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PROLEGOMENA TO O-MINIMALISM: DEFINABLE COMPLETENESS, TYPE
COMPLETENESS, AND TAMENESS

HANS SCHOUTENS

Abstract. An ordered structure is called o-minimalistic if it has all the first-order features of an o-minimal
structure. In this paper, we concentrate on a well-known fragment DCTC (Definable Completeness/Type Com-
pleteness) and generalize o-minimal properties to this more general situation (dimension theory, monotonicity,
Hardy structures, quasi-cell decomposition) upon replacing finiteness by discreteness in all of these. Failure of
cell decomposition leads to the related notion of a tame structure.

§1. Introduction. O-minimality has been studied extensively (see [9] for some of
the literature). It also has been generalized in many ways (weak o-minimality, quasi-o-
minimality, d-minimality, local o-minimality, o-minimal open cores, etc.) These gen-
eralizations attempt to bring into the fold certain ordered structures that fail some of
the good finiteness properties of o-minimality, but still behave tamely.1 We propose a
different perspective, noting that, contrary to ultrapowers, ultraproducts of o-minimal
structures need no longer be o-minimal; let us call them ultra-o-minimal. This leads
to two natural questions: (i) under which conditions on the o-minimal components is
an ultra-o-minimal structure again o-minimal? And (ii), what properties do ultra-o-
minimal structures have? We give an answer to (i) in [7, Theorem 3.20], but in this
paper we will be only concerned with (ii).

Given a language L with an order relation, let T omin := T omin(L) be the intersec-
tion of the theories of all o-minimal L-structures. Models of T omin will be called o-
minimalistic; they are precisely the elementary substructures of ultra-o-minimal ones.
O-minimalism is in essence a non-standard feature, as any o-minimalistic expansion of
the reals is already o-minimal (Corollary 2.4). The present paper is intended as a pre-
liminary to the study of o-minimalism, as we restrict our study to two well-known, ele-
mentary consequences of o-minimality, definable completeness (=every definable subset
has an infimum) and type completeness2 (=every one-sided type of a point, including the
ones at infinity, is complete). We denote these axiom schemes on one-variable definable
sets by DCTC. I do not know whether DCTC is equal to T omin, but in [7], which will
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investigate o-minimalism proper, I will formulate a third o-minimalistic (first-order)
property, the Discrete Pigeonhole Principle (DPP=any definable, injective map from a
discrete set to itself is bijective), which as of yet, I do not know how to derive from
DCTC. In fact, it is not clear if we can axiomatize o-minimalism by first-order condi-
tions on one-variable formulae only (note that DPP is a priori not of this form).

We show that the weaker theory DCTC proves already many properties that resemble
those of o-minimal structures, such as the Monotonicity Theorem (Theorem 3.2), Fiber
Dimension Theorem (Corollary 7.2), Quasi-Cell Decomposition (Theorem 8.3), Hardy
structures on germs at infinity (Theorem 6.10), etc. Since some of these have already
been treated by others, we often only give details for two variables, leaving higher
arities to the reader, commenting on it occasionally. As we will argue in [7, §4.7] in
more detail, o-finitism, that is to say, the first-order properties of finite sets in o-minimal
structures, includes discreteness, boundedness, and closedness. Moreover, under the
DCTC assumption, discrete always implies bounded and closed. So, we will have to
substitute ‘discrete’ for ‘finite’ in any of the above properties of o-minimal structures.
Nonetheless, this program does not always pan out. For instance, while decomposing
into cells, we seem to run into infinite disjunctions, leading to the notion of a quasi-
cell, which is only locally a cell. However, there is a large class of definable subsets,
called tame subsets, that have a ‘definable’ cell decomposition, that is to say, loosely
speaking, they admit a cell decomposition in ‘discretely’ many cells (see §9 for the
precise definition). A tame structure is then one in which every definable subset is
tame, and we show that it is always at least a model of DCTC. Any model of DCTC
which is an expansion of a field by one-variable functions is tame.

There is some overlap of the present paper with the preprint [2], independently writ-
ten by Fornasiero. Apart from the additional assumption of an underlying field (which,
as pointed out by the author, is not always necessary), he also derives a Monotonicity
Theorem, develops a good dimension theory, and achieves a decomposition into what
he calls multi-cells. It would be of interest to combine this with our quasi-cell decom-
position theorem, and see whether this eliminates the need for quasi-cells. I am also
grateful for Fornasiero’s comments on an earlier version of this paper.

Notations and conventions. Definable always will mean definable with parameters,
unless stated explicitly otherwise. Throughout this paper, L denotes some language
containing a distinguished binary relation symbol < and any L-structure O will be a
dense linear order without endpoints. We will always view an L-structure in its order
topology in which the basic open subsets are the open (possibly unbounded) intervals.
Note that this is always a Hausdorff topology by density. The Cartesian powers On are
equipped with the product topology, for which the open boxes form a basis, where an
open box is any product of open intervals. We introduce two new symbols −∞ and∞,
and, given an L-structure O, we let O∞ := O ∪ {±∞}. When needed, U denotes some
predicate (often unary), and we will write (O, X) for the L(U)-structure in which X is
the interpretation of U. Recall that the interior Y ◦ of a subset Y in a topological space
O consists of all points x ∈ Y for which there exists an open U ⊆ Y with x ∈ U ; the
exterior is the interior of the complementO \Y ; the closure Ȳ is the complement of the
exterior; the frontier fr(Y ) is the difference Ȳ \ Y ; and the boundary is the difference
∂Y := Ȳ \ Y ◦. Clearly, if Y is definable, then so are its interior, exterior, frontier, and
boundary. A definable subset X ⊆ On is called definably connected if it can not be
written as a disjoint union of two open definable subsets ofX . The image of a definably
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connected subset under a definable and continuous function is definably connected. Any
interval is definably connected. It is an easy exercise that in an o-minimal structure, a
subset of O is definably connected if and only if it is an interval.

We will use the following ISO convention for intervals: open ]a, b[ (which we always
assume to be non-empty, that is to say, a < b), closed [a, b] (including the singleton
{a} = [a, a] ), half-open ]a, b] or [a, b[ , and their infinite variants like ]−∞, a[ ,
]−∞, a] , ]a,∞[ , and [a,∞[ , with a, b ∈ O. Note that the usage of∞ here is only
informal since these are definable subsets in the language without the extra constants
±∞ by formulae of the form x < a, etc. Given a subset Y ⊆ O and a point b ∈ O, we
will sometimes use notations like Y≤b := Y ∩ ]−∞, b] or Y<b := Y ∩ ]−∞, b[ .

When taking ultraproducts, we rarely ever mention the underlying index set or (non-
principal) ultrafilter. We use the notation introduced in [6], denoting ultraproducts with
a subscript \. Thus, we write N\, Z\, and R\ for the ultrapower of the set of natural
numbers N, integers Z, and reals R respectively. On occasion we need the (countable)
ultraproduct of the diagonal sequence (n)n in N\, which we denote suggestively by ω\.

§2. The theory DCTC. Recall that an (ordered) L-structureM is called o-minimal,
if every definable subset Y ⊆M is a finite union of open intervals and points. It is called
definably complete, if every definable subset in M has an infimum (possibly ±∞).
Since intervals have this property, every definable subset in an o-minimal structure is
definably complete, that is to say, definable completeness is an o-minimalistic property.
By [3, Corollary 1.5], it is equivalent with M being definably connected, and also with
the validity of the Intermediate Value Theorem (IVT is the statement that if f : [a, b] →
M is a definable and continuous function, then f assumes each value between f(a) and
f(b)). Recall thatM is called locally o-minimal, if for every definable subset Y ⊆ M
and every point x ∈M , there exists an open interval I containing x such that I ∩Y is a
finite union of open intervals and points, and by shrinking I even further, we may even
take I ∩ Y to be an interval (for more on local o-minimality, see [8, 10, 2]). However,
it appears to me a flaw of the definition, that one only requires x to be a point in M ,
that is to say, excluding the case x = ±∞. In case M has also the structure of a
field—the most studied case—we can take reciprocals, bringing∞ to 0, and so there is
no need for the more general concept, but in general, one should include infinite points
in this definition. We can reformulate local o-minimality as follows. Given Y ⊆ M
and a ∈ M , we say that a− belongs to Y , if there exists an open interval ]b, a[ ⊆ Y
(similarly, a+ belongs to Y , if ]a, b[ ⊆ Y for some b > a). Thinking of a− as a partial
type (that is to say, consisting of all formulae b < x < a in the variable x, where b
runs over all elements less than a), if Y is defined by a formula ϕ, then a− belongs to
Y if and only if any realization of the type of a− in any elementary extension of M
satisfies ϕ. Therefore, local o-minimality says that a− is a complete type, meaning that
if Y is definable, then a− belongs either to Y or to M \ Y , for any a ∈ M∞. By
taking complements, a+ is then also complete. As mentioned, it is important to include
the infinite points, where the two types (−∞)+ and ∞− are defined in the obvious
way. For this reason, we will refer to this property as type completeness instead of local
o-minimality.

2.1. DEFINITION. For a fixed language L with a binary order symbol <, we define
the theory DCTC as the extension of the theory of dense linear orders without endpoints
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by the two axiom schemes (one axiom for every formula) given by definable complete-
ness and type completeness. In other words, in a model M of DCTC, any definable
subset Y ⊆ M has an infimum and its characteristic function has a left limit at each
point. We will call an ultraproduct of o-minimal L-structures an ultra-o-minimal struc-
ture. It follows that such a structure is a model of DCTC, and more generally, any
o-minimalistic structure is a model of DCTC. The converse is not clear, although we
will see in [7] an axiom which is o-minimalistic, but is currently not known to follow
from DCTC. For the remainder of this paper, we will investigate the theory DCTC.

2.2. EXAMPLE. Let L be the language of ordered fields together with a unary pred-
icate U. For each n, let Rn := (R, {0, 1, . . . , n} be the expansion of the field R. Since
{0, 1, 2, . . . , n} is finite, each Rn is o-minimal, and therefore their ultraproduct R\ is
o-minimalistic, whence a model of DCTC. The set D := U(R\) is discrete but not
finite, soR\ cannot be o-minimal. Note that D = (N\)≤ω\

.

2.3. PROPOSITION. Given a modelM of DCTC, let K ⊆ M be compact and Y ⊆
M definable. If either K is open or Y is contained in K, then K ∩ Y is a finite union
of intervals.

PROOF. Given a definable subset Y ⊆ M , by assumption, we can find in the open
case, for each x ∈ K, an open interval Ix ⊆ K such that Y ∩ Ix is an interval. Since
K is compact and the Ix cover K, there exist finitely many points x1, . . . , xn ∈ K
such that K = Ix1 ∪ · · · ∪ Ixn

and hence K ∩ Y is a finite union of intervals. If K
is arbitrary, then we cannot arrange for all Ix to be contained in K, and so we only get
K ⊆ Ix1 ∪ · · · ∪ Ixn . But since Y ⊆ K, the same conclusion can be drawn. a

The next corollary improves [1, 2.13(3)] as it does not assume any underlying field
structure.

2.4. COROLLARY. IfM |= DCTC with underlying order that of the reals, then it is
o-minimal.

PROOF. Identify M with R, and let Y ⊆ R be definable. Depending whether
(−∞)+ or ∞− belong to Y or not, we may assume after possibly removing one or
two unbounded intervals that Y is bounded, whence contained in some closed, bounded
interval K := [a, b] . Hence Y = Y ∩ K is a finite union of intervals by Proposi-
tion 2.3. a

2.5. Remark. From the proof it is clear that we have the following more general
result: if a model of DCTC has the Heine-Borel property, meaning that any closed
bounded set is compact, then it is o-minimal.

2.6. PROPOSITION. For a definable subset Y ⊆ M in a model M |= DCTC, we
have:

2.6.i. The infimum of Y is either infinite or a topological boundary point.
2.6.ii. If a, b ∈ ∂Y and ]a, b[ ∩ ∂Y = ∅, then ]a, b[ is either disjoint from or entirely

contained in Y .
2.6.iii. If Y is definably connected, then it is an interval.
2.6.iv. Y either has a non-empty interior or is discrete.
2.6.v. If Y is discrete, then it has a minimum and a maximum, and it is closed and

bounded.
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2.6.vi. The topological boundary ∂Y is discrete, closed, and bounded.

PROOF. To prove (2.6.i), let l ∈ M be the infimum of Y . By type completeness, l−

either belongs to Y or to M \ Y . The former case is excluded since l is the infimum of
Y . In particular, l is not an interior point of Y . If l+ does not belong to Y , then l is an
isolated point of Y , and hence belongs to the (topological) boundary. In the remaining
case, l lies in the closure of Y , since some open interval ]l, x[ lies inside Y . To prove
(2.6.ii), suppose there exists x ∈ ]a, b[ ∩ Y . By type completeness, either x− belongs
to Y or to M \ Y . In the latter case, there exists z < x such that ]z, x[ is disjoint from
Y . However, x is then not an interior point of Y , whence must belong to its topological
boundary, contradiction. So x− belongs to Y , which means that the set of all z ∈ ]a, x[
such that ]z, x[ ⊆ Y is non-empty. The infimum of this set must be a topological
boundary point of Y by (2.6.i), and hence must be equal to a, showing that ]a, x] ⊆ Y .
Arguing the same with x+, then shows that also [x, b[ ⊆ Y , as we needed to prove.

To prove (2.6.iii), let Y ⊆ M be definably connected. Let l and h be its respective
infimum and supremum (including the case that these are infinite). The case l = h
is trivial, so assume l < h. If there were some x ∈ ]l, h[ not belonging to Y , then
Y would be the union of the two definable, non-empty, disjoint open subsets Y<x and
Y>x, contradiction, Hence, Y is an interval with endpoints l and h. To prove (2.6.iv),
assume Y is not discrete. Hence there exists a ∈ Y which is not isolated, that is to say,
such that any open interval containing a has some other point in common with Y . If
both a− and a+ belong to M \ Y , then there are x < a < y such that ]x, a[ , ]a, y[ are
disjoint from Y , contradicting that a is not isolated. Hence, say, a− belongs to Y and
Y has non-empty interior.

Assume next that Y is discrete and let l be its infimum (including possibly the case
l = −∞). If l+ belongs to Y , then ]l, z[ ⊆ Y for some z > l, contradicting discrete-
ness. So l+ does not belong to Y , which forces l ∈ Y . In particular, l is finite, proving
the first part of (2.6.v), and in particular, that Y is bounded. To show that Y is closed,
suppose it is not. Let x /∈ Y be a point in its closure. Since Y ∪ {x} is definable but
not discrete, it must have interior by (2.6.iv), so that some open interval I is contained
in Y ∪ {x}. But then I ∩ Y = I \ {x} is not discrete, contradiction. To see (2.6.vi), it
suffices by (2.6.v) to show that ∂Y is discrete. Let b ∈ ∂Y . We have to show that b is
an isolated point of ∂Y , and this will clearly hold if b is an isolated point of either Y or
M \Y . In the remaining case, exactly one from among b− and b+ belongs to Y , say, b−.
Hence, there exist x < b < y so that ]x, b[ ⊆ Y and ]b, y[ ∩ Y = ∅. Since any point in
]x, b[ is interior to Y and any point in ]b, y[ exterior to Y , we get ∂Y ∩ ]x, y[ = {b},
as we needed to prove. a

2.7. Remark. For any definable, discrete subset Y ⊆ M in a model of DCTC, we
can therefore define a successor function σY on Y by letting σY (b) be the minimum of
(the definable subset) Y>b, for any non-maximal b in Y .

2.8. COROLLARY. The theory DCTC is equivalent with type completeness and dis-
crete definable completeness, where in the latter we only require that definable, discrete
sets have a minimum.

PROOF. Let Y ⊆M be a definable set in a modelM of the weaker system from the
assertion. Inspecting the argument in the proof of (2.6.vi), type completeness already
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implies that ∂Y is discrete. Hence ∂Y has an infimum b, and it is now not hard to show
that b is also the infimum of Y . a

2.9. COROLLARY. In a model of DCTC, any finite union of one-variable definable,
discrete subsets is discrete. a

Using (2.6.vi), (2.6.ii) and Remark 2.7, we get immediately the following structure
theorem for one-variable definable subsets (compare this with the notion of d-minimality
from [4], where one needs finitely many discrete subsets):

2.10. THEOREM. An L-structureM is a model of DCTC if and only if every defin-
able subset Y ⊆ M is a disjoint union of open intervals and a single closed, bounded,
discrete set.

PROOF. We only need to prove the converse. Let us first show that M is definably
connected. Indeed, if U1 and U2 are disjoint definable open sets covering M , then this
would yield a covering of M by disjoint open intervals. However, considering what
the endpoints would be, this can only be the trivial covering, showing that one of the
Ui must be empty. By [3, Corollary 1.5], definable connectedness implies definable
completeness. To prove type completeness, let Y ⊆ M be definable and b ∈ ∂Y
(boundary points are the only points in which it can fail). There is nothing to prove if b
is an isolated point of Y or of M \ Y , so assume it is not. Decompose Y = U ∪D into
definable subsets with U a disjoint union of open intervals and D closed, bounded, and
discrete. Let ]p, q[ and ]u, v[ be the open interval in U immediately to the left and to
the right of b respectively. Since b is not isolated but in the boundary, it must be equal
to exactly one of q or u, that is to say, either q = b < u or q < u = b. Say the latter
holds, so that b+ belongs to Y . Since D ∪ {b} is discrete, we can find an open interval
I containing b such that I ∩ (D ∪ {b}) = {b}. Shrinking I if necessary, we can make
it disjoint from ]p, q[ , and hence I<b ∩ Y = ∅, showing that b− belongs to M \ Y .
We need to verify this also at b = ±∞, where the same argument works in view of the
boundedness of D. a

§3. Definable maps. For the remainder of this paper, we will always work in a
modelM of DCTC, unless noted explicitly otherwise. Next we study definable maps,
where we call a map f : Y ⊆ Mn → Mk definable if its graph Γ(f) ⊆ Mn+k is a de-
finable subset. Note that since its domain Y ⊆ Mn is the projection of its graph, it too
is definable. Similarly, the set Γ∗(f) consisting of all (f(x), x) ∈ Mk+n is definable
and is called the reverse graph of f . If k = n = 1, we speak of one-variable maps.

3.1. LEMMA. Given a definable map f : Y →M ,

3.1.i. if Y is discrete, then so is its image f(Y );
3.1.ii. if f(Y ) and each fiber of f is discrete, then so is Y .

PROOF. Suppose (3.1.i) does not hold, so that Y ⊆ M is discrete but not f(Y ).
Let H be the (non-empty, definable, discrete) subset of all x ∈ Y such that f(Y≥x)
is non-discrete, and let h be its maximum. Since h cannot be the maximal element of
Y ⊆ Mn lest f(Y≥h) be a singleton, we can find its successor σ(h) ∈ Y by (4.1.iii).
But f(Y≥h) = {f(h)}tf(Y≥σ(h)), so that neither f(Y≥σ(h)) can be discrete by Corol-
lary 2.9, contradicting maximality.
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Assume next that (3.1.ii) is false, so that Y is non-discrete, but Z := f(Y ) and all
f−1(u) are discrete. This time, let H be the subset of all x ∈ Z such that f−1(Z≥x)
is non-discrete, and let h be its maximum. Again h must be non-maximal in Z, and so
admits an immediate successor σ(h) ∈ Z. Since both subsets on the right hand side of

f−1(Z≥h) = f−1(h) t f−1(Z≥σ(h))

are discrete, the first by assumption and the second by maximality, so must their union
be by Corollary 2.9, contradiction. a

We will say that a one-variable function f : Y → M has a jump discontinuity at a
point c if the left and right limit of f at c exist, but are different.

3.2. THEOREM (Monotonicity). The set of discontinuities of a one-variable defin-
able map f : Y → M is discrete, closed, and bounded, and consists entirely of jump
discontinuities. Moreover, there is a definable discrete, closed, bounded subset D ⊆ Y
so that in between any two consecutive points of D∪{±∞}, the map is monotone, that
is to say, either strictly increasing, strictly decreasing, or constant.

PROOF. We start with proving that all discontinuities are jump discontinuities, or
equivalently, that f has a left limit in each point a ∈ Y . For each y < a, let w(y) be
the supremum of f( [y, a[ ) and let b be the infimum of w(Y<a). I claim that b is the left
limit of f at a. To this end, choose p < b < q, and we need to show that there is some
x < a with p < f(x) < q. If b+ does not belong w(Y<a), and therefore belongs to its
complement, then b is an isolated point of w(Y<a), implying that f takes constant value
b on some interval ]y, a[ , so that b is indeed the left limit at a. In the remaining case,
we can find u > b such that ]b, u] ⊆ w(Y<a). We may choose u < q. In particular,
u = w(y) for some y < a. Since b is strictly less than the supremum u = w(y), we can
find x ∈ [y, a[ such that b < f(x) ≤ u, whence p < f(x) < q, as required.

Let C ⊆ Y be the definable subset given as the union of the interior of all fibers, that
is to say, x ∈ C if and only if x is an interior point of f−1(f(x)). Being an open set,
C is a disjoint union of open intervals, and f is constant, whence continuous on each of
these open intervals. Every fiber of the restriction of f to Y \C must have empty interior,
whence is discrete by (2.6.iv). So upon replacing f by this restriction, we may reduce
to the case that f has discrete fibers. There is nothing to show if Y is discrete, and so
without loss of generality, we may assume Y is an open interval. For fixed a ∈ Y , let La
(respectively, Ha) be the set of all x ∈ Y such that f(x) < f(a) (respectively, f(a) <
f(x)). Since Y is the disjoint union of La, Ha, and f−1(f(a)) with the latter being
discrete, a− must belong to one of the first two sets by Corollary 2.9, and depending
on which is the case, we will denote this symbolically by writing respectively f(a−) <
f(a) or f(a−) > f(a) (with a similar convention for a+). Let L− (respectively, H−,
L+, and H+) be the set of all a ∈ Y such that f(a−) < f(a) (respectively, f(a−) >
f(a), f(a+) < f(a), and f(a+) > f(a)), so that Y is the disjoint union of these four
definable subsets. Let D be the union of the topological boundaries of these four sets, a
discrete set by Corollary 2.9. If b < c are consecutive elements in D, then ]b, c[ must
belong to exactly one of these four sets by (2.6.ii), say, to L−. It is now easy to see that
in that case f is strictly increasing on ]b, c[ . This then settles the last assertion.

Let S be the (definable) subset of all discontinuities of f . To prove that S is discrete,
we need to show by (2.6.iv) that it has empty interior, and this will follow if we can
show that any open interval I ⊆ Y contains a point at which f is continuous. By what
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we just proved, by shrinking I if necessary, we may assume f is monotone on I , say,
strictly increasing. Note that f is then in particular injective. By Lemma 3.1, the image
f(I) contains an open interval J . Since f is strictly increasing, f−1(J) is also an open
interval, and f restricts to a bijection between f−1(J) and J . We leave it to the reader
to verify that any strictly increasing bijection between intervals is continuous. a

3.3. Remark. Given a definable map f and a point a, we denote its left and right
limit simply by f−(a) or f+(a) respectively, even if these values are infinite (to be
distinguished from the symbol f(a−) which occurred above in formulae of the form
f(a−) < f(a)). Note that we even have this property at ±∞, so that we can define
f+(−∞) and f−(∞), which we then simply abbreviate as f(−∞) and f(∞) respec-
tively.

3.4. COROLLARY. A definable map f : I → M with domain an open interval I is
continuous if and only if its graph is definably connected.

PROOF. Let C be the graph of f . If f is not continuous, then it has a jump dis-
continuity at some point a ∈ I by Theorem 3.2. Without loss of generality, we may
assume f−(a) < f+(a). Let c be some element between these two limits and different
from f(a). By definition of one-sided limit, there exist p < a < q such that f(x) < c
whenever p < x < a, and f(x) > c whenever a < x < q. Consider the two open
subsets

U− := (I<a ×M) ∪ (I<q ×M<c)

U+ := (I>a ×M) ∪ (I>p ×M>c).

It is not hard to check that C is contained in their union but disjoint from their intersec-
tion, showing that it is not definably connected.

Conversely, assume f is continuous but C is not definably connected, so that there
exist definable open subsets U and U ′ whose union contains C but whose intersection is
disjoint from C. Since the projections π(C∩U) and π(C∩U ′) onto the first coordinate
are definable subsets partitioning I , they must have a common boundary point b ∈ I
by Proposition 2.6. Since (b, f(b)) belongs to either U or U ′, say, to U , there exists a
box J × J ′ ⊆ U containing (b, f(b)). By continuity, we may assume f(J) ⊆ J ′. This
implies that (x, f(x)) ∈ U , for all x ∈ J , and hence that J ⊆ π(C ∩ U), contradicting
that b is a boundary point of the latter. a

3.5. Remark. Without proof, we claim that the above results extend to arbitrary di-
mensions: given a definable map f : X ⊆ Mn → Mk, the set of discontinuities of
f is nowhere dense in X . For instance (with terminology to be defined below), if
X ⊆ M2 has dimension two, for each a, b ∈ M , let Da and Eb be some discrete
sets, as given by Theorem 3.2, such that between any two consecutive points the re-
spective maps y 7→ f(a, y) and x 7→ f(x, b) are continuous and monotone. Let D and
E be the respective union of all {a} × Da and all Eb × {b}. By Corollary 7.2 and
Proposition 5.1 below, both D and E are one-dimensional, closed subsets, and hence
X ′ := X \ (D ∪ E) is open and dense in X . It is now not hard to show that f is
continuous on X ′ (see [9, Chapt. 3, Lemma 2.16]).

We can also strengthen this for expansions of fields by proving the same results with
‘continuous’ replaced by ‘differentiable’, or more generally, by Cn (see, for instance,
[2, §7.4]).
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§4. Discrete sets. As before,M |= DCTC. We start our analysis of multi-variable
definable subsets, with a special emphasis on definable subsets of the plane M2, called
planar subsets, and only address the general case through some sporadic remarks. Since
projections play an important role, we introduce some notation. Fix n and let σ ⊆
{1, . . . , n} of size |σ| := e. We let πσ : Mn → Me be the projection (a1, . . . , an) 7→
(ai1 , . . . , aie), where σ = {i1 < i2 < · · · < ie}. When σ is a singleton {i}, we just
write πi for the projection onto the i-th coordinate. Given a tuple a = (a1, . . . , ae) ∈
Me, the (σ-)fiber of X above a is the set

Xσ[a] := πσc

(
π−1
σ (a) ∩X

)
,

where σc is the complement of σ. In other words,Xσ[a] is the set of all b ∈Mn−e such
that b̃ ∈ X , where b̃ is obtained from b by inserting aik at the k-th spot. In case σ is
of the form {1, . . . , e}, for some e, we omit σ from the notation, since the length of the
tuple a then determines the projection, and we refer to it as a principal projection, with
a similarly nomenclature for fibers. Thus, for example, the principal fiber X[a] is the
setX1[a] of all n−1-tuples b such that (a,b) ∈ X . Recall that by (2.6.v) any definable
discrete subset of M is closed and bounded. The same is true in higher dimensions, for
which we first prove:

4.1. THEOREM. A definable subset X ⊆Mn is discrete if and only if all projections
π1(X), . . . , πn(X) are discrete.

PROOF. Suppose all projections are discrete and let (a1, . . . , an) ∈ X . Hence we
can find open intervals Ik, for k = 1, . . . , n, such that Ik ∩ πk(X) = {ak}. The open
box I1 × · · · × In then intersects X only in the point (a1, . . . , an), proving that X
is discrete. To prove the converse, we will induct on n, proving simultaneously the
following three properties for X ⊆Mn discrete:

4.1.i. π1(X), . . . , πn(X) are discrete;
4.1.ii. X with the induced lexicographical ordering has a minimal element;

4.1.iii. for this ordering, there exists a definable map σX of X , sending every non-
maximal element in X to its immediate successor.

All three properties have been established by Proposition 2.6 when n = 1, so assume
they hold for n − 1. Assume towards a contradiction that π1(X) is not discrete. For
each a ∈ π1(X), the fiber X[a] (that is to say, the set of all b ∈ Mn−1 such that
(a,b) ∈ X), is discrete since a ×X[a] ⊆ X . By the induction hypothesis for (4.1.ii),
in its lexicographical order, X[a] has a minimum, denoted f(a), yielding a definable
map f : π1(X) → Mn−1 whose graph lies in X . By Theorem 3.2, each composition
πi ◦ f : π1(X) → M , for i = 1, . . . , n − 1, is continuous outside a discrete set. The
union of these discrete sets is again discrete by Corollary 2.9, and hence, since π1(X) is
assumed non-discrete, there is a common point a at which all fi are continuous, whence
also f . By the discreteness of X , we can find an open interval I and an open box
U ⊆ Mn−1 containing respectively a and f(a) such that (I × U) ∩X = {(a, f(a))}.
By continuity, we can find an open interval J ⊆ I containing a such that f(J) ⊆ U .
However, this means that for any u ∈ J different from a, we have f(u) ∈ U , whence
(u, f(u)) ∈ (I × U) ∩X = {(a, f(a))}, forcing u = a, contradiction.

To prove (4.1.ii), we now have established that π1(X) is discrete, whence has a min-
imum l. The minimum of X in the lexicographical ordering is then easily seen to
be (l,min(X[l])). To define σX , let a = (a,b) ∈ X . For a 6= max(X), either
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b is not the maximum of X[a] and we set σ(a) := (a,b′) where b′ := σX[a](b);
or otherwise, a is not the maximum of π1(X) and we set σ(a) := (a′,min(X[a′])),
where a′ := σπ1(X)(a). Note that the existence of a′ and b′ follow from the induc-
tion hypothesis on (4.1.iii). We leave it to the reader to verify that σX has the required
properties. a

4.2. COROLLARY. AnM-definable, discrete subset is closed and bounded.

PROOF. Let X ⊆ Mn be a definable, discrete subset. By Theorem 4.1, all πi(X)
are discrete, whence bounded and closed by (2.6.v). It is now easy to deduce from this
that so is then X . a

4.3. COROLLARY. The image under a definable map of an M-definable discrete
subset is again discrete.

PROOF. If f : X ⊆ Mn → M is definable with X discrete, then the graph of f is
also discrete (as a subset of Mn+1). Since f(X) is the projection of this graph, it is
discrete by Theorem 4.1. a

4.4. COROLLARY. A definable subset X ⊆ Mn is discrete if and only if for some
(equivalently, for all) σ ⊆ {1, . . . , n}, the projection πσ(X) as well as each fiberXσ[a]
is discrete.

PROOF. The converse implication is easy, and for the direct, suppose X is discrete.
We may assume, after renumbering, that σ = {1, . . . , e}. Since each fiber Xσ[a] is
homeomorphic to the subset a×Xσ[a] ⊆ X , for a ∈Me, and since the latter is discrete,
so is the former. On the other hand, each πi(X), for i ≤ e, is discrete by Theorem 4.1,
and since these are just the projections of πσ(X), the latter is also discrete, by the same
theorem. a

Suppose M |= DCTC is an expansion of an ordered group—which is therefore
Abelian and divisible by [3, Proposition 2.2]. We define the absolute value |a| as the
maximum of a and −a, for any a ∈ M . We call a map f : X → X , for X ⊆ M ,
contractive, if

|f(x)− f(y)| < |x− y| ,(1)

for all x 6= y ∈ X . We say that f is weakly contractive, if instead we have only a weak
inequality in (1). Recall that a fixed point of f is a point x ∈ X such that f(x) = x. If
f is contractive, it can have at most one fixed point.

4.5. THEOREM (Fixed Point Theorem). SupposeM |= DCTC expands an ordered
group, and let f : D → D be a definable map on a discrete, definable subset D ⊆ M .
If f is contractive, it has a unique fixed point. If f is weakly contractive, then f2 has a
fixed point.

PROOF. We treat both cases simultaneously. Assume f does not have a fixed point.
In particular, f(l) > l, where l is the minimum of D. Hence the set of x ∈ D such
that x < f(x) is non-empty, whence has a maximal element u. Clearly, u < h, where
h is the maximum of D, and hence u has an immediate successor v := σD(u) by
(4.1.iii). By maximality, we must have f(v) < v. Hence v ≤ f(u) and u ≤ f(v), and
therefore v− u ≤ |f(u)− f(v)|, leading to a contradiction in the contractive case with
(1), showing that f must have a fixed point, necessarily unique. In the weak contractive
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case, we must have an equality in the latter inequality, whence also in the former two,
that is to say, f(u) = v and f(v) = u. Hence, u and v are fixed points of f2. a

§5. Sets with non-empty interior. We continue to work in a modelM of DCTC.
Shortly, we will introduce the notion of dimension, and whereas the discrete sets are
those with minimal dimension (=zero), the sets with non-empty interior will be those of
maximal dimension. Note that the non-empty definable subsets of M are exactly of one
of these two types by (2.6.iv).

5.1. PROPOSITION. A definable subset X ⊆Mn has non-empty interior if and only
if the set of points a ∈M such that the fiberX[a] has non-empty interior is non-discrete.

PROOF. If X has non-empty interior, it contains an open box, and the assertion is
clear. For the converse, note that, since we can pick definably the first open interval
inside a definable non-discrete subset of M by the properties proven in Proposition 2.6,
we may reduce to the case that π(X) is an open interval and each fiber X[a] for a ∈
π(X) is an open box, where π : Mn → M is the projection onto the first coordinate.
The proof for n > 2 is practically identical to that for n = 2, and so, for simplicity,
we assume n = 2. Let l(a) and h(a) be respectively the infimum and supremum of
Xa, so that l, h : π(X) → M∞ are definable maps. The subset of π(X) where either
function takes an infinite value is definable, whence it or its complement contains an
open interval, so that we can either assume that l is either finite everywhere or equal to
−∞ everywhere, and a similar dichotomy for h. The infinite cases can be treated by a
similar argument, so we will only deal with the case that they are both finite (this is a
practice we will follow often in our proofs). By Theorem 3.2, there is a point a ∈ π(X)
at which both l and h are continuous. Fix some c < l(a) < p < q < h(a) < d, so that
by continuity, we can find u < a < v so that l( ]u, v[ ) ⊆ ]c, p[ and h( ]u, v[ ) ⊆ ]q, d[ .
I claim that ]u, v[ × ]p, q[ is entirely contained in X . Indeed, if u < x < v and
p < y < q, then from c < l(x) < p < y < q < h(x) < d, we get y ∈ X[x], that is to
say, (x, y) ∈ X . a

By a simple inductive argument, we get the following analogue of Corollary 4.4:

5.2. COROLLARY. A definable subset X ⊆ Mn has non-empty interior if and only
if for some (equivalently, for all) σ ⊆ {1, . . . , n}, the set of points a for which Xσ[a]
has non-empty interior, has non-empty interior. a

5.3. COROLLARY. A finite union of definable subsets of Mn has non-empty interior
if and only if one of the subsets has non-empty interior.

PROOF. One direction is immediate, and to prove the other we may by induction re-
duce to the case of two definable subsets X1, X2 ⊆ Mn whose union X := X1 ∪X2

has non-empty interior. We induct on n, where the case n = 1 follows from Corol-
lary 2.9 and (2.6.iv). Let W ⊆ M be the subset of all points a ∈ M for which the
fiber X[a] ⊆ Mn−1 has non-empty interior. By Proposition 5.1, the interior of W is
non-empty. Since X[a] = (X1)[a] ∪ (X2)[a], our induction hypothesis implies that for
a ∈ W , at least one of (Xi)[a] has non-empty interior, in which case we put a in Wi.
In particular, W = W1 ∪W2 so that at least one of the Wi has non-empty interior, say,
W1. By Proposition 5.1, this then implies that X1 has non-empty interior. a
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§6. Planar cells and arcs. For the remainder of our analysis of multi-variable defin-
able sets, apart from separate remarks, we restrict to planar subsets. Given an ordered
structure O, let us define a 2-cell in O2 as a definable subset C of the following form:
suppose I is an open interval, called the domain of the cell, and f, g : I → O are de-
finable, continuous maps such that f < g (meaning that f(x) < g(x) for all x ∈ I).
Let C be the subset of all (x, y) ∈ O2 with x ∈ I and f(x) �1 y �2 g(x), where �i
is either no condition or a strict inequality (when we only have at most one inequality,
we get an example of an unbounded cell; the remaining ones are call bounded, and in
arguments we often only treat the latter case and leave the former with almost identical
arguments to the reader). Any 2-cell is open. By a 1-cell C ⊆ O2, we mean either the
graph of a continuous definable map f with domain an open interval I , or a Cartesian
product x× I . We call the former horizontal and the latter vertical. Finally, by a 0-cell,
we mean a point. We may combine all these definitions into a single definition: a cell
C is determined by elements a < b and definable, continuous maps f < g : O → O, as
the set of all pairs (x, y) such that a �1 x �2 b and f(x) �3 y �4 g(x), where each �i is
either no condition, equality or strict inequality. Moreover, if C is non-empty, then it is
a d-cell, where d is equal to two minus the number of equality signs among the �i. We
sometimes use some suggestive notation like C(I; f < g) to denote, for instance, the
cell given by x ∈ I and f(x) < y < g(x). If C is a cell with domain I and J ⊆ I is an
open interval, then we call C ∩ (J × O) the restriction of C to J . Any restriction of a
cell is again a cell, and so is any principal projection.

6.1. Remark. For higher arity, we likewise define cells inductively: we say that C ⊆
On is a d-cell if either C is the graph of a definable, continuous function with domain
some d-cell in On−1, or otherwise, is the region strictly between two such graphs with
common domain some (d− 1)-cell in On−1. As we shall see below in Remark 7.3, the
d in d-cell refers to the dimension of the cell.

6.2. Arcs. As before, letM |= DCTC. Given a definable subset X ⊆ Mn, a point
P = (a, b) ∈ M2, and a definable map h : Y → M such that a ∈ Y and h−(a) = b,
we will say that P−h belongs to X , if there exists an open interval ]u, a[ ⊆ I so that the
graph of the restriction of h lies inside X . By Theorem 3.2, we may shrink ]u, a[ so
that h is continuous on that interval, and so we could as well view this as a property of
the horizontal 1-cell C defined by h. Note that P lies in the closure of C. Moreover, we
only need a to lie in the closure of Y to make this work. So, given a 1-cell C such that
P lies in its closure, we say that P−C belongs to X if P−h does, where h is the definable,
continuous map determining C, in case C is a horizontal cell, or if b− belongs to X[a]
in case C is a vertical cell. Of course, we can make a similar definition for P+

h or P+
C .

The following result essentially shows that viewed as a type, P−C is complete:

6.3. LEMMA. Given a planar subset X ⊆ M2, a 1-cell C ⊆ M2, and a point P in
the closure of C, either P−C belongs to X or it belongs to its complement.

PROOF. Let P = (a, b) be in the closure of C. If C is a vertical cell, then P−C
belongs to X if and only if b− belongs to X[a], and so we are done in this case by
type completeness. In the horizontal case, there exists a definable, continuous map
h : ]u, a[ → M whose graph is contained in C. By type completeness, either a−

belongs to π(X ∩ C) or to its complement. In the former case, after increasing u if
necessary, we have ]u, a[ ⊆ π(X ∩ C), whence (x, h(x)) ∈ X for every x ∈ ]u, a[ .
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In the latter case, ]u, a[ is disjoint from π(X ∩ C), and hence (x, h(x)) /∈ X for every
x ∈ ]u, a[ . a

Using this, it is not hard to show that the following is an equivalence relation (and
in particular symmetric): given a point P ∈ M2 and 1-cells V,W ⊆ M2 such that P
lies in each of their closures, we say that V ≡P− W , if P−V belongs to W . By a left
arc at P , we mean an (≡P−)-equivalence class of 1-cells whose closure contains P ;
and a similar definition for V ≡P+ W and right arc. It is now easy to see that P−V
belongs to some definable subset X ⊆ M2 if and only if P−W belongs to it, for any
W ≡P− V , so that we may make sense of the expression Pα belongs to X , for any left
(or right) arc α at P . There are two unique equivalence classes containing a vertical
cell, called respectively the lower and upper vertical arc; the remaining ones are called
horizontal. Given two left horizontal arcs α and β at P , we can find a common domain
I = ]u, a[ and definable continuous functions f and g on I , such that α and β are the
respective equivalence classes of the graphs of f and g. Let I−, I= and I+ be the subsets
of all x ∈ I such that f(x) is less than, equal to, or bigger than g(x) respectively. If
α 6= β, then a cannot be in the closure of I=, so that upon shrinking even further, we
may assume I= is empty. Hence a− belongs either to I− or I+ and we express this by
saying that α <P− β and α >P− β respectively. This yields a well-defined total order
relation <P− on the left horizontal arcs at a point P . To include the vertical arcs, we
declare the lower one to be smaller than any horizontal left arc and the upper one to be
bigger than any.

6.4. PROPOSITION. Let X ⊆ M2 be a definable subset, and P ∈ M2 a point. The
set of all left arcs α at P such that Pα belongs to X has an infimum β (with respect to
the order <P− ). If β is not vertical, then Pβ belongs to ∂X .

PROOF. Since a point is either interior, exterior or a boundary point, we may upon
replacing X by its complement, reduce to the case that P = (a, b) is either interior or a
boundary point. In the former case, the lower vertical arc is clearly minimal, so assume
P ∈ ∂X . In what follows, α always denotes a left arc at P . Consider the set L∅ of
all x < a such that X[x] ∩ J is empty for some open interval J containing b. If a−

belongs to L∅, then no Pα belongs to X so that the upper vertical arc is the minimum.
So we may assume that the X[x] ∩ J are non-empty for x close to a from the left. If
b− belongs to X[a], then the lower vertical arc is the infimum, so assume b− belongs
to M \X[a]. Hence we may shrink J so that J ∩ (X[a])<b is empty. For each x < a,
let f(x) be the infimum of X[x] ∩ J . On a sufficiently small open interval ]u, a[ , the
function f is continuous, whence defines a 1-cell V . Since J ∩ (X[a])<b = ∅, the left
limit f−(a) must be equal to b, showing that (a, b) lies in the closure of V , and hence
the equivalence class of V at P− is a left arc β. It is now easy to show that β is the
required infimum, and that it is contained in the boundary ∂X . a

6.5. COROLLARY. If C ⊆ M2 is a definable subset without interior, then so is its
closure, that is to say, C is nowhere dense.

PROOF. Suppose P = (a, b) is an interior point of the closure C̄, so that there exists
an open box U ⊆ C̄ containing P . By Proposition 5.1, the fibers C[x] for x close to a
must be discrete. By Proposition 6.4, the infimum α of all left arcs at P belonging to
C \ C[x] exists, and by discreteness of the surrounding fibers, it must be a minimum,
whence also belong to C. Similarly, the infimum β of all left arcs at P belonging to C
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and strictly bigger than α is also a minimum. Choose an open interval ]u, a[ such that α
and β are represented by the respective continuous, definable maps f, g : ]u, a[ → M .
Enlarging u if needed, we may assume f < g, so that the 2-cell S := C( ]u, a[ ; f < g)
is disjoint from C. Since S is open and P lies in its closure, S ∩U is non-empty. Since
(S ∩ U) ∩ C = ∅, no point of S ∩ U can lie in the closure of C, contradiction. a

6.6. Hardy structures. We now extend this to infinity in the obvious way: given
two horizontal cells V and W with domain an interval unbounded to the right, we say
that V ≡∞ W if their restrictions to some interval ]u,∞[ are equal. Let H(M) be the
set of all equivalence classes of cells defined on an open interval unbounded to the right.
Note that any definable map f : Y →M whose domain is unbounded to the right yields
an equivalence class in H(M), denoted [f ], since f is continuous by Theorem 3.2 on
some open interval ]u,∞[ ⊆ Y . Given a definable subset X ⊆ M2, we can say,
as before, that ∞α belongs to X , if ∞− belongs to the set of all x ∈ Y such that
(x, f(x)) ∈ X , for some f with arc α. However, in this case we can do more and make
H(M) into an L-structure: if c is a constant symbol, then we interpret it in H(M) as
the class of the constant function with value c := cM; if F is an n-ary function symbol,
and α1, . . . , αn ∈ H(M), then F (α1, . . . , αn) is the class given by the definable map
F (g1, . . . , gn), where the gi are definable functions with domain I := ]u,∞[ such that
[gi] = αi; ifR is an n-ary predicate symbol, thenR(α1, . . . , αn) holds in H(M) if and
only if∞− belongs to the set of all x ∈ I such that R(g1(x), . . . , gn(x)) holds inM.

6.7. DEFINITION. We call this L-structure on H(M) the Hardy structure ofM. In
particular, by the same argument as above, < interprets a total order on H(M), making
it into a densely ordered structure without endpoints (note that the notion of vertical arc
makes no sense in this context).

By induction on the complexity of formulae, we easily can show:

6.8. LEMMA. Let ϕ(x1, . . . , xn) be a formula with parameters fromM and letX ⊆
Mn be the set defined by it. For given arcs α1, . . . , αn ∈ H(M), we have H(M) |=
ϕ(α1, . . . , αn) if and only if there is a u ∈ M such that (g1(x), . . . , gn(x)) ∈ X , for
all x > u, where each gi is some continuous function defined on ]u,∞[ representing
the arc αi. a

Since a continuous function with values in a discrete set must be constant, Lemma 6.8
yields:

6.9. COROLLARY. If a discrete subset D ⊆ H(M)n is definable with parameters in
M, then D ⊆Mn. a

6.10. THEOREM. There is a canonical elementary embedding M → H(M). In
particular, H(M) |= DCTC.

PROOF. The map M → H(M) sending an element a ∈ M to the class of the
corresponding constant function is easily seen to be an elementary embedding. a

These two results together show that ifM is a non-o-minimal model of DCTC, then
(M,H(M)) is a Vaughtian pair (see, for instance, [5, Proposition 9.3]). In particular,
DCTC has Vaughtian pairs.

6.11. Remark. We can think of H(M) as a sort of protoproduct, in the meaning of a
‘controlled’ subring of an ultraproduct as studied in [6, Chapter 9]. Namely, endowing
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the set M with an ultrafilter containing all right unbounded open intervals, then H(M)
consists of all elements in the ultrapower M\ given by definable maps (whereas an
arbitrary element is given by any map).

We also can define a standard part operator, at least on the subset Hfin(M) of all
finite elements, that is to say, the set of all arcs α at infinity represented by some defin-
able, continuous map f : ]u,∞[ → M such that f(∞) ∈ M (see Remark 3.3 for the
definition). Indeed, the value of f(∞) only depends on α, thus yielding a standard part
map Hfin(M) → M . Note, however, that asM is not definable in H(M), neither is
Hfin(M).

§7. Planar curves. As always,M is a model of DCTC.
7.1. Dimension. Let us say that a non-empty definable subset X ⊆ M2 has di-

mension zero if it is discrete, and dimension two, if it has non-empty interior. In the
remaining case, we will put dim(X) = 1 and call X a (generalized) planar curve. We
will assign to the empty set dimension −∞, in order to make the following formula
work (with the usual conventions that −∞+ n = −∞):

7.2. COROLLARY. Given a definable subset X ⊆M2, let Fe be the set of all a ∈M
for which the fiber X[a] has dimension e, for e = 0, 1. Then each Fe is definable and
the dimension of X is equal to the maximum of all e+ dim(Fe).

PROOF. Being discrete and having interior are definable properties, whence so is
being a planar curve, showing that each Fe is definable. The formula then follows by
inspecting the various cases by means of Corollary 4.4 and Proposition 5.1. a

7.3. Remark. There are several ways of extending this definition to larger arity, and
the usual one is to define the dimension of a definable subset X ⊆ Mn as the largest d
such that the image of X under some projection π : Mn →Md has non-empty interior.
It follows that a d-cell has dimension d.

We may rephrase the previous result as a trichotomy theorem for planar subsets:

7.4. THEOREM (Planar Trichotomy). Any planar subset ofM either
7.4.i. is discrete, closed, and bounded;

7.4.ii. is nowhere dense, but at least one projection onto a coordinate axis has non-
empty interior;

7.4.iii. has non-empty interior.

PROOF. We only need to show that (7.4.ii) is equivalent with having dimension one.
The converse is clear from Corollaries 7.2 and 6.5, and for the direct implication, we
must show that a definable subset satisfying (7.4.ii) cannot be discrete, and this follows
from Theorem 4.1. a

Immediate from the definitions and Corollary 5.3, we have:

7.5. COROLLARY. The dimension of a union X1 ∪ · · · ∪ Xn ⊆ M2 of definable
subsets is the maximum of the dimensions of the Xi. a

7.6. Nodes. Let S ⊆ M2 be an arbitrary subset. We call a point P ∈ S a node, if
for every open box B containing P , there is an open sub-box I × J ⊆ B containing P
and some point x ∈ I such that S[x] ∩ J is not a singleton. We denote the set of nodes
of S by Node(S). We call a node an edge, if in the above condition S[x] ∩ J can be
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made empty. By an argument similar to the one proving Corollary 3.4, one shows that a
function on an open interval h is continuous if and only if its graph has no edges (since
it is a graph, it cannot have any other type of nodes). Note that the closure of a 1-cell
C has at most two edges: indeed, if C is given as the graph of a definable, continuous
function h on an interval ]a, b[ , then C̄ \ C consists of those points among (a, h+(a))
and (b, h−(b)) that are finite (in the notation of Remark 3.3), and these are then the
edges of C̄.

Assume now that C is a planar curve. The isolated points of C are edges, and they
form a discrete, closed, and bounded subset. Another special case of an edge is any
point lying on an open interval inside a vertical fiber C[a]. Let Vert(C) be the set of
all such edges, called the vertical component of C. Note that Vert(C) is equal to the
union of the interiors of all fibers, that is to say, Vert(C) =

⋃
a(C[a])◦, and hence in

particular is definable.

7.7. PROPOSITION. The set of nodes of a planar curve in M is the union of its
vertical component and a discrete set.

PROOF. Let C ⊆ M2 be a planar curve. Replacing C by C \ Vert(C), we may
assume its vertical component is empty. Assume towards a contradiction that N :=
Node(C) is not discrete. Therefore, π(N) cannot be discrete by Corollary 4.4, and
hence contains an open interval I . For each x ∈ I , let h(x) be the minimal y ∈ C[x]
such that (x, y) ∈ N . By Theorem 3.2, we may shrink I so that h becomes a continuous
function on I . In particular, its graph V is a 1-cell contained in N . For each x ∈ I ,
let l(x) and u(x) be the respective predecessor and successor in C[x] of h(x) (if h(x)
is always an extremal element of C[x] then we can adjust the argument accordingly,
and so we just assume that l(x) < h(x) < u(x) always exist). Since (x, h(x)) is a
node and h is continuous, for y < x sufficiently close to x, and J an open interval such
that J ∩ C[x] = {h(x)}, the intersection J ∩ C[y] contains at least one other element
besides h(y), necessarily either l(y) or u(y). By type completeness, either l(y) belongs
to all J ∩ C[y], for all y sufficiently close to the left of x, or otherwise u(y) does. In
particular, for a fixed x ∈ I , we have h(x) = l−(x) or h(x) = u−(x). Shrinking I
if necessary, type completeness then reduces to the case that one of these alternatives
happens for every x ∈ I , say, h(x) = l−(x) for all x ∈ I . Shrinking I even further, we
may assume that l is continuous on I , and hence l = h on I , contradiction. a

7.8. LEMMA. A point P on a planar curve C ⊆M2 is not a node if and only if there
is some open box B containing P such that C ∩ B is a horizontal 1-cell. On the other
hand, P is an edge if and only if it does not belong to any horizontal cell inside C.

PROOF. If P = (a, b) /∈ Node(C), there exist open intervals I and J containing
respectively a and b such that C[x] ∩ J is a singleton {f(x)}, for every x ∈ I , and
this property is preserved for any sub-box of I × J containing P . Hence f : I → J is a
definable map with f(a) = b. Shrinking I if necessary, we may assume by Theorem 3.2
that f is continuous on I with a possible exception at a. As already observed, f is
also continuous at a lest (a, f(a)) be a node. Hence the graph of f is a cell equal to
(I × J) ∩ C. If P is not a node, then by definition, no intersection with an open box
around P can be a cell. The second assertion is obvious. a

7.9. Remark. This allows us to generalize the notion to higher arity: let us say that
a point P on a definable subset X ⊆ Mn is strongly e-regular, for some e ≤ n, if



PROLEGOMENA TO O-MINIMALISM: DCTC AND TAMENESS 17

there exists an open box B containing P such that B ∩X is an e-cell. When n = 2, a
point is strongly 2-regular if and only if it is interior, and strongly 0-regular if and only
if it is isolated. The previous result then says that on a planar curve, a point is strongly
1-regular if and only if it is not a node. As with cells, this definition of regularity has
a directional bias: nodes are really critical points with respect to projection onto the
first coordinate. To break this bias, just taking permutations of the variables does not
give enough transformations to turn some point on a curve in a non-nodal position, as
for instance the origin on the curve given by (t, t) if t ≤ 0 and (−t,−2t) if t ≥ 0.
However, if we assume that there is an underlying ordered group, then we say that a
point x ∈ X ⊆Mn is e-regular, if after a translation bringing x to the origin O, we can
find a rotation ρ such that ρ(O) is strongly e-regular in ρ(X), where by a rotation of
Mn, we mean a linear map ρ : Mn →Mn given by an invertible matrix of determinant
one over Q (by [3, Proposition 2.2], any model of DCTC expanding a group is divisible,
whence admits a natural structure of a Q-vector space).

7.10. PROPOSITION. A definable subset X ⊆M2 has the same dimension as that of
its closure X̄ , whereas the dimension of its frontier fr(X) is strictly less.

PROOF. IfX is discrete, then it is closed by Corollary 4.2, and so fr(X) = ∅, proving
the assertion in this case. If X has dimension one, then so does X̄ by Corollary 6.5.
Let V := Vert(C) be the vertical component of C and let π(V ) be its projection.
Since π(V ) is discrete by Proposition 5.1, the boundary ∂V is equal to the union of
all ∂(X[a]), whence is discrete by Corollary 4.4. Hence, upon removing V from X ,
we may reduce to the case that X has no vertical components. Suppose towards a
contradiction that fr(X) is a planar curve. By Proposition 7.7, the set of nodes on X̄
and on fr(X) are both discrete sets, and so, there exists a P ∈ fr(X) which is not a node
on fr(X) nor on X̄ . By Lemma 7.8, there exists an open box B containing P such that
both B ∩ fr(X) and B ∩ X̄ are cells, and therefore the inclusion B ∩ fr(X) ⊆ B ∩ X̄
must be an equality. In particular, B ∩ X is empty, contradicting that P lies in the
closure of X .

Finally, if X has dimension two, then so must X̄ . Let Y := X◦ and Z := X \ Y .
Since X̄ = Ȳ ∪ Z̄, we have fr(X) = (Ȳ \ X) ∪ (Z̄ \ X), so that it suffices to show
that neither of these two differences has interior. The first one, Ȳ \ X , is equal to ∂Y
whence has no interior, being the boundary of an open set. By construction, Z has no
interior, and hence by Corollary 6.5, neither does its closure. a

Recall that a constructible subset is a finite Boolean combination of open subsets, and
hence every one-variable definable subset is constructible. This is still true in higher di-
mensions: by an easy induction on the dimension, and using that the closure is obtained
by adjoining the frontier, Proposition 7.10 yields:

7.11. COROLLARY. EveryM-definable subset is constructible. a
7.12. COROLLARY. The boundary of a two-dimensional, planar subset has dimen-

sion at most one.

PROOF. Let X ⊆ M2 have dimension two. Its boundary ∂X is the union of its
frontier fr(X) and X \X◦. The former has dimension at most one by Proposition 7.10
and the latter has no interior. The result now follows from Corollary 5.3. a

Recall that a subset in a topological space is called codense if its complement is
dense.
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7.13. COROLLARY. If Y is a codense definable subset of a non-empty definable sub-
set X ⊆M2, then dim(Y ) < dim(X).

PROOF. IfX is discrete, then it is closed by Corollary 4.2, and hence its only codense
subset is the empty set. If X and Y both have dimension two, then Y ◦ is disjoint from
the closure of X \ Y , contradicting that Y is codense in X . So remains the case that X
is a curve. If Y is codense in X , then it must be contained in the frontier of X \ Y , and
the latter has dimension strictly less than one by Proposition 7.10. a

7.14. Quasi-cells. To obtain a cell decomposition as in the o-minimal case, we must
generalize the notion of 1-cell by the following equivalent conditions:

7.15. LEMMA. We call a subset S ⊆M2 a (horizontal) 1-quasi-cell if it satisfies one
of the following equivalent conditions:

7.15.i. S is a union of mutually intersecting 1-cells in M2 and has no nodes;
7.15.ii. S is the graph of a continuous map h : π(S) → M which is locally definable,

meaning that its restriction to any open interval in its domain is definable.

Moreover, π(S) is then open and convex, and S is a 1-cell if and only if π(S) is defin-
able.

PROOF. The implication (7.15.ii)⇒ (7.15.i) is easy, since the graph of a continuous
function has no nodes. To show (7.15.i)⇒ (7.15.ii), suppose S has no nodes, so that in
particular, no vertical cell lies inside S. Fix a1, a2 ∈ π(X) and choose 1-cells C1 ⊆ S
and C2 ⊆ S containing a1 and a2 respectively. Let Ik := π(Ck) and let hk be the
definable (continuous) function on Ik whose graph is Ck. Let I := I1 ∪ I2. Since
C1 ∩ C2 is non-empty, so is I1 ∩ I2, showing that I is an interval. Let H be the subset
of I1 ∩ I2 on which h1 and h2 agree, that is to say, H = π(C1 ∩ C2). For a ∈ H with
common value b, since (a, b) is not a node, there exist open intervalsU and V containing
respectively a and b such that S[x] ∩ V is a singleton, for all x ∈ U . Shrinking U if
necessary, continuity allows us to assume that hk(U) ⊆ V , so that (x, hk(x)) both lie
in S[x] ∩ V for x ∈ U , whence must be equal. This shows that U ⊆ H , and hence that
H is open. Let a ∈ ∂H . Since H is open, a does not belong to H whereas either a− or
a+ does. If a lies in I1 ∩ I2, then a /∈ H implies h1(a) 6= h2(a), and by continuity, this
remains the case on some open around a, contradicting that either a− or a+ belongs
to H . Hence a /∈ I1 ∩ I2. This means that the only boundary points of H are the
endpoints of the interval I1 ∩ I2, proving that h1 and h2 agree on this interval. Let h(x)
be equal to h1(x) if x ∈ I1 and to h2(x) otherwise. Since the graph of h is then equal to
C1∪C2 ⊆ S, whence contains no nodes, h is continuous. It is not hard to see that π(S)
is open and convex. The last assertion then follows since π(S) is a disjoint union of
open intervals by Theorem 2.10, whence, being also convex, a single open interval. a

Although we should also entertain the notion of vertical quasi-cells (see Remark 7.17
below), they do not occur in the analysis of planar subsets. Given a curve C without
nodes and a quasi-cell S ⊆ C, we say that S is optimal in C, if no quasi-cell inside C
strictly contains S.

7.16. COROLLARY. Any point on a planar curve C ⊆ M2 without nodes lies on a
(uniquely determined) optimal quasi-cell in C. In particular, C is a disjoint union of
quasi-cells.
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PROOF. Fix P ∈ C. By Lemma 7.8, there exists a cell V ⊆ C containing P . Let S
be the union of all cells inside C containing P . Since S ⊆ C, has no nodes, it is a quasi-
cell by Lemma 7.15. Suppose S′ ⊆ C is a quasi-cell containing S and let P ′ ∈ S′. By
Lemma 7.15, there exists a cell V ′ ⊆ S′ containing both P and P ′. By construction,
we then have V ′ ⊆ S, whence P ′ ∈ S, showing that S = S′ is optimal. a

If the curve has nodes, then to preserve uniqueness of optimal quasi-cells, we have
to amend this definition as follows: for an arbitrary planar curve C, a horizontal 1-
quasi-cell S is called optimal if S ⊆ C contains no node of C and is maximal with this
property.

Finally, we define the notion of a 2-quasi-cell S ⊆ M2 given as the region between
two continuous, locally definable maps defined on an open, convex subset of M (again
called the domain of the quasi-cell), or an unbounded variant as in the case of 2-cells.
More precisely, let V ⊆ M be an open convex subset, f, g : V → M continuous
and locally definable with f < g, then S consist of all (x, y) such that x ∈ V and
f(x) � y �′ g(x), with �, �′ strict inequality or no condition. By definition of local
definability, the restriction of a quasi-cell S to an open interval I ⊆ V , that is to say,
S ∩ (I ×M) is a cell, and hence every 2-quasi-cell is the union of 2-cells and therefore
open. Moreover, we can arrange for all these cells in this union to contain a given fixed
point of the quasi-cell.

7.17. Remark. The definition of an arbitrary d-quasi-cell is entirely similar: simply
replace in the recursive definition from Remark 6.1 ‘cell’ by ‘quasi-cell’ and ‘definable,
continuous map’ by ‘locally definable, continuous map’ everywhere.

7.18. Locally definable subsets. Quasi-cells are particular instances of locally de-
finable subsets, which we now briefly study. In an arbitrary ordered structureO, we call
a subset X ⊆ On locally definable if for each point P ∈ On∞, there exists an open box
B containing P such that B∩X is definable. It is important to include in this definition
also the infinite points of On∞, that is to say, points with at least one coordinate equal to
±∞, where, just as an example, we mean by an open box around an infinite point like
(0,∞,−∞) one of the form ]u, v[ × ]p,∞[ × ]−∞, q[ , with u < 0 < v. It is also
important to note that the definition applies to all points, not just to those belonging to
X . In fact, the condition is void if P is either an interior or an exterior point, since then
some open box is entirely contained in or entirely disjoint from X . So we only need to
verify local definability at boundary points and at infinite points. Therefore, any clopen
is locally definable. It is not hard to show that a finite Boolean combination of locally
definable sets is again locally definable. Moreover, the interior, closure and exterior of
a locally definable subset are again locally definable.

To see that a 1-quasi-cell S ⊆ M2 is locally definable, write it as the graph of a
locally definable, continuous map f : V →M . We leave the infinite points again to the
reader, so fix P = (a, b). If a is exterior to V , then P lies in the exterior of S, and there
is nothing to show. If a lies in the interior of V , then there is some open interval I ⊆ V
containing a, and S∩ (I×M) is the graph of f restricted at I by (7.15.ii), and the same
is true if a is a boundary point of V , say on the left, by choosing I = ]a, q[ ⊆ V for
some q > a. Using this, it is not hard to see that 2-quasi-cells are also locally definable.

7.19. PROPOSITION. A discrete set is locally definable inM if and only if it is closed
and bounded.
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PROOF. Let D ⊆ Mn be discrete. If D is not closed, then there is a P ∈ ∂D not
belonging to D. But then the intersection D ∩ B with any open box B containing P
will have P in its closure, so that D ∩ B is not closed, whence cannot be definable by
Corollary 4.2. Similarly, if D is not bounded, say, in the first coordinate on the right,
then its intersection with any open box of the form ]p,∞[ ×B′ will still be unbounded,
whence not definable by Corollary 4.2. Suppose therefore D is closed and bounded. To
check local definability at a boundary point P , as it belongs to D by closedness, there
is an open box B such that D ∩B = {P}. To check at an infinite point, we can find an
open box around P which is disjoint from D. a

7.20. COROLLARY. The topological boundary of a locally definable subset Y ⊆ M
is a discrete, closed, bounded set.

PROOF. If the locally definable set ∂Y has non-empty interior, it would contain an
open interval I and we may shrink this so that F := I ∩ Y is definable. Since ∂F =
I ∩ ∂Y = I , we get a contradiction with (2.6.vi). Hence ∂Y has no interior, and so,
for b ∈ ∂Y and an open interval I containing b such that I ∩ ∂Y is definable, the
latter set, having no interior, must be discrete by (2.6.iv), and hence, shrinking I further
if necessary, I ∩ ∂Y = {b}. Hence ∂Y is discrete, whence bounded and closed by
Proposition 7.19. a

Given an arbitrary ordered structure M, let Mloc be the structure generated by the
locally definable subsets ofM (formally, we have a language with an n-ary predicate
X for any locally definable subset X ⊆ Mn, and we interpret X(Mloc) as the subset
X). Since the class of locally closed subsets is closed under projection, fibers, and
finite Boolean combinations, the definable subsets of Mloc are precisely the locally
M-definable subsets.

7.21. COROLLARY. The reductMloc is type complete.

PROOF. Given a one-variable definable subset ofMloc, whence a locally definable
subset Y ⊆M , and a point a ∈M∞, we may choose an open interval I around a such
that Y ∩ I is definable. Since a− belongs to Y ∩ I or to its complement, the same is
true with respect to Y , proving type completeness. a

Since bounded clopens are locally definable but have no infimum, definable com-
pleteness usually fails andMloc is in general not a model of DCTC.

§8. Planar cell decomposition. In o-minimality, cell decomposition is the property
that we can partition any given definable subset X into a disjoint union of cells. Every
point is a 0-cell but writing X as a union of its points should not qualify as a cell
decomposition. Slightly less worse, if X is planar, then each fiber X[a] is a disjoint
union of intervals and points, so that we can partition X into points and vertical cells.
Of course, in the o-minimal context these pathologies are avoided by demanding the
partition be finite. For arbitrary models of DCTC, however, we can no longer enforce
finiteness, and so to exclude any unwanted partitions, we must impose some weaker
restrictions. Moreover, at present, I do not see how to avoid having to use quasi-cells
(but see §9 below).

We again work in a fixed model M of DCTC. Let us introduce the following ter-
minology, which we give only for the planar case (but can easily be extended to larger
arity, see Remark 8.2 below). First we extend the definition of dimension to arbitrary
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subsets of the plane (which is not necessarily well-behaved if the subset is not defin-
able) by the same characterization: a non-empty subset B ⊆ M2 has dimension 2, if
it has non-empty interior; dimension 1, if it has empty interior but is non-discrete; and
dimension zero if it is discrete. We can also define the local dimension dimP (B) of B
at a point P ∈ M2 as the minimal dimension of B ∩ U where U runs over all open
boxes containing P . Note that dimP (B) ≥ 0 if P ∈ B̄. It follows that the dimension
of B is the maximum of its local dimensions at all points. It is not hard to see that the
dimension of B is the largest e for which it contains an e-cell. In particular, a 2-quasi-
cell has dimension 2, whereas a 1-quasi-cell has dimension one. More generally, by
Corollaries 2.9 and 5.3 and the local nature of dimension, we showed that:

8.1. LEMMA. The dimension of a finite union of ei-quasi-cells is equal to the maxi-
mum of the ei. a

Given a collection B of (not necessarily definable) subsets of M2, we say that a de-
finable subset X ⊆M2 has a B-decomposition, if there exists a partition X =

⊔
i∈I Bi

with all Bi ∈ B, with the additional property that if X(e) denotes the union of all e-
dimensional Bi in this partition, then X(e) is definable and has dimension at most e,
for e = 0, 1, 2 (whence of dimension e if and only if it is non-empty). Put simply, in a
decomposition there cannot be too many lower dimensional subsets. By a cell decom-
position (respectively, a quasi-cell decomposition) we mean a B-decomposition where
B is the collection of all (quasi-)cells. By Lemma 8.1, any finite partition into quasi-
cells is a cell decomposition (as there can be no quasi-cell in a finite decomposition
since each subset in the partition is then definable).

8.2. Remark. For higher arities, we define the dimension of a subset B ⊆ Mn to
be the largest d such that it contains a d-cell (in case B is not definable, this might be
different from the largest d such that the projection of B onto some Md has non-empty
interior, but both are equal in the definable case). The definition of B-decomposition
for a definable set X ⊆Mn now easily generalizes: it is a partition of X into sets from
B such that the union of all sets in this partition of a fixed dimension e is a definable
subset of dimension at most e.

8.3. THEOREM. InM, any planar subset has a quasi-cell decomposition.

PROOF. Let X ⊆ M2 be a planar subset. There is nothing to show if X has dimen-
sion zero. If X is a curve, then Vert(X) is a disjoint union of vertical cells (see the
proof of Proposition 7.10). So after removing it from X , we may assume X has no
vertical components. In that case, Node(X) is discrete by Proposition 7.7, and so after
removing it, we may assume X has no nodes, and so we are done by Corollary 7.16.

So remains the case that X is 2-dimensional. Let C := ∂X be its boundary. Since C
has dimension at most one by Corollary 7.12, and so can be decomposed into disjoint
quasi-cells by what we just argued, we may assume, after removing it, that X is more-
over open. The projection π(N) of the set N := Node(C) of all nodes is discrete by
Proposition 7.7 and Theorem 4.1, and therefore X ∩ (π(N) ×M) can be partitioned
into vertical cells. So remains to deal with points (a, b) ∈ X such that a /∈ π(N). Since
X is open, b is an interior point of X[a]. Let l and h be respectively the maximum
of (C[a])≤b and the minimum of (C[a])≥b, so that the open interval ]l, h[ lies inside
X[a] and contains b (we leave the case that one of these endpoints is infinite to the
reader). By choice, neither (a, l) nor (a, h) is a node of C, so that by Corollary 7.16,
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there are (unique) optimal 1-quasi-cells L,H ⊆ C containing (a, l) and (a, h) respec-
tively, say, given as the graphs of locally definable, continuous maps f : V → M and
g : W → M . Consider all open intervals I ⊆ V ∩W containing a such that the 2-cell
C(I; f |I < g|I) lies entirely inside X , and let Z ⊆ M be the union of all these inter-
vals. Hence Z is open and convex, and C(Z; f |Z < g|Z) is an (optimal) 2-quasi-cell
inside X , by Lemma 7.15. To show that this construction produces a disjoint union of
quasi-cells, we need to show that if (a′, b′) is any point in S, then the above procedure
yields exactly the same quasi-cell containing (a′, b′). Indeed, by convexity, we can find
an open interval I ⊆ V containing a and a′. Since the intersections of F and G with
I ×M are 1-cells, C(I; f |I < g|I) = S ∩ (I ×M) is a 2-cell contained in X , whence
must lie inside S by construction.

To show that this is a decomposition, we induct on the dimension d of X , where the
case d = 0 is trivial. In the above, at various stages, we had to remove some subsets of
X of dimension strictly less than d, and partition each separately. Since each of these
finitely many exceptional sets was definable, so is their union and by Lemma 8.1, has
dimension strictly less than d. Hence the complement X(d), consisting of all d-quasi-
cells in the partition, is also definable. After removingX(d), we are left with a definable
subset of strictly less dimension, and so we are done by induction. a

The proof gives in fact some stronger results, where for the sake of brevity, we will
view any point as a 0-quasi-cell:

8.4. Remark. Keeping track of the various (quasi-)cells, we actually showed that we
may partition X in quasi-cells Si, such that each S̄i ∩ X is a disjoint union of Si and
some of the other Sj .

8.5. Remark. For a definable subset Y ⊆ M , define a left outer point (respectively,
a right outer point) as a point b ∈ Y such that (∂Y )≤b (respectively, (∂Y )≥b) is finite.
For a subset X ⊆ M2, we call (a, b) an outer point, if b is an outer point in X[a]. We
can now choose a partition X =

⊔
i Si in quasi-cells Si such that any quasi-cell Si

containing an outer point is a cell.
Indeed, for a fixed n, let fn : M → X be defined by letting fn(x) be the n-th left

outer point in ∂(X[x]) (note that this is a definable function by (4.1.iii)). The set where
fn takes finite values is definable, and after removing a discrete set, fn is continuous on
it, whence defines a cell above each open interval in its domain. So, given a (left) outer
point (a, b), if n is the cardinality of ∂(X[a])≤b, then (a, b) lies either on the graph of
fn or between the graphs of fn and fn+1, and therefore, on a cell.

8.6. COROLLARY. Any planar subset lying inside a compact subset admits a finite
partition into cells.

PROOF. We induct on the dimension d of the definable subset X ⊆M2 contained in
the compact set K. By Corollary 4.2, if d = 0, then X is closed, whence compact, and
discrete, whence finite. So assume X is a curve. Let D be the a ∈ M for which X[a]
has non-empty interior, so that D is a discrete subset of the compact π1(K), whence
finite. By Proposition 2.3, since each X[a] lies in the compact set π2(K), it is a finite
union of intervals, and hence Vert(X), being the union of all X[a] for a ∈ D, is
a finite union of cells. Removing it, we reduced to the case that X has no vertical
components. In particular, each fiber is discrete whence finite, and so is Node(X) by
Proposition 7.7. Upon removing the latter, we may assume X has no nodes. Apply the



PROLEGOMENA TO O-MINIMALISM: DCTC AND TAMENESS 23

quasi-cell decomposition procedure from Theorem 8.3 toX , which we will call here the
canonical quasi-cell decomposition. Since all its fibers are finite, every point is an outer
point in the terminology of Remark 8.5, and hence belongs to a cell. In other words, the
partition does not contain quasi-cells and so is a cell decomposition. Suppose there are
infinitely many 1-cells in this partition. Since each cell inside K must have exactly two
boundary points, and ∂X is finite, there must be at least two of these boundary points
common to infinitely many cells. But then, by continuity, any vertical line in between
these two points would intersect each of these cells in a different point, contradicting
that the fibers are all finite.

So remains the case that d = 2. We follow again the procedure, and its notation,
from Theorem 8.3 to produce the canonical quasi-cell decomposition of X . All the
parts of X we will throw out in this procedure are lower dimensional and hence have
finite cell decomposition by induction. So we may reduce to the case that X is open
and that (a, b) ∈ X has the property that no node of ∂X lies in the closure of X[a].
The definable maps f : V → M and g : W → M as in the proof of Theorem 8.3 are
uniquely determined by (a, b) and X , and their graphs are part of a cell decomposition
of ∂X . In particular, by induction, there are only finitely many choices for f and g.
Since the 2-cell C(Z; f |Z < g|Z) in the canonical cell decomposition containing (a, b)
is uniquely determined by the property that Z is the largest open interval in V ∩W such
that the 2-cell lies inside X , there are only finitely many possibilities for it. a

8.7. Remark. The analogue of Proposition 2.3 also holds: if X ⊆ M2 is definable
and K ⊆ M2 is compact and open, then X ∩ K admits a finite cell decomposition.
Indeed, choose for each a ∈ K and open box Ua containing a and contained in K.
Since eachX∩Ua is definable and contained inK, it admits a finite cell decomposition
by the previous result. But by compactness, K is the union of finitely many of the Ua,
proving the claim.

Both the Corollary and the Remark extend to higher arities, the detail of which we
leave to the reader.

§9. Tameness. The quasi-cell decomposition version given by Theorem 8.3 is not
very useful in applications. Moreover, the non-definable nature of quasi-cells is a seri-
ous obstacle. Perhaps quasi-cells never occur, but in the absence of a proof of this, we
make the following definitions, for O any (ordered) L-structure. Let us call a definable
map c : X → Y pre-cellular, if every fiber c−1(y) is a cell. Note that the non-empty
fibers of c then constitute a partition of X into cells. Injective maps are pre-cellular,
but the resulting partition in cells is clearly not a decomposition if X has positive di-
mension. To guarantee that we get a cell decomposition, we require moreover that the
image of c be discrete, bounded, and closed, and we call such a map then cellular. In
particular, we may assume, if we wish to do so, that the cellular map c : X → D is
surjective, where D is discrete, bounded, and closed.

Assume now thatO |= DCTC, and let c : X → D be cellular. The collection X(e) of
all fibers c−1(y) of dimension e is a definable subset, for each e, since we can express
in a first-order way whether a fiber c−1(y) has dimension e (for instance, if X is planar,
then having interior or being discrete are elementary properties). If X(e) is non-empty,
then its dimension is equal to e by Corollary 7.2 and the fact that D is discrete, showing
that we have indeed a cell decomposition. Note that in particular, the graph of c and
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X have the same dimension. We have the following converse: given a definable subset
X ⊆ Ok and a cellular map c : X → Y such that X =

⊔
y∈c(X) c

−1(y) is a cell
decomposition, then c is cellular, that is to say, c(X) is discrete. It suffices to show
that each c(X(e)) is discrete, for e ≤ k, and this follows from Corollary 7.2. It is not
clear whether every definable subset admits a cell decomposition of this type, and so we
make the following definition:

9.1. DEFINITION. A definable subset X ⊆ On in an ordered structure O is called
tame if it is the domain of a cellular map. If every definable subset in O is tame, then
we call O tame.

9.2. LEMMA. Any tame structure is a model of DCTC.

PROOF. Let O be tame. By Theorem 2.10, it suffices to show that any definable
subset Y ⊆ O is a disjoint union of open intervals and a single discrete, bounded, and
closed subset. Let c : Y → D be cellular, with D discrete, bounded, and closed. Hence,
each fiber c−1(a) must be a one-variable cell, that is to say, either a point or an open
interval. LetE be the subset of all a ∈ D for which c−1(a) is a point. Hence Y \c−1(E)
is a disjoint union of open intervals, so that upon removing them, we may assume
E = D, so that c is a bijection. Since D is discrete, c−1 is continuous. Therefore, Y =
Im(c−1) is closed and bounded by [3, Prop. 1.10] (which we may invoke by definable
completeness). Moreover, by the same result, any closed subset is again mapped to a
closed subset, showing that c−1, whence also c, is a homeomorphism. In particular, Y
is discrete, as we needed to show. a

Clearly any cell is tame. Since a (principal) fiber of a cell is again a cell, the same
holds for tame subsets. Since a principal projection of a cell is a cell, the collection
of tame subsets is closed under principal projections (we will generalize this in Corol-
lary 9.13 below). Any finite cell decomposition is easily seen to be given by a cellular
map, and hence in particular, any o-minimal structure is tame.

9.3. PROPOSITION. Suppose O and Õ are elementary equivalent L-structures. If O
is tame, then so is Õ.

PROOF. Since both structures have isomorphic ultraproducts, we only need to show
that tameness is preserved under elementary substructures and extensions. The former
is easy, so assume O is a tame elementary substructure of Õ and let X̃ be a definable
subset in Õn. Since tameness is preserved under fibers, we may assume that X̃ is
definable without parameters, say X̃ = ϕ(Õ). By assumption, there exists a cellular
map c : ϕ(O)→ D, that is to say, formulae γ and δ, with γ(O) the graph of a map all of
whose fibers are cells of dimension at most n and whose image is the discrete, closed,
bounded subset δ(O). Since all this is first-order, it must also hold in Õ, so that γ(Õ)
is the graph of a cellular map c̃ : X̃ → δ(Õ). a

By Theorem 6.10, the associated Hardy structure of a tame structure is therefore
again tame.

9.4. PROPOSITION. In a reduct of a tame structure, every definable set admits a cell
decomposition.

PROOF. LetO be a tame structure, Ō some reduct, andX an Ō-definable subset. By
assumption, there exists an O-definable cellular map c : X → D, the fibers of which
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yield an O-cell decomposition of X . We will need to show how we can turn this into
an Ō-cell decomposition. As always, we only treat the planar case, X ⊆ O2. There
is nothing to show if X is discrete, so assume it is a curve. We already argued that
its vertical component Vert(X) admits a cell decomposition, and so we may remove
it. The remaining set of nodes is discrete, and hence may be removed as well, so that
we are left with the case that X has no nodes. By Corollary 7.16, every point of X
lies on a unique optimal quasi-cell. Hence if C := c−1(d) is one of the cells in the
above decomposition, then it is contained in a unique Ō-quasi-cell S. As C is then the
restriction of S to I , it is Ō-definable by Lemma 7.15.

IfX has dimension two, we may assume it is open after removing its boundary, as we
already dealt with curves. By Theorem 8.3, there exists an Ō-quasi-cell decomposition
ofX . Following that proof, we may assume, after removing all points lying on a vertical
line containing a node of ∂X , that any quasi-cell S in this decomposition is open, and
its boundary consists of quasi-cells of ∂X . By the one-dimensional case, the latter
decompose into Ō-cells, whence so does S. a

As before, we work again a modelM of DCTC.

9.5. LEMMA. Every one-variableM-definable subset is tame.

PROOF. Most proofs involving tameness will require some coding of disjoint unions,
and as we will gloss over this issue below, let me do the proof in detail here. For ease
of discussion, let us assume Y ⊆ M is bounded (the unbounded case is only slightly
more complicated and left to the reader). Assume 0 and 1 are distinct elements in M .
Define c : Y → M2 by letting c(y) be equal to (y, 0), in case y ∈ ∂Y ; and equal to
(x, 1) where x is the maximum of (∂Y )<y , in the remaining case. The fiber c−1(d, e)
is either a point in ∂Y (when e = 0), or the interval ]d, σ∂Y (d)[ ⊆ Y . Since its image
is contained in ∂Y × {0, 1}, the map c is cellular by (2.6.v). a

9.6. Remark. As it will be of use later, note that by the above argument, we can refine
the cell decomposition given by c as follows: for any discrete subset D containing ∂Y ,
we can construct a cellular map cD : Y →M2 whose cells have endpoints in D.

9.7. PROPOSITION. Let g : X → Mn be a definable map with finite image. If every
fiber g−1(a) is tame, then so is X .

PROOF. Let A := g(X), so that A is finite. By assumption, there exists for each
a ∈ A, a cellular map ca : g−1(a) → Da with Da ⊆ Me discrete (for some large
enough e). Let D be the union of all {a} × Da ⊆ Mn+e, for a ∈ A. It follows from
Corollary 4.4 that D is discrete. Define c : X → D by the rule c(x) = (g(x), cg(x)(x)).
To see that this is cellular, note that the fiber over a point (a, d) ∈ D is equal to c−1

a (d)
for d ∈ Da, whence is by assumption a cell. a

9.8. THEOREM. The collection of tameM-definable subsets is closed under (finite)
Boolean combinations.

PROOF. For simplicity, we only prove this for planar subsets, and leave the general
case to the reader (by an induction on the arity). Since the complement of a cell V ⊆
M2 is a finite union of cells, it is tame. For instance, if V = C( ]a, b[ ; f < g), then its
complement consists of the four 2-cells ]−∞, a[ ×M , ]b,∞[ ×M , C(I;−∞ < f)
and C(I; g <∞), and the four 1-cells, a×M , b×M and the graphs of f and g. Since
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any union can be written as a disjoint union by taking complements, an application of
Proposition 9.7 then reduces to showing that the intersection of two cells V1 and V2 in
M2 is tame. This is trivial if either one is discrete, whence a singleton. Suppose V1 is
a 1-cell, given by the definable, continuous map f1 : I1 → M . Let Y be the subset of
all x ∈ I1 such that (x, f1(x)) belongs to V2. Choose a cellular map c : Y → D (by
Lemma 9.5, or, for higher arities, by induction). Its composition with the (bijective)
projection V1 ∩ V2 → Y is then also cellular.

Suppose next that Vi = C(Ii; fi < gi) are both 2-cells, assumed once more for
simplicity to be bounded. Let I := I1 ∩ I2 and for x ∈ I , let f(x) be the maximum of
f1(x) and f2(x), and let g(x) be the minimum of g1(x) and g2(x). Note that f and g are
continuous on I . Let Y consist of all x ∈ I for which f(x) < g(x), and let c : Y → D
be cellular. The composition of c with the projection V1 ∩ V2 → Y is again cellular,
since its fibers are the cells C(c−1(a); f < g). a

9.9. EXAMPLE. It is important in this result that the structure is already a model of
DCTC. For instance, let D be the subset of the ultrapower R\ of the reals (viewed as an
ordered field) consisting of all elements of the form n or ω\−n, for n ∈ N. Note thatD
is closed, bounded, and discrete, and hence tame. However, (R\, D) is not tame, since
N = D<ω\/2 is definable but fails to have a supremum, and so, (R\, D) is not even a
model of DCTC.

It is not hard to show that the product of two cells is again a cell. Therefore, the
product of two tame subsets is again tame. Similarly, the fiber of a cell is again a cell,
and hence if X ⊆ Mn is tame, then so is each fiber X[a]. Together with Theorem 9.8
and the fact that a principal projection of a tame subset is again tame, we showed that
the collection of tame subsets determines a first-order structure on M (in the sense of
[9, Chapt. 1, 2.1], with a predicate for every tame subset of Mn). Calling this induced
structure on M the tame reduct ofM and denoting itMtame, is justified by:

9.10. COROLLARY. If M |= DCTC, then Mtame is tame, whence in particular a
model of DCTC.

PROOF. The definable subsets ofMtame are precisely the tame definable subsets of
M, so that in particular,M andMtame have the same cells. So remains to show that if
c : X → D is cellular inM, then it is also cellular inMtame. Discrete sets are tame by
definition, and the graph Γ(c) of c is tame via the projection Γ(c) → D. In particular,
c isMtame-definable, and since its fibers are cells, we are done. The last assertion then
follows from Lemma 9.2. a

We also have the following joint cell decomposition:

9.11. COROLLARY. Given tame subsets Y1, . . . , Yn of a tame set X in M, there
exists a cellular map c : X → D, such that for each i, the restriction of c to Yi is also
cellular.

PROOF. Since any Boolean combination of tame subsets is again tame by Theo-
rem 9.8, we may reduce first to the case that all Yi are disjoint, and then by induction,
that we have a single tame subset Y ⊆ X . Since X \ Y is tame too, we have cellular
maps d : Y → D and d′ : X \ Y → D′, and their disjoint union is then the desired
cellular map. a
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We call a definable map tame, if its graph is. Note that its domain then must also be
tame. As already observed in the previous proof, cellular maps are tame. To characterize
tame maps, we make the following observation/definition: given a cellular map c : X ⊆
Mn → D, for e ≤ n, let X(e)

c = X(e) be the union of all e-dimensional fibers c−1(a).
Since dimension is definable, so is each X(e), and hence the restriction of c to X(e) is
also cellular, proving in particular that each X(e) is tame.

9.12. THEOREM. A definable map f : X → Mk is tame if and only if X is tame,
and the restriction of f to the set of its discontinuities is also tame. In particular, a
definable, continuous map with tame domain is tame.

PROOF. If f is tame, then f isMtame-definable, and hence so is its set of disconti-
nuities X ′, proving that X ′ is tame. Since the graph of f |X′ is Γ(f) ∩ (X ′ ×Mk),
the restricted map is again tame by Theorem 9.8. For the converse, U := X \ X ′ is
tame by Theorem 9.8, so that we have a cellular map c : U → D. Since f is continuous
on U , the composition of c with the principal projection Γ(f |U ) → U is also cellular,
showing that Γ(f |U ) is tame. Since by assumption, the graph of the restriction to X ′ is
tame, so is Γ(f) = Γ(f |U ) ∪ Γ(f |X′) by Theorem 9.8, showing that f is tame. a

A tame map isMtame-definable, and hence so its its image, proving:

9.13. COROLLARY. If the domain of a definable, continuous map inM is tame, then
so is its image. More generally, the image of a tame subset under a tame map is again
tame. a

Let us call a definable map f : X ⊆ Mn → Mk almost continuous, if its set of
discontinuities is discrete. By Theorem 3.2, any one-variable definable map is almost
continuous. Given a definable map f : X →Mk, let us inductively define Di(f) ⊆ X ,
by setting D0(f) := X , and by setting Di(f), for i > 0, equal to the set of discontinu-
ities of the restriction of f to Di−1(f). By Remark 3.5, each Di(f) has strictly lesser
dimension than Di−1(f), and hence Dn(f) is empty for n bigger than the dimension
of X . Hence f is (almost) continuous if D1(f) is empty (respectively, discrete). Since
the domain of a tame function is tame, an easy inductive argument using Theorem 9.12
immediately yields:

9.14. COROLLARY. An almost continuous map inM (for instance, a one-variable
map) with tame domain is tame. In particular, a definable map f is tame if and only if
all Di(f) are tame. a

Let us say that an ordered structure is almost continuous, if apart from a binary pred-
icate denoting the order, all other symbols represent almost continuous functions.

9.15. COROLLARY. IfM is almost continuous, then it is tame.

PROOF. Since the collection of tame subsets is closed under Boolean operations,
projections, and products by Theorem 9.8, we only have to verify that the ones defined
by unnested atomic formulae are tame. Since by assumption the only predicate is the
inequality sign, and the set it defines is a cell, we only have to look at formulae of the
form f(x) = g(x) or f(x) < g(x), with f, g function symbols. Since f and g are total
functions representing almost continuous maps, their graphs are tame by Corollary 9.14,
whence so is their intersection by Theorem 9.8. The projection of the latter is the set
defined by f(x) = g(x), proving that is a tame subset. Let F and G be the subsets of
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Mn+2 of all (a, f(a), c) and all (a, b, g(a)) respectively, with a ∈ Mn and b, c ∈ M .
Since these are just products of the respective graphs and M , both are tame, and so is
the subset E of all (a, b, c) ∈ Mn+2 with a < b. Therefore, by another application of
Theorem 9.8, the intersection F ∩G ∩ E is tame, and so is its projection, which is just
the set defined by the relation f(a) < g(a). a

9.16. Remark. More generally, by the same argument, ifM |= DCTC is an expan-
sion of a tame structure by tame functions and by predicates defining tame subsets, then
M itself is tame.
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