorems for that
particular class (and there are still classes for which this is not known to be true).
Moreover, the proofs of the five properties themselves rest on a few simple facts
about the Frobenius, so that this will allow us to also carry over our arguments to
characteristic zero in Chapters 9 and 10.

The first property, stated here only in its weak version, is merely an observation.
Namely, any equation (8.3) in a ring A extends to a similar equation in any A-algebra
B. In order for the latter to calculate tight closure, the multiplier c∈ A should remain
a multiplier in B, and so we proved:

Theorem 8.3.1 (Weak Persistence). Let A→ B be a ring homomorphism, and let
I ⊆ A be an ideal. If A→ B is injective and B is a domain, or more generally, if
A→ B preserves multipliers, then clA(I)⊆ clB(IB). ut

The remarkable fact is that this is also true if A→ B is arbitrary and A is of finite
type over an excellent Noetherian local ring (see [26, Theorem 2.3]). We will not
need this stronger version, the proof of which requires another important ingredient
of tight closure theory: the notion of a test element. A multiplier c ∈ A is called a
test element for A, if for every a ∈ cl(I), we have cFn(a) ∈ Fn(I)A for all n. The
existence of test elements is not easy, and lies outside the scope of these notes,
but once one has established their existence, many arguments become even more
streamlined.



8.3 Five key properties of tight closure 125

Theorem 8.3.2 (Regular closure). In a regular local ring, every ideal is tightly
closed. In fact, a regular ring is F-regular.

Proof. Let R be a regular local ring. By Corollary 5.5.8, any localization of R is
again regular, so that the second assertion follows from the first. To prove the first,
let I be an ideal and x ∈ cl(I). Towards a contradiction, assume x /∈ I. In particular,
we must have (I : x)⊆m. Choose a non-zero element c such that (8.3) holds for all
n� 0. This means that c lies in the colon ideal (Fn(I)R : Fn(x)), for all n� 0. Since
F is flat by Theorem 8.1.2, the colon ideal is equal to Fn(I : x)R by Theorem 5.6.15.
Since (I : x)⊆m, we get c ∈ Fn(m)R⊆mpn

. Since this holds for all n� 0, we get
c = 0 by Theorem 3.3.4, clearly a contradiction. ut

Theorem 8.3.3 (Colon Capturing). Let R be a Noetherian local domain which
is a homomorphic image of a regular (or even Cohen-Macaulay) local ring, and
let (x1, . . . ,xd) be a system of parameters in R. Then for each i, the colon ideal
((x1, . . . ,xi)R : xi+1) is contained in cl((x1, . . . ,xi)R).

Proof. Let S be a local Cohen-Macaulay ring such that R = S/p for some prime
ideal p ⊆ S of height h. By prime avoidance, we can lift the xi to elements in
S, again denoted for simplicity by xi, and find elements y1, . . . ,yh ∈ p such that
(y1, . . . ,yh,x1, . . . ,xd) is a system of parameters in S, whence an S-regular sequence
(see Exercise 8.7.3). Since p contains the ideal J := (y1, . . . ,yh)S of the same height
(see 4.2.1), it is a minimal prime of J. Let J = g1∩ . . .gs be a minimal primary de-
composition of J, with g1 the p-primary component of J. In particular, some power
of p lies in g1, and we may assume that this power is of the form pm for some m.
Choose c inside all gi with i > 1, but outside p (note that this is possible by prime
avoidance). Putting everything together, we have

cppm ⊆ J. (8.6)

Fix some i, let I := (x1, . . . ,xi)S and assume zxi+1 ∈ IR, for some z ∈ S. Lifting this
to S, we get zxi+1 ∈ I +p. Applying the n-th power of Frobenius to this for n > m,
we get Fn(z)Fn(xi+1) ∈ Fn(I)S+Fn(p)S. By (8.6), this means that cFn(z)Fn(xi+1)
lies in Fn(I)S+Fn−m(J)S. Since the Fn−m(y j) together with the Fn(x j) form again
an S-regular sequence, we conclude that

cFn(z) ∈ Fn(I)S+Fn−m(J)S⊆ Fn(I)S+ J

whence cFn(z) ∈ Fn(I)R for all n > m. By the choice of c, it is non-zero in R, so
that the latter equations show that z ∈ cl(IR). ut

The condition that R is a homomorphic image of a regular local ring is satisfied
either if R is a local affine algebra, by 4.1.6, or if R is complete, by Theorems 6.4.2
and 6.4.4. These are the two only cases in which we will apply the previous theorem.
There is a more general version which does not require R to be a domain, but only
to be equidimensional, meaning that all minimal primes have the same dimension
(Exercise 8.7.13).
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Theorem 8.3.4 (Finite extensions). If A→ B is a finite, injective homomorphism of
domains, and I ⊆ A be an ideal, then clB(IB)∩A = clA(I).

Proof. One direction is immediate by Theorem 8.3.1. For the converse, there exists
an A-module homomorphism ϕ : B→ A such that c := ϕ(1) 6= 0, by Lemma 8.3.5
below. Suppose x ∈ clB(IB)∩A, so that for some non-zero d ∈ B, we have d Fn(x) ∈
Fn(I)B for n� 0. Since B is finite over A, some non-zero multiple of d lies in A,
and hence without loss of generality, we may assume d ∈ A . Applying ϕ to these
equations, we get

cd Fn(x) ∈ Fn(I)A

showing that x ∈ clA(I). ut

Lemma 8.3.5. If A⊆ B is a finite extension of domains, then there exists an A-linear
map ϕ : B→ A with ϕ(1) 6= 0.

Proof. Suppose B is generated over A by the elements b1, . . . ,bs. Let K and L be
the fields of fractions of A and B respectively. Since B is a domain, it lies inside
the K-vector subspace V ⊆ L generated by the bi. Choose an isomorphism γ : V →
Kt of K-vector spaces. After renumbering, we may assume that the first entry of
γ(1) is non-zero. Let π : Kt → K be the projection onto the first coordinate, and let
d ∈ A be the common denominator of the π(γ(bi)) for i = 1, . . . ,s. Now define an
A-linear homomorphism ϕ by the rule ϕ(y) = dπ(γ(y)) for y ∈ B. Since y is an A-
linear combination of the bi and since dπ(γ(bi)) ∈ A, also ϕ(y) ∈ A. Moreover, by
construction, ϕ(1) 6= 0. ut

Note that a special case of Theorem 8.3.4 is the fact that tight closure measures
the extent to which an extension of domains A⊆ B fails to be cyclically pure: IB∩A
is contained in the tight closure of I, for any ideal I ⊆ A. In particular, in view of
Theorem 8.3.2, this reproves the well-known fact that if A ⊆ B is an extension of
domains with A regular, then A ⊆ B is cyclically pure. The next and last property
involves another closure operation, integral closure. It will be discussed in more
detail below (§8.4), and here we just state its relationship with tight closure:

Theorem 8.3.6 (Integral closure). For every ideal I ⊆ A, its tight closure is con-
tained in its integral closure. In particular, radical ideals, and more generally inte-
grally closed ideals, are tightly closed.

Proof. The second assertion is an immediate consequence of the first. We verify
condition (4) of Theorem 8.4.1 to show that if x belongs to the tight closure clA(I),
then it also belongs to the integral closure Ī. Let A→V be a homomorphism into a
discrete valuation ring V , such that its kernel is a minimal prime of A. We need to
show that x ∈ IV . However, this is clear since x ∈ clV (IV ) by Theorem 8.3.1 (note
that A→ V preserves multipliers), and since clV (IV ) = IV , by Theorem 8.3.2 and
the fact that V is regular (Exercise 4.3.8). ut

It is quite surprising that there is no proof, as far as I am aware of, that a prime
ideal is tightly closed without reference to integral closure.
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8.4 Integral closure

The integral closure Ī of an ideal I is the collection of all elements x ∈ A satisfying
an integral equation of the form

xd +a1xd−1 + · · ·+ad = 0 (8.7)

with a j ∈ I j for all j = 1, . . . ,d. We say that I is integrally closed if I = Ī. Since
clearly Ī ⊆ rad(I), radical ideals are integrally closed. It follows from either charac-
terization (2) or (4) below that Ī is an ideal.

Theorem 8.4.1. Let A be an arbitrary Noetherian ring (not necessarily of charac-
teristic p). For an ideal I ⊆ A and an element x ∈ A, the following are equivalent

1. x belongs to the integral closure, Ī;
2. there is a finitely generated A-module M with zero annihilator such that xM ⊆

IM;
3. there is a multiplier c ∈ A such that cxn ∈ In for infinitely many n;
4. for every homomorphism A→ V into a discrete valuation ring V with kernel

equal to a minimal prime of A, we have x ∈ IV ;

Proof. We postpone the proof to Exercise 8.7.14, except for the equivalence of (1)
with (4) (note that this is the only equivalence used so far, in the proof of Theo-
rem 8.3.6). By Exercise 8.7.12, we may reduce to the case that A is moreover a
domain.

To prove (1) ⇒ (4), suppose x ∈ Ī and A ⊆ V is an injective homomorphism
into a discrete valuation ring V . Let v be the valuation on V . Suppose towards a
contradiction that x /∈ IV , and therefore m := v(x) < n := v(IV ). By assumption, x
satisfies an integral equation (8.7). For all i = 1, . . . ,d, we have

v(aixd−i)≥ ni+(d− i)m > dm.

However, this is in contradiction with v(xd) = md.
To prove the converse, assume x ∈ IV for every embedding A⊆V into a discrete

valuation ring V . Let I = (a1, . . . ,an)A, and consider the homomorphism A[ξ ]→ Ax
given by ξi 7→ ai/x, where ξ := (ξ1, . . . ,ξn). Let B be its image, so that A ⊆ B ⊆ Ax
(one calls B the blowing-up of I + xA at x). Let m := (ξ1, . . . ,ξn)A[ξ ]. I claim that
mB = B. Assuming the claim, we can find f ∈ m such that f (a/x) = 1 in Ax, where
a := (a1, . . . ,an). Write f = f1 + · · ·+ fd in its homogeneous parts f j of degree j, so
that

1 = x−1 f1(a)+ · · ·+ x−d fd(a).

Multiplying with xd , and observing that f j(a) ∈ I j, we see that x satisfies an integral
equation (8.7), and hence x ∈ Ī.

To prove the claim ex absurdum, suppose mB is not the unit ideal, whence is
contained in a maximal ideal n of B. By Exercise 8.7.15, there exists an injective,
local homomorphism Bn ⊆ V with V a discrete valuation ring. Hence also A ⊆ V .
Since mV lies in the maximal ideal πV and ξi 7→ ai/x, we get ai ∈ xπV for all i. Hence
IV ⊆ xπV contradicting that x ∈ IV . ut

From this we readily deduce (see Exercise 8.7.10):
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Corollary 8.4.2. A domain A is normal (=integrally closed) if and only if each prin-
cipal ideal is integrally closed if and only if each principal ideal is tightly closed.

In one of our applications below (Theorem 8.5.1), we will make use of the fol-
lowing nice application of the chain rule:

Proposition 8.4.3. Let K be a field of characteristic zero, and let R be either the
power series ring K[[ξ ]], the ring of convergent power series K{ξ} (assuming K is
a normed field), or the localization of K[ξ ] at the ideal generated by the indetermi-
nates ξ := (ξ1, . . . ,ξn). If f is a non-unit, then it lies in the integral closure of its
Jacobian ideal Jac( f ) := (∂ f/∂ξ1, . . . ,∂ f/∂ξn)R.

Proof. Recall that K{ξ} consists of all formal power series f such that f (u) is
a convergent series for all u in a small enough neighborhood of the origin. Put
J := Jac( f ). In view of (4) in Theorem 8.4.1, we need to show that given an em-
bedding R ⊆ V into a discrete valuation ring V , we have f ∈ JV . Since completion
is faithfully flat by Theorem 6.3.5, we may replace V by its completion, and hence
already assume V is complete. By Theorem 6.4.2 therefore, V is a power series ring
κ[[ζ ]] in a single variable over a field extension κ of K. Viewing the image of f in
κ[[ζ ]] as a power series in ζ , the multi-variate chain rule yields

df
dζ

=
n

∑
i=1

∂ f
∂ξi
· dξi

dζ
∈ JV.

However, since f has order e ≥ 1 in V , its derivative df/dζ has order e− 1, and
hence f ∈ (df/dζ )V ⊆ JV . Note that for this to be true, however, the characteristic
needs to be zero. For instance, in characteristic p, the power series ξ p would already
be a counterexample to the proposition. ut

Since the integral closure is contained in the radical closure, we get that some
power of f lies in its Jacobian Jac( f ). A famous theorem due to Briançon-Skoda
states that in fact already the n-th power lies in the Jacobian (where n is the num-
ber of variables; we will prove this via an elegant tight closure argument in Theo-
rem 8.5.1 below).

8.5 Applications

We will now discuss three important applications of tight closure. Perhaps surpris-
ingly, the original statements all were in characteristic zero (with some of them in
their original form plainly false in positive characteristic), and their proofs required
deep and involved arguments, some even based on transcendental/analytic methods.
However, they each can be reformulated so that they also make sense in positive
characteristic, and then can be established by surprisingly elegant tight closure ar-
guments. As for the proofs of their characteristic zero counterparts, they must wait
until we have developed the theory in characteristic zero in Chapters 9 and 10 (or
one can use the ‘classical’ tight closure in characteristic zero discussed in §8.6).
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The Briançon-Skoda theorem. We already mentioned this famous result, proven
first in [10].

Theorem 8.5.1 (Briançon-Skoda). Let R be either the ring of formal power series
C[[ξ ]], or the ring of convergent power series C{ξ}, or the localization of the poly-
nomial ring C[ξ ] at the ideal generated by ξ , where ξ := (ξ1, . . . ,ξn) are some
indeterminates. If f is not a unit, then f n ∈ Jac( f ) := (∂ f/∂ξ1, . . . ,∂ f/∂ξn)R.

This theorem will follow immediately from the characteristic zero analogue of
the next result (with l = 1), in view of Proposition 8.4.3 and Exercise 4.3.5; we will
do this in Theorem 9.2.5 below.

Theorem 8.5.2 (Briançon-Skoda—tight closure version). Let A be a Noetherian
ring of characteristic p, and I ⊆ A an ideal generated by n elements. Then we have
for all l ≥ 1 an inclusion

In+l−1 ⊆ cl(Il).

In particular, if A is a regular local ring, then the integral closure of In+l−1 lies
inside Il for all l ≥ 1.

Proof. For simplicity, I will only prove the case l = 1 (see Exercise 8.7.7 for the
general case). Assume z ∈ In. By (3) in Theorem 8.4.1, there exists a multiplier
c∈ A such that czk ∈ Ikn for all k� 0. Since I := ( f1, . . . , fn)A, we have an inclusion
Ikn ⊆ ( f k

1 , . . . , f k
n )A. Hence with k equal to pm, we get cFm(z) ∈ Fm(I)A for all

m� 0. In conclusion, z∈ cl(I). The last assertion then follows from Theorem 8.3.2.
ut

The Hochster-Roberts theorem. We will formulate the next result without defin-
ing in detail all the concepts involved, except when we get to its algebraic formula-
tion. A linear algebraic group G is an affine subscheme of the general linear group
GL(K,n) over an algebraically closed field K (see Example 2.3.7) such that its K-
rational points form a subgroup of the latter group. When G acts (as a group) on
a closed subscheme X ⊆ An

K (more precisely, for each algebraically closed field L
containing K, there is an action of the L-rational points of G(L) on X(L)), we can
define the quotient space X/G, consisting of all orbits under the action of G on X ,
as the affine space Spec(RG), where RG denotes the subring of G-invariant sections
in R := Γ (X ,OX ) (the action of G on X induces an action on the sections of X ,
and hence in particular on R). For this to work properly, we also need to impose a
certain finiteness condition: G has to be linearly reductive. Although not usually its
defining property, we will here take this to mean that there exists an RG-linear map
R→ RG which is the identity on RG, called the Reynold operator of the action. For
instance, if K = C, then an algebraic group is linearly reductive if and only if it is
the complexification of a real Lie group, where the Reynolds operator is obtained
by an integration process. This is the easiest to understand if G is finite, when the
integration is just a finite sum

ρ : R→ RG : a 7→ 1
|G| ∑

σ∈G
aσ ,
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where aσ denotes the effect of σ ∈ G acting on a ∈ R. In fact, as indicated by the
above formula, a finite group is linearly reductive over a field of positive characteris-
tic, provided its cardinality is not divisible by the characteristic. If X is non-singular
and G is linearly reductive, then we will call X/G a quotient singularity.1 The cele-
brated Hochster-Roberts theorem now states:

Theorem 8.5.3. Any quotient singularity is Cohen-Macaulay.

To state a more general result, we need to take a closer look at the Reynolds
map. A ring homomorphism A→ B is called split, if there exists an A-linear map
σ : B→ A which is the identity on A (note that σ need not be multiplicative, that is
to say, is not a ring homomorphism, only a module homomorphism). We call σ the
splitting of A→ B. Hence the Reynold map is a splitting of the inclusion RG ⊆ R.
The only property of split maps that will matter is the following:

8.5.4 A split homomorphism A→ B is cyclically pure.

See the discussion following Proposition 5.3.4 for the definition of cyclic purity.
Let a ∈ IB∩A with I = ( f1, . . . , fs)A an ideal in A. Hence a = f1b1 + · · ·+ fsbs for
some bi ∈ B. Applying the splitting σ , we get by A-linearity a = f1σ(b1)+ · · ·+
fsσ(bs) ∈ I, proving that A is cyclically pure in B. ut

We can now state a far more general result, of which Theorem 8.5.3 is just a
special case (see Exercise 8.7.9).

Theorem 8.5.5. If R→ S is a cyclically pure homomorphism and if S is regular, then
R is Cohen-Macaulay.

Proof. In fact, we can split the proof in two parts. Namely, we first show that R is
F-regular, and then show that any F-regular ring is Cohen-Macaulay.

8.5.6 A cyclically pure subring of a regular ring is F-regular.

Indeed, since both cyclic purity and regularity are preserved under localization,
we only need to show that every ideal in R is tightly closed. To this end, let
I ⊆ R and x ∈ cl(I). Hence x lies in the tight closure of IS by (weak) persistence
(Theorem 8.3.1), and therefore in IS by Theorem 8.3.2. Hence by cyclic purity,
x ∈ I = IS∩R, proving that R is weakly F-regular. Note that we actually proved that
a cyclically pure subring of a (weakly) F-regular ring is again (weakly) F-regular.

8.5.7 An F-regular domain is Cohen-Macaulay.

Without loss of generality, we may assume R is local. Assume R is F-regular and
let (x1, . . . ,xd) be a system of parameters in R. To show that xi+1 is R/(x1, . . . ,xi)R-
regular, assume zxi+1 ∈ (x1, . . . ,xi)R. Colon Capturing (Theorem 8.3.3) yields that
z lies in the tight closure of (x1, . . . ,xi)R, whence in the ideal itself since R is F-
regular. ut
1 The reader should be aware that other authors might use the term more restrictively, only allowing
X to be affine space An

K , or G to be finite.
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In fact, R is then also normal (this follows easily from 8.5.6 and Corollary 8.4.2).
A far more difficult result is that R is then also pseudo-rational (a concept that lies
beyond the scope of these notes; see for instance [26, 52] for a discussion of what
follows). This was first proven by Boutot in [8] for C-affine algebras by means of
deep vanishing theorems. The positive characteristic case was proven by Smith in
[56] by tight closure methods, where she also showed that pseudo-rationality is in
fact equivalent with the weaker notion of F-rationality (a local ring is F-rational if
some parameter ideal is tightly closed). The general characteristic zero case was
proven in [52] by means of ultraproducts (as described in §10). In fact, being F-
regular is equivalent under the Q-Gorenstein assumption with having log-terminal
singularities (see [16, 48]). It should be noted that ‘classical’ tight closure theory
in characteristic zero (see §8.6 below) is not sufficiently versatile to derive these
results: so far, only our present ultraproduct method seems to work.

The Ein-Lazardsfeld-Smith theorem. If P is a point in the affine plane K2, and
f ∈K[ξ ,ζ ], then we say that f has multiplicity k at P if P is a k-multiple point of the
curve V( f ) (as defined in Definition 4.1.2). The next result, although elementary in
its formulation, was only proven recently in [14] using quite complicated methods
(which only work over C), but then soon after in [23] by an elegant tight closure
argument (see also [44]), which proves the result over any field K.

Theorem 8.5.8. Let V ⊆ K2 be a finite subset with ideal of definition I := I(V ). For
each k, let Jk(V ) be the ideal of all polynomials f having multiplicity at least k at
each point x ∈V . Then J2k(V )⊆ Ik, for all k.

To formulate the more general result of which this is just a corollary, we need
to introduce symbolic powers. We first do this for a prime ideal p: its k-th symbolic
power is the contracted ideal p(k) := pkRp∩R. In general, the inclusion pk⊆ p(k) may
be strict, and in fact, p(k) is the p-primary component of pk. If a is a radical ideal
(we will not treat the more general case), then we define its k-th symbolic power a(k)

as the intersection p
(k)
1 ∩·· ·∩p

(k)
s , where the pi are all the minimal overprimes of a.

The connection with Theorem 8.5.8 is given by:

8.5.9 The k-th symbolic power of the ideal of definition I := I(V ) of a finite
subset V ⊆ K2 is equal to the ideal Jk(V ) of all polynomials that have
multiplicity at least k at any point of V .

Indeed, for x ∈ V , let m := mx be the corresponding maximal ideal. By 4.1.4, a
polynomial f has multiplicity at least k at each x ∈V , if f ∈mkAm for all maximal
ideals m containing I. The latter condition simply means that f ∈ m(k), so that the
claim follows from the definition of symbolic power. ut

Hence, in view of this, Theorem 8.5.8 is an immediate consequence of the fol-
lowing theorem (at least in positive characteristic; for the characteristic zero case,
see Theorems 9.2.6 and 10.2.4 below):

Theorem 8.5.10. Let A be a regular domain of characteristic p. Let a ⊆ A be a
radical ideal and let h be the maximal height of its minimal overprimes. Then we
have an inclusion a(hn) ⊆ an, for all n.
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Proof. We start with proving the following useful inclusion:

a(hpe) ⊆ Fe(a)A (8.8)

for all e. Let p1, . . . ,pm be the minimal prime ideals of a. We first prove (8.8) locally
at one of these minimal primes p. Since Ap is regular and aAp = pAp, we can find
fi ∈ a such that aAp = ( f1, . . . , fh)Ap. By definition of symbolic powers, a(hpe)Ap =
ahpe

Ap. On the other hand, ahpe
Ap consists of monomials in the fi of degree hpe,

and hence any such monomial lies in Fe(a)Ap. This establishes (8.8) locally at p.
To prove this globally, take z ∈ a(hpe). By what we just proved, there exists si /∈ pi
such that siz∈ Fe(a)A for each i = 1, . . . ,m. For each i, choose an element ti in all p j
except pi, and put s := t1s1 + · · ·+ smtm. It follows that s multiplies z inside Fe(a)A,
whence a fortiori, so does Fe(s). Hence

z ∈ (Fe(a)A : Fe(s)) = Fe(a : s)A

where we used Theorem 5.6.15 and the fact that F is flat on A by Theorem 8.1.2.
However, s does not lie in any of the pi, whence (a : s) = a, proving (8.8).

To prove the theorem, let f ∈ a(hn), and fix some e. We may write pe = an+ r for
some a,r ∈ N with 0≤ r < n. Since the usual powers are contained in the symbolic
powers, and since r < n, we have inclusions

ahn f a ⊆ ahr f a ⊆ a(han+hr) = a(hpe) ⊆ Fe(a)A (8.9)

where we used (8.8) for the last inclusion. Taking n-th powers in (8.9) shows that
ahn2

f an lies in the n-th power of Fe(a)A, and this in turn lies inside Fe(an)A. Choose
some non-zero c in ahn2

. Since pe ≥ an, we get cFe( f ) ∈ Fe(an)A for all e. In
conclusion, f lies in cl(an) whence in an by Theorem 8.3.2. ut

One might be tempted to try to prove a more general form which does not assume
A to be regular, replacing an by its tight closure. However, we used the regularity as-
sumption not only via Theorem 8.3.2 but also via Kunz’s theorem that the Frobenius
is flat. Hence the above proof does not work in arbitrary rings.

8.6 Classical tight closure in characteristic zero

To prove the previous three theorems in a ring of equal characteristic zero,
Hochster and Huneke also developed tight closure theory for such rings. One of
the precursors to tight closure theory was the proof of the Intersection Theorem by
Peskine and Szpiro in [34]. They used properties of the Frobenius together with a
method to transfer results from characteristic p to characteristic zero, which was
then generalized by Hochster in [19]. This same technique is also used to obtain a
tight closure theory in equal characteristic zero, as we will discuss briefly in this sec-
tion. However, using ultraproducts, we will bypass in Chapters 9 and 10 this rather
heavy-duty machinery, to arrive much quicker at proofs in equal characteristic zero.
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Let A be a Noetherian ring containing the rationals. The idea is to associate to
A some rings in positive characteristic, its reductions modulo p, and calculate tight
closure in the latter. More precisely, let a ⊆ A be an ideal, and z ∈ A. We say that z
lies in the HH-tight closure of a (where “HH” stands for Hochster-Huneke), if there
exists a Z-affine subalgebra R⊆ A containing z, such that (the image of) z lies in the
tight closure of I(R/pR) for all primes numbers p, where I := a∩R.

It is not too hard to show that this yields a closure operation on A (in the sense
of Definition 8.2.3). Much harder is showing that it satisfies all the necessary prop-
erties from §8.3. For instance, to prove the analogue of Theorem 8.3.2, one needs
some results on generic flatness, and some deep theorems on Artin Approximation
(see for instance [26, Appendix 1] or [22]; for a brief discussion of Artin Approxi-
mation, see §10.1 below; for an example of the technique, see Project 10.6 below).
In contrast, using ultraproducts, one can avoid all these complications in the affine
case (Chapter 9), or get by with a more elementary version of Artin Approximation
in the general case (Chapter 10).

8.7 Exercises

Ex 8.7.1
Let A be the coordinate ring of the hypersurface in K3 given by the equation ξ 2−ζ 3−η7 =
0. Show that ξ lies in the tight closure of (ζ ,η)A.
A far more difficult result is to show that this is not true if we replace η7 by η5 in the above
equation. In fact this new coordinate ring is F-regular, but this is a deep fact, following from
it being log-terminal (see the discussion following Theorem 8.5.5).

Ex 8.7.2
Show that any regular ring of prime characteristic is F-regular.

Ex 8.7.3
Prove the existence of the yi in the proof of Theorem 8.3.3.

Ex 8.7.4
Work out the details of the following alternative proof of Colon Capturing for a local domain
R admitting Noether Normalization with parameters, meaning that for any system of param-
eters (x1, . . . ,xd) in R, there exists a regular local subring S⊆ R containing the xi such that
S⊆ R is finite and (x1, . . . ,xd)S is the maximal ideal of S. Suppose z ∈ ((x1, . . . ,xi)R : xi+1)
and let A be the S-subalgebra of R generated by z. Show that A is a hypersurface ring and
hence is Cohen-Macaulay, by modifying the proof of Corollary 5.6.13. By Lemma 8.3.5,
there exists an R-linear map ϕ : R→ A with c := ϕ(1) 6= 0. Apply the n-th iterate of Frobe-
nius to the relation zxi+1 ∈ (x1, . . . ,xi)R and then apply ϕ to get ideal membership relations
in A. Use that Fn(xi) is a regular sequence in A to derive from these relations that z lies in
the tight closure of (x1, . . . ,xi)A, and finish with an application of weak persistence (Theo-
rem 8.3.1).
Show using Theorem 2.2.5 that any affine local domain admits Noether Normalization with
parameters (see for instance [15, Theorem 13.3]). Prove similarly, using the argument in
Theorem 6.4.6, that so does any complete Noetherian local domain.
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Ex 8.7.5
Prove, using tight closure, that a Noether normalization A ⊆ B of an affine algebra B over
a field of positive characteristic is cyclically pure. Use this, together with Corollary 5.6.10,
to give an example of a finite cyclically pure homomorphism of local rings which is not flat.

Ex 8.7.6
Show that if z ∈ Ī satisfies an integral equation (8.7) of degree d, then Id−1zk ∈ Ik for all k.

Ex 8.7.7
Prove the general version of Theorem 8.5.2.

Ex 8.7.8
Give an alternative proof that ξ 2 ∈ cl(I) in Example 8.2.2 using the Briançon-Skoda Theo-
rem instead.

Ex 8.7.9
Derive Theorem 8.5.3 from Theorem 8.5.5 using 8.5.4.

Additional exercises.

Ex 8.7.10
Prove Corollary 8.4.2.

Ex 8.7.11
Prove that if A is an affine k-algebra, or a complete Noetherian local ring with
residue field k, and if k is perfect, or more generally, if (k : kp) < ∞, then Fp : A→ A
is finite.

Ex 8.7.12
Show that x lies in the integral closure of an ideal I if and only if it lies in the integral
closure of each I(A/p), for p a minimal prime of A.

Ex 8.7.13
Prove Theorem 8.3.3 under the weaker assumption that R is an equidimensional
homomorphic image of a Cohen-Macaulay local ring.

Ex 8.7.14
To show the equivalence of (1) with (2) in Theorem 8.4.1, use in one direction the
ideal J := xd−1A+ xd−2I + · · ·+ Id , and in the other use a ‘determinantal trick’. Use
the ideal J to also prove (1)⇒ (3), and finish the proof of Theorem 8.4.1 by showing
(3)⇒ (4). See also Exercise 8.7.6.
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Ex 8.7.15
Let (R,m) be a Noetherian local domain. We want to show that there exists a dis-
crete valuation ring V and a local injective homomorphism R→ V . Let (x1, . . . ,xn)
be a generating tuple of m and let R′ be the R-algebra generated by the fractions
xi/x1 with i = 1, . . . ,n (one often refers to B as a blowing-up of R at m). Show that mB
is principal, and using Krull’s Principal Ideal Theorem (Theorem 3.4.4), that there
exists a height one prime ideal p in B containing mB. Let V be the integral closure of
Bp. Show that V is a discrete valuation ring, and that the natural embedding R→V
is local.

Ex 8.7.16
In this exercise, we will explore some of the concepts of invariant theory briefly
mentioned at the beginning of our discussion on the Hochster-Roberts Theorem.
Let K be an algebraically closed field, let X = Spec(R) ⊆ An

K be an irreducible, re-
duced closed subscheme, and let G be a linearly reductive algebraic group acting
on X . In particular, the K-rational points G(K) of G form an (abstract) group acting
on the variety X(K)⊆ Kn consisting of the K-rational points of X (see page 26). For
a given section p : X(K)→ K, and an element g ∈ G(K), define a new section pg

given by the rule pg(u) = p(g ·u). Show that we may identify R with the sections on
X(K), and the above then defines an action of G(K) on R. Let RG be the subring
of invariants of R under this action, that is to say, all a ∈ R such that ag = a for all
g ∈ G(K) (notationally, one often confuses the algebraic group G with its K-rational
points G(K)). Without proof, we state that RG is again K-affine, that is to say, a
finitely generated K-algebra. Let Y := Spec(RG). Show, using Exercise 5.7.7 and the
Reynolds operator, that the induced map X → Y is surjective. Show furthermore
that the induced surjective map of K-rational points X(K)→ Y (K) factors through
the orbit space X(K)/G(K). It requires some more work though to show that this
actually induces an isomorphism X(K)/G(K)∼= Y (K).





Chapter 9
Tight closure in characteristic zero. Affine case

We will develop a tight closure theory in characteristic zero which is different from
the Hochster-Huneke approach discussed briefly in §8.6. In this chapter we treat the
affine case, that is to say, we develop the theory for algebras of finite type over an
uncountable algebraically closed field K of characteristic zero; the general local case
will be discussed in Chapter 10. Recall that under the Continuum Hypothesis, any
uncountable algebraically closed field K of characteristic zero is a Lefschetz field,
that is to say an ultraproduct of fields of positive characteristic, by Theorem 1.4.3
and Remark 1.4.4. In particular, without any set-theoretic assumption, C, the field
of complex numbers, is a Lefschetz field. The idea now is to use the ultra-Frobenius,
that is to say, the ultraproduct of the Frobenii (see Definition 1.4.14), in the same
manner in the definition of tight closure as in positive characteristic. However, the
ultra-Frobenius does not act on the affine algebra but rather on its ultra-hull, so that
we have to introduce a more general setup. It is instructive to do this first in an
axiomatic manner, and then specialize to the situation at hand.

9.1 Difference hulls

A ring C together with an endomorphism σ on C is called a difference ring, and for
emphasis, we denote this as a pair (C,σ). If (C,σ) and (C′σ ′) are difference rings,
and ϕ : C→C′ a ring homomorphism, then we call ϕ a morphism of difference rings
if it commutes with the endomorphisms, that is to say, if ϕ(σ(a)) = σ ′(ϕ(a)) for all
a ∈C. The example par excellence of a difference ring is any ring of positive char-
acteristic endowed with his Frobenius. We will now reformulate tight closure from
this perspective, but anticipating already the fact that the ultra-Frobenius acts only
on a certain overring of the affine algebra, to wit, its ultra-hull defined in §7.1. Since
we also want the theory to be compatible with ring homomorphisms (‘Persistence’),
we need to work categorically. Let C be a category of Noetherian rings closed un-
der homomorphic images (at this point we do not need to make any characteristic
assumption). Often, the category will also be closed under localization, and we will
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tacitly assume this as well. In summary, C is a collection of Noetherian rings so that
for any A in C any localization S−1A and any residue ring A/I belongs again to C
(and the canonical maps A→ S−1A and A→ A/I are morphisms in C).

Definition 9.1.1 (Difference hull). A difference hull on C is a functor D(·) from C
to the category of difference rings, and a natural transformation η from the identity
functor to D(·) (that is to say, for each A in C, we have a difference ring D(A)
with endomorphism σA and a ring homomorphism ηA : A→ D(A), and for each
morphism A→ B in C, we get an induced morphism of difference rings D(A)→
D(B) such that the diagram

?

-

?
-

D(A)A

D(B)B
ηB

ηA

(9.1)

commutes), with the following three additional properties:

1. each ηA : A→ D(A) is faithfully flat;
2. the endomorphism σA of D(A) preserves D(A)-regular sequences;
3. for any ideal I ⊆ A, we have σA(I)⊆ I2D(A).

Since ηA is in particular injective (Proposition 5.3.4), we will henceforth view A
as a subring of D(A) and omit, as usual, ηA from our notation.

Difference closure. Given a difference hull D(·) on some category C, we define
the difference closure clD(I) of an ideal I ⊆ A of a member A of C as follows: an
element z∈ A belongs to clD(I) if there exists a multiplier c∈ A and a number N ∈N
such that

cσ
n(z) ∈ σ

n(I)D(A) (9.2)

for all n ≥ N. Here, σn(I)D(A) denotes the ideal in D(A) generated by all σn(y)
with y ∈ I, where σ is the endomorphism of the difference ring D(A). It is crucial
here that the multiplier c already belongs to A, although the membership relations
in (9.2) are inside the bigger ring D(A). We leave it as an exercise to show that
the difference closure is indeed a closure operation in the sense of Definition 8.2.3
(see Exercise 9.5.1). An ideal that is equal to its difference closure will be called
difference closed.

Example 9.1.2 (Frobenius hull). It is clear that our definition is inspired by the mem-
bership test (8.3) for tight closure, and indeed, this is just a special case. Namely, for
a fixed prime number p, let Cp be the category of all Noetherian rings of character-
istic p and let D(·) be the functor assigning to a ring A the difference ring (A,FA).
It is easy to see that this makes D(·) a difference hull in the above sense, and the
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difference closure with respect to this hull is just the tight closure of the ideal; we
will refer to this construction as the Frobenius hull.

In the next section, we will view tight closure in characteristic zero as a difference
closure too. For the remainder of this section, we fix a category C endowed with a
difference hull D(·), and study the corresponding difference closure on the members
of C. For a given member A of C, we let σA, or just σ , be the endomorphism of D(·).
In fact, we are mostly interested in the restriction of σ to A, and we also denote this
homomorphism by σ (of course, this restriction is no longer an endomorphism).

Five key properties of difference closure. To derive the necessary properties of
this closure operation, namely the the analogues of the five key properties of §8.3, we
again depart from a flatness result, the analogue of Kunz’s theorem (Theorem 8.1.2).

Proposition 9.1.3. If A is a regular local ring in C, then σ : A→ D(A) is faithfully
flat.

Proof. By Theorem 5.6.9, it suffices to show that D(A) is a balanced big Cohen-
Macaulay algebra under σ . To this end, let (x1, . . . ,xd) be an A-regular sequence.
Since A ⊆ D(A) is by assumption faithfully flat, (x1, . . . ,xd) is D(A)-regular by
Proposition 5.4.1. By Condition (2) of Definition 9.1.1, the sequence (σ(x1), . . . ,σ(xd))
is also D(A)-regular, as we wanted to show. ut

Corollary 9.1.4. Any ideal of a regular ring in C is difference closed.

Proof. Suppose first that (R,m) is a regular local ring in C, and z lies in the dif-
ference closure of an ideal I ⊆ R. Hence, with c and N as in (9.2), the multiplier c
lies in (σn(I)D(R) : σn(z)) for n≥ N, and hence by flatness (Proposition 9.1.3) and
the Colon Criterion (Theorem 5.6.15), it lies in σn(I : z)D(R). If z does not belong
to I, then (I : z) ⊆ m, and hence c belongs to σn(m)D(R) which in turn lies inside
m2n

D(R) by Condition (3) of Definition 9.1.1. By faithful flatness, c therefore lies in
m2n

, for every n ≥ N, contradicting, in view of Krull’s Intersection Theorem 3.3.4,
that it is a multiplier whence non-zero.

For the general case, assume z lies in the tight closure of an ideal I in a regular
ring A in C. By weak persistence and the local case, z ∈ IAm for any maximal ideal
m of A. It follows that (I : z) cannot be a proper ideal, whence z ∈ I. ut

Remark 9.1.5. Let us call a difference hull simple if instead of Condition 9.1.1(3)
we have the stronger condition that σ(I) is contained in all powers of ID(A), for
I ⊆ A. In that case, we can define a variant of the difference closure, called simple
difference closure, by requiring condition (9.2) to hold only for n= 1, that is to say, a
single test suffices. Inspecting the above proof, one sees that for a simple difference
hull, any ideal I in a regular ring is equal to its simple difference closure. We leave
it to the reader (see Exercise 9.5.6) to show that simple difference closure satisfies
all the properties below of its non-simple counterpart.

Weak persistence holds for the same reasons as it does for tight closure, so for
the record we state:
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9.1.6 If A → B is an injective morphism in C with A and B domains, then
clD(I)⊆ clD(IB).

Proposition 9.1.7 (Colon Capturing). Let R be a Noetherian local domain which
is a homomorphic image of a Cohen-Macaulay local ring in C, and let (x1, . . . ,xd)
be a system of parameters in R. Then for each i, the colon ideal ((x1, . . . ,xi)R : xi+1)
is contained in clD((x1, . . . ,xi)R).

Proof. Let S be a local Cohen-Macaulay ring in C such that R = S/p for some prime
ideal p⊆ S, and assume the xi already belong to S. As in the proof of Theorem 8.3.3,
we can find an S-regular sequence (y1, . . . ,yh,x1, . . . ,xd) with y1, . . . ,yh ∈ p, an ele-
ment c /∈ p, and a number m ∈ N such that

cp2m ⊆ J := (y1, . . . ,yh)S. (9.3)

Let τ denote the endomorphism of D(S). By assumption, the canonical epimorphism
S→ R induces a morphism of difference rings D(S)→D(R). In particular, pD(R) =
0.

Fix some i, let I := (x1, . . . ,xi)S and assume zxi+1 ∈ IR some z∈ S. Hence zxi+1 ∈
I+p. Applying τn to this for n>m, we get τn(z)τn(xi+1)∈ τn(I)D(S)+τn(p)D(S).
By (9.3) and 9.1.1(3), this means that

cτ
n(z)τn(xi+1) ∈ τ

n(I)D(S)+ τ
n−m(J)D(S).

Since the τn−m(y j) together with the τn(x j) form again an S-regular sequence by a
stronger version of 9.1.1(2) proven in Exercise 9.5.2, we conclude that

cτ
n(z) ∈ τ

n(I)D(S)+ τ
n−m(J)D(S)⊆ τ

n(I)D(S)+ JD(S).

Therefore, under the induced morphism D(S)→ D(R), we get

cσ
n(z) ∈ σ

n(I)D(R)

for all n > m, showing that z ∈ clD(IR). ut

To prove the remaining two properties (the analogues of Theorems 8.3.4 and
8.3.6 respectively), some additional assumptions are needed. To compare with in-
tegral closure, we have to make a rather technical assumption on the underlying
category C. We say that C has the Néron property if for any homomorphism A→V
with A in C and V a discrete valuation ring (not necessarily belonging to C), there
exists a faithfully flat extension V →W and a morphism A→ R in C with R ∈ C a
regular local ring such that the following diagram commutes
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?

-

?
-

VA

W.R

(9.4)

Clearly the Frobenius hull in prime characteristic trivially satisfies this property
since we then may take R =V =W .

Proposition 9.1.8. If C is a difference hull satisfying the Néron property, then the
difference closure of any ideal is contained in its integral closure.

Proof. Let I⊆A be an ideal of a ring A in C, and let z∈A be in the difference closure
of I. In order to show that z lies in the integral closure of I, we use criterion (4) in
Theorem 8.4.1. To this end, let A→V be a homomorphism into a discrete valuation
ring V whose kernel is a minimal prime of A. We need to show that z ∈ IV . Since
C has the Néron property, we can find a faithfully flat extension V →W and a mor-
phism A→ R in C with R a regular local ring, yielding a commutative diagram (9.4).
By assumption, there exists a multiplier c ∈ A and a number N such that (9.2) holds
in D(A). Since c does not lie in the kernel of A→V , its image in R must, a fortiori,
be non-zero. Hence the same ideal membership relations viewed in D(R) show that
z lies in the difference closure of IR. By Corollary 9.1.4, this implies that z already
lies in IR whence in IW . By faithful flatness and Proposition 5.3.4, we get z ∈ IV ,
as we wanted to show. ut

Let us say that the difference hull D(·) commutes with finite homomorphisms if
for each finite homomorphism A→ B in C, the canonical homomorphism D(A)⊗A
B→ D(B) is an isomorphism of D(A)-algebras. Once more, this property holds
trivially for the Frobenius hull.

Proposition 9.1.9. If D(·) commutes with finite homomorphisms, and if A ⊆ B is a
finite extension of domains, then clD(I) = clD(IB)∩A for any ideal I ⊆ A.

Proof. As in the proof of Theorem 8.3.4, we have an A-linear map ϕ : B → A
with ϕ(1) 6= 0. By base change, this yields a D(A)-linear map D(A)⊗A B→ D(A),
whence a D(A)-linear map D(B)→D(A). The remainder of the argument is now as
in the proof of Theorem 8.3.4, and is left to the reader. ut

9.2 Tight closure

Our axiomatic treatment in terms of difference closure now only requires us to iden-
tify the appropriate difference hull. For the remainder of this chapter, K denotes a
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fixed algebraically closed Lefschetz field, and CK is the category of K-affine alge-
bras (that is to say, the algebras essentially of finite type over K). By definition, we
can realize K as an ultraproduct of fields K p of characteristic p, where for simplic-
ity we index these fields by their characteristic although this is not necessary. We
remind the reader that K = C is an example of a Lefschetz field (Theorem 1.4.3).
As difference hull, we now take the ultra-hull as defined in §7.1, viewing it as a
difference ring by means of its ultra-Frobenius (see Definition 1.4.14).

Theorem 9.2.1. The category CK has the Néron property, and the ultra-hull consti-
tutes a simple difference hull which commutes with finite homomorphisms.

Proof. We defer the proof of the Néron property to Proposition 9.2.2 below. The
ultra-hull is functorial by 7.1.3. Property (1) in Definition 9.1.1 holds by Theo-
rem 7.2.2, and the two remaining properties (2) and (3) hold trivially. By Łos’ The-
orem, the ultra-hull is a simple difference hull as defined in Remark 9.1.5; and it
commutes with finite homomorphisms by Proposition 7.3.1. ut

Proposition 9.2.2. The category CK has the Néron property.

Proof. Assume A→ V is a homomorphism from a K-affine ring A into a discrete
valuation ring V . Replacing A by its image in V , we may view A as a subring of
V . By Theorem 6.4.5, the completion of V is isomorphic to L[[t]] for some field
L extending K and for t a single indeterminate. Let L̄ be the algebraic closure of L
and put W := L̄[[t]]. By Theorem 6.3.5 and base change, the natural homomorphism
V →W is faithfully flat (see also Theorem 6.4.7). The image of A in W has the same
(uncountable) cardinality as K, whence is already contained in a subring of the
form k[[t]] with k an algebraically closed subfield of L̄ of the same cardinality as
K. By Theorem 1.4.5, we have an isomorphism k ∼= K, and so we may assume
that the composition A→W factors through K[[t]]. Let B′ be the A-subalgebra of W
generated by t, and let B be its localization at tW ∩B′, so that B is a local V0-affine
ring, where V0 is the localization of K[t] at the ideal generated by t. By Néron p-
desingularization (see for instance [2, §4]), the embedding B⊆K[[t]] factors through
a regular local V0-algebra R. Since R is then also a K-affine local ring, it satisfies all
the required properties. ut

The difference closure obtained from this choice of difference hull on CK will
simply be called again tight closure (in the paper [46] it was called non-standard
tight closure). For ease of reference, we repeat its definition here: an element z in
a K-affine ring A belongs to the tight closure of an ideal I ⊆ A if there exists a
multiplier c ∈ A such that

cFn
\ (z) ∈ Fn

\ (I)U(A) (9.5)

for all n� 0. We will denote the tight closure of I by clA(I) or simply cl(I), and
we adopt the corresponding terminology from positive characteristic. Immediately
from Theorem 9.2.1 and the results in the previous section we get:

Theorem 9.2.3. Tight closure on K-affine rings satisfies the five key properties:

1. if A→B is an extension of K-affine domains, or more generally, a homomorphism
of K-affine rings preserving multipliers, then clA(I) ⊆ clB(IB) for every ideal
I ⊆ A;



9.2 Tight closure 143

2. if A is a K-affine regular ring, then any ideal in A is tightly closed, and in fact, A
is F-regular;

3. if R is a K-affine local ring and (x1, . . . ,xd) a system of parameters in R, then
((x1, . . . ,xi)R : xi+1)⊆ cl((x1, . . . ,xi)R) for all i;

4. the tight closure of an ideal is contained in its integral closure;
5. if A⊆ B is a finite extension of K-affine domains, then clA(I) = clB(IB)∩A.

ut

Of all five properties, only (4) relies on a deeper theorem, to wit Néron p-
desingularization (which, nonetheless, is a much weaker form of Artin Approxi-
mation than needed for the HH-tight closure as discussed in §8.6). Is there a more
elementary argument, at least for proving that tight closure is inside the radical of
an ideal? On the other hand, property (5) is not such a very impressive fact in char-
acteristic zero by Exercise 9.5.9 (see also the discussion following Theorem 9.4.1
below).

Since the ultra-hull is a simple difference hull, we can also define simple tight
closure by requiring that (9.5) only holds for n = 1 (this was termed non-standard
closure in [46]). For more on this closure, see Exercise 9.5.6. As already remarked,
the five key properties form the foundation for deriving several deep theorems, as
we now will show.

Theorem 9.2.4 (Hochster-Roberts—affine case). If R→ S is a cyclically pure ho-
momorphism of K-affine local rings and if S is regular, then R is Cohen-Macaulay.

The argument is exactly as in positive characteristic: one shows first that R is
weakly F-regular, and then that any weakly F-regular ring is Cohen-Macaulay be-
cause we have Colon Capturing (in fact, one can prove an analogue of this result in
any difference hull, see Exercise 9.5.5). Note that by our discussion on page 129,
we have now completed the proof of Theorem 8.5.3 (to prove the result, we may
always extend the base field to a Lefschetz field). The next result, however, cannot
be proven—it seems—within the framework of difference hulls, although its proof
is still elementary.

Theorem 9.2.5 (Briançon-Skoda—affine case). Let A be a K-affine ring, and let
I ⊆ A be an ideal generated by n elements. If I has positive height, then we have for
all l ≥ 1 an inclusion

In+l−1 ⊆ cl(Il).

In particular, if A is a K-affine regular local ring, then the integral closure of
In+l−1 lies inside Il for all l ≥ 1.

Proof. Again we only proof the case l = 1. Let z be in the integral closure of In, and
let Ap, zp and Ip be approximations of A, z and I respectively. The integral equation
(similar to (8.7)), say, of degree d, witnessing that z lies in the integral closure of
In, shows by Łos’ Theorem that almost each zp satisfies a similar integral equation
of degree d, and hence, in particular, zp belongs to the integral closure of In

p. By
Exercise 8.7.6, for those p we have
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In(d−1)
p zk

p ∈ Ikn
p

for all k. As in the proof of Theorem 8.5.2, this implies that In(d−1)
p Fe

p(zp) is con-
tained in Fe

p(Ip)Ap for all e. Taking ultraproducts then yields

In(d−1)Fe
\(z)⊆ Fe

\(I)U(A).

Since I has positive height, we can find by prime avoidance a multiplier c ∈ In(d−1).
In particular, cFe

\(z) ∈ Fe
\(I)U(A) for all e, whence z ∈ cl(I), as we wanted to show.

The last assertion then follows from Theorem 9.2.3. ut

We would of course prefer a version in which no assumption on I needs to be
made. This indeed exists, but requires an intermediary closure operation, ultra-
closure (see §9.3 below and Exercise 9.5.16). Using the previous result, we have
now proven the polynomial case in the Briançon-Skoda theorem (Theorem 8.5.1).
The last of our applications, the Ein-Lazardsfeld-Smith Theorem, can neither be
carried out in the purely axiomatic setting of difference closure, but relies on some
additional properties of the ultra-hull.

Theorem 9.2.6. Let A be a K-affine regular domain, and let a⊆A be a radical ideal,
given as the intersection of finitely many prime ideals of height at most h. Then for
all n, we have an inclusion a(hn) ⊆ an.

Proof. Let z ∈ a(hn), and let Ap, zp and ap be approximations of A, z and a respec-
tively. By Theorem 7.3.7 (or rather Exercise 7.5.4), almost all Ap are regular, and
by Corollary 7.3.3 and Theorem 7.3.4, almost each ap is the intersection of finitely
many prime ideals of height at most h. As in the proof of Theorem 8.5.10, for those
p we therefore have ahn2

p Fe
p(zp) ⊆ Fe

p(a
n
p)Ap for all e. Taking ultraproducts then

yields ahn2Fe
\(z)⊆ Fe

\(a
n)U(A), showing that z lies in cl(an) whence in an by The-

orem 9.2.3. ut

9.3 Ultra-closure

In the two last proofs, we derived some membership relations in the approximations
of an affine algebra and then took ultraproducts to get the same relations in its ultra-
hull. However, each time the relations in the approximations already established
tight closure membership in those rings. This suggests the following definition. Let
A be a K-affine algebra, I ⊆ A an ideal and z ∈ A. We say that z lies in the ultra-
closure ultra-cl(I) of I (called the generic tight closure in [46, 48]), if zp lies in the
tight closure of Ip for almost all p, where Ap, zp and Ip are approximations of A, z
and I respectively. Put differently

ultra-cl(I) = (ulim
p→∞

clAp (Ip))∩A,

where we view the ultraproduct of the tight closures as an ideal in U(A).
With little effort (Exercise 9.5.15) one shows:
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Proposition 9.3.1. Ultra-closure is a closure operation satisfying the five key prop-
erties listed in Theorem 9.2.3.

To relate ultra-closure with tight closure, some additional knowledge of the the-
ory of test elements (see the discussion following Theorem 8.3.1) is needed. Since
we did not discuss these in detail, I quote the following result without proof.

Proposition 9.3.2 ([46, Proposition 8.4]). Given a K-affine algebra A, there exists
a multiplier c ∈ A with approximation cp ∈ Ap such that cp is a test element in Ap for
almost all p. ut

Theorem 9.3.3. The ultra-closure of an ideal is contained in its tight closure (and
also in its simple tight closure).

Proof. Let z ∈ ultra-cl(I), with I an ideal in a K-affine algebra A. Let Ap, zp and Ip be
approximations of A, z and I respectively. By definition, zp lies in the tight closure of
Ip for almost all p. Let c be a multiplier as in Proposition 9.3.2, with approximations
cp. For almost all p for which cp is a test element, we get cp Fe

p(zp) ∈ Fe
p(Ip)Ap for

all e ≥ 0. Taking ultraproducts then yields cFe
\(z) ∈ Fe

\(I)U(A) for all e, showing that
z lies in the (simple) tight closure of I. ut

Without proof, we state the following comparison between our theory and the
classical theory due to Hochster and Huneke (see §8.6); for a proof see [46, Theo-
rem 10.4].

Proposition 9.3.4. The HH-tight closure of an ideal is contained in its ultra-closure,
whence in its tight closure. ut

9.4 Big Cohen-Macaulay algebras

Although the material in this section is strictly speaking not part of tight closure
theory, the development of the latter was germane to the discovery by Hochster and
Huneke of Theorem 9.4.1 below.

Big Cohen-Macaulay algebras in prime characteristic. Recall that the absolute
integral closure A+ of a domain A with field of fractions F , is the integral closure
of A inside an algebraic closure of F . Since algebraic closure is unique up to iso-
morphism, so is absolute integral closure. Nonetheless it is not functorial, and we
only have the following quasi-functorial property: given a homomorphism A→ B of
domains, there exists a (not necessarily unique) homomorphism A+→ B+ making
the diagram

?

-

?
-

BA

B+A+

(9.6)

commute (see Exercise 9.5.10).
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Theorem 9.4.1 ([20]). For every excellent local domain R in characteristic p, the
absolute integral closure R+ is a balanced big Cohen-Macaulay algebra.

The condition that a Noetherian local ring is ‘excellent’ is for instance satisfied
when R is either K-affine or complete (see [30, §32]). The proof of the above result is
beyond the scope of these notes (see for instance [26, Chapters 7& 8]) although we
will present a ‘dishonest’ proof shortly. It is quite a remarkable fact that the same
result is completely false in characteristic zero: in fact any extension of a normal
domain is split, and hence provides a counterexample as soon as R is not Cohen-
Macaulay (see Exercise 9.5.9). One can use the absolute integral closure to define a
closure operation in an excellent local domain R of prime characteristic as follows.
For an ideal I, let the plus-closure of I be the ideal I+ := IR+ ∩R. One can show
(see Exercise 9.5.12) that I+ is a closure operation in the sense of Definition 8.2.3,
satisfying the five key properties listed in Theorem 9.2.3. Moreover, unlike tight
closure, it is not hard to show that it commutes with localization.

Proposition 9.4.2. In an excellent local domain R of prime characteristic, the plus-
closure of an ideal I ⊆ R is contained in its tight closure.

Proof. Let z∈ I+. By definition, there exists a finite extension R⊆ S⊆ R+ such that
z ∈ IS (note that R+ is the direct limit of all finite extensions of R by local domains).
Hence z ∈ cl(I) by Theorem 8.3.4. ut

It was conjectured that plus closure always equals tight closure. In view of [9],
this now seems unlikely, since plus closure is easily seen to commute with local-
ization, whereas tight closure apparently does not (see our discussion of (8.4)).
Nonetheless, Smith has verified a special case of the conjecture for an important
class of ideals:

Theorem 9.4.3 ([55]). Any ideal generated by part of a system of parameters in an
excellent local domain of prime characteristic has the same plus closure as tight
closure.

Proof of Theorem 9.4.1 assuming Theorem 9.4.3.

The proof we will present here is dishonest in the sense that Smith made heavy use
of Theorem 9.4.1 to derive her result. However, here is how the converse direction
goes. Let (x1, . . . ,xd) be a system of parameters in an excellent local domain R of
characteristic p, and suppose zxi+1 ∈ IR+ for some z ∈ R+ and I := (x1, . . . ,xi)R.
Hence there already exists a finite extension R ⊆ S ⊆ R+ containing z such that
zxi+1 ∈ IS. Since R ⊆ S is finite, (x1, . . . ,xd) is also a system of parameters in S
by Theorem 3.4.8. By Colon Capturing (Theorem 8.3.3), we get z ∈ cl(IS). By
Theorem 9.4.3, this implies that z lies in the plus closure of IS, whence in IS+.
However, it is not hard to see that R+ = S+, proving that (x1, . . . ,xd) is R+-regular.

ut
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9.4.4 If R is an excellent regular local ring of prime characteristic, then R+ is
faithfully flat over R.

This follows immediately from Theorem 9.4.1 and the Cohen-Macaulay criterion
for flatness (Theorem 5.6.9). Interestingly, it also provides an alternative strategy to
prove Theorem 9.4.1:

Proposition 9.4.5. Let k be a field of positive characteristic. Suppose we can show
that any k-affine (respectively, complete) regular local ring has a faithfully flat abso-
lute integral closure, then the absolute integral closure of any k-affine (respectively,
complete Noetherian) local domain is a balanced big Cohen-Macaulay algebra.

Proof. I will only treat the affine case and leave the complete case to Exer-
cise 9.5.18. Let R be a k-affine local domain, and let x be a system of parameters in R.
By Noether Normalization with parameters (see the second part of Exercise 8.7.4),
we can find a k-affine regular local subring S ⊆ R, such that S ⊆ R is finite and xS
is the maximal ideal of S. By assumption, S+ is faithfully flat over S, and hence
(x1, . . . ,xd) is S+-regular. Finiteness yields S+ = R+, and so we are done. ut

Big Cohen-Macaulay algebras in characteristic zero. As already mentioned, if
R is a K-affine local domain of characteristic zero, then R+ will in general not be
a big Cohen-Macaulay algebra. However, we can still associate to any such R (in
a quasi-functorial way) a canonically defined balanced big Cohen-Macaulay alge-
bra as follows. Let Rp be an approximation of R. By Theorem 7.3.4, almost all Rp
are domains. Let B(R) be the ultraproduct of the R+

p ; this is independent form the
choice of approximation (see Exercise 9.5.19). By Łos’ Theorem, there is a canoni-
cal homomorphism R→ B(R).

Theorem 9.4.6. If R is a K-affine local domain, then B(R) is a balanced big Cohen-
Macaulay algebra over R.

Proof. Since almost each approximation Rp is a K p-affine (whence excellent) local
domain, R+

p is a balanced big Cohen-Macaulay Rp-algebra by Theorem 9.4.1. Let x
be a system of parameters of R, with approximation xp. By Corollary 7.3.6, almost
each xp is a system of parameters in Rp, whence R+

p -regular. By Łos’ Theorem, x is
therefore B(R)-regular, as we wanted to show. ut

Hochster and Huneke ([21]) arrive differently at balanced big Cohen-Macaulay
algebras in characteristic zero, via their lifting method discussed in §8.6. However,
their construction, apart from being rather involved, is far less canonical. In contrast,
although it appears that B(R) depends on R, we have in fact:

9.4.7 For each d, there exists a ring Bd such that for any K-affine local domain
R, we have B(R)∼= Bd if and only if R has dimension d. In other words,
Bd is a balanced big Cohen-Macaulay algebra for R if and only if R has
dimension d.

Indeed, by Noether Normalization (with parameters, see Exercise 8.7.4), R is fi-
nite over the localization of K[ξ ] at the ideal generated by the indeterminates
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ξ := (ξ1, . . . ,ξd). By Łos’ Theorem, the approximation Rp is finite over the cor-
responding localization of K p[ξ ]. If Bp is the absolute integral closure of this local-
ization, then Bp = R+

p . Hence the ultraproduct of the Bp only depends on d and is
isomorphic to B(R). ut

In analogy with plus closure, we define the B-closure clB(I) of an ideal I in
a K-affine local domain R as the ideal IB(R)∩ R. As in positive characteristic,
it is a closure operation satisfying the five key properties of Theorem 9.2.3 (see
Exercise 9.5.12). Using Proposition 9.4.2 and Łos’ Theorem, together with Theo-
rem 9.3.3 we get:

9.4.8 For any ideal I in a K-affine local domain R, we have inclusions clB(I)⊆
ultra-cl(I)⊆ cl(I). ut

Like tight closure theory, the existence of balanced big Cohen-Macaulay alge-
bras does have many important applications. To illustrate this, we give an alternative
proof of the Hochster-Roberts theorem, as well as a proof of the Monomial Conjec-
ture (as far as I am aware of, no tight closure argument proves the latter). We will
treat only the affine characteristic zero case here, but the same argument applies in
positive characteristic, and, once we have developed the theory in Chapter 10, for
arbitrary equicharacteristic Noetherian local rings.

Alternative proof of Theorem 9.2.4. Let R→ S be a cyclically pure homomor-
phism of K-affine local domains with S regular, and let x := (x1, . . . ,xd) be a system
of parameters in R. To show that this is R-regular, assume zxi+1 ∈ I := (x1, . . . ,xi)R.
Since x is B(R)-regular by Theorem 9.4.6, we get z ∈ IB(R). By quasi-functoriality
(after applying Łos’ Theorem to (9.6)) we get a homomorphism B(R)→B(S) mak-
ing the diagram

?

-

?
-

SR

B(S)B(R)

(9.7)

commute. In particular, z∈ IB(S). Since S is regular, S→B(S) is flat by the Cohen-
Macaulay criterion for flatness (Theorem 5.6.9) and Theorem 9.4.6. Hence z belongs
to IS by Proposition 5.3.4 whence to I by cyclical purity. ut

As promised, we conclude with an application of the existence of big Cohen-
Macaulay algebras to one of the Homological Conjectures (for further discussion,
especially the still open mixed characteristic case, see Chapter ??). Let us call a
tuple (x1, . . . ,xd) in a ring R monomial, if for all k, we have

(x1 · · ·xd)
k−1 /∈ (xk

1, . . . ,x
k
d)R. (9.8)

We say that the Monomial Conjecture holds for a Noetherian local ring R, if R
satisfies the hypothesis in the next result:
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Theorem 9.4.9 (Monomial Conjecture). If R is a local K-affine algebra, then any
system of parameters is monomial.

Proof. Let (x1, . . . ,xd) be a system of parameters, let x be the product of the xi, and
suppose xk−1 ∈ Ik := (xk

1, . . . ,x
k
d)R for some k. Let p be a d-dimensional prime ideal.

Since (x1, . . . ,xd) is then also a system of parameters in R/p, and xk−1 ∈ Ik(R/p), we
may after replacing R by R/p assume that R is a domain. Hence (x1, . . . ,xd) is B(R)-
regular by Theorem 9.4.6. However, it is easy to see that for a regular sequence we
can never have xk−1 ∈ IkB(R) (see Exercise 9.5.13). ut

Remark 9.4.10. By an argument on local cohomology, one can show that given any
system of parameters (x1, . . . ,xd) in a Noetherian local ring R, there exists some
t such that (xt

1, . . . ,x
t
d) is monomial. Hence the real issue as far as the Monomial

Conjecture is concerned is the fact that one can always take t = 1.

9.5 Exercises

Ex 9.5.1
Given a difference hull D(·) on a category C, and given an ideal I ⊆ A in a ring A in C, show
that clD(I) is an ideal in A containing I, and clD(clD(I)) = clD(I), that is to say, clD(I) is
difference closed. Conclude that clD(·) is a closure operation in the sense of Definition 8.2.3.

Ex 9.5.2
In this exercise, you are asked to prove that if D(R) is a difference hull of a local
ring R in C with endomorphism σ , and if (x1, . . . ,xh) is an R-regular sequence, then
(σ e1 (x1), . . . ,σ

eh (xh)) is D(R)-regular, for any ei ≥ 0. First show that in an arbitrary ring
A, if (a1b1, . . . ,asbs) is a permutable A-regular sequence (meaning that any permutation is
A-regular), then so is (a1, . . . ,as). Prove the assertion from this by using Condition 9.1.1(3).

Ex 9.5.3
Show that any Lefschetz ring is a difference ring.

Ex 9.5.4
Complete the proof of Proposition 9.1.9.

Ex 9.5.5
Let D(·) be a difference hull on C. Show that if R→ S is a cyclically pure homomorphism
of local rings in C, if R is a homomorphic image of a Cohen-Macaulay ring in C, and if S is
regular, then R is Cohen-Macaulay.

Ex 9.5.6
Show that simple tight closure is a closure operation satisfying the five key properties of
Theorem 9.2.3. In fact, you can prove the same for simple difference closure, with the nec-
essary assumptions on the difference hull. See also Exercise 9.5.7 for more variants.
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Ex 9.5.7
Proposition 8.2.6 essentially reduces the study of tight closure in arbitrary rings to do-
mains. Unfortunately, for both difference closure and ultra-closure, I cannot yet prove this
in general, the problem being that the endomorphism/ultra-Frobenius does not preserve
multipliers. To circumvent this problem, the following variant—which I only explain for
difference closure—is probably the ‘correct’ definition. Say that z lies in the stable differ-
ence closure of an ideal I ⊆ A, if there exists a multiplier c ∈ A and some N ∈ N, such that
σN(c)σn(z)∈ σn(I)D(A) for all n≥N. Prove that stable difference closure is a closure op-
eration in the sense of Definition 8.2.3, verify that the analogue of Proposition 8.2.6 holds,
and show that it satisfies the five key properties. Define the analogue stable variant for sim-
ple tight closure, and prove the same properties. Show that stable tight closure is always
contained in stable simple tight closure.

Ex 9.5.8
Give an alternative proof of the flatness of F\ on a K-affine regular local ring, by means of
the equational criterion for flatness (Theorem 5.6.1), Theorem 7.3.7, and Łos’ Theorem.

∗Ex 9.5.9
Let A be a Noetherian normal domain(=integrally closed in its field of fractions L) con-
taining the rationals, and let A ⊆ B be a finite extension. Show that A→ B is split (see
the discussion following Theorem 8.5.3) as follows. Argue that after taking a homomorphic
image, we may assume that B is a domain, with field of fractions L. We then may replace B
and L in such way that L is a Galois extension of K, say of degree d. Show that the trace
map L→ K (=the sum of all conjugates), followed by division by d, is a splitting of A⊆ B.
Use this to show that if R is K-affine local domain which is normal but not Cohen-Macaulay,
then R+ is not a big Cohen-Macaulay algebra.

∗Ex 9.5.10
Show the existence of a map A+→ B+ making diagram (9.6) commute. To this end, factor
A→ B as a surjection followed by an inclusion, and then treat each of these two cases
separately.

Ex 9.5.11
Show that for any K-affine local domain R, the canonical map R→ B(R) factors through
the ultra-hull U(R). Argue that B(R) is no longer integral over R if R is non-Artinian. Show
that if R⊆ S is a finite extension of affine local domains, then B(R) = B(S).

Ex 9.5.12
Show that plus closure and B-closure are closure operations in the sense of Definition 8.2.3,
satisfying the five key properties listed in Theorem 9.2.3. In fact, quasi-functoriality (in the
sense of (9.6)) yields persistence under arbitrary homomorphisms of local domains.

Ex 9.5.13
Show that a permutable regular sequence x in an arbitrary ring A is monomial. In particu-
lar, any local Cohen-Macaulay ring satifies the Monomial Conjecture.
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∗Ex 9.5.14
Let Z := Z[ξ ] with ξ := (ξ1, . . . ,ξn). Let us say that a tuple x in a ring A is strongly
monomial, if I 6= J implies IA 6= JA for any two monomial ideals I,J ⊆ Z (that is to say,
ideals generated by monomials), where we view A as a Z-algebra via the homomorphism
Z → A : ξi 7→ xi. Show that a regular sequence, and more generally, a quasi-regular se-
quence, is always strongly monomial (use Exercise 4.3.15). This proves in particular the
claim in Exercise 9.5.13 for any regular sequence. Modify the argument in the proof of The-
orem 9.4.9 to deduce that a system of parameters in a K-affine local ring, or in a Noetherian
local ring of prime characteristic, is strongly monomial.

Additional exercises.

Ex 9.5.15
Prove Proposition 9.3.1.

Ex 9.5.16
Show that if A is a K-affine ring and I ⊆ A an ideal generated by at most n elements,
then In+l−1 ⊆ ultra-cl(Il) for all l.

Ex 9.5.17
Show that if R is a K-affine local domain and p a prime ideal in R, then

B(Rp)∼= B(R)⊗U(R) U(Rp).

Use this to prove that if I ⊆ R and p a minimal prime of I, then B(IRp) = B(I)Rp. I do
not know whether B-closure commutes in general with localization.

Ex 9.5.18
Prove the complete case in Proposition 9.4.5 using the Cohen structure theorems
of Chapter 6.

Ex 9.5.19
Our goal is to give an alternative description of B(A) for A a K-affine local domain,
showing that its construction is canonical. Let N\ be the ultrapower of the set of
natural numbers, and let t be an indeterminate. For an element f ∈ U(A[t]), define
its ultra-degree α ∈ N\ (with respect to t) to be the ultraproduct of the t-degrees
αp of the f p, where f p is an approximation of f . Call an element f ∈ U(A[t]) ultra-
monic if there exists α ∈ N\ such that f − tα has ultra-degree strictly less than α

(see page 10 for the ultra-exponent notation). By a root of g ∈U(A[t]) in a Lefschetz
field L containing K we mean an element a ∈ L such that g ∈ (t−a)U(AL[t]), where
AL := A⊗K L and its ultra-hull is taken in the category CL.
Show that there exists an algebraically closed Lefschetz field L containing K such
that B(A) is isomorphic to the ring of all a ∈ L that are a root of some ultra-monic
polynomial in U(A[t]).
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Ex 9.5.20
Part of the descent theory of Hochster and Huneke for defining their HH-tight clo-
sure in characteristic zero (see §8.6), is the following special case: given a complete
Noetherian local ring R containing a field K, a system of parameters x in R, and a
finite subset Σ ⊆ R, we can find a K-affine local subring S ⊆ R containing x and Σ ,
such that x is part of a system of parameters of S (see for instance [26, App. 1,
Theorem 5.1]; this is also explained in more detail in Exercise 10.6.3 below). Use
this to deduce the Monomial Conjecture (and even the stronger version discussed
in Exercise 9.5.14) for any Noetherian local ring R of equal characteristic zero as
follows. Assume that we have a counterexample to (9.8) for some k. Argue, using
Theorem 6.4.7, that we may assume that R is complete with an algebraically closed
Lefschetz residue field. Use the previous property to obtain a counterexample in-
side a K-affine local ring, and then finish with Theorem 9.4.9. A more direct proof
can be given using the construction from §10.4 below.



Chapter 10
Tight closure in characteristic zero. Local case

The goal of this chapter is to extend the tight closure theory from the previous chap-
ter to include all Noetherian rings containing a field. However, the theory becomes
more involved, especially if one wants to maintain full functoriality. We opt in these
notes to forego this cumbersome route (directing the interested reader to the joint
paper [4] with Ashenbrenner), and only develop the theory minimally as to still
obtain the desired applications. In particular, we will only focus on the local case.

From our axiomatic point of view, we need to define a difference hull on the
category of Noetherian local rings containing Q. The main obstacle is how to de-
fine an ultra-hull-like object, on which we then have automatically an action of
the ultra-Frobenius. By Cohen’s structure theorems, the problem can be reduced to
constructing a difference hull for the power series ring R := K[[ξ ]] in a finite num-
ber of indeterminates ξ over an algebraically closed Lefschetz field K. A candidate
presents itself naturally: let U(R) be the ultraproduct of the K p[[ξ ]], where the K p
are algebraically closed fields of characteristic p whose ultraproduct is K. However,
unlike in the polynomial case, there is no obvious homomorphism from R to U(R),
and in fact, the very existence of such a homomorphism implies already some form
of Artin Approximation. It turns out, however, that we can embed R in an ultrapower
of U(R), and this is all we need, since the latter is still a Lefschetz ring. So we start
with a discussion of this construction.

10.1 Artin Approximation

Constructing algebra homomorphisms. In this section, we study the following
problem: Given two A-algebras S and T , when is there an A-algebra homomorphism
S → T ? We will only provide a solution to the weaker version in which we are
allowed to replace T by one of its ultrapowers. Since we want to apply this problem
when T is equal to U(R), we will merely have replaced one type of ultraproduct
with another.

153
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Theorem 10.1.1. For a Noetherian ring A, and A-algebras S and T , the following
are equivalent:

1. every system of polynomial equations with coefficients from A which is solvable
in S, is solvable in T ;

2. for each finitely generated A-subalgebra C of S, there exists an A-algebra homo-
morphism ϕC : C→ T ;

3. there exists an A-algebra homomorphism η : S→ T \, where T \ is some ultra-
power of T .

Proof. Suppose that (1) holds, and let C ⊆ S be an A-affine subalgebra. Hence C
is isomorphic to A[ξ ]/I with ξ a finite tuple of indeterminates and I some ideal in
A[ξ ]. Let x be the image of ξ in S, so that x is a solution of the system of equations
f1 = · · ·= fs = 0, where I = ( f1, . . . , fs)A[ξ ]. By assumption, there exists therefore
a solution y of this system of equations in T . Hence the A-algebra homomorphism
A[ξ ]→ T given by sending ξ to y factors through an A-algebra homomorphism
ϕC : C→ T , proving implication (1)⇒ (2).

Assume next that (2) holds. Let W be the collection of all A-affine subalgebras of
S (there is nothing to show if S itself is A-affine, so we may assume W is in particular
infinite). For each finite subset Σ ⊆ S let 〈Σ〉 be the subset of W consisting of all
A-affine subalgebras C ⊆ S containing Σ . Any finite intersection of sets of the form
〈Σ〉 is again of that form. Hence we can find an ultrafilter on W containing each
〈Σ〉, where Σ runs over all finite subsets of S. Let T \ be the ultrapower of T with
respect to this ultrafilter. For each A-affine subalgebra C ⊆ S, let ϕ̃C : S→ T be the
map which coincides with ϕC on C and which is identically zero outside C. (This is
of course no longer a homomorphism.) Define η : S→ T \ to be the restriction to S
of the ultraproduct of the ϕ̃C. In other words,

η(x) := ulim
C→∞

ϕ̃C(x)

for any x∈ S. It remains to verify that η is an A-algebra homomorphism. For x,y∈ S,
we have for each C ∈ 〈{x,y}〉 that

ϕ̃C(x+ y) = ϕC(x+ y) = ϕC(x)+ϕC(y) = ϕ̃C(x)+ ϕ̃C(y),

since ϕ̃C and ϕC agree on elements in C. Since this holds for almost all C, Łos’
Theorem yields η(x+y) = η(x)+η(y). By a similar argument, one also shows that
η(xy) = η(x)η(y) and η(ax) = aη(x) for a ∈ A, proving that η is an A-algebra
homomorphism.

Finally, suppose that η : S→ T \ is an A-algebra homomorphism, for some ultra-
power T \ of T . Let f1 = · · ·= fs = 0 be a system of polynomial equations with co-
efficients in A, and let x be a solution in S. Since η is an A-algebra homomorphism,
η(x) is a solution of this system of equations in T \. Hence by Łos’ Theorem, this
system must have a solution in T , proving (3)⇒ (1). ut

Artin Approximation. We already got acquainted with Artin Approximation in
our discussion of HH-tight closure, or in the guise of Néron p-desingularization as
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used in Proposition 9.2.2. The time has come, however, to present a more detailed
discussion. Let S be a Noetherian local ring. We say that S satisfies the Artin Ap-
proximation property if any system of polynomial equations with coefficients in S
which is solvable in Ŝ is already solvable in S (for some equivalent conditions, see
Exercise 10.5.5). So immediately from Theorem 10.1.1, or rather by the embedding
version of Exercise 10.5.2, we get:

10.1.2 A Noetherian local ring S has the Artin Approximation property if and
only if its completion embeds in some ultrapower of S.

Not any Noetherian local ring can have the Artin Approximation property:

Proposition 10.1.3. A Noetherian local ring (S,m) with the Artin Approximation
property is Henselian.

Proof. Recall that this means that S satisfies Hensel’s Lemma: any simple root ā
in R/m of a monic polynomial f ∈ S[t] lifts to a root in the ring itself. By Theo-
rem 6.2.4, we can find such a root in Ŝ, and therefore by Artin Approximation, we
then also must have a root in S itself (see Exercise 10.5.5 for how to ensure that it is
a lifting of ā). ut

Artin conjectured in [2] that the converse also holds if S is moreover excellent
(it can be shown that any ring having the Artin Approximation property must be
excellent). Although one has now arrived at a positive solution by means of very
deep tools ([35, 57, 58]), the ride has been quite bumpy, with many false proofs ap-
pearing during the intermediate decades. Luckily, we only need this in the following
special case due to Artin himself, admitting a fairly simple proof (which nonetheless
is beyond the scope of these notes; see page 94 for the notion of Henselization).

Theorem 10.1.4 ([2, Theorem 1.10]). The Henselization k[ξ ]∼, with k a field and
ξ a finite tuple of indeterminates, admits the Artin Approximation property. ut

Embedding power series rings. From now on, unless stated otherwise, K de-
notes an arbitrary ultra-field, given as the ultraproduct of fields Km (for simplic-
ity we assume m ∈ N). We fix a tuple of indeterminates ξ := (ξ1, . . . ,ξn), define
A := K[ξ ] and R := K[[ξ ]], and let m := (ξ1, . . . ,ξn)Z[ξ ]. Similarly, for each m, we
let Am := Km[ξ ] and Rm := Km[[ξ ]], and in accordance with our notation from §7.1,
we denote their respective ultraproducts by U(A) and U(R). By Łos’ Theorem, we
get a homomorphism U(A)→ U(R) so that U(R) is in particular an A-algebra, but
unlike the affine case, it is no longer clear how to make U(R) into an R-algebra.
Note that U(R) is only quasi-complete (see the proof of Theorem 11.1.4), so that
limits are not unique. In particular, although the truncations fn ∈ A of a power series
f ∈ R form a Cauchy sequence in U(R), there is no obvious choice for their limit.

Theorem 10.1.5. There exists an ultrapower L(R) of U(R) and a faithfully flat A-
algebra homomorphism ηR : R→ L(R).
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Proof. We start with proving the existence of an A-algebra homomorphism ηR from
R to some ultrapower of U(R). To this end, we need to show in view of Theo-
rem 10.1.1 that any polynomial system of equations (L ) over A which is solvable
in R, is also solvable in U(R). By Theorem 10.1.4, the system has a solution y in
A∼. Since the complete local rings Rm are Henselian by Theorem 6.2.4, so is U(R)
by Łos’ Theorem. By the universal property of Henselization, the canonical homo-
morphism A→ U(R) extends to a (unique) A-algebra homomorphism A∼→ U(R).
Hence the image in U(R) of y is a solution of (L ) in U(R), as we wanted to show.

Let L(R) be the ultrapower of U(R) given by Theorem 10.1.1 with corresponding
A-algebra homomorphism η : R→ L(R). Since η(ξi) = ξi, for all i, the maximal
ideal of L(R) is generated by the ξ , and so η is local. By the Cohen-Macaulay
criterion for flatness (Theorem 5.6.9), it suffices to show that L(R) is a balanced big
Cohen-Macaulay algebra. Since ξ is an Rm-regular sequence, so is its ultraproduct
η(ξ ) = ξ in L(R). This proves that L(R) is a big Cohen-Macaulay algebra, and we
can now use Proposition 5.6.8 and Łos’ Theorem, to conclude that it is balanced,
and hence that η : R→ L(R) is faithfully flat. ut

Being an ultrapower of an ultraproduct, U(R) itself is an ultra-ring. More pre-
cisely (see Exercise 10.5.6):

10.1.6 There exists an index set W and an N-valued function assigning to each
w ∈W an index m(w), such that

L(R) = ulim
w→∞

Rm(w).

Strong Artin Approximation. We say that a local ring (S,n) has the strong Artin
Approximation property if the following holds: given a system (L ) of polynomial
equations f1 = · · · = fs = 0 with coefficients in S, if (L ) has an approximate so-
lution in S modulo nm for all m, then (L ) has a (true) solution in S. Here by an
approximate solution of (L ) modulo an ideal a ⊆ S, we mean a tuple x in S such
that the congruences f1(x) ≡ ·· · ≡ fs(x) ≡ 0 mod a hold, that is to say, a solution
of (L ) in S/a.

We start with the following observation regarding the connection between R and
its Lefschetz hull L(R) (this will be explored in more detail in §11.1 where we will
call the separated quotient the cataproduct of the Rm).

Proposition 10.1.7. The separated quotient U(R)/IU(R) of U(R) is isomorphic to
R.

Proof. We start by defining a homomorphism U(R)→ R as follows. Given f ∈
U(R), choose approximations f m ∈ Rm and expand each as a power series

f m = ∑
ν∈Nn

aν ,mξ
ν

for some aν ,m ∈ Km. Let aν ∈ K be the ultraproduct of the aν ,m and define
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f̃ := ∑
ν∈Nn

aν ξ
ν ∈ R.

One checks that the map f 7→ f̃ is well-defined (that is to say, independent of the
choice of approximation), and is a ring homomorphism. It is not hard to see that it is
moreover surjective. So remains to show that its kernel equals the ideal of infinites-
imals IU(R). Suppose f̃ = 0, whence all aν = 0. For fixed d, almost all aν ,m = 0
whenever |ν | < d. Hence f m ∈ mdRm for almost all m, and therefore f ∈ mdU(R)
by Łos’ Theorem. Since this holds for all d, we see that f ∈ IU(R). Conversely, any
infinitesimal is easily seen to lie in the kernel by simply reversing this argument. ut

In [7], a paper the methods of which are germane in the development of the
present theory, the following ultraproduct argument was used to derive a strong
Artin Approximation result.

Theorem 10.1.8. The ring R := K[[ξ ]], for K an arbitrary algebraically closed
ultra-field and ξ a finite tuple of indeterminates, has the strong Artin Approxima-
tion.

Proof. Let (L ) be a system of equations over R, and for each m, let xm be an
approximate solution of (L ) modulo mmR. Let R\ be the ultrapower of R, and let
x be the ultraproduct of the xm. By Łos’ Theorem, x is an approximate solution
of (L ) modulo any mmR\, whence modulo IR\

, the ideal of infinitesimals of R\

(see Definition 1.4.10). By Proposition 10.1.7 (or rather by a variant admitting a
similar argument), the separated quotient R\/IR\

is isomorphic to K\[[ξ ]], where K\

is the ultrapower of K. The image of x in K\[[ξ ]] is therefore a solution of the system
(L ). Let k⊆K be a countable algebraically closed subfield such that (L ) is already
defined over k, and let L ⊆ K\ be the algebraic closure of the field generated over
K by all the coefficients of the entries in the image of x in K\[[ξ ]]. Since L has the
same cardinality as K, they are isomorphic as fields by Theorem 1.4.5, and in fact,
by a simple modification of its proof, these fields are isomorphic over their common
countable subfield k. In particular, the image of x under the induced k[[ξ ]]-algebra
isomorphism of L[[ξ ]] with K[[ξ ]], gives the desired solution of (L ) in R = K[[ξ ]].

ut

Any version in which the same conclusion as in the strong Artin Approxima-
tion property can be reached just from the solvability modulo a single power nN of
the maximal ideal n, where N only depends on (some numerical invariants of) the
system of equations, is called the uniform strong Artin Approximation property. In
[7], the uniform strong Artin Approximation for certain Henselizations was derived
from the Artin Approximation property of those rings via ultraproducts. To get a
uniform version in more general situations, additional restrictions have to be im-
posed on the equations (see [2, Theorem 6.1] or [7, Theorem 3.2]) and substantially
more work is required [12, 13]. We will here present a version which requires the
equations to have polynomial coefficients as well.

Theorem 10.1.9 (Uniform strong Artin Approximation). There exists a function
N : N2 → N with the following property. Let k be a field, put A := k[ξ ] with ξ an
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n-tuple of indeterminates, and let m be the ideal generated by these indeterminates.
Let (L ) be a polynomial system of equations with coefficients from A, in the n
unknowns t, such that each polynomial in (L ) has total degree (with respect to both
ξ and t) at most d. If (L ) admits an approximate solution in A modulo mN(n,d)A,
then it admits a true solution in k[[ξ ]].

Proof. Towards a contradiction, assume such a bound does not exist for the pair
(d,n), so that for each m ∈ N we can find a counterexample consisting of a field
Km, and of polynomials fim for i = 1, . . . ,s over this field of total degree at most d
in the indeterminates ξ and t, such that viewed as a system (L m) of equations in
the unknowns t, it has an approximate solution xm in Am := Km[ξ ] modulo mmAm
but no actual solution in Rm := Km[[ξ ]]. Note that by Lemma 7.4.2 we may assume
that the number of equations s is independent from m. Let K, U(A) and U(R) be the
ultraproduct of the Km, Am and Rm respectively, and let fi and x be the ultraproduct
of the fim and xm respectively. By 7.1.2, the fi are polynomials over K, and by Łos’
Theorem, fi(x) ≡ 0 mod IU(R). By Proposition 10.1.7, we have an epimorphism
U(R)→ R. In particular, the image of x in R is a solution of the system (L ) given
by f1 = · · ·= fs = 0.

Since we have an A-algebra homomorphism R→ L(R) by Theorem 10.1.5, the
image of x in L(R) remains a solution of the system (L ), and hence by Łos’ The-
orem, we can find for almost each w, a solution of (L m(w)) in Rm(w), contradicting
our assumption on the systems (L m). ut

Note that the above proof only uses the existence of a homomorphism from R
to some ultrapower of U(R), showing that mere existence is already a highly non-
trivial result, and hence it should not come as a surprise that we needed at least
some form of Artin Approximation to prove the latter. Of course, by combining this
with Theorem 10.1.4, we may even conclude that (L ) has a solution in A∼, thus
recovering the original result [2, Theorem 6.1] (see also [7, Theorem 3.2]). If in-
stead we use the filtered version of Theorem 10.1.5, to be discussed briefly after
Proposition 10.3.2 below, we get filtered versions of this uniform strong Artin Ap-
proximation property, as explained in [4] (for a special case, see Exercise 10.5.10).

We conclude with the non-linear analogue of Theorem 7.4.3 (or rather of the
version given in Exercise 7.5.5). We cannot simply expect the same conclusion as
in the linear case to hold: there is not bound on the degree of polynomial solutions
in terms of the degrees of the system of equations (a counterexample is discussed
in [43, Theorem 9.1]). However, we can recover bounds when we allow for power
series solutions. Of course degree makes no sense in this context, and so we define
the following substitute. By Project 6.6, a power series y lies in the Henselization A∼

if there exists an N-tuple y in R with first coordinate equal to y, and a Hensel system
(H ), consisting of N polynomials f1, . . . , fN ∈ A[t] in the N unknowns t such that
the Jacobian matrix Jac(H ) evaluated at x is invertible in R. We say that y has etale
complexity as most d, if we can find such a Hensel system of size N ≤ d with all fi
of total degree at most d (in ξ and t).

Theorem 10.1.10. There exists a function N : N2→ N with the following property.
Let k be a field and put A := k[ξ ] with ξ an n-tuple of indeterminates. Let (L )
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be a system of polynomial equations in A[t] in the n unknowns t, such that each
polynomial in (L ) has total degree (with respect to ξ and t) at most d. If (L ) is
solvable in k[[ξ ]], then it has a solution in A∼ of etale complexity at most N(d,n).

Proof. Suppose no such bound on the etale complexity exists for the pair (d,n),
yielding for each m a counterexample consisting of a field Km, and a system of
polynomial equations (L m) over Km of total degree at most d with a solution ym in
the power series ring Rm, such that, however, any solution in A∼m has etale complexity
at least m (notation as before). Let (L ) be the ultraproduct of the (L m), a system
of polynomial equations over K by 7.1.2 (and an application of Lemma 7.4.2), and
let y be the ultraproduct of the ym, a solution of (L ) in U(R) by Łos’ Theorem. By
Proposition 10.1.7, under the canonical epimorphism U(R)→ R, we get a solution
of (L ) in R, whence in A∼ by Theorem 10.1.4. Let (H ) be a Hensel system for this
solution x viewed as a tuple in A∼ (note that one can always combine Hensel systems
for each entry of a tuple to a Hensel system for the whole tuple), and let d be its total
degree. Since the ultraproduct H\ of the A∼m is a Henselian local ring containing A,
the universal property of Henselizations yields an A-algebra homomorphism A∼→
H\. Viewing therefore x as a solution of (L ) in H\, we can find approximations
xm in A∼m which are solutions of (L m) for almost all m. If we let (H m) be an
approximation of (H ), then by Łos’ Theorem, for almost all m, it is a Hensel system
for xm of degree at most d, thus contradicting our assumption. ut

10.2 Tight closure

For the remainder of this chapter, we specify the previous theory to the case that K is
an algebraically closed Lefschetz field, given as the ultraproduct of the algebraically
closed fields K p of characteristic p.

Lefschetz hulls. In particular, L(R) is a Lefschetz ring, given as the ultraproduct
of the power series rings Rp(w) := K p(w)[[ξ ]], where p(w) is equal to the underlying
characteristic. The ultraproduct F\ of the Fp(w) acts on L(R), making it a difference
ring. This immediately extends to homomorphic images:

Corollary 10.2.1. The assignment R/I 7→ L(R/I) := L(R)/IL(R) constitutes a dif-
ference hull on the category of all homomorphic images of R. ut

Note that any complete Noetherian local ring with residue field K and embedding
dimension at most n is a homomorphic image of R by Theorem 6.4.2. However, a
local homomorphism between two such rings is not necessarily an epimorphism, so
that the previous statement is much weaker than obtaining a difference hull on the
category of complete Noetherian local ring with residue field K. We will address
this issue further in §10.3 below.

We can easily extend the previous construction to include any Noetherian lo-
cal ring S of equal characteristic zero. Our definition though will depend on some
choices. We start by taking K sufficiently large so that it contains the residue field
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k of S as a subfield. Let S K̂ be the complete scalar extension of S along K as given
by Theorem 6.4.7. By Cohen’s Theorem (Theorem 6.4.2), we may write S K̂ as R/a
for some ideal a⊆ R (assuming that the number n of indeterminates ξ is at least the
embedding dimension of S). We now define L(S) := L(S K̂) = L(R)/aL(R). Since
S→ S K̂ is faithfully flat by Theorem 6.4.7, this assignment is a difference hull on
the category of all homomorphic images of S by Corollary 10.2.1 and Exercise 9.5.3,
called a Lefschetz hull of S (for another type of Lefschetz hull, see page 163 below).

Tight closure. The tight closure of an ideal I ⊆ S is by definition the difference
closure of I with respect to a (choice of) Lefschetz hull, and is again denoted clS(I)
or simply cl(I) (although technically speaking, we should also include the Lefschetz
hull in the notation). In other words, z ∈ cl(I) if and only if there exists a multiplier
c ∈ S such that

cFe
\(z) ∈ Fe

\(I)L(S) (10.1)

for all e� 0 (again we suppress the embedding ηS : S→ L(S) in our notation).
By our axiomatic treatment of difference closure, we therefore immediately ob-

tain the five key properties of Theorem 9.2.3 for this category. However, this is a
severely limited category, and the only two properties that do not rely on any func-
toriality with respect to general homomorphisms are:

10.2.2 Any regular local ring of equal characteristic zero is F-regular, and any
complete local domain S (or more generally, any equidimensional homo-
morphic image of a Cohen-Macaulay local ring) of equal characteristic
zero admits Colon Capturing: for any system of parameters (x1, . . . ,xd)
in S, we have ((x1, . . . ,xi)S : xi+1)⊆ cl((x1, . . . ,xi)S) for all i.

Inspecting the proofs of Theorems 9.2.5 and 9.2.6, we see that these carry over
immediately to the present case, and hence we can now state:

Theorem 10.2.3 (Briançon-Skoda—local case). Let S be a Noetherian local ring
of equal characteristic zero, and let I ⊆ S be an ideal generated by n elements. If I
has positive height, then we have for all l ≥ 1 an inclusion

In+l−1 ⊆ cl(Il).

In particular, if S is moreover regular, then the integral closure of In+l−1 lies
inside Il for all l ≥ 1. ut

Theorem 10.2.4. Let S be a regular local ring of equal characteristic zero, and let
a⊆ S be the intersection of finitely many prime ideals of height at most h. Then for
all n, we have an inclusion a(hn) ⊆ an.

In particular, we also proved the original version of the Briançon-Skoda theorem
(Theorem 8.5.1).
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10.3 Functoriality

Unfortunately, the last of our three applications, the Hochster-Roberts Theorem, re-
quires functoriality beyond the one provided by Corollary 10.2.1. In Project 10.6 we
will describe an alternative strategy to prove the Hochster-Roberts theorem in the
general case. Here, we discuss briefly how to extend some form of functoriality to
the whole category of all Noetherian local rings of equal characteristic zero, which
suffices to derive the theorem. As we will see shortly, functoriality requires a ‘fil-
tered’ version of Theorem 10.1.1. To show that this version holds for power series
rings over K, we require the following more sophisticated Artin Approximation re-
sult due to Rotthaus (its proof is still relatively simple in comparison with those of
the general Artin Conjecture needed in the Hochster-Huneke version). As before,
R := K[[ξ ]], and ζ is another finite tuple of indeterminates.

Theorem 10.3.1 ([39]). The Henselization R[ζ ]∼ of the localization of R[ζ ] at the
maximal ideal generated by all the indeterminates admits the Artin Approximation
property.

We extend the terminology used in §7.1: given an ultra-ring C\, realized as the
ultraproduct of rings Cw, then by an ultra-C\-algebra D\, we mean an ultraproduct
D\ of Cw-algebras Dw. If almost each Cw is local and Dw is a local Cw-algebra
(meaning that the canonical homomorphism Cw → Dw is a local homomorphism),
then we call D\ an ultra-local C\-algebra. Similarly, a morphism of ultra-(local)
C\-algebras is by definition an ultraproduct of (local) Cw-algebra homomorphisms.

For our purposes, we only will need the following quasi-functorial version of the
Lefschetz hull.

Proposition 10.3.2. Let S be a Noetherian local ring of equal characteristic zero
with a given choice of Lefschetz hull ηS : S→ L(S). For every Noetherian local S-
algebra T whose residue field embeds in K, there exists a choice of Lefschetz hull
ηT : T → L(T ) on T , having in addition the structure of an ultra-local L(S)-algebra.

Proof. By taking an isomorphic copy of the S-algebra T , we may assume that the
induced homomorphism on the residue fields is an inclusion of subfields of K. In
that case, one easily checks that the complete scalar extension S K̂ → T K̂ of the
canonical homomorphism S→ T is in fact a K-algebra homomorphism. Taking n
sufficiently large, S K̂ and T K̂ are homomorphic images of R, and the K-algebra
homomorphism S K̂ → T K̂ lifts to a K-algebra endomorphism ϕ of R = K[[ξ ]] by
an application of Theorem 6.4.2. So without loss of generality, we may assume S =
T =R. Let x := (x1, . . . ,xn) be the image of ξ under ϕ , so that in particular, each xi is
a power series without constant term. Note that the K-algebra local homomorphism
ϕ is completely determined by this tuple, namely ϕ( f ) = f (x) for any f ∈ R (see
Exercise 10.5.7). Let R′ := R[[ζ ]], where ζ is another n-tuple of indeterminates, and
put R′p := Rp[[ζ ]]. Note that ϕ is isomorphic to the composition

R⊆ R′� R′/J ∼= K[[ζ ]]∼= R,
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where the first map is just inclusion, and where J is the ideal generated by all ξi−xi.
Since Lefschetz hulls commute with homomorphic images, we reduced the problem
to finding a Lefschetz hull ηR′ : R′→ L(R′), together with a morphism L(R)→ L(R′)
of ultra-local K-algebras extending the inclusion R⊆ R′.

By Theorem 10.1.5, there exists some ultrapower of U(R) which is faithfully
flat over R. Since we will have to further modify this ultrapower, we denote it
by Z\. Recall that it is in fact an ultraproduct of the Rp by 10.1.6. Let Z′\ de-
note the corresponding ultraproduct of the R′p(w). In particular, we get a morphism
Z\→ Z′\ of ultra-local K-algebras. Moreover, Z′\ is an R-algebra via the composi-
tion R→ Z\→ Z′\, whence also an R[ζ ]-algebra, since in Z′\, the indeterminates ζ

remain algebraically independent over R. We will obtain L(R′) as a (further) ultra-
power of Z′\ from an application of Theorem 10.1.1, which at the same time then
also provides the desired R-algebra homomorphism R′→ L(R′). So, given a polyno-
mial system of equations (L ) with coefficients in R having a solution in R′, we need
to find a solution in Z′\. By Theorem 10.3.1, we can find a solution in R[ζ ]∼, since
R′ is the completion of the latter ring. By the universal property of Henselizations,
we get a local R[ζ ]-algebra homomorphism R[ζ ]∼→ Z′\, and hence via this homo-
morphism, we get a solution for (L ) in Z′\, as we wanted to show. Let R′→ L(R′)
be the homomorphism given by Theorem 10.1.1, which is then faithfully flat by (the
proof of) Theorem 10.1.5. Let L(R) be the corresponding ultrapower of Z\, so that
R→ L(R) too is faithfully flat. Moreover, the homomorphism Z\→ Z′\ then yields,
after taking ultrapowers, a morphism of ultra-local K-algebras L(R)→ L(R′). We
leave it to the reader to verify that it extends the inclusion R⊆ R′, and admits all the
desired properties. ut

In [4], a much stronger form of functoriality is obtained, by making the ad
hoc argument in the previous proof more canonical. In particular, we construct
ηR : R→ L(R) in such way that it maps each of the subrings K[[ξ1, . . . ,ξi]] to the
corresponding subring of L(R) of all elements depending only on the indetermi-
nates ξ1, . . . ,ξi, that is to say, the ultraproduct of the K p(w)[[ξ1, . . . ,ξi]] (our treat-
ment of the inclusion R ⊆ R′ in the previous proof is a special instance of this).
However, this is not a trivial matter, and caution has to be exercised as to how much
we can preserve. For instance, in [4, §4.33], we show that ‘unnested’ subrings can-
not be preserved, that is to say, there cannot exist an ηR which maps any subring
K[[ξi1 , . . . ,ξis ]] into the corresponding subring of all elements depending only on
the indeterminates ξi1 , . . . ,ξis (the concrete counterexample requires n = 6, and it
would be of interest to get already a counterexample for n = 2).

Proposition 10.3.2 is sufficiently strong to get the following form of weak per-
sistence: if S→ T is a local homomorphism of Noetherian local domains of equal
characteristic zero, then we can define tight closure operations clS(·) and clT (·) on
S and T respectively, such that clS(I) ⊆ clT (IT ) for all I ⊆ S (see the argument in
the next proof).

Theorem 10.3.3 (Hochster-Roberts). If S→ T is a cyclically pure homomorphism
of Noetherian local rings of equal characteristic, and if T is regular, then S is Cohen-
Macaulay.
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Proof. We already dealt with the positive characteristic case, so assume the char-
acteristic is zero. By Exercise 10.5.12, we may assume S and T are complete, and
by Proposition 10.3.2, we may assume that L(T ) is an ultra-L(S)-algebra (by taking
K sufficiently large). Let (x1, . . . ,xd) be a system of parameters in S, and assume
zxi+1 ∈ I := (x1, . . . ,xi)S. By Colon Capturing (10.2.2), we get z ∈ cl(I), so that
(10.1) holds for all e� 0. However, we may now view these relations also in L(T )
via the S-algebra homomorphism L(S)→ L(T ), showing that z ∈ cl(IT ). By 10.2.2
therefore, z ∈ IT whence by cyclic purity, z ∈ I, as we wanted to show. ut

We can now also tie up another loose end, the last of our five key properties,
namely the connection with integral closure (recall that 9.2.3(5) is not really an
issue in characteristic zero by Exercise 9.5.9):

Theorem 10.3.4. The tight closure of an ideal lies inside its integral closure.

Proof. Let I ⊆ S be an ideal in a Noetherian local ring (S,n) of equal characteristic
zero, and let z ∈ cl(I). By Exercise 10.5.13, we may reduce to the case that I is n-
primary. In view of 8.4.1(4), we need to show that z ∈ IV , for every homomorphism
S→V into a discrete valuation ring V with kernel a minimal prime ideal of S. There
is nothing to show if nV = V whence IV = V , so that we may assume S→ V is
local. Moreover, by a similar cardinality argument as in Proposition 9.2.2, we may
replace V by a sub-discrete valuation ring whose residue field embeds in K. By
Proposition 10.3.2, there exists a Lefschetz hull L(V ) on V which is an ultra-local
L(S)-algebra. In particular, z lies in the tight closure of IV with respect to this choice
of Lefschetz hull, and so we are done by an application of 10.2.2 to the regular ring
V . ut

10.4 Big Cohen-Macaulay algebras

As in the affine case, we can also associate to each Noetherian local domain of equal
characteristic zero a balanced big Cohen-Macaulay algebra. However, to avoid some
complications caused by the fact that the completion of a domain need not be a
domain, I will only discuss this in case S is a complete Noetherian local domain
with residue field K (for the general case, see [4, §7]). But even in this case, the
Lefschetz hull defined above does not have the desired properties: we do not know
whether the approximations of S are again domains. So we discuss first a different
construction of a Lefschetz hull.

Relative hulls. Fix some Noetherian local ring (S,n) with residue field k contained
in K, and let L(S) be a Lefschetz hull for S with approximations Sw. We want to
construct a Lefschetz hull on the category of S-affine algebras, extending the Lef-
schetz hull defined on page 159. Let us first consider the polynomial ring B := S[ζ ]
in finitely many indeterminates ζ . Let LS(B) be defined as the ultraproduct of the
Bw := Sw[ζ ], so that LS(B) is an ultra-L(S)-algebra. The homomorphism S→ LS(B)
extends naturally to a homomorphism B→ LS(B), since the ζ remain algebraically
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independent over L(S). We call LS(B) the relative Lefschetz hull of B (with respect
to the Lefschetz hull S→ L(S)). Similarly, if C = B/I is an arbitrary S-affine al-
gebra, then we define LS(C) as the residue ring LS(B)/ILS(B), and we call this the
relative Lefschetz hull of C (with respect to the choice of Lefschetz hull L(S)). By
base change the homomorphism B→ LS(B) induces a homomorphism C→ LS(C).
Moreover, LS(C) is an ultra-L(S)-algebra, since I is finitely generated.

It is instructive to calculate LS(B)/nLS(B) = LS(B/nB) = LS(k[ζ ]), where k is
the residue field of S. Since nS K̂ is the maximal ideal in S K̂ , we get L(S)/nL(S) =
L(k) = L(K), and this field is just an ultrapower of K = U(K). Hence Bw/nwBw =
K p(w)[ζ ], and we see that LS(B)/nLS(B) is an ultrapower of U(K[ζ ]). Next, suppose
T is a local S-affine algebra, say of the form Bp/IBp, with p ⊆ B a prime ideal
containing I. Moreover, since we assume that S→ T is local, nB ⊆ p. In order to
define the relative Lefschetz hull LS(T ) of T as the localization of LS(B/IB) with
respect to pLS(B/IB), we need:

10.4.1 If p is a prime ideal in B containing nB, then pLS(B) is prime.

We need to show that LS(B/p) is a domain. Since B/p is a homomorphic im-
age of B/nB, it suffices to show that p extends to a prime ideal in LS(B/nB). By
Theorem 7.3.4, the extension of p to U(K[ζ ]) remains prime. Since LS(B/nB) is
an ultrapower of U(K[ζ ]), the extension of p to the former is again prime by Łos’
Theorem. ut

To prove that these are well-defined objects, that is to say, independent of the
choice of presentation C = B/I (or its localization), we prove (see Exercise 10.5.14)
a similar universal property as for ultra-hull:

10.4.2 Any S-algebra homomorphism C → D\ with D\ an ultra-L(S)-algebra,
extends uniquely to a morphism LS(C)→D\ of ultra-L(S)-algebras. Sim-
ilarly, any local L(S)-algebra homomorphism T → D\ with D\ an ultra-
local L(S)-algebra, extends uniquely to a morphism LS(T )→D\ of ultra-
local L(S)-algebras.

Proposition 10.4.3. On the category of S-affine algebras, LS(·) is a difference hull.

Proof. Let T be a local S-affine algebra (for the global case see Exercise 10.5.15).
Clearly, the ultra-Frobenius F\ acts on each LS(T ), making the latter into a dif-
ference ring. So remains to show that the canonical map T → LS(T ) is faithfully
flat. By Cohen’s structure theorem, S K̂ is a homomorphic image of R := K[[ξ ]]. A
moment’s reflection shows that LS(T ) = LR(T K̂), so that by an application of Theo-
rem 6.4.7, we may reduce to the case that S = R. By another application of Cohen’s
structure theorem, T is a homomorphic image of a localization of R[ζ ], and hence
without loss of generality, we may assume that T is moreover regular. Flatness of
T → LR(T ) then follows from the Cohen-Macaulay criterion of flatness in the same
way as in the proof of Theorem 7.2.2 (see Exercise 10.5.15). ut

Big Cohen-Macaulay algebras. For the remainder of this section, S is a complete
Noetherian local domain with residue field K. By Theorem 6.4.6, we have a finite



10.5 Exercises 165

extension R ⊆ S (for an appropriate choice of n and R := K[[ξ ]] as before). The
Lefschetz hull we will use for S to construct a balanced big Cohen-Macaulay algebra
is the relative hull LR(S) (with respect to a fixed Lefschetz hull for R). Let Sw be
the approximations of S with respect to this choice of Lefschetz hull, that is to
say, Sw are the complete local K p(w)-algebras whose ultraproduct is LR(S). By the
above discussion, LR(S) is a domain, whence so are almost all Sw. Let B(S) be the
ultraproduct of the S+w , so that B(S) is in particular an ultra-LR(S)-algebra whence
an S-algebra. In Exercise 10.5.16, you are asked to prove:

Theorem 10.4.4. For each complete Noetherian local domain S with residue field
K, the S-algebra B(S) is a balanced big Cohen-Macaulay algebra. ut

Theorem 10.4.5 (Monomial Conjecture). The Monomial Conjecture holds for any
Noetherian local ring S of equal characteristic, that is to say, any system of param-
eters is monomial.

Proof. I will only explain the equal characteristic zero case; the positive characteris-
tic case is analogous, using instead Theorem 9.4.1. Towards a contradiction, suppose
(x1, . . . ,xd) is a counterexample, that is to say, a system of parameters which fails
(9.8) for some k. After taking a complete scalar extension (which preserves the sys-
tem of parameters), we may assume that S is complete with residue field K. After
killing a prime ideal of maximal dimension (which again preserves the system of
parameters), we then may assume moreover that S is a domain. The counterexample
then also holds in B(S), contradicting that (x1, . . . ,xd) is B(S)-regular by Theo-
rem 10.4.4. ut

As before, we can also define the B-closure of an ideal I ⊆ S by the rule clB(I) :=
IB(S)∩S and prove that it satisfies the five key properties (see Exercise 9.5.12).

10.5 Exercises

Ex 10.5.1
One can make the choice of ultrapower in Theorem 10.1.1 independent from the particular
choices of A-algebra homomorphisms ϕC : C→ T as follows. Let W ′ be the set of all A-
algebra homomorphisms C→ T whose domain C is an A-affine subalgebra of S. Define an
appropriate ultrafilter on this set, let T \ be the ultrapower of T with respect to this ultrafilter,
and modify the argument in the proof of the theorem accordingly.

Ex 10.5.2
To obtain embeddings rather than just homomorphisms, prove that the following are equiv-
alent for algebras S and T over a Noetherian ring A:

1. every finite system of polynomial equations and inequalities with coefficients from A
which is solvable in S, is solvable in T ;
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2. given an A-affine subalgebra C ⊆ S and finitely many non-zero elements c1, . . . ,cn of C
there exists an A-algebra homomorphism C→ T sending each ci to a non-zero element
of T ;

3. there exists an embedding S→ T \ of A-algebras into an ultrapower T \ of T .

For a model-theoretic interpretation, see Exercise 10.5.17.

∗Ex 10.5.3
Use Exercise 10.5.2 to reprove an old result of Henkin ([18]) on Boolean algebras as fol-
lows. Recall that a ring B is called Boolean if a2 = a for all a ∈ B. For any set X, the power
set P(X) is a Boolean ring with addition given by the symmetric difference, multiplication
given by intersection, and taking for 0 the empty set and for 1 the whole set. We define a
partial order on a Boolean ring B by the rule a ≤ b if and only if ab = a for a,b ∈ B. It
follows that 0 ≤ a ≤ 1, for all a ∈ B. An element a ∈ B is called an atom of B if it is a
minimal non-zero element of B. Complete the argument below to prove:

Theorem 10.5.4 (Representation Theorem for Boolean rings). For each Boolean ring B,
there exists an ultrapower B\ of B such that B embeds in P(B\).

It suffices to show that there exists an embedding B ↪→ T \, with T := P(B). To this end,
we verify (2) in Exercise 10.5.2 with A = Z/2Z. Let C be an A-affine subring of B. Since
any element is idempotent, C is finite, whence Artinian. The map ϕC : C→ T sending an
element a ∈C to the collection of all atoms of C that are less than or equal to a is a ring
homomorphism. Since C satisfies the descending chain condition, ϕC(a) is non-empty for
a 6= 0. In other words, ϕC is an injective homomorphism showing that (2) holds.

Ex 10.5.5
Let (R,m) be a Noetherian local ring. Show that given finitely many congruence relations
fi ≡ 0 mod mci with fi ∈ R[t] can be turned in to a system of equations, such that the
congruences are solvable in R̂ or R if and only if the equations are. Prove the same for a
system of equations and negations of equations. Conclude that to admit Artin Approximation
is equivalent with either of the following two apparently stronger conditions:

1. any system of polynomial equations and negations of equations over R which is solvable
in R̂ is already solvable in R;

2. given some c and a system of equations over R with a solution x̂ in R̂, we can find a
solution x in R such that x≡ x̂ mod mcR̂, that is to say, a solution in R̂ can be ‘approx-
imated’ arbitrarily close by solutions in R.

The last condition also explains the name of this property.

Ex 10.5.6
Prove 10.1.6. The easiest way to prove this is via the equivalent characterization of ultra-
rings in §1.5.

Ex 10.5.7
Show that a K-algebra endomorphism of R := K[[ξ ]] is completely determined by the image
of ξ . More generally, if S is a complete local K-algebra, then there is a one-one correspon-
dence between local K-algebra homomorphisms R→ S, and tuples in S with entries in the
maximal ideal. This is no longer true if S is only quasi-complete, and hence explains why
we needed the more elaborate theory using Theorem 10.1.1.
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Ex 10.5.8
Show that (R,m) has the strong Artin Approximation property if and only if the product of
all R/mk embeds in some ultrapower of R. Use this to then prove that R has the strong Artin
Approximation property if and only if R has the Artin Approximation property and R̂ has
the strong Artin Approximation property.

Ex 10.5.9
Show the following more general ‘approximating’ version of Theorem 10.1.9 by modifying
its proof accordingly (see (2) in Exercise 10.5.5): There exists a function N : N3→ N with
the following property. Let k be a field and let (L ) be a polynomial system of equations in
the n unknowns t with coefficients in k[ξ ], such that the total degree (with respect to ξ and
t) is at most d. If (L ) has an approximate solution x in R := k[[ξ ]] modulo mN(n,d,c)R, then
there exists a solution y in R such that x≡ y modulo mcR.

Ex 10.5.10
Prove the following one-nested generalization of [7, Theorem 4.3] (the latter only treats
the case s = 1): There exists a function N : N2 → N with the following property. Let k be
a field and let (L ) be a polynomial system of equations in the n unknowns t with coef-
ficients in A := k[ξ ] with ξ an n-tuple of indeterminates, such that the total degree (with
respect to ξ and t) is at most d. If (L ) has an approximate solution (x1, . . . ,xn) in A
modulo mN(n,d,c)A with x1, . . . ,xl depending only on ξ1, . . . ,ξs, then there exists a solution
(y1, . . . ,yn) in k[[ξ ]] with y1, . . . ,yl depending only on ξ1, . . . ,ξs. Start as always with as-
suming towards a contradiction that there exist counterexamples (L m) over Am := Km[[ξ ]]
of degree at most d with an approximate solution modulo mmAm whose first l entries be-
long to A′m := Km[ξ1, . . . ,ξs], but having no solution in Rm := Km[[ξ ]] whose first l entries
belong to R′m := Km[[ξ1, . . . ,ξs]]. Use Proposition 10.3.2 to get a commutative diagram of
corresponding Lefschetz hulls

?

-

?
-

RR′

L(R)L(R′)

(10.2)

where R := K[[ξ ]] and R′ = K[[ξ1, . . . ,ξs]], and where K is the ultraproduct of the Km. Use
the existence of these embeddings in the same way as in the proof of Theorem 10.1.9 to
derive the desired contradiction.

Ex 10.5.11
Give a proof of Corollary 10.2.1.

Ex 10.5.12
Show that the completion of a cyclically pure homomorphism is again cyclically pure.
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∗Ex 10.5.13
Show that the integral closure Ī of an ideal I in a local ring (S,m) is equal to the intersection
of the integral closures of the m-primary ideals I +mn. Show how this allows us to reduce
to the m-primary case in the proof of Theorem 10.3.4.

Ex 10.5.14
Show the universal property 10.4.2 of the relative hull.

Ex 10.5.15
Fill in the details of the proof of Proposition 10.4.3.

Ex 10.5.16
To prove Theorem 10.4.4, you first need to show that S has the same dimension as almost all
of its approximations Sw, by an argument similar to the one in Corollary 7.3.3. In particular,
almost each approximation of a system of parameters is again a system of parameters. Now
apply Theorem 9.4.1.

Additional exercises

Ex 10.5.17
Show that condition (1) in Theorem 10.1.1 is equivalent with the model-theoretic
assertion that T is a model of the positive existential theory of S in the language
L (A) of rings with constant symbols for the elements in A. Similarly, condition (1)
in Exercise 10.5.2 is equivalent with T being a model of the (full) existential L (A)-
theory of S.

Ex 10.5.18
We can even relax the hypothesis of Theorem 10.1.10 so that the system of equa-
tions (L ) has only to be of the form f1 = · · ·= fs = 0 with each fi ∈ A∼[t] of t-degree
at most d, and each coefficient of fi of etale complexity at most d. Namely, given
such a more general system, replace each coefficient with a new indeterminate,
and add a new Hensel system for that coefficient (with first variable corresponding
to the new indeterminate). For this you also will need the uniqueness of a Hensel
solution, proved in 6.6.1.

Ex 10.5.19
Generalize the construction of the relative hull on page 163 as follows. Let S\ be the
ultraproduct of rings Sw, let Bw := Sw[ζ ], and define the relative S\-hull of B := S\[ζ ]
as the the ultraproduct of the Bw, denoted LS\ (B). Argue that the relative hull LS(B)
as defined page 163 is just the relative S\-hull of B.
Show that LS\ (B) satisfies the following universal property: any S\-algebra homo-
morphism B→D\ into an ultra-S\-algebra D\, extends uniquely to a homomorphism
LS\ (B)→ D\ of ultra-S\-algebras. Define similarly the relative S\-hull of an S\-affine
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algebra C (recall that this means by definition—see page 19—that C ∼= B/I with I
finitely generated), and prove again a universal property. Do the same in case S\ is
local and T is a local S\-affine algebra.

10.6 Project: proof of Hochster-Roberts Theorem

Our goal is to give a different proof of Theorem 10.3.3. By an argument similar
to that in the text, we may reduce the problem to complete local domains. Hence
let S be an arbitrary complete Noetherian local domain containing the algebraically
closed Lefschetz field K. Define a closure operation on S as follows: an element
z ∈ S lies in the inductive tight closure clind (a) of an ideal a ⊆ S, if there exists a
local K-affine subalgebra C ⊆ S containing z, and an ideal I ⊆C, such that a = IS
and z ∈ clC(I) (where we take tight closure clC(·) in C in the sense of Chapter 9).
Show that weak persistence holds:

10.6.1 If S→ T is an injective local K-algebra homomorphism of complete Noe-
therian local domains, then clind(a)⊆ clind(aT ) for all a⊆ S.

Call S inductively F-regular, if every ideal in S is equal to its own inductive tight
closure. To prove the Hochster-Roberts Theorem, we again split the proof into two
parts. The easy part is:

10.6.2 If S→ T is cyclically pure, and T is inductively F-regular, then so is S.

To prove the analogue of 10.2.2, we need to understand how arbitrary K-algebras
are approximated by K-affine algebras. You may take the following theorem for
granted, but see below for how to prove it.

10.6.3 Let S be a complete Noetherian local domain containing K, and let C
be a local K-affine subalgebra of S. Then the embedding C ⊆ S factors
through a local K-affine domain D, satisfying the following additional
conditions

1. if S is regular, then we may take D to be regular too;
2. if x1, . . . ,xd ∈C are a system of parameters in S, then D can be chosen

in such way that (x1, . . . ,xd) is part of a system of parameters in D.

The dimension of D will in general be larger than d, the dimension of S. Note
also that we are not requiring that the canonical map D→ S has to be injective.
After reduction to the case S = R := K[[ξ ]], assertion (1) follows from the Artin-
Rotthaus theorem ([3])—a stronger form of p-desingularization, of which also The-
orem 10.1.4 is an immediate consequence. To prove (2), apply Theorem 6.4.6 to S
to get a finite extension R⊆ S sending ξi to xi, then apply [3] to obtain a finite exten-
sion D′⊆D of K-affine algebras with D′ flat over A (and regular), and a factorization
C→ D→ S. Using 10.6.3, derive the analogues of 10.2.2:

10.6.4 Any regular local ring containing K is inductively F-regular.
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10.6.5 If S is a complete Noetherian local domain containing K, then Colon
Capturing holds in S: if (x1, . . . ,xd) is a system of parameters, then (Ik :
xk+1)⊆ clind(Ik) for every k, where Ik := (x1, . . . ,xk)S.

To conlcude, combine all these results to give an alternative proof of the Hochster-
Roberts theorem.



Chapter 11
Cataproducts

So far, the main obstacle to overcome when dealing with ultra-rings was the absence
of the Noetherian property. To study ultra-rings, therefore, we were forced to mod-
ify several definitions from Commutative Algebra. This route is further pursued in
[54]. However, there is another way to circumvent these problems: the cataproduct
A], the first of our chromatic products. We will mainly treat the local case, which is
guaranteed to yield a Noetherian local ring. The idea is simply to take the separated
quotient of the ultraproduct with respect to the maximal adic topology. The satu-
ratedness property of ultraproducts—well-known to model-theorists—implies that
the cataproduct is in fact a complete local ring. Obviously, we do no longer have
the full transfer strength of Łos’ Theorem, but we shall show that many algebraic
properties still persist, under some mild conditions. We conclude with some appli-
cations to uniform bounds. Whereas the various bounds in Chapter 7 were expressed
in terms of polynomial degree, we will introduce a different notion of degree here,1

in terms of which we will give the bounds. Conversely, we can characterize many
local properties through the existence of such bounds.

11.1 Cataproducts

Recall from 1.4.7 that the ultraproduct of local rings of bounded embedding dimen-
sion is again a local ring of finite embedding dimension. In this chapter, we will be
mainly concerned with the following subclass.

Definition 11.1.1 (Ultra-Noetherian ring). We call a local ring R\ ultra-Noetherian
if it is the ultraproduct of Noetherian local rings of bounded embedding dimension,
that is to say, of Noetherian local rings Rw such that the embedding dimension of
Rw is at most e, for some e independent of w.

1 In spite of the nomenclature, and unlike proto-grade, to be introduced in the next chapter, this
new degree is not a generalization of polynomial degree.
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The Noetherian local rings Rw will be called approximations of R\ (note the more
liberal use of this term than in the previous chapters, which, however, should not
cause any confusion). It is important to keep in mind that approximations are not
uniquely determined by R\. A good example of this phenomenon is exhibited by
Corollary ?? below.

We introduced the geometric dimension of a Noetherian local ring in our study of
Krull dimension; see Theorem 3.4.2. This notion carries over naturally to any local
ring (S,n) of finite embedding dimension, namely, geodim(S) is the least number d
of elements x1, . . . ,xd ∈ n such that S/(x1, . . . ,xd)S is Artinian, that is to say, such
that (x1, . . . ,xd)S is n-primary. Any tuple (x1, . . . ,xd) with this property is then called
a system of parameters of R.2 Any element of R which belongs to some system of
parameters will be called a parameter. We immediately get:

11.1.2 The geometric dimension of a local ring is at most its embedding dimen-
sion, whence in particular is finite for any ultra-Noetherian local ring.

By Exercise 11.3.1, the geometric dimension of an ultra-Noetherian local ring is
larger than or equal to the (geometric) dimension of its Noetherian approximations,
and this inequality can be strict (for an example see Exercise 11.3.3). To study this
phenomenon as well as further properties of ultra-Noetherian local rings, we first
introduce a new kind of product:

Cataproducts. In 1.4.13 we saw that most ultra-Noetherian rings are not Noethe-
rian (in model-theoretic terms this means that the class of Noetherian local rings of
fixed embedding dimension is not first order definable; see Exercise 1.6.21). How-
ever, there is a Noetherian local ring closely associated to any ultra-Noetherian local
ring. Fix an ultra-Noetherian local ring

R\ := ulim
w→∞

Rw,

and define the cataproduct of the Rw as the separated quotient of R\, that is to say,

R] := R\/IR\
.

If all Rw are equal to a fixed Noetherian local ring (R,m), then we call R] the cat-
apower of R. In this case, the natural (diagonal) embedding R→R\ induces a natural
homomorphism R→ R]. Since mR\ is the maximal ideal of R\, likewise, mR] is the
maximal ideal of R]. The relationship between the rings Rw and their cataproduct
R] is much less strong than in the ultraproduct case, as the following example illus-
trates.

11.1.3 The catapower of a Noetherian local ring (R,m) is isomorphic to the
cataproduct of the Artinian local rings R/mn.

Indeed, if R\ and S\ denote the ultrapower of R and the ultraproduct of the R/mn

respectively, then we get a surjective homomorphism R\ → S\. However, any ele-

2 In [45, 50, 54] such a tuple was called generic.
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ment in the kernel of this homomorphism is an infinitesimal, so that the induced
homomorphism R]→ S] is an isomorphism. ut

Nonetheless, as before, we will still refer to the Rw as approximations of R], and
given an element x∈ R], we call any choice of elements xw ∈ Rw whose ultraproduct
is a lifting of x to R\, an approximation of x.

Theorem 11.1.4. The cataproduct of Noetherian local rings of bounded embedding
dimension is complete and Noetherian.

Proof. In almost all our applications,3 the ultrafilter lives on a countable index set
W , but nowhere did we exclude larger cardinalities. For simplicity, however, I will
assume countability, and treat the general case in a separate remark below. Hence,
we may assume W =N. Let (R\,m) be the ultraproduct of Noetherian local rings Rw
of embedding dimension at most e. It follows that R\ too has embedding dimension
at most e. Let us first show that R\ is quasi-complete (note that it is not Hausdorff in
general, because IR\

6= 0). To this end, we only need to consider by 6.2.1 a Cauchy
sequence a in R\ such that a(n) ≡ a(n + 1) mod mnR\. Choose approximations
aw(n) ∈ Rw such that

a(n) = ulim
w→∞

aw(n)

for each n ∈ N. By Łos’ Theorem, we have for a fixed n that

aw(n)≡ aw(n+1) mod mn
w (11.1)

for almost all w, say, for all w in Dn. I claim that we can modify the aw(n) in such
way that (11.1) holds for all n and all w. More precisely, for each n there exists an
approximation ãw(n) of a(n), such that

ãw(n)≡ ãw(n+1) mod mn
w (11.2)

for all n and w. We will construct the ãw(n) recursively from the aw(n). When n =
0, no modification is required (since by assumption m0

w = Rw), and hence we set
ãw(0) := aw(0) and ãw(1) := aw(1). So assume we have defined already the ãw( j)
for j ≤ n such that (11.2) holds for all w. Now, for those w for which (11.1) fails
for some j ≤ n, that is to say, for w /∈ (D0 ∪ ·· · ∪Dn), let ãw(n+ 1) be equal to
ãw(n); for the remaining w, that is to say, for almost all w, we make no changes:
ãw(n+ 1) := aw(n+ 1). It is now easily seen that (11.2) holds for all w, and ãw(n)
is another approximation of a(n), for all n, thus establishing our claim.

So we may assume (11.1) holds for all n and w. Define b := ulimaw(w). Since
aw(w) ≡ aw(n) mod mn

w for all w ≥ n, Łos’ Theorem yields b ≡ a(n) mod mnR\,
showing that b is a limit of a.

Since the cataproduct R] of the Rw is a homomorphic image of R\, it is again
quasi-complete by 6.1.5. By construction, R] is Hausdorff and therefore even com-
plete. Since R] has finite embedding dimension, it is therefore Noetherian by Theo-
rem 6.4.2 (or, in mixed characteristic, by Theorem 6.4.4). ut

3 A notable exception is the construction of a Lefschetz hull given in Theorem 10.1.5.
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Remark 11.1.5. In order for the above argument to work for arbitrary index sets
W , we need to make one additional assumption on the ultrafilter ω: it needs to
be countably incomplete, meaning that there exists a function f : W → N such that
for each n, almost all f (w) are greater than or equal to n. Of course, if W = N
such a function exists, namely the identity will already work. Countably incomplete
ultrafilters exist on any infinite set. In fact, it is a strong set-theoretic condition to
assume that not every ultrafilter is countable incomplete! Now, the only place where
we need this assumption is to build the limit element b. This time we should take it to
be the ultraproduct of the aw( f (w)). The reader can verify that this one modification
makes the proof work for any index set.

Proposition 11.1.6. Let R\ be an ultra-Noetherian local ring and let R] be the cor-
responding cataproduct, that is to say, its separated quotient. For any ideal I ⊆ R\,
its m-adic closure is equal to I+IR\

. In particular, the separated quotient of R\/I is
R]/IR].

Proof. It suffices to show the first assertion. Clearly, I +IR\
is contained in the m-

adic closure of I. To prove the other inclusion, assume a lies in the m-adic closure
of I. Hence its image in R] lies in the m-adic closure of IR], and this is just IR]

by Theorem 3.3.4, since R] is Noetherian by Theorem 11.1.4. Therefore, a lies in
IR]∩R\ = I +IR\

. ut

In particular, if Rw are approximations of R\, and Iw ⊆ Rw are ideals with ultra-
product I ⊆ R\, then the cataproduct of the Rw/Iw is equal to R]/IR].

Cataproducts in the non-local case.
Although below, we will only be interested in cataproducts of Noetherian local rings
of bounded embedding dimension, precisely because we can now apply our tools
from commutative algebra to them, it might be of interest to define cataproducts in
general. For this, we must rely on the alternative description of ultraproducts from
§1.5. Given a collection of rings Aw, with Cartesian product A∞ := ∏Aw, choose a
maximal ideal M in A∞ containing the direct sum ideal A(∞) :=

⊕
Aw. We define

the (M-)cataproduct of the Aw as the M-adic separated quotient of A∞, that is to
say, the ring A] := A∞/M

∞, where M∞ is the intersection of all powers of M. Note
that M◦ ⊆M∞, showing that A] is a residue ring of A\ = A∞/M

◦. Theorem 11.1.4 is
the essential ingredient to prove that both definitions agree in the local case (see
Exercise 11.3.12). To prove the analogue of Theorem 11.1.4 in this more general
setup, we make the following definition: a maximal ideal M of A∞ is called algebraic
if it contains a product ∏mw of maximal ideals mw ⊆ Aw (whence in particular con-
tains the direct sum ideal A(∞)); the corresponding cataproduct is then also called
algebraic.

Theorem 11.1.7. Any algebraic cataproduct is a complete local ring. More pre-
cisely, if M is an algebraic maximal ideal of the product A∞ := ∏Aw, then the corre-
sponding M-cataproduct A] is a complete local ring with maximal ideal MA].

Proof. Let mw ⊆ Aw be maximal ideals whose product m := ∏mw is contained in M.
Let us first show that

M=m+M◦. (11.3)
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Indeed, in the ultraproduct A\ := A∞/M
◦ (see 1.5.2) the extended ideal mA\ is equal

to the ultraproduct of the mw, whence by Łos’ Theorem is maximal. Since it is con-
tained in the maximal ideal MA\, both ideals must be the same, proving (11.3).
Since M◦ is idempotent (as it is generated by idempotents), we immediately get
from this that

Mn =mn +M◦,

for all n. In particular, the MA\-adic topology is the same as the mA\-adic one, and
we have

A] = A∞/M
∞ = A\/m

∞A\.

To prove that A] is complete, it suffices therefore to show that A\ is m-adically com-
plete. A minor modification of the argument in Theorem 11.1.4 easily accomplishes
this (nowhere did we explicitly use that the Rw were local, of bounded embed-
ding dimension). It follows from Exercise 6.5.2 that A] is local with maximal ideal
mA] =MA]. ut

If all Aw are local, then any maximal ideal M⊆A∞ is algebraic, since A\ =A∞/M
◦

is local, with maximal ideal mA\ by Łos’ Theorem. Hence, MA\, being also a max-
imal ideal, must be equal to mA\, and hence m ⊆M, proving that the latter is al-
gebraic. To construct a non-algebraic maximal ideal, take any ultra-ring admitting
a maximal ideal which is not an ultra-ideal (see Exercise 7.5.2 for an example); its
pre-image in the product is then non-algebraic by the previous argument. Although
one could replace the maximal ideal M in the above construction by an arbitrary
prime ideal containing A(∞), I do not know what this more general notion of cat-
aproduct would entail. In any case, an algebraic prime ideal is always maximal (see
Exercise 11.3.13).

Corollary 11.1.8. If there is a uniform bound on the number of generators of the
maximal ideals of all Aw, then any algebraic cataproduct is Noetherian.

Proof. With notation as in the previous proof, mA\ is finitely generated by Łos’ The-
orem, whence so is mA]. The result now follows from Theorems 6.4.2 and 6.4.4,
since A] is complete by Theorem 11.1.7. ut

The corollary applies in particular to the approximations Aw of an affine algebra
A over a Lefschetz field (see Chapter 7), for if A is generated by at most n elements,
then so is almost each Aw, and, by the Nullstellensatz, each maximal ideal is then
generated by at most n elements (Exercise 2.6.25).

Dimension theory for cataproducts. From a model-theoretic point of view, Łos’
Theorem explicates which properties are preserved in ultraproducts: any first-order
one. Since cataproducts are residue rings, they, therefore, inherit any positive first-
order property from their components (Exercise 11.3.15). However, we do not want
to derive properties of the cataproduct via a syntactical analysis, but instead use
an algebraic approach. The first issue to address is the way dimension behaves un-
der cataproducts. We already mentioned that the geometric dimension of an ultra-
Noetherian ring can exceed that of its components (see Exercise 11.3.3). The same
phenomenon occurs for cataproducts because we have:

11.1.9 For an ultra-Noetherian local ring (R\,m) its geometric dimension is
equal to the dimension of its separated quotient R], that is to say, ul-
traproduct and cataproduct have the same geometric dimension.
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Let x := (x1, . . . ,xd) be a system of parameters in R\ (recall that this means that
(x1, . . . ,xd)R\ is an m-primary ideal, with d the geometric dimension of R\). So
S\ :=R\/xR\ is an Artinian local ring, whence must be equal to its separated quotient
S] (see Exercise 11.3.5). By Proposition 11.1.6, we have S] = R]/xR], showing that
R] has geometric dimension at most d. Since R] is Noetherian by Theorem 11.1.4, it
has dimension at most d by Theorem 3.4.2. Moreover, we may reverse the argument,
for if S] is Artinian, then necessarily S\ = S] (again by Exercise 11.3.5). ut

To investigate when the dimension of a cataproduct is equal to the dimension of
almost all of its approximations, we need to introduce a new invariant.

Definition 11.1.10 (Parameter degree). Given a local ring (R,m) of finite embed-
ding dimension, its parameter degree, denoted pardeg(R), is by definition the least
possible length of the residue rings R/xR, where x runs over all systems of parame-
ters.

Note that by definition of geometric dimension, the parameter degree of R is
always finite. Closely related to this invariant, is the degree4 degR(x) of an element
x ∈ R, defined as follows: if x is a unit, then we set degR(x) equal to zero, and if
x is not a parameter, then we set degR(x) equal to ∞; in the remaining case, we
let degR(x) be the parameter degree of R/xR. In Exercise 11.3.6, you are asked to
prove:

11.1.11 Let R be a d-dimensional Noetherian local ring, or more generally, a
local ring of geometric dimension d, and let x ∈ R. Then the degree of x
is equal to the minimal length of any residue ring of the form R/(xR+ I),
where I runs over all ideals generated by d−1 non-units.

In [54, Proposition 2.2 and Theorem 3.4] we prove the following generalization of
Theorem 11.1.4: the completion of a local ring R of finite embedding dimension is
Noetherian, and has dimension equal to the geometric dimension d of R; moreover,
both rings have the same Hilbert polynomial whence their Hilbert dimension is also
d by Theorem 3.4.2. We define the multipliciy of R to be the leading coefficient
of its Hilbert polynomial times d! (this coincides with the classical definition in the
Noetherian case). The multiplicity of R is always at most its parameter degree, and
provided R is Noetherian with infinite residue field, both are equal if and only if R is
Cohen-Macaulay (see [49, Lemma 3.3] for the Noetherian case, and [54, Lemma
6.10] for a generalization).

Theorem 11.1.12. Let Rw be d-dimensional Noetherian local rings of embedding
dimension at most e. Their cataproduct R] has dimension d if and only if almost all
Rw have bounded parameter degree (that is to say, pardeg(Rw)≤ r, for some r and
for almost all w).

Proof. Assume that almost all Rw have parameter degree at most r, so that their
exists a d-tuple xw in Rw such that Sw := Rw/xwRw has length at most r. Hence the
cataproduct S] has length at most r by Exercise 11.3.5. By Proposition 11.1.6, the

4 Hopefully, this will not cause confusion with the notion degree of a polynomial, as the former is
always used in a local context and the latter in an affine context.
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cataproduct S] is isomorphic to R]/xR], where x is the ultraproduct of the xw. Hence
R], being Noetherian by Theorem 11.1.4, has dimension at most d by Theorem 3.4.2,
whence equal to d by Exercise 11.3.1.

Conversely, suppose R] has dimension d, and let x be a system of parameters of
R]. Let r be the length of R]/xR]. Let xw be approximations of x. By Exercise 11.3.5,
almost all Rw/xwRw have length at most r. It follows that almost each xw is a system
of parameters, and hence that Rw has parameter degree at most r. ut

Catapowers. We can apply this to catapowers. In the next result, the first state-
ment is immediate from Theorem 11.1.4 and Proposition 11.1.6; the second follows
immediately from Theorem 11.1.12.

Corollary 11.1.13. Let R be a Noetherian local ring with catapower R]. For any
ideal I ⊆ R, the catapower of R/I is R]/IR]. Moreover, R and R] have the same
dimension. ut

Corollary 11.1.14. The catapower of a regular local ring is again regular (of the
same dimension).

Proof. Let (R,m) be a d-dimensional regular local ring. If d = 0, then R is a field,
and R] is equal to the ultrapower R\ whence a field. So we may assume d > 0. Let
x be a minimal generator of m. Hence R/xR is regular of dimension d− 1, so that
by induction, its catapower is also regular of dimension d− 1. But this catapower
is just R]/xR] by Corollary 11.1.13. It follows that mR] is generated by at most d
elements. Since R] has dimension d by Corollary 11.1.13, it is regular. ut

Flatness of catapowers. To further explore the connection between a ring and its
catapower, we require a flatness result.

Theorem 11.1.15. For each Noetherian local ring R, the induced homomorphism
R→ R] into its catapower R] is faithfully flat.

Proof. Since R→ R] is local, we only need to verify flatness. Moreover, since R] is
complete by Theorem 11.1.4, we get (R̂)] = R] by a double application of 11.1.3,
whence an induced homomorphism R̂→ R]. As R→ R̂ is flat by Theorem 6.3.5, we
only need to show that R̂→ R] is flat, and hence we may already assume that R is
complete.

Suppose first that R is moreover regular. By Corollary 11.1.14, so is then R].
In particular, the generators of m are R]-regular, so that R] is flat over R by Theo-
rem 5.6.9. For R arbitrary, note that R = S/I for some regular local ring S and some
ideal I ⊆ S by Theorems 6.4.2 and 6.4.4. By our previous argument the ultrapower
S] of S is flat, whence so is R = S/I→ S]/IS] = R] by 5.2.3 (where we used Corol-
lary 11.1.13 for the last equality). ut

The reader who is willing to use some heavier commutative algebra can prove the
following stronger fact:

Corollary 11.1.16. If R is an excellent local ring, then the natural map R→ R] is
regular.
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Proof. For the notion of excellence and regular maps, see [30, §32]. By Theo-
rem 11.1.15, the map R→ R] is flat. It is also unramified, in the sense that mR]

is the maximal ideal of R]. If R is a field k, then R] is just its ultrapower k\. Using
Maclane’s criterion for separability, one shows that the extension k→ k\ is separa-
ble (Exercise 1.6.20). For R arbitrary, this shows in view of Corollary 11.1.13 that
R→ R] induces a separable extension of residue fields. Hence R→ R] is formally
smooth by [30, Theorem 28.10], whence regular by [1]. ut

We can now generalize the fact that catapowers preserve regularity (Corol-
lary 11.1.14) to:

Corollary 11.1.17. If R is an excellent local ring, then R is regular, normal, reduced
or Cohen-Macaulay, if and only if R] is.

Proof. Immediate from Corollary 11.1.16 and the fact that regular maps preserve
these properties in either direction (see [30, Theorem 32.2]). ut

Corollary 11.1.18. If R is a complete Noetherian local domain, then so is its cat-
apower R].

Proof. Let S be the normalization of R (that is to say, the integral closure of R inside
its field of fractions). By [30, §33], the extension R⊆ S is finite, and S is also a com-
plete Noetherian local ring. I claim that the induced homomorphism of catapowers
R]→ S] is again finite and injective. Since S] is normal by Corollary 11.1.17, it is a
domain, whence so it its subring R].

So remains to prove the claim. By the weak Artin-Rees Lemma applied to the
finite R-module S (see Exercise 11.3.4), we can find for each m a bound e(m) such
that me(m)S∩R⊆mm. Let n be the maximal ideal of S. Since S/mS is finite over R/m
by base change, it is Artinian, and hence nl ⊆mS for some l. Together with the weak
Artin-Rees bound, this yields

nle(m)∩R⊆mm (11.4)

for all m.
Let S\ be the ultrapower of S, so that S\ is a finite R\-module. The inclusion

IR\
⊆ IS\ ∩R\ is clear, and we need to prove the converse, for then R]→ S] will be

injective. So let z ∈ R\ be be such that it is an infinitesimal in S\, and let zw ∈ R be
approximations of z. Fix some m. Since z ∈ nle(m)S\, by Łos’ Theorem zw ∈ nle(m) for
almost all w, whence zw ∈ mm by (11.4). By another application of Łos’ Theorem,
we get z ∈ mmR\, and since this holds for all m, we get z ∈ IR\

, as we wanted to
show. ut

Theorem 11.1.19. Let R be a Noetherian local ring of equal characteristic, with
residue field k, and let R] and k] be their respective catapowers. Then R] is isomor-
phic to the complete scalar extension R k̂]

over k].

Proof. Since a ring and its completion have the same complete scalar extensions,
we may assume R is complete. By Cohen’s structure theorem, R is a homomorphic
image of a power series ring k[[ξ ]], with ξ an n-tuple of indeterminates. Since com-
plete scalar extensions (by (6.6)) as well as catapowers (Corollary 11.1.13) com-
mute with homomorphic images, we may assume R = k[[ξ ]]. So remains to show
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that R]
∼= k][[ξ ]]. However, this is clear by Theorem 6.4.5, since R] is regular by

Corollary 11.1.14, with residue field k], having dimension n by Corollary 11.1.13.
ut

11.2 Uniform behavior

In Chapter 7 we amply illustrated how ultraproducts can be used to prove several
uniformity results. This section contains more results derived by this technique.

Weak Artin-Rees. The Artin-Rees lemma is an important tool in commutative al-
gebra, especially when using ‘topological’ arguments. Its proof is not that hard, but
we have not given it in these notes. However, there is a weaker form of Artin-Rees,
which is often really the only property one uses (a notable exception is the proof of
Theorem 3.4.2) and which we can now prove easily by non-standard methods.

Theorem 11.2.1. Let (R,m) be a Noetherian local ring, and let a ⊆ R be an ideal.
For each l, there exists e := e(a, l) such that

a∩me ⊆mla.

Proof. Suppose not, so that for some l, none of the intersections a∩mn is contained
in mla. Hence we can find elements an ∈ a∩mn outside mla. Let R\ and R] be the
respective ultrapower and catapower of R. The canonical homomorphisms R→ R\

and R→ R] are both flat by Corollary ?? and Theorem 11.1.15 respectively. Since
R] = R\/IR, the intersection criterion, Theorem 5.6.4, yields aR\ ∩IR = aIR. Let
a be the ultraproduct of the an, so that by Łos’ Theorem, a ∈ aR\ ∩IR = aIR. The
latter ideal is in particular contained in amlR\, and hence by Łos’ Theorem once
more, an ∈mla for almost all n, contradiction. ut

Uniform arithmetic in a complete Noetherian local ring. In what follows, our in-
variants are allowed to take values in N := N∪{∞}. To an n-ary N-valued function
F : Nn → N, we associate its extension at infinity, defined as the map F̄ : Nn → N
sending any tuple outside Nn to ∞. Any such extended map will be called a numer-
ical function. By the order ordR(x) of an element x in a local ring (R,m) we mean
the supremum of all m such that x ∈ mm (so that in particular ordR(x) = ∞ if and
only if x∈ IR; in the terminology of page 93, the order of x is the negative logarithm
of its adic norm).

Theorem 11.2.2. A complete Noetherian local ring R is a domain if and only if there
exists a binary function F such that

ordR(xy)≤ F̄(ordR(x),ordR(y)) (11.5)

for all x,y ∈ R.
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Proof. Assume first that (11.5) holds for some F . If x and y are non-zero, then their
order is finite by Theorem 3.3.4. Hence F̄(ord(x),ord(y)) is finite by definition of
F . In particular, xy must be non-zero, showing that R is a domain.

Conversely, assume towards a contradiction that no such function F can be de-
fined on a pair (a,b) ∈ N2. This implies that there exist for each n, elements xn and
yn in R of order at most a and b respectively, but such that their product xnyn has
order at least n. Let R\ and R] be the ultrapower and catapower of R respectively, and
let x and y be the ultraproducts of xn and yn respectively. It follows from Łos’ Theo-
rem that ordR\

(x)≤ a and ordR\
(y)≤ b, and hence in particular, x and y are non-zero

in R]. By Corollary 11.1.18, the catapower R] is again a domain. In particular, xy
is a non-zero element in R], and hence has finite order, say, c, by Theorem 3.3.4.
However, then also ordR\

(xy) = c whence ordR(xnyn) = c for almost all n by Łos’
Theorem, contradiction. ut

Remark 11.2.3. Theorem 11.2.2 is classically proven by a valuation argument. By
[59, Theorem 3.4] and [25, Proposition 2.2], we may take F linear, or rather, of the
form F(a,b) := cmax{a,b}, for some c ∈ N (one usually expresses this by saying
that R has c-bounded multiplication).

Theorem 11.2.4. A d-dimensional Noetherian local ring (R,m) is Cohen-Macaulay
if and only if there exists a binary function G such that

ordR/I(xy)≤ Ḡ(degR/I(x),ordR/I(y)) (11.6)

for all x,y ∈ R and all ideals I ⊆ R generated by part of a system of parameters of
length d−1.

Proof. Suppose a function G satisfying (11.6) exists, and let (z1, . . . ,zd) be a system
of parameters in R. Fix some i and let y ∈ (J : zi+1) with J := (z1, . . . ,zi)R. We need
to show that y ∈ J. For each m, let Im := J+(zm

i+2, . . . ,z
m
d )R, and put x := zi+1. Since

xy ∈ J ⊆ Im, the left hand side in (11.6) for I = Im is infinite, whence so must the
right hand side be. However, x is a parameter in R/Im, and therefore has finite degree.
Hence, the second argument of Ḡ must be infinite, that is to say, ordR/Im(y) = ∞. In
other words, y ∈ Im, and since this holds for all m, we get y ∈ J by Theorem 3.3.4,
as we wanted to show.

Conversely, towards a contradiction, suppose R is Cohen-Macaulay but no such
function G can be defined on the pair (a,b) ∈ N2. This means that there exist el-
ements xn,yn ∈ R and a d − 1-tuple zn which is part of a system of parameters
in R, such that degSn

(xn) ≤ a and ordSn(yn) ≤ b, but xnyn has order at least n in
Sn := R/znR. Let R\ and R] be the respective ultrapower and catapower of R. Since
R is Cohen-Macaulay, so is R] by Corollary 11.1.17 (or Exercise 11.3.7). Let x, y
and z be the ultraproduct of the xn, yn and zn respectively. By Proposition 11.1.6,
the cataproduct of the Sn is equal to S] := R]/zR]. Since each Sn has dimension one,
and parameter degree at most a by assumption on xn, the dimension of S] is again
one by Theorem 11.1.12. Since R] has dimension d by 11.1.9, the d− 1-tuple z is
part of a system of parameters in R], whence is R]-regular by Theorem 4.2.6. This
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in turn implies that S] = R]/zR] is Cohen-Macaulay. Moreover, by Łos’ Theorem,
y has order b in R\/zR\ whence also in S], and x has degree a in S]. In particular, x
is a parameter in S] whence S]-regular. On the other hand, by Łos’ Theorem, xy is
an infinitesimal in R\/zR\, whence zero in S]. Since x is S]-regular, y is zero in S],
contradicting that its order in that ring is b. ut

11.3 Exercises

Ex 11.3.1
Let R be an ultraproduct of d-dimensional Noetherian local rings of embedding dimension
at most e, and let δ be its geometric dimension. Show that d ≤ δ ≤ e.

Ex 11.3.2
Let R\ be an ultra-Noetherian ring and R] its separated quotient. Show that x ∈ R\ is a
parameter if and only if its image in R] is a parameter if and only if it is not contained in
any prime ideal of R\ obtained as the pre-image of a maximal dimensional prime ideal of
R].

Ex 11.3.3
Let Rn := K[[ξ ]]/ξ nK[ξ ] with ξ a single indeterminate over the field K. Show that their
ultraproduct R\ has geometric dimension at least one.

Ex 11.3.4
Given finitely generated modules N ⊆M over a Noetherian local ring (R,m), apply Exer-
cise 5.7.8 to the module M/N and use Theorem 11.2.1 to show that for each m, there exists
e := e(N,M,m) such that N∩meM ⊆mmN.

Ex 11.3.5
Show that the separated quotient of a local ring of finite embedding dimension is Artinian
if and only if the ring itself is Artinian. More generally, show that the ultraproduct of local
rings Rw is Artinian of length l if and only if the cataproduct is Artinian of length l if and
only if almost all Rw are Artinian of length l (see also Exercise 1.6.10).

Ex 11.3.6
Prove 11.1.11.

Ex 11.3.7
Prove without using Corollary 11.1.17, but relying only on Theorem 11.1.15, that a Noethe-
rian local ring is Cohen-Macaulay if and only if its catapower is.
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Ex 11.3.8
Show that a Noetherian local ring R admits a function satisfying (11.5) if and only if its com-
pletion does. Use this to show that one can weaken the assumption on R in Theorem 11.2.2
from being a ‘complete domain’ to being analytically irreducible (meaning that its comple-
tion is a domain).

Ex 11.3.9
Show that if Rw are domains admitting the same function F satisfying (11.5), then so does
their cataproduct, and hence the cataproduct is in particular a domain. Show by a coun-
terexample that the cataproduct of complete Noetherian local domains of fixed dimension
and parmeter degree is not necesarily a domain.

∗Ex 11.3.10
Show that a complete Noetherian local ring is a domain if and only if there is a unary
function H such that degR(x)≤ H̄(ordR(x)) for all x ∈ R.

Additional exercises.

Ex 11.3.11
Let A∞ be the Cartesian product of rings Aw for w ∈W . Show that a prime ideal P of
A∞ induces a countably incomplete ultrafilter ωP under the correspondence given
in §1.5, if and only if there exists a countable partition {Wn} of W , such that the
characteristic function of each Wn (viewed as an element in A∞) belongs to P.

Ex 11.3.12
Show that both definitions of cataproduct (the second definition is given before The-
orem 11.1.7) agree for Noetherian local rings of bounded embedding dimension.

Ex 11.3.13
Show that if P is a prime ideal of the product A∞ := ∏Aw containing a product of
maximal ideals, then P is itself a maximal ideal.

Ex 11.3.14
Prove the following converse of Theorem 11.2.1: if R is a coherent local ring (see
Theorem ??) such that for each finitely generated ideal a⊆ R and each l ∈ N, there
exists some e := e(a, l) such that a∩me ⊆ mla, then R is Noetherian. You will also
need the flatness criterion from Theorem 5.6.4 and the Noetherianity criterion from
Corollary 5.3.6.

Ex 11.3.15
Let ϕ be a positive sentence in the language of rings, that is to say, equivalent with
a quantification of a disjunction of systems of polynomial equations. Show that if ϕ

holds for almost all Rw, then it holds for their cataproduct R].

Ex 11.3.16
Given a Noetherian local ring R, show that R is regular if and only if ordR(x) = degR(x)
for all x ∈ R.
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associated graded module of a ∼, 45
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free, 71
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function field, 37
functor, 27

general linear group, 25
generic, 23, 24, 37
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generic point, 35
global section, 26, 27, 31
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going-up theorem, 53
graded localization, 33
graded module, 42
graded ring, 32, 42
Grassmanian, 28

Hausdorff, 36, 46
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Hensel’s Lemma, 94
Henselian, 95
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Hilbert Basis Theorem, 24
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rationality of ∼, 43, 47
Hilbert-Samuel polynomial, 44, 46, 47, 52, 59
homogeneous, 32, 36, 38
homogeneous coordinate ring, 31, 32, 38
homogeneous ideal, 32, 38
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homology, 69–72
hypersurface, 30, 47

ideal of definition, 18, 32, 36
independent sequence, 64, 66

induced reduced scheme structure, 28
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intersection number, 56
irreducible, 18, 19, 22, 23, 35–37, 58
irreducible component, 18, 23
irreducible decomposition, 18, 36
irrelevant maximal ideal, 32
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Jacobson, 22
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Krull’s Intersection Theorem, 46, 52, 62, 64,

67, 97

Laurent series, 28
length, 42, 48

additivity of ∼, 51
limit, 97
local Z-affine, 20
local ring, 31, 34, 36, 37, 57

morphism, 20, 27, 31
multiple point, see also singularity, 56, 57, 59,

65

Nakayama’s Lemma, 22, 35, 46, 57, 58, 74,
75, 77, 95, 99

Newton’s method, 94
nil-radical, 25, 26
nilpotent, 25, 26
node, 56, 64
Noether normalization, 21, 22, 38, 51, 53, 65
∼ for complete local rings, 91, 102

Noetherian, 19, 24, 37, 42
Noetherian induction, 18
Noetherian space, 18, 23, 36
non-singular, 35
non-zero divisor, see under regular element
null-sequence, 97
Nullstellensatz, 19, 21, 28, 39, 58

open affine covering, 31
open immersion, 31

parabola, 37
parameter, 50, 52, 60

regular system of ∼s, 58
system of ∼s, 49, 50, 52, 58, 60–64

parameter ideal, 49
plane curve, 55
point at infinity, 59
power series, 65
prime avoidance, 48, 62
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prime filtration, 73
Principal Ideal Theorem, 49
product, 39
projectification, 59, 66
projective, 71, 74
∼ module is flat, 71

projective n-space, 31
projective dimension, 64, 77, 78, 83
projective resolution, 71, 72, 76

minimal ∼, 77
projective scheme, 31, 33, 36
projective variety, 32, 59
punctured plane, 31, 36

quasi-regular sequence, see under regular
sequence

radical, 28
radical ideal, 18
radical of an ideal, 18
rational point, 30, 39
reduced, 18, 20
regular element, 60
regular local ring, 46, 57, 58, 61, 65, 99
regular ring, 58, 66, 79
regular sequence, 60–62, 64, 67

permutable ∼, 61, 67, 83

quasi-∼, 66, 67
residue field, 26, 34, 37
restriction map, 27

scheme, 31
scheme-theoretic intersection, 28, 29
section, 26, 33, 35
sheaf, 25, 27, 34
simple point, see also regular point, 56, 65
singularity, 35, 55, 57, 61, 65
stalk, 36
standard graded algebra, 32, 33, 58
standard graded ring, 42
structure map, 27
structure sheaf, 27, 31, 33
system of parameters, see parameter
syzygy, 74, 79

tangent line, 56, 57
tangent space, 34, 38, 56, 57

universal property, 39, 98
unmixed, 67

Zariski closed, 17, 19
Zariski open subset, 25
Zariski topology, 17, 23, 36
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1. André, M.: Localisation de la lissité formelle. Manuscripta Math. 13, 297–307 (1974) 178
2. Artin, M.: Algebraic approximation of structures over complete local rings. Inst. Hautes
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