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O-MINIMALISM
HANS SCHOUTENS

Abstract. An ordered structure is called o-minimalistic if it has all the first-order features of an o-minimal
structure. To any o-minimalistic structure, we can associate its Grothendieck ring, which in the non-o-minimal
case is a non-trivial invariant. To study this invariant, we identify an o-minimalistic property, the Discrete
Pigeonhole Principle, which in turn allows us to define discretely valued Euler characteristics. As an application,
we study certain analytic subsets, called Taylor sets.

§1. Introduction. Let L be a language containing a binary predicate <, to be in-
terpreted as a dense linear ordering. We call an L-structure M o-minimalistic, if it is
a model of T°Mn := T°omn([) the collection of L-sentences that hold true in every
o-minimal L-structure. In [7], we laid the groundwork to study o-minimalistic struc-
tures, by studying a well-known fragment of 7°™", the theory DCTC of definably com-
plete/type complete structures: every one-variable definable subset has a (possibly infi-
nite) supremum, and every one-sided type at every (possibly infinite) point is complete.
We then showed that many results from o-minimality carry over to this more general
situation, upon replacing ‘finite’ by ‘discrete’, such as the Monotonicity Theorem, di-
mension theory, Hardy structures. Cell decompositions cause more trouble, and we
identified the subclass of tame structures, as those for which every definable subset can
be partitioned in discretely many cells (here a cell is defined exactly as in the o-minimal
context).

Although we do not yet know whether every o-minimalistic structure is tame,' we
can show that every o-minimalistic structure has a tame, o-minimalistic reduct (The-
orem 2.5). Neither do I do know whether DCTC is equal to 7°™", but in §3, I will
formulate an o-minimalistic (first-order) property, the Discrete Pigeonhole Principle
(DPP=any definable, injective map from a discrete set to itself is bijective), which
does not obviously follow from DCTC. In fact, it is not clear if we can axiomatize
o-minimalism by first-order conditions on one-variable formulae only (note that DPP is
a priori not of this form).

So this paper investigates properties of o-minimalistic structures that are modified
versions of the corresponding properties of o-minimal structures. Therefore, whereas
most papers on generalizing o-minimality are searching for weakenings that would in-
clude certain tamely behaving structures, our hands are tied and we have to obey by the
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laws of o-minimalism. Thus, to the chagrin of some of my esteemed colleagues, we
have to discard the structure (Q, <, +,Z) as it is not o-minimalistic, although it is de-
finably complete and locally o-minimal. However, it fails to have the type completeness
property at infinity, which forces every discrete set to be bounded. In §3, we study the
Grothendieck ring of an o-minimalistic structure. It will follow from the DDP that this
Grothendieck ring is equal to the ring of integers if and only if the structure is o-minimal
(in which case it corresponds to the Euler characteristic). Using Grothendieck rings, we
can also formulate a condition for an ultra-o-minimal structure My, that is to say, an
ultraproduct of o-minimal structures M, to be o-minimal (no such criterion seemed to
have existed before): this is the case if for each L-formula ¢, there is a bound IV, on the
absolute value of the Euler characteristic of ¢(M,), independent of ¢ (Theorem 3.20).

In §4, we study expansions of an o-minimalistic structure by a predicate that are again
o-minimalistic. For discrete subsets, we get the notion of an o-finitistic set, that is to say,
a set enjoying all first-order properties of an arbitrary finite set in an o-minimal structure.
This notion is particularly interesting when it comes to classifying definable subsets up
to ‘virtual’ isomorphism, that is to say, definable in some o-minimalistic expansion; the
corresponding Grothendieck ring is called the virtual Grothendieck ring and studied in
§5. However, a priori, the treatment depends on a choice of ‘context’, that is to say, of
an ultra-o-minimal elementary extension. Using this technology, we associate in §6 to
each definable, discrete subset of M a (discretely valued) Euler characteristic defined
on its virtual Grothendieck ring. This allows us to calculate explicitly this virtual Gro-
thendieck ring in the special case of a tame, o-minimalistic expansion of an ordered
field admitting a power dominant discrete subset (Corollary 6.6).

The last section is an application to the study of analytic sets. In the o-minimal
context, (sub)analytic sets are normally understood to be given by analytic functions
supported on the unit box (often simply called restricted analytic functions), as the
corresponding structure R,, is o-minimal, and admits quantifier elimination in an ap-
propriate language by the seminal work of [2]. There is a good reason to restrict to
compact support, as the global sine function defines Z, and hence can never be part
of an o-minimal expansion. Our approach here is to look at subsets of R” that can be
uniformly approximated on compact sets by R,,-definable subsets. More precisely, we
call a subset X C R* a Taylor set, if the ultraproduct over all n of the truncations
X|, = {x € X|[[x| < n} is definable in R{", where the latter structure is obtained
as the ultraproduct of the scalings of R,, by a factor n (that is to say, for each n, the
expansion of R by power series converging on |x| < n). It follows from [2] that Ry
is o-minimalistic. Any subset definable by a quantifier free formula using convergent
power series, whence in particular, any globally analytic variety, is Taylor. A discrete
subset is Taylor if and only if it is closed, and any such set satisfies the Discrete Pigeon-
hole Principle with respect to Taylor maps. However, we can now also define sets by
analytic parameterization, like the spiral with polar coordinates R = exp 6, for § > 0
(in contrast, the spiral obtained by allowing 6 to be negative as well is not Taylor!). We
use our o-minimalistic results to give a geometric treatment of the class of Taylor sets: to
a Taylor set X, we associate an Rgn-deﬁnable subset X, called its protopower, given as
the ultraproduct of its truncations. We obtain a good dimension theory, a Monotonicity
Theorem, a (partly conjectural, locally finite) cell-decomposition, and a corresponding
Grothendieck ring, all indicative of the tameness of the class of Taylor sets, albeit not
first-order.
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Notations and conventions. Definable means definable with parameters. Through-
out this paper, L denotes some language containing a distinguished binary relation sym-
bol < and any L-structure M will be (at least) a dense linear order without endpoints.
When needed, U denotes some predicate (often unary), and we will write (M, X) for
the L(U)-structure in which X is the interpretation of U.

We will use the following ISO convention for intervals: open ]a, b[ (which we always
assume to be non-empty, that is to say, a < b), closed [a,b] (including the singleton
{a} = la,a]), half-open la,b] or [a,b[, and their infinite variants like | — oo, al,
| — 00,a], Ja,oo[, and [a, co[, with a,b € M.

When taking ultraproducts, we rarely ever mention the underlying index set or (non-
principal) ultrafilter. We use the notation introduced in [6], denoting ultraproducts with
a subscript §. Thus, we write Ny, Zy, and Ry, for the ultrapower of the set of natural
numbers N, integers Z, and reals R respectively. On occasion we need the (countable)
ultraproduct of the diagonal sequence (n),, in Ny, which we denote suggestively by wy.

§2. O-minimalism. Let us briefly recall some notions from [7]. Let O be an (or-
dered) L-structure. We call O o-minimalistic, if it is a model of the theory Tomin of
o-minimalism, given as the intersection of the theories Th(M) of all o-minimal L-
structures M.

2.1. LEMMA. A reduct of an o-minimalistic structure is again o-minimalistic.

PROOF. Let L. C L’ be languages, let M’ be an o-minimalistic L’-structure, and
let M := M|, be its L-reduct. To show that M is o-minimalistic, take a sentence
in 79M" and let A be any o-minimal L’-structure. Since its reduct A”|, is also o-
minimal, o holds in the latter, whence also in A/ itself. As this holds for all o-minimal
L'-structures, ¢ also holds in M’. Since o only mentions L-symbols, it must therefore
already hold in the reduct M, as we needed to show. -

We will call an ultraproduct of o-minimal L-structures an ultra-o-minimal structure.’
Using a well-known elementarity criterion via ultraproducts, we have:

2.2. COROLLARY. An L-structure is o-minimalistic if and only if it is elementary
equivalent with (equivalently, an elementary substructure of) an ultra-o-minimal struc-
ture. —

This produces many examples of non-o-minimal o-minimalistic structures.

2.3. EXAMPLE. Let L be the language of ordered fields together with a unary pred-
icate U. For each n, let R,, := (R, {0, 1,...,n} be the expansion of the field R. Since
{0,1,2,...,n} is finite, each R,, is o-minimal, and therefore their ultraproduct Ry is
o-minimalistic by Corollary 2.2. The set D := U(Ry) is discrete but not finite, so Ry,
cannot be o-minimal. Note that D contains N and that wy is its maximum. In fact,
D= (Nh)Swu'

An o-minimalistic field (with no additional structure), being definably complete, is o-
minimal by [5, Corollary 1.5]. Any o-minimalistic structure whose underlying order is
that of the reals, or more generally, admits the Heine-Borel property, must be o-minimal
by [7, Corollary 2.4 and Remark 2.5]. We defined the dimension dim(X) of a definable

20-minimality is preserved under elementary equivalence, whence under ultrapowers, but not necessarily
under ultraproducts.
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subset X as the largest d for which it contains a d-cell. Here a cell is defined in the
same way as in the o-minimal case ([8, Chapt. 3, Def. 2.3]): it is either the graph of
a continuous, definable map on a cell of lower arity, or the region between two such
graphs. A definable subset X C MP* has dimension zero if and only if it is discrete,
whereas it has dimension k if and only if it has non-empty interior.

2.4. PROPOSITION. [In an ultra-o-minimal structure M, a definable set has dimen-
sion e if and only if it is an ultraproduct of e-dimensional definable sets.

PROOF. Suppose M is the ultraproduct of o-minimal structures M;, and let X =
©(M) be a definable subset. By £.0§” Theorem, X is the ultraproduct of the definable
sets X; := ¢(M;). The result now follows from the definability of dimension: we
leave the general case to the reader, but for the planar case (=definable subsets of M 2),
observe that both being discrete or having non-empty interior are first-order definable
properties, and hence pass through the ultraproduct by L.o§” Theorem. —

Tameness. We call a definable subset X C OF rame, if there exists a definable map
¢: X — D with D a closed, bounded, and discrete subset, such that each fiber ¢! (a)
is a cell. We call O tame, if all O-definable sets are tame. Any tame structure is a
model of DCTC ([7, Lemma 9.2]). The class of tame subsets is closed under Boolean
operations and projections, and so we can define the tame reduct O™ of O in which
the definable subsets are precisely the tame subsets (whence Q%™ is in particular tame
itself; see [7, Corollary 9.10]).

2.5. THEOREM. If M is o-minimalistic, then so is M"™.

PROOF. Let L be the language with a predicate for each tame subset of M, so that
M s an L-structure. Viewing M as a structure in the language having a predicate
for each definable subset yields again a tame structure, since we added no new definable
subsets (see Lemma 4.1 below). Therefore, upon replacing L by the latter language, we
assume from the start that L C L, and the result now follows from Lemma 2.1. -

If M is a model of DCTC, then we defined in [7, §6.6] its Hardy structure H(M) as
the set of all germs of one-variable, continuous, definable maps at infinity. We showed
that it is again an L-structure, and, in fact, an elementary extension of M. Hence, if
M is o-minimalistic, then so is H(M). As we argued there, this gives rise to plenty of
Vaughtian pairs, showing that o-minimalism has Vaughtian pairs.

2.6. Remark. We have the following puzzling fact that at least one among the follow-
ing three statements holds:

2.6.1. there is a tame structure which is not o-minimalistic;
2.6.1i. there is an o-minimalistic structure which is not tame;
2.6.iii. any reduct of a tame structure is again tame.

Indeed, suppose both (2.6.1) and (2.6.iii) fail. So, by the latter, there is a tame structure
M with a non-tame reduct M, and by the former, M is o-minimalistic, whence so is M
by Lemma 2.1. Hence M is o-minimalistic but not tame. Note that (2.6.1) implies that
DCTC is not equal to 7°™", T do not know whether any ultraproduct of tame structures
is tame. If so, then (2.6.ii) fails, that is to say, any o-minimalistic structure is tame, since
it is elementary equivalent by Corollary 2.2 with an ultra-o-minimal structure, and the
latter would then be tame, whence so would the former be by [7, Proposition 9.3].
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§3. The Grothendieck ring of an o-minimalistic structure. Given any first-order
structure N, we define its Grothendieck ring Gr(N') as follows. Given two formulae
©(x) and 1 (y) with parameters, with z = (x1,...,2,) and y = (Y1,...,Ym), We
say that ¢ and v are (N-)definably isomorphic, if there exists a definable bijection
I oWN) = (N). Let Gr(N) be the quotient of the free Abelian group generated by
N-definable isomorphism classes () of formulae ¢ modulo the scissor relations

(sciss) (@) + (@) = (e Ah) = (o Vi)
where ¢, 1) range over all pairs of formulae in the same free variables. See for instance
[3, 4] for more details.

We will write [¢] or [Y] for the image of the formula ¢, or the set Y defined by
it, in Gr(/N). Since we can always replace a definable subset with a definable copy
that is disjoint from it, the scissor relations can be simplified, by only requiring them
for disjoint unions: [X UY] = [X] + [Y]. In particular, combining all terms with a
positive sign as well as all terms with a negative sign by taking disjoint unions, we see
that every element in the Grothendieck ring is of the form [X] — [Y], for some definable
subsets X and Y. To make Gr(/N) into a ring, we define the product of two classes
[¢] and [¢] as the class of the product ¢(x) A ¢ (y) where = and y are disjoint sets
of variables. One checks that this is well-defined and that the class of a point is the
unit for multiplication, therefore denoted 1. Note that in terms of definable subsets,
the product corresponds to the Cartesian product and the scissor relation to the usual
inclusion/exclusion relation.

Variants are obtained by restricting the class of formulae/definable subsets. For our
purposes, that is to say, working in an ordered L-structure M, we will only do this
for discrete subsets. Call a formula discrete if it defines a discrete subset. In a model
M = DCTC, discrete formulae are closed under Boolean combinations and prod-
ucts ([7, Corollary 2.9]), and if two discrete definable subsets are definably isomorphic,
then the graph of this isomorphism is also given by a discrete formula. Therefore, the
Grothendieck ring on discrete formulae is well-defined and will be denoted Gro(M).
We have a canonical homomorphism Gro(M) — Gr(M) with image the subring
generated by classes of discrete formulae. The following is useful when dealing with
Grothendieck rings:

3.1. LEMMA. Two definable subsets X and Y in a first-order structure N have the
same class in Gr(N) if and only if there exists a definable subset Z such that X || Z
and Y U Z are definably isomorphic.

PROOF. One direction is immediately, for if X LI Z and Y U Z are definably iso-
morphic, then [X] + [Z] = [X U Z] = [Y U Z] = [Y] + [Z] in Gr(N), from which
it follows [X] = [Y]. Conversely, if [X] = [Y], then by definition of scissor relations,
there exist mutually disjoint, definable subsets A;, B;, C;, D; C NPi such that

(X) + Z (A)) +(B) — (A; U B;) = (Y) + Z (C)) + (D;) — (C; U D)

in the free Abelian group on isomorphism classes. Bringing the terms with negative
signs to the other side, we get an expression in which each term on the left hand
side must also occur on the right hand side, that is to say, the collection of all iso-
morphism classes {(X), (A4;), (B;), (C; U D;)} is the same as the collection of all iso-
morphism classes {(Y), (C;), (D;), (A; U B;)}. By properties of disjoint union, we



6 HANS SCHOUTENS

therefore get (X U Z) = (Y U Z), where Z is the disjoint union of all definable sub-
sets A;, B;, C;, D;. —

If M is an expansion of an ordered, divisible Abelian group, then we have the follow-
ing classes of open intervals. If I = ]a, b[, then I is definably isomorphic to ]0,b — a|
via the translation = — = — a. Moreover, ]0, a[ is definably isomorphic to |0, 2a[ via
the map « +— 2z. Hence the class 1 of ]2, a[ is by (sciss) equal to the sum of the classes
of ]0,a[, {a}, and ]a,2a[. In other words, 1 = 2i + 1, whence i = —1 (the addi-
tive inverse of 1). Let b be the class of the unbounded interval ]0, oo[. By translation
and/or the involution z — —z, any half unbounded interval is definably isomorphic
with ]0, oo . Finally, we put I := [M] (the so-called Lefschetz class). Since M is the
disjoint union of | — oo, 0[, {0}, and ]0, oo, we get

(lef) L = 2h + 1.

If M is moreover an ordered field, then taking the reciprocal makes ]0,1[ and |1, co|
definably isomorphic, so that h =1 = —1, and hence also . = —1.

Under the assumption of an underlying ordered structure, whence a topology, we can
also strengthen the definition by calling two definable subset definably homeomorphic,
if there exists a definable (continuous) homeomorphism between them, and then build
the Grothendieck ring, called the strict Grothendieck ring of M and denoted Gr*(M),
on the free Abelian group generated by homeomorphism classes of definable subsets.
Note that there is a canonical surjective homomorphism Gr*(M) — Gr(M). In the
o-minimal case, the monotonicity theorem implies that both variants are equal, but this
might fail in the o-minimalistic case, since cell decompositions are no longer finite (but
see Corollary 3.13 below). In fact, in the o-minimal case, the Grothendieck ring is
extremely simple, as observed by Denef and Loeser ([8, Chap. 4, §2]):

3.2. PROPOSITION. The Grothendieck ring of an o-minimal expansion of an ordered
field is canonically isomorphic to the ring of integers Z.

PROOF. By the previous discussion, the class of any open interval is equal to —1.
The graph of a function is definably isomorphic with its domain, and so the class of
any 1-cell is equal to —1. Since a bounded planar 2-cell lies in between two 1-cells,
it is definably isomorphic to an open box, and by definition of the multiplication in
Gr (M), therefore its class is equal to I.? = 1. The unbounded case is analogous, and
so is the case that the 2-cell lies in a higher Cartesian product. This argument easily
extends to show that the class of a d-cell in Gr(M) is equal to LY = (—1)%. By Cell
Decomposition, every definable subset is a finite union of cells, and hence its class in
Gr(M) is an integer (multiple of 1). o

We denote the canonical homomorphism Gr(M) — Z by xa(+) and call it the
Euler characteristic of M. Inspired by [1], we define the Euler measure of a definable
subset X in an o-minimal structure M as the pair g (X) = (dim(X), xm(X)) €
(NU{—00}) x Z, where we view the latter set in its lexicographical ordering.

In an arbitrary first-order structure, let us say, for definable subsets X and Y, that
X X Y if and only if there exists a definable injection X — Y. In general, this
relation, even up to definable isomorphism, will fail to be symmetric (take for instance
in the reals the sets X = [0,1] and Y = XU{3/2}, where x — x/2 sends Y inside X),
and therefore is in general only a partial pre-order. As we will discuss below in §3.14, it
does induce a partial order on isomorphism classes of discrete, definable subsets in an
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o-minimalistic structure. In the o-minimal case, < is a total pre-order by the following
(folklore) result. In some sense, the rest of the paper is an attempt to extend this result
to the o-minimalistic case.

3.3. THEOREM. In an o-minimal expansion of an ordered field, two definable sets X
and'Y are definably isomorphic if and only if p(X) = pm (Y). Moreover, X <Y if
and only if dim(X) < dim(Y") with the additional condition that x p(X) < xm(Y)
whenever both are finite.

PROOF. The first statement is proven in [8, Chap. 8, 2.11]. So, suppose X <X Y.
Since X is definably isomorphic with a subset of Y, its dimension is at most that of Y.
If both are zero-dimensional, that is to say, finite, then the pigeonhole principle gives
xa(X) = [X] < V] = xp(Y).

Conversely, assume dim(X) < dim(Y). If both are finite, the assertion is clear
by the same argument, so assume they are both positive dimensional. Without loss of
generality, by adding a (disjoint) cell of the correct dimension, we may then assume
that they have both the same dimension d > 1. Let e := xm(Y) — xm(X) and let F
consist of e points disjoint from X if e is positive and of —e open intervals disjoint from
X if e is negative. Since x (F') = e, the Euler measure of X U F' and Y are the same,
and hence they are definably isomorphic by the first assertion, from which it follows
that X <Y. -

Let M be an ultra-o-minimal structure, say, realized as the ultraproduct of o-minimal
structures M ;. We define its ultra-Euler characteristic x p(+) as follows. LetY C M™
be a definable subset, say given by a formula ¢(x, b) with b a tuple of parameters real-
ized as the ultraproduct of tuples b; in each M;. Let Y; := ¢(M;, b;), so that Y is the
ultraproduct of the Y;, and let x o¢(Y") now be the ultraproduct of the x a4, (Y;), viewed
as an element of Zy. If X is definably isomorphic with Y, via a definable bijection
with graph G, choose as above definable subsets X; and GG; in M; with ultraproduct
equal to X and G respectively. By Lo$’ Theorem, almost each G; is the graph of a
definable bijection between X; and Y;, and therefore x a4, (X;) = xm, (Y;) for almost
all ¢, showing that x ;(X) = xm(Y). Similarly, we define the ultra-Euler measure
(X)) = (dim(X), xam(X)). Since the ultra-Euler characteristic is easily seen to be
also compatible with the scissor relations (sciss), we showed:

3.4. COROLLARY. For an ultra-o-minimal structure M, the ultra-Euler character-
istic induces a homomorphism Gr(M) — Zj. -

3.5. The Discrete Pigeonhole Principle. Before we proceed, we identify another
o-minimalistic property, that is to say, a first-order property of o-minimal structures.
For the remainder of this section, M will be an o-minimalistic structure.

3.6. PROPOSITION (Discrete Pigeonhole Principle). If a definable map f: Y — Y,
for some Y C M™", is injective and its image is co-discrete, meaning thatY \ f(Y) is
discrete, then it is a bijection. In particular, any definable map from a discrete subset D
to itself is injective if and only if it is surjective.

PROOF. For each formula ¢(x,y,z), we can express in a first-order way that if
o(x, y, c), for some tuple c of parameters, defines the graph of an injectivemap f: ¥ —
Y then

(DPP) Y\ f(Y) discrete implies Y = f(Y).
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Remains to show that (DPP) holds in any o-minimal structure M. Indeed, if D =
Y\ f(Y), then x p(Y) = xm(f(Y)) + xame(D). Since f is injective, Y and f(Y) are
definably isomorphic, whence have the same Euler characteristic, and so x o¢(D) = 0.
But a discrete subset in an o-minimal structure is finite and its Euler characteristic is then
just its cardinality, showing that D = (). One direction in the last assertion is immediate,
and for the converse, assume f: D — D is surjective. For each z € D, define g(x)
as the (lexicographical) minimum of f~!(z), so that g: D — D is an injective map,
whence surjective by the above, and therefore necessarily the inverse of f. B

At present, I do not know how to derive (DPP) from DCTC.

3.7. COROLLARY. An o-minimalistic expansion of an ordered field is o-minimal if
and only if its Grothendieck ring is isomorphic to Z.

PROOF. One direction is Proposition 3.2, so assume Gr(M) = Z. Let D be a
definable, discrete subset. By assumption, [D] = n for some integer n. After removing
n points, if n is positive, or adding —n points, if negative, we may suppose [D] = 0.
By Lemma 3.1, there exists a definable subset X such that X and X LI D are definably
isomorphic. By (DPP), this forces D = (). o

3.8. COROLLARY. A monotone map f: D — D on an M-definable, discrete subset
D is either constant or an involution.

PROOF. Suppose f is non-constant and hence f? is strictly increasing. So upon
replacing f by its square, we may already assume that f is increasing, and we need to
show that it is then the identity. Since f is injective, it is bijective by Proposition 3.6. Let
h be the maximum of D, and suppose f(d) = h. If d < h,then h = f(d) < f(h) € D,
contradiction, showing that f(h) = h. If f is not the identity, then the set Q of alld € D
for which f(d) # d is non-empty, whence has a maximum, say, u < h. In particular, if
v = op(u) is its immediate successor, then f(u) < f(v) = v, since v ¢ (), whence
f(u) < u, since u € Q. Since u = f(a) for some a # w, then either a < worv < q,
and hence v = f(a) < f(u) < worv = f(v) < f(a) = u, a contradiction either
way. —

3.9. Remark. Note that the map sending i to the minimum of D, and equal to op
otherwise is a definable permutation of D, but it obviously fails to be monotone. The
map x — wy —x on D = (Ny)<,, asin Example 2.3 is a strictly decreasing involution.
It is not hard to see that if an involution exists, it must be unique: indeed, if f and g
are both decreasing, let a be the maximal element at which they disagree (it cannot be
h since f(h) = 1 = g(h)), and assume f(a) < g(a). Since f(o(a)) = g(o(a)) <
f(a) < g(a), itis now easy to see that f(a) does not lie in the image of g, contradicting
that g must be a bijection by (DPP).

3.10. PROPOSITION. If M expands an ordered field, then there exists for every de-
finable subset Y C M, two definable, discrete subsets D,E C 'Y such that [Y] =
[D] — [E] in Gr(M).

PROOF. Since the boundary 0Y is discrete, we may remove it and assume Y is open,
whence a disjoint union of open intervals by [7, Theorem 2.9]. Let us introduce some
notation that will be useful later too, assuming Y is open. For y € Y, let [(y) and
h(y) be respectively the maximum of (0Y")., and the minimum of (9Y)~,, (allowing
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+00). Hence ]I(y), h(y)[ is the maximal interval in Y containing y, and we denote its
barycenter by m(y), where, in general, we define the barycenter of an interval |a, b| as
the midpoint (a+b)/2 if a and b are finite, or the point a + 1 (respectively, b— 1, or 0) if
a (respectively, b, or both) is infinite. Let L(Y"), M(Y") and R(Y") consist respectively
of all y less than, equal to, or greater than m(y). Removing a maximal unbounded
interval from Y if necessary (whose class is equal to —1 as already observed above),
we may assume Y is bounded, so that [(y) and h(y) are always finite. Since the maps
fy: L(Y)—=Y:y—2y—I(y)and gy : L(Y) — R(Y): y — y+m(y) are bijections,
Y] = [L(Y)] = [R(Y)]. Since the scissor relations yield [Y] = [L(Y)] + [M(Y)] +
[R(Y)], we get [Y] = —[M(Y)]. By construction M (Y) is discrete, and so we are
done. -

The proof gives the following more general result: given any discrete subset Dy C Y,
we can find disjoint discrete subsets D, E C Y such that Dy C D and [Y] = [D] — [E].
Indeed, let D := DoU(Y NOY ) and E := M (Y \ D). If M merely expands an ordered
group, then we have to also include the class h, that is to say, in that case we can write
[Y] = eh + [D] — [E], where e € {0, 1, 2} is the number of unbounded sides of Y. For
higher arities, we need to make a tameness assumption:

3.11. COROLLARY. Let X be a definable subset in an o-minimalistic expansion M
of an ordered field. If X is tame, then there exist definable, discrete subsets D, EE C X
such that [X] = [D] — [E] in Gr(M). In fact, the class of any tame subset in Gr(M)
is of the form [D] — [E|, for some definable discrete subsets D, E C M.

PROOF. We give again the proof only for X planar. There is nothing to show if X
is discrete. Assume next that it has dimension one. Let V' := Vert(X) be the vertical
component of X. Since 7(V) is discrete, as we argued before, we can carry out the
argument in the proof of Proposition 3.10 on each fiber separately to write [V] as the
difference of two discrete classes (we leave the details to the reader, but compare with
the two-dimensional case below). Removing V' from X, we may assume X has no
vertical components. In particular, the set N := Node(X) of nodes of X is discrete by
[7, Proposition 7.7]. Removing it, we may assume X has no nodes, so that every point
lies on a unique optimal quasi-cell by [7, Corollary 7.16]. However, by assumption, X
is tame, and hence there exists a cellular map c: X — D. Given z € X, let I, be the
domain 7(c~!(c(x))) of the unique cell ¢~ (c(x)) containing . Let L(X), M (X), and
R(X) consist respectively of all z € X such that w(z) lies in L(I,,), M (I), and R(I,,)
respectively (in the notation of the proof of Proposition 3.10). Define fx: L(X) — X
and gx: L(X) — R(X) by sending x to the unique point on ¢~ (c(x)) lying above
respectively fr (m(z)) and gz, (7(x)), showing that X, L(X), and R(X) are definably
isomorphic. Since M (X) is discrete and [X| = [L(X)] + [R(X)] + [M (X)], we are
done in this case.

If X has dimension two, its boundary has dimension at most one, and so we have
already dealt with it by the previous case. Upon removing it, we may assume X is
open. This time, we let L(X), M(X) and R(X) be the union of respectively all
L(Xla]), M(X[a]), and R(X[a]), for all @ € 7(X). The maps (a,b) — fx[q)(b)
and (a,b) — gx|q)(b) put L(X) in definable bijection with respectively X and R(X)
(with an obvious adjustment left to the reader if the fiber X [a] is unbounded), and hence
[X] = —[M(X)]. Since M (X) has dimension at most one by [7, Proposition 5.1], we
are done by induction. Without providing the details, we can extend this argument to
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higher dimensions, proving the last claim, where we also must use the fact proven below
in Lemma 3.15 that definable discrete subsets are univalent in an ordered field. -

3.12. Remark. We actually proved that if c: X — D is a cellular surjective map,
then

(1) [X] =) (-1)°[D.]

where D, = ¢(X(®)) consist of all @ € D with e-dimensional fiber ¢ ' (a), and where
d is the dimension of X. We may reduce to the case that all fibers have the same
dimension, and the assertion is then clear in the one-dimensional case, since the re-
striction of ¢ to M (X) is a bijection. Repeating the argument therefore to X, we get
[X] = —-[M(X)] = [M(M(X))], and now M (M (X)) is definably isomorphic with D
via c. Higher dimensions follow similarly by induction.

In particular, if M is a tame expansion of an ordered field, then its Grothendieck ring
is generated by the definable discrete subsets of M, and the canonical homomorphism
Gro(M) — Gr(M) is surjective. Inspecting the above proof, we see that all isomor-
phisms involved are in fact homeomorphisms, and so the result also holds in the strict
Grothendieck ring Gr®(M). Since any function with discrete domain is continuous, we
showed:

3.13. COROLLARY. For a tame, o-minimalistic expansion of an ordered field, its
Grothendieck ring and its strict Grothendieck ring coincide. —

3.14. The partial order on ©(M). Let ©(M) denote the collection of isomor-
phism classes of definable, discrete subsets in an o-minimalistic structure M. Recall
that X < Y if there exists a definable injection X — Y. We call a definable subset
X wunivalent, if X < M. By Theorem 3.3, every definable curve is univalent in an
o-minimal structure. In this section, we study < on definable, discrete subsets.

3.15. LEMMA. In an expansion of an ordered field, every definable, discrete subset
is univalent.

PROOF. By induction, it suffices to show thatif D C M n+1 g discrete and definable,
then there is a definable, injective map g: D — M™. The set of lines connecting two
points of D is again a discrete set (in the corresponding projective space) and hence
we can find a hyperplane which is non-orthogonal to any of these lines. But then the
restriction to D of the projection onto this hyperplane is injective. n

Assume D and E are discrete, definable subsets with D < F and £ < D. Hence
there are definable injections D — E and E — D. By Proposition 3.6, both composi-
tions are bijections, showing that D and F are definably isomorphic. Since transitivity
is trivial, we showed that we get a partial order on ©(M). To obtain a partial order on
the zero-dimensional Grothendieck ring Gr(M), we define [D] < [E], if there exists
a definable, discrete subset A such that DU A < E'LIA. To show that this well-defined,
assume [D] = [D’] and [E] = [E’]. By Lemma 3.1, there exist definable, discrete
subsets F'and G suchthat DU F = D' U F and E UG = E’ UG. Therefore,

DUFUGUAXYDUFUGUASFEUFUGUAXFEUFUGUA
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since DUA < EUA. We then extend this to a partial ordering on Gro (M) by linearity.
In the o-minimal case, Gro(M) is just Z in its natural ordering.

In an expansion of an ordered group, let us call a definable, discrete set D equidistant,
if the map a — op(a) — a is constant on all non-maximal elements of D, where op is
the successor function.

3.16. PROPOSITION. [n an o-minimalistic expansion M of an ordered field, any two
definable equidistant subsets of M are comparable.

PROOF. Let D, E C M be definable equidistant subsets. Since they are bounded by
[7, Corollary 4.2], we may assume after a translation that both have minimum equal to
0, and then after taking a scaling, that the distance between consecutive points in both
is 1. Let m be the maximum of all @ € D N E for which D<, = E<,. If m is non-
maximal in either set, then m + 1 lies both in D and in E by assumption, contradiction.
Hence m is the maximum, say, of D, and therefore D C F, whence D < F. -

More generally, given a definable, discrete subset D C M in an o-minimalistic ex-
pansion M of an ordered field, define the derivative D’ of D as the set of all dif-
ferences op(a) — a, where a runs over all non-maximal elements of D. Hence an
equidistant set is one whose derivative is a singleton. Since we have a surjective map
D\ {maxD} — D’: a+— op(a) — a, it follows from the next lemma that D" < D.

3.17. LEMMA. In an o-minimalistic structure M, if g: X — MP¥ is a definable map,
then g(D) =< D, for every discrete, definable subset D C X.

PROOF. This follows by considering the injective map g(D) — D sending a to the
minimum of g~ !(a). -

I do not expect < to be always total (although it can be made total by extending the
class of isomorphisms as we shall see in Theorem 5.3 below). Since D < E implies
[D] =< [E], but not necessarily the converse, the former being total implies that the latter
is too, but again, the converse is not clear. To construct potential counterexamples, let
us introduce the following notation.

3.18. EXAMPLE (Discrete Overspill). Given a sequence a = (a,,) of real numbers,
let Ry, (a) be the ultraproduct of the R ,,, where each R, is the expansion of the real field
with a unary predicate D interpreting the first n elements a, ..., a, in the sequence.
Since each R,, is o-minimal, R (a) is o-minimalistic. Moreover, a is the “finite” part
of the set D, := D(Ry(a)) defined by D, that is to say,

DaﬂR:{al,ag,...,}.

so that we refer to Ry(a) as the structure obtained from a by discrete overspill (for a
related construction, see also §7 below).

In this notation, Example 2.3 is the discrete overspill Ry (N) of N listed in its natural
order. I do not know whether =< is total on it. Any countable subset can be enumerated,
including Q, although this enumeration might not be order preserving. Nonetheless,
we get a structure Ry(q) with Dq N R = Q (the non-standard elements of D form a
proper subset of (Q; and are harder to describe as they depend on the choice of enumer-
ation). We can repeat this construction with more than one sequence, taking one unary
predicate for each. Any structure obtained by discrete overspill is tame by [7, Remark
9.16].
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3.19. EXAMPLE. Now, if we take two unary predicates, representing, say, the se-
quence of prime numbers p and the sequence of powers of two t, then in R;(p, t), it
seems very unlikely that the discrete sets Dy, and Dy are comparable. For if they were,
they would have to be definably isomorphic by Lemma 5.2 below, as they have the same
ultra-Euler characteristic (equal to wy, the ultraproduct of the diagonal sequence (n)y,).
It is easy to combine these two unary sets into a single one, by letting a2, := p, and
A2n—1 := —tg, so that then Dy N (Ry)<o = Dt and Dy N (Ry)>0 = Dp, giving an
example of a single discrete overspill Ry (a) in which < is most likely not total.

3.20. THEOREM (Euler O-minimality Criterion). A necessary and sufficient condi-
tion for an ultra-o-minimal structure My, given as the ultraproduct of o-minimal struc-
tures M, to be o-minimal is that, for each formula ¢ without parameters, there exists
an N, € N such that |x am, ()| < N, for almost all i.

PROOF. If My is o-minimal, then <p(/\/lh) is a disjoint union of IV cells, whence
by Lo$” Theorem, so are almost all ¢(M;). Since a cell has Euler characteristic +1,
additivity yields [¢(M;)| < N, for almost all i. Conversely, let Y; C M; be definable,
say, given as the fiber of a ()-definable subset X, C MHH'" over a tuple by. Let X; C

MiH” be the corresponding ()-definable subset, and choose b; in M; with ultraproduct
by, so that Y} is the ultraproduct of the Y; := X [b;]. By the proof of [7, Theorem 8.3]
(which in the o-minimal case does yield a finite cell decomposition), we can decompose
each X as a disjoint union of ()-definable subsets X i(e) consisting of the union of all
e-cells in a cell decomposition of X;. In fact, this proof can be carried out in the theory
DCTC, so that it holds uniformly in any DCTC = M. For instance, if X = p(M) is
planar, then X (?) consists exactly of all interior points that do not lie on a vertical fiber
containing some node of X, whereas X (*) consists of all nodes of X that belong to
X, and X of all remaining points. Let ¢(¢) define in each model M = DCTC the set
X fore < n+1. Since each X i(e) is a disjoint union of e-cells, its Euler characteristic
is equal to (—1)°NV; ., where N; . is the number of e-cells in the decomposition. By
assumption (applied to the formula ¢(¢)), this Euler characteristic is bounded in absolute
value, whence so are the N, ., that is to say, there exist N, € N such that NV; . < N,

for all 5. But then the fiber X i(e) [b;] admits a decomposition in at most N, cells. Since
the union of the latter for all e is just Y;, we showed that there is a uniform bound
on the number of cells (whence intervals) in a decomposition of Y;. Since this is now
first-order expressible, Y} too is a finite union of intervals. =

84. Expansions of o-minimalistic structures. In this section, M will always de-
note an o-minimalistic structure. Since an expansion by definable sets does not alter the
collection of definable sets, we immediately have:

4.1. LEMMA. If X is definable, then (M, X) is again o-minimalistic. B

So we ask in more generality, what properties does a subset of an o-minimalistic
structure need to have in order for the expansion to be again o-minimalistic? Let us call
such a subset o-minimalistic (or, more correctly, M-o-minimalistic as this depends on
the surrounding structure), where we just proved that definable subsets are.
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4.2. COROLLARY. The image of an o-minimalistic subset under a definable map is
again o-minimalistic, and so is its complement, its closure, its boundary, and its interior.
More generally, any set definable from an o-minimalistic set is again o-minimalistic.

PROOF. It suffices to prove the last assertion. Let X be o-minimalistic. Since
(M, X)) is o-minimalistic, any set definable in (M, X) is o-minimalistic (in the ex-
pansion, whence also in the reduct) by Lemma 4.1. —

To define a weaker isomorphism relation, we introduce the following notation. Let
X be a definable subset in a structure A/, say, defined by the formula (with parameters)
o, that is to say, X = @(N). If N7 is an elementary extension of A/, then we set
XN := o(N"), and call it the definitional extension of X in N

Let us call two M-definable subsets o-minimalistically isomorphic, denoted X =
Y, if their definitional extensions have the same ultra-Euler measure in every ultra-o-
minimal elementary extension M =< N/, that is to say, if ppn (XV) = pun (YN). Itis
easy to see that this constitutes an equivalence relation on definable subsets.

4.3. PROPOSITION. In an o-minimalistic expansion M of an ordered field, if two
M-definable subsets X and Y are o-minimalistically isomorphic, then there exists an
o-minimalistic expansion of M in which they become definably isomorphic.

PROOF. Suppose X and Y are o-minimalistically definable, and let N be some ultra-
o-minimal elementary extension of M, given as the ultraproduct of o-minimal struc-
tures NV;. Let X; and Y; be N;-definable subsets with respective ultraproducts X N and
Y. Since by Proposition 2.4 dimension is definable, X and Y have the same
dimension, whence so do almost each X; and Y; by Lo§’ Theorem. By assumption,
they have also the same Euler characteristic for almost all ¢, so that they are definably
isomorphic by Theorem 3.3. Hence, there exists for almost all ¢, a definable isomor-
phism f;: X; — Y;. Let 'y be the ultraproduct of the graphs I'( f;). Since almost all
(N:, T'(f;)) are o-minimal, their ultraproduct (A, T'y) is o-minimalistic, whence so is
(M,T), where T is the restriction of I'y to M. Moreover, by £.o§” Theorem, I'y is the
graph of a bijection XV — YV and hence its restriction I" is the graph of a bijection
X — Y, proving that X and Y are definably isomorphic in (M, T). -

I do not know whether the converse is also true: if X and Y are definably isomorphic
in some o-minimalistic expansion M/, are they o-minimalistically isomorphic? They
will have the same Euler characteristic in any (reduct of an) ultra-o-minimal elementary
extension of M’ by essentially the same argument, but what about ultra-o-minimal el-
ementary extensions of M that are not such reducts? A related question is in case M
itself is already ultra-o-minimal, if two sets have the same Euler characteristic, do their
definitional extensions also have the same Euler characteristic in an ultra-o-minimal
elementary extension? This would follow if Euler characteristic was definable, but at
the moment, we can only prove a weaker version (see Theorem 6.7). Before we ad-
dress these issues, we prove a result yielding non-trivial examples of o-minimalistically
isomorphic sets that need not be definably isomorphic.

4.4. COROLLARY. In an o-minimalistic expansion M of an ordered field, if two de-
finable subsets X andY have the same dimension and the same class in Gr(M), then
they are o-minimalistically isomorphic.

PROOF. By Lemma 3.1, there exists a definable subset Z such that X UZ and Y LU Z
are definably isomorphic. Let M < AN be an ultra-o-minimal elementary extension.
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Hence XV U ZV and Y/ LI ZV are definably isomorphic, and therefore
X (XY 4+ xn(ZY) = xne (XN 0 ZY) = e (VY U ZY) = xr (YY) + e (27)

showing that X N and Y/ have the same ultra-Euler characteristic, as we needed to
show. -

4.5. Contexts and virtual isomorphisms. To overcome the difficulties alluded to
above, we must make our definitions context-dependable in the following sense. Given
an o-minimalistic structure M, by a context for M, we mean an ultra-o-minimal struc-
ture A that contains M as an elementary substructure (which always exists by Corol-
lary 2.2). An expansion M’ of M is then called permissible (with respect to the context
N), if N can be expanded to a context N, that is to say, M’ < N’ and N’ is again
ultra-o-minimal. If M itself is ultra-o-minimal, then we may take it as its own context,
but even in this case, not every expansion will be permissible, as it may fail to be an
ultraproduct.

From now on, we fix an o-minimalistic structure M and a context . We de-
fine a (context-dependable) Euler characteristic x p(+) (or, simply x) by restricting
the ultra-Euler characteristic of A/, that is to say, by setting x(X) := xa(XV),
for any M-definable subset X, and we define similarly its Euler measure p(X) :=
(dim(X), x(X)). We say that two definable subsets are virtually isomorphic, if there
exists a permissible expansion of M in which they become definably isomorphic. In
particular, two definable subsets that are o-minimalistically isomorphic are also virtually
isomorphic, but the converse is unclear. We can now prove an o-minimalistic analogue
of Theorem 3.3.

4.6. THEOREM. In an o-minimalistic expansion M of an ordered field, two definable
subsets are virtually isomorphic if and only if they have the same Euler measure.

PROOF. One direction is proven in the same way as Proposition 4.3, so assume X
and Y are virtually isomorphic definable subsets. By assumption, M =< N expands into
o-minimalistic structures M’ < N, with N’ again ultra-o-minimal, such that X and
Y are M’-definably isomorphic. Let A/ be the ultraproduct of o-minimal structures
N!. Since X N and YN are definably isomorphic, so are almost all X; and Y;, where
X; and Y; are N-definable subsets with respective ultraproducts XN and YV'. In
particular, X; and Y; have the same Euler measure for almost all ¢, by Theorem 3.3.
Hence XV and Y/ have the same ultra-Euler measure, by Proposition 2.4. Since both
invariants remain the same in the reduct AV, elementarity then yields (X ) = p(Y).

4.7. O-finitism. As we already mentioned in the introduction, in the o-minimalistic
context, discrete sets play the role of finite sets, and so we briefly discuss the first-order
aspects of this assertion. Given a (non-empty) collection of L-structures £, and a subset
X C NP in some L-structure N, we say that X is R-finiristic, if (N, X) satisfies every
L(U)-sentence o which holds in every expansion (K, F') of a structure KL € R by a finite
set F' C KP. In case R is the collection of o-minimal structures, we call X o-finitistic.
Applying the definition just to L-sentences o (not containing the predicate U, so that
(K,F) | o if and only if K = o), we see that N is then necessarily o-minimalistic.
Put differently, an o-finitistic set in an o-minimalistic structure is a model of o-finitism,
that is to say, of the theory of a finite set in an o-minimal structure. By Proposition 3.6
and [7, Propositions 2.6 and 7.19], we have:
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4.8. COROLLARY. An o-finitistic set is discrete, closed, bounded, and locally defin-
able, every non-empty intersection with an open interval has a maximum and a mini-
mum, and every injective, definable self-map on it is an isomorphism. B

It seems unlikely that these properties characterize fully o-finitism. A complete ax-
iomatization of o-finitism would be of interest in view of the following results.

4.9. THEOREM. A subset X C MP is o-finitistic if and only if it is discrete and o-
minimalistic. In particular, any definable, discrete subset in an o-minimalistic structure
is o-finitistic.

PROOF. Assume first that X is o-finitistic, whence discrete by Corollary 4.8. We
have to show that given an L(U)-sentence o holding true in every o-minimal L(U)-
structure, then (M, X) = o. Let K be an o-minimal structure and let F C KP” be a
finite subset. Hence (/C, F') is also o-minimal and therefore satisfies o. Since this holds
for all such expansions, o is true in (M, X) by o-finitism, as we needed to show.

Conversely, suppose X C MP is discrete and o-minimalistic, that is to say, (M, X) is
o-minimalistic. To show that X is o-finitistic, let o be a sentence true in every expansion
(K, F) of an o-minimal structure K by a finite subset /* C KP. Consider the disjunction
o’ of o with the sentence expressing that the set defined by U is not discrete. Hence ¢’
is true in any o-minimal expansion (C,Y"). Since X is o-minimalistic, this means that
(M, X) E ¢/, and since X is discrete, this in turn implies that o is true in (M, X), as
we needed to show. The last assertion then follows from Lemma 4.1. -

Let us call a subset of an ultra-o-minimal structure ultra-finite, if it is the ultraprod-
uct of finite subsets (such a set may fail to be definable, since the definition in each
component may not be uniform).

4.10. THEOREM. A subset X C MP is o-finitistic if and only if there exists an ele-

mentary extension M =< N with N ultra-o-minimal and an ultra-finite subset Y C NP,
such that X =Y N MP.

PROOF. Suppose A and Y have the stated properties, and let \V; be o-minimal struc-
tures and Y; C Nip finite subsets, so that A" and Y are their respective ultraproducts.
Since (N;,Y;) is again o-minimal, their ultraproduct (N, Y") is o-minimalistic. Since
(M, X) is then an elementary substructure, the latter is also o-minimalistic. More-
over, since Y is discrete, so must X be, and hence X is o-finitistic by Theorem 4.9.
Conversely, by the same theorem, if X is o-finitistic, then (M, X)) is o-minimalistic.
Hence there exists an elementary extension (N,Y’) which is ultra-o-minimal as an
L(U)-structure by Corollary 2.2. Write (AV,Y") as an ultraproduct of o-minimal struc-
tures (AV;, Y;). Since X is discrete, so must Y be by elementarity, whence so are almost
all Y; by Lo§” Theorem. The latter means that almost all are in fact finite, showing that
Y is ultra-finite, and the assertion follows since X =Y N MP. -

Next, we give a criterion for a subset Y C M to be o-minimalistic. By [7, Theorem
2.9], its boundary 9Y should be discrete, and Y° = Y \ 9Y should be a disjoint union
of open intervals. Given an arbitrary set Y C M, define its enhanced boundary AY as
the set consisting of the pairs (y, ) with y € 9Y and ¢ equal to 0, 1, or —1, depending
on whether respectively 7, ¥+, and/or 3~ belongs to Y. Recall that a™ (respectively,
a~) belongs to Y if there exists an open interval with left (respectively, right) endpoint
a contained in Y (type completeness is then the assertion that a™ belongs either to Y or
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to its complement). No fiber of an enhanced boundary can have more than two points
and its projection is the ordinary boundary 0Y. If Y is o-minimalistic, then AY must
satisfy some extra conditions: it must be bounded, discrete and closed, and, by type
completeness, if (y, 1) belongs to it, then so must (y’, —1), where 3’ is the immediate
successor of 3 in Y.

4.11. THEOREM. A subset Y C M is o-minimalistic if and only if its enhanced
boundary AY is o-finitistic and its interior is a disjoint union of open intervals.

PROOF. Suppose Y is o-minimalistic, so that Y ° is a disjoint union of open intervals.
Since AY is definable from Y, it too is o-minimalistic by Corollary 4.2, whence o-
finitistic by Theorem 4.9. To prove the converse, let D := Y = 7(AY’), a bounded,
closed, discrete set, and let [ be its minimum. Define X C M as the setof all x € M
such that one of the following three conditions holds
4.114. (z,0) € AY;

4.11.di. > land (d,1) € AY, where d = max D,;
4.11.ii.  <land (I,-1) € AY.

Since X is definable from AY’, it is o-minimalistic by Corollary 4.2. Remains to show
that X = Y. It follows from (4.11.1) that X N D = Y N D, so that it suffices to show
that X° = Y°. Therefore, we may as well assume from the start that Y is open. Write
Y = U, I, as a disjoint union of open intervals, and let ]a, b[ one of the I,, (we leave
the unbounded case to the reader, for which one needs (4.11.iii)). In particular, a € D
and a™ belongs to Y, so that (a,1) € AY. By (4.11.ii), the entire interval ]a, b[ lies
in X, whence so does the whole of Y. Conversely, if z € X, let d := max D, so
that (d, 1) € AY. Hence d* belongs to Y, and so d must be an endpoint of one of the
I,,. The other endpoint must be bigger than d, and hence bigger than x, showing that
zel, CY. =

§5. The virtual Grothendieck ring. We fix again an o-minimalistic structure M
and a context /. We can use virtual isomorphisms instead of definable isomorphisms
in the definition of the zero-dimensional or the full Grothendieck ring, that is to say,
the quotient modulo the scissor relations of the free Abelian group on virtual isomor-
phism classes of respectively all discrete, definable subsets, and of all definable subsets
yield the virtual Grothendieck rings Gry™(M) and Gr'™(M) respectively. We have
surjective homomorphisms Gro(M) — Gry™(M) and Gr(M) — Gr'"(M).

5.1. COROLLARY. Given an o-minimalistic expansion M of an ordered field, there
exist embeddings Gr})"' (M) C Gr""" (M) < Zy, where Zy is the ring of non-standard
integers in the given context.

PROOF. Since the Euler characteristic vanishes on any scissor relation, it induces by
Theorem 4.6 a homomorphism y: Gr'™ (M) — Z;. By the same result, its restriction
to Gr™(M) is injective. To see that y is everywhere injective, assume x (X) = x (Y
for some definable subsets X and Y. If they have the same dimension, then they are
virtually isomorphic, again by Theorem 4.6. So assume X has dimensiond > 1 and Y
has lesser dimension. Let U be the difference of a d-dimensional box minus a (d — 1)-
dimensional sub-box, so that in particular [U] vanishes, whence also x (U). As X and
Y UU now have the same Euler measure, they are virtually isomorphic by Theorem 4.6,
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and hence [X] = [Y] + [U] = [Y]in Gr"™(M), as we needed to show. The injectivity
of Gr)" (M) — Gr""(M) is then also clear. .

In particular, if M is moreover tame, then we have an equality of virtual Grothen-
dieck rings Gr{" (M) = Gr"™(M) by Corollary 3.11.

5.2. LEMMA. If two discrete, M-definable subsets with the same ultra-Euler char-
acteristic are comparable, then they are definably isomorphic.

PROOF. Suppose D and F are discrete, definable subsets with D < E and x (D) =
X (E). Upon replacing D by a definable copy, we may assume D C E. Taking ultra-
Euler characteristics, we get x (E \ D) = x(E) — x(D) = 0. By Lo§’ Theorem, the
definitional expansion of F \ D is empty, whence so is then £\ D itself. —

To obtain a ‘virtual’ generalization, we extend the partial order on ® (M) to a total
order on D"1°( M), the set of virtual isomorphism classes of definable, discrete subsets.
First, given definable subsets X and Y, we say that X < Y, if X <,¢ Y in some
permissible o-minimalistic expansion M’ of M. Clearly, if X <Y, then X < Y. The
following two results are the o-minimalistic analogues of Theorem 3.3.

5.3. THEOREM. Given two M-definable, discrete subsets F' and G, we have F < G
ifand only if x(F) < x(G). In particular, < is a total order on ©"*°(M).

PROOF. Suppose first that x (F') < x(G). Write AV as the ultraproduct of o-minimal
structures NV;, and let F; and G; be finite sets with respective ultraproducts the defini-
tional extensions F*¥ and G of F and G respectively. Since xr-(F) < xar(GV),
the cardinality of F; is at most that of G;, for almost all ¢. In particular, there exists
an injective map F; — G for almost all 7. Let I'; be the ultraproduct of the graphs of
these maps F; — G;. Hence I'; is ultra-finite and therefore its restriction I' to M is
o-finitistic by Theorem 4.10, whence o-minimalistic by Theorem 4.9. By £.0§’ Theorem
and elementarity, I" is the graph of an injective map F' — G, showing that ' < (a1 G.
Since (M, T') is permissible, F' < G. The converse goes along the same lines: suppose
F =<a¢ G, for some permissible o-minimalistic expansion M’ of M. By definition,
there is an ultra-o-minimal expansion A" of N with M’ < A”. Since FN <, GV,
we have x (F) = xar (FV) < xar (GY) = x(G). n

5.4. PROPOSITION. If M expands an ordered field, then X < Y if and only if
dim(X) < dim(Y), for X and Y definable subsets with dim(Y") > 0.

PROOF. The direct implication is clear. For the converse, by definability of dimen-
sion, we may pass to the context of M and therefore already assume M is ultra-o-
minimal, given as the ultraproduct of o-minimal structures M;. Let X; and Y; be
definable subsets in M; with respective ultraproducts X and Y. By Lo$§’ Theorem,
dim(X;) < dim(Y;), and hence X; < Y;, by Theorem 3.3, for almost all 4. Let
fit X; — Y, be a definable injection and let I'; be the ultraproduct of the graphs I'( ;).
Since each (M;,T'(f;)) is again o-minimal, (M, T'y) is ultra-o-minimal and hence in
particular a permissible expansion. Since I'y is the graph of an injective map by Lo§’
Theorem, X <(M,Iy) Y, as we needed to show. -

In particular, any definable, discrete subset D is virtually univalent, meaning that
D < M.
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5.5. COROLLARY. [Virtual Pigeonhole Principle] Two M-definable, discrete sub-

sets D and E are virtually isomorphic if and only if, for some definable subset X, the
sets DU X and EU X are virtually isomorphic, if and only if [D] = [E] in Gr*""(M).

PROOF. One direction in the first equivalence is immediate, so assume D L X and
E U X are virtually isomorphic. Passing to a permissible o-minimalistic expansion,
we may assume that they are already definably isomorphic, say, by an isomorphism
f: DUX — E U X. By totality (Theorem 5.3), we may assume that £ < D, and
hence after taking another permissible o-minimalistic expansion, and replacing E with
an isomorphic image, we may even assume that £ C D. Therefore, the composition
of f and the inclusion £ U X C D Ul X is a map with co-discrete image, and hence
is surjective by (DPP). However, this can only be the case if E = D, as we needed to
show. The last equivalence is now just Lemma 3.1. B

5.6. COROLLARY. The zero-dimensional, virtual Grothendieck ring Gry"" (M) is an
ordered ring with respect to <.

PROOF. Every element in Gr}"(M) is of the form [A] — [B], for some definable,
discrete subsets A and B in the o-minimalistic structure M. Therefore, for definable,
discrete subsets A; and B;, with i = 1,2, we set [A;] — [B1] < [As] — [B2] if and only
if
2) Ay U By < Ay U By

To see that this is well-defined, suppose [4;] — [B;] = [A}] — [B}]. for i = 1,2 and de-
finable, discrete subsets A} and B]. Therefore, [A; U B]] = [A; U B;], whence A; Ll B,
and A} U B; are virtually isomorphic by Corollary 5.5. We have to show that assum-
ing (2), the same inequality holds for the accented sets. Taking the disjoint union with
Bj U B on both sides of (2), yields inequalities

(A; UB])UByU B, < (Ay U By) U By U B;
(AfUB;)UByU B, < (A,U Bs)U By UB;
(A]UBj) U (By UBy) < (AU B}) U (By U Bs)

which by another application of Corollary 5.5 then gives A} U By < A, LI By, as we
needed to show. It is now easy to check that < makes Gry™ (M) into a totally ordered
ring. n

5.7. COROLLARY. Every o-finitistic subset defines a cut in ©"*°(M). In particular,
we can put a total pre-order on the collection of o-finitistic subsets.

PROOF. Let F' be an o-finitistic subset of an o-minimalistic structure M and let
D € D¥5°(M) be arbitrary. Since (M, F) is o-minimalistic by Theorem 4.9, we can
compare D and F in ©(M, F) by Theorem 5.3. If G is another o-finitistic subset, then
we set F' < G if and only if the lower cut in ® (M) determined by F is contained in
the lower cut of G. -

A note of caution: even if ' < G and G < F, for I and G o-finitistic subsets,
they need not be virtually isomorphic. For instance, taking D as in Example 2.3, it
is an o-finitistic subset of Ry, and since ©(Ry) is just N by o-minimality, its cut is
oo. However, D \ {w;} determines the same cut, whence D < D \ {w;} < D, but
we know that they cannot be definably isomorphic in any o-minimalistic expansion by



O-MINIMALISM 19

(DPP). In fact, it is not clear whether two given o-finitistic subsets live in a common
o-minimalistic expansion, and therefore can be compared directly. This is also why we
cannot (yet?) define a Grothendieck ring on o-finitistic subsets.

§6. Discretely valued Euler characteristics. In order to calculate the zero-dimen-
sional virtual Grothendieck ring, we introduce a new type of Euler characteristic. Fix an
o-minimalistic structure M and a context A/, and let D be a definable, discrete subset.
In this section, we will always view D in its lexicographical order <j.x (or, when there
is no risk for confusion, simply denoted <).

6.1. COROLLARY. Any definable subset of an M-definable, discrete subset D is vir-
tually isomorphic to an initial segment D<,,.

PROOF. The set of initial segments is a maximal chain in D¥°(M), since any two
consecutive subsets in this chain differ by a single point. Hence, any definable subset
E C D must be a member of this chain up to virtual isomorphism. B

Clearly, such an a must be unique, and so, given a non-empty definable subset £ C
D, we let xp(E) be the unique a such that E is virtually isomorphic with D<,. We
add a new symbol & to D and set xp (@) := &. For definable subsets Fy, E2 C D, we
have Eq < Esif and only if xp(E1) < xp(Es2). Given a definable map g with domain
D, we can define by Lemma 3.17 its rank as rk(g) := xp(g(D)). A map is constant if
and only if its rank is minimal (that is to say, equal to the minimum of its domain). By
(DPP), we immediately have:

6.2. COROLLARY. An M-definable map with discrete domain is injective if and only
if its rank is maximal (that is to say, equal to the maximum of its domain). a

Assume now that M is an o-minimalistic expansion of an ordered field, so that in
particular all definable discrete subsets are univalent (see Lemma 3.15). Let D C M
be definable and discrete, with minimal element [ and maximal element h. For each n,
we view the Cartesian power D™ as a definable subset of D"+ via the map a — (I, a).
We also need to take into consideration the empty set, and so we define & to be lower
than any element in any D", and we let D> be the direct limit of the ordered sets
D™ U {@}. Under this identification, the elements of D™ U {@} form an initial segment
in D"+ U {2} with respect to the lexicographical ordering. In particular, if E C D" is
a non-empty definable subset, then x p» (E) = xpn+1(E’), where E’ is the image of F
in D1, After identification therefore, we will view y p» (E) simply as an element of
D=, and we just denote it x p (F). More generally, given an arbitrary definable subset
X C M™, we define its D-valued Euler characteristic (or, simply Euler characteristic)
Xp(X) == xpn (X N D).

We define an addition and a multiplication on D*° as follows. First, let us define the
disjoint union A LI B of two definable subsets A, B C M™ as the definable subset in
M+ consisting of all (a,!) and (b,h) witha € Aand b € B. For a € D>, we set
oD = FPa = aand a®RY = FRa = . For the general case, assume a,b € D", and
let ab be the Euler characteristic of the disjoint union (D™)<,L(D™)<, € D", and
let a ® b be the Euler characteristic of the Cartesian product (D™)<, x (D™)<;, C D?.
One verifies that both operations are independent of the choice of n, making D into
a commutative semi-ring, where the zero for @ is &, and where the unit for ® is [, the
minimum of D. We even can define a subtraction: if a < b in D°°, then we define
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b © a as the Euler characteristic of DT, N DZ,, where n is sufficiently large so that
a,b € D™. This allows us to define the (Grothendieck) group generated by (D>, ®),
defined as all pairs (z,y) with x,y € D up to the equivalence (z,y) ~ (z,y’) if and
only if z &y’ = 2’ @ y; the induced commutative ring will be denoted 3(D), and called
the ring of D-integers.

To turn this into a genuine Euler characteristic, recall the construction of the induced
structure Diy,g on a subset D C M of a first-order structure: for each definable subset
X C M™, we have a predicate defining in Dj,q the subset M N D™. If M is an ordered
structure, then so is Djg. If D is definable, then we have an induced homomorphism
of Grothendieck rings Gr(Ding) — Gro(M). If instead of definable isomorphism, we
take virtual isomorphism, we get the virtual variant Gr"'™(Dj,g) — Gr™(M). By the
Virtual Pigeonhole Principle (Corollary 5.5), this latter homomorphism is injective. To
discuss when they are isomorphic, let us call D power dominant, if for every definable,
discrete subset A, there is some n such that A < D™,

6.3. PROPOSITION. A definable, discrete subset D C M is power dominant if and
only if Gr""(Djq) = Gr}""(M).

PROOF. Suppose first that D is power dominant and let A be an arbitrary definable,
discrete subset. By assumption, there exists an n and a definable subset B C D", such
that A is virtually isomorphic with B. Hence [A] = [B] in Gr}"(M), proving that it
lies in the image of Gr*™(Dj,q) — Gry™(M).

Conversely, assume that the latter map is surjective, and let A be an arbitrary defin-
able, discrete subset. Hence, there exists an n and definable subsets £, F' C D™ such
that [A] = [E] — [F] in Gr}™(M). By the Virtual Pigeonhole Principle (Corollary 5.5),
this means that there is a virtual isomorphism A U F' — FE. Hence the composition
ACAUF — E C D", showsthat A < D™, -

To study the existence of power dominant sets, let us say, for D and F discrete,
definable subsets, that D <« F, if D™ < F for all n. If neither D << Enor E & D,
then D and E are mutually power bounded, that is to say, there exist m and n such
that D < E™ and £ < D™, and we write D ~ FE. Hence < induces a total order
relation on the set Arch? (M) of ~-classes of definable, discrete subsets of M. The
class of the empty set is the minimal element of Arch?" (M), the class of a singleton
is the next smallest element, and the class of a two-element set is the next (and consists
of all finite sets). For an o-minimal structure, these are the only three classes, whereas
for a proper o-minimalistic structure, there must be at least one more class, of some
infinite set. I do not know whether Arch?®" (M) is always discretely ordered or even
finite. In any case, it follows easily from the definitions that a class is maximal in
ArchP® (M) if and only if it is the class of a power dominant set. Thus, the existence of
a power dominant set corresponds to ArchP¥ (M) having a maximal element, which is
especially interesting in view of Proposition 6.3 and its applications below. I conjecture
that D as in Example 2.3 is power dominant (and a similar property for any set obtained
by discrete overspill). This would follow from the following growth conjecture for an
o-minimal L-expansion R of R:

6.4. CONJECTURE. There exists, for every formula ¢ in the language L(U), some
n € N, such that for any finite subset F, if o(R, F) is finite, then it has cardinality at
most |F|".
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Recall that ¢(R, F) is the set defined by ¢ in the structure (R, F') in which we
interpret the unary predicate U by F'. Likewise, I conjecture that the following always
produces a power dominant set: let M be o-minimal and let D be an infinite o-finitistic
subset, then D is power dominant in the (o-minimalistic) expansion (M, D).

6.5. THEOREM. Every definable, discrete subset D C M induces a ring isomor-
phism Gr""(Dy,q) = 3(D) by sending the class of a definable subset to its D-valued
Euler characteristic.

PROOF. We already observed that the ring operations on 3(D) are invariant un-
der virtual isomorphism. It is now easy to see that they also respect the scissor rela-
tions (sciss) in the Grothendieck ring of Dj,4. Surjectivity follows since every element
in 3(D) is of the form a & b for some n and some a,b € D™, and hence is the im-
age of [(D™)<q4] — [(D™)<sp]. To calculate the kernel, we can write a general element
as [E] — [F], with E, F definable subsets in D;j,q. Such an element lies in the ker-
nel if xp(E) = xp(F), which means that £ and F are virtually isomorphic, whence
[E] = [F] in Gr'™ (D). .

Summarizing, we have the following diagram of homomorphisms among the various
Grothendieck rings, for M an o-minimalistic expansion of an ordered field:

3) Gr(Ding) —> Gr'™(Ding) —=3(D)

| ;

Gro(M) — Grj™(M)

| j
GI’(M) —_ Grvirt(M)

with ¢ an isomorphism if D is power dominant by Proposition 6.3, and with j an iso-
morphism if M is tame, by Corollary 3.11, that is to say, we proved:

6.6. COROLLARY. If M is a tame, o-minimalistic expansion of an ordered field ad-
mitting a definable, power dominant subset D, then its o-minimalistic Grothendieck
ring Gr'"" (M) is isomorphic to the ring of D-integers 3(D). -

If we would allow classes of o-finitistic subsets in ArchP®¥ (M), then there never is a
maximal element: let D be any definable, discrete subset (or even any o-finitistic sub-
set). Take an ultra-o-minimal elementary extension A, and choose D; C N, such that
their ultraproduct is DV, By the observation following Proposition 5.4, we can choose
A; C N; to be virtually isomorphic with D! and let A, C N be their ultraproduct.
By Theorem 4.10, the restriction Ay N M is o-finitistic and satisfies by L.os” Theorem
D™ < A for all n, that is to say, D < A.

6.7. THEOREM (O-minimalism of Euler characteristics). Let D C M be a defin-
able, discrete subset of an o-minimalistic structure M, and let X C M ntk pe any defin-
able subset. For each e € D™, the set of parameters a € M" such that xp(X|a]) = e
is o-minimalistic.

PROOF. If a does not belong to D™, then the fiber X[a] is empty, whence has Euler
characteristic @. As these a form a definable subset, we may therefore replace X by
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X ND"™* and assume already that X is a definable subset of D™. Let A be the context
and write it as the ultraproduct of o-minimal structures A;. Choose D; C N;, e; € D}
and X; C Df*k with respective ultraproducts DV ,e,and X N For each i, let F; C N
be the (finite) set of parameters for which the fiber has the same cardinality as (D}") <.
Hence, for each a € F;, there exists a bijection fa: X;[a] — (D?)<,,. Let H; C N"
be the union of all {a} x I'(fa), where a runs over all tuples in F;. Let F;, C N™ and
H, C N 3" be their ultraproduct, so that both sets are ultra-finite. By Lo§” Theorem,
for each a € F}, the fiber Hy[a] is the graph of a bijection XV [a] — ((DN)”)<6.
Therefore, F' := F, N M™ consists precisely of those a € M™ for which the fiber X[a]
has D-valued Euler characteristic e in the expansion (M, Hy N M3™) whence in M,
as the former is o-minimalistic by Theorem 4.10. For the same reason, F' is o-finitistic,
whence o-minimalistic by Theorem 4.9, so that we are done. -

6.8. Remark. In everything in this section on Euler characteristics, we may, by pass-
ing to a suitable permissible expansion, even assume that D is only o-finitistic.

6.9. Archimedean reducts. As before, let D be definable and discrete with respec-
tive minimum [ and maximum h. By [7, Theorem 4.1.iii], we have a successor function
0 := op, defined on D\ {h}, with inverse 0~ ! defined on D\ {/}. Let us write ¢ < d,
if c™(e) < d, for all n € N. If neither d < e nor e < d, then 0™ (d) = e for some
n € Z, and we write d ~p e. The set of ~p-equivalence classes is totally ordered by
<&, and is called the Archimedean reduct Arch(D) of D.

6.10. THEOREM. The Archimedean reduct Arch(D) of a definable, discrete subset
D in an o-minimalistic structure M is dense.

PROOF. This is clear if D is finite, since then there is only one Archimedean class,
so assume it is infinite. If Arch(D) is not dense, there would exist | < h in D so that
fornod € D we have | < d < h. Therefore, upon replacing D with D N [I, h],
we may assume that Arch(D) consists of exactly two classes, those of [ and h . By
Corollary 2.2 (or, Theorem 4.10), we can embed M elementary in an ultra-o-minimal
structure A so that D is the restriction of a (definable) ultra-finite set F in A/. Let \V;
and F; be respectively o-minimal structures and finite subsets in these with ultraproduct
equal to NV and F respectively. For each i, let f;: F; — F; be the map reversing the
(lexicographical) order and let I'; be the ultraproduct of the graphs of the f;. Since
this is an ultra-finite set, its restriction I' to M is an o-finitistic set by Theorem 4.10.
By Lo§” Theorem, I is the graph of the order reversing permutation f: D — D. In
particular, f is definable in the o-minimalistic expansion (M, T") and maps any element
in the class of [ to an element in the class of h and vice versa. By definability, there is a
maximal a € D such that f(a) > a. In particular, f(a’) < a’, where @’ is the successor
of a in D. A moment’s reflection then shows that then either f(a) = a or f(a) = @/,
which contradicts that no element is ~ p-equivalent with its image. —

6.11. Remark. Similarly, given D, E € D"°(M), we can define D < E if for
every finite subset F', we have D U ' < F. If neither D < E nor E < D, then we
say that D and E have the same virtual Archimedean class, and write D ~ E. This is
equivalent with the existence of finite subsets F' and G such that D U F and E'U G are
virtually isomorphic. The induced order < on virtual Archimedean classes is dense:
indeed, suppose D < E and let d := xg(D) and h := xg(F) (i.e., the maximum of
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E). By Theorem 6.10, since d < h, there is some a € D with d < a < h. It follows
that D < E<, < E.

§7. Taylor sets. In this section, we work in an expansion of R and its ultrapower Ry,
and we introduce some notation and terminology tailored to this situation. Recall that
an element in Ry, is called infinitesimal if its norm is smaller than 1 /n, for all positive
n. The standard part of o € Ry, denoted oy, is the supremum of all 7 € R with r < «;
if cy is not infinite (that is to say, if « is bounded), then ay — v is infinitesimal and oy is
the unique real number with this property. If « is a tuple (ayq, . .., ay), then we define
oy coordinate-wise as (alﬁ, ey akﬁ). For a subset X C RF, we write Xy for the set of
all oy where o runs over all bounded elements of the ultrapower X}, (so that +co never
belongs to X}), and, following the ideology from [6, §8], we call Xy the catapower of
X. We note the following simple result from non-standard analysis:

7.1. LEMMA. The catapower of a subset X C RF is equal to its closure X.

PROOF. Suppose o € X} is bounded, given as the ultraproduct of elements a,, € X.
Hence the ultraproduct of the sequence oy — a,, is an infinitesimal, showing that the a,,
are arbitrary close to a for almost all n. Put differently, there exists a subsequence of
(an), which converges to ay, proving that oy lies in the closure of X. Conversely, if b
lies in closure of X, then we can find a sequence b,, € X converging to it, and by the
same argument, (by); = b, where by, is the ultraproduct of the sequence b,,. N

In [6, Chapter 9], we also introduce the notion of a protopower. Since it was catered
to deal with an additional ring structure, which is not needed here, we will use only the
following simplified version: for X C R*, we define, for each n, its truncation X In
as the set of points in X whose coordinates have norm at most n, where the norm of
a point is defined as the maximum of the absolute values of its coordinates. We define
the protopower R, of R as the ultraproduct of the R| . We extend this to any subset
X C R*, by calling the ultraproduct of the truncations X |, the protopower of X, and
denote it X,. In other words, X}, = Xy N R{f, where Xy is the ultrapower of X. In
particular, any protopower is bounded (in norm) by wy. (To make this conform with
the definitions in [6, §9], one actually has to take the protoproduct of the structures
(R, 2 ||), and the Archimedean hull of our R, is then equal to this latter protoproduct.)

By the trace of a subset = C RF, denoted tr(Z), we mean the set of its real points,
that is to say, tr(Z) = Z N R¥. If Z is definable by a formula ¢ in some expansion of
Ry, we may use the slightly ambiguous notation ¢(R) for its trace as well. The trace of
a protopower X, is equal to X, that is to say, X = tr(X,): indeed, a € R* satisfies
a € X, if and only if a € X, for almost all n (by Lo§’ Theorem), if and only if
a € X. For given n € N and a k-ary function f, let us write f| for the truncated
function defined by sending a point a to f(a) if |a| < n and to zero otherwise (note that
this is not the same as taking the truncation of the graph of f, since we allow values of
arbitrary high norm).

Let L™ be the language of ordered fields together with a function symbol for each
everywhere convergent power series (also referred to as a globally analytic function).
Clearly, we may view R as an L*"-structure, but this is not very useful, since Z is
definable in it (as the zero set of sin(7x)), and therefore neither tame nor o-minimalistic.
Instead, we approximate this L*"-structure on R as follows. Let RZ! be the L*"-structure
on R where each function symbol corresponding to a convergent power series f is
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interpreted as its truncation f| . By [2], each R is o-minimal (where one usually
denotes Ri" by Ry,,), and hence their ultraproduct RE‘“ is o-minimalistic. Moreover,

i is tame by [7, Corollary 9.15]. While not part of the signature, power series with
a smaller radius of convergence can also be encoded, at least in one variable: using
a combination of linear transformations x +— ax + b, and the (inverse) trig functions
tan x and arctan x, any two open intervals (bounded or unbounded) are isomorphic via
a globally analytic map. For instance, if f is defined on the open interval | — 1, 1], then
g(z) := f(% arctan z) is globally analytic, and hence f is definable in L.

7.2. DEFINITION (Taylor sets). We call X C R a Taylor set, if there exists an L*"-
formula (x,y) (without parameters), such that for each sufficiently large n, there ex-
ists a tuple of parameters b,, so that X| = @(R¥, b,).

Modifying ¢ if necessary, we may even assume that this holds for all n, and that
|x| < nis aconjunct in ¢. If by is the ultraproduct of the b,,, then the protopower X,
is equal to p(R{", by) by Los® Theorem, and hence X = tr(X,). Any set realized as
a protopower of a Taylor set will be called an analytic protopower, giving a one-one
correspondence between Taylor sets and analytic protopowers. We refer to the defining
formula p(x, by) of X, as the analytic formula for X, and we express this by writing
X = ¢(R) (this does not mean that X is definable, since the parameters might be
non-standard; in the terminology of [7, §7.18], a Taylor set is in general only locally
L*-definable). Not every definable subset is an analytic protopower (equivalently, not
every L*"(Ry)-formula is analytic): let © be defined by (Jy)zy = 1 A sin(my) =
0. Its trace tr(©) is equal to the set of reciprocals of positive natural numbers and
cannot be a Taylor set by Lemma 7.3 below. Any quantifier free L*"(Ry)-formula is
analytic, so that in particular, any globally real analytic variety is Taylor. Taylor sets are
closed under (finite) Boolean combinations, but not under definable (analytic) images,
nor under projections. In particular, the Taylor sets do not form a first-order structure.

7.3. LEMMA. A real discrete subset is Taylor if and only if it is closed. Moreover; a
discrete Taylor set intersects any bounded set in finitely many points.

PROOF. If X is discrete, then X must be finite by o-minimality, and hence X
cannot have an accumulation point whence is closed. Conversely, if X is discrete and
closed, then it is the zero set of some analytic function f (taking sums of squares allows
us to reduce to a single equation), and hence X, is defined in RY by £, (x) = 0, and
x| < n. 4

7.4. LEMMA. A subset X C R is Taylor if and only if its protopower X, is R‘h’"-
definable.

PROOF. Recall that X, is the ultraproduct of the truncations X . One direction
has already been observed. Assume X, is Rj"-definable, say X}, = @(RE“,b), for
some L*"-formula ¢ and some tuple of parameters b. Writing b as the ultraproduct
of tuples b,,, it follows from £0§" Theorem that X| = ¢(R%',b,,) for almost all n.
Enlarging the tuple of parameters if necessary, we may assume that n is one of the
entries of b,,. Choosing for each n some m > n such that X| = p(R2. b,,), we get

X, = ¢(R¥,b,,) A |x| < n, showing that X is Taylor. 4

We can rephrase this as a criterion for analytic protopowers:
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7.5. COROLLARY. A protopower is analytic if and only if it is Rg”-deﬁnable if and
only if its trace is Taylor. B

In terms of formulae, we might paraphrase this as: an L*"(Ry)-formula ¢ is analytic
if and only if ¢ (Ry) is the ultraproduct of the ¢ (R, ). Thus, an open interval in Ry is an
(analytic) protopower if and only if its endpoints are either real or equal to +wy: indeed,
suppose |, [ is a protopower, and let a; and 34 be the respective standard parts of «
and 8. Hence I := ]a, [ NRis a (not necessarily open) interval with endpoints «y and
By4. If ay is finite, then I} is an interval with left endpoint o for n sufficiently large,
and hence the same is true for the ultraproduct of these truncations. By Corollary 7.5,
this forces oy = «. In the other case, the left endpoint of I, is —n, and hence their
ultraproduct has left endpoint —wy, showing that o = —wy,. The same argument applies
to (3, proving the claim.

7.6. EXAMPLE. By Lemma 7.3, every closed, discrete subset, whence in particular
any subset of Z, is Taylor. To give a non-discrete example, consider the spiral C C R?
with parametric equations z = exp 7sinT and y = exp 7 cos, for 7 € R. If (z,y) €
Cy,,thenexpr = /22 4+ 92 < nv/2 and hence 7 < log(n\/i) < n. In particular,
the negative values of 7 can be larger in absolute value than n. Hence C' is not Taylor.
However, if C'F is the ‘positive’ part, given by the same equations but only for 7 > 0,
then C’ﬁ; is defined in Ry by x = exp, (7)sin|, (7), y = exp, (7)cos, (1), and

n

7 <log,, (nﬂ), showing that C is Taylor (see Corollary 7.10 below).

7.7. PROPOSITION. The closure, interior, frontier, and boundary of a Taylor set is
again Taylor.

PROOF. Since all concepts are obtained by either taking closures or Boolean com-
binations, it suffices to show that the closure X of a Taylor set X is again Taylor. Let
¢(x, z) be an analytic formula for X, so that X|, = ¢(R¥,b,,), for some parame-
ters b, and all n. If ¢(x, z) is the formula (Va > 0)(3y) |z — y| < a A ¢(y, 2), then
PY(RY, by,) defines the closure of X| . It is now easy to check that the latter is equal to

X, , showing that X is Taylor. =

7.8. Remark. From the proof it is also clear that if X}, is the protopower of X, then
the closure X, of X, is the protopower of X, and the analogous properties for the other
topological operations. Inspecting the above proofs and examples, we can single out
the following geometric feature of Taylor sets.*

7.9. PROPOSITION. Let X C R¥*1 be a Taylor set and let Y C RF be its projection
onto the first k coordinates. If there exists | € N such that Y| is contained in the
projection of X |, , for all sufficiently large n, then'Y is again Taylor.

PROOF. Let ¢(x,y,cy) be the analytic formula defining X, and choose tuples c,,
with ultraproduct equal to c,. By definition, X, is defined in RZ' by ¢(x, y, c,,). Let
@(x,y,cy) be the formula obtained from ¢ by replacing every power series f(x,y)
occurring in it by the power series f(x,ly), and put ¥(x,cp) = (Jy)p(x,y,cp). 1
claim that ¢ is an analytic formula with ¢»(R) = Y. To this end, we have to show that
Y|, = ¥(RY, cy), for almost all n. One inclusion is clear, so assume a € Y|, for
some n. Hence |a] < n and there exists b € R such that (a,b) € X. By assumption,

3The corresponding syntactic characterization of analytic formulae is not yet clear to me.
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we can choose |b| < In. Let b’ := b/, so that || < n. Since then R¥ |= $(a,b’), as
the point (a, b’) has norm at most n, whence agrees on any power series with its n-th
truncation, we get R |= )(a), as required. -

Given a C;-function f: R — R on an open interval |a, b[, we say that f is increasing
at bif f/(b=) > 0, where f/(b™) denotes the left limit at b of the derivative f’, with a
similar definition for decreasing or at the left endpoint.

7.10. COROLLARY. Let f be a power series converging on a half-open interval
[a,b]. If f is increasing at b, then the curve C' C R? with polar equation R = f(6),
fora < 6 < b, is Taylor.

PROOF. As discussed above, we may make an order-preserving, analytic change of
variables so that f becomes convergent on R>¢. In particular, f is increasing at oo,
which by L’Hépital’s rule means that the limit of f(z)/x for x — oo exists and is
positive. Hence, we may choose | € N large enough so that 1/I < f(z)/x forall x > .
Let X C R? be the semi-analytic set given by x = f(z)sin(z), y = f(z)cos(z),
and a < z < b, so that C' is just the projection of X onto the first two coordinates. By
Proposition 7.9, it suffices to show that C|  is contained in the projection of X (v’ for
all n. To this end, let (a,b) € C|,, so thata = f(0)sin and b = f(6) cos §, for some
6 > 0. In particular, f(0) = Va2 + b2 < ny/2. There is nothing to prove if § < [, so let
6 > I and hence 1/1 < f(6)/0. The result now follows since 8 < If() < (Iv/2)n.

Of course, a similar criterion exists if the domain is open at the left endpoint, where
the function now has to be decreasing. We already observed that a Taylor set is of the
form o(R) for some L*"(R;)-formula ¢, that is to say, is a trace of an R{"-definable
subset. For each such trace X := ¢(R), we can define its dimension dim(X) to be
the dimension of @(RE‘“). In general, this notion is not well behaved: the trace of the
discrete, zero-dimensional set given by the formula (3y > 0) sin(wy) = OAsin(rzy) =
0 is equal to Q, a non-discrete set. Fortunately, Taylor sets behave tamely, as witnessed,
for instance, by the following planar trichotomy (compare with [7, Theorem 7.4]):

7.11. THEOREM. A non-empty Taylor subset X C R? is either

7.11.1. zero-dimensional, discrete, and closed;
7.11.ii. one-dimensional, nowhere dense, but at least one projection has non-empty
interior;
7.11.ii. two-dimensional with non-empty interior.

PROOF. Let X, be the protopower of X and d its dimension. By Proposition 2.4,
almost all truncations X| . have dimension d . Hence, if d = 0, then almost all (whence
all) X, are finite and X is closed and discrete. If d = 2, then almost all (whence all)
X, have non-empty interior, whence so does X. Finally, if d = 1, (almost) all X
are nowhere dense, and some projection has interior. Therefore, X itself has the same
properties. B

In view of Remark 7.8, the dimension of the frontier fr(X') of a Taylor set X is strictly
less than its dimension dim(X'). Hence, by the same argument as [7, Corollary 7.11],
we immediately get:

7.12. COROLLARY. Any Taylor set is constructible. B

Next, we study maps in this context. For X C R*¥ and Y C R, let us call a map
f+ X = Y Taylor, if its graph is a Taylor set.
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7.13. COROLLARY. The domain and image of a Taylor map are Taylor, and so is any
fiber. Likewise, if the graph of an R‘h’"-deﬁnable map ~y: = — O is a protopower, then
so are Z and (=), as well as every fiber v~ 1(b) with b € Y. Moreover; the trace of
~ induces a Taylor map g: tr(Z) — tr(y(2)), and any Taylor map is obtained in this
way.

PROOF. The first assertion follows from the last assertion by Corollary 7.5. So as-
sume the graph I'(y) is a protopower. Without loss of generality, we may assume
© = ~(Z), that is to say, that v is surjective. Let G := tr(T'(+y)) be the trace, so
that the ultraproduct of the G, is equal to I'(y), and let X := tr(=Z) and Y := tr(O)
be the respective traces of domain and image. It follows that X is defined by the
formula (3y)(x,y) € G|, , and hence X is Taylor (alternatively, use Proposition 7.9).
Moreover, v restricted to X, takes values inside Y| , that is to say, induces a map
gn: X), — Y|,. It follows that the ultraproduct of the g, is equal to v. By Lo§’
Theorem, almost all g,, are surjective. Therefore, the respective ultraproducts of X,
and Y| are = and O, proving that both sets are analytic protopowers by Corollary 7.5.
Moreover, the union g of the g,, is the restriction of 7 to X. Fixb € Y, let ® := v~ 1(b)
its fiber and F' := tr(®) the latter’s trace. One checks that F|, = g,;!(b), and hence
the ultraproduct of the F)  is equal to ®, proving that ® is an analytic protopower.

7.14. Remark (Taylor cell decomposition). In particular, a horizontal Taylor 1-cell in
R? must be the graph of a continuous, Taylor map, and similarly, a Taylor 2-cell in R?
is the region between two Taylor graphs. Let X be a Taylor set with protopower X,.
Since RE‘“ is tame, we can find a surjective, cellular map §: X, — A with A a discrete,
closed set. I conjecture that we may take § to be a protopower too. Assuming this,
taking traces yields a Taylor map d: X — tr(A), whose fibers are all Taylor cells, and
hence defined by means of continuous Taylor maps. Hypothetically, this yields a Taylor
cell decomposition of X which is finite on each compact subset by Lemma 7.3.

7.15. COROLLARY. Any discrete Taylor set D satisfies DPP in the sense that a Tay-
lormap D — D is injective if and only if it is surjective.

PROOF. Let g: D — D be Taylor and let g,: D, — D, be its protopower, that is to
say, given as the ultraproduct of the restrictions g,, := ¢ D, By Lo§’ Theorem, g, is
injective (surjective) if and only if almost all g,, are, whence if and only if ¢ is, and the
result now follows easily from the o-minimalistic DPP (Proposition 3.6). a

7.16. COROLLARY (Monotonicity for Taylor maps). A Taylor map g: X — Y is
continuous outside a set of dimension strictly less than the dimension of X. In particu-
lar, one-variable Taylor maps are monotone outside a discrete, closed (Taylor) subset.

PROOF. We may assume, for the purposes of this proof that g is surjective, so that,
in particular, both X and Y are Taylor, by Corollary 7.13. By the same result, taking
protopowers yields a definable map g, : X, — Y, whose restriction to X is equal to g.
By the Monotonicity Theorem ([7, Theorem 3.2]), the set of discontinuities A of g, has
dimension strictly less than dim(X,) = dim(X). Replacing A by its closure,* which
does not change the dimension, we may assume A is closed. I claim that g is continuous
outside the trace D := tr(A). Indeed, if a € X \ D, then by the non-standard criterion

4In fact, this is not needed since one can show that A is already closed.
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for continuity, we have to show that for every « infinitesimally close to a, their images
under gy remain infinitesimally close, where gy is the ultrapower of g. However, since
gy is the ultrapower of the restrictions ¢ X, both maps agree on bounded elements,
and so we have to show that g, (a) and g, («) are infinitesimally close. This does hold
indeed for « sufficiently close to a since a ¢ A and A is closed.

In the one-variable case, we may choose A so that g, is monotone on any interval
with endpoints in A, and clearly, g is then monotone on D. It follows from Lemma 7.3
and Theorem 7.11 that D is Taylor. —

7.17. Remark. Using the discussion in [7, Remark 3.5], we can choose A in the
above statement also to be Taylor in higher dimensions.

If f: X — Y is Taylor and bijective, then its inverse is also Taylor, and we will say
that X and Y are analytically isomorphic. In the definition of a Grothendieck ring, it
was not necessary that the collection of subsets formed a first-order structure, only that
they were preserved under Boolean combinations and products. Since this is true also
of Taylor sets, we can define the analyric Grothendieck ring Gr™" as the free Abelian
group of analytic isomorphism classes of Taylor sets modulo the scissor relations.

7.18. PROPOSITION. There is a natural homomorphism Gr™" — Gr(R{") of Gro-
thendieck rings sending the class of a Taylor set X to the class of its protopower X,,.

PROOF. To show that the map [X] — [X,] is well-defined, suppose f: X — Y is
an analytic isomorphism. The ultraproduct of the truncations f,,: X, — Y| induces
then a definable map f,: X, — Y, and by L.o§’ Theorem, this is again a bijection. -

By Corollary 3.4, composition with the ultra-Euler-characteristic yields the analytic
Euler characteristic x*(X) of a Taylor set X; by definition, it is the ultraproduct of
the x(X,,). In particular, for D discrete and closed, x*"(D) is the ultraproduct of
the cardinalities of its truncations. For which D does there exist a density d such that
x*(D) /whd is a bounded element, and if so, what is its standard part?
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