
3.3 Flatness criteria 51

where the first module vanishes by induction. As above, the kernel of g is easily
seen to be B/(IB : a), so that our assumption on the colon ideals implies that δ is
the zero map, whence TorA

1 (B,A/J) = 0 as we wanted to show. !"

Here is a nice ‘descent type’ application of this criterion:

Corollary 3.3.15. Let A → B →C be homomorphisms whose composition is flat. If
B→C is cyclically pure, then A→ B is flat. In fact, it suffices that B→C is cyclically
pure with respect to ideals extended from A, that is to say, that JB = JC∩B for all
ideals J ⊆ A.

Proof. Given an ideal I ⊆ A and an element a ∈ A, we need to show in view of
Theorem 3.3.14 that (IB : a) = (I : a)B. One inclusion is immediate, so take y
in (IB : a). By the same theorem, we have (IC : a) = (I : a)C, so that y lies in
(I : a)C∩B whence in (I : a)B by cyclical purity. !"

The next criterion will be useful when dealing with non-Noetherian algebras
in the next chapter. We call an ideal J in a ring B finitely related, if it is of the form
J = (I : b) with I ⊆ B a finitely generated ideal and b ∈ B.

Theorem 3.3.16. Let A be a Noetherian ring and B an arbitrary A-algebra. Suppose
P is a collection of prime ideals in B such that every proper, finitely related ideal of B
is contained in some prime ideal belonging to P . If A→ Bp is flat for every p ∈P ,
then A→ B is flat.

Proof. By Theorem 3.3.14, we need to show that (IB : a) = (I : a)B for all I ⊆ A
and a ∈ A. Put J := (I : a). Towards a contradiction, let x be an element in (IB : a)
but not in JB. Hence (JB : x) is a proper, finitely related ideal, and hence contained
in some p ∈P . However, (IBp : a) = JBp by flatness and another application of
Theorem 3.3.14, so that x ∈ JBp, contradicting that (JB : x)⊆ p. !"

We can also derive a coherency criterion due to Chase ([21]):

Corollary 3.3.17. A ring is coherent if and only if every finitely related ideal is
finitely generated.

Proof. The direct implication is a simple application of the coherency condition.
For the converse, suppose every finitely related ideal is finitely generated. We
will prove that R → R! is flat, where R! is an ultrapower of R, from which it
follows that R is coherent by Theorem 3.3.4. To prove flatness, we use the Colon
Criterion, Theorem 3.3.14. To this end, let I ⊆ R be finitely generated and let
a ∈ R. We have to show that if b lies in (IR! : a) then it already lies in (I : a)R!.
Let bw be an approximation of b. By Łoś’ Theorem, almost each bw ∈ (I : a). By
assumption, the colon ideal (I : a) is finitely generated, say by f1, . . . , fs, and hence
we can find ciw such that bw = c1w f1 + · · ·+csw fs. Let ci ∈ R! be the ultraproduct
of the ciw, for each i = 1, . . . ,s. By Łoś’ Theorem, b = c1 f1 + · · ·+ cs fs, showing
that it belongs to (I : a)R!. !"
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3.3.6 Local criterion for flatness.

For finitely generated modules, we have the following criterion:

Theorem 3.3.18 (Local flatness theorem–finitely generated case). Let R be a
Noetherian local ring with residue field k. If M is a finitely generated R-module whose
first Betti number vanishes, that is to say, if TorR

1 (M,k) = 0, then M is flat.

Proof. Take a minimal free resolution

· · ·→ F1 → F0 →M → 0

of M, that is to say, such that the kernel of each boundary map di : Fi → Fi−1
lies inside mFi. Therefore, since tensoring this complex with k yields the zero
complex, the rank of Fi is equal to the i-th Betti number of M, that is to say,
the vector space dimension of TorR

i (M,k). In particular, F1 has rank zero, so that
M ∼= F0 is free whence flat. !"

There is a much stronger version of this result, where we may replace the
condition that M is finitely generated over R by the condition that M is finitely
generated over a Noetherian local R-algebra S (see for instance [69, Theorem 22.3]
or [27, Theorem 6.8]). We will present here a new proof, for which we need to
make some further definitions. The method is an extension of the work in [93],
which primarily dealt with detecting finite projective dimension.

Let A be a (not necessarily Noetherian) ring, and let modA be the class of all
finitely presented A-modules. We will call a subclass N⊆modR a deformation class
if it is closed under isomorphisms, direct summands, extensions, and deforma-
tions, that is to say, if it is closed under the following respective rules:2

3.3.18.i. if N belongs to N and M ∼= N, then M belongs to N;
3.3.18.ii. if N ∼= M⊕M′ belongs to N, then so do M and M′;
3.3.18.iii. if 0→K→M→N → 0 is an exact sequence in modR with K,N ∈N,

then also M ∈ N;
3.3.18.iv. if x is an M-regular element in the Jacobson radical of A and M/xM

belongs to N, then so does M.

Recall that the Jacobson radical of A is the intersection of all its maximal ide-
als; equivalently, it is the ideal of all x such that 1 + ax is unit for all a. Condi-
tion 3.3.18.iv holds vacuously, if the Jacobson radical is equal to the nilradical,
the ideal of all nilpotent elements. Clearly, modA itself is a deformation class. We
leave it as an easy exercise to show that:

3.3.19 Any intersection of deformation classes is again a deformation class. In
particular, any class K ⊆ modA sits inside a smallest deformation class,
called the deformation class of K. !"

2 A class satisfying the first three conditions is called a net in [93].
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Let us call a subclass K ⊆modA deformationally generating, if its deformation
class is equal to modA, and quasi-deformationally generating, if its deformation class
contains all cyclic modules of the form A/I with I ⊆ A finitely generated. One
easily shows, by induction on the number of generators, that if A is coherent,
deformationally generating and quasi-deformationally generating are equivalent
notions.

Proposition 3.3.20. If R is a Noetherian local ring, then its residue field is deforma-
tionally generating.

Proof. We need to show that any finitely generated module M belongs to the
deformation class N generated by the residue field. Since any module generated by
n elements is the extension of two modules generated by less than n elements, an
induction on n using (3.3.18.iii) reduces to the case n = 1, that is to say, M = R/a.
Suppose the assertion is false, and let a be a maximal counterexample. If a is not
prime, then for p a minimal prime ideal p of a, we have an exact sequence

0→ R/p→ R/a→ R/a′ → 0

for some a′ ⊆ R strictly containing a. The two outer modules belong to N by
maximality, whence so does the inner one by (3.3.18.iii), contradiction. Hence a is
a prime ideal, which therefore must be different from the maximal ideal of R. Let x
be an element in the maximal ideal not in a. By maximality R/(a+xR) belongs to
N, whence so does R/a by (3.3.18.iv), since x is R/a-regular, contradiction again.

!"

The main flatness criterion of this section is:

Theorem 3.3.21. Let A→ B be a homomorphism sending the Jacobson radical of A
inside that of B, and let K ⊆modA be quasi-deformationally generating. A coherent
B-module Q is flat over A if and only if TorA

1 (Q,M) = 0 for all M ∈K.

Proof. One direction is immediate, so we only need to show the direct implica-
tion. Define a functor F on modR, by F (M) := TorA

1 (Q,M). By Theorem 3.1.5,
it suffices to show that F vanishes on each A/I with I ⊆ A finitely generated. This
will follow as soon as we can show that F (M) = 0 for all M in the deformation
class N of K. By induction on the rules (3.3.18.i)–(3.3.18.iv), it will suffice to show
that each new module M in N obtained from an application of one of these rules
vanishes again on F . The case of rule (3.3.18.i) is trivial; for (3.3.18.ii), we use that
F is additive; and for (3.3.18.iii), we are done by the long exact sequence of Tor
(3.1.4). So remains to verify the claim for rule (3.3.18.iv), that is to say, assume
x is an M-regular element in the Jacobson radical of A such that F (M/xM) = 0.
Applying 3.1.4 to the exact sequence

0→M x→ M → M/xM → 0

we get part of a long exact sequence
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F (M) x→F (M)→F (M/xM) = 0. (3.14)

Since M is finitely presented, we have an exact sequence

F → Am → An →M → 0

with F some (possibly infinitely generated) free A-module. Tensoring with Q
yields a complex

F⊗A Q→ Qm → Qn →M⊗A Q→ 0 (3.15)

whose first homology is by definition F (M). Since Q is a coherent module, so
is any direct sum of Q by [35, Corollary 2.2.3], and hence the kernel of the mor-
phism Qm→Qn in (3.15) is finitely generated by [35, Corollary 2.2.2]. Since F (M)
is a quotient of this kernel, it, too, is finitely generated. By (3.14), we have an equal-
ity F (M) = xF (M). By assumption, x belongs to the Jacobson radical of B, and
hence, by Nakayama’s Lemma, F (M) = 0, as we needed to show. !"

Combining Proposition 3.3.20 with Theorem 3.3.21 immediately gives the fol-
lowing well-known flatness criterion:

Corollary 3.3.22 (Local Flatness Criterion). Let R→ S be a local homomorphism
of Noetherian local rings, and let k be the residue field of R. If M is a finitely generated
S-module such that TorR

1 (M,k) = 0, then M is flat over R. !"

To extend this local flatness criterion to a larger class of rings, we make the
following definition. Let us call a local ring R ind-Noetherian, if it is a direct limit
of Noetherian local subrings Ri, indexed by a directed poset I, such that each
Ri→R is a scalar extension (that is to say, faithfully flat and unramified; see §3.2.3).
Clearly, any Noetherian local ring is ind-Noetherian (by taking Ri = R).

Lemma 3.3.23. An ind-Noetherian local ring is coherent and has finite embedding
dimension.

Proof. Let (R,m) be ind-Noetherian. Since m is in particular extended from a
Noetherian local ring, it is finitely generated. We use Corollary 3.3.17 to prove
coherency. To this end we must show that a finitely related ideal (a : b) is finitely
generated. Since a and b are finitely generated, there exists a Noetherian local
subring S⊆ R and ideals I,J ⊆ S such that S→ R is a scalar extension, and a = IR
and b = JR. Theorem 3.3.14 yields that (I : J)R = (IR : JR) = (a : b), whence in
particular, is finitely generated. !"

3.3.24 If R→ S is essentially of finite type and R is ind-Noetherian, then so is S.

Indeed, S is isomorphic to the localization of R[x]/( f1, . . . , fs)R[x] with respect
to the ideal generated by the variables and by the maximal ideal of R. Hence, there
is a directed subset J⊆ I such that f1, . . . , fs are defined over each R j with j∈ J. It is
now easy to see that the appropriate localization S j of R j[x]/( f1, . . . , fs)R j[x] forms
a directed system with union equal to S, and each S j → S is a scalar extension. !"
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Corollary 3.3.25. Let R→ S be a local homomorphism of ind-Noetherian rings. If Q
is a finitely presented S-module such that TorR

1 (Q,k) = 0, where k is the residue field of
R, then Q is flat over R. If Q is moreover Noetherian, then so is R.

Proof. In view of Theorem 3.3.21, to prove the first assertion, we need to
show that k is quasi-deformationally generating (note that S is coherent by
Lemma 3.3.23, whence so is the finitely presented S-module Q). Let a ⊆ R be
a finitely generated ideal. Choose a Noetherian local subring T and an ideal I ⊆ T
such that T ⊆ R is a scalar extension, and IR = a. By Proposition 3.3.20, the mod-
ule T/I belongs to the deformation class of T -modules generated by the residue
field l of T . Since each of the rules (3.3.18.i)–(3.3.18.iv) are preserved by faithfully
flat extensions, T/I⊗T R = R/a lies in the deformation class of l⊗T R∼= k, where
the latter isomorphism follows from the unramifiedness of T → R.

To prove that R is Noetherian, under the additional assumption that Q is Noe-
therian, let a0 ⊆ a1 ⊆ a2 ⊆ . . . be a chain of ideals in R. Choose i such that
aiQ = a jQ for all j ≥ i. Hence ai/a j⊗Q = 0, for j ≥ i, and since Q is faithfully
flat, as it is non-degenerated by 3.2.1, we get ai/a j = 0 by 3.2.3. !"

3.3.7 Dimension criterion for flatness

If (R,m)→ (S,n) is a local homomorphism of Noetherian local rings, then we
have the following dimension inequality, with equality when R → S is flat (see
[69, Theorem 15.1]):

dim(S)≤ dim(R)+dim(S/mS). (3.16)

Recall that we call S/mS the closed fiber of R→ S: it defines the locus of all prime
ideals in S which lie above m. Conversely, equality in (3.16) often implies flatness.
We first discuss one well-known criterion, and then prove one new one.

Theorem 3.3.26. Let (R,m)→ (S,n) be a homomorphism of Noetherian local rings,
with R regular and S Cohen-Macaulay. Then R → S is flat if and only if we have
equality in (3.16).

Proof. One direction holds always, as we discussed above. So assume we have
equality in (3.16), that is to say, e = d +h where d, h, and e, are the respective di-
mension of R, the closed fiber S/mS, and S. Let (x1, . . . ,xd) be a system of param-
eters of R. Since S/mS has dimension h = e−d, there exist xd+1, . . . ,xe in S such
that their image in S/mS is a system of parameters. Hence (x1, . . . ,xe) is a system
of parameters in S, whence is an S-regular sequence. In particular, (x1, . . . ,xd) is
S-regular, showing that S is a balanced big Cohen-Macaulay R-module, and there-
fore is flat by Theorem 3.3.9. !"

For our last criterion, which generalizes a flatness criterion due to Kollár [62,
Theorem 8], we impose some regularity condition on the closed fiber, weakening
instead the conditions on the rings themselves.
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Theorem 3.3.27. Let R → S be a local homomorphism of Noetherian local rings.
Assume R is either an excellent normal local domain with perfect residue field, or
an analytically irreducible domain with algebraically closed residue field. If the closed
fiber is regular, of dimension dim(S)−dim(R), then R→ S is faithfully flat.

Proof. Let d and e be the respective dimensions of R and S. We will induct on the
dimension h := e−d of the closed fiber. If h = 0, then R→ S is in fact unramified.
It suffices to prove this case under the additional assumption that both R and S are
complete. Indeed, if R→ S is arbitrary, then R̂→ Ŝ satisfies again the hypotheses
of the theorem and therefore would be faithfully flat. Hence R → S is faithfully
flat by Proposition 3.2.11.

So assume R and S are complete and let l be the residue field of S. Either as-
sumption on R implies that R l̂ is again a domain, of the same dimension as R (we
leave this as an exercise to the reader; see [102, Corollary 3.10 and Proposition
3.11]). By the universal property of complete scalar extensions (Theorem 3.2.13—
note that this result also holds in mixed characteristic, although we did not pro-
vide a proof in these notes; see [102, Corollary 3.3]), we get a local R-algebra
homomorphism R l̂ → S. By [69, Theorem 8.4], this homomorphism is surjective.
It is also injective, since R l̂ and S have the same dimension and R l̂ is a domain.
Hence R l̂

∼= S, so that R→ S is a scalar extension, whence faithfully flat.
For the general case, h > 0, let R̃ be the localization of R[ξ ] at the ideal m̃

generated by m and the variables ξ := (ξ1, . . . ,ξh). By assumption, R̃ has the same
dimension as S. Let y be an h-tuple whose image in the closed fiber is a regular
system of parameters, that is to say, which generates n(S/mS). Let R̃→ S be the
R-algebra homomorphism given by sending ξ to y. Hence n = mS +yS = m̃S, so
that by the case h = 0, the homomorphism R̃→ S is flat, whence so is R→ S. !"

The requirement on R that we really need is that any complete scalar extension
is again a domain, and for this, it suffices that the complete scalar extension over
the algebraic closure of the residue field of R is a domain (see [102, Proposition
3.11]).



Chapter 4
Uniform bounds

In this chapter, we will discuss our first application of ultraproducts: the existence
of uniform bounds over polynomial rings. The method goes back to A. Robin-
son, but really gained momentum by the work of Schmidt and van den Dries in
[86], where they brought in flatness as an essential tool. Most of our applications
will be concerned with affine algebras over an ultra-field. For such an algebra,
we construct its ultra-hull as a certain faithfully flat ultra-ring. As we will also
use this construction in our alternative definition of tight closure in characteristic
zero in Chapter 6, we study it in detail in §4.3. In particular, we study transfer
between the affine algebra and its approximations. We conclude in §4.4 with some
applications to uniform bounds, in the spirit of Schmidt and van den Dries.

4.1 Ultra-hulls

Let us fix an ultra-field K, realized as the ultraproduct of fields Kw for w ∈W . For
a concrete example, one may take K := C and K p := Falg

p by Theorem 2.4.3 (with
W the set of prime numbers). We make the construction of the ultra-hull in three
stages.

4.1.1 Ultra-hull of a polynomial ring.

In this section, we let A := K[ξ ], where ξ := (ξ1, . . . ,ξn) are indeterminates. We
define the ultra-hull (called the non-standard hull in the earlier papers [88, 89, 92])
of A as the ultraproduct of the Aw := Kw[ξ ], and denote it U(A). The inclu-
sions Kw ⊆ Aw induce an inclusion K ⊆ U(A). Let ξi also denote the ultraproduct
ulimw ξi of the constant sequence ξi. By Łoś’ Theorem, Theorem 2.3.1, the ξi are
algebraically independent over K. Hence, we may view them as indeterminates
over K in U(A), thus yielding an embedding A = K[ξ ]⊆ U(A). To see why this is

57
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called an ultra-hull, let us introduce the category of ultra-K-algebras: a K-algebra
B! is called an ultra-K-algebra if it is the ultraproduct of Kw-algebras Bw; a mor-
phism of ultra-K-algebras B! → C! is any K-algebra homomorphism obtained as
the ultraproduct of Kw-algebra homomorphisms Bw → Cw. It follows that any
ultra-K-algebra is a K-algebra. The ultra-hull U(A) is clearly an ultra-K-algebra.
We have:

4.1.1 The ultra-hull U(A) satisfies the following universal property: given an
ultra-K-algebra B!, and a K-algebra homomorphism A → B!, there exists
a unique ultra-K-algebra homomorphism U(A)→ B! extending A→ B.

Indeed, by assumption, B! is the ultraproduct of Kw-algebras Bw. Let bi! be the
image of ξi under the the homomorphism A → B!, and choose biw ∈ Bw whose
ultraproduct equals bi!. Define Kw-algebra homomorphisms Aw → Bw by the rule
ξi .→ biw. The ultraproduct of these homomorphisms is then the required ultra-K-
algebra homomorphism U(A)→ B!. Its uniqueness follows by an easy application
of Łoś’ Theorem. !"

An intrinsic characterization of A as a subset of U(A) is provided by the next
result (in the terminology of Chapter 9, this exhibits A as a certain protoproduct):

4.1.2 An ultraproduct f ! ∈ U(A) belongs to A if and only if its approximations
f w ∈ Aw have bounded degree, meaning that there is a d such that almost
all f w have degree at most d.

Indeed, if f ∈ A has degree d, then we can write it as f = ∑ν uν ξ ν for some
uν ∈ K, where ν runs over all n-tuples with |ν | ≤ d. Choose uν w ∈ Kw such that
their ultraproduct is uν , and put

f w := ∑
|ν |≤d

uν wξ ν . (4.1)

An easy calculation shows that the ultraproduct of the f w is equal to f , viewed as
an element in U(A). Conversely, if almost each f w has degree at most d, so that
we can write it in the form (4.1), then

ulim
w→∞

f w = ∑
|ν |≤d

(ulim
w→∞

uν w)ξ ν

is a polynomial (of degree at most d). !"

4.1.2 Ultra-hull of an affine algebra.

More generally, let C be a K-affine algebra, that is to say, a finitely generated K-
algebra, say of the form C = A/I for some ideal I ⊆ A. We define the ultra-hull of
C to be U(A)/IU(A), and denote it U(C). It is clear that the diagonal embedding
A ⊆ U(A) induces by base change a homomorphism C → U(C). Less obvious is
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that this is still an injective map, which we will prove in Corollary 4.2.3 below.
To show that the construction of U(C) does not depend on the choice of presen-
tation C = A/I, we verify that U(C) satisfies the same universal property 4.1.1
as U(A): any K-algebra homomorphism C → B! to some ultra-K-algebra B! ex-
tends uniquely to a homomorphism U(C) → B! of ultra-K-algebras (recall that
any solution to a universal property is necessarily unique). To see why the uni-
versal property holds, apply 4.1.1 to the composition A ! A/I = C → B! to get
a unique extension U(A)→ B!. Since any element in I is sent to zero under the
composition A→ B!, this homomorphism factors through U(A)/IU(A), yielding
the required homomorphism U(C)→ B! of ultra-K-algebras. Uniqueness follows
from the uniqueness of U(A)→ B!.

Since IU(A) is finitely generated, it is an ultra-ideal by 2.4.12, that is to say,
an ultraproduct of ideals Iw ⊆ Aw, and the ultraproduct of the Cw := Aw/Iw
is equal to U(C) = U(A)/IU(A) by 2.1.6. If C = A′/I′ is a different presenta-
tion of C as a K-algebra (with A′ a polynomial ring in finitely many indeter-
minates), and C′w := A′w/I′w the corresponding Kw-algebras, then their ultra-
product U(A′)/I′U(A′) is another way of defining the ultra-hull of C, whence
it must be isomorphic to U(C). Without loss of generality, we may assume A⊆ A′
and hence Aw ⊆ A′w. Since U(A)/IU(A)∼= U(C)∼= U(A′)/I′U(A′), the homomor-
phisms Aw ⊆ A′w induce homomorphisms Cw → C′w, and by Łoś’ Theorem, al-
most all are isomorphisms. This justifies the usage of calling the Cw approxima-
tions of C (in spite of the fact that they are not uniquely determined by C).

4.1.3 The ultra-hull U(·) is a functor from the category of K-affine algebras to the
category of ultra-K-algebras.

The only thing which remains to be verified is that an arbitrary K-algebra
homomorphism C → D of K-affine rings induces a homomorphism of ultra-K-
algebras U(C)→U(D). However, this follows from the universal property applied
to the composition C → D → U(D), admitting a unique extension so that the
following diagram is commutative

!

"

!
"

DC

U(D).U(C)

(4.2)

!"
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4.1.3 Ultra-hull of a local affine algebra.

Recall that a K-affine local ring R is simply the localization Cp of a K-affine algebra
C at a prime ideal p. Let us call R geometric, if p is a maximal ideal m of C. A
geometric K-affine local ring, in other words, is the local ring of a closed point
on an affine scheme of finite type over K. Note that a local K-affine algebra is in
general not finitely generated as a K-algebra; one usually says that R is essentially
of finite type over K. The next result will enable us to define the ultra-hull of a
geometric affine local ring; we shall discuss the general case in §4.3.2 below (see
Remark 4.3.5):

4.1.4 Let C be a K-affine algebra. If m is a maximal ideal in C, then mU(C) is a
maximal ideal in U(C), and C/m∼= U(C)/mU(C).

By our previous discussion, U(L) := U(C)/mU(C) is the ultra-hull of the field
L := C/m. By the Nullstellensatz, the extension K ⊆ L is finite, and from this, it is
easy to see that L is an ultra-field. By the universal property, L is equal to its own
ultra-hull, and hence mU(C) is a maximal ideal. !"

We can now define the ultra-hull of a local K-affine algebra R = Cm as the
localization U(R) := U(C)mU(C). Note that U(R) is again an ultra-ring: let Cw
be approximations of C, and let mw ⊆ Cw be ideals whose ultraproduct is equal
to mU(C). Since the latter is maximal, so are almost all mw. For those w, set
Rw := (Cw)mw (and arbitrary for the remaining w). One easily verifies that U(R) is
then isomorphic to the ultraproduct of the Rw, and for this reason we call the Rw
again an approximation of R. We can formulate a similar universal property which
is satisfied by U(R), and then show that any local homomorphism R→ S of local
K-affine algebras induces a unique homomorphism U(R)→ U(S). Moreover, any
two approximations agree almost everywhere. In particular, for homomorphic
images we have:

4.1.5 If I ⊆C is an ideal in a K-affine (local) ring, then U(C/I) = U(C)/IU(C).

We extend our nomenclature also to elements and ideals: if a ∈C is an element
or I ⊆ C is an ideal, and aw ∈ Cw and Iw ⊆ Cw are such that their ultraproduct
equals a ∈ U(C) and IU(C) respectively, then we call the aw and the Iw approx-
imations of a and I respectively. In particular, by 4.1.4, the approximations of a
maximal ideal are almost all maximal. The same holds true with ‘prime’ instead
of ‘maximal’, but the proof is more involved, and we have to postpone it until
Theorem 4.3.4 below.

4.2 The Schmidt-van den Dries theorem

The ring U(A) is highly non-Noetherian. In particular, although each mU(A) is a
maximal ideal for m a maximal ideal of A = K[ξ ], these are not the only maximal
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ideals of U(A). To see an example, choose, for each w, a polynomial f w ∈ Aw in
ξ1 of degree w with distinct roots in Kw (assuming Kw has at least size w), and
let f ∈ U(A) be their ultraproduct. Let a be the ideal generated by all f /h where
h runs over all elements in A such that f ∈ hU(A). Since f has infinitely many
roots,1 a is not the unit ideal, and hence is contained in some maximal ideal M
of U(A). However, for the same reason, a cannot be inside a maximal ideal of the
form mU(A) with m⊆ A, showing that M is not of the latter form. In fact, M is
not even an ultra-ideal.

Nonetheless, the maximal ideals that are extended from A ‘cover’ enough of
U(A) in order to apply Theorem 3.3.16. More precisely:

4.2.1 If almost all Kw are algebraically closed, then any proper finitely related
ideal of U(A) is contained in some mU(A) with m⊆ A a maximal ideal.

Indeed, this is even true for any proper ultra-ideal I ⊆ U(A). Namely, let I
be the ultraproduct of ideals Iw ⊆ Aw. By Łoś’ Theorem, almost each Iw is a
proper ideal whence contained in some maximal ideal mw. By the Nullstellen-
satz, we can write mw as (ξ1−u1w, . . . ,ξn−unw)Aw for some uiw ∈ Kw. Let ui ∈ K
be the ultraproduct of the uiw, so that the ultraproduct of the mw is equal to
(ξ1−u1, . . . ,ξn−un)U(A), and by Łoś’ Theorem it contains I. !"

It is necessary that almost all Kw are algebraically closed. For instance, if all
Kw are equal to Q (whence K is the ultrapower Q!), and we let mw be the ideal
in Q[ξ ] generated by ξ 2w +1, then the ultraproduct m! of the mw is principal but
contains no non-zero element of Q![ξ ].

Theorem 4.2.2. For any K-affine algebra, the diagonal embedding C→U(C) is faith-
fully flat, whence in particular injective.

Proof. If we have proven this result for the ultra-hull U(A) of A, then it will
follow from 3.1.3 for any C → U(C), since the latter is just a base change
C = A/I → U(A)/IU(A) = U(C), where C = A/I is some presentation of C. The
non-degeneratedness of U(A) is immediate from 4.1.4. So remains to show the flat-
ness of A→ U(A), and for this we may assume that K and all Kw are algebraically
closed. Indeed, if K′ is the ultraproduct of the algebraic closures of the Kw, then
A→ A′ := K′[ξ ] is flat by 3.1.3. By Łoś’ Theorem, the canonical homomorphism
U(A) → U(A′) is cyclically pure with respect to ideals extended from A, where
U(A′) is the ultra-K′-hull of A. Hence if we showed that A′ →U(A′) is flat, then so
is A→ U(A) by Corollary 3.3.15. Hence we may assume all Kw are algebraically
closed. By Theorem 3.3.16 in conjunction with 4.2.1, we only need to show that
R := Am → U(R) = U(A)mU(A) is flat for every maximal ideal m ⊆ A. After a
translation, we may assume m = (ξ1, . . . ,ξn)A. By Łoś’ Theorem, (ξ1, . . . ,ξn) is
an U(A)-regular sequence whence U(R)-regular. This proves that U(R) is a big
Cohen-Macaulay R-module. By Proposition 3.3.8 it is therefore a balanced big

1 Notwithstanding that f is only an ultra-polynomial, we may view it by 2.1.2 as a function on
K!, and a root of f then means an element u ∈ K! such that f (u) = 0 (which means that, for any
approximation uw ∈ Kw of u, almost all f w(uw) = 0 are zero).
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Cohen-Macaulay module, since any regular sequence in U(R) is permutable by
Łoś’ Theorem, because this is so in the Noetherian local rings (Aw)mw (see [69,
Corollary to Theorem 16.3]). Hence U(R) is flat over R by Theorem 3.3.9. !"

Immediately from this and the cyclic purity of faithfully flat homomorphisms
(Proposition 3.2.5) we get:

Corollary 4.2.3. The diagonal embedding C→U(C) is injective, and IU(C)∩C = I
for any ideal I ⊆C. !"

4.3 Transfer of structure

We will use ultra-hulls in our definition of tight closure in characteristic zero (see
§6), and to this end, we need to investigate more closely the relation between an
affine algebra and its approximations. We start with the following far reaching
generalization of 4.1.4.

4.3.1 Finite extensions.

Proposition 4.3.1. If C → D is a finite homomorphism of K-affine algebras, then
U(D)∼= U(C)⊗C D, and hence U(C)→ U(D) is also finite.

Proof. Since D is finite as a module over C, the tensor product U(C)⊗C D is finite
over U(C), whence an ultra-K-algebra. By the universal property of the ultra-hull
of D, we therefore have a unique homomorphism U(D)→ U(C)⊗C D of ultra-
K-algebras. On the other hand, by the universal property of tensor products, we
have a unique homomorphism U(C)⊗C D→ U(D). It is no hard to see that the
latter is in fact a morphism of ultra-K-algebras. By uniqueness of both homomor-
phisms, they must therefore be each other’s inverse. !"

Corollary 4.3.2. If C is an Artinian K-affine algebra, then C ∼= U(C).

Proof. Since C is a direct product of local Artinian rings ([27, Corollary 9.1]),
and since ultra-hulls are easily seen to commute with direct products, we may
assume C is moreover local, with maximal ideal m, say. Let L := C/m, so that
L ∼= U(L) by 4.1.4. Note that the vector space dimension of C over L is equal to
the length of C. In any case, C is a finite L-module, so that by Proposition 4.3.1
we get U(C) = U(L)⊗L C = C. !"

Corollary 4.3.3. The dimension of a K-affine algebra is equal to the dimension of
almost all of its approximations.
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Proof. Let C be an n-dimensional K-affine algebra, with approximations Cw. The
assertion is trivial for C = A a polynomial ring. By Noether normalization (see for
instance [27, Theorem 13.3]), there exists a finite extension A ⊆ C. The induced
homomorphism U(A)→ U(C) ∼= U(A)⊗A C is finite, by Proposition 4.3.1, and
injective since A → U(A) is flat by Theorem 4.2.2. By Łoś’ Theorem, almost all
Aw → Cw are finite and injective. Hence almost all Cw have dimension n by [27,
Proposition 9.2.]. !"

4.3.2 Prime ideals.

We return to our discussion on the behavior of prime ideals under the ultra-hull,
and we are ready to prove the promised generalization of 4.1.4 (this was originally
proven in [86] by different means).

Theorem 4.3.4. A K-affine algebra C is a domain if and only if U(C) is, if and only if
almost all of its approximations are. In particular, if p is a prime ideal in an arbitrary
K-affine algebra D, then pU(D) is again a prime ideal, and so are almost all of its
approximations pw.

Proof. By Łoś’ Theorem, almost all Cw are domains if and only if U(C) is a do-
main. If this holds, then C too is a domain since it is a subring of U(C) by Corol-
lary 4.2.3. Conversely, assume C is a domain, and let A ⊆ C be a Noether nor-
malization of C, that is to say a finite and injective extension. Let Aw ⊆Cw be the
corresponding approximations implied by Proposition 4.3.1. Let pw be a prime
ideal in Cw of maximal dimension, and let p! be their ultraproduct, a prime ideal
in U(C). An easy dimension argument shows that pw∩Aw = (0) and hence by Łoś’
Theorem, p!∩U(A) = (0). Let p := p!∩C. Since p∩A is contained in p!∩U(A),
it is also zero. Hence A → C/p is again finite and injective. Since C is a domain,
an easy dimension argument yields that p = 0. On the other hand, we have an
isomorphism U(C) = U(A)⊗A C, so that by general properties of tensor products

U(C)/p! = U(A)/(p!∩U(A))⊗A/(p!∩A) C/(p!∩C) = U(A)⊗A C = U(C)

showing that p! is zero, whence so are almost all pw. Hence almost all Cw are
domains, and hence by Łoś’ Theorem, so is U(C).

The last assertion is immediate from the first applied to C := D/p. !"

Remark 4.3.5. This allows us to define the ultra-hull of an arbitrary local K-affine
algebra Cp as the localization U(C)pU(C).

To show that a local affine algebra has the same dimension as almost all of its
approximations, we introduce a new dimension notion. Let (R,m) be a local ring
of finite embedding dimension (that is to say, with a finitely generated maximal
ideal).
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Definition 4.3.6 (Geometric dimension). We define the geometric dimension of
R, denoted geodim(R), as the least number of elements generating an m-primary
ideal.

As the (Krull) dimension dim(R) equals the dimension of the topological
space V := Spec(R), it is essentially a topological invariant. On the other hand,
geodim(R) is the least number of equations defining the closed point x correspond-
ing to the maximal ideal m, and hence is a geometric invariant. It is a well-known
result from commutative algebra that for Noetherian local rings (Krull) dimen-
sion equals geometric dimension (see, for instance, [69, Theorem 13.4]). The next
result shows that this is no longer true if one drops the Noetherianity condition,
since ultra-rings are in general infinite dimensional (for some calculations of their
prime spectrum, see [72, 73, 74]).

Proposition 4.3.7. If (R,m) is a d-dimensional local K-affine algebra, then U(R) has
geometric dimension d.

Proof. We induct on the dimension d, where the case d = 0 follows from Corol-
lary 4.3.2. So assume d > 0, and let x be a parameter in R. Hence, R/xR has dimen-
sion d− 1, so that by induction, U(R/xR) has geometric dimension d− 1. Since
U(R/xR) = U(R)/xU(R) by 4.1.5, we see that U(R) has geometric dimension at
most d. By way of contradiction, suppose its geometric dimension is at most
d− 1. In particular, there exists an mU(R)-primary ideal N generated by d− 1
elements. Put n := N∩R, and let n be such that mnU(R)⊆N. By faithful flatness,
that is to say, by Corollary 4.2.3, we have an inclusion mn ⊆ n, showing that n
is m-primary. Hence R/n ∼= U(R/n) = U(R)/nU(R) by Corollary 4.3.2. Hence
U(R)/N is a homomorphic image of R/n whence equal to it by definition of n.
In conclusion, N = nU(R). Since R has geometric dimension d, the m-primary
ideal n requires at least d generators. Since R → U(R) is flat by Theorem 4.2.2,
also nU(R) requires at least d generators by 3.2.7, contradiction. !"

We can now extend the result from Corollary 4.3.3 to the local case as well:

Corollary 4.3.8. The dimension of a local K-affine algebra R is equal to the dimen-
sion of almost all of its approximations Rw. Moreover, if x is a sequence in R with
approximations xw, then x is a system of parameters if and only if almost all xw are.

Proof. The second assertion follows immediately from the first and Łoś’ The-
orem. By Proposition 4.3.7, the geometric dimension of U(R) is equal to d :=
dim(R). Let Rw be approximations of R, so that their ultraproduct equals U(R). If
I is an mU(R)-primary ideal generated by d elements, then its approximation Iw
is an mw-primary ideal generated by d elements for almost all w by 2.4.11. Hence
almost all Rw have (geometric) dimension at most d.

Let p0 ! · · · ! pd = m be a chain of prime ideals in R of maximal length. By
faithful flatness (in the form of Corollary 4.2.3), this chain remains strict when
extended to U(R), and by Theorem 4.3.4, it consists again of prime ideals. Hence
if piw ⊆ Rw are approximations of pi, then by Łoś’ Theorem, we get a strict chain
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of prime ideals p0w ! · · · ! pdw = mw for almost all w, proving that almost all Rw
have dimension at least d. !"

Note that it is not true that if xw are systems of parameters in the approxima-
tions, then their ultraproduct (which in general lies outside R) does not necessarily
generate an mU(R)-primary ideal.

4.3.3 Singularities.

Now that we know how dimension behaves under ultra-hulls, we can investigate
singularities.

Theorem 4.3.9. A local K-affine algebra is respectively regular or Cohen-Macaulay if
and only if almost all its approximations are.

Proof. Let R be a d-dimensional local K-affine algebra, and let Rw be its approx-
imations. If R is regular, then its embedding dimension is d, whence so is the
embedding dimension of U(R), and by Łoś’ Theorem, then so is the embedding
dimension of Rw for almost each w, and conversely. Corollary 4.3.8 then proves
the assertion for regularity. As for the Cohen-Macaulay condition, let x be a sys-
tem of parameters with approximation xw. Hence almost each xw is a system of
parameters in Rw by Corollary 4.3.8. If R is Cohen-Macaulay, then x is an R-
regular sequence, hence U(R)-regular by flatness (see Proposition 3.2.9), whence
almost each xw is Rw-regular by Łoś’ Theorem, and almost all Rw are Cohen-Mac-
aulay. The converse follows along the same lines. !"

4.4 Uniform bounds

In this last section, we discuss some applications of ultraproducts to the study of
rings. The results as well as the proof method via ultraproducts are due to Schmidt
and van den Dries from their seminal paper [86], and were further developed in
[84, 88, 89, 98].

4.4.1 Linear equations.

The proof of the next result is very typical for an argument based on ultraprod-
ucts, and will be the template for all future proofs.

Theorem 4.4.1 (Schmidt-van den Dries). For any pair of positive integers (d,n),
there exists a uniform bound b := b(d,n) with the following property. Let k be a field,
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and let f0, . . . , fs ∈ k[ξ ] be polynomials of degree at most d in at most n indeterminates
ξ such that f0 ∈ ( f1, . . . , fs)k[ξ ]. Then there exist g1, . . .gs ∈ k[ξ ] of degree at most b
such that f0 = g1 f1 + · · ·+gs fs.

Proof. By way of contradiction, suppose this result is false for some pair (d,n).
This means that we can produce counterexamples requiring increasingly high de-
grees. Before we write these down, observe that the number s of polynomials in
these counterexamples can be taken to be the same by Lemma 4.4.2 below (by
adding zero polynomials if necessary). So, for each w ∈ N, we can find counterex-
amples consisting of a field Kw, and polynomials f0w, . . . , fsw ∈ Aw := Kw[ξ ] of
degree at most d, such that f0w can be written as an Aw-linear combination of
the f1w, . . . , fsw, but any such linear combination involves a polynomial of de-
gree at least w. Let fi be the ultraproduct of the fiw. This is again a polynomial
of degree d in A by 4.1.2. Moreover, by Łoś’ Theorem, f0 ∈ ( f1, . . . , fd)U(A).
We use the flatness of A → U(A) via its corollary in 4.2.3, to conclude that
f0 ∈ ( f1, . . . , fs)U(A)∩A = ( f1, . . . , fs)A. Hence we can find polynomials gi ∈ A
such that

f0 = g1 f1 + · · ·+gs fs. (4.3)

Let e be the maximum of the degrees of the gi. By 4.1.2 again, we can choose
approximations giw ∈ Aw of each gi, of degree at most e. By Łoś’ Theorem, (4.3)
yields for almost all w that f0w = ∑i giw fiw, contradicting our assumption. !"

Lemma 4.4.2. Any ideal in A generated by polynomials of degree at most d requires

at most b :=
(d +n

n
)

generators.

Proof. Note that b is equal to the number of monomials of degree at most d in
n variables. Let I := ( f1, . . . , fs)A be an ideal in A with each fi of degree at most
d. Choose some (total) ordering < on these monomials (e.g., the lexicographical
ordering on the exponent vectors), and let l( f ) denote the largest monomial ap-
pearing in f with non-zero coefficient, for any f ∈ A of degree at most d (where
we put l(0) := −∞). If l( fi) = l( f j) for some non-zero fi, f j with i < j, then
l(u fi− v f j) < l( fi) for some non-zero elements u,v ∈ K, and we may replace the
generator f j by the new generator u fi− v f j. Doing this recursively for all i, we
arrive at a situation in which all non-zero fi have different l( fi), and hence there
can be at most b of these. !"

We can reformulate the result in Theorem 4.4.1 to arrive at some further gener-
alizations. The ideal membership condition in that theorem is really about solving
an (inhomogeneous) linear equation in A: the equation f0 = f1t1 + · · ·+ fsts, where
the ti are the unknowns of this equation (as opposed to ξ , which are indetermi-
nates). One can then easily extend the previous argument to arbitrary systems of
equations: there exists a uniform bound b := b(d,n) such that for any field k, and
for any linear system of equations λ1 = · · · = λs = 0 with λi ∈ k[ξ , t] of ξ -degree
at most d and t-degree at most one, where ξ is an n-tuple of indeterminates and t
is a finite tuple of variables, if the system admits a solution in k[ξ ], then it admits
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a solutions all of whose entries have degree at most b. In the homogeneous case
we can say even more:

Theorem 4.4.3. For any pair of positive integers (d,n), there exists a uniform bound
b := b(d,n) with the following property. Over a field k, any homogeneous system of
equations with coefficients in k[ξ1, . . . ,ξn] all of whose coefficients have degree at most
d, admits a finite number of solutions of degree at most b such that any other solution
is a linear combination of these finitely many solutions.

Proof. The proof once more is by contradiction. Assume the statement is false for
the pair (n,d). Hence we can find for each w ∈ N, a field Kw, and a linear system
of homogeneous equations

λ1w(t) = · · · = λsw(t) = 0 (L w)

in the variables t = (t1, . . . , tm) with coefficients in Aw, such that the module of
solutions SolAw(L w) ⊆ Ak

w requires at least one generator one of whose entries
is a polynomial of degree at least w. Here, we may again take the number m of
t-variables as well as the number s of equations to be the same in all counterexam-
ples, by another use of Lemma 4.4.2. The ultraproduct of each λiw is, as before by
4.1.2, an element λi ∈ A[t] which is a linear form in the t-variables (and has degree
at most d in ξ ). By the equational criterion for flatness, Theorem 3.3.1, the flat-
ness of A→U(A), proven in Theorem 4.2.2, amounts to the existence of solutions
b1, . . . ,bl ∈ SolA(L ) such that any solution of the homogeneous linear system L
of equations λ1 = · · · = λs = 0 in U(A) lies in the U(A)-module generated by the
bi. Let e be the maximum of the degrees occurring in the bi. In particular, we
can find approximations biw ∈ Am

w of bi whose entries all have degree at most e.
I claim that almost each SolAw(L w) is equal to the submodule Hw generated by
b1w, . . . ,blw, which would then contradict our assumption.

To prove the claim, one inclusion is clear, so assume by way of contradiction
that we can find for almost all w a solution qw ∈ SolAw(L w) outside Hw. Let
q! ∈ U(A)m be its ultraproduct (note that this time, we cannot guarantee that
its entries lie in A since the degrees might be unbounded). By Łoś’ Theorem,
q! ∈ SolU(A)(L ), whence can be written as an U(A)-linear combination of the bi.
Writing this out and using Łoś’ Theorem once more, we conclude that qw lies in
Hw for almost all w, contradiction. !"

4.4.2 Primality testing.

The next result, with a slightly different proof from the original, is also due to
Schmidt and van den Dries.

Theorem 4.4.4 (Schmidt-van den Dries). For any pair of positive integers (d,n),
there exists a uniform bound b := b(d,n) with the following property. Let k be a field,
and let p be an ideal in k[ξ1, . . . ,ξn] generated by polynomials of degree at most d.
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Then p is a prime ideal if and only if for any two polynomials f ,g of degree at most b
which do not belong to p, neither does their product.

Proof. One direction in the criterion is obvious. Suppose the other is false for the
pair (d,n), so that we can find for each w ∈ N, a field Kw and a non-prime ideal
aw ⊆ Aw generated by polynomials of degree at most d, such that any two poly-
nomials of degree at most w not in aw have their product also outside aw. Taking
ultraproducts of the generators of the aw of degree at most d gives polynomials
of degree at most d in A by 4.1.2, and by Łoś’ Theorem if a⊆ A is the ideal they
generate, then aU(A) is the ultraproduct of the aw. I claim that a is a prime ideal.
However, this implies that almost all aw must be prime ideals by Theorem 4.3.4,
contradiction.

To verify the claim, let f ,g /∈ a. We want to show that f g /∈ a. Let e be the
maximum of the degrees of f and g. Choose approximations f w,gw ∈Aw of degree
at most e, of f and g respectively. By Łoś’ Theorem, f w,gw /∈ aw for almost all w.
For w≥ e, our assumption then implies that f wgw /∈ aw, whence by Łoś’ Theorem,
their ultraproduct f g /∈ aU(A). A fortiori, then neither does f g belong to a, as we
wanted to show. !"

The pattern by now must become clear: prove that a particular property of
ideals is preserved under ultra-hulls, and use this to deduce uniform bounds. For
instance, one can easily derive from Theorem 4.3.4 that:

Proposition 4.4.5. The image of a radical ideal in the ultra-hull remains radical. !"

Since the radical of an ideal is the intersection of its minimal overprimes, we
derive from this the following uniform bounds property:

Theorem 4.4.6. For any pair of positive integers (d,n), there exists a uniform bound
b := b(d,n) with the following property. Let k be a field, and let I be an ideal in
k[ξ1, . . . ,ξn] generated by polynomials of degree at most d. Then its radical J := rad(I)
is generated by polynomials of degree at most b. Moreover, Jb ⊆ I and I has at most
b distinct minimal overprimes, all of which are generated by polynomials of degree at
most b. !"

Similarly, we can use Theorem 3.3.14, the Colon Criterion, to show that there
exists a uniform bound b := b(d,n) such that for any field k, any ideal I ⊆ k[ξ ]
generated by polynomials of degree at most d, and any a ∈ k[ξ ] of degree at most
d in the n indeterminates ξ , the ideal (I : a) is generated by polynomials of degree
at most b.

Realizing a finitely generated module as the cokernel of a matrix (acting on
a free module) and using that ultraproducts commute with homology (Theo-
rem 3.1.1), one can extend all the previous bounds to modules as well. This was
the route taken in [88]. Without proof, I state one of the results of that paper
proven by this technique.

Theorem 4.4.7 ([88, Theorem 4.5]). For any triple of positive integers (d,n, i), there
exists a uniform bound b := b(d,n, i) with the following property. Let k be a field,
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let B be an affine algebra of the form k[ξ1, . . . ,ξn]/I with I an ideal generated by
polynomials of degree at most d, and let M and N be finitely generated B-modules
realized as the cokernel of matrices of size at most d and with entries of degree at most
d. If M⊗A N has finite length, then the i-th Betti number, that is to say, the length of
TorA

i (M,N), is bounded by b. Similarly, if HomA(M,N) has finite length, then the i-th
Bass number, that is to say, the length of ExtiA(M,N), is at most b. !"

4.4.3 Comments

Our proof of the flatness of ultra-hulls (Theorem 4.2.2) is entirely different from
the original proof of Schmidt and van den Dries, which uses an induction on
the number of indeterminates based on classical arguments of Hermann from
constructive commutative algebra. The present approach via big Cohen-Macau-
lay algebras has the advantage that one can extend this method to many other
situations, like Theorem 7.1.6 below. Yet another approach, through a coherency
result due to Vasconcelos, can be found in [5].

As already mentioned, some of the bounds proven here were already estab-
lished by Hermann [42], based on work of Seidenberg [103, 104, 105] on con-
structions in algebra. Using Groebner bases, Buchberger obtained in [18] the same
result, but by an explicit description of an algorithm (e.g., one that calculates the
polynomials gi in Theorem 4.4.1). This led to a direct implementation into var-
ious algebraic software programs, which was not practically feasible in the case
of Hermann’s explicit proof using elimination theory, in view of the exponential
growth of degrees of polynomials involved in this elimination process. Model-
theoretic proofs, such as the ones in this book, lack even more practical imple-
mentation, but they provide sometimes extra information. For instance, we show
that there exist uniform bounds that are independent of the base field. With some
additional work, it is sometimes possible to show that the bounds are recursive
(see, for instance, [11]). But even these abstract methods can sometimes lead to
explicit bounds, as is evident from Schmidt’s work [84, 85].





Chapter 5
Tight closure in positive characteristic

In this chapter, p is a fixed prime number, and all rings are assumed to have char-
acteristic p, unless explicitly mentioned otherwise. We review the notion of tight
closure due to Hochster and Huneke (as a general reference, we will use [59]).
The main protagonist in this elegant theory is the p-th power Frobenius map. We
will focus on five key properties of tight closure, which will enable us to prove,
virtually effortlessly, several beautiful theorems. Via these five properties, we can
give a more axiomatic treatment, which lends itself nicely to generalization, and
especially to a similar theory in characteristic zero (see Chapters 6 and 7).

5.1 Frobenius

The major advantage of rings of positive characteristic is the presence of an al-
gebraic endomorphism: the Frobenius. More precisely, let A be a ring of char-
acteristic p, and let Fp, or more accurately, Fp,A, be the ring homomorphism
A→ A : a .→ ap, called the Frobenius on A. Recall that this is indeed a ring homo-
morphism, where the only thing to note is that the coefficients in the binomial
expansion

Fp(a+b) =
p

∑
i=0

(p
i
)
aibp−i = Fp(a)+Fp(b)

are divisible by p for all 0 < i < p whence zero in A, proving that Fp is additive.
When A is reduced, Fp is injective whence yields an isomorphism with its

image Ap := Im(Fp) consisting of all p-th powers of elements in A (and not to be
confused with the p-th Cartesian power of A). The inclusion Ap ⊆A is isomorphic
with the Frobenius on A because we have a commutative diagram

71
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#
#

#
#

#
#$

%
%
%
%
%
%&"

A

Ap A⊆

∼= Fp (5.1)

When A is a domain, then we can also define the ring A1/p as the subring of the
algebraic closure of the field of fractions of A consisting of all elements b satisfying
bp ∈ A. Hence A⊆ A1/p is integral. Since, Fp(A1/p) = A and Fp is injective, we get
A1/p ∼= A. Moreover, we have a commutative diagram

#
#

#
#

#
#$

%
%
%
%
%
%&"

A

A1/p A∼=

⊆ Fp (5.2)

showing that the Frobenius on A is also isomorphic to the inclusion A ⊆ A1/p.
It is sometimes easier to work with either of these inclusions rather than with
the Frobenius itself, especially to avoid notational ambiguity between source and
target of the Frobenius (instances where this approach would clarify the argument
are the proofs of Theorem 5.1.2 and Corollary 5.1.3 below).

Often, the inclusion Ap ⊆ A is even finite, and hence so is the Frobenius itself.
One can show, using Noether normalization or Cohen’s Structure Theorems that
this is true when A is respectively a k-affine algebra or a complete Noetherian local
ring with residue field k, and k is perfect, or more generally, (k : kp) < ∞.

5.1.1 Frobenius transforms.

Given an ideal I ⊆ A, we will denote its extension under the Frobenius by Fp(I)A,
and call it the Frobenius transform of I. Note that Fp(I)A ⊆ I p, but the inclusion
is in general strict. In fact, one easily verifies that

5.1.1 If I = (x1, . . . ,xn)A, then Fp(I)A = (xp
1 , . . . ,xp

n)A.

If we repeat this process, we get the iterated Frobenius transforms Fn
p(I)A of I,

generated by the pn-th powers of elements in I, and in fact, of generators of I. In
tight closure theory, the simplified notation

I[pn] := Fn
p(I)A
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is normally used, but for reasons that will become apparent once we defined tight
closure as a difference closure (see §6.1.1), we will use the ‘heavier’ notation. On
the other hand, since we fix the characteristic, we may omit p from the notation
and simply write F : A→ A for the Frobenius.

5.1.2 Kunz’s theorem.

The next result, due to Kunz’s Theorem, characterizes regular local rings in pos-
itive characteristic via the Frobenius. We will only prove the direction that we
need.

Theorem 5.1.2 (Kunz). Let R be a Noetherian local ring. If R is regular, then Fp is
flat. Conversely, if R is reduced and Fp is flat, then R is regular.

Proof. We only prove the direct implication; for the converse see [68, §42]. Let x
be a system of parameters of R, whence an R-regular sequence. Since F(x) is also
a system of parameters, it too is R-regular. Hence, R, viewed as an R-algebra via F,
is a balanced big Cohen-Macaulay algebra, whence is flat by Theorem 3.3.9. !"

Corollary 5.1.3. If R is a regular local ring, I ⊆ R an ideal, and a ∈ R an arbitrary
element, then a ∈ I if and only if F(a) ∈ F(I)R.

Proof. One direction is of course trivial, so assume F(a) ∈ F(I)R. However, since
F is flat by Theorem 5.1.2, the contraction of the extended ideal F(I)R along F is
again I by Proposition 3.2.5, and a lies in this contraction (recall that F(I)R∩R
stands really for F−1(F(I)R).) !"

5.2 Tight closure

The definition of tight closure, although not complicated, is not that intuitive
either. The idea is inspired by the ideal membership test of Corollary 5.1.3. Un-
fortunately, that test only works over regular local rings, so that it will be no
surprise that whatever test we design, it will have to be more involved. Moreover,
the proposed test will in fact fail in general, that is to say, the elements satisfying
the test form an ideal which might be strictly bigger than the original ideal. But
not too much bigger, so that we may view this bigger ideal as a closure of the
original ideal, and as such, it is a ‘tight’ fit.

In the remainder of this section, A is a Noetherian ring, of characteristic p. A
first obvious generalization of the ideal membership test from Corollary 5.1.3 is
to allow iterates of the Frobenius: we could ask, given an ideal I ⊆ A, what are
the elements x such that Fn(x) ∈ Fn(I)A for some power n? They do form an ideal
and the resulting closure operation is called the Frobenius closure. However, its
properties are not sufficiently strong to derive all the results tight closure can.
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The adjustment to make in the definition of Frobenius closure, although mi-
nor, might at first be a little surprising. To make the definition, we will call an
element a ∈ A a multiplier, if it is either a unit, or otherwise generates an ideal
of positive height (necessarily one by Krull’s Principal Ideal Theorem). Put dif-
ferently, a is a multiplier if it does not belong to any minimal prime ideal of A.
In particular, the product of two multipliers is again a multiplier. In a domain, a
situation we can often reduce to, a multiplier is simply a non-zero element.

The name ‘multiplier’ comes from the fact that we will use such elements to
multiply our test condition with. However, for this to make sense, we cannot
just take one iterate of the Frobenius, we must take all of them, or at least all
but finitely many. So we now define: an element x ∈ A belongs to the tight closure
clA(I) of an ideal I ⊆ A, if there exists a multiplier c ∈ A and a positive integer N
such that

cFn(x) ∈ Fn(I)A (5.3)

for all n≥ N. Note that the multiplier c and the bound N may depend on x and I,
but not on n. We will write cl(I) for clA(I) if the ring A is clear from the context.
In the literature, tight closure is invariably denoted I∗, but again for reasons that
will become clear in the next chapter, our notation better suits our purposes. Let
us verify some elementary properties of this closure operation:

5.2.1 The tight closure of an ideal I in a Noetherian ring A is again an ideal, it
contains I, and it is equal to its own tight closure. Moreover, we can find
a multiplier c and a positive integer N which works simultaneous for all
elements in cl(I) in criterion (5.3).

It is easy to verify that cl(I) is closed under multiples, and contains I. To show
that it is closed under sums, whence an ideal, assume x,x′ ∈ A both lie in cl(I),
witnessed by the equations (5.3) for some multipliers c and c′, and some positive
integers N and N′ respectively. However, cc′Fn(x + x′) then lies in Fn(I)A for all
n ≥ max{N,N′}, showing that x + x′ ∈ cl(I) since cc′ is again a multiplier. Let
J := cl(I) and choose generators y1, . . . ,ys of J. Let ci and Ni be the corresponding
multiplier and bound for yi. It follows that c := c1c2 · · ·cs is a multiplier such that
(5.3) holds for all n≥ N := max{N1, . . . ,Ns} and all x ∈ J, since any such element
is a linear combination of the yi. In particular, cFn(J)A ⊆ Fn(I)A for all n ≥ N.
Hence if z lies in the tight closure of J, so that dFn(z)∈Fn(J)A for some multiplier
d and for all n ≥ M, then cd Fn(z) ∈ Fn(I)A for all n ≥ max{M,N}, whence z ∈
cl(I) = J. The last assertion now easily follows from the above analysis. In the
sequel, we will therefore no longer make the bound N explicit and instead of “for
all n≥ N” we will just write “for all n0 0”.

Example 5.2.2. It is instructive to look at some examples. Let K be a field of char-
acteristic p > 3, and let A := K[ξ ,ζ ,η ]/(ξ 3−ζ 3−η3)K[ξ ,ζ ,η ] be the projective
coordinate ring of the cubic Fermat curve. Let us show that ξ 2 is in the tight clo-
sure of I := (ζ ,η)A. For a fixed e, write 2pe = 3h + r for some h ∈ N and some
remainder r ∈ {1,2}, and let c be the multiplier ξ 3. Hence
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cFe(ξ 2) = ξ 3(h+1)+r = ξ r(ζ 3 +η3)h+1.

A quick calculation shows that any monomial in the expansion of (ζ 3 +η3)h+1 is
a multiple of either Fe(ζ ) or Fe(η), showing that (5.3) holds for all e, and hence
that (ξ 2,ζ ,η)A⊆ cl(I).

It is often much harder to show that an element does not belong to the tight
closure of an ideal. Shortly, we will see in Theorem 5.3.6 that any element outside
the integral closure is also outside the tight closure. Since (ξ 2,ζ ,η)A is integrally
closed, we conclude that it is equal to cl(I).

Example 5.2.3. Let A be the coordinate ring of the hypersurface in A3
K given by the

equation ξ 2− ζ 3−η7 = 0. By a similar calculation as in the previous example,
one can show that ξ lies in the tight closure of (ζ ,η)A.

A far more difficult result is to show that this is not true if we replace η7

by η5 in the above equation. In fact, in this new coordinate ring A′, any ideal is
tightly closed, that is to say, in the terminology from Definition 5.2.7 below, A′
is F-regular, but this is a deep fact, following from it being log-terminal (see the
discussion following Theorem 5.5.6).

It is sometimes cumbersome to work with multipliers in arbitrary rings, but
in domains they are just non-zero elements. Fortunately, we can always reduce to
the domain case when calculating tight closure:

Proposition 5.2.4. Let A be a Noetherian ring, let p1, . . . ,ps be its minimal primes,
and put Āi := A/pi. For all ideals I ⊆ A we have

clA(I) =
s⋂

i=1
clĀi

(IĀi)∩A. (5.4)

Proof. The same equations which exhibit x as en element of clA(I) also show that
it is in clĀi

(IĀi) since any multiplier in A remains, by virtue of its definition, a
multiplier in Āi (moreover, the converse also holds: by prime avoidance, we can
lift any multiplier in Āi to one in A). So one inclusion in (5.4) is clear.

Conversely, suppose x lies in the intersection on the right hand side of (5.4).
Let ci ∈ A be a multiplier in A (so that its image is a multiplier in Āi), such that

ciFn
Āi

(x) ∈ Fn
Āi

(I)Āi

for all n0 0. This means that each ciFn
A(x) lies in Fn

A(I)A+pi for n0 0. Choose
for each i, an element ti ∈ A inside all minimal primes except pi, and let c :=
c1t1 + · · ·+csts. A moment’s reflection yields that c is again a multiplier. Moreover,
since tipi ⊆ n, where n := nil(R) is the nilradical of A, we get

cFn
A(x) ∈ Fn

A(I)A+n

for all n0 0. Choose m such that npm is zero, whence also the smaller ideal FA(n).
Applying Fm

A to the previous equations, yields
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Fm
A (c)Fm+n

A (x) ∈ Fm+n
A (I)A

for all n0 0, which means that x ∈ clA(I) since Fm
A (c) is again a multiplier. !"

We will encounter many operations similar to tight closure, and so we formally
define:

Definition 5.2.5 (Closure operation). A closure operation on a ring A is any
order-preserving, increasing, idempotent endomorphism on the set of ideals of
A ordered by inclusion.

For instance, taking the radical of an ideal is a closure operation, and so is
integral closure discussed below. Tight closure too is a closure operation on A,
since it clearly also preserves inclusion: if I ⊆ I′, then cl(I)⊆ cl(I′). An ideal that
is equal to its own tight closure is called tightly closed. Recall that the colon ideal
(I : J) is the ideal of all elements a ∈ A such that aJ ⊆ I; here I ⊆ A is an ideal,
but J ⊆ A can be any subset, which, however, most of the time is either a single
element or an ideal. Almost immediately from the definitions, we get

5.2.6 If I is tightly closed, then so is (I : J) for any J ⊆ A. !"

One of the longest outstanding open problems in tight closure theory was its
behavior under localization: do we always have

clA(I)Ap
?= clAp(IAp) (5.5)

for every prime ideal p⊆ A. Recently, Brenner and Monsky have announced (see
[15]) a negative answer to this question. The full extent of this phenomenon is not
yet understood, and so one has proposed the following two definitions (the above
cited counterexample still does not contradict that both notions are the same).

Definition 5.2.7. A Noetherian ring A is called weakly F-regular if each of its ide-
als is tightly closed. If all localizations of A are weakly F-regular, then A is called
F-regular.

5.3 Five key properties of tight closure

In this section we derive five key properties of tight closure, all of which admit
fairly simple proofs. It is important to keep this in mind, since these five prop-
erties will already suffice to prove in the next section some deep theorems in
commutative algebra. In fact, as we will see, any closure operation with these five
properties on a class of Noetherian local rings would establish these deep theo-
rems for that particular class (and there are still classes for which these statements
remain conjectural). Moreover, the proofs of the five properties themselves rest
on a few simple facts about the Frobenius, so that this will allow us to also carry
over our arguments to characteristic zero in Chapters 6 and 7.
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The first property, stated here only in its weak version, is merely an observa-
tion. Namely, any equation (5.3) in a ring A extends to a similar equation in any
A-algebra B. In order for the latter to calculate tight closure, the multiplier c ∈ A
should remain a multiplier in B, and so we proved:

Theorem 5.3.1 (Weak Persistence). Let A→ B be a ring homomorphism, and let
I ⊆ A be an ideal. If A→ B is injective and B is a domain, or more generally, if A→ B
preserves multipliers, then clA(I)⊆ clB(IB). !"

The remarkable fact is that this is also true if A → B is arbitrary and A is
of finite type over an excellent Noetherian local ring (see [59, Theorem 2.3]). We
will not need this stronger version, the proof of which requires another important
ingredient of tight closure theory: the notion of a test element. A multiplier c∈ A
is called a test element for A, if for every a ∈ cl(I), we have cFn(a) ∈ Fn(I)A for
all n. The existence of test elements is not easy, and lies outside the scope of these
notes, but once one has established their existence, many arguments become even
more streamlined.

Theorem 5.3.2 (Regular closure). In a regular local ring, every ideal is tightly
closed. In fact, a regular ring is F-regular.

Proof. Let R be a regular local ring. Since any localization of R is again regular,
the second assertion follows from the first. To prove the first, let I be an ideal
and x ∈ cl(I). Towards a contradiction, assume x /∈ I. In particular, we must have
(I : x)⊆m. Choose a non-zero element c such that (5.3) holds for all n0 0. This
means that c lies in the colon ideal (Fn(I)R : Fn(x)), for all n0 0. Since F is flat
by Theorem 5.1.2, the colon ideal is equal to Fn(I : x)R by Theorem 3.3.14. Since
(I : x)⊆m, we get c ∈ Fn(m)R⊆mpn . Since this holds for all n0 0, we get c = 0
by Theorem 2.4.14, clearly a contradiction. !"

Theorem 5.3.3 (Colon Capturing). Let R be a Noetherian local domain which is a
homomorphic image of a Cohen-Macaulay local ring, and let (x1, . . . ,xd) be a system
of parameters in R. Then for each i, the colon ideal ((x1, . . . ,xi)R : xi+1) is contained
in cl((x1, . . . ,xi)R).

Proof. Let S be a local Cohen-Macaulay ring such that R = S/p for some prime
ideal p ⊆ S of height h. By prime avoidance, we can lift the xi to elements in
S, again denoted for simplicity by xi, and find elements y1, . . . ,yh ∈ p such that
(y1, . . . ,yh,x1, . . . ,xd) is a system of parameters in S, whence an S-regular sequence.
Since p contains the ideal J := (y1, . . . ,yh)S of the same height, it is a minimal
prime of J. Let J = g1 ∩ · · ·∩gs be a minimal primary decomposition of J, with
g1 the p-primary component of J. In particular, some power of p lies in g1, and
we may assume that this power is of the form pm for some m. Choose c inside all
gi with i > 1, but outside p (note that this is possible by prime avoidance). Putting
everything together, we have

cFm(p)⊆ cppm ⊆ J. (5.6)
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Fix some i, let I := (x1, . . . ,xi)S and assume zxi+1 ∈ IR, for some z ∈ S. Lifting this
to S, we get zxi+1 ∈ I +p. Applying the n-th power of Frobenius to this for n > m,
we get Fn(z)Fn(xi+1) ∈ Fn(I)S +Fn(p)S. By (5.6), this means that cFn(z)Fn(xi+1)
lies in Fn(I)S+Fn−m(J)S. Since the Fn−m(y j) together with the Fn(x j) form again
an S-regular sequence, we conclude that

cFn(z) ∈ Fn(I)S +Fn−m(J)S⊆ Fn(I)S + J

whence cFn(z) ∈ Fn(I)R for all n > m. By the choice of c, it is non-zero in R, so
that the latter equations show that z ∈ cl(IR). !"

The condition that R is a homomorphic image of a regular local ring is sat-
isfied either if R is a local affine algebra, or, by Cohen’s Structure Theorems, if
R is complete. These are the two only cases in which we will apply the previous
theorem. With a little effort, one can extend the proof without requiring R to be
a domain (see for instance [59, Theorem 3.1]).

Theorem 5.3.4 (Finite extensions). If A→ B is a finite, injective homomorphism
of domains, and I ⊆ A be an ideal, then clB(IB)∩A = clA(I).

Proof. One direction is immediate by Theorem 5.3.1. For the converse, there
exists an A-module homomorphism ϕ : B → A such that c := ϕ(1) 1= 0, by
Lemma 5.3.5 below. Suppose x ∈ clB(IB)∩A, so that for some non-zero d ∈ B,
we have d Fn(x) ∈ Fn(I)B for n0 0. Since B is finite over A, some non-zero mul-
tiple of d lies in A, and hence without loss of generality, we may assume d ∈ A.
Applying ϕ to these equations, we get

cd Fn(x) ∈ Fn(I)A

showing that x ∈ clA(I), since cd is a multiplier. !"

Lemma 5.3.5. If A⊆ B is a finite extension of domains, then there exists an A-linear
map ϕ : B→ A with ϕ(1) 1= 0.

Proof. Suppose B is generated over A by the elements b1, . . . ,bs. Let K and L be
the fields of fractions of A and B respectively. Since B is a domain, it lies inside the
K-vector subspace V ⊆ L generated by the bi. Choose an isomorphism γ : V → Kt

of K-vector spaces. After renumbering, we may assume that the first entry of γ(1)
is non-zero. Let π : Kt → K be the projection onto the first coordinate, and let
d ∈ A be the common denominator of the π(γ(bi)) for i = 1, . . . ,s. Now define an
A-linear homomorphism ϕ by the rule ϕ(y) = dπ(γ(y)) for y ∈ B. Since y is an
A-linear combination of the bi and since dπ(γ(bi)) ∈ A, also ϕ(y) ∈ A. Moreover,
by construction, ϕ(1) 1= 0. !"

Note that a special case of Theorem 5.3.4 is the fact that tight closure measures
the extent to which an extension of domains A ⊆ B fails to be cyclically pure:
IB∩A is contained in the tight closure of I, for any ideal I ⊆ A. In particular,
in view of Theorem 5.3.2, this reproves the well-known fact that if A ⊆ B is an
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extension of domains with A regular, then A ⊆ B is cyclically pure. The next
and last property involves another closure operation, integral closure. It will be
discussed in more detail below (§5.4), and here we just state its relationship with
tight closure:

Theorem 5.3.6 (Integral closure). For every ideal I ⊆ A, its tight closure is con-
tained in its integral closure. In particular, radical ideals, and more generally inte-
grally closed ideals, are tightly closed.

Proof. The second assertion is an immediate consequence of the first. We verify
condition (5.4.1.iv) below to show that if x belongs to the tight closure clA(I),
then it also belongs to the integral closure Ī. Let A→V be a homomorphism into
a discrete valuation ring V , such that its kernel is a minimal prime of A. We need
to show that x ∈ IV . However, this is clear since x ∈ clV (IV ) by Theorem 5.3.1
(note that A→V preserves multipliers), and since clV (IV ) = IV , by Theorem 5.3.2
and the fact that V is regular. !"

It is quite surprising that there is no proof, as far as I am aware of, that a prime
ideal is tightly closed without reference to integral closure.

5.4 Integral closure

The integral closure Ī of an ideal I is the collection of all elements x ∈ A satisfying
an integral equation of the form

xd +a1xd−1 + · · ·+ad = 0 (5.7)

with a j ∈ I j for all j = 1, . . . ,d. We say that I is integrally closed if I = Ī. Since
clearly Ī ⊆ rad(I), radical ideals are integrally closed. It follows from either char-
acterization (5.4.1.ii) or (5.4.1.iv) below that Ī is an ideal.

Theorem 5.4.1. Let A be an arbitrary Noetherian ring (not necessarily of characteris-
tic p). For an ideal I ⊆ A and an element x ∈ A, the following are equivalent

5.4.1.i. x belongs to the integral closure, Ī;
5.4.1.ii. there is a finitely generated A-module M with zero annihilator such that

xM ⊆ IM;
5.4.1.iii. there is a multiplier c ∈ A such that cxn ∈ In for infinitely many (respec-

tively, for all sufficiently large) n;
5.4.1.iv. for every homomorphism A→ V into a discrete valuation ring V with

kernel equal to a minimal prime of A, we have x ∈ IV .

Proof. We leave it to the reader to show that x lies in the integral closure of an ideal
I if and only if it lies in the integral closure of each I(A/p), for p a minimal prime
of A. Hence we may moreover assume that A is a domain. Suppose x satisfies an
integral equation (5.7), and let J := xd−1A + xd−2I + · · ·+ Id . An easy calculation
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shows that xJ ⊆ IJ, proving (5.4.1.i) ⇒ (5.4.1.ii). Moreover, by induction, xnJ ⊆
InJ, and hence for any non-zero element c ∈ J, we get cxn ∈ In, proving (5.4.1.iii).
Note that in particular, xnId ⊆ In for all n. The implication (5.4.1.ii) ⇒ (5.4.1.i) is
proven by a ‘determinantal trick’: apply [69, Theorem 2.1] to the multiplication
with x on M. To prove (5.4.1.iii)⇒ (5.4.1.iv), suppose there is some non-zero c∈A
such that cxn ∈ In for infinitely many n. Let A⊆V be an injective homomorphism
into a discrete valuation ring V , and let v be the valuation on V . Hence v(c) +
nv(x) ≥ nv(I) for infinitely many n, where v(I) is the minimum of all v(a) with
a ∈ I. It follows that v(x)≥ v(I), and hence x ∈ IV .

Remains to prove (5.4.1.iv) ⇒ (5.4.1.i), so assume x ∈ IV for every embedding
A ⊆ V into a discrete valuation ring V . Let I = (a1, . . . ,an)A, and consider the
homomorphism A[ξ ] → Ax given by ξi .→ ai/x, where ξ := (ξ1, . . . ,ξn). Let B
be its image, so that A ⊆ B ⊆ Ax (one calls B the blowing-up of I + xA at x). Let
m := (ξ1, . . . ,ξn)A[ξ ]. I claim that mB = B. Assuming the claim, we can find f ∈m
such that f (a/x) = 1 in Ax, where a := (a1, . . . ,an). Write f = f1 + · · ·+ fd in its
homogeneous parts f j of degree j, so that

1 = x−1 f1(a)+ · · ·+ x−d fd(a).

Multiplying with xd , and observing that f j(a) ∈ I j, we see that x satisfies an inte-
gral equation (5.7), and hence x ∈ Ī.

To prove the claim ex absurdum, suppose mB is not the unit ideal, whence
is contained in a maximal ideal n of B. Let (x1, . . . ,xn) be a generating tuple of
n. Let R be the Bn-algebra generated by the fractions xi/x1 with i = 1, . . . ,n (the
blowing-up of Bn at n). Since nR = x1R, there exists a height one prime ideal
p in R containing nR. Let V be the normalization of Rp. It follows that V is a
discrete valuation ring (see [69, Theorem 11.2]) containing Bn as a local subring.
In particular, A⊆V , and mV lies in the maximal ideal πV . Since ξi .→ ai/x, we get
ai ∈ xπV for all i, and hence IV ⊆ xπV , contradicting that x ∈ IV . !"

From this we readily deduce:

Corollary 5.4.2. A domain A is normal if and only if each principal ideal is inte-
grally closed if and only if each principal ideal is tightly closed. !"

In one of our applications below (Theorem 5.5.1), we will make use of the
following nice application of the chain rule:

Proposition 5.4.3. Let K be a field of characteristic zero, and let R be either the power
series ring K[[ξ ]], the ring of convergent power series K{ξ} (assuming K is a normed
field), or the localization of K[ξ ] at the ideal generated by the indeterminates ξ :=
(ξ1, . . . ,ξn). If f is a non-unit, then it lies in the integral closure of its Jacobian ideal
Jac( f ) := (∂ f /∂ξ1, . . . ,∂ f /∂ξn)R.

Proof. Recall that K{ξ} consists of all formal power series f such that f (u) is
a convergent series for all u in a small enough neighborhood of the origin. Put
J := Jac( f ). In view of (5.4.1.iv), we need to show that given an embedding R⊆V
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into a discrete valuation ring V , we have f ∈ JV . Since completion is faithfully flat,
we may replace V by its completion, and hence already assume V is complete. By
Cohen’s Structure Theorems, V is a power series ring κ[[ζ ]] in a single variable
over a field extension κ of K. Viewing the image of f in κ[[ζ ]] as a power series
in ζ , the multi-variate chain rule yields

df
dζ

=
n

∑
i=1

∂ f
∂ξi

· dξi

dζ
∈ JV.

However, since f has order e ≥ 1 in V , its derivative df /dζ has order e− 1, and
hence f ∈ (df /dζ )V ⊆ JV . Note that for this to be true, however, the character-
istic needs to be zero. For instance, in characteristic p, the power series ξ p would
already be a counterexample to the proposition. !"

Since the integral closure is contained in the radical closure, we get that some
power of f lies in its Jacobian ideal Jac( f ). A famous theorem due to Briançon-
Skoda states that in fact already the n-th power lies in the Jacobian, where n is the
number of variables. We will prove this via an elegant tight closure argument in
Theorem 5.5.1 below).

5.5 Applications

We will now discuss three important applications of tight closure. Perhaps surpris-
ingly, the original statements all were in characteristic zero (with some of them
in their original form plainly false in positive characteristic), and their proofs re-
quired deep and involved arguments, some even based on transcendental/analytic
methods. However, they each can be reformulated so that they also make sense
in positive characteristic, and then can be established by surprisingly elegant tight
closure arguments. As for the proofs of their characteristic zero counterparts, they
must wait until we have developed the theory in characteristic zero in Chapters 6
and 7 (or one can use the ‘classical’ tight closure in characteristic zero discussed in
§5.6).

5.5.1 The Briançon-Skoda theorem.

We already mentioned this famous result, proven first in [16].

Theorem 5.5.1 (Briançon-Skoda). Let R be either the ring of formal power series
C[[ξ ]], or the ring of convergent power series C{ξ}, or the localization of the polyno-
mial ring C[ξ ] at the ideal generated by ξ , where ξ := (ξ1, . . . ,ξn) are some indeter-
minates. If f is not a unit, then f n ∈ Jac( f ) := (∂ f /∂ξ1, . . . ,∂ f /∂ξn)R.
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This theorem will follow immediately from the characteristic zero analogue
of the next result (with l = 1), in view of Proposition 5.4.3; we will do this in
Theorem 6.2.5 below.

Theorem 5.5.2 (Briançon-Skoda—tight closure version). Let A be a Noetherian
ring of characteristic p, and I ⊆ A an ideal generated by n elements. Then we have for
all l ≥ 1 an inclusion

In+l−1 ⊆ cl(Il).

In particular, if A is a regular local ring, then the integral closure of In+l−1 lies
inside Il for l ≥ 1.

Proof. For simplicity, I will only prove the case l = 1 (which gives the orig-
inal Briançon-Skoda theorem). Assume z lies in the integral closure of In. By
(5.4.1.iii), there exists a multiplier c ∈ A such that czk ∈ Ikn for all k 0 0. Since
I := ( f1, . . . , fn)A, we have an inclusion Ikn ⊆ ( f k

1 , . . . , f k
n )A. Hence with k equal

to pm, we get cFm(z) ∈ Fm(I)A for all m 0 0. In conclusion, z ∈ cl(I). The last
assertion then follows from Theorem 5.3.2. !"

5.5.2 The Hochster-Roberts theorem.

We will formulate the next result without defining in detail all the concepts in-
volved, except when we get to its algebraic formulation. A linear algebraic group G
is an affine subscheme of the general linear group GL(K,n) over an algebraically
closed field K such that its K-rational points form a subgroup of the latter group.
When G acts (as a group) on a closed subscheme X ⊆An

K (more precisely, for each
algebraically closed field L containing K, there is an action of the L-rational points
of G(L) on X(L)), we can define the quotient space X/G, consisting of all orbits
under the action of G on X , as the affine space Spec(RG), where RG denotes the
subring of G-invariant sections in R := Γ (X ,OX ) (the action of G on X induces
an action on the sections of X , and hence in particular on R). For this to work
properly, we also need to impose a certain finiteness condition: G has to be lin-
early reductive. Although not usually its defining property, we will here take this
to mean that there exists an RG-linear map R→ RG which is the identity on RG,
called the Reynolds operator of the action. For instance, if K = C, then an alge-
braic group is linearly reductive if and only if it is the complexification of a real
Lie group, where the Reynolds operator is obtained by an integration process.
This is the easiest to understand if G is finite, when the integration is just a finite
sum

ρ : R→ RG : a .→ 1
|G| ∑

σ∈G
aσ ,

where aσ denotes the result of σ ∈ G acting on a ∈ R. In fact, as indicated by the
above formula, a finite group is linearly reductive over a field of positive charac-
teristic, provided its cardinality is not divisible by the characteristic. If X is non-
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singular and G is linearly reductive, then we will call X/G a quotient singularity.1
The celebrated Hochster-Roberts theorem now states:

Theorem 5.5.3. Any quotient singularity is Cohen-Macaulay.

To state a more general result, we need to take a closer look at the Reynolds
operator. A ring homomorphism A→ B is called split, if there exists an A-linear
map σ : B→ A which is the identity on A (note that σ need not be multiplicative,
that is to say, is not a ring homomorphism, only a module homomorphism).
We call σ the splitting of A → B. Hence the Reynolds operator is a splitting of
the inclusion RG ⊆ R. The only property of split maps that will matter is the
following:

5.5.4 A split homomorphism A→ B is cyclically pure.

See the discussion at the beginning of §2.4.3 for the definition of cyclic purity.
Let a ∈ IB∩A with I = ( f1, . . . , fs)A an ideal in A. Hence a = f1b1 + · · ·+ fsbs for
some bi ∈ B. Applying the splitting σ , we get by A-linearity a = f1σ(b1)+ · · ·+
fsσ(bs) ∈ I, proving that A is cyclically pure in B. !"

We also need the following result on the preservation of cyclic purity under
completions:

Lemma 5.5.5. Let R and S be Noetherian local rings with respective completions R̂
and Ŝ. If R→ S is cyclically pure, then so is its completion R̂→ Ŝ.

Proof. The homomorphism S→ Ŝ is faithfully flat, hence cyclically pure; thus the
composition R→ S→ Ŝ is cyclically pure. So from now on we may suppose that
S = Ŝ. It suffices to show that R̂ → S is injective, since the completion of R/a is
equal to R̂/aR̂, for any ideal a in R. Let a∈ R̂ be such that a = 0 in S, and for each i
choose ai ∈ R such that a≡ ai mod miR̂, where m is the maximal ideal of R. Then
ai lies in miS, hence by cyclical purity, in mi. Therefore a ∈miR̂ for all i, showing
that a = 0 in R̂ by Krull’s Intersection Theorem (Theorem 2.4.14). !"

We can now state a far more general result, of which Theorem 5.5.3 is just a
special case.

Theorem 5.5.6. If R→ S is a cyclically pure homomorphism and if S is regular, then
R is Cohen-Macaulay.

Proof. The problem is clearly local, and so we assume that (R,m) and (S,n) are
local. By Lemma 5.5.5, we may further reduce to the case that R and S are both
complete. We split the proof in two parts: we first show that R is F-regular (see
Definition 5.2.7), and then show that any complete local F-regular domain is Coh-
en-Macaulay.

1 The reader should be aware that other authors might use the term more restrictively, only
allowing X to be affine space An

K , or G to be finite.
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5.5.7 A cyclically pure subring of a regular ring is F-regular.

Indeed, since both cyclic purity and regularity are preserved under localization,
we only need to show that every ideal in R is tightly closed. To this end, let
I ⊆ R and x ∈ cl(I). Hence x lies in the tight closure of IS by (weak) persistence
(Theorem 5.3.1), and therefore in IS by Theorem 5.3.2. Hence by cyclic purity,
x ∈ I = IS∩R, proving that R is weakly F-regular. Note that we actually proved
that a cyclically pure subring of a (weakly) F-regular ring is again (weakly) F-
regular.

5.5.8 A complete local F-regular domain is Cohen-Macaulay.

Assume R is F-regular and let (x1, . . . ,xd) be a system of parameters in R. To show
that xi+1 is R/(x1, . . . ,xi)R-regular, assume zxi+1 ∈ (x1, . . . ,xi)R. Colon Capturing
(Theorem 5.3.3) yields that z lies in the tight closure of (x1, . . . ,xi)R, whence in
the ideal itself since R is F-regular. !"

Remark 5.5.9. In fact, R is then also normal (this follows easily from 5.5.7 and
Corollary 5.4.2). A far more difficult result is that R is then also pseudo-rational
(a concept that lies beyond the scope of these notes; see for instance [59, 99] for a
discussion of what follows). This was first proven by Boutot in [14] for C-affine
algebras by means of deep vanishing theorems. The positive characteristic case was
proven by Smith in [108] by tight closure methods, where she also showed that
pseudo-rationality is in fact equivalent with the weaker notion of F-rationality
(a local ring is F-rational if some parameter ideal is tightly closed). I proved the
general characteristic zero case in [99] by means of ultraproducts. In fact, being F-
regular is equivalent under the Q-Gorenstein assumption with having log-terminal
singularities (see [38, 95]; for an example see Example 5.2.3). It should be noted
that ‘classical’ tight closure theory in characteristic zero (see §5.6 below) is not
sufficiently versatile to derive these results: so far, only our present ultraproduct
method seems to work.

5.5.3 The Ein-Lazardsfeld-Smith theorem.

The next result, although elementary in its formulation, was only proven recently
in [26] using quite complicated methods (which only work over C), but then soon
after in [55] by an elegant tight closure argument (see also [90]), which proves the
result over any field K.

Theorem 5.5.10. Let V ⊆K2 be a finite subset with ideal of definition I := I(V ). For
each k, let Jk(V ) be the ideal of all polynomials f having multiplicity at least k at each
point x ∈V . Then J2k(V )⊆ Ik, for all k.

To formulate the more general result of which this is just a corollary, we need
to introduce symbolic powers. We first do this for a prime ideal p: its k-th symbolic
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power is the contracted ideal p(k) := pkRp ∩R. In general, the inclusion pk ⊆ p(k)

may be strict, and, in fact, p(k) is the p-primary component of pk. If a is a radical
ideal (we will not treat the more general case), then we define its k-th symbolic
power a(k) as the intersection p

(k)
1 ∩ · · ·∩ p

(k)
s , where the pi are all the minimal

overprimes of a. The connection with Theorem 5.5.10 is given by:

5.5.11 The k-th symbolic power of the ideal of definition I := I(V ) of a finite subset
V ⊆K2 is equal to the ideal Jk(V ) of all polynomials that have multiplicity
at least k at any point of V .

Indeed, for x ∈ V , let m := mx be the corresponding maximal ideal. By defini-
tion, a polynomial f has multiplicity at least k at each x ∈ V , if f ∈ mkAm for all
maximal ideals m containing I. The latter condition simply means that f ∈ m(k),
so that the claim follows from the definition of symbolic power. !"

Hence, in view of this, Theorem 5.5.10 is an immediate consequence of the
following theorem (at least in positive characteristic; for the characteristic zero
case, see Theorems 6.2.6 and 7.2.4 below):

Theorem 5.5.12. Let A be a regular domain of characteristic p. Let a⊆ A be a radical
ideal and let h be the maximal height of its minimal overprimes. Then we have an
inclusion a(hn) ⊆ an, for all n.

Proof. We start with proving the following useful inclusion:

a(hpe) ⊆ Fe(a)A (5.8)

for all e. Let p1, . . . ,pm be the minimal prime ideals of a. We first prove (5.8)
locally at one of these minimal primes p. Since Ap is regular and aAp = pAp, we
can find fi ∈ a such that aAp = ( f1, . . . , fh)Ap. By definition of symbolic powers,
a(hpe)Ap = ahpe

Ap. On the other hand, ahpe
Ap consists of monomials in the fi

of degree hpe, and hence any such monomial lies in Fe(a)Ap. This establishes
(5.8) locally at p. To prove this globally, take z ∈ a(hpe). By what we just proved,
there exists si /∈ pi such that siz ∈ Fe(a)A for each i = 1, . . . ,m. For each i, choose
an element ti in all p j except pi, and put s := t1s1 + · · ·+ smtm. It follows that s
multiplies z inside Fe(a)A, whence a fortiori, so does Fe(s). Hence

z ∈ (Fe(a)A : Fe(s)) = Fe(a : s)A

where we used Theorem 3.3.14 and the fact that F is flat on A by Theorem 5.1.2.
However, s does not lie in any of the pi, whence (a : s) = a, proving (5.8).

To prove the theorem, let f ∈ a(hn), and fix some e. We may write pe = an+ r
for some a,r ∈ N with 0 ≤ r < n. Since the usual powers are contained in the
symbolic powers, and since r < n, we have inclusions

ahn f a ⊆ ahr f a ⊆ a(han+hr) = a(hpe) ⊆ Fe(a)A (5.9)

where we used (5.8) for the last inclusion. Taking n-th powers in (5.9) shows that
ahn2

f an lies in the n-th power of Fe(a)A, and this in turn lies inside Fe(an)A.



86 5 Tight closure in characteristic p

Choose some non-zero c in ahn2 . Since pe ≥ an, we get cFe( f ) ∈ Fe(an)A for all
e. In conclusion, f lies in cl(an) whence in an by Theorem 5.3.2. !"

One might be tempted to try to prove a more general form which does not
assume A to be regular, replacing an by its tight closure. However, we used the
regularity assumption not only via Theorem 5.3.2 but also via Kunz’s Theorem
that the Frobenius is flat. Hence the above proof does not work in arbitrary rings.

5.6 Classical tight closure in characteristic zero

To prove the previous three theorems in a ring of equal characteristic zero,
Hochster and Huneke also developed tight closure theory for such rings. One
of the precursors to tight closure theory was the proof of the Intersection The-
orem by Peskine and Szpiro in [75]. They used properties of the Frobenius to-
gether with a method to transfer results from characteristic p to characteristic
zero, which was then generalized by Hochster in [43]. This same technique is also
used to obtain a tight closure theory in equal characteristic zero, as we will discuss
briefly in this section. However, using ultraproducts, we will bypass in Chapters 6
and 7 this rather heavy-duty machinery, to arrive much quicker at proofs in equal
characteristic zero.

Let A be a Noetherian ring containing the rationals. The idea is to associate to
A some rings in positive characteristic, its reductions modulo p, and calculate tight
closure in the latter. More precisely, let a ⊆ A be an ideal, and z ∈ A. We say that
z lies in the HH-tight closure of a (where “HH” stands for Hochster-Huneke), if
there exists a Z-affine subalgebra R ⊆ A containing z, such that (the image of) z
lies in the tight closure of I(R/pR) for all primes numbers p, where I := a∩R.

It is not too hard to show that this yields a closure operation on A (in the
sense of Definition 5.2.5). Much harder is showing that it satisfies all the neces-
sary properties from §5.3. For instance, to prove the analogue of Theorem 5.3.2,
one needs some results on generic flatness, and some deep theorems on Artin Ap-
proximation (see for instance [59, Appendix 1] or [54]; for a brief discussion of
Artin Approximation, see §7.1 below). In contrast, using ultraproducts, one can
avoid all these complications in the affine case (Chapter 6), or get by with a more
elementary version of Artin Approximation in the general case (Chapter 7).


