
Appendix A
Henselizations

In this appendix, I have gathered some facts about Henselizations that can be
found scattered in the literature (some sources dealing more extensively with
Henselizations are [70, 71, 77, 106]). Hensel observed that solving an equation
over the p-adics can be reduced to finding a root in the residue field, provided
this root is simple. This property, now known as Hensel’s Lemma—and a ring
satisfying it, is called Henselian—, extends easily to any complete local ring; see
Theorem A.1.1. Although any Noetherian local ring admits a uniquely defined,
smallest complete overring, its completion—which inherits many of the good
properties of the original ring, and in particular is Henselian—, the process intro-
duces transcendental elements. The Henselization of a local ring is much closer
to it than its completion, since it is a direct limit of finite etale extensions. As
Eisenbud remarks

“. . . [i]t can thus be used to give the same microscopic view of a variety as the comple-
tion, but without passing out of the category of algebraic varieties.”

[27, p. 186]

The main objective of this appendix is to give a direct construction of the
Henselization which, to my knowledge, never appeared in print.1

A.1 Hensel’s Lemma

A very important algebraic tool in studying local properties of a variety, or equiv-
alently, properties of Noetherian local rings, is the completion R̂ of a Noetherian
local ring R. It is again a Noetherian local ring, which inherits many of the prop-
erties of the original ring, and in fact, there is natural homomorphism R → R̂,
which is flat and unramified (recall that the latter means that the maximal ideal of

1 Jan Denef, who was my promotor at the time, suggested the construction to me in 1981, which
I then subsequently worked out and wrote up as part of my license thesis [87].
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R extends to the maximal ideal of its completion R̂). Whereas there is no known
classification of arbitrary Noetherian local rings, we do have many structure the-
orems, due mostly to Cohen, for complete Noetherian local rings. In particular,
the equal characteristic complete regular local rings are completely classified by
their residue field k and their dimension d: any such ring is isomorphic to the
power series ring k[[ξ1, . . . ,ξd ]]. Also extremely useful is the fact that we have an
analogue of Noether normalization for complete Noetherian local domains: any
such ring admits a regular subring over which it is finite. Another nice property
of complete local rings is the following formal version of Newton’s method for
finding approximate roots.

Theorem A.1.1 (Hensel’s Lemma). Let (R,m) be a complete local ring with residue
field k. Let f ∈ R[t] be a monic polynomial in the single variable t, and let f̄ ∈ k[t]
denote its reduction modulo mR[t]. For every simple root u ∈ k of f̄ = 0, we can find
a ∈ R such that f (a) = 0 and u is the image of a in k.

Proof. Let a1 ∈ R be any lifting of u. Since f̄ (u) = 0, we get f (a1)≡ 0 mod m. We
will define elements an ∈R recursively such that f (an)≡ 0 mod mn and an ≡ an−1
mod mn−1 for all n > 1. Suppose we already defined a1, . . . ,an satisfying the above
conditions. Consider the Taylor expansion

f (an + t) = f (an)+ f ′(an)t +gn(t)t2 (A.1)

where gn ∈ R[t] is some polynomial. Since the image of an in k is equal to u, and
since f̄ ′(u) &= 0 by assumption, f ′(an) does not lie in m whence is a unit, say, with
inverse un. Define an+1 := an− un f (an). Substituting t = −un f (an) in (A.1), we
get

f (an+1) ∈ (un f (an))2R⊆m2n,

as required.
To finish the proof, note that the sequence an is by construction Cauchy, and

hence by assumption admits a limit a∈ R (whose residue is necessarily again equal
to u). By continuity, f (a) is equal to the limit of the f (an) whence is zero. ()

There are sharper versions of this result, where the root in the residue field need
not be simple (see [27, Theorem 7.3]), or even involving systems of equations (see
[13, §4.6]; but see also the next section).

A local ring satisfying the hypothesis of the above theorem is normally called a
Henselian ring, although we will deviate from that practice in the next section. For
some equivalent definitions, we refer once more to the literature [70, 71, 77, 106].
From a model-theoretic point of view, it is more convenient to work with
Henselian local rings than with complete ones, since they form a first-order de-
finable class (as is clear from the defining condition).

As with completion, there exists a ‘smallest’ Henselian overring. More pre-
cisely, for each Noetherian local ring R, there exists a Noetherian local R-algebra
R∼, its Henselization, satisfying the following universal property: any local ho-
momorphism R→ H with H a Henselian local ring, factors uniquely through an
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R-algebra homomorphism R∼ → H. Below, we will show the existence of such a
Henselization by giving a concrete construction of R∼. Note that Theorem A.1.1
and the universal property imply that R∼ is a subring of R̂, and in particular, the
latter is the completion of the former.

A.2 Construction of the Henselization

Let (R,m) be a Noetherian local ring. By a Hensel system over R of size N, we mean
a pair (H ,a) consisting of a system H (t) of N polynomial equations h1, . . . ,hN ∈
R[t] in the N unknowns t := (t1, . . . , tN), and an approximate solution a modulo
m in R (meaning that hi(a) ≡ 0 mod m for all i), such that associated Jacobian
matrix

Jac(H ) :=





∂h1/∂ t1 ∂h1/∂ t2 . . . ∂h1/∂ tN
∂h2/∂ t1 ∂h2/∂ t2 . . . ∂h2/∂ tN

...
...

. . .
...

∂hN/∂ t1 ∂hN/∂ t2 . . . ∂hN/∂ tN




(A.2)

evaluated at a is invertible over R, that is to say, the Jacobian determinant
det(Jac(H )) evaluated at a is a unit in R. We express the latter condition also
by saying that a is a non-singular approximate solution. An N-tuple s in some lo-
cal R-algebra S is called a solution of the Hensel system (H ,a), if it is a solution
of the system H and s ≡ a mod mS. Note that (H ,s) is then a Hensel system
over S, and therefore, we sometimes call H a Hensel system, without mentioning
the (approximate) non-singular solution. A Hensel system of size N = 1 is just a
Hensel equation together with a solution in the residue field, as in the statement
of Hensel’s lemma. In fact, R satisfies Hensel’s lemma if and only if any Hensel
system over R has a solution in R. The proof of this equivalence is not that easy
(one can give for instance a proof using standard etale extensions as in [70]).

Instead, we alter out definition by calling a local ring R Henselian, if any Hensel
system (of any size) over R has a solution in R. In conclusion, being Henselian in
the new sense implies that in the old sense, and the converse also holds, but is
harder to prove. An easy modification of the proof of Theorem A.1.1, left to the
reader, shows that complete local rings are Henselian in this new sense. In fact,
using multivariate Taylor expansion, we obtain the following stronger version.

A.2.1 Any Hensel system (H ,a) over R admits a unique solution in the comple-
tion R̂. ()

We call an element r ∈ R̂ a Hensel element (over R) if there exists a Hensel
system (H ,a) over R such that r is the first entry of the unique solution of this
system in R̂. We will express this by saying that H is a Hensel system for r. Note
that if r = (r1, . . . ,rN) is a solution of a Hensel system H over R, then any ri is
a Hensel element. This is true by definition for r1. For i > 1, let H ′ be obtained
by interchanging the unknowns t1 and ti, as well as, h1 with hi. It follows that H ′
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is a Hensel system for (ri,r2, . . . ,ri−1,r1,ri+1, . . . ,rN), showing that ri is a Hensel
element.

Let R∼ be the subset of R̂ of all Hensel elements. For given Hensel ele-
ments r and r′, we construct from their associated Hensel systems (H (t),a) and
(H ′(t ′),a′) of size N and N′ respectively, a new Hensel system for r+r′ as follows:
let N′′ := N + N′+ 1, let t ′′ be the N′′-tuple of unknowns (u, t, t ′), with u a single
variable, and consider the system H ′′ of N′′ equations in t ′′ given by the equation
u = t1 +t ′1, and the systems H (t) and H ′(t ′). One checks that (H ′′,a1 +a′1,a,a′)
is a Hensel system—since its Jacobian determinant is the product of the Jacobian
determinants of H and H ′—whose unique solution in R̂ has first entry equal to
r + r′, showing that the latter is again a Hensel element. The same argument can
be used to prove that the product of Hensel elements is again a Hensel element.
With little effort one actually shows:

A.2.2 The collection of all Hensel elements is a local ring R∼ with maximal ideal
mR∼. Moreover, R∼ is Henselian, with completion equal to R̂.

Indeed, let m∼ := mR̂∩R∼. To show that R∼ is local with maximal ideal m∼,
it suffices to show that any element r ∈ R∼ not in m∼ is a unit in R∼. Since r
does not belong to mR̂, it has an inverse in R̂. Using an auxiliary variable u and
the equation t1u = 1, it is now not hard to show that 1/r is an Hensel element.
In particular, R, R∼ and R̂ all have the same residue field k. To prove that R∼
is Henselian, we must verify the multivariate Hensel lemma, that is to say, let
(H̃ (t),a) be a Hensel system over R∼. Since R∼ and R have the same residue
field, we may choose a in R. By A.2.1, there exists a unique solution r over R̂ of
this Hensel system. Remains to show that r has its entries already in R∼, and to
this end, it suffices by the above discussion to construct a Hensel system over R
of which r is part of a solution.

Let s = (s1, . . . ,sd) be the tuple of coefficients in R∼ of the equations H̃ (listed
in a fixed order), and let H (t,u) be obtained from H̃ by replacing each of these
coefficients by a new variable ui, so that H̃ (t) = H (t,s). For each si, choose
bi ∈ R such that si ≡ bi mod mR̂. Let (Hi(ui, ti),(bi,ci)) be a Hensel system for
each Hensel element si, with ti a finite tuple of auxiliary unknowns and ci a tu-
ple of the corresponding length in R, for i = 1, . . . ,d. One easily checks that the
system G in the unknowns t,u1, t1, . . . ,ud , td at the tuple c := (a,b1,c1, . . . ,bd ,cd)
given by H and all Hi is a Hensel system, since the Jacobian determinant of
(G ,c) is the product of the Jacobian determinants of (H ,a) and the (Hi,(bi,ci)).
By A.2.1, the unique solution of this Hensel system in R̂ must be of the form
(r,s1,r1, . . . ,sd ,rd), for some ri in R̂, showing that r ∈ R∼. ()

It is unfortunately less easy to prove that R∼ is also Noetherian, and we post-
pone the discussion until after we proved our main result:

Theorem A.2.3. The ring R∼ satisfies the universal property of Henselization: any
Henselian local R-algebra S admits a unique structure of R∼-algebra.
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Proof. We need to show that there exists a (unique) R-algebra homomorphism
R∼ → S. Given r ∈ R∼, let (H ,a) be a Hensel system admitting a solution with
first entry r. Since a is an approximate solution of H in R, it remains so in S.
By (the revised) definition of Henselian, the approximate solution a lifts uniquely
to a solution s in S. We define the image of r in S now as the first entry of this
solution s. Uniqueness guarantees firstly that this is an R-algebra homomorphism,
an secondly that it is unique. ()

Returning to the issue of Noetherianity, we will use the local flatness criterion
discussed §3.3.6. We start with the flatness of the Henselization:

Proposition A.2.4. For any ideal I ⊆ R, the Henselization of R/I is isomorphic to
R∼/IR∼. Moreover, R → R∼ is faithfully flat, whence a scalar extension, and R∼ is
ind-Noetherian.

Proof. Let S := R/I. It is not hard to show that any homomorphic image of
a Henselian local ring is again Henselian. Hence R∼/IR∼ is Henselian, and
the universal property of Henselizations then yields a unique homomorphism
S∼ → R∼/IR∼. The composition of this homomorphism with R∼/IR∼ → R̂/IR̂
is injective, since the latter is the completion of S. Hence S∼ → R∼/IR∼ must also
be injective. To prove surjectivity, let r ∈ R∼ and let H be a Hensel system for r.
The reduction modulo I of this Hensel system therefore has a unique solution in
S∼, and by uniqueness, the first entry of this solution must map to the image of r
in R∼/IR∼. This proves the first assertion, and in particular that IR̂∩R∼ = IR∼,
for any ideal I ⊆ R. The second assertion then follows from the flatness of R→ R̂
and Corollary 3.3.15. Since R→ R∼ is unramified by A.2.2, it is therefore a scalar
extension (see §3.2.3).

So remains to show that R∼ is ind-Noetherian (defined after Corollary 3.3.22).
Let x be a finite tuple in R∼. As already remarked before, we can find a Hensel
system H (t) over R such that x is part of its unique solution. Hence, if Sx is
the localization of R[t]/(H ) with respect to the ideal generated by m, then x is
already a tuple in Sx. It follows from the construction of R∼, that S∼x = R∼. In
particular, Sx → R∼ is a scalar extension by what we just proved, and R∼ is the
direct limit of the Sx. ()

Theorem A.2.5. The Henselization of a Noetherian local ring is again Noetherian.

Proof. It suffices to show that R∼ → R̂ is faithfully flat, since R̂ is Noetherian. To
obtain flatness, it suffices in view of Corollary 3.3.25 and Proposition A.2.4 to
show that TorR∼

1 (R̂,k) = 0, where k is the residue field of R. To this end, let

Rm → Rn → R→ k→ 0 (A.3)

be an exact sequence. By Proposition A.2.4, tensoring with R∼ yields an exact
sequence

(R∼)m → (R∼)n → R∼ → k→ 0.
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By definition, TorR∼
1 (R̂,k) is the homology of the complex obtained from tensor-

ing this exact sequence with R̂, that is to say, of the complex

(R̂)m → (R̂)n → R̂→ k→ 0.

However, this latter complex is actually exact since it is obtained from tensoring
(A.3) with the flat extension R̂, showing that TorR∼

1 (R̂,k) = 0. ()

A.3 Etale proto-grade

We conclude with a proto-graded version of the previous construction by con-
structing a proto-grading on the Henselization of a proto-graded Noetherian local
ring (R,m), and giving conditions under which this proto-grading is Noetherian
and faithfully flat. Define a proto-grading on R∼ by the condition that a Hensel
element y ∈ R∼ has proto-grade at most n if it admits a Hensel system (H ,u) of
length N ≤ n, in which all polynomials have degree at most n, and all coefficients
as well as all entries of u have proto-grade at most n.

A.3.1 This yields a proto-grading on R∼, called the etale proto-grading on R∼,
extending the proto-grading on R. Moreover, R → R∼ is a morphism of
proto-graded rings.

The fact that this is a proto-grading follows from the proof that R∼ is a ring,
since we explicitly constructed Hensel systems for sums, products, and inverses
(of units). Since t−a is a Hensel system of a ∈ R, its etale proto-grade is equal to
its proto-grade in R, and the last assertion is now immediate. ()

The following result enables us to calculate protopowers:

Proposition A.3.2. If R is a proto-graded Noetherian local ring and R∼ is viewed
with its etale proto-grading extending the proto-grading on R, then we have an iso-
morphism

(R∼)! ∼= (R!)∼.

Proof. A special instance of the above isomorphism is the fact that if R is
Henselian, then so is R!. We prove this first, and so, let (H ,u) be a Hensel system
over R! of proto-grade at most n, say. Choose approximations H w and uw over R
of proto-grade at most n, with respective ultraproduct H and u. By Łoś’ Theo-
rem, almost all (H w,uw) are Hensel systems. Since R is Henselian by assumption,
these Hensel systems have a (unique) solution xw. By definition, the xw have etale
proto-grade at most n, and hence their ultraproduct x lies in R!. By Łoś’ Theorem,
x is then a solution of the Hensel system (H ,u).

Let R now be an arbitrary proto-graded Noetherian local ring. The embedding
R → R∼ induces an embedding R! → (R∼)!. By our previous argument, (R∼)!
is Henselian, whence by the universal property of a Henselization, we have a
unique R!-algebra embedding (R!)∼ → (R∼)!. To see that this is surjective, let x be
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an element in (R∼)!, say of etale proto-grade at most n. Choose an approximation
xw ∈ R∼ of proto-grade at most n. Hence, almost each xw is the first entry of the
unique solution xw of a Hensel system (H w,uw) over R of proto-grade at most n.
Since the ultraproduct (H ,u) of the (H w,uw) is a Hensel system of proto-grade
at most n, whence defined over R!, the ultraproduct x of the xw is a solution of
etale proto-grade at most n, belonging therefore to (R!)∼. Since x is its first entry,
x ∈ (R!)∼, as we wanted to show. ()

Theorem A.3.3. If R is a local ring with a Noetherian proto-grading, then the etale
proto-grading on R∼ is also Noetherian. If R is moreover regular and the proto-grading
on R is faithfully flat, then the etale proto-grading on R∼ is also faithfully flat.

Proof. The first assertion follows from Proposition A.3.2 and Theorem A.2.5. To
prove the second assertion, assuming that (R,m) is moreover regular, we first show
that R! is also regular, by induction on the dimension d of R. Since the proto-grade
is faithfully flat, (R/I)! = R!/IR! for all ideals I ⊆ R by 9.1.7. Applied to I = x1R,
where m = (x1, . . . ,xd)R, we have by induction that (R/x1R)! = R!/x1R! is regular,
whence so is R!, since x1 is R!-regular (as R → R! is flat). Since R! → (R!)∼ is a
scalar extension by Proposition A.2.4, also (R!)∼ is regular by 3.2.14. Hence, in
view of Proposition A.3.2, we proved that (R∼)! is regular. Since (x1, . . . ,xd) is
an (R∼)"-regular sequence by the flatness of R∼ → (R∼)" (using Theorem A.2.5
and Corollary 3.3.3), the Cohen-Macaulay criterion for flatness (Theorem 3.3.9)
together with Proposition 3.3.8, yields the desired flatness of (R∼)! → (R∼)". ()

Let k be a field and ξ a finite tuple of indeterminates. For simplicity, we denote
the Henselization of the localization of k[ξ ] with respect to the variables also by
k[ξ ]∼. A power series f ∈ k[[ξ ]] is called algebraic if it is a root of a non-zero
polynomial in one variable with coefficients in k[ξ ]. We denote the subring of
algebraic power series by k[[ξ ]]alg. The following result is well-known (see, for
instance, [3, 77]).

A.3.4 For any field k, the ring k[[ξ ]]alg is equal to the Henselization k[ξ ]∼ of
k[ξ ]m, where m is the maximal ideal generated by the indeterminates.

In particular, viewing k[ξ ] with its affine proto-grade given by degree (see
(9.1.1.i)), we get an etale proto-grade on k[[ξ ]]alg: an algebraic power series f has
proto-grade at most n, if there exists a Hensel system in k[ξ , t] for f of size at
most n, such that the total degree of each polynomial in the system is at most n.
Theorem 9.2.11, in conjunction with Theorem A.3.3 and Corollary 9.2.4, applied
to this etale proto-grade on the ring of algebraic power series, immediately yields:

Theorem A.3.5. For each pair (n,m) there exists a uniform bound n′ := n′(n,m) with
the property that if k is an arbitrary field, R := k[[ξ ]]alg the ring of algebraic power
series with ξ an m-tuple of indeterminates, and I := ( f1, . . . , fs)R an ideal generated
by elements fi of etale proto-grade at most n, then I is generated by at most n′ of the
fi, and its module of syzygies is generated by n′ syzygies with entries of proto-grade at
most n′. Moreover, if f ∈ I has etale proto-grade at most n, then there exist algebraic
power series gi of etale proto-grade at most n′ such that f = g1 f1 + · · ·+ fsgs. ()


