
T-MINIMALITY
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Abstract. A model theoretic minimality notion for structures with a defin-
able topology, called t-minimality, is introduced. Cells are defined in analogy
with the o-minimal or the p-adic case. It is shown that any definable set can
be written as a finite union of cells, provided definable Skolem functions ex-
ist. This allows for the definition of the dimension of a definable set, and
some basic properties of dimension are derived. In particular, dimension is
preserved under definable bijections. Under some mild topological conditions
on the definable topology, every definable function is continuous outside a set
without interior. As a consequence, one can write the domain of the function
as a union of finitely many cells, such that the restriction of the function to
each such cell is continuous.

Examples of t-minimal structures are o-minimal structures and p-adic fields,
so that we recover the Cell Decomposition theorems in each of these setups.

1. Introduction

It has by now become clear that the notion of o-minimality, first formally in-
troduced by Pillay-Steinhorn in [13, 14] but already implicitly present in van
den Dries’s work [16], is a fundamental one, generalizing to a great extent the
geometric methods used in real algebraic geometry. Among its many advantages
was the ease with which a Cell Decomposition could be proved. This reduces in
many instances the study of real definable sets to that of the more manageable
cells. Around the same time, departing from Macintyre’s Quantifier Elimination
[9] (and even recovering it) Denef proved in [2, 3, 4] a Cell Decomposition Theorem
for p-adic definable sets. A notion analogous to o-minimality for the p-adics, called
p-minimality, was subsequently introduced by Haskell and MacPherson in [6];
a non-trivial example appeared in their joint paper [7] with van den Dries.1

It has always appeared to me that these phenomena should be instances of a
same principle. Namely, the main underlying idea in all cases is that definable
subsets of the affine line have, up to a finite set, a simple structure. This fact then
translates into a tame geometry in higher dimensions.2 ’Simple’ means here to
be a finite union of basic building blocks. In the o-minimal case, the basic building
blocks are open intervals; in the p-adic case, open annuli (an annulus is an open disk
minus a closed disk) and cosets of the subgroup of n-th powers of the multiplicative
group. The main observation to make is that the collection of all open intervals
(respectively, of all open annuli and all non-zero n-th powers) is itself a definable

Date: 23.07.01.
1These authors also introduced a similar notion for algebraically closed valued fields (called

c-minimality); it appears to also fit in the present framework, although I did not yet check the
details.

2I will not attempt to make precise the notion of tameness–neither has done Grothendieck–,
but suffices it to say that it entails certain finiteness and uniformity conditions.
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set, that is to say, open intervals (or annuli and n-th powers) occur as the fibers of
a definable family. In the real case, one such definable family suffices; in the p-adic
case, countably many are required, one for each n.

The obvious generalization is therefore to look at any first order structure M , in
some language L, which admits a distinguised definable set ∆ ⊂ M s+1, such that
its fibers over the projection π : M s+1 → M s onto the first s coordinates, are to
play the role of basic building blocks. In both the real and the valued field case,
the building blocks can be chosen to be open and to form a basis for the canonical
topology. It seems reasonable to require the same in the general case. This leads
to the definition of a definable topology on M , as the collection of all fibers of
some definable set ∆. In order to deal with instances in which several definable
families of basic opens are required, as is the case for the p-adics, I introduce in the
penultimate section ind-definable topologies. In this more general setup, the same
statements can be proven with minor modifications.

A first order structure M with a (ind-)definable topology is then called t-minimal,
if every definable subset of M is a finite union of singletons and ∆-fibers. Unlike
the o-minimal case, it is not clear that the property of being t-minimal is preserved
under elementary equivalence. Therefore, in analogy with the minimal case, we will
say that M is strongly t-minimal, if every structure which is elementary equivalent
to M is t-minimal (in the corresponding definable topology). Alternatively, we can
call M strongly t-minimal, if the decomposition of definable sets in the affine line
into ∆-fibers and points is uniform in the following sense. Let A ⊂ Mm+1 be a
definable set. For u ∈ Mm, write A(u) for the set of all x ∈ M such that (u, x) ∈ A.
Then M is strongly t-minimal if, and only if, the number of ∆-fibers and singletons
needed in a decomposition of A(u) is bounded, independently from u ∈ Mm.

In the real case, a cell in Rm is defined recursively as all points between two
definable continuous maps with domain a cell in Rm−1 (allowing these maps to
take values ±∞ as well), or as the graph of such a definable map. At the same
time, the dimension of a cell is defined. However, the notion of ’betweenness’ is
lost in our general setting, and we replace it simply by a definable collection of ∆-
fibers. Moreover, continuity does not behave as well either, so we temporary drop
it from the definition of cells; see Definition 4.2 for details. I introduce the notion
of a locally dense definable topology, in which continuity behaves properly, so that
under this additional requirement, cells defined by means of continuous definable
maps are open. This way we also recover Denef’s notion of cell in the p-adic
case. One cannot hope for Cell Decomposition (that is to say, the fact that every
definable set is a finite union of cells) to hold in an arbitrary t-minimal structure.
The main result of this paper is the following general Cell Decomposition Theorem
(see Theorems 4.3 and 6.8).

Main Theorem. Let M be a strongly t-minimal structure with definable Skolem
functions. Then every definable set is a finite union of cells (in a uniform way).

If M is moreover locally dense, then we can take all the cells in such a decompo-
sition to be continuous. If f is any definable map, then there exists a (continuous)
cell decomposition of its domain, such that f is continuous when restricted to each
cell.

Admitting definable Skolem functions, albeit a non-trivial property, is neither
too strong a property in this setup, as is made evident by Proposition 4.6. Namely,
Cell Decomposition implies the existence of definable Skolem functions, provided
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the distinguished set ∆ itself admits a definable section, that is to say, a definable
map s : M s → ∆ with π ◦ s the identity. In any case, both the reals and the p-adics
admit definable Skolem functions, so that we obtain a unified proof for the Cell
Decomposition Theorem in both cases.3

A unified treatment has been an important motivation for the author. Another
motivation lies in the hope that t-minimality will prove to be as versatile a tool as o-
minimality to study definable sets in (expansions of) valued fields, thus generalizing
Denef’s and Cluckers’ results, or even in more general contexts. Moreover,
Denef has shown how to obtain Quantifier Elimination via Cell Decomposition.
Namely, assuming that the topology ∆ is quantifier free definable, we then only
need to resolve quantifiers for (graphs of) definable maps, for then cells, whence
arbitrary definable sets, are quantifier free definable. Therefore, t-minimality in
conjunction with a sufficient understanding of definable maps, will lead to some
Quantifier Elimination results. Theorem 8.10 on elimination of imaginaries, is a
first step towards such a general theory; unfortunately, it is not applicable in the
p-adic case in view of the fact that the norm topology is totally disconnected.

Some further historic notes. Structures with definable topologies were intro-
duced by Pillay in [12] and were called there first order topological structures. The
present notion is slightly more restrictive, since we require some additional axioms
to hold ((2.2.1)-(2.2.3)), to avoid trivial cases. The reader should be warned that
in Pillay’s paper, the term t-minimal is used in a different way then in the present
paper,4 albeit not without some similarity. However, Pillay’s notion is essentially
a stability theoretic one. In [10], Mathews further investigates this stability ver-
sion of t-minimality and gives a general framework in which Cell Decomposition
can be described (to make the connection with the present notion, use Lemma 3.6
and Remark 6.9 below). The present approach differs sufficiently from his, and is
both more elementary and more general.

After writing this manuscript, I found out that Mourgues recently gave a proof
in [11] of Cell Decomposition in p-minimal fields using definable Skolem functions.
It should be noted that our present notion of t-minimality encompasses the p-
minimal one, but potentially treats a larger class of examples of expansions of
valued fields.

It goes without saying that many ideas in this paper are borrowed from the work
of others on o-minimality. Especially van den Dries’s book [17] has been a great
source of inspiration for me and I strongly recommend it to anyone interested in
o-minimality.

2. Definable Topologies

Let M be a set and W a subset of Mm+n. Let π : Mm+n → Mm be the projection
onto the first m coordinates. For any u ∈ Mm, we will write W (u) to denote the
set of all x ∈ Mn, such that (u,x) ∈ W . We call W (u) the fiber of W at u, where
in this terminology it is tacitly understood that we always take projection onto the

3It should be pointed out that Denef’s Theorem in [2] or [4] states more than just the fact
that definable sets are finite unions of cells. It also shows how to resolve definable maps, which is
another key ingredient to prove Quantifier Elimination.

4I only realized this clash in terminology after the first version of this paper was written.
However, since I did not want to further exhaust the alphabet for yet another kind of minimality,
I decided to stick with my first choice.
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first m coordinates. If π : Mm+n → Mm is an arbitrary projection, then we write
Wπ(u) for the fiber with respect to π. More precisely, if I ⊂ {1, . . . , m + n} has

cardinality m, then we denote by π
(m+n)
I the projection Mm+n → Mm onto the

I-variables, that is to say, the map

(x1, . . . , xm+n) 7→ (xi | i ∈ I).(1)

Set π = π
(m+n)
I . Enumerate I in ascending order as {i1, . . . , im} and its complement

J as {j1, . . . , jn}. For u = (u1, . . . , um) ∈ Mm, we let Wπ(u) denote the set of all
v = (v1, . . . , vn) ∈ Mn, such that (x1, . . . , xm+n) ∈ W , where xik

= uk and xjl
= vl,

for all k and l. In other words, the projection π
(m+n)
J puts the sets W ∩ π−1(u)

and Wπ(u) in bijective correspondence.

2.1. Definition. Let M be a first order structure in some language L. With a
L-definable set, or simply a definable set, we will always mean a subset A of some
Cartesian power Mn which is first order definable by means of an L-formula with

parameters. If the defining formula has no parameters, then we say that A is
∅-definable.

2.2. Definition (Definable Topology). We say that M has a definable topology, if
there exists a ∅-definable set ∆ ⊂ M s+1 with the following three properties.

2.2.1. For any u ∈ M s, the fiber ∆(u) consists of at least two elements.
2.2.2. For any two points a, b ∈ M with a 6= b, we can find u ∈ M s, such that

a ∈ ∆(u) but b /∈ ∆(u).
2.2.3. For any two parameters u1,u2 ∈ M s and any point a ∈ ∆(u1)∩∆(u2), we

can find v ∈ M s, such that ∆(v) contains a and is contained in ∆(u1) ∩
∆(u2).

By abuse of terminology, we will also call ∆ a definable topology.

2.3. Lemma. Let M be a structure with a definable topology ∆. Then every ∆-
fiber ∆(u) is infinite.

Proof. Suppose not, so that ∆(u) = {a1, . . . , am}. By (2.2.2), we can find ui ∈ M s,
for i = 2, . . . , m, so that a1 ∈ ∆(ui), but ai /∈ ∆(ui). By repeated use of (2.2.3),
we can find u′ ∈ M s so that

∆(u′) ⊂ ∆(u) ∩ ∆(u2) ∩ · · · ∩ ∆(um).(2)

where we use that the right hand side is non-empty, since it contains a1. However,
this means that ∆(u′) = {a1}, a contradiction with (2.2.1).

2.4. Definition. Given a definable topology ∆, we define a topology on each
Cartesian product Mn as follows. A non-empty set (not necessarily definable)
U ⊂ Mn is ∆-open (or just open, whenever the definable topology is clear from the
context), if for each point x ∈ U , we can find u1, . . . ,un ∈ M s, such that

x ∈ ∆(u1) × · · · × ∆(un) ⊂ U.(3)

Clearly arbitrary unions of open sets are open, and by (2.2.3), finite intersections
of open sets are also open, so that we get indeed a topology. In particular, each
fiber ∆(u) is open and the collection of all fibers of ∆ forms a basis of open sets for
M . The topology on any Cartesian power Mn is then just the product topology.
It follows from (2.2.2) that this is a T1 topology.
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Let M∗ be an L-structure which is elementary equivalent with M , that is to say,
a model of Th∅(M). Since ∆ is ∅-definable, it is definable by means of a formula
ϕ without parameters. Let ∆∗ be the definable set in (M∗)s+1 given by the same
formula ϕ. Since the three conditions (2.2.1)–(2.2.3) are first order, it follows that
∆∗ is a definable topology on M∗.

2.5. Definition (t-minimality). We say that M , or more precisely, M with its
definable topology ∆, is t-minimal, if any definable set A ⊂ M is a finite union of
points and ∆-fibers.

2.6. O-minimal Structures. Observe that R with its usually topology arises from
a definable topology. Namely, let ∆ be the subset of R3 consisting of all (x1, x2, y)
satisfying one of the following three conditions

x1 < y < x2 ∧ x1 < x2(4)

y < x2 ∧ x1 = x2(5)

x1 < y ∧ x1 > x2.(6)

If a < b, then ∆(a, b) is the open interval (a, b). If a = b, then ∆(a, b) = (−∞, b). If
a > b, then ∆(a, b) = (a, +∞). There is of course some arbitrariness in our choice
of ∆, but the essential point is that any open interval (of finite or infinite length)
occurs as a ∆-fiber. It follows that the topology on each Rm is the Euclidean
topology. Moreover, any expansion of the order on R is t-minimal if, and only if, it
is o-minimal.

This construction can be made to work for an arbitrary o-minimal structure R,
showing that t-minimality is a generalization of o-minimality. In fact, under some
additional assumptions, we also have a converse; see Corollary 6.12.

It might perhaps come as a surprise that minimal structures are not t-minimal.
This a consequence of the observation made below that definable topologies are
unstable. We can see this in the case of an algebraically closed field K also more
directly as follows. An non-empty definable open subset of K is cofinite, so a
definable topology ∆ should have fibers consisting of all points minus an arbitrary
number of points. However, any definable family of fibers, whence in particular the
family of ∆-fibers, has bounded Euler characteristic, contradicting this requirement.
A similar obstruction caused by cofinite sets shows that Pressburger arithmetic
(Z, +,≡n) is not t-minimal.

2.7. Theorem. If M is a first order structure admitting a definable topology, then
M is unstable.

Proof. Suppose ∆ ⊂ M s+1 is a definable topology. Choose some u1 ∈ M s. By
(2.2.1), we can find at least two different points a1, a

′
1 ∈ ∆(u1). By (2.2.2), we

can find some u′
2 ∈ M s, so that a1 ∈ ∆(u′

2) and a′
1 /∈ ∆(u′

2). Finally, by (2.2.3),
we can find some u2 ∈ M s, so that a1 ∈ ∆(u2) and ∆(u2) ⊂ ∆(u1) ∩ ∆(u′

2). In
particular, we have that ∆(u2)  ∆(u1), since the former does not contain a′

1.
Choosing two different points in ∆(u2) and repeating the above argument, we can
build an infinite strictly descending chain

∆(u1) ! ∆(u2) ! ∆(u3) ! . . .(7)

It follows from [8, §6.7] that M is unstable.
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3. Strong t-minimality

Being t-minimal is preserved in elementary substructures.

3.1. Lemma. Let M ≺ M∗ be an elementary extension of (L-)structures and let
∆ be a definable topology (on both structures). If M∗ is t-minimal, then so is M .

Proof. Let δ(x, y) be the formula without parameters defining ∆. Let ϕ(x,a) be
a formula in the single free variable x, with parameters a from M . Let A ⊂ M
(respectively, A∗ ⊂ M∗) be the set defined by ϕ(x,a) in M (respectively, in M∗).
By t-minimality, we can write

A∗ = {c∗1, . . . , c
∗
p} ∪ ∆(u∗

1) ∪ · · · ∪ ∆(u∗
q).(8)

Let σ be the following sentence (with parameter a)

(∃zi,yj)(∀x)[ϕ(x,a) ↔

p∨

i=1

x = zi ∨

q∨

j=1

δ(x,yj)](9)

Equality (8) shows that σ holds in M∗ (with zi = c∗i and yj = u∗
j ). Therefore, σ

holds in M , say for zi = ci and yj = uj. It follows that A is the union of the ∆(uj)
and the points ci.

However, in general, t-minimality is not preserved under elementary equivalence.
We therefore make the following definition.

3.2. Definition (Strong t-minimality). We say that M with its definable topology
∆, is strongly t-minimal, if every L-structure M∗ elementary equivalent to M , is
t-minimal.

3.3. Proposition. Let M be a structure with a definable topology. In order for M
to be strongly t-minimal, it suffices that each ultrapower of M is t-minimal.

Proof. Assume that the condition in the above statement is satisfied. Let M∗ be
an arbitrary structure elementary equivalent with M . By the Keisler-Shelah
Theorem ([8, Theorem 9.5.7]), some ultrapower N of M is isomorphic with some
ultrapower of M∗. By assumption, N is t-minimal. Since M∗ ≺ N , it follows from
Lemma 3.1 that M∗ is t-minimal.

Strong t-minimality is a uniform version of t-minimality, as the following theorem
shows.

3.4. Theorem. Let M be a structure with a definable topology ∆. A necessary and
sufficient condition for M to be strongly t-minimal is that every definable family of
subsets in M admits a uniformly bounded decomposition in singletons and ∆-fibers,
that is to say, for every definable set A ⊂ Mm+1, there is a bound N = N(A), such
that each fiber A(u) ⊂ M with u ∈ Mm can be written as a union of at most N
singletons and ∆-fibers.

Proof. Suppose first that M is strongly t-minimal, but A provides a counterexample
to the assertion in the theorem. Therefore, we can find for each p ∈ N, a tuple up

such that any decomposition of the fiber A(up) in singletons and ∆-fibers needs
at least p + 1 sets. Let M∞ be an ultrapower of M (with respect to some non-
principal ultrafilter on N) and let u∞ be the tuple in M∞ corresponding to the
sequence (up | p ∈ N). By the t-minimality of M∞, we can write A(u∞) as a union

of a finite set {b1
∞, . . . , bq

∞} and finitely many ∆-fibers ∆(a1
∞), . . . , ∆(aq′

∞). Choose
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sequences b1
p, . . . , b

q
p ∈ M and a1

p, . . . ,a
q′

p ∈ M s, for all p = 1, 2, . . . , such that the

image of (bi
p | p ∈ N) and (ai

p | p ∈ N) in M∞ is bi
∞ and ai

∞ respectively. By  Los’s

Theorem, we can write almost all A(up) as a union of {b1
p, . . . , b

q
p} and the opens

∆(a1
p), . . . , ∆(aq′

p ), contradicting our assumption on p.
Conversely, suppose every definable family of subsets of M admits a uniformly

bounded decomposition in singletons and ∆-fibers. In particular, M is t-minimal.
By Proposition 3.3, we have to show that M∞ is t-minimal, where M∞ is an
arbitrary ultrapower of M (with respect to some non-principal ultrafilter on a set
I). Let α(u, x) be a formula without parameters and let u∞ be an m-tuple of
parameters in M∞. Let A∞ be the set defined over M∞ by the formula α(u∞, x).
Choose m-tuples up in M , for p ∈ I, so that the image of the sequence (up | p ∈ I)
in M∞ is precisely u∞. Let B be the definable subset of Mm+1 defined by α.
By our assumption, there is a bound N on the number of singletons and ∆-fibers
needed to decompose any fiber of B. In particular, we can find, for each p ∈ I,
elements b1

p, . . . , b
q
p ∈ M and tuples a1

p, . . . ,a
q′

p ∈ M s such that

B(up) = {b1
p, . . . , b

q
p} ∪ ∆(a1

p) ∪ · · · ∪ ∆(aq′

p ).(10)

Therefore, if we denote by bi
∞ and ai

∞ the respective image of the sequences (bi
p |

p ∈ I) and (ai
p | p ∈ I) in M∞, then

A∞ = B(u∞) = {b1
∞, . . . , bq

∞} ∪ ∆(a1
∞) ∪ · · · ∪ ∆(aq′

∞).(11)

3.5. Definition. Let A be a set in a topological space X . We will denote the
closure of A by A and its interior by intA. The (topological) boundary of A is the
difference A − intA and is denoted ∂A.

3.6. Lemma. Let M be a t-minimal structure. Any definable set A ⊂ M has a
finite boundary ∂A. Moreover, if M is strongly t-minimal, then there is a uniform
bound on the number of boundary points of any member of a definable family of
subsets in M .

Proof. The second statement will follow immediately from the proof and Theo-
rem 3.4. Therefore, let ∆ be a definable topology on M for which M is t-minimal
and let A ⊂ M be a definable set. Since

A = { x ∈ M | ∀u ∈ M s : x ∈ ∆(u) → A ∩ ∆(u) 6= ∅ }(12)

we see that A is definable. Similarly, intA is definable and therefore so is ∂A. In
particular, t-minimality implies that ∂A is a finite union of points and ∆-fibers.
To finish the proof, we only need to show that no ∆(u) can lie entirely inside ∂A.
So assume ∆(u) ⊂ ∂A. By t-minimality, we can write A as a union of a finite set
F and finitely many ∆(vi). Suppose there is some i, such that ∆(u) ∩ ∆(vi) is
non-empty and choose some point x in this intersection. Since ∆(vi) ⊂ A, we have
that x ∈ intA. On the other hand x ∈ ∆(u) ⊂ ∂A, so that x /∈ intA, contradiction.
Therefore, ∆(u)∩A lies in F whence is finite. Since any ∆-fiber is infinite, we may
choose some x ∈ ∆(u) outside F . By (2.2.2), we can find ∆(v) ⊂ ∆(u), such that
x ∈ ∆(v) but ∆(v) ∩ F = ∅. Therefore, ∆(v) ∩A = ∅, showing that x does not lie
in A, contradicting that x ∈ ∆(u) ⊂ ∂A.
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4. Cell Decomposition

In this section, I will show that every definable set can be written as a finite union
of cells, under the extra assumption that we have definable Skolem functions. This
is not a weak assumption, but by Proposition 4.6 it follows that we can not really
hope for less. Cell Decomposition will allow for the definition of the dimension of
an arbitrary definable set; this will be discussed in the next section.

4.1. Definition. Let M be a first order structure. We say that M has definable
sections or definable Skolem functions, if for every definable set A ⊂ Mn+t and
every projection π : Mn+t → M t, we can find a definable map f : π(A) → A, such
that π ◦ f is the identity on π(A).

Let f : Mm → Mn be a definable map and let Γ ⊂ Mm+n denote its graph. Let
π : Mm+n → Mn be the projection on the last n coordinates. If M has definable
Skolem functions, then there exists a definable map s0 : π(Γ) → Γ such that π ◦ s0

is the identity. Note that π(Γ) = Im f . Let s be the composition

Im f
s0−−→Γ ⊂ Mm+n

։ Mm(13)

where the latter map is just the projection on the first m coordinates. It follows
that f ◦ s is the identity. In other words, if M has definable Skolem functions, then
any definable map has a definable section.

We recall our convention for denoting projections. Let n ∈ N and let I be a set

of indices contained in {1, . . . , n} of cardinality a. Let π
(n)
I : Mn → Ma denote the

projection onto the variables with index in I, that is to say, π
(n)
I (x1, . . . , xn) = (xi |

i ∈ I). If I = ∅, then a = 0, and we think of M0 as a singleton (once and for all
fixed).

4.2. Definition (Cell). Let M have a definable topology ∆ ⊂ M s+1. The defini-
tion of a d-dimensional cell C ⊂ Mn will be given by induction on n. Moreover,
we define the notion of the type of a cell, denoted type(C), to be either 1 or 0. If
n = 1 then a 0-dimensional cell is just a singleton and a 1-dimensional cell is just
a ∆-fiber. Moreover, a singleton has type zero and a ∆-fiber has type one. For
C ⊂ Mn, we define each of the types separately. A d-dimensional cell of type one
is of the form

C = { (x, y) ∈ Mn | x ∈ D and y ∈ ∆(a(x)) }(14)

with D a (d − 1)-dimensional cell (of either type) in Mn−1 and a : Mn−1 → M s a
definable map. Note that if n = 1, then this just means that a is a point in M s.
Therefore C is just a ∆-fiber, so that we recover the n = 1 case.

A d-dimensional cell of type zero is of the form

C = { (x, y) ∈ Mn | x ∈ D and a(x) = y }(15)

with D a d-dimensional cell (of either type) in Mn−1 and a : Mn−1 → M a definable
map.

We will denote the dimension of a cell C by dimC. Observe that π
(n)
{1,...,i} is the

projection onto the first i coordinates. Unraveling the recursive definition of cell,
we therefore see that

dim C =
n∑

i=1

type(π
(n)
{1,...,i}(C)).(16)
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This implies that the dimension of a cell is well-defined, that is to say, is independent
of the particular description (14) or (15).

Note that ∆ itself is an example of a cell, of type 1 and of dimension s + 1 (for
definable map just take the identity map on M s).

4.3. Theorem (Cell Decomposition). Let M be a strongly t-minimal structure ad-
mitting definable Skolem functions. Then any definable set is a union of cells. If,
moreover, every subset of M can be written as a disjoint union of ∆-fibers and
points, then any definable set can be written as a disjoint union of cells.

Proof. The second assertion will follow immediately from our proof of the first
assertion. To prove the first assertion, let A ⊂ Mn+1 be a definable set. We
will induct on n. If n = 0, then by definition of t-minimality, A is a union of
cells (and in case of the second assertion, even a disjoint union). Hence assume
n > 0. Let π : Mn+1 → Mn be the projection on the n first coordinates. Since
π(A) is a definable subset of Mn, we can write it by induction as a union of cells
π(A) = D1∪· · ·∪Dp. All A∩(Di×M) are definable and their union is A. Therefore,
upon replacing A by one of the A∩(Di ×M), we may assume that π(A) is a cell D.
By Theorem 3.4, there exist p, q ∈ N, so that each fiber A(u), with u ∈ D, is the
union of at most p distinct ∆-fibers and at most q singletons. Choose p as small
as possible and then q as small as possible. We call the thus obtained pair (p, q)
the decomposition number of A. We will induct (in the lexicographical ordering) on
this decomposition number. Assume first that p = 0. Let s be a definable section
of the map π|A, that is to say, a definable map s : π(A) → A with π ◦ s the identity
on π(A). Let C ⊂ Mn+1 be the cell of type 0 given by (x, y) ∈ C, if and only if,
x ∈ D and y = s(x). It follows that C ⊂ A and that A − C has decomposition
number (0, q − 1). Therefore, by induction, we can write A − C as a union of cells
and we are done in this case.

Assume therefore that A has decomposition number (p, q) with p > 1. Let
W ⊂ Mn+s be the (definable) set of all tuples (x,u), such that ∆(u) ⊂ A(x) and
such that there exist u1, . . . ,up−1 ∈ M s and a1, . . . , aq ∈ M with

A(x) − ∆(u) = {a1, . . . , aq} ∪ ∆(u1) ∪ · · · ∪ ∆(up−1).(17)

Let θ : Mn+s → Mn be the projection on the first n coordinates. Let d : θ(W ) → W

be a definable section of θ|W and let d̃ : θ(W ) → M s be the composition of d
followed by projection onto the last s coordinates. Since θ(W ) is a definable set in
Mn, we may write it by induction as the union of cells D1, . . . , Dm. Let Ci be the
cell of type 1 consisting of all (x, y) such that x ∈ Di and y ∈ ∆(d̃(x)). Set

A′ = A − (C1 ∪ · · · ∪ Cm).(18)

I claim that the decomposition number of A′ is at most (p − 1, q), so that by
induction A′ is a finite union of cells, proving the theorem. To prove the claim, let
(x, y) ∈ A′. If x /∈ θ(W ), then this can only mean that A(x) was finite and the
claim follows. So we may assume that x lies in θ(W ) whence in some Di. Write
d(x) as (x,u), for some u ∈ M s. Note that ∆(u) = Ci(x). Together with (17),
we see that A′(x) = A(x) − ∆(u) is the union of at most p − 1 open ∆-fibers and
at most q points. Therefore, A′ has decomposition number at most (p − 1, q) as
claimed.
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4.4. Remark. Strong t-minimality yields actually a uniform version of Cell Decom-
position. One can easily show that if C ⊂ Mm+n is a cell and u ∈ Mm lies in π(C),
where π : Mm+n → Mm is the projection onto the first m coordinates, then C(u)
is a cell in Mn. Therefore, if A ⊂ Mm+n is a definable set admitting a cell decom-
position A = C1 ∪ · · · ∪Cs, then A(u) = C1(u)∪ · · · ∪Cs(u) is a cell decomposition
of each fiber A(u). In particular, the number of cells needed is uniformly bounded
by s in the family of fibers A(u). We therefore proved (just put N(A) = s below)
that M is algebraically (or, model-theoretically) bounded in the following sense.

4.5. Corollary (Algebraic Boundedness). Let M be a strongly t-minimal struc-
ture admitting definable Skolem functions. Let A ⊂ Mm+n be a definable set.
There exists a number N = N(A), such that each fiber A(u) having more than N
elements is infinite.

There is a partial converse to Cell Decomposition.

4.6. Proposition. Let M be a structure with a definable topology ∆. Suppose that
∆ ⊂ M s+1

։ M s has a definable section and that every definable set can be written
as a finite union of cells. Then M has definable Skolem functions and is strongly
t-minimal.

Proof. To prove the existence of definable Skolem functions, it suffices to show that
given A ⊂ Mn+m, we can find s : π(A) → A such that π ◦ s is the identity map,
for π : Mn+m → Mn the projection onto the first n coordinates. An easy inductive
argument then reduces to the case that m = 1.

I claim that if each Ai ⊂ Mn+1
։ Mn admits a definable section si, for i =

1, . . . , m, then so does A = A1 ∪ · · · ∪ Ak. Indeed, let s : π(A) → A be defined as
follows. For every x ∈ π(A), there is a unique i ∈ {1, . . . , k}, such that x ∈ π(Ai)
but x does not lie in any of the sets π(A1), . . . , π(Ai−1). Set s(x) = si(x). One
checks that s is a definable section for A.

Therefore, we may assume, in view of our hypothesis, that A is a cell. The case
of a cell of type 0 is immediate. So assume that A has type 1. Hence we can find
a cell C ⊂ Mn and a definable function a : Mn → M s, such that A consists of all
tuples (x, y), for which x ∈ C and y ∈ ∆(a(x)). Let δ : M s → ∆ be a definable
section for ∆. Then δ ◦ a is a definable section for A (note that C = π(A)).

Remains to prove that M is strongly t-minimal. Let A ⊂ Mm+1. By assumption,
we can write A as a finite union of cells A = C1 ∪ · · · ∪ Cs. By Remark 4.4,

A(u) = C1(u) ∪ · · · ∪ Cs(u)

is a cell decomposition of A(u), for each tuple u. Since Ci(u) is a cell in M , it is
either a ∆-fiber or a point. In conclusion, we showed that there is a uniform bound
on the number of points and ∆-fibers needed to write each fiber of A, so that by
Theorem 3.4, M is strongly t-minimal.

5. Dimension

We would like to define the dimension of an arbitrary definable set as the max-
imum of the dimensions of the cells in a cell decomposition of the set. In order
to make this definition, we need to show that this is independent from the par-
ticular decomposition. To this end, we need to study more closely cells and their
dimension.
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5.1. Lemma. Let M be a structure with a definable topology. Let C be a cell in
Mn. Let I be a set of indices in {1, . . . , n}, such that for all i /∈ I, we have that

π
(n)
{1,...,i}(C) has type 0. Then π

(n)
I (C) is again a cell and π

(n)
I restricted to C is

injective. Moreover,

dimC = dimπ
(n)
I (C).(19)

Proof. For each i ∈ {1, . . . , n}, let ǫi denote the type of π
(n)
{1,...,i}(C). Unravelling

the recursive definition of cells, we find for each i a definable map ci on M i−1

with values in M when ǫi = 0, and with values in M s when ǫi = 1, such that
x = (x1, . . . , xn) ∈ C if, and only if, Pi(x1, . . . , xi) holds, for all i = 1, . . . , n,
where Pi(x1, . . . , xi) is the expression xi = ci(x1, . . . , xi−1) when ǫi = 0, and the
expression xi ∈ ∆(ci(x1, . . . , xi−1)) when ǫi = 1. For x = (x1, . . . , xn), let y =

π
(n)
I (x), so that each yi is some xj(i). Let Qi(y) for i ∈ I be the expression obtained

from Pi as follows. For each l /∈ I with l < i, replace each (formal) occurrence of
xl in Pi(x1, . . . , xi) by cl(x1, . . . , xl−1). Note that by assumption ǫl = 0 for l /∈ I,
so that if x ∈ C then xl is indeed equal to cl(x1, . . . , xl−1). After finitely many
such substitutions all variables xl with l /∈ I will have been eliminated, so that we
get an expression P ′

i in the xj(i), for i ∈ I. Let Qj now be the formal expression
obtained by replacing in P ′

i these xj(i) by the corresponding yi. It is now easy to

check that π
(n)
I (C) consists of all tuples y which satisfy all Qi(y). Moreover, these

expressions show that π
(n)
I (C) is in fact a cell. Since we only projected out variables

xl for which ǫl = 0, it follows that C and π
(n)
I (C) have the same dimension by (16).

Finally, since each projection corresponding to a variable xl with l /∈ I is in fact

a projection from the graph of the function cl, it is clear that π
(n)
I is injective on

C.

Let us denote for an arbitrary cell C ⊂ Mn by I(C) the set of all indices i ∈

{1, . . . , n} for which type(π
(n)
{1,...,i}(C)) = 1. Let d be its cardinality, so that dimC =

d by (16).

5.2. Corollary. Let Mbe a structure with a definable topology. Let C ⊂ Mn be
a cell. Let i ∈ {1, . . . , n} and let I be a subset of {1, . . . , n} containing I(C) ∩

{1, . . . , i}. Then π
(n)
I (C) is again a cell.

Proof. Let J = I∪(I(C)∩{i + 1, . . . , n} and e the cardinality of J . By Lemma 5.1,

π
(n)
J (C) is a cell in M e, since I(C) ⊂ J . But then π

(n)
I (C) is obtained from π

(n)
J (C)

by projecting onto an initial fragment of the variables. However, such a projection
always preserves cells by the very definition of cells.

5.3. Lemma. Let Mbe a structure with a definable topology. Let C, D1, . . . , Dm

be cells in Mn. If C = D1 ∪ · · · ∪ Dm, then dimC is equal to the maximum of the
dimDi. In particular, if D is a cell with D ⊂ C, then dimD ≤ dimC.

Proof. The last assertion follows immediately from the first by taking D1 = D and

D2 = C. To prove the first assertion, let i /∈ I(C), so that type(π
(n)
{1,...,i}(C)) = 0.

This means that all fibers of the projection π
(n)
{1,...,i}(C) ։ π

(n)
{1,...,i−1}(C) are finite.

Therefore, the same must hold for each fiber of π
(n)
{1,...,i}(Dj) ։ π

(n)
{1,...,i−1}(Dj)

and for all j. This in turn means that type(π
(n)
{1,...,i}(Dj)) = 0, for all j, so that
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i /∈ I(Dj). It follows from (16) that dimDj is at most dim C, for all j. Moreover,

by Lemma 5.1, π
(n)
I(C)(C) and each π

(n)
I(C)(Dj) are cells, of the same dimension as

C and Dj respectively. Therefore, without loss of generality we may assume that
I(C) = {1, . . . , n} and dimC = n. We now only have to show that it is impossible
that every Dj has dimension strictly less than n. Towards a contradiction, suppose
that each I(Dj) is a proper subset of {1, . . . , n}. Choose for each j = 1, . . . , m

some i(j) /∈ I(Dj). There exists therefore a definable function aj : M i(j)−1 → M s,

such that π
(n)
{1,...,i(j)}(Dj) consists of all tuples (x, y) with x ∈ π

(n)
{1,...,i(j)−1}(Dj)

and y = aj(x). On the other hand, since I(C) = {1, . . . , n}, there exist definable

functions bi : M i−1 → M s, for i = 1, . . . , n, such that π
(n)
{1,...,i}(C) consists of all

tuples (x, y) with x ∈ π
(n)
{1,...,i−1}(C) and y ∈ ∆(bi(x)). For each i, let Ji be the

collection of all j ∈ {1, . . . , m} for which i(j) = i. We will successively choose
xi ∈ M . Choose x1 different from all aj with j ∈ J1 but inside ∆(b1) (note
that b1 and each aj for j ∈ J1 are constant functions). This is possible since ∆-
fibers are always infinite. Next choose x2 different from all aj(x1), for j ∈ J2, but
inside ∆(b2(x1)). Proceeding this way, we arrive at an n-tuple x = (x1, . . . , xn),
which by construction belongs to C, but for each j = 1, . . . , m, we have that
aj(x1, . . . , xi(j)−1) 6= xi(j). Therefore, x /∈ Dj , for every j, contradicting that C is
the union of all Dj .

5.4. Corollary. Let M be a strongly t-minimal structure with definable Skolem
functions. Let C1, . . . , Cp and D1, . . . , Dq be cells in Mn. If

p⋃

i=1

Ci =

q⋃

j=1

Dj(20)

then the maximum of the dimCi is equal to the maximum of the dim Dj.

Proof. By Cell Decomposition 4.3, we can write each Ci∩Dj as the union of finitely

many cells A
(ij)
k . Therefore, from (20), it follows that

Ci =
⋃

j,k

A
(ij)
k .(21)

By Lemma 5.3, the dimension of Ci, for a fixed i, equals the maximum of all

dimA
(ij)
k , where the maximum is taken over all j and k. Therefore, the maximum

of all dimCi equals the maximum of all dimA
(ij)
k . By the same argument, this

maximum is then also the maximum of all dim Dj.

5.5. Definition. Let M be a strongly t-minimal structure with definable Skolem
functions and let A ⊂ Mm be a definable subset. We define the dimension of
A, denoted dimA, as the maximum of all dimCi, where the Ci are finitely many
cells whose union equals A. By Theorem 4.3 at least one such cell decomposition
A = C1 ∪ · · · ∪Cs exists and by Corollary 5.4, the value of dimA is independent of
the cell decomposition. We take the convention that the empty set has dimension
−∞.

The following facts are easily verified using the results on the dimension of cells.

5.6. Corollary. Let M be a strongly t-minimal structure with definable Skolem
functions. Let A and B be definable subsets of Mm. Then the following holds.
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5.6.1. If A ⊂ B, then dim A ≤ dimB ≤ m.
5.6.2. The dimension of A is zero if, and only if, A is finite.
5.6.3. The dimension of A ∪ B is equal to the maximum of dimA and dimB.

5.7. Proposition. Let M be a strongly t-minimal structure with definable Skolem
functions. Let f : Mn → Mm be a definable map and A ⊂ Mn a definable subset.
Then dim f(A) ≤ dim A.

Proof. Let us first prove the statement for f a projection map. By an inductive
argument, it suffices to consider the case that f projects out a single variable, that

is to say, that f = π
(n)
{1,...,i−1,i+1,...,n}, for some i ∈ {1, . . . , n}. We will induct on n

(the case n = 1 is trivial). Set d = dimC and let D = π
(n)
{1,...,i−1,i+1,...,n}(C). We

want to show that dimD ≤ d. If i /∈ I(C), then the result follows from Lemma 5.1.

So we may assume that i ∈ I(C). Let C′ = π
(n)
I(C)(C), so that by Lemma 5.1, this

is a d-dimensional cell in Md. Consider π
(n−1)
I(D) (D). This set can also be written

as π
(d)
{1,...,j−1,j+1,...,d}(C

′), for some j ∈ {1, . . . , d}. If d < n, then by our induction

hypothesis, π
(n−1)
I(D) (D) has dimension at most dim C′ = d. By another application

of Lemma 5.1, π
(n−1)
I(D) (D) has dimension equal to dimD. This shows the desired

inequality, at least in case d < n. However, if d = n, then the result is trivial, since
D ⊂ Md−1 can have dimension at most d − 1.

Consider now the general case of an arbitrary definable map f . Let Γ ⊂ Mn+m

be the graph of f . Let D = Γ ∩ (C × Mm). One checks that D is a cell, and since
the indices m+1, . . . , m+n do not belong to I(D), it follows from Lemma 5.1 that

dimD = dim π
(n+m)
{1,...,n}(D). However, π

(n+m)
{1,...,n}(D) is just C, so that D and C have

the same dimension. On the other hand, we see that π
(n+m)
{m+1,...,m+n}(D) = f(C), so

that the assertion follows from the special case of a projection, applied to the cell
D.

5.8. Corollary. Let M be a strongly t-minimal structure with definable Skolem
functions. If two definable sets A and B are definably isomorphic, that is to say, if
there exists a definable bijection between them, then they have the same dimension.

Proof. Let f : A → B be a definable bijection. Its inverse g : B → A is therefore
also definable. By Proposition 5.7, we get that dim f(A) ≤ dimA and dim g(B) ≤
dimB. Since g(B) = A and f(A) = B, the statement follows.

5.9. Remark. The converse will in general be false. For instance, over the ordered
field of the reals, two sets are definably isomorphic if, and only if, they have the
same dimension and the same Euler characteristic. However, Cluckers has shown
in [1] that over the p-adics, two infinite definable sets are definably isomorphic if,
and only if, they have the same dimension.

5.10. Theorem. Let M be a strongly t-minimal structure with definable Skolem
functions. Let f : A ⊂ Mm → Mn be a definable map. For each k ∈ {1, . . . , m},
let Fk(f) be the set of all y ∈ Mn for which dim f−1(y) = k. Then Fk(f) is a
definable set and m is equal to the maximum of the numbers k + dimFk(f), for
k = 1, . . . , m.

Proof. I claim that it suffices to prove the following version of the statement. Let
A be a definable subset of Mm and let π : Mm → Mn be a projection map. Let
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Fk(A; π) be the set of all y ∈ Mn for which dim Aπ(y) = k. Recall from 2.2 that
Aπ(y) is definably isomorphic with π−1(y) ∩ A (via projection). The assertion is
that each Fk(A; π) is definable and, moreover, dimA is equal to the maximum of
the numbers k+dimFk(A; π), for k = 1, . . . , m. Assuming the claim, let’s prove the
theorem. Let Γ be the graph of f . As in the proof of Proposition 5.7, Γ is a cell of
dimension m. Let π : Mm+n → Mn be the projection onto the last n coordinates.
Then Γπ(y), for y ∈ Mm, is equal to f−1(y), so that Fk(Γ; π) = Fk(f), for all
k = 1, . . . , m, and we are done by the claim.

So remains to show the claim. Suppose π = π
(m)
I , with I ⊂ {1, . . . , m} of

cardinality n. Let σ be a permutation of {1, . . . , m}, so that σ(I) = {1, . . . , n}. Let
fσ be the map (x1, . . . , xm) 7→ (xσ(1), . . . , xσ(m)). Since this is a definable bijection,
we have by Corollary 5.8 that A and fσ(A) have the same dimension. Moreover

π−1(y) = f−1
σ ((π

(m)
{1,...,n})

−1(y)),(22)

for all y ∈ Mn. Therefore, also Aπ(y) and fσ(A)(y) are definably isomorphic
whence have the same dimension, for all y ∈ Mn. So we may assume without loss

of generality that π = π
(m)
{1,...,n}. Using Cell Decomposition 4.3 and Corollary 5.6,

we may moreover assume that A is a cell. Just observe that if A = A1∪ . . . Al, then
F(A; π) = F(A1; π) ∪ · · · ∪ F(Al; π).

For A a cell, the equality

dimA(y) =

m∑

i=n+1

type(π
(m)
{1,...,i}(A)),(23)

for every y ∈ π(A), is almost immediate by an inductive argument on the definition
of cell. In particular, the dimension of a non-empty fiber is independent of y, say
equal to d. On the other hand, π(A) is again a cell, of dimension dim A− d. Since
Fd(A; π) = π(A), whereas all other Fk(A; π) = ∅, the claim follows.

6. Continuity

In o-minimality, an important fact is that every definable subset A of Mm of
maximal dimension m has non-empty interior. In fact, if A is an m-dimensional cell,
then it is open. This fails in general for t-minimal structures for the following two
reasons. Firstly, cells in an o-minimal context are defined by means of continuous
definable functions instead of just definable ones. For this reason, we need to
introduce continuous cells. Nonetheless, in an o-minimal structure, even using the
present weaker notion of cell, one still has that every cell has non-empty interior,
since a definable function is continuous on a dense set of its domain. This might fail
in arbitrary t-minimal structures, since the nesting of ∆-fibers might be too sparse.
To be more precise, one needs that the family of ∆-fibers admits sufficiently many
containments, in the following sense.

6.1. Definition (Local Density). Let M be a structure with a definable topology
∆ ⊂ M s+1. We call ∆ locally dense, if the following two conditions are satisfied for
each x and b with x ∈ ∆(b).

6.1.1. There exists a non-empty open U ⊂ M s, such that for each u ∈ U , we
have x ∈ ∆(u) ⊂ ∆(b).

6.1.2. There exists a tuple a and an open V ⊂ M s with b ∈ V , such that for
each v ∈ V , we have x ∈ ∆(a) ⊂ ∆(v).
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6.2. Definition (Continuous Cell). Let ∆ be a definable topology. A continuous
cell C ⊂ Mm is defined recursively in the same way as an arbitrary cell with the
following modification. If m = 1 then any cell is continuous. If m > 1, then a
continuous cell C of type 1, consists of all tuples (x, y) ∈ Mm, for which x ∈ D
and y ∈ ∆(a(x)), where D is a continuous cell in Mm−1 and a : Mm−1 → M s is
a continuous definable map. A continuous cell C of type 0, consists of all tuples
(x, y) ∈ Mm, for which x ∈ D and y = a(x), where D is a continuous cell in
Mm−1 and a : Mm−1 → M is a continuous definable map. In other words, the
same definition as for ordinary cells, except that only continuous definable maps
can be used.

We will prove simultaneously several theorems on continuous cells, including a
decomposition theorem in continuous cells, by induction on the dimension m of the
embedding space. Although some of these theorems are weaker versions of others, it
is necessary to establish the theorems in the order they are listed for the induction
to work.

In what follows, M is a strongly t-minimal and locally dense L-structure with
definable Skolem functions.

6.3. Theorem. The intersection of two continuous cells in Mm is a finite union
of continuous cells in Mm.

6.4. Theorem. Any definable subset A ⊂ Mm can be written as a finite union of
continuous cells.

6.5. Theorem. Any continuous cell A ⊂ Mm of dimension m is open.

6.6. Theorem. If A is a definable subset of Mm of dimension m, then its topo-
logical boundary ∂A has dimension strictly less than m.

6.7. Theorem. If A is a d-dimensional definable subset of Mm (with d ≥ 0) and
f : A → Mn a definable map, then the subset D of discontinuities of f is definable
and has dimension strictly less than d.

6.8. Theorem. If A is a definable subset of Mm and f : A → Mn a definable
map, then there exists a (finite) decomposition A = C1 ∪ · · · ∪ Cs in continuous
cells, such that f is continuous on each Ci.

Each of these statements holds trivially if m = 0 (where M0 is a fixed singleton,
necessarily equipped with the discrete topology). Note that by convention, the
empty set has dimension −∞. Therefore, in proving these theorems, we may assume
that m > 0 and that they all hold for lesser values of the embedding space. Also
note that for m = 1, Theorems 6.3–6.5 hold by definition and Theorem 6.6 is
Lemma 3.6. However in order to prove the two remaining theorems in case m = 1,
we need the extra assumption that the topology is locally dense. Before we start
the inductive proofs, one last remark on the two last statements. In order to prove
these, it suffices to let n = 1, since there are definable maps fi : A → M , such that
f(x) = (f1(x), . . . , fn(x)), for all x ∈ A and f is continuous in some point x if, and
only if, each fi is.

Proof of Theorem 6.3. I will only consider the case that both cells are of type 1;
the remaining cases admit similar proofs the details of which are left to the reader.
Therefore, let C1 and C2 be continuous cells in Mm of type 1. Let Di ⊂ Mm−1 be a
continuous cell and ai : Di → M s a continuous definable map, so that Ci consists of
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all tuples (x, y) with x ∈ Di and y ∈ ∆(ai(x)). Since by our induction hypothesis
D1 ∩ D2 is a finite union of continuous cells, we may assume that D = D1 = D2

is a continuous cell. For each x ∈ D, we can write ∆(a1(x)) ∩ ∆(a2(x)) as a finite
union of ∆-fibers and singletons by t-minimality. Moreover, by strong t-minimality,
the number of singletons and ∆-fibers needed in this decomposition is uniformly
bounded. Therefore, using definable Skolem functions, there exist definable maps
bi : D → M s and bp+i : D → M , so that, for each x ∈ D, we have

∆(a1(x)) ∩ ∆(a2(x)) = ∆(b1(x)) ∪ ∆(bp(x)) ∪ {bp+1(x), . . . , bp+q(x)}.(24)

By the induction hypothesis on Theorem 6.8, we can find for each i = 1, . . . , p+ q a
decomposition of D in continuous cells, so that bi is continuous on each cell. Again
by induction, after taking the intersection of all these cells, we may assume that
one such decomposition D = D1 ∪ · · · ∪ Dw in continuous cells has been obtained
on which all bi are simultaneously continuous. Therefore, C1 ∩C2 will be the union
of all cells Vij , for i = 1, . . . , p + q and j = 1, . . . , w, where Vij consists of all tuples
(x, y) with x ∈ Dj and y ∈ ∆(bi(x)) or y = bi(x), according to whether i ≤ p or
p < i ≤ p + q.

Proof of Theorem 6.4. By ordinary Cell Decomposition (Theorem 4.3), we may
assume that A is a cell. Suppose D ⊂ Mm−1 is a cell and a : D → M t is a definable
function, where t = s if A has type 1 and t = 1 if A has type 0, so that A consists
of all tuples (x, y) ∈ Mm with x ∈ D and y ∈ ∆(a(x)) (respectively, y = a(x)),
if A has type 1 (respectively, type 0). By induction, we may decompose D in
continuous cells and therefore, without loss of generality, we may already assume
that D is a continuous cell. Moreover, by an argument similar to the one in the
previous proof, for which we might have to split up D further, we may also assume
that a is continuous on D. This shows that A is a continuous cell, as required.

Proof of Theorem 6.5. Let (x, y) be an arbitrary point of the m-dimensional cell
A, necessarily of type 1. Choose a continuous cell D ⊂ Mm−1 and a continuous
definable map a : D → M s, such that (x, y) belongs to A if, and only if, x ∈ D and
y ∈ ∆(a(x)). By induction, D is open. Let Z be the subset of M2s consisting of
all pairs (u,v) for which y ∈ ∆(u) ⊂ ∆(v). By Condition (6.1.2) of local density
applied to the situation y ∈ ∆(a(x)), we can find u with y ∈ ∆(u), such that a(x)
lies in the interior of Z(u). Let U be an open containing a(x) and contained in
Z(u). Since a is continuous, a−1(U) is open in D whence in Mm−1. Moreover,
x ∈ a−1(U), so that a−1(U)×∆(u) contains (x, y). Let (s, t) be an arbitrary point
in a−1(U) × ∆(u). Hence a(s) ∈ U ⊂ Z(u) implies that ∆(u) ⊂ ∆(a(s)). Since
t ∈ ∆(u), we conclude that t ∈ ∆(a(s)) and therefore (s, t) ∈ A. In conclusion,
a−1(U) × ∆(u) ⊂ A, showing that (x, y) is an interior point of A.

Proof of Theorem 6.6. Since the closure and the interior of a definable set are again
definable, so is its topological boundary. By Theorem 6.4 (which at this point has
been proven for subsets of Mm), we can write A as a finite union of continuous cells.
By the already proven Theorem 6.5, each cell in this decomposition of dimension m
is open. In particular, this shows that we can write A as the union of a (definable)
open set U and a definable set B of dimension less than m. Necessarily, U lies in
the interior of A. Assume that ∂A also has dimension m. By the same argument,
∂A contains then a non-empty open V . In particular, V − B must have dimension
m as well by Corollary 5.6. By another application of Theorem 6.5, we can find a
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non-empty open W inside V − B. Since W lies in the closure of A, it must meet
A. If W ∩ U is non-empty, then any point in this intersection would belong to
the interior of A, since it lies in U . This, however, is impossible since W lies in
the boundary of A. In summary, W ∩ U = ∅, and, by construction W ∩ B = ∅,
contradicting that W meets A.

Proof of Theorem 6.7. By what we said above, we may take n = 1, so that f : A →
M . Apart from the standing induction on m, we will perform a second induction
on the dimension d of A. If d = 0, then D = ∅, since a function on a discrete set
is everywhere continuous. So assume d > 0. If d < m, then by Lemma 5.1, there
is some projection π : Mm → Md, such that its restriction to A is an isomorphism
(and in fact a homeomorphism) γ : A → π(A). By our induction hypothesis on m,
the discontinuities of the definable map f ◦γ−1 : π(A) → M lie in a set of dimension
strictly smaller than d. Since γ induces a definable isomorphism between D and
this latter set, the theorem is proven in this case. Therefore, we may assume that
d = m. By the already established versions of Theorems 6.4 and 6.5, D contains
a non-empty open definable subset U . For each u ∈ U , we can find a ∆-fiber
∆x containing f(x), with the property that no open containing x is mapped by f
entirely inside ∆x, exhibiting that f is discontinuous at x. In other words, x lies
on the boundary of f−1(∆x). Since the existence of ∆x is first order expressible,
we can find using definable Skolem functions, a definable map g : U → M s so that
we may take ∆x = ∆(g(x)).

Let W ⊂ M s+m be the set of all tuples (x,v) with x ∈ U , such that

f(x) ∈ ∆(v) ⊂ ∆(g(x)).(25)

By Property (6.1.1) of local density applied to f(x) ∈ ∆(g(x)), each fiber W (x),
for x ∈ U , contains a non-empty open of M s, whence has dimension s. Therefore,
by Theorem 5.10, W has dimension s + m. Let π : M s+m → M s be the projection
onto the last s coordinates. If each fiber Wπ(v) would have dimension strictly less
than m, then by that same theorem, we would get that W has dimension less than
m + s. Therefore, for some v ∈ M s, the fiber Wπ(v) is m-dimensional, whence
contains a definable open V (by a similar argument as before). Let x ∈ V . Since
then (x,v) ∈ W , we get that f(x) ∈ ∆(v) ⊂ ∆(g(x)). Since f is discontinuous at
x, so that x lies on the boundary of f−1(∆(g(x))), it follows that x also lies on
the boundary of f−1(∆(v)). Since this holds for all x ∈ V , we showed that V is
contained in the boundary of f−1(∆(v)). However, this contradicts Theorem 6.6
in dimension m, proving the theorem.

Proof of Theorem 6.8. By Theorem 6.7 just proved, the set D of discontinuities of
f has dimension strictly less than m. Applying the induction hypothesis to the
restriction f |B, we find a decomposition of B in finitely many continuous cells, so
that f is continuous when restricted to every such cell. Finally, by Theorem 6.4,
we can write the complement −D as a finite union of continuous cells as well, and
the theorem follows.

6.9. Remark. Theorem 6.5 together with Lemma 5.1 shows that any continuous
cell in our sense is a cell in the sense of [10].

6.10. Remark. One shows that if C ⊂ Mm+n is a continuous cell and u ∈ Mm lies
in π(C), where π : Mm+n → Mm is the projection onto the first m coordinates,
then C(u) is a continuous cell in Mn. Therefore, as in Remark 4.4, if A ⊂ Mm+n
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is a definable set and f a definable map with domain A, and if A = C1 ∪ · · · ∪ Cs

is a decomposition in continuous cells on which f is continuous, then A(u) =
C1(u)∪· · ·∪Cs(u) is a decomposition in continuous cells of each fiber A(u) and fu

is continuous on each Ci(u), where fu is the map on A(u) given by x 7→ f(u,x). In
particular, the number of continuous cells needed is uniformly bounded by s in the
family of fibers A(u). In particular, each fiber A(u) has at most s isolated points,
so that we proved the following relative version of Corollary 4.5.

6.11. Corollary. Let M be a strongly t-minimal and locally dense L-structure with
definable Skolem functions. Let A ⊂ Mm+n be a definable set. There exists a
number N = N(A), such that each fiber A(u) has at most N isolated points.

As a final application, we obtain the following strong connection between o-
minimality an t-minimality.

6.12. Corollary. Let M be a strongly t-minimal and locally dense L-structure with
definable Skolem functions. If M admits a definable (total) order relation which
induces the same topology as its definable topology, then M is o-minimal.

Proof. Let f : M → M be a definable map. By Theorem 6.7, the set D of dis-
continuities of f is finite. This applies in particular to the characteristic function
f = χA of a definable set A ⊂ M . More precisely, fix two different points 0, 1 ∈ M
and set χA(x) = 1 if x ∈ A and χA(x) = 0 in the remaining case. Let x1 < · · · < xn

be the discontinuities of χA. Since these are also the discontinuities of χA in the
order topology, we get that A is a union of some of the intervals ]xi, xi+1[ (where
x0 = −∞ and xn+1 = +∞) and some of the points x1, . . . , xn. This shows that M
is o-minimal.

Note that this argument actual shows that an (infinite) ordered structure M
is o-minimal if, and only if, each definable map f : M → M has finitely many
discontinuities.

7. Ind-Definable Topologies

The notion of a definable topology ∆ is too weak if the language is infinite, since
the formula defining ∆ only quotes finitely many symbols. For instance, to obtain
cell decomposition in the p-adics, one has to work with the language of valued fields
together with a predicate for every n-th power subgroup of the multiplicative group.
This is because the p-adics only have Quantifier Elimination in this language, as
shown by Macintyre in [9]. The following definition repairs this short coming.

7.1. Definition (Ind-definable Topology). Let M be a first order structure in a
language L. We say that M has an ind-definable topology, if there exists a collection
D of ∅-definable subsets ∆ ⊂ M s(∆)+1 so that every ∆ ∈ D gives rise to a definable
topology on M and so that for any ∆, Γ ∈ D, we can find a Θ ∈ D with the following
property. If u ∈ M s(∆) and v ∈ M s(Γ), and if a ∈ ∆(u) ∩ Γ(v), then we can find
w ∈ M s(Θ), such that

a ∈ Θ(w) ⊂ ∆(u) ∩ Γ(v).(26)

By abuse of terminology, we will also call D an ind-definable topology. We call
any set of the form ∆(u) with ∆ ∈ D and u ∈ M s(∆), a D-fiber. As a basis of
opens for the topology on M we take finite intersections of D-fibers.
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Note that these conditions give an axiom scheme for ind-definable topologies,
with a sentence for each ∆ ∈ D expressing that it is a definable topology and
a sentence for each pair ∆, Γ ∈ D expressing the existence of Θ ∈ D satisfying
condition (26). In particular, if M∗ is elementary equivalent with M , then D gives
rise to an ind-definable topology on M∗.

7.2. Definition. Let M be a first order structure in some language L with an
ind-definable topology D. We say that M is t-minimal, if every definable subset
A of M is a finite union of D-fibers and singletons. In other words, we can find
∆i ∈ D, ui ∈ M s(∆i) and a finite set F ⊂ A, such that

A = ∆1(u1) ∪ · · · ∪ ∆p(up) ∪ F.

We say that M is strongly t-minimal, if every structure elementary equivalent with
M is t-minimal in the induced ind-definable topology. By the same argument as
before, in order for M to be strongly t-minimal, it suffices to check that every
ultrapower of M is t-minimal.

We call D locally dense, if each ∆ ∈ D is.

7.3. Definition. Cells and continuous cells are defined in an analogous way using
at each step some ∆ ∈ D. More precisely, we employ the following recursive
definition for C ⊂ Mm to be a (continuous) cell. If m = 1 then any D-fiber
is a continuous cell. If m > 1, then C is a (continuous) cell of type 1, if there
exists a (continuous) cell D in Mm−1, a ∆ ∈ D and a (continuous) definable map
a : D → M s(∆), such that C consists of all tuples (x, y) ∈ Mm, for which x ∈ D
and y ∈ ∆(a(x)). The dimension of C is defined to be the dimension of D plus one.
It is a (continuous) cell of type 0 and dimension equal to dimD, if instead a has
range M and C consists of all tuples (x, y) ∈ Mm, for which x ∈ D and y = a(x).

Note that different members of D can occur in a cell, but only one in each
dimension.

The reader is invited to check that all the proofs work in this more general setup,
so that the following theorem holds.

7.4. Theorem. Let M be a first order structure with an ind-definable topology.
If M has definable Skolem functions and is strongly t-minimal, then any definable
set A can be written as a finite union of cells. If D is moreover locally dense and
f is a definable map with domain A, then we can choose a decomposition of A in
continuous cells Ci, such that the restriction of f to each Ci is continuous.

Moreover, each of these decompositions is uniform in definable families and all
properties proven so far for definable topologies remain true for this extended notion.

7.5. p-adic Fields. Let us show how the p-adics are strongly t-minimal in this
more general sense. Let us denote the valuation of an element by v(a). Observe
that v(a) ≤ v(b) if, and only if, a2 + pb2 is a square. Therefore, we can express
the clause v(a) ≤ v(b) in the language of fields, so that we need not to consider a
second sort for the value group (in fact, below we will introduce a predicate symbol
P2 for the set of non-zero squares, so that we can use this predicate to express
the clause v(a) ≤ v(b)). However, for notational clarity, we will keep using the
valuation symbol. We put v(0) = +∞, with the usual assumptions that +∞ is
larger than any integer.
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Let ∆ be the subset of Q5
p consisting of all tuples (x1, . . . , x4, y), satisfying one

(and only one) of the following three conditions

v(x3) ≤ v(x1y + x2) ≤ v(x4) ∧ v(x3) ≤ v(x4),(27)

v(x1y + x2) ≤ v(x4) ∧ v(x3) = v(x4) + 1,(28)

v(x3) ≤ v(x1y + x2) ∧ v(x4) + 1 < v(x3).(29)

We will call an arbitrary fiber of ∆ an annulus. One checks that ∆ is a locally
dense definable topology, inducing the p-adic topology on Qp. Unfortunately, Qp is
not t-minimal in this topology. The simplest counterexample is given by the set P2

of non-zero squares; it cannot be written as a finite union of annuli and singletons.
If one adjoins new unary predicate symbols Pn to the language (with n = 2, 3, . . . )
interpreting the non-zero n-th powers, then Qp admits Quantifier Elimination in
this expanded language LMac by [9].

Let ∆n ⊂ Q5
p, for n = 2, 3, . . . , be defined as the set of all tuples (x1, . . . , x4, y) ∈

∆ for which x1y + x2 is a non-zero n-th power. Let δn(x1, . . . , x4, y) be the cor-
responding formula in LMac defining ∆n. I claim that the collection DMac of all
∆n is a locally dense strongly t-minimal ind-definable topology. Therefore, since
Qp also admits definable Skolem functions by [4] (in the language of fields or in
its definable expansion LMac), we obtain that Theorem 7.4 is true for the field of
p-adics. I will simply indicate the arguments for proving the claim since these are
well-known among specialists (see for instance [5, 9, 11, 15]).

Firstly, DMac is an ind-definable topology, since the Pn-cosets are open, whence
contain arbitrary small annuli. Next, one easily verifies that each ∆n is locally
dense. Therefore, remains to give the argument that Qp is strongly t-minimal. As
in Theorem 3.4, strong t-minimality is equivalent with showing that the structure
is t-minimal in a uniform way. In the case of the p-adics this will follow from our ar-
gument below, since the number of disjuncts will only depend on the degrees of the
polynomials in the original formula (and p). Let A be a definable subset of Qp. By
Quantifier Elimination, it is defined by a quantifier free LMac-formula α(y) in a sin-
gle variable y. Our goal is to describe A as a union of DMac-fibers (or, alternatively,
show that α is equivalent with a disjunction of formulae δn(a1, . . . , a4, y)). Let Rn

be a complete set of coset representatives of the subgroup Pn of the multiplicative
group Q×

p , with the understanding that 1 is the representative of the coset Pn.
Then ¬Pn(a) is equivalent with the disjunction of all Pn(ξa), where 1 6= ξ ∈ Rn.
In this way, we may replace any negation by a disjunction.

Let f(y) be a polynomial. I will explain briefly how to rewrite Pn(f(y)) and
v(f(y)) using only linear factors. Write f(y) as a product of a nowhere vanishing
polynomial g(y) and of powers of linear terms (y − ai)

mi . One can find an annulus
of the form v(y) ≤ N not containing any root of f (in an algebraic closure of Qp).
Consequently, v(f(y)) = v(y) for all such y. Moreover, the coset of f(y) modulo
Pn depends only on yd, where d is the degree of f . In turn, the Pn-coset of yd

only depends on the Pm-coset of y, where m is obtained from n by dividing out
the greatest common factor with d. Around each root a = ai one can find a small
enough annulus, so that the same is true for f(y)/(y − a)m in terms of y − a, so
that one only has to consider on that disk the behavior of (y − a)m. By a similar
argument as before, statements about Pn(f(y)) and v(f(y)) can be translated into
statements about v(y − a) and Pm-cosets of y − a.
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Finally, we have to deal with conjunctions of the form Pn(ay+b)∧Pm(cy+d) (or
similar conjunctions of norm-inequalities between linear factors). Using the least
common multiple of m and n, we may assume that m = n (actually, we can only
assume that mk = nl for some k, l, but this does not alter the argument much).
For v(ay + b) large or small enough, the Pn-coset of cy + d only depends on the
Pn-coset of ay + b (and conversely). The intermediate annulus can be written as a
union of smaller annulus on which ay + b and cy + d lie in fixed cosets. A similar
argument can be used for conjunctions of norm-inequalities. This completes the
argument that Qp is strongly t-minimal.

To give a non-trivial example, observe that Qp − {0, 1} is the union of the fol-
lowing ∆2-fibers:

v(x) < 0(30)

v(x) ≥ 1 ∧ P2(x
2)(31)

v(x − 1) ≥ 1 ∧ P2((x − 1)2)(32)

v(x − j) ≥ 1, for j = 2, . . . , p − 1.(33)

Note that P2(x
2) holds for all x except for x = 0.

8. Connected Components

A topological space X is called connected, if it cannot be written as the union
of two disjoint, non-empty open subsets. A subset A of X is called connected, if A
with its induced topology is connected. In other words, A is connected if for any
two open sets U and V which are not disjoint from A and such that A ⊂ U ∪ V ,
we have that A ∩ U ∩ V 6= ∅. If A is connected, then so is its closure Ā.

A subset S of A is called a connected component, if S is connected and S is
maximal with this property (i.e., if S  T ⊂ A implies that T is not connected).
One verifies easily (using for instance Lemma 8.2 below) that S is a connected
component, if and only if, S is connected and has the property that any connected
set which is not disjoint from it, must belong to it. A connected component is
therefore closed, for its closure is again connected whence contained in it.

8.1. Definition (Pseudo-intersection). Let X be a topological space and let A and
B be subsets of X . We introduce the pseudo-intersection of A and B as the set

(A ∩ B) ∪ (A ∩ B)

and we denote it by A∩B.

8.2. Lemma. Let X be a topological space and let A and B be non-empty connected
subsets of X. Then A ∪ B is connected, if and only if, A∩B 6= ∅.

Proof. Set S = A∪B. We prove the contrapositive of the assertion. Hence assume
first that A∩B = ∅. Since A∩B is empty, we can find for every x ∈ B an open Ux

containing x, for which Ux ∩ A = ∅. Let U be the union of all Ux, so that U is an
open with B ⊂ U and A ∩ U = ∅. Similarly, we can find an open V containing A
and disjoint from B. In particular, S∩U = A and S∩V = B. Therefore S ⊂ U ∪V
and S ∩U ∩ V = A∩B ⊂ A∩B = ∅, showing that S is not connected. (Moreover,
A and B are its two connected components).

Conversely, assume that S is not connected, so that there exists opens U and V
with S ⊂ U ∪V and S∩U ∩V = ∅, whereas S is not contained in U nor in V . Since
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A is connected, it must be contained in either U or V , say A ⊂ U . The same holds
true for B, so that necessarily B ⊂ V (the case B ⊂ U is excluded since otherwise
S ⊂ U). Suppose x ∈ A ∩ B. From B ⊂ V it follows that x lies in the open V . As
x ∈ A, we must therefore have that A ∩ V is non-empty. On the other hand, since
A ⊂ U , we have that A∩V ⊂ S ∩U ∩V = ∅, contradiction. This shows that A∩B
must be empty and so must A ∩ B be, by symmetry.

8.3. Definition (Proximity Graph). Let X be a topological space and let U be
a finite covering of X (we do not require that the members of U be open). To
this data we attach a graph ΓU , called the proximity graph of the covering U . Its
vertices are the members of U and there is an edge between any two members U
and V of U precisely when U ∩V 6= ∅.

8.4. Proposition. Let X be a topological space and let U be a finite covering of X.
Assume that each member of U is connected. Let Ψ be a connected component of the
proximity graph ΓU of U . Let X(Ψ) be the union of all A ∈ U which occur as a vertex
in Ψ. Then X(Ψ) is a connected component of X and every connected component
occurs in this way. More precisely, if Ψ1, . . . , Ψn are all connected components of
ΓU , then X(Ψ1)⊔· · ·⊔X(Ψn) is the decomposition of X in its connected components.

Proof. With a connected component of a finite graph Γ we mean a full subgraph
Ψ with the property that any two of its vertices can be connected by a path (of
edges) and Ψ is maximal with this property. Let Ψ be any full subgraph of ΓU and
let X(Ψ) be the union of all A ∈ U which occur as vertex in Ψ. I claim that if Ψ
is connected (i.e., there is an edge-path between any two vertices), then X(Ψ) is
connected. To prove the claim, we induct on the number m of vertices in Ψ. There
is nothing to prove if m = 1, for we assumed that all members of U are connected.
Assume m > 1. Let A be a vertex of Ψ and let Ψ′ be the full subgraph of Ψ
obtained by deleting the vertex A and all edges ending in A. Since all graphs under
consideration are finite, we can choose A in such way that Ψ′ remains connected.
By induction X(Ψ′) is connected. Since there was at least one edge between A
and some vertex B of Ψ′, we have that A∩B 6= ∅. Therefore also A∩X(Ψ′) is
non-empty. By Lemma 8.2, it then follows that A ∪ X(Ψ′) is connected, and since
the latter is just X(Ψ), we proved the claim.

Assume next that Ψ is a connected component of ΓU . I claim that X(Ψ) is
closed. Assume not, so that there exists a point x /∈ X(Ψ) belonging to the closure
of X(Ψ). In particular, since X(Ψ) is a finite union of members of U , there must
exist an A ∈ U which is a vertex of Ψ and for which x ∈ A. On the other hand,
there is some B ∈ U containing x. By assumption, B is not a vertex of Ψ. However,
the existence of x shows that A∩B 6= ∅, so that A and B are related by an edge
in U , contradicting that Ψ is a connected component.

Finally, let Ψ1, . . . , Ψn be the connected components of ΓU . Since U is a covering,
we have that

X = X(Ψ1) ∪ · · · ∪ X(Ψn).(34)

From the above it follows that each X(Ψi) is connected and closed. If X(Ψi) ∩
X(Ψj) 6= ∅, for i 6= j, then there would be a vertex Ai of Ψi and a vertex Aj of Ψj

which are not disjoint (considered as subsets of X). Therefore Ai and Aj would be
connected by an edge in U , which is impossible. In other words, (34) is a disjoint
union of closed sets. Taking complements we see that each X(Ψi) is also open.
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Since the X(Ψi) are also connected, it follows that (34) is the decomposition in
connected components, as required.

8.5. Lemma. Let M be a t-minimal structure and let A be a definable subset of
M . Assume that every ∆-fiber is connected. Then every connected component of A
is also definable.

Proof. Suppose

A = {a1, . . . , ap} ∪ ∆(u1) ∪ · · · ∪ ∆(up)

Let S be a connected component of A. If some ∆(ui) meets S, then it must be
contained in S, since we assumed that every ∆-fiber is connected. It follows that
S is the union of some of the ∆(ui) and some of the points ai, showing that S is
definable.

8.6. Theorem. Let M be a strongly t-minimal structure with definable Skolem
functions and connected ∆-fibers. Let f : A ⊂ Mm+1 → Mm be a definable map.
There exist definable maps gi : Bi ⊂ Mm+1 → Mm, for i = 1, . . . , p, such that for
each u ∈ Mm, the non-empty sets among the g−1

1 (u), . . . , g−1
p (u) are the connected

components of f−1(u).

Proof. By strong t-minimality, there exists a p ∈ N, so that each fiber f−1(u) can
be written as the union of at most p sets Ci which are either singletons or ∆-fibers.
Since any connected component of f−1(u) is then a union of some of the Ci by the
proof of Lemma 8.5, f−1(u) has at most p connected components. Choose p as
small as possible. We will induct on p. If p = 1, then there is nothing to prove, so
assume p > 1.

Choose a definable section s : f(A) → Mm+1. For each u ∈ f(A), let S(u) be
the connected component of f−1(u) containing s(u). Fix u ∈ f(A) and let ϕ(x,u)
be the formula expressing that there exist u1, . . . ,up ∈ M s and a1, . . . , at ∈ M with
the following properties. Let us temporarily denote by U the collection of all ∆(ui)
and of all singletons {ai}. Let S be the union of the members of U . The formula
ϕ(x,u) states that x ∈ S with the additional requirements that s(u) ∈ S ⊂ f−1(u)
and that the proximity graph of U is connected. Moreover, S has to be maximal with
these properties. It follows from Proposition 8.4 that the set defined by the formula
ϕ(x,u) is S(u). Let B1 be the subset of Mm+1 consisting of all (u, x) with u ∈ f(A)
and x ∈ S(u) and let g1 be the restriction of f to B1. By construction, each (non-
empty) g−1

1 (u) is a connected component of f−1(u). Let f1 be the restriction of f
to A − B1. Each fiber f−1

1 (u) has at most p − 1 connected components, and the
proof is now finished by induction on p.

8.7. Lemma. Let M be a topological space and D a connected subset of Mm. If
a map f : D → Mn is continuous, then its graph is connected.

Proof. Let Γ ⊂ D × Mn be the graph of f . Towards a contradiction, assume that
there exist two opens U1, U2 ⊂ Mm+n not containing Γ, but such that Γ ⊂ U1 ∪U2

and Γ ∩ U1 ∩ U2 = ∅. Let Di be the collection of all x ∈ D for which (x, f(x)) ∈
Ui. Our assumptions imply that D is the disjoint union of D1 and D2 and that
neither one of them is empty. I claim that each Di is open in D, which then would
contradict the fact that D is connected. Let us show that D1 is open. Let x ∈ D1,
so that (x, f(x)) ∈ U1. Hence there exist opens X ⊂ Mm and Y ⊂ Mn with
(x, f(x)) ∈ X × Y ⊂ U1. Since f is continuous, f−1(Y ) is open, so that after
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shrinking X is necessary, we may assume that X ∩D ⊂ f−1(Y ). Take an arbitrary
a ∈ D∩X . Then f(a) ∈ Y , so that (a, f(a)) ∈ X ×Y ⊂ U1. Therefore, a ∈ D1. In
other words, we showed that D ∩ X ⊂ D1, whence that D1 is open in D.

8.8. Proposition. Let M be a first order structure with a definable topology ∆.
If ∆ has a definable and continuous section and if each ∆-fiber is connected, then
any continuous cell is connected.

Proof. Let C ⊂ Mm be a continuous cell. We induct on m to show that C is
connected. If m = 1, then this is part of our hypothesis, so that we may assume
that m > 1. If C is of type 0, then we are done by Lemma 8.7 and our induction
hypothesis. Therefore assume that C is of type 1, so that it consists of all tuples
(x, y) ∈ Mm such that x ∈ D and y ∈ ∆(a(x)), for some continuous cell D in
Mm−1 and some continuous definable map a : D → M s. We have to show that
given opens U1, U2 ⊂ Mm, for which C ⊂ U1 ∪U2 and C ∩U1 ∩U2 = ∅, then C lies
entirely inside one of Ui. Let x ∈ D. Since ∆-fibers are connected, we must have
that C(x) = ∆(a(x)) lies entirely in U1 or in U2. Let δ : M s → ∆ be a continuous
and definable section of ∆. Consider the composite map

D
a

−−→M s δ
−→∆

π
(s+1)

{s+1}
−−−−−→M.

This is a continuous map, so that by Lemma 8.7 and our induction hypothesis,
its graph Γ is connected. By construction, Γ ⊂ C, so that Γ must lie entirely
in one of the two opens, say in U1. But this means that any fiber C(x) has one
point in common with U1, so, by our previous observation, must lie entirely in U1.
Therefore, C ⊂ U1, as required.

8.9. Corollary. Let M be a locally dense, strongly t-minimal structure with de-
finable Skolem functions. Suppose moreover that ∆ has a definable and continuous
section and that each ∆-fiber is connected. If A ⊂ Mm is a definable set, then any
connected component of A is also definable.

Proof. By Theorem 6.4, we can write A as a finite union of continuous cells Ci. Let
A0 be a connected component of A. Since by Proposition 8.8 each Ci is connected,
it must be either entirely inside A0 or disjoint from it. In other words, A0 is the
union of some of the Ci, whence is definable.

8.10. Theorem. Let M be a strongly t-minimal structure with definable Skolem
functions. Suppose moreover that ∆ has the following properties.

8.10.1. Each ∆-fiber is connected.
8.10.2. The union of two non-disjoint ∆-fibers is again a ∆-fiber.
8.10.3. Two ∆-fibers ∆(u) and ∆(v) are equal if, and only if, u = v.

Then M has weak uniform elimination of imaginaries.

Proof. By an argument similar to [8, Lemma 4.4.3], it suffices to show that M
is uniformly weakly 1-eliminable. With this we mean that for every definable set
A ⊂ Mm+1, there exists a definable subset B ⊂ Mn+1 with the following property.
For each x ∈ Mm, there exists a finite subset Λx ⊂ Mn, such that for an arbitrary
y ∈ Mn, we have an equality A(x) = B(y) if, and only if, y ∈ Λx. In other words,
a definable family of definable subsets of M can be reparametrized, such that each
member in the family has a finite set of parameters. Note that A = ∆ already
satisfies these requirements in view of (8.10.3).
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Let C be an arbitrary definable subset of M ; later we will take C to be an
A-fiber. By t-minimality, we can write C as a finite union

C = ∆(u1) ∪ · · · ∪ ∆(up) ∪ {v1, . . . , vq}.(35)

If some vi is an interior point of C, then we can find ∆(w) ⊂ C containing vi. In
this way, we may replace all interior points vi by some ∆-fiber and still maintain
a decomposition of C. So, we may assume that in (35), all the vi are not interior.
After applying (8.10.2), we may furthermore assume that all the ∆(ui) are disjoint.
Using (8.10.1), we conclude that each ∆(ui) is a connected component of the interior
intC of C. Together with (8.10.3) this implies that the set {u1, . . . ,up, v1, . . . , vq}
is uniquely determined by C.

I claim that by strong t-minimality, we can do this uniformly in x ∈ Mm, for
all C = A(x). More precisely, we can find p, q ∈ N and definable maps fi : Vi ⊂
Mm → M s and gi : Wi ⊂ Mm → M , such that for each x ∈ Mm, we have that

A(x) = ∆(f1(x)) ∪ · · · ∪ ∆(fp(x)) ∪ {g1(x), . . . , gq(x)}.(36)

with the understanding that we omit in this union the contribution of ∆(fi(x))
or gi(x) whenever x does not lie in the domain of fi or gi. Indeed, by strong
t-minimality, both the cardinality of the boundary and the number of connected
components of the interior are uniformly bounded in the family of A-fibers. By an
argument similar to the one used in Lemma 8.5, we can easily express in a first
order way that ∆(u) is a connected component of the interior, or that v is a point
in A(x)− intA(x). Since we have definable Skolem functions, the claim then follows
readily.

By partitioning Mm according to whether x lies in the domain of some fi or gi

or not, we may assume that all fi and gi have the same domain V (which is then

necessarily π
(m+1)
{1,...,m}(A)). In other words, each non-empty fiber A(x) of A has a

decomposition (36) for fixed p and q. Let B be the definable subset of M sp+q+1

given as the collection of all tuples (u1, . . . ,up, v1, . . . , vq, x), where ui ∈ M s and
vi, x ∈ M , with the property that x ∈ C, where C is as in (35) with all the
assumptions previously made, that is to say, so that the ∆(ui) are the connected
components of intC and vi are distinct points in C − intC. Now, for x ∈ Mm, let
Λx consist of all sp + q-tuples of the form

(fσ(1)(x), . . . , fσ(p)(x), vτ(1), . . . , vτ(q))

with σ a permutation of {1, . . . , p} and τ a permutation of {1, . . . , q}. From (36), it
follows, for x ∈ Mm and y ∈ M sp+q, that A(x) = B(y) if, and only if, y ∈ Λx.
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